TW201034359A - Boost converter having two-step soft start mechanism - Google Patents

Boost converter having two-step soft start mechanism Download PDF

Info

Publication number
TW201034359A
TW201034359A TW98108239A TW98108239A TW201034359A TW 201034359 A TW201034359 A TW 201034359A TW 98108239 A TW98108239 A TW 98108239A TW 98108239 A TW98108239 A TW 98108239A TW 201034359 A TW201034359 A TW 201034359A
Authority
TW
Taiwan
Prior art keywords
terminal
transistor
electrically connected
voltage
input
Prior art date
Application number
TW98108239A
Other languages
Chinese (zh)
Other versions
TWI369057B (en
Inventor
Kun-Huang Jheng
Original Assignee
Advanced Analog Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Analog Technology Inc filed Critical Advanced Analog Technology Inc
Priority to TW098108239A priority Critical patent/TWI369057B/en
Publication of TW201034359A publication Critical patent/TW201034359A/en
Application granted granted Critical
Publication of TWI369057B publication Critical patent/TWI369057B/en

Links

Abstract

A boost converter having two-step soft start mechanism includes a tri-input comparator for performing a current limit control process, a tri-input error amplifier for performing a voltage feedback control process, a transistor for controlling an output voltage furnished to a load, and a sensing resistor for generating a current sensing voltage. The boost converter carries out a booting operation through sequentially performing the current limit control process and the voltage feedback control process. The current limit control process is employed to compare a current sensing voltage with a first soft start voltage so as to prevent an occurrence of inrush current flowing through the transistor. The voltage feedback control process is utilized for performing error amplification over a feedback voltage generated by the load based on a second soft start voltage in an attempt to avoid a voltage overshoot occurring to the output voltage.

Description

201034359 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種昇壓轉換器,尤指一種具二階段緩啟 動機制之昇壓轉換器。 ^ 【先前技術】 請參考第1圖,第1圖為習知昇壓轉換器的電路示意圖。如第 1圖所示,昇壓轉換器100包含緩啟動單元150、參考電壓提供單元 111、二角波產生器113、二輸入端誤差放大器、第一比較器117、 第二比較器119、及閘(ANDGate)121、N型金氧半電晶體(N-type MOStransistor)123、電感 125、感測電阻 127、肖特基二極體(Schottky diode)129、與濾波電容131。三輸入端誤差放大器115係用來根據 ❿第-參考電壓Vrefl或緩啟動電壓Vss,對負載⑼所產生之反馈電 壓Vfb進行誤差放大處理以產生誤差訊號Sen_,據以調整昇壓轉換 器1〇〇之輸出電壓Vout。 一般而言,在開機階段中,昇壓轉換器100所產生之輸出電壓 V〇Ut為剛從接地電壓逐漸上昇的低f壓,此時若將反舰Vfb直 接與第-參考電壓Vrefl進行誤差比較,則會產生過大的誤差訊號 4成輸出電壓Vout的電壓過衝(Voltage Overshoot)現象。因此, 201034359 三輸入端誤差放大器115就用以先將反饋電壓Vfb與緩啟動電壓 Vss作誤差比較’直到輸出電壓v〇ut上昇至接近所需之電壓準位 • 時,再將反饋電壓Vfb與第一參考電壓Vrefl進行誤差比較,據以 避免發生輸出電壓Vout的電壓過衝現象。 感測電阻12 7係用來感測流經電晶體丨2 3的電流Ix以產生電流 感測電壓Vcur。比較器119比較電流感測電壓Vcur與第二參考電 φ 壓Vref2以控制流經電晶體123的電流lx。然而,由於在開機階段 中,電流感測電壓Vcur為剛從接地電壓逐漸上昇的低電壓,所以此 時將電流感測電壓Vcur直接與第二參考電壓Vref2進行比較,會使 流經電晶體123的電流Ιχ發生突波電流(Inmsh Current),因而降低 電晶體123的使用壽命。 【發明内容】 ❹依據本發明之實闕,其舰—種具二階段緩啟誠制之昇壓 轉換器’用以防止發生突波電流與電壓過衝現象,進而延長其電晶 .體的使用壽命,並可提供穩定的輸出電壓以避免負載受損。此種昇 壓轉換H &含緩啟動單元、三輸⑼誤差放A||、三輸人端比較器、 比較β、及閘(AND Gate)、電感、電晶體、感測電阻、與二極體。 緩啟動單元伽絲據輸人鶴與第—參考電録生第一緩啟 動電壓與帛二驗動龍。三輪八魏差放大器包含帛―正輸入 7 201034359 :第輪八端與輪出端’其中第一正輪入端用以接 一 I第二正輸人端電連接於緩啟鱗如接收第二緩 入端用以接收由負載所產生之反饋電壓,輸出端用 輸=綠喊。三輸人端咖包含第—非反相輸人 參 Φ 輸入端與輸出端,其中第一非反相輸入端用以接 第一非反相輸入端電連接於緩啟動單元以接收 =動f,反相輸入端用以接收電流感測襲,輸出端用以輸 比較器包含非反相輸入端、反相輸入端與輸出端,其 中非反相輸入端電連接於三輸入端誤差放大器之輸出端以接收誤差 目輸入端用以接收斜波訊號,輸出端用以輸出第-脈波寬 度調變域。及閘包含第—輸人端、第二輸人端與輸出端,其中第 輸入端電連胁三輸人端味g之輸㈣哺收味峨,第二 輸入端電連接於比較器之輸出端以接收第一脈波寬度調變訊號,輸 出端用以輸出第二脈波寬度調變訊號。電感包含第—端與第二端, 射第-端用以接收輸入電壓。電晶體包含第一端、第二端與間極 端其中第端電連接於電感之第二端,閘極端電連接於及問之輸 出端以接收第二脈波寬度調變訊號,第二端電連接於三輸入端比較 器之反相輸人端以提供電流_電壓。感測電阻電連接於電晶體之 第二端與接地端之間’其中電流感測電壓係為感測電阻之壓=。二 極體包含正極端(Anode)與負極端(Cath0de),其中正極端電連接於電 晶體之第一端,輸出電壓係從負極端輸出至負載。 、 【實施方式】 8 201034359 為讓本發明更顯而易懂,下文依本發明具二階段緩啟動 制之昇壓轉換n ’特舉實施例配合所關式作詳細說明,《旦所 提供之實施例並非用以限制本發明所涵蓋的範圍。201034359 VI. Description of the Invention: [Technical Field] The present invention relates to a boost converter, and more particularly to a boost converter having a two-stage slow start mechanism. ^ [Prior Art] Please refer to Figure 1, which is a circuit diagram of a conventional boost converter. As shown in FIG. 1, the boost converter 100 includes a slow start unit 150, a reference voltage supply unit 111, a binary wave generator 113, a two-input error amplifier, a first comparator 117, a second comparator 119, and An gate (ANDGate) 121, an N-type MOS transistor 123, an inductor 125, a sense resistor 127, a Schottky diode 129, and a filter capacitor 131. The three-input error amplifier 115 is configured to perform error amplification processing on the feedback voltage Vfb generated by the load (9) according to the first reference voltage Vref1 or the slow start voltage Vss to generate an error signal Sen_, thereby adjusting the boost converter 1〇. The output voltage Vout of 〇. Generally, in the startup phase, the output voltage V〇Ut generated by the boost converter 100 is a low f voltage that has just gradually risen from the ground voltage. At this time, if the anti-ship Vfb is directly in error with the first reference voltage Vref1 In comparison, an excessive voltage error 4 is generated as a voltage overshoot of the output voltage Vout. Therefore, the 201034359 three-input error amplifier 115 is used to first compare the feedback voltage Vfb with the slow start voltage Vss' until the output voltage v〇ut rises close to the required voltage level, and then the feedback voltage Vfb is The first reference voltage Vref1 is compared for error to avoid a voltage overshoot phenomenon of the output voltage Vout. The sense resistor 12 7 is used to sense the current Ix flowing through the transistor 丨 23 to generate a current sense voltage Vcur. The comparator 119 compares the current sensing voltage Vcur with the second reference voltage φ voltage Vref2 to control the current lx flowing through the transistor 123. However, since the current sensing voltage Vcur is a low voltage that has just gradually risen from the ground voltage during the startup phase, the current sensing voltage Vcur is directly compared with the second reference voltage Vref2, and flows through the transistor 123. The current Ιχ generates an inrush current (Inmsh Current), thereby reducing the lifetime of the transistor 123. SUMMARY OF THE INVENTION According to the practice of the present invention, a ship-type two-stage step-up boost converter is used to prevent the occurrence of surge current and voltage overshoot, thereby prolonging its electro-crystal body. Long life and stable output voltage to avoid load damage. Such boost converter H & slow start unit, three losses (9) error amplifier A||, three input terminal comparator, comparison β, AND gate (AND Gate), inductor, transistor, sense resistor, and two Polar body. The slow start unit gamma is based on the input crane and the first reference electric recording. The three-wheeled eight-differential amplifier includes 帛-positive input 7 201034359: the first round of the eight-end and the wheel-out end', wherein the first positive-wheel end is used to connect one I, the second positive input is electrically connected to the slow-starting scale, such as receiving the second The buffer input terminal receives the feedback voltage generated by the load, and the output terminal uses the transmission = green call. The three input end coffee cup includes a first non-inverting input ginseng Φ input end and an output end, wherein the first non-inverting input end is connected to the first non-inverting input end to be electrically connected to the slow start unit to receive = move f, The inverting input terminal is configured to receive the current sense detection, and the output terminal is configured to include a non-inverting input terminal, an inverting input terminal and an output terminal, wherein the non-inverting input terminal is electrically connected to the output of the three-input error amplifier. The receiving end is used for receiving the oblique wave signal, and the output end is for outputting the first pulse width modulation domain. The gate comprises a first-input terminal, a second input terminal and an output terminal, wherein the first input terminal is electrically connected to the three inputs, and the second input terminal is electrically connected to the output of the comparator. The terminal receives the first pulse width modulation signal, and the output terminal outputs the second pulse width modulation signal. The inductor includes a first end and a second end, and the first end is configured to receive the input voltage. The transistor includes a first end, a second end, and an intermediate end, wherein the first end is electrically connected to the second end of the inductor, and the gate terminal is electrically connected to the output end to receive the second pulse width modulation signal, and the second end is electrically Connected to the inverting input of the three-input comparator to provide current-voltage. The sensing resistor is electrically connected between the second end of the transistor and the ground terminal. The current sensing voltage is the voltage of the sensing resistor. The diode includes a positive terminal (Anode) and a negative terminal (Cath0de), wherein the positive terminal is electrically connected to the first end of the transistor, and the output voltage is output from the negative terminal to the load. [Embodiment] 8 201034359 In order to make the present invention more understandable, the following is a detailed description of the boosting conversion n' special embodiment of the two-stage slow start system according to the present invention, which is provided in detail. The examples are not intended to limit the scope of the invention.

