201032474 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種訊號校正裝置及其方法,特 別是一種用以提升電容式觸控面板之訊號判別的靈 敏度之訊號校正裝置及其方法。 【先前技術】 由於近年來觸控感應之相關技術的大幅提升, 且其在使用上具有極大的便利性,各式各樣的觸控 ❿ 感應技術已被廣泛的應用於各種不同的電子產σ 中。其中,觸控面板即因為具有體積小、成本低σ、σ 消耗功率低以及使用壽命長的優點,而被廣泛的 用在各式各樣的電子產品上。 、 ‘ 請參閱第1Α圖,第1Α圖為一般觸控面板之控 制模組的示意圖。如第1Α圖所示,當使用者在電容 式觸控面板上進行按壓操作時,觸控面板會傳送相 對應的電谷訊號至後端的控制模組10進行處理,控 制模組10包含有一電流源12、一比較器14、一叶 數器16、一微處理器18、一參考電壓ν咖以及至^ 矚一控制開關SW1、SW2。以下簡單敘述控制模組1〇 的工作原理,一開始會將控制開關SW2開啟(〇 •對設置於控制模組1〇外部的電容C進行充電,當比 14之正輸人端的電壓位準低於其負輸人二的 參考電壓Vref時,比較器14會輸出一低電壓位 訊號到計數器16,觸發計數器16開始進行計數的 動作,產生一計數訊號Scou。一直到比較器} 4之正 輸入端的電壓位準高於負輸入端的參考電壓v ^ iU14會輸出一個高電壓位準的訊號,控SF 计數器16停止計數,即停止產生計數訊號Sc〇u,並 201032474 且對計數器16進行重設(Reset)的動作,同時開啟控 制開關swi將電容c進行放電,使比較器14之^ 輸入端的電壓位準又往下降’讓計數器16再次計 數,如此持續反覆的循環進行操作,微處理器18 ^ 用以根據s十數器16的計數訊號scou,判斷觸扣而把 是否被觸碰。由於觸控面板被觸碰時,使用^本^ 的電容值會遠大於整個觸控面板的等效電容,此時 計數器16的計數訊號Scou的位準會遠大於觸控面板 未被觸碰時的計數訊號Scou之位準,因此,微處理 龜 器18只要利用計數訊號S c〇u的大小即能判斷觸控面 板是否被觸碰。藉由上述的方式對電容C連續的 放電動作與計數運算,即可密集地偵測觸控面板是 否被有效的觸碰,完成觸控面板偵測的動作。 請參閱第1B圖以及第1C圖,第1B圖為電容 式觸控面板為標準狀態下之計數訊號的波形圖。 為電容式觸控面板為具有偏差之計數訊號的 ^形圖。如第1B圖以及第ic圖所示,微處理器18 預設的臨界值vTH1、Vth2與計數訊號Sc⑽ ,仃比較,當計數訊號Sc〇ui的位準小於第一臨界值 時(如第一判斷區域所示),則判斷觸控面板未被 ,壓,當計數訊號8〇)1;1大於第二臨界值Vth2時(如 J ^判斷區域所示),則判斷觸控面板被按壓,藉此 判,使用者是否操作觸控面板。如果第16圖的計數 ,號SC0UI因為外在環境因素(例如:emi干擾、高 訊或高密度元件佈局環境等等因素)而產‘ 環培田本Ϊ可能會發生如帛1C圖所示的情形,因為 ^ f素的偏差使得真正的計數訊號Scoul的位準向 ^移’如圖中所示的計數訊號s圆,當微處理器 判,會把第一判斷區域的計數訊號s咖 斷成觸控面板被按壓,但實際上其並未被按壓, 201032474 乃是訊號偏移所致,在此情形下即會產生觸控面板 誤判的狀況而產生使用上的問題。 因此’如何提供一種訊號校正裝置及其方法, 可以校正電容式觸控面板之計數訊號的偏移,改善 因為偏移所造成之誤判的問題,已成為一種觸控面 板發展上的重要課題。 【發明内容】 本發明之目的在提供一種應用於電容式觸控面 板的訊號校正裝置及其方法,其可以自動校正觸控 ® 面板受按壓操作後所產生之輸出訊號的偏移,有效 提升電容式觸控面板的準確性。 本發明提供一種訊號校正裝置,用以校正一觸 控面板所產生之一輸入訊號,產生一輸出訊號,其 包含有一電流源、一電壓產生模組、一比較模組、 一校正模組以及一計數模組。電流源用以產生一電 流。電壓產生模組耦接於電流源,用以根據一第一 控制訊號、一比較訊號以及該電流,產生一比較電 壓。比較模組具有一第一輸入端以及一第二輸入 ❹ 端’該第一輸入端耦接於該電壓產生模組,用以接 收該比較電壓’該第二輸入端耦接於該參考電壓產 生模組’用以接收一參考電壓,該比較模組用以將 該比較電壓與該參考電壓進行比較,以產生該比較 訊號。校正模組耦接於該比較模組,用以根據該比 較訊號’產生該第一控制訊號以及該第二控制訊 號。計數模組耦接於該比較模組,用以於接收該比 較訊號後’開始進行計數,以產生該輸出訊號。 為讓本發明之上述和其他目的、特徵、和優點 能更明顯易僅’下文特舉出較佳實施例,並配合所 6 201032474 附圖式’作詳細說明如下: 【實施方式】 請參,第2圖’第2圖為根據本發明之訊號校 正裝置之示意圖。如第2圖所示,本發明為一種訊 號校正裝置20,用以校正一電容式觸控面板(圖未示) 所產生之一輸入訊號,產生一輸出訊號S〇UT。訊號 校正裝置20包含有一電流源22、一電壓產生模組 24、一比較模組26、一校正模組28以及一計數模 組30。電流源22用以產生一電流I。電壓產生模組 ❹ 24耦接於電流源22,用以根據一第一控制訊號Sci、 一比較訊號Sc〇M以及該電流I,產生一比較電壓 Vc〇M。比較模組26具有一第一輸入端(+)以及一第二 輸入端(-)’該第一輸入端(+)耦接於電壓產生模組 24,用以接收該比較電壓Vc〇M,第二輸入端㈠用以 接收參考電壓Vref,比較模組26用以將比較電壓 Vc〇M與一參考電壓Vref進行比較,以產生該比較訊 號Sc〇m。於一實施例中,比較模組26係為一比較器, 用以對比較電壓VC0M與參考電壓Vref進行比較,並 藝 根據比較結果產生比較訊號Scom。校正模組28輕接 於比較模組26,用以根據比較訊號SCOM,產生第一 控制訊號S ci。計數模組3 0搞接於比較模組2 6,用 以於接收該比較訊號SC0M後,開始進行計數,以產 生該輸出訊號S OUT ° 於一 實施例中’計數模組30為 一計數器。 此外,訊號校正裝置20另包含有一控制模組 32 ’耦接於計數模組30 ’用以根據至少一預設值以 及該輸出訊號S〇ut ’產生一面板控制訊號sTC,並藉 由該面板控制訊號STC控制該電容式觸控面板(圖未 示)。於一實施例中’該至少一預設值係包含有一高 7 201032474 以及一低臨界值’控制模組32係根據該輸出 訊鈮bOUT以與高臨界值以及低臨界值進行比較,根 據比較結果產生該面板控制訊號St(^當 W的位準高於高臨界值時,所產生的面板= 號sTC代表該觸控面板(圖未示)被按壓,若輪出訊號 f〇UT的位準低於低臨界值時,所產生的面板控^訊 號^TC則代表該觸控面板(圖未示)未被按壓,藉此即 可兀成觸控面板(圖未示)是否被按壓的判斷。 電壓產生模組24包含有一第一電容C1、一第 ❷ 一開關swn、一第二開關SW12。第一電容C1耦 接於一接地端AVSS,用以根據該電流I進行充電或 者^電。第一開關SW11耦接於電流源22以及第一 電容ci ’用以根據第一控制訊號Sci的控制,選擇 性的導通或斷路’以控制電流I是否流過第一電容 C1。第二開關SW12耦接於電流源22以及接地端 AVSS,用以根據比較訊號Sc〇m的控制,選擇性的導 通或斷路,以控制該第一電容C1進行充電或者放 電。 此外’本發明之訊號校正裝置2〇另包含有一調 ’ 整模組36,耦接於電流源22、電壓產生模組24以 及接地端AVSS ’用以根據該電流I、第一控制訊號 Sci’調整比較電壓VC0M之大小。於一實施例中,調 整模組36包含有一第二電容C2以及一第三開關 SW3。第二電容C2耦接於接地端AVSS,用以根據 電流I進行充電或者藉由該接地端AVSS進行放 電’以調整比較電壓VCOM之大小。第三開關SW3 耦接於電流源22以及第二電容C2,用以根據第一 控制訊號SC1 ’選擇性的導通或斷路,以控制第二電 容C2進行充電。 8 201032474 訊號校正模組20還包含有一參考電壓產生模 組34,耦接於該比較模組26之該第二輸入端(-), 用以根據一第二控制訊號SC2產生相對應之參考電 壓V ref。其中,第二控制訊號S C2亦藉由校正模組 28根據比較訊號SCOM而產生。參考電壓產生模組34 包含有一可變電源341,耦接於比較模組26之第二 輸入端㈠以及接地端AVSS之間,用以根據第二控 制訊號S C2 ’產生相對應之參考電壓V REF。使用者係 可根據第二控制訊號SC2的位準,調整可變電源341 以相對應調整參考電壓V ref的電壓值大小。 m 請參閱第3圖,第3圖為根據本發明之訊號校 正裝置之校正模組28之一實施例之示意圖。校正模 組28包含有一儲存單元282、一判斷單元284以及 一訊號控制單元286。儲存單元282耦接於該比較 模組26,用以儲存比較訊號SCOM,產生至少一儲存 資料DATA。判斷單元284耦接於比較模組26以及 儲存單元282,用以根據比較訊號SCOM以及至少一 儲存資料DATA,產生一判斷訊號SDET。訊號控制單 元286粞接於判斷單元284,用以根據判斷訊號 ❹ SDET,產生第一控制訊號SC1以及第二控制訊號SC2。 以下說明校正模組28的作動方式,首先,儲存 單元2 8 2會記錄一定時間内比較模組2 6輸出之比較 訊號SCOM的脈衝個數,產生至少一儲存資料DATA。 判斷單元284會將比較訊號SC0M與至少一儲存資料 DATA進行比對,計算參考電壓Vref的大小,並且 判斷訊號校正裝置20是否完成校正動作,再根據判 斷的結果產生相對應的判斷訊號SDET。