TW201031588A - Processes for preparing thermally conductive and electrically insulative carbon nanotubes and for preparing a thermal interface material - Google Patents

Processes for preparing thermally conductive and electrically insulative carbon nanotubes and for preparing a thermal interface material Download PDF

Info

Publication number
TW201031588A
TW201031588A TW098105549A TW98105549A TW201031588A TW 201031588 A TW201031588 A TW 201031588A TW 098105549 A TW098105549 A TW 098105549A TW 98105549 A TW98105549 A TW 98105549A TW 201031588 A TW201031588 A TW 201031588A
Authority
TW
Taiwan
Prior art keywords
carbon nanotube
carbon nanotubes
decane
modified
coupling agent
Prior art date
Application number
TW098105549A
Other languages
Chinese (zh)
Inventor
Martin Chen-Chi Ma
Chih-Chun Teng
Shin-Yi Yang
Yen-Wei Huang
Tzong-Ming Lee
Kuo-Chan Chiou
Original Assignee
Nat Univ Tsing Hua
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Tsing Hua filed Critical Nat Univ Tsing Hua
Priority to TW098105549A priority Critical patent/TW201031588A/en
Publication of TW201031588A publication Critical patent/TW201031588A/en

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention discloses a processes for preparing thermally conductive and electrically insulative carbon nanotubes, which includes preparing organo-modified carbon nanotubes having organic functional groups bounded to surfaces of the carbon nanotubes; reacting a coupling agent with the organic functional group to obtain coupling-agent-modified carbon nanotubes, so that a self-assembly reaction of inorganic oxide can take place on the surfaces of the carbon nanotubes; and reacting a inorganic oxide precursor in the presence of the coupling-agent-modified carbon nanotubes and under hydro-thermal or sol-gel conditions to form a layer of inorganic oxide on the surface of the coupling-agent-modified carbon nanotube such as Al2O3 and SiO2 layers. In one of the preferred embodiments of the present invention, a carbon nanotube/epoxy resin composite was prepared with one part by weight of the conductive and electrically insulative carbon nanotubes per 100 parts by weight of the epoxy resin and the composite has a thermal conductivity of 0.99 W/mK and a volume resistivity of 3.33 x 10<SP>14 </SP> Ω -cm, which can be applied as thermal interface material.

Description

201031588 六、發明說明: 發明所屬之技術領域 本發明係關於熱界面材料,尤I有關於一冑導熱電絕 緣奈米碳管的製備方法。該導熱電絕緣奈米礙管可被添加 於一高分子中而顯著的提高其導熱性。 先前技術 隨著現代科技的日新月異,半導體製程技術與微電子 ❹ r業的蓬勃發展,電子元件朝著輕、薄、短、小與高密度 次變,然而電子70件在作時會產生熱。當這些熱無法排 除時會降低元件效能或使電子訊號失真,更會導致電子元 件損壞。因此精密的電子元件在運作時,其散熱的好壞對 電子元件的壽命及性質具有舉足輕重的影響。 現^市售散熱用熱界面材料產品皆須加入高含量具絕 緣性及问熱傳之無機材料添加物。無機材料通常選用具有 高熱傳導性質的陶竟粉體,其中常見的有氮化銘(ain)、、氮 化侧(BN)、氧化銘(Al2〇3)等,具有不錯的熱傳導係數,並 擁有良好的電絕緣性。然而無機材料比重過重及加工條件 苛刻,造成熱界面材料之機械強度下降。 奈米碳管具有優越的熱傳導特I生,但是奈米碳管同時 具有導電性質。因此若以奈米碳管取代無機材料來製備出 散熱用熱界面材料,對於光電或半導體產業的應用反而易 造成產品的絕緣性受到不良影響。 我國專利公開編號2〇〇83891〇號利用溶膠-凝膠法或水 4 201031588 熱法於奈米碳管表面包覆一層二氧化鈦,將以包覆二氧化 欽之奈米碳管以偶合劑改質,使其對高分子具有親和性。201031588 VI. OBJECTS OF THE INVENTION: FIELD OF THE INVENTION The present invention relates to thermal interface materials, and more particularly to a method for preparing a thermally conductive electrically insulating carbon nanotube. The thermally conductive electrically insulating nano tube can be added to a polymer to significantly improve its thermal conductivity. Prior Art With the rapid development of modern technology, semiconductor process technology and microelectronics industry are booming, electronic components are moving toward light, thin, short, small and high density. However, 70 pieces of electrons generate heat when they are used. When these heats are not removed, the component performance is degraded or the electronic signal is distorted, which may cause damage to the electronic components. Therefore, when the precise electronic components are in operation, the heat dissipation has a significant influence on the life and properties of the electronic components. Nowadays, the hot-interface materials for heat dissipation in the market must be added with high-content inorganic materials additives with insulation and heat transfer. Inorganic materials are usually selected from ceramics with high thermal conductivity. Among them, ain, a nitrided side (BN), and oxidized (Al2〇3) have good heat transfer coefficient and possess Good electrical insulation. However, inorganic materials are too heavy in weight and processing conditions are severe, resulting in a decrease in the mechanical strength of the thermal interface material. The carbon nanotubes have superior thermal conductivity, but the carbon nanotubes have both conductive properties. Therefore, if the inorganic material is replaced by a carbon nanotube to prepare a thermal interface material for heat dissipation, the application to the photovoltaic or semiconductor industry may adversely affect the insulation of the product. China Patent Publication No. 2〇〇83891〇 utilizes a sol-gel method or water 4 201031588 thermal method to coat a surface of a carbon nanotube with a layer of titanium dioxide, which is modified with a coupling agent for the coating of a carbon nanotube. To make it compatible with polymers.