.請參考第2圖,第2圖為本發明第—實施例之昇壓轉換 器的電路示意圖。如第2圖所示,昇壓轉換器包含緩啟 動單元250、參考電壓提供單元2U、斜波產生器213、三輸入端 誤差放大器215、三輸入端比較器219、第一比較器217、第 一及閘22卜電感225、第一電晶體223、感測電阻227、一 極體229、與第一電容231。昇壓轉換器2〇〇係將輸入電壓 Vin昇壓為輸出電壓Vom’饋送至負載2〇卜在一實施例中, 負載201包含串接之發光二極體單元2〇2與限流電阻2的, 而負載201所產生之反饋電壓Vfb即為限流電阻2〇3之壓 降。發光二極體單元2G2可包含—發光二極體或複數個 之發光二極體。 參考電壓提供單兀211用以提供第一參考電壓%奶、第二 電壓Vref2、與第三參考電壓Vref3。緩啟動單元25〇根輕;= 壓Vin與第-參考電壓細產生第—緩啟動電壓M2 二緩啟動電壓Vss2。二輸入端誤差放大器215包含第一-入端、第二正輸入端、負輸入端與輸出端,其中第一正輪 輪 接收第二參考電壓滅’第二正輪,電連接於緩啟動單元^ 9 201034359 以接收第二緩啟動電壓Vss2,負輸入端電連接於負載201以接收反 饋電壓vfb,輸出端用以輸出誤差訊號Serr。 二輸入端比較器219包含第一非反相輸入端、第二非反 相輸入端、反相輸入端、與輸出端,其中第一非反相輸入端 電連接於參考電壓提供單元211以接收第三參考電壓 Vref3,第二非反相輸入端電連接於緩啟動單元25〇以接收第 ❿一緩啟動電壓Vssl’反相輸入端電連接於感測電阻227以接 收電流感測電壓Vcur,輸出端用以輸出比較訊號Scmp。斜 波產生器213用以提供斜波訊號Sramp,斜波訊號Sramp係 為三角波電壓或錯齒波電壓。第一比較器217包含非反相輸入 端、反相輸入端、與輸出端,其中非反相輸入端電連接於三 輸入端誤差放大器215之輸出端以接收誤差訊號§err、反相 輸入端電連接於斜波產生器213以接收斜波訊號sramp,輸 出端用以輸出第·一脈波寬度§周變(Pulse Width Modulation)訊 ❹ 號Spwml。第一及閘221包含第一輸入端、第二輸入端、與 輸出端’其中第一輸入端電連接於三輪入端比較器219之輸 出端以接收比較訊號Scmp’第二輸入端電連接於第一比較 • 器217之輸出端以接收第一脈波寬度調變訊號Spwml,輸出 端用以輸出第二脈波寬度調變訊號Spwm2。 電感225包含第一端與第二端’其中第一端用以接收輸 入電壓Vin。第一電晶體223包含第一端、第二端、與輸出 201034359 端,其中第一端電連接於電感225之第二端,間極端電連接 於第一及閘221之輪出端以接收第二脈波寬度調變訊號 SPwm2’第二端電連接於三輸入端比較器219之反相輸入端 以提供電流感測電壓Vcur。感測電阻227電連接於第一電晶 體223之第二端與接地端GND之間,而電流感測電壓^似 即為感測電阻227之壓降。二極體229包含正極端(An〇de)與負 極端(Cathode),其中正極端電連接於第一電晶體223之第一端,而 ❹輸出電壓V〇ut即從負極端输出至負載20卜在較佳實施例中,二極 體229係為具低順向導通電壓之肖特基二極體。第一電容231電連 接於二極體229之負極端與接地端GND之間,用來對輸出電壓v〇ut 執行滤、波處理。 緩啟動單元250包含第二電晶體251、第二電容253、電流源 254、第一開關257、第二開關259、第三開關261、第二比較器263、 ❹ 反相器265、與第二及閘267。電流源254提供約為固定之電流Is, 用來對第二電容253執行充電程序以產生電容電壓Vc。第二電晶體 251用以根據控制訊號Set將電容電壓Vc下拉至接地電壓。第二比 較器263執行第一緩啟動電壓vssl與第一參考電壓vren的比較處 理以產生第一内部訊號Sintl。反相器265執行第一内部訊號sint]l 的反相處理以產生第二内部訊號Sint2。第二及閘267執行第一内部 訊號Sintl與第二内部訊號sint2的邏輯及處理以產生控制訊號 Set。基本上,第二及閘267係配合反相器265以執行第一内部訊號 Sintl的昇緣偵測處理,用來在當第一内部訊號Siml發生昇緣事件 11 201034359 時,產生脈波作為控制訊號Sct以導通第二電晶體251,進而下拉電 容電壓Vc。 帛一電晶體251包含第-端、第二端、與閘極端’其中閘極端 用以接收控制訊號Sct,第二端電連接於接地端GND。第二電容⑸ 電連接於第二電晶體251之第一端與接地端GN〇之間。電流源254 包3第一端與第二端,其中第一端用以接收輸入電壓vin,第二 ❹端電連接於第二電晶體251之第一端。第一開關257包含第一端、 第一端、與閘極端,其中第一端電連接於第二電晶體⑸之第一端, 閑極端用以接收第一開關控制訊號Sswl,第二端用以輸出第一緩啟 動電壓Vss卜第二開關259包含第一端、第二端、與閑極端,其中 第一端用以接收輸入電壓Vin ,第二端電連接於第一糊⑸之第 二端’閘極端用以接收第二開關控制訊號Ssw2。第二比較器2纪包 含非反相輸入端與反相輸入端,其中非反相輸入端電連接於第一^ P 關257之第二端,反相輸入端用以接收第-參考電壓Vrefl,輸出: 用以輸出第-内部訊號Sintl。反相器265 &含輸入端與輸出端,其Please refer to Fig. 2, which is a circuit diagram of the boost converter of the first embodiment of the present invention. As shown in FIG. 2, the boost converter includes a slow start unit 250, a reference voltage supply unit 2U, a ramp generator 213, a three-input error amplifier 215, a three-input comparator 219, a first comparator 217, and a The gate 22 has an inductor 225, a first transistor 223, a sensing resistor 227, a pole 229, and a first capacitor 231. The boost converter 2 boosts the input voltage Vin to the output voltage Vom' to the load 2. In one embodiment, the load 201 includes a series connected LED unit 2〇2 and a current limiting resistor 2 The feedback voltage Vfb generated by the load 201 is the voltage drop of the current limiting resistor 2〇3. The light emitting diode unit 2G2 may include a light emitting diode or a plurality of light emitting diodes. The reference voltage supply unit 211 is configured to provide a first reference voltage % milk, a second voltage Vref2, and a third reference voltage Vref3. The slow start unit 25 is lightly light; = the voltage Vin and the first reference voltage are finely generated to generate the first slow start voltage M2 and the second slow start voltage Vss2. The two-input error amplifier 215 includes a first-input terminal, a second positive input terminal, a negative input terminal and an output terminal, wherein the first forward wheel receives the second reference voltage and the second positive wheel is electrically connected to the slow start unit. ^ 9 201034359 To receive the second slow start voltage Vss2, the negative input terminal is electrically connected to the load 201 to receive the feedback voltage vfb, and the output terminal is used for outputting the error signal Serr. The two-input comparator 219 includes a first non-inverting input terminal, a second non-inverting input terminal, an inverting input terminal, and an output terminal, wherein the first non-inverting input terminal is electrically connected to the reference voltage supply unit 211 for receiving a third reference voltage Vref3, the second non-inverting input terminal is electrically connected to the slow start unit 25A to receive the first slow start voltage Vssl'. The inverting input terminal is electrically connected to the sensing resistor 227 to receive the current sensing voltage Vcur, The output is used to output the comparison signal Scmp. The ramp generator 213 is used to provide a ramp signal Srimp, and the ramp signal is a triangular wave voltage or a fault tooth voltage. The first comparator 217 includes a non-inverting input terminal, an inverting input terminal, and an output terminal, wherein the non-inverting input terminal is electrically connected to the output terminal of the three-input error amplifier 215 to receive the error signal §err, the inverting input terminal. It is electrically connected to the ramp generator 213 to receive the ramp signal sramp, and the output terminal is used for outputting the pulse width Width Modulation signal Spwml. The first AND gate 221 includes a first input end, a second input end, and an output end of the output end, wherein the first input end is electrically connected to the output end of the three-wheel input comparator 219 to receive the comparison signal Scmp'. The second input end is electrically connected to the second input end. The output of the first comparator 217 receives the first pulse width modulation signal Spwml, and the output terminal outputs the second pulse width modulation signal Spwm2. The inductor 225 includes a first end and a second end 'where the first end is for receiving the input voltage Vin. The first transistor 223 includes a first end, a second end, and an output end of 201034359, wherein the first end is electrically connected to the second end of the inductor 225, and the first end is electrically connected to the round end of the first and second gates 221 to receive the first The second end of the two-pulse width modulation signal SPwm2' is electrically connected to the inverting input of the three-input comparator 219 to provide a current sensing voltage Vcur. The sensing resistor 227 is electrically connected between the second end of the first transistor 223 and the ground GND, and the current sensing voltage is the voltage drop of the sensing resistor 227. The diode 229 includes a positive terminal (An anode) and a negative terminal (Cathode), wherein the positive terminal is electrically connected to the first end of the first transistor 223, and the output voltage V〇ut is output from the negative terminal to the load 20 In the preferred embodiment, the diode 229 is a Schottky diode having a low forward voltage. The first capacitor 231 is electrically connected between the negative terminal of the diode 229 and the ground GND for performing filtering and wave processing on the output voltage v〇ut. The slow start unit 250 includes a second transistor 251, a second capacitor 253, a current source 254, a first switch 257, a second switch 259, a third switch 261, a second comparator 263, a 反相 inverter 265, and a second And gate 267. Current source 254 provides approximately a fixed current Is for performing a charging procedure on second capacitor 253 to generate capacitor voltage Vc. The second transistor 251 is used to pull down the capacitor voltage Vc to the ground voltage according to the control signal Set. The second comparator 263 performs a comparison process of the first slow start voltage vssl with the first reference voltage vren to generate the first internal signal Sint1. The inverter 265 performs an inversion process of the first internal signal sint]l to generate a second internal signal Sint2. The second AND gate 267 performs a logical AND process of the first internal signal Sint1 and the second internal signal sint2 to generate a control signal Set. Basically, the second AND gate 267 is coupled to the inverter 265 to perform the rising edge detection processing of the first internal signal Sint1 for generating a pulse wave as a control when the first internal signal Sim1 occurs the rising edge event 11 201034359 The signal Sct is used to turn on the second transistor 251, thereby pulling down the capacitor voltage Vc. The first transistor 251 includes a first end, a second end, and a gate terminal 'where the gate terminal is for receiving the control signal Sct and the second terminal is electrically connected to the ground terminal GND. The second capacitor (5) is electrically connected between the first end of the second transistor 251 and the ground GN〇. The current source 254 includes a first end and a second end of the package 3, wherein the first end is for receiving the input voltage vin, and the second end is electrically connected to the first end of the second transistor 251. The first switch 257 includes a first end, a first end, and a gate terminal, wherein the first end is electrically connected to the first end of the second transistor (5), the idle end is used to receive the first switch control signal Sswl, and the second end is used To output the first slow start voltage Vss, the second switch 259 includes a first end, a second end, and a free terminal, wherein the first end is for receiving the input voltage Vin, and the second end is electrically connected to the second paste (5) The terminal 'gate terminal' is for receiving the second switch control signal Ssw2. The second comparator 2 includes a non-inverting input and an inverting input, wherein the non-inverting input is electrically connected to the second end of the first switch 257, and the inverting input is configured to receive the first reference voltage Vrefl , Output: Used to output the first internal signal Sintl. Inverter 265 & includes an input end and an output end,