訊號控制單 元286會根據判斷訊號SDET產生第一控制訊號SC1 來控制調整模組36的第三開關SW3是否導通電流 201032474 源22以及第二電容C2,以控制第二電容C2進行充 電,此外訊號控制單元286另會依據判斷訊號SDET 產生第二控制訊號SC2,並且利用它來調整參考電壓 產生模組34所產生的參考電壓VreF的電壓值大小。 請參閱第4圖至第6圖,第4圖為本發明之比 較模組比較具有第一預設值之參考電壓與輸入電壓 之波形示意圖。第5圖為本發明之比較模組於雜訊 干擾時比較具有第一預設值之參考電壓與輸入電壓 之波形示意圖。第6圖為本發明之比較模組對第5 圖之訊號波行進行雜訊干擾校正時之波形示意圖。 ® 如第4圖至6圖所示,以下用以具體說明本發明之 訊號校正裝置20進行訊號校正的原理。當訊號校正 裝置20進行訊號校正動作時,訊號控制單元286會 先輸出第一控制訊號SC1,控制第三開關SW3以使 第二電容C2進行充電,同時將第一開關SW11關閉 (Turn Off),使第一電容C1的路徑呈現開路(Open) 的狀態,並且透過第二控制訊號SC2控制參考電壓產 生模組34之參考電壓Vref的電壓位準在一第一預設 值 VP1。 ❿ 接著,電流源22會開始對第二電容C2充電, 直到比較模組26的正輸入端(+)之電壓位準大於負 輸入端(-)的電壓位準時,比較模組26會輸出具有正 脈衝的比較訊號SC0M,同時將第二開關SW12連接 到接地端AVSS,使第二電容C2放電,直到比較模 組26的正輸入端(+)之電壓位準小於負輸入端㈠的 電壓位準,比較模組26會輸出低位準的比較訊號 SC0M,同時斷路第二開關SW12,藉由連續的充/放 電動作,在一定時間内統計比較模組26輸出之具有 正脈衝的比較訊號SC0M儲存到儲存單元282,即為 201032474 該儲存資料DATA,完成對第二電容02的取樣步驟。 一·^取,步驟完成後,訊號控制單元286會藉由第 =控制訊號SC1,控制第三開關SW3斷路第 巧第-開關SW11啟:Ϊ電^ 充第一電谷C卜開始不斷地對第一電容C1 i屮λ ^ ’並在一㈣間内統計比較模組26所 殉出之比較訊號Sc〇M的正脈衝個數。 鲁 單元284會進一步將對第二電容C2充電時 及ΪΠ6輸出之比較訊號〜⑽的正脈衝個數,以 訊號S一 1容C1充電時比較模組26所輸出之比較 正脈衝個數,兩者進行比較,若兩者之 二’ίϊ:差距小於一定範圍,則判斷外在環境因素 不需作杯彳生電容或雜訊干擾程度在可接受範圍内,' 不需作任何訊號校正。 圓 圍外若 Ϊίί過大,造成在相同的環境條件下源22 二ί:ΐ2寄的生Λ容/戈雜訊干擾充電速度(斜率)較第 形下之正脈衝個數的差距大於一特定範圍。不门潰 透過以Γ;Γ會進行訊號校正的動作, 控制制訊號控制單元286輸出第二 SC2,調降輸入比較模組 ==:二之尸位準至-第二預=二 增加,重覆充/放較訊號SC0M的正脈衝個數 rr_放個電數 =資料直=)=㈡ -範圍’則判斷等效寄生電容或雜訊)干擾2已; 201032474 達到可接受範圍内,進一步將第二預設值VP2儲存 到儲存單元282取代預設第一預設值VP1,直到整 個裝置被關閉(Turn Off)或重置(Reset) 〇 將本發明之訊號校正裝置20應用於具有電容 式觸控面板的電子系統内時,即便是電子系統應用 在惡劣的環境下’經過本發明之訊號校正裝置2〇進 行訊號校正後’訊號校正裝置2〇的輸出訊號s〇UT 為被影響的數值減去相對寄生電容的數值,如此, 可以克服寄生效應或雜訊干擾等影響,使電容式觸 φ 控面板仍可正常操作。 請參閱第7圖,第7圖為根據本發明之訊號校 正方法之一實施例之步驟流程圖。如第7圖所示, 本發明之另一實施例提供一種訊號校正方法,用以 校正一觸控面板所產生之一輸入訊號,產生一輸出 訊號。本發明之訊號校正方法包含有下列步驟: S80 :根據一第一控制訊號、一比較訊號以及一 電流,產生一比較電壓;於一實施例中,本步驟係 根據該電流對一第一電容進行充/放電,以產生該比 鲁較電壓;其中,本步驟係先根據該第一控制訊號的 控制,選擇性的導通或斷路一第一開關,以控制該 電流是否流過該第一電容’產生該比較電壓。接著, 根據該比較訊號的控制,選擇性的導通或斷路一第 二開關,以控制該第一電容進行充電。此外本步驟 另可以根據該電流以及該第一控制訊號,調整該比 較電壓之大小。 ° S82:比較該比較電壓與一參考電壓,並根據比 較結果’產生該比較訊號;於一實施例中,本步驟 係根據一第二控制訊號,產生相對應之該參^電 12 201032474 壓。其中’使用者係可以根據第二控制訊號的位準, 調整參考電壓的大小。於一實施例中,本步驟利用 下列方式調整該比較電壓之大小,首先,先根據該 電流對一第二電容進行充電,以調整該比較電壓之 大小,並士根據該第一控制訊號,選擇性的導通或 斷路一第三開關,以控制該第二電容進行充/放電。 S84 :根據該比較訊號,產生該第一控制訊號; 本^驟更可根據該比較訊號產生該第二控制訊號; 於二實施例中,本步驟係先儲存該比較訊號,產生 ❹ f少一儲存資料,接著根據該比較訊號以及該至少 :儲存資料,產生一判斷訊號;最後根據該判斷訊 號,產生該第一控制訊號以及該第二控制訊號。 S86 :根據該比較訊號,開始進行計數,以 該輸出訊號。 S88 ·根據至少一預設值以及該輸出訊號,產生 面板控制訊號。於一實施例中,該至少一預設值BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a signal correcting apparatus and method thereof, and more particularly to a signal correcting apparatus and method for improving the sensitivity of signal discrimination of a capacitive touch panel. [Prior Art] Due to the significant improvement in related technologies of touch sensing in recent years, and its great convenience in use, various touch sensing technologies have been widely used in various electronic products. in. Among them, the touch panel is widely used in a wide variety of electronic products because of its small size, low cost σ, low σ power consumption, and long service life. ‘Please refer to the first diagram. The first diagram is a schematic diagram of the control module of the general touch panel. As shown in FIG. 1 , when the user performs a pressing operation on the capacitive touch panel, the touch panel transmits a corresponding electric valley signal to the control module 10 at the back end for processing, and the control module 10 includes a current. The source 12, a comparator 14, a leaf counter 16, a microprocessor 18, a reference voltage ν, and a control switch SW1, SW2. The following briefly describes the working principle of the control module 1〇, and initially turns on the control switch SW2 (〇• charges the capacitor C disposed outside the control module 1〇, when the voltage level of the positive input terminal is lower than 14 When the reference voltage Vref is negatively input, the comparator 14 outputs a low voltage signal to the counter 16, triggering the counter 16 to start counting, and generating a counting signal Scou until the positive input of the comparator}4 The voltage level of the terminal is higher than the reference voltage v ^ iU14 of the negative input terminal, and a high voltage level signal is output. The control SF counter 16 stops counting, that is, the counting signal Sc〇u is stopped, and the counter 16 is heavy. Set (Reset) action, at the same time turn on the control switch swi to discharge the capacitor c, so that the voltage level of the input terminal of the comparator 14 is lowered again, let the counter 16 count again, so that the cycle continues to operate, the microprocessor 18 ^ is used to judge whether the touch is touched according to the count signal scou of the s-number device 16. Since the touch panel is touched, the capacitance value using ^^^ is much larger than The equivalent capacitance of the touch panel, the level of the counter signal Scou of the counter 16 is far greater than the level of the counting signal Scou when the touch panel is not touched. Therefore, the micro-processing turtle 18 only needs to use the counting signal. The size of the S c〇u can determine whether the touch panel is touched. By the continuous discharge operation and counting operation of the capacitor C in the above manner, it is possible to densely detect whether the touch panel is effectively touched, and complete Touch panel detection action. Please refer to FIG. 1B and FIG. 1C. FIG. 1B is a waveform diagram of the counting signal of the capacitive touch panel in a standard state. The capacitive touch panel is a counting signal with deviation. As shown in FIG. 1B and FIG. ic, the preset thresholds vTH1 and Vth2 of the microprocessor 18 are compared with the counting signal Sc(10), ,, when the level of the counting signal Sc〇ui is smaller than the first critical value. When the time is (as indicated by the first judgment area), it is judged that the touch panel is not pressed, when the count signal 8〇)1; 1 is greater than the second threshold value Vth2 (as indicated by the J^ judgment area), then the touch is judged The control panel is pressed, thereby judging the user Whether to operate the touch panel. If the count of Figure 16, the number SC0UI is due to external environmental factors (such as: emi interference, high-tech or high-density component layout environment, etc.), the production of the ring 培田本Ϊ may occur as shown in Figure 1C In the case, because the deviation of the ^f prime causes the position of the true counting signal Scoul to shift to the counting signal s circle as shown in the figure, when the microprocessor judges, the counting signal s of the first determining area is broken. The touch panel is pressed, but in fact it is not pressed. 201032474 is caused by the signal offset. In this case, the touch panel is misjudged and the use problem arises. Therefore, how to provide a signal correcting device and a method thereof can correct the offset of the counting signal of the capacitive touch panel and improve the misjudgment caused by the offset, which has become an important issue in the development of the touch panel. SUMMARY OF THE INVENTION The object of the present invention is to provide a signal correcting device and a method thereof for a capacitive touch panel, which can automatically correct the offset of an output signal generated by a touch panel after being pressed, thereby effectively increasing the capacitance. The accuracy of the touch panel. The present invention provides a signal correcting device for correcting an input signal generated by a touch panel to generate an output signal, which includes a current source, a voltage generating module, a comparing module, a correcting module, and a Counting module. The current source is used to generate a current. The voltage generating module is coupled to the current source for generating a comparison voltage according to a first control signal, a comparison signal, and the current. The comparison module has a first input terminal and a second input terminal. The first input terminal is coupled to the voltage generating module for receiving the comparison voltage. The second input terminal is coupled to the reference voltage. The