.憎入端電連接於第二比較器263之輸出端以接收第一内部訊號、 Smtl ’輸出端用以輸出第二内部訊號Sint2。 J 第二及閘267包含第一輸入端、第二輸入端、與輸出端,其中 第一輸入端f連接於第二比較器263錢出端以接收第一内部訊 SinU,第二輸入端電連接於反相器265之輸出端以接收第二内部气 號Sint2,輸出端用以輸出控制訊號Sct至第二電晶體^丨之門極端° 12 201034359 第一開關261包含第一端、第二端、與閘極端,其中第 ❹ ^晶體251之第-端,閑極端用以接收第三開關控制訊號 撕第—端用以輸出第二緩啟動電壓㈣。第二電晶體攻 N型金氧半場效電晶體_型接面場效電晶體。在一實施例中,第 -開關257、第二_挪、與第三_撕係為p型金氧半場 f體或P型接面場效電晶體,第-開關控制訊號Sswl係為第一内 4訊號Sintl,第二開關控制訊號Ssw2與第三開關控制訊號_ 係為第二内部訊號Sint2。 請參考第3圖,第3圖係為第2圖之昇壓轉換器執行開機操作 之相關訊號示賴,其巾橫軸為時_。在第3圖中,由上往下的 訊號分別為電容電壓Vc、第一緩啟動電壓Vssl、第二緩啟動電壓 Vss2、第一内部訊號SinU、第二内部訊號別加2、以及控制訊號如。 如第3圖所示,在昇壓轉換器200執行開機操作時,先於時段Tdimit 參 β進行P艮流控制程序’再於時段Tvfb内進行電壓反饋控制程序,其 電路工作原理詳述如下。 於時段Tclimit中,第-開關257導通,第二開關259與第三開 關261截止,電流源254提供約為固定之電流Is對第二電容2幻充 電,使電容電壓Vc由接地電壓逐漸上昇,此時電容電壓%可經由 第一開關257輸出為第一緩啟動電壓偏。三輸入端比較器219 比較逐漸上昇之第-緩啟動電壓Vssl與電流感測電壓Vcw以產生 比較訊號Semp,進而控制流經第一電晶體223之電流“, 13 201034359 用以避免電流it發生突波電流而降低第一電晶體223的使用 壽命。 當電容電壓vc上昇至第一參考電壓Vrefl日寺,第一内部訊號 Smtl由低電壓準位切換為高電壓準位,經反相器265的内部延遲時 間ΔΤ後,第二内部訊號Sint2由高電壓準位切換為低電壓準位。亦 即於短暫的延遲時間Δτ内,第一内部訊號沿此與第二内部訊號 © 均為高電壓準位,所以第二及閘267就輸出-脈波作為控制訊 號Set以導通第二電晶體251,進而將電容電壓Vc下拉至接地電壓。 於時段Tvfb中,第一開關257截止,第二開關259與第三開關 261導通,所以第一緩啟動電壓Vssl就被上拉至輸入電壓vin,此 ^一輸入%比較器219係比較第二參考電壓Vrefi與電流感測電壓 Vcur以產生比較訊號Scmp。同時,電流源乃4所提供約為固定 ❹ 之電流Is仍對第二電容253充電,使電容電壓Vc又由接地電壓逐 漸上昇,而電容電壓Vc則經由第三開關261輸出為第二緩啟動電 壓Vss2。二輸入端誤差放大器215根據逐漸上昇之第二緩啟動 電壓Vss2對反饋電壓vfb執行誤差放大處理以產生誤差訊號Serr, 進而控制輸出電壓Vout,用以避免造成輸出電壓v〇m的電壓過衝現 象。當第二緩啟動電壓Vss2上昇至約輸入電壓vin時,三輸入端 誤差放大器215係根據第二參考電壓Vref2對反饋電壓vfb執 行誤差放大處理以產生誤差訊號Serr,進而控制輸出電壓v〇ut。在 一實施例中,第二參考電壓Vref2約為輸入電壓Vin。 14 201034359 明參考第4圖,第4圖為本發明第二實施例之昇壓轉換 器的電路示意圖。如第4圖所示,昇壓轉換器係類似於 第2圖所示之昇壓轉換器200,主要差異在於將電流源254 替換為電流源354。電流源354包含第三電晶體355、第四 電晶體356、與參考電阻Rref。第三電晶體355包含第一端、 第二端、與閘極端,其中第一端用以接收輸入電壓Vin,閘 ❻極知電連接於第二瑞。參考電阻Rref電連接於第三電晶體 355之第一端與接地端GND之間。第四電晶體356包含第 一端、第二端、與閘極端,其中第一端用以接收輸入電壓 Vin’閘極端電連接於第三電晶體355之閘極端,第二端電連 接於第二電晶體251之第一端,用以輸出約為固定之電流Is。第三 電晶體355與第四電晶體356係為p型金氧半場效電晶體或p 型接面場效電晶體。昇壓轉換器_執行開機操作之工作相關訊 參 號波形係同於第3圖所示之訊號波形,所以不再贅述。 - 請參考第5圖,第5圖為第2圖所示之三輸入端誤差放 大器的較佳實施例之電路示意圖。如第5圖所示,三輸入端 誤差放大器215包含複數電晶體551〜558,其中電晶體 551〜555係為P型金氧半場效電晶體或p型接面場效電晶體,電 晶體556〜558係為N型金氧半場效電晶體或N型接面場效電晶體。 電晶體551包含第-端、第二端、與閘極端,其中第一端用以 15 201034359 接收輸入電壓Vin ’閘極端用以接收偏壓。電晶體552包含第 端第一i%、與閑極端,其中第一端電連接於電晶體沿之第一 端閘極^電連接於電晶體551之閘極端,第二端電連接於節點 590電曰曰體553包含第一端、第二端、與閘極端,其中第一端電連 接於電日日體551之第二端,閘極端用以接收第二緩啟動電壓vs. 電晶體554包含第一端、第二端、與閘極端,其中第一端電連接於 ❹ ❹ 電晶體551之第二端,閘極端用以接收第二參考電壓滅,第二端 電連接於電晶體553之第二端。電晶體奶包含第一端、第二端、 與閘極端,其中第-端電連接於電晶體551之第二端,閘極端 接收反饋電壓Vfb。 電晶體556包含第一端、第二端、與閑極端,其中第一端電連 接於電晶體553之第二端,閑極端電連接於第一端,第 電晶趙557包含第一端、第二端、與閉極端,= 端電、接於電曰曰體555之第二端,閘極端電連接於電晶體、 ^間極端’第二端電連接於接地端_。電晶體558包 第二端、與閘極端,其中 鸲、 於雷日^ 端電連接於節點590,閘極端電連接 _日日_ —端,第二端電連接於接地端GND。由上述可矣 細554之閘極端係為三輪人端誤差放大器215之°’ 電晶魏之閘極端係為三輪入端誤差放大器215 $ 輸入端,電晶體555之間榀姑及上 步〜正 輪入端,節點_為==為三輸入端誤差放大器215之負 三輸入端誤差放大器誤差放大器215之_。由於 5為習知技藝,所以不再細述其電路工作 16 201034359 綜上所述,本發明昇壓轉換器的開機操作係先利用三輸入端比 .較器以執行限流控制程序,再利用三輸入端誤差放大器以執行電壓 反饋控制程序’所以不但可避免流經電晶體之電流發生突波電流, 並可防錢出電壓發生電壓職現象。換句話說,本發明昇壓轉換 器可顯著延長其電晶_使用壽命,並可提供歡的輸出電壓以避 Φ 免負載受損》 雖然本發明已以實補揭露如上,然其並制以限定本發明, 任何具林發騎職術躺找t知識者,在猶離本發明之精 神和範圍内’當可作各種更動與潤飾,因此本發明之保護範圍當視 後附之申請專利範圍所界定者為準。 【圖式簡單說明】 魯 第1圖為習知昇壓轉換器的電路示意圖。 •第2圖為本發明第—實施例之昇壓轉換器的電路示意圖。 .第3圖係為第2圖之昇壓轉換器執行開機操作之相關訊號示意圖, 其中橫軸為時間軸。 第4圖為本發明第二實施例之昇壓轉換器的電路示意圖。 第5圖為立第2圖所示之三輸入端誤差放大器的較佳實施例之電路示 思圖。 17 201034359 【主要元件符號說明】 100、200、300昇壓轉換器 1(U、201 負載 111、211參考電壓提供單元 113三角波產生器 115、215三輸入端誤差放大器 117、217第一比較器 119、263第二比較器 121及閘 123N型金氧半電晶體 125、225 電感 127、227感測電阻 129肖特基二極體 131濾波電容 150、250緩啟動單元 202發光二極體單元 203限流電阻 213斜波產生器 219三輸入端比較器 221第一及閘 223第一電晶體 18 201034359 229二極體 231第一電容 251第二電晶體 253第二電容 254電流源 257第一開關 259第二開關 _ 261第三開關 263第二比較器 265反相器 267第二及閘 355第三電晶體 356第四電晶體 551〜558電晶體 ©GND接地端The input terminal is electrically connected to the output of the second comparator 263 to receive the first internal signal, and the Smtl' output is used to output the second internal signal Sint2. The second AND gate 267 includes a first input terminal, a second input terminal, and an output terminal, wherein the first input terminal f is connected to the second comparator 263 money output terminal to receive the first internal signal SinU, and the second input terminal is electrically Connected to the output of the inverter 265 to receive the second internal air number Sint2, the output terminal for outputting the control signal Sct to the gate terminal of the second transistor ^ 12 201034359 The first switch 261 includes a first end, a second The terminal and the gate terminal, wherein the first end of the second crystal 251, the idle terminal is used for receiving the third switch control signal to tear the first end for outputting the second slow start voltage (4). The second transistor is attacked by an N-type gold-oxygen half-field effect transistor _-type junction field effect transistor. In one embodiment, the first switch 257, the second switch, and the third tear system are p-type gold oxide half-field f-body or P-type junction field effect transistor, and the first-switch control signal Sswl is first. The inner 4 signal Sintl, the second switch control signal Ssw2 and the third switch control signal _ are the second internal signal Sint2. Please refer to FIG. 3, which is a related signal diagram of the boost converter of FIG. 2 performing the power-on operation, and the horizontal axis of the towel is _. In the third figure, the signals from top to bottom are capacitor voltage Vc, first slow start voltage Vssl, second slow start voltage Vss2, first internal signal SinU, second internal signal plus 2, and control signals such as . As shown in Fig. 3, when the boost converter 200 performs the power-on operation, the P-flow control program is performed before the time period Tdimit parameter β and the voltage feedback control program is performed in the time period Tvfb. The circuit operation principle is as follows. In the period Tclimit, the first switch 257 is turned on, the second switch 259 and the third switch 261 are turned off, and the current source 254 provides about a fixed current Is to charge the second capacitor 2, so that the capacitor voltage Vc gradually rises from the ground voltage. At this time, the capacitance voltage % can be output as the first slow start voltage offset via the first switch 257. The three-input comparator 219 compares the gradually rising first-slow-start voltage Vss1 with the current-sense voltage Vcw to generate a comparison signal Semp, thereby controlling the current flowing through the first transistor 223, "13 201034359 to prevent the current it from protruding. The current of the first transistor 223 is reduced by the current of the wave. When the capacitor voltage vc rises to the first reference voltage Vref1, the first internal signal Smtl is switched from the low voltage level to the high voltage level, and is passed through the inverter 265. After the internal delay time ΔΤ, the second internal signal Sint2 is switched from the high voltage level to the low voltage level, that is, within the short delay time Δτ, the first internal signal is high and the second internal signal is high. Bit, so the second AND gate 267 outputs a pulse wave as a control signal Set to turn on the second transistor 251, thereby pulling down the capacitor voltage Vc to the ground voltage. In the period Tvfb, the first switch 257 is turned off, and the second switch 259 The third switch 261 is turned on, so the first slow start voltage Vss1 is pulled up to the input voltage vin, and the input % comparator 219 compares the second reference voltage Vrefi with the current sense voltage Vcu. r is to generate the comparison signal Scmp. At the same time, the current source 4 provides about a fixed current I current Is still charging the second capacitor 253, so that the capacitor voltage Vc is gradually increased by the ground voltage, and the capacitor voltage Vc is via the third switch The