module ' is configured to receive a reference voltage, and the comparison module is configured to compare the comparison voltage with the reference voltage to generate the comparison signal. The calibration module is coupled to the comparison module for generating the first control signal and the second control signal according to the comparison signal. The counting module is coupled to the comparison module, and is configured to start counting after receiving the comparison signal to generate the output signal. The above and other objects, features, and advantages of the present invention will become more apparent and obvious <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Fig. 2 is a schematic view of a signal correcting device according to the present invention. As shown in FIG. 2, the present invention is a signal correcting device 20 for correcting an input signal generated by a capacitive touch panel (not shown) to generate an output signal S〇UT. The signal correcting device 20 includes a current source 22, a voltage generating module 24, a comparing module 26, a correcting module 28, and a counting module 30. Current source 22 is used to generate a current I. The voltage generating module ❹ 24 is coupled to the current source 22 for generating a comparison voltage Vc 〇 M according to a first control signal Sci, a comparison signal Sc 〇 M, and the current I. The comparison module 26 has a first input terminal (+) and a second input terminal (-). The first input terminal (+) is coupled to the voltage generating module 24 for receiving the comparison voltage Vc〇M. The second input terminal (1) is configured to receive the reference voltage Vref, and the comparison module 26 is configured to compare the comparison voltage Vc〇M with a reference voltage Vref to generate the comparison signal Sc〇m. In one embodiment, the comparison module 26 is a comparator for comparing the comparison voltage VC0M with the reference voltage Vref, and generating a comparison signal Scom according to the comparison result. The calibration module 28 is lightly coupled to the comparison module 26 for generating a first control signal S ci based on the comparison signal SCOM. The counting module 30 is connected to the comparison module 2 6 for receiving the comparison signal SC0M, and starts counting to generate the output signal S OUT °. In one embodiment, the counting module 30 is a counter. In addition, the signal correction device 20 further includes a control module 32 ′ coupled to the counting module 30 ′ for generating a panel control signal sTC according to the at least one preset value and the output signal S 〇 ut ' The control signal STC controls the capacitive touch panel (not shown). In an embodiment, the at least one preset value includes a high 7 201032474 and a low threshold value control module 32 is compared with the high threshold value and the low threshold value according to the output signal bOUT, according to the comparison result. The panel control signal St is generated. (When the level of W is higher than the high threshold, the generated panel=number sTC represents that the touch panel (not shown) is pressed, if the level of the signal f〇UT is rotated. When the value is lower than the low threshold, the generated panel control signal ^TC indicates that the touch panel (not shown) is not pressed, thereby determining whether the touch panel (not shown) is pressed. The voltage generating module 24 includes a first capacitor C1, a first switch swn, and a second switch SW12. The first capacitor C1 is coupled to a ground terminal AVSS for charging or charging according to the current I. The first switch SW11 is coupled to the current source 22 and the first capacitor ci' for selectively turning on or off according to the control of the first control signal Sci to control whether the current I flows through the first capacitor C1. The second switch SW12 Coupling to the current source 22 and the ground terminal AVSS, According to the control of the comparison signal Sc〇m, selectively turning on or off to control the first capacitor C1 for charging or discharging. Further, the signal correcting device 2 of the present invention further includes a tuning module 36, coupled The current source 22, the voltage generating module 24, and the grounding terminal AVSS' are used to adjust the magnitude of the comparison voltage VC0M according to the current I and the first control signal Sci'. In an embodiment, the adjustment module 36 includes a second a capacitor C2 and a third switch SW3. The second capacitor C2 is coupled to the ground terminal AVSS for charging according to the current I or discharging by the ground terminal AVSS to adjust the magnitude of the comparison voltage VCOM. The third switch SW3 is coupled. The current source 22 and the second capacitor C2 are used to selectively turn on or off according to the first control signal SC1' to control the second capacitor C2 to be charged. 8 201032474 The signal correction module 20 further includes a reference voltage generating module. The group 34 is coupled to the second input terminal (-) of the comparison module 26 for generating a corresponding reference voltage V ref according to a second control signal SC2. The S C2 is also generated by the correction module 28 according to the comparison signal SCOM. The reference voltage generation module 34 includes a variable power supply 341 coupled between the second input terminal (1) of the comparison module 26 and the ground terminal AVSS. The corresponding reference voltage V REF is generated according to the second control signal S C2 ′. The user can adjust the variable power supply 341 to adjust the voltage value of the reference voltage V ref according to the level of the second control signal SC2. m See FIG. 3, which is a schematic diagram of an embodiment of a calibration module 28 of the signal correction device in accordance with the present invention. The calibration module 28 includes a storage unit 282, a determination unit 284, and a signal control unit 286. The storage unit 282 is coupled to the comparison module 26 for storing the comparison signal SCOM to generate at least one stored data DATA. The determining unit 284 is coupled to the comparing module 26 and the storage unit 282 for generating a determining signal SDET according to the comparison signal SCOM and the at least one stored data DATA. The signal control unit 286 is coupled to the determining unit 284 for generating the first control signal SC1 and the second control signal SC2 according to the determination signal ❹ SDET. The following describes the operation mode of the calibration module 28. First, the storage unit 282 records the number of pulses of the comparison signal SCOM output by the comparison module 26 for a certain period of time to generate at least one stored data DATA. The judging unit 284 compares the comparison signal SC0M with the at least one stored data DATA, calculates the magnitude of the reference voltage Vref, and determines whether the signal correcting device 20 completes the correcting action, and generates a corresponding judging signal SDET according to the result of the judging. The signal control unit 286 controls the third switch SW3 of the adjustment module 36 to turn on the current 201032474 source 22 and the second capacitor C2 according to the determination signal SDET to control the second capacitor C2 to charge, and further control the signal. The unit 286 further generates the second control signal SC2 according to the determination signal SDET, and uses it to adjust the voltage value of the reference voltage VreF generated by the reference voltage generation module 34. Please refer to FIG. 4 to FIG. 6. FIG. 4 is a schematic diagram showing the waveforms of the reference voltage and the input voltage having the first preset value compared with the comparison module of the present invention. Fig. 5 is a schematic diagram showing the waveforms of the reference voltage and the input voltage having the first preset value when the comparison module of