output of 261 is the second slow start voltage Vss2. The two-input error amplifier 215 performs error amplification processing on the feedback voltage vfb according to the gradually rising second slow start voltage Vss2 to generate the error signal Serr, thereby controlling the output voltage Vout to avoid causing The voltage overshoot phenomenon of the output voltage v 〇 m. When the second slow start voltage Vss2 rises to about the input voltage vin, the three-input error amplifier 215 performs error amplification processing on the feedback voltage vfb according to the second reference voltage Vref2 to generate an error. The signal Serr, in turn, controls the output voltage v〇ut. In an embodiment, the second reference voltage Vref2 is approximately the input voltage Vin. 14 201034359 Referring to FIG. 4, FIG. 4 is a boost conversion according to a second embodiment of the present invention. The circuit diagram of the device. As shown in Figure 4, the boost converter is similar to the boost converter 200 shown in Figure 2, the main difference is that the power is The source 254 is replaced by a current source 354. The current source 354 includes a third transistor 355, a fourth transistor 356, and a reference resistor Rref. The third transistor 355 includes a first end, a second end, and a gate terminal, wherein the first The terminal is configured to receive the input voltage Vin, and the gate is electrically connected to the second rib. The reference resistor Rref is electrically connected between the first end of the third transistor 355 and the ground GND. The fourth transistor 356 includes the first end. The second end is connected to the gate terminal of the third transistor 355, and the second terminal is electrically connected to the first end of the second transistor 251. Used to output a fixed current Is. The third transistor 355 and the fourth transistor 356 are p-type gold oxide half field effect transistors or p-type junction field effect transistors. The boost converter _ performs the power-on operation related signal waveform is the same as the signal waveform shown in Figure 3, so it will not be described again. - Please refer to Fig. 5. Fig. 5 is a circuit diagram of a preferred embodiment of the three-input error amplifier shown in Fig. 2. As shown in FIG. 5, the three-input error amplifier 215 includes a plurality of transistors 551 to 558, wherein the transistors 551 to 555 are P-type gold oxide half field effect transistors or p-type junction field effect transistors, and transistors 556. The ~558 series is an N-type gold oxide half field effect transistor or an N-type junction field effect transistor. The transistor 551 includes a first end, a second end, and a gate terminal, wherein the first terminal receives the input voltage Vin' gate terminal for receiving the bias voltage for 15 201034359. The transistor 552 includes a first end i% and a free terminal, wherein the first end is electrically connected to the first end of the transistor, the first end of the gate is electrically connected to the gate of the transistor 551, and the second end is electrically connected to the node 590. The electric body 553 includes a first end, a second end, and a gate terminal, wherein the first end is electrically connected to the second end of the electric solar body 551, and the gate end is configured to receive the second slow start voltage vs. the transistor 554 The first end, the second end, and the gate terminal are included, wherein the first end is electrically connected to the second end of the transistor 551, the gate terminal is configured to receive the second reference voltage, and the second end is electrically connected to the transistor 553. The second end. The transistor milk includes a first end, a second end, and a gate terminal, wherein the first end is electrically connected to the second end of the transistor 551, and the gate terminal receives the feedback voltage Vfb. The transistor 556 includes a first end, a second end, and a free terminal, wherein the first end is electrically connected to the second end of the transistor 553, and the idle end is electrically connected to the first end, and the first transistor 557 includes a first end, The second end, the closed end, the = terminal, and the second end of the electric body 555, the gate terminal is electrically connected to the transistor, and the second end is electrically connected to the ground terminal _. The transistor 558 is provided with a second end and a gate terminal, wherein the 鸲 and 雷 ^ terminals are electrically connected to the node 590, the gate terminal is electrically connected to the _ day _ terminal, and the second terminal is electrically connected to the ground terminal GND. The gate terminal of the above-mentioned fine 554 is a three-wheeled human-end error amplifier 215. The electro-crystals are connected to the three-input error amplifier 215 $ input terminal, and the transistor 555 is between the upper step and the positive step. At the turn-in end, node_ is == is the negative three-input error amplifier error amplifier 215 of the three-input error amplifier 215. Since 5 is a prior art, the circuit operation is not described in detail. 16 201034359 In summary, the power-on operation of the boost converter of the present invention first utilizes a three-input comparator to perform a current limiting control program and reuses The three-input error amplifier performs the voltage feedback control program' so that not only the surge current flowing through the transistor current can be avoided, but also the voltage occurrence phenomenon can be prevented from occurring. In other words, the boost converter of the present invention can significantly extend its electron crystal_lifetime and can provide a good output voltage to avoid Φ load-free damage. Although the present invention has been disclosed above, Having defined the present invention, any person who has a knowledge of Linfa's vocation and recitation can't make various changes and refinements within the spirit and scope of the present invention. Therefore, the scope of protection of the present invention is attached to the patent application scope. The definition is final. [Simple diagram of the diagram] Lu Figure 1 is a schematic circuit diagram of a conventional boost converter. • Fig. 2 is a circuit diagram of a boost converter according to a first embodiment of the present invention. Figure 3 is a schematic diagram of the relevant signal for the boost converter of Figure 2 to perform the power-on operation, wherein the horizontal axis is the time axis. Fig. 4 is a circuit diagram showing a boost converter of a second embodiment of the present invention. Fig. 5 is a circuit diagram showing a preferred embodiment of the three-input error amplifier shown in Fig. 2. 17 201034359 [Description of main component symbols] 100, 200, 300 boost converter 1 (U, 201 load 111, 211 reference voltage supply unit 113 triangular wave generator 115, 215 three-input error amplifier 117, 217 first comparator 119 263 second comparator 121 and gate 123N type gold oxide semi-transistor 125, 225 inductor 127, 227 sense resistor 129 Schottky diode 131 filter capacitor 150, 250 slow start unit 202 light-emitting diode unit 203 Current resistance 213 ramp generator 219 three-input comparator 221 first and gate 223 first transistor 18 201034359 229 diode 231 first capacitor 251 second transistor 253 second capacitor 254 current source 257 first switch 259 Second switch _ 261 third switch 263 second comparator 265 inverter 267 second and gate 355 third transistor 356 fourth transistor 551 ~ 558 transistor © GND ground

Is、It、lx 電流Is, It, lx current

Scmp比較訊號Scmp comparison signal

Set控制訊號Set control signal

Serr誤差訊號Serr error signal

Sintl第一内部訊號Sintl first internal signal

Sint2第二内部訊號Sint2 second internal signal

Spwml第一脈波寬度調變訊號Spwml first pulse width modulation signal

Spwm2第二脈波寬度調變訊號 19 201034359Spwm2 second pulse width modulation signal 19 201034359

Sramp斜波訊號Sramp ramp signal

Sswl第一開關控制訊號Sswl first switch control signal

Ssw2第二開關控制訊號Ssw2 second switch control signal

Ssw3第三開關控制訊號Ssw3 third switch control signal

Vbias偏壓Vbias bias

Vc電容電壓Vc capacitor voltage

Vfb反饋電壓 φ Vin輸入電壓Vfb feedback voltage φ Vin input voltage

Vout輸出電壓Vout output voltage

Vrefl第一參考電壓Vrefl first reference voltage

Vref2第二參考電壓Vref2 second reference voltage

Vref3第三參考電壓Vref3 third reference voltage

Vssl第一緩啟動電壓Vssl first slow start voltage

Vss2第二緩啟動電壓Vss2 second slow start voltage

Rref參考電阻 參 △ T延遲時間Rref reference resistance parameter △ T delay time

Claims (1)