the present invention is in the interference of noise. Fig. 6 is a schematic diagram showing the waveform of the comparison module of the present invention when performing noise interference correction on the signal line of Fig. 5. ® As shown in Figs. 4 to 6, the following is a detailed description of the principle of signal correction by the signal correcting device 20 of the present invention. When the signal correcting device 20 performs the signal correcting operation, the signal control unit 286 first outputs the first control signal SC1, controls the third switch SW3 to charge the second capacitor C2, and turns off the first switch SW11 (Turn Off). The path of the first capacitor C1 is brought into an open state, and the voltage level of the reference voltage Vref of the reference voltage generating module 34 is controlled by the second control signal SC2 to be at a first preset value VP1. ❿ Next, the current source 22 will begin to charge the second capacitor C2 until the voltage level of the positive input terminal (+) of the comparison module 26 is greater than the voltage level of the negative input terminal (-), and the comparison module 26 outputs The positive pulse comparison signal SC0M simultaneously connects the second switch SW12 to the ground terminal AVSS, and discharges the second capacitor C2 until the voltage level of the positive input terminal (+) of the comparison module 26 is smaller than the voltage level of the negative input terminal (1). The comparison module 26 outputs a low level comparison signal SC0M and simultaneously disconnects the second switch SW12, and the comparison signal SC0M stored by the comparison module 26 with a positive pulse is stored for a certain period of time by a continuous charging/discharging operation. To the storage unit 282, which is the 201032474 storage data DATA, the sampling step of the second capacitor 02 is completed. After the step is completed, the signal control unit 286 controls the third switch SW3 to be disconnected by the first control signal SC1, and the first switch-SW11 is turned on: the first electric valley C is started continuously The first capacitor C1 i 屮 λ ^ ' and the number of positive pulses of the comparison signal Sc 〇 M drawn by the comparison module 26 are counted in one (four). Lu unit 284 will further compare the number of positive pulses of the comparison signal ~(10) when charging the second capacitor C2 and the output of the ΪΠ6, and comparing the number of positive pulses output by the module 26 when the signal S1 is charged to C1, two If the difference between the two is less than a certain range, then it is judged that the external environmental factors do not need to make the cup capacitance or noise interference within the acceptable range, 'no need to make any signal correction. If the circumstance is too large, it will cause the difference between the charging capacity (slope) of the source/Ghost noise and the number of positive pulses under the first shape under the same environmental conditions. . After the door is blocked, the signal correction operation is performed, and the control signal control unit 286 outputs the second SC2, and the input control module is down ==: the second body level is up to - the second pre = two is increased, and the weight is increased. Overcharge/discharge signal SC0M positive pulse number rr_ put electric number = data straight =) = (b) - range 'is judge equivalent parasitic capacitance or noise) interference 2; 201032474 reach acceptable range, further The second preset value VP2 is stored to the storage unit 282 instead of the preset first preset value VP1 until the entire device is turned off (Turn Off) or reset (Reset), and the signal correction device 20 of the present invention is applied to have a capacitance In the electronic system of the touch panel, even if the electronic system is used in a harsh environment, after the signal correction device 2 of the present invention performs signal correction, the output signal s〇UT of the signal correction