201034359 七、申請專利範圍: 1. -種具二階段緩啟動機制之昇壓轉換器,勺人. -緩啟解元,絲姆—輸人鶴與=參 一緩啟動輯H㈣tJS; 2 放大器,包含—第一正輸入端、一第二正輸入 4 =端與—_端’其中該第一正輸人端用以接收 -魏对—正輪^端電連接於賴啟動單元以 /第-緩啟動電壓,該負輸入端用以接收由一負載所產 一土之-反饋電壓’該輸出端用以輸出一誤差訊號; 一二輸^比較器,包含—第—非反相輸人端、—第二非反相輸 端反相輸入端與-輸出端,其中該第一非反相輸入端 用以接第三參考電壓,該第二非反相輸人端電連接於該 緩啟動單元以接㈣第—緩啟動㈣,該反相輸人端用以接 ^一電流感測《,該輸出端用以輸出—比較訊號; 匕較器’包含-非反相輸入端、一反相輸入端與一輸出 端,其中該非反相輸入端電連接於該三輸入端誤差放大器之 輪出端以接收該誤差訊號,該反相輸入端用以接收一斜波訊 號,該輸出端用以輸出一第一脈波寬度調變訊號; 第一及開(ANDGate),包含-第-輸入端、一第二輸入端與一 輪出端’其中該第一輸入端電連接於該三輸入端比較器之輸 出端以接收該比較訊號,該第二輸入端電連接於該第一比較 器之輪出端以接收該第一脈波寬度調變訊號,該輸出端用以 21 201034359 輸出一第二脈波寬度調變訊號; 電感’包含—第—端與—第二端,其中該第—端用以接收該輪 入電壓; - 第電曰曰體’包含-第-端、-第二端與-閘極端,其中該第 端電連接於魏感之第二端,糊極端電連接於該第一及 閑之輸出端以接收該第二脈波寬度調變訊號,該第二端電迷 接於該三輸入端比較器之反相輸入端以提供該電流感 9 壓; 一感測電阻,電連接於該第—電晶體之第二端與—接地端之間, 其中該電流感測電壓係為該感測電阻之一壓降;以及 一二極體’包含-正極端(Anc)de)與—負極端(Ca_e),其中該 正極端電連接於該第-電晶體之第―端,該負極端用以輸: 一輪出電壓至該負載。 ❹ 2.如請求項1所述之昇壓轉換器,另包含: 一電容,電連接於該二極體之負極端與該接地端之間,用來對該 • 輸出電壓執行濾波處理。 ^ 3·如請求項1所述之昇壓轉換器,另包含: -斜波產生器,電連接於該第-比較器之反相輸人端,用以提供 該斜波訊號。 4.如請求項1所述之昇壓轉換器,其中該斜波訊號係為—三角波電 22 201034359 壓或一錯齒波電壓。 5.如請求項1所述之昇壓轉換器,另包含: 一參考電壓提供單元,電連接於該緩啟動單元、該三輸入端誤差 放大器之第一正輸入端與該三輸入端比較器之第一非反袓 輸入端,用以提供該第一參考第壓、該第二參考電壓與該第 三參考電壓。 9 6·如請求項1所述之昇壓轉換器,其中該二極體係為一肖特基二極 體(Schottky Diode)。 7·如請求項1所述之昇壓轉換器,其中該第—電晶體係為—n型金 氧半場效電晶體(Ν·_ Metal 0xide Semic〇nduct〇r Md 册⑽ Transistor)或N型接面場效電晶體杯Typejuncti〇n細也⑽ transistor)。 8.如請求項丨所述之·轉換器,其中該緩啟動單元包含: n晶體’包含-m二端與—閘極端,其中該間 一極端用以接收-控制訊號,該第二端電連接於該接地端; 一電容’電連接於該第二電晶體之第—端與該接地端之間; 一電包含-第—端與—第二端,其中該第—端用以接收一 ^入電壓,該第二端電連接於該第二電晶體之第一端,該 1源係用來提供實質上固定之—電流對該電容執行充電 23 201034359 程序; -第-開關,包含-第-端、-第二端與—閘極端,其中該第一 端電連接於該第二電晶體之第—端,該_賴以接收 . —酬控制減’該第H場出該第-緩啟動電壓; -第二開關,包含-第-端、-第二端與—閘極端,其中該第一 端用以接收該輸入電壓,該第二端電連接於該第一開關之第 二端’該閘極端用以接收一第二開關控制訊號; # 一第二比較器,包含一非反相輸入端、一反相輸入端與一輪出 端,其中該非反相輸入端電連接於該第一開關之第二端,节 反相輸入端用以接收該第一參考電壓,該輸出端用以輪出一 第一内部訊號; 一反相器,包含一輸入端與一輸出端,其中該輸入端電連接於該 第二比較器之輸出端以接收該第一内部訊號,該輸出端用以 輸出一第二内部訊號; 瘳 一第二及閘,包含一第一輸入端、一第二輸入端與一輸出端,其 中該第一輸入端電連接於該第二比較器之輸出端以接收該 • 第一内部訊號,該第二輸入端電連接於該反相器之輸出端以 接收該第二内部訊號,該輸出端電連接於該第二電晶體之間 極端,用以輸出該控制訊號;以及 一第二開關,包含一第一端、一第二端與一閘極端,其中該第一 端電連接於該第二電晶體之第一端,該閘極端用以接收一第 三開關控制訊號,該第二端用以輸出該第二緩啟動電壓。 24 201034359 /求項8所述之昇壓轉換器’其中該第二電晶體係為一 n变金 礼半場效電晶體或—N型接面場效電晶體。 Μ· ^求項8所述之昇壓轉換器,其中該第一開關、該第二開關 、第—開關係為P型金氧半場效電晶體或p型接面場效電晶 體。 9 U· 7請求項8所述之昇_換器,其中該第二及閘配合該反相器 β、對°亥第一内部訊號執行昇緣偵測處理,用來於該第一内部訊 號發生-昇緣事件時,產生―脈波作為馳制減以導通該第 二電晶體。 如明求項8所述之昇壓轉換器,其中該第一開關控制訊號係為 該第一内部訊號。 13 明求項8所述之昇壓轉換器,其中該第二開關控制訊號與該 * 第三開關控制訊號係為該第二内部訊號。 14.如請求項8所述之昇壓轉換器 ,其中該電流源包含: 第二電晶體,包含一第一端、一第二端與一閘極端,其中該第 端用以接收該輸入電壓,該第二端電連接於該閘極端; 參考電阻’電連接於該第三電晶體之第二端與該接地端之間; 以及 25 201034359 一第四電晶體,包含〆第一端、一第二端與一閘極端,其中該第 —端用以接收該輸入電壓’該閘極端電連接於該第三電晶體 • 之閘極端,該第二端電連接於該第二電晶體之第一端。 « 15.如請求項14所述之昇壓轉換器’其中該第三電晶體與該第四電 晶體係為p型金氧半場效電晶體或P型接面場效電晶體。 響 16.如請求項1所述之昇壓轉換器,其中該三輸入端誤差放大器包 含: 一第二電晶體,包含一第一端、一第二端與一閘極端,其中該第 一端用以接收該輸入電壓’該閘極端用以接收一偏壓; 一第三電晶體,包含一第一端、一第二端與一閘極端,其中該第 —端電連接於該第二電晶體之第一端,該問極端電連接於該 第二電晶體之閘極端,該第二端電連接於一節點; 魯 第四電晶體,包含一第一端、一第二端與一閘極端,其中該第 一端電連接於該第二電晶體之第二端,該閘極端用以接收該 • 第二緩啟動電壓; , 一第五電晶體,包含一第一端、一第二端與一閘極端,其中該第 一端電連接於該第二電晶體之第二端,該閘極端用以接收該 第二參考電壓,該第二端電連接於該第四電晶體之第二端. 一第六電晶體,包含一第一端、一第二端與一閘極端,其中該第 —端電連接於該第二電晶體之第二端’該閘極端用以接收該 反饋電壓; 26 201034359 -第七電晶體’包含-第-端、—第二端與_閘極端,其中該第 -端電連接於該第四電晶體之第二端,制極端電連接於該 第一端,該第二端電連接於該接地端; 9 -第八電晶體,包含-第-端、—第二端與—閘極端,其中該第 -端電連接於該第六電晶體之第二端,該閘極端電連接於該 第七電晶體之閘極端,該第二端電連接於該接地端;以及 -第九電晶體’包含一第一端、一第二端與一閘極端,其中該第 端電連接於該節點’該閘極端電連接於該第六電晶體之第 二端,該第二端電連接於該接地端; 其中该第五電晶體之閘極端係為該三輸入端誤差放大器之第一 =輸=端’該第四電晶體之閘極端係為該三輸人端誤差放大 器之第二正輸人端’該第六電晶體之閘極端係、為該三輸入端 誤差放大H之負輸人端,點係為該三輸人端誤差放大器 之輸出端。 17. 所述之昇壓轉換器,其中該第二電晶體、該第三電 日日體、该第四電晶體、該第五電晶體、與該 型金氧半場效電晶體或Ρ型接面場效電晶體。曰曰糸:、、、Ρ t求=所述之昇壓轉換11 ’其中該第七電晶體、該第八電 場效電:晶體係為N型金氧半場效電晶體❹型接面 27 201034359 19.如請求項1所述之昇壓轉換器,其中該負載包含串接之一發光 二極體單元與一限流電阻,該反饋電壓係為該限流電阻之一壓 降。 * 20.如請求項19所述之昇壓轉換器,其中該發光二極體單元包含一 發光二極體或複數個串接之發光二極體。 、圖式:201034359 VII, the scope of application for patents: 1. - A boost converter with a two-stage slow-start mechanism, scoop man. - Slow start solution, sam - input crane and = ginseng slow start series H (four) tJS; 2 amplifier, Including - a first positive input terminal, a second positive input 4 = terminal and a - terminal end, wherein the first positive input terminal is used to receive the - Wei pair - the positive wheel terminal is electrically connected to the Lai start unit to / / a slow start voltage, the negative input terminal is used to receive a feedback voltage generated by a load, and the output terminal is used for outputting an error signal; the first and second output comparators include a first-non-inverting input terminal The second non-inverting input terminal is connected to the third output voltage, and the second non-inverting input terminal is electrically connected to the slow start The unit is connected to (4) the first - slow start (four), the inverting input terminal is used to connect a current sense ", the output is used for output - comparison signal; the comparator" includes - non-inverting input, a reverse a phase input terminal and an output terminal, wherein the non-inverting input terminal is electrically connected to the wheel of the three-input error amplifier The terminal receives the error signal, the inverting input terminal is configured to receive a ramp signal, and the output terminal is configured to output a first pulse width modulation signal; the first AND (ANDGate) includes a -first input terminal a second input end is electrically connected to the output end of the three-input comparator to receive the comparison signal, and the second input end is electrically connected to the first comparator wheel The output terminal receives the first pulse width modulation signal, and the output terminal outputs a second pulse width modulation signal for 21 201034359; the inductor includes - a first end and a second end, wherein the first end For receiving the wheel-in voltage; - the first body ' includes - a first end, a second end and a - gate extreme, wherein the first end is electrically connected to the second end of the Wei sense, and the paste is electrically connected to the terminal The first and the idle output end receive the second pulse width modulation signal, and the second end is electrically connected to the inverting input end of the three-input comparator to provide the current sense 9 voltage; a sensing resistor Electrically connected between the second end of the first transistor and the ground. The current sensing voltage is a voltage drop of the sensing resistor; and a diode 'including a positive terminal (Anc) de) and a negative terminal (Ca_e), wherein the positive terminal is electrically connected to the first portion - The first end of the transistor, the negative terminal is used for: one round of voltage to the load. 2. The boost converter of claim 1, further comprising: a capacitor electrically connected between the negative terminal of the diode and the ground for performing a filtering process on the output voltage. The boost converter of claim 1, further comprising: - a ramp generator electrically coupled to the inverting input of the first comparator for providing the ramp signal. 4. The boost converter of claim 1, wherein the ramp signal is a triangular wave power 22 201034359 voltage or a fault tooth wave voltage. 5. The boost converter of claim 1, further comprising: a reference voltage supply unit electrically coupled to the slow start unit, the first positive input of the three input error amplifier, and the three input comparator The first non-reverse input terminal is configured to provide the first reference voltage, the second reference voltage, and the third reference voltage. The boost converter of claim 1, wherein the diode system is a Schottky Diode. 7. The boost converter of claim 1, wherein the first electro-optic system is a -n-type metal oxide half field effect transistor (Ν·_ Metal 0xide Semic〇nduct〇r Md (10) Transistor) or N-type The junction field effect transistor cup Typejuncti〇n is also (10) transistor). 8. The converter of claim 1, wherein the slow start unit comprises: n crystal 'comprising -m two-terminal and - gate extremes, wherein the one extreme is used to receive a control signal, and the second terminal is electrically Connected to the ground; a capacitor 'electrically connected between the first end of the second transistor and the ground; an electric containing - the first end - the second end, wherein the first end is used to receive a Into the voltage, the second end is electrically connected to the first end of the second transistor, the 1 source is used to provide a substantially fixed current to perform charging on the capacitor 23 201034359 program; - the first switch, including - a first end, a second end, and a gate terminal, wherein the first end is electrically connected to the first end of the second transistor, and the _ is received to receive the first H field out of the first a slow start voltage; - a second switch comprising - a first end, a second end and a - gate extreme, wherein the first end is for receiving the input voltage, and the second end is electrically connected to the second end of the first switch The end of the gate is for receiving a second switch control signal; # a second comparator comprising a non-inverting input An inverting input end and a round out end, wherein the non-inverting input end is electrically connected to the second end of the first switch, and the inverting input end is configured to receive the first reference voltage, and the output end is used for the wheel a first internal signal; an inverter comprising an input end and an output end, wherein the input end is electrically connected to the output end of the second comparator to receive the first internal signal, and the output end is used for outputting a second internal signal; the first and second gates include a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is electrically connected to the output end of the second comparator to receive the a first internal signal, the second input terminal is electrically connected to the output end of the inverter to receive the second internal signal, and the output end is electrically connected to the extreme between the second transistors for outputting the control signal And a second switch comprising a first end, a second end and a gate terminal, wherein the first end is electrically connected to the first end of the second transistor, and the gate end is configured to receive a third switch Control signal, the second end is used A slow start to the second voltage. 24 201034359 / The boost converter of claim 8, wherein the second electro-optic system is an n-switched half field effect transistor or an N-type junction field effect transistor. The boost converter of claim 8, wherein the first switch, the second switch, and the first-on relationship are P-type MOS field effect transistors or p-type junction field effect transistors. 9 U.7, wherein the second AND gate cooperates with the inverter β, and performs an edge detection processing on the first internal signal of the Hai, for the first internal signal. In the event of a rising edge event, a pulse wave is generated as a chirp minus to turn on the second transistor. The boost converter of claim 8, wherein the first switch control signal is the first internal signal. The boost converter of claim 8, wherein the second switch control signal and the * third switch control signal are the second internal signal. 14. The boost converter of claim 8, wherein the current source comprises: a second transistor comprising a first terminal, a second terminal and a gate terminal, wherein the first terminal is configured to receive the input voltage The second end is electrically connected to the gate terminal; the reference resistor is electrically connected between the second end of the third transistor and the ground terminal; and 25 201034359 a fourth transistor comprising the first end of the crucible a second end and a gate terminal, wherein the first terminal is configured to receive the input voltage, the gate terminal is electrically connected to the gate terminal of the third transistor, and the second terminal is electrically connected to the second transistor One end. The boost converter of claim 14 wherein the third transistor and the fourth transistor system are p-type gold oxide half field effect transistors or P-type junction field effect transistors. The boost converter of claim 1, wherein the three-input error amplifier comprises: a second transistor comprising a first end, a second end and a gate terminal, wherein the first end Receiving the input voltage 'the gate terminal is for receiving a bias voltage; a third transistor includes a first end, a second end and a gate terminal, wherein the first end is electrically connected to the second electric The first end of the crystal is electrically connected to the gate terminal of the second transistor, and the second end is electrically connected to a node; the fourth transistor includes a first end, a second end and a gate Extremely, wherein the first end is electrically connected to the second end of the second transistor, the gate end is configured to receive the second slow start voltage; and the fifth transistor comprises a first end and a second end And a gate terminal, wherein the first terminal is electrically connected to the second end of the second transistor, the gate terminal is configured to receive the second reference voltage, and the second terminal is electrically connected to the fourth transistor a second transistor, comprising a first end, a second end and a gate terminal, The first end is electrically connected to the second end of the second transistor. The gate terminal is configured to receive the feedback voltage. 26 201034359 - The seventh transistor includes - the first end, the second end and the _ gate terminal The first end is electrically connected to the second end of the fourth transistor, and is electrically connected to the first end, the second end is electrically connected to the ground end; 9 - the eighth transistor, including - a second terminal and a gate terminal, wherein the first terminal is electrically connected to the second terminal of the sixth transistor, the gate terminal is electrically connected to the gate terminal of the seventh transistor, and the second terminal is electrically connected Connected to the ground terminal; and - the ninth transistor 'includes a first end, a second end and a gate terminal, wherein the first end is electrically connected to the node 'the gate terminal is electrically connected to the sixth transistor The second end is electrically connected to the ground end; wherein the gate terminal of the fifth transistor is the first=transmission terminal of the three-input error amplifier, and the gate terminal of the fourth transistor is The second positive input terminal of the three-input human error amplifier is the gate terminal of the sixth transistor, Input terminal of the error amplifying the negative input terminal H, the point-based three input terminal for the output of the error amplifier. 17. The boost converter, wherein the second transistor, the third electric solar cell, the fourth transistor, the fifth transistor, and the type of gold oxide half field effect transistor or Ρ type Surface field effect transistor.曰曰糸:,, Ρ t seeking = the boost conversion 11 ' wherein the seventh transistor, the eighth electric field effect: the crystal system is an N-type gold-oxygen half-field effect transistor 接 junction 27 201034359 19. The boost converter of claim 1, wherein the load comprises one of a series of light emitting diode units and a current limiting resistor, the feedback voltage being one of the voltage limiting resistors. The boost converter of claim 19, wherein the light emitting diode unit comprises a light emitting diode or a plurality of serially connected light emitting diodes. ,figure: 2828
TW098108239A 2009-03-13 2009-03-13 Boost converter having two-step soft start mechanism TWI369057B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098108239A TWI369057B (en) 2009-03-13 2009-03-13 Boost converter having two-step soft start mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098108239A TWI369057B (en) 2009-03-13 2009-03-13 Boost converter having two-step soft start mechanism