device 2 is affected. The value is subtracted from the value of the relative parasitic capacitance. In this way, the effects of parasitic effects or noise interference can be overcome, so that the capacitive touch panel can still operate normally. Referring to Figure 7, Figure 7 is a flow chart showing the steps of an embodiment of the signal correction method according to the present invention. As shown in FIG. 7, another embodiment of the present invention provides a signal correction method for correcting an input signal generated by a touch panel to generate an output signal. The signal calibration method of the present invention includes the following steps: S80: generating a comparison voltage according to a first control signal, a comparison signal, and a current; in an embodiment, the step is performed on the first capacitor according to the current. Charging/discharging to generate the ratio voltage; wherein, the step is to selectively turn on or off a first switch according to the control of the first control signal to control whether the current flows through the first capacitor. This comparison voltage is generated. Then, according to the control of the comparison signal, selectively turning on or off a second switch to control the first capacitor for charging. In addition, in this step, the magnitude of the comparison voltage can be adjusted according to the current and the first control signal. S82: Compare the comparison voltage with a reference voltage, and generate the comparison signal according to the comparison result. In an embodiment, the step is to generate a corresponding voltage according to a second control signal. Wherein the user can adjust the size of the reference voltage according to the level of the second control signal. In an embodiment, the step is to adjust the magnitude of the comparison voltage by first charging a second capacitor according to the current to adjust the magnitude of the comparison voltage, and selecting according to the first control signal. Slightly turning on or off a third switch to control the second capacitor for charging/discharging. S84: generating the first control signal according to the comparison signal; and generating the second control signal according to the comparison signal; in the second embodiment, the step of storing the comparison signal first generates ❹f less And storing the data, and then generating a determination signal according to the comparison signal and the at least: storing data; and finally generating the first control signal and the second control signal according to the determination signal. S86: According to the comparison signal, counting starts to output the signal. S88. Generate a panel control signal according to at least one preset value and the output signal. In an embodiment, the at least one preset value
2Sit一高臨界值以及一低臨界值,本步驟係根 ^該輸出訊號以跟高臨界值以及低臨界值進行比 較,根據比較結果產生該面板控制訊號。 S90 .根據該面板控制訊號,控制該觸控面板。 萁ΰτ 於一實施例中,本發明之訊號校正方法 二可3控面板尚未被操作時(尚未進行訊號校正 一標準設定程序,即先利用第二電容本 電壓與參考電麼進行比對,產生比 f =於較訊號產生該儲存資料,此動作 ίη部寄生電容干擾的情形下,對第二電 行=電::正常情況下的 幵延仃訊號扠正,如此可以確保訊號 13 201032474 校正的精確性。 本發明之訊號校正裝置及其方法之計數模組所 產生的輸出訊號(計數訊號)為具有偏移的計數值減 去^對寄生電容等干擾的計數值,因此,可以去除 電容式觸控面板之寄生電容與雜訊干擾等等環境因 素所造成的影響,達成克服外在環境因素所造成的 j移之效果’即便是應用在非理想狀態環境下的電 容式觸控面板’藉由本發明之訊號校正裝置的校正 依然能夠正常且準確的作動,與以往不具有訊號校 ❹ ,,置的觸控面板之電子系統相較,使用本發明之 校正裝置的電容式觸控面板,不僅能解決習知 所面臨的問題,更可有效電容式觸控面板的靈 敏度。 雖然本發明已以較佳實施例揭露如上,然其並 ^用以限定本發明,任何熟習此技藝者,在不脫離 i發明之精神和範圍内,當可作些許之更動與潤 @ ,ϊ本發明之保護範圍當視後附之申請專利範 圍所界定者為準。 【圖式簡單說明】 ^1Α圖為一般用以校正觸控面板之控制模組的示 意、圖。 電容式觸控面板為標準狀態下之計數訊 L二:為電容式觸控面板為具有偏差之計數訊號 之 第2圖為根據本發明之訊號校正裝置之-實施例 201032474 電路圖。 第3圖為根據本發明之訊號校正裝置之處理模組之 一實施例之電路圖。 第4圖為本發明之比較模組比較具有第一箱搐 參考電壓與輸入電壓之波形示意圖。 第5圖為本發明之比較模組於雜訊干擾時比較且有 第一預設值之參考電壓與輸入電壓之波形示意圖'。2Sit-high threshold and a low threshold, this step is rooted. The output signal is compared with a high threshold and a low threshold, and the panel control signal is generated according to the comparison result. S90. Control the touch panel according to the panel control signal.一τ In one embodiment, the signal correction method 2 of the present invention can be used when the 3 control panel has not been operated (the signal correction has not been performed, and the standard setting procedure is first performed, that is, the second capacitor is compared with the reference power to generate a comparison. The ratio f = in the case of the signal generation of the stored data, in the case of the interference of the parasitic capacitance of the action, the second line = the electricity: the normal delay, the signal is positive, so that the signal 13 201032474 is corrected. The output signal (counting signal) generated by the counting module of the signal correcting device and the method of the present invention is a counter value with offset, minus a counter value of interference such as parasitic capacitance, and therefore, the capacitive type can be removed. Touch panel's parasitic capacitance and noise interference and other environmental factors to achieve the effect of overcoming external environmental factors, even if it is applied to a capacitive touch panel in a non-ideal environment The correction of the signal correction device of the present invention can still be performed normally and accurately, and the electronic components of the touch panel that have not been previously calibrated by the signal In comparison, the capacitive touch panel using the calibration device of the present invention can not only solve the problems faced by the prior art, but also effectively the sensitivity of the capacitive touch panel. Although the present invention has been disclosed above in the preferred embodiment, However, it is intended to define the invention, and anyone skilled in the art can make some modifications and changes without departing from the spirit and scope of the invention. The definition of the scope shall prevail. [Simple description of the diagram] ^1 diagram is a schematic diagram of the control module used to correct the touch panel. The capacitive touch panel is the counting signal in the standard state. Figure 2 is a circuit diagram of a signal correction device according to the present invention - Embodiment 201032474. Figure 3 is a circuit diagram of an embodiment of a processing module of a signal correction device according to the present invention. Figure 4 is a schematic diagram showing the comparison of the first box 搐 reference voltage and the input voltage according to the comparison module of the present invention. Figure 5 is a comparison of the comparison module of the present invention in the noise interference. A first predetermined voltage waveform with a reference value and the input voltage of a schematic '.
第6圖為本發明之比較模組對第5圖之訊號波行進 行雜訊干擾校正時之波形示意圖。 第7圖為根據本發明之訊號校正方法 步驟流程圖。 T 【主要元件符號說明】 10控制模組 12電流源 14比較器 16計數器 20訊號校正裝置 22電流源 24電壓產生模組 26比較模組 28校正模組 30計數模組 32控制模組 201032474 34參考電壓產生模組 36調整模組 282儲存單元 284 判斷單元 286訊號控制單元 341 可變電源 C、Cl、C2 電容Fig. 6 is a schematic diagram showing the waveform of the noise correction of the signal wave of Fig. 5 when the comparison module of the present invention is corrected. Figure 7 is a flow chart showing the steps of the signal correction method according to the present invention. T [Main component symbol description] 10 control module 12 current source 14 comparator 16 counter 20 signal correction device 22 current source 24 voltage generation module 26 comparison module 28 calibration module 30 counting module 32 control module 201032474 34 reference Voltage generation module 36 adjustment module 282 storage unit 284 determination unit 286 signal control unit 341 variable power supply C, Cl, C2 capacitance
SW1 ' SW2 ' SW11 ' SW12 、SW3 開關 v REF參考電壓 V COM比較電壓 I電流 AVSS接地端 s COU、S COU1、S COU2 計數訊號SW1 ' SW2 ' SW11 ' SW12 , SW3 switch v REF reference voltage V COM comparison voltage I current AVSS ground s COU, S COU1, S COU2 count signal
Sci、Sc2、Stc 控制訊號 S〇UT輸出訊號Sci, Sc2, Stc control signals S〇UT output signals
Sdet判斷訊號Sdet judgment signal
Sc〇M 比較訊號 DATA 儲存資料 VTH1、VTH2臨界值 S80、S82、S84、S86 方法步驟 16Sc〇M comparison signal DATA storage data VTH1, VTH2 threshold S80, S82, S84, S86 Method step 16