Publications (2)

Publication Number Publication Date
TW201034359A true TW201034359A (en) 2010-09-16
TWI369057B TWI369057B (en) 2012-07-21

Family

ID=44855471

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098108239A TWI369057B (en) 2009-03-13 2009-03-13 Boost converter having two-step soft start mechanism

Country Status (1)

Country Link
TW (1) TWI369057B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472896B (en) * 2013-02-04 2015-02-11 Asmedia Technology Inc Voltage regulator circuit
CN106505847A (en) * 2016-12-02 2017-03-15 西安电子科技大学 It is applied to the segmentation soft starting circuit of step-up DC DC
TWI620387B (en) * 2015-11-03 2018-04-01 亞德諾半導體環球公司 Hot swap circuit management techniques for power line disturbances and faults
WO2018201768A1 (en) * 2017-05-04 2018-11-08 深圳市中移联半导体科技有限公司 Current-limiting starting method and circuit for boost converter
TWI763057B (en) * 2020-09-26 2022-05-01 宏碁股份有限公司 Boost converter for eliminating start-up overshoot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107437888B (en) 2016-05-26 2019-11-01 登丰微电子股份有限公司 Power switch circuit and applied power circuit

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI472896B (en) * 2013-02-04 2015-02-11 Asmedia Technology Inc Voltage regulator circuit
US9166468B2 (en) 2013-02-04 2015-10-20 Asmedia Technology Inc. Voltage regulator circuit with soft-start function
TWI620387B (en) * 2015-11-03 2018-04-01 亞德諾半導體環球公司 Hot swap circuit management techniques for power line disturbances and faults
US10277220B2 (en) 2015-11-03 2019-04-30 Analog Devices Global Hot swap circuit management techniques for power line disturbances and faults
CN106505847A (en) * 2016-12-02 2017-03-15 西安电子科技大学 It is applied to the segmentation soft starting circuit of step-up DC DC
WO2018201768A1 (en) * 2017-05-04 2018-11-08 深圳市中移联半导体科技有限公司 Current-limiting starting method and circuit for boost converter
TWI763057B (en) * 2020-09-26 2022-05-01 宏碁股份有限公司 Boost converter for eliminating start-up overshoot

Also Published As

Publication number Publication date
TWI369057B (en) 2012-07-21

Similar Documents

Publication Publication Date Title
US10027230B2 (en) Converter with pulse width modulation and pulse frequency modulation operating modes
US8169207B2 (en) Power supply device including a clamping portion to limit and error voltage and electronic appliance provided therewith
JP4667836B2 (en) Switching regulator and switching regulator output voltage switching method
TW201034359A (en) Boost converter having two-step soft start mechanism
TWI491152B (en) Method for adjusting the operation of a semiconductor component and method for adjusting a threshold voltage
TWI380547B (en) Power supply and over voltage protection apparatus and method therein
KR100967474B1 (en) Switching regulator and electronic device incorporating the same
US20130193942A1 (en) Current driver circuit
US20110134665A1 (en) Low-voltage start up circuit and method for DC-DC boost converter
WO2018192303A1 (en) Boost control circuit, driving method therefor and display device
JP2011200094A (en) Series resonant converter
CN106374733B (en) A kind of system for Switching Power Supply quick start
JP2013520154A (en) Battery protection circuit and method for energy harvester circuit
CN101242090A (en) Over-voltage protector
JP2006304510A (en) Constant-voltage circuit, semiconductor device having the same, and method of controlling constant-voltage circuit
TW201421882A (en) DC converting circuit
JP2009278797A (en) Step-up converter
JP4416689B2 (en) Switching regulator and switching regulator output voltage switching method
CN202455264U (en) DC/DC converter and control circuit, light-emitting device and electronic equipment thereof
TW201128920A (en) Boost type power converting apparatus
TW201002146A (en) Dimming control device and light source driving circuit thereof
CN211508901U (en) Power supply circuit and power supply device
JP2018130011A (en) Switching regulator and controller thereof
US8476877B2 (en) Fuel cell system and power management method thereof
JP4423467B2 (en) Integrated circuit device and switching power supply for switching control