Friedel-Crafts 醯化(Friedel_Crafts aCyUti〇n)反應為一 已 知 的 反 應 , 例 如 http://en.Wikipedia.〇rg/wiki/Friedel_Crafts_reacti〇n 已有詳 細的描述。 發明内容 本發明揭示一種絕緣包覆技術來解決奈米管碳材料應 用於熱界面材料之導電但不具電絕緣性之技術瓶頸。 本發明的一主要目的在於提供一種導熱電絕緣奈米碳 管材料的製備方法。 本發明的另—目的在於提供一種&amp;界面材料的製備方 法。 依本發明内容所完成的—種導熱電絕緣奈米碳管的製 f方法’包含準備有機改質奈求碳管,該有機改質奈米碳 管的表面上鍵結有有機官能基;將一偶合劑與該有機改質 奈米碳管的有機官能基反應,得到以偶合劑改質的奈米碳 b,以利於後續的無機氧化物的自組裝反應在該奈米碳管 :表面上發生’其中該偶合劑對該有機改質奈米碳管的重 !比為7.1至ι:10;及將無機氧化物前驅物在該偶合劑改 質的奈米碳管存在下及於水熱條件或溶凝膠條件下進 行反應,以在偶合劑改質的奈米碳管的表面上形成無機氧 化物層’纟t該無機氧化物前驅物對該偶合劑改質的奈米 5 201031588 ' 碳管的重量比為25:1至1:1。 適用於本發明方法的奈米碳管材料可為單壁奈米碳管 (single walled carbon nanotubes, SWCNT)、雙壁奈米碳管 (double walled carbon nanotubes,DWCNT)、多壁奈米碳管 (multi walled carbon nanotubes,MWCNT)、氣相成長奈米碳 纖維(vgcf)、碳纖維(CF)、奈米石墨片(nan〇以叩“则 plates, NGPs)等碳衍生物。 較佳的’該有機改質奈米碳管的有機官能基為胺基、 Θ 羥基或羧基。更佳的,該有機改質奈米碳管的有機官能基 為羧基。最佳的,該羧基係來自於被接枝於奈米碳管表面 的-C(0)-R-COOH,其中R為C1_C26的伸烷基、C2 C26的 伸烯基或C6-C12的芳香基。 車父佳的’該準備有機改質奈米碳管包含將奈米碳管材 料和一酸酐、醯氣化物或具多元羧酸的化合物於一溶劑中 及一觸媒的存在下及在惰氣氣氛及迴流情況下進行 參 Friedel-Crafts醯化反應。更佳的,將奈米碳管材料與具多 元羧酸的化合物進行Friedel-Crafts醯化反應。最佳的,該 具多元羧酸的化合物為1,3,5-苯三羧酸 (1’3’5-benzenetricarboxylic acid),該溶劑為多構酸 (polyphosphoric acid)及該觸媒為 p2〇5。 較佳的’當該有機改質奈米碳管的有機官能基為羧基 時,該偶合劑為 3-胺丙基二乙氧基石夕烧(3_amin〇pr〇pyltrieth〇xysUane (APTES)), 6 201031588 ' 乙稀基三乙氧基石夕院(Vinyltriethoxysilane), 3-異氰基-丙基三乙氧基矽烷 (3-Isocy an at o-propyl triethoxy silane) &gt; 二乙基磷酸基乙基三乙氧基矽烷 (Diethylphosphatoethyltriethoxysilane), 2-(二苯膦基)乙基三乙氧基矽烷(2-(Diphenyl phosphino)ethyltri ethoxy si lane) &gt; 苯基三甲氧基碎烧(Phenyltrimethoxysilane), ❹ 苯基三乙氧基碎炫&gt; (Phenyltriethoxysilane), (3-曱胺基)丙基三甲氧基矽烷 ((3-(Methylamino)propyl)trimethoxysilane) » 二乙氧基二乙基梦烧(Diethoxydiethylsilane), 二乙氧基·二甲基石夕烧(Diethoxydimethylsilane), 二乙氧基(曱基)乙稀基石夕烧(Diethoxy(methyl)vinylsilane), 1,3-二乙氧基-1,1,3,3-四曱基二矽氧烷 (l,3-Diethoxy-l,l,3,3- tetramethyldisiloxane), 二甲氧基二曱基'石夕烧(Dimethoxydimethylsilane), 二甲氧基甲基乙浠基碎烧(Dimethoxymethylvinylsilane), 氣-甲氧基-二甲基梦烧(〇11〇:1:0-11161;110乂;/-(1111161;11}^1311&amp;116), 乙氧基(二甲基)乙烯基石夕烧(丑1:]10父7(以11161;11乂1)¥111&gt;4311&amp;116), 乙氧基二甲基石夕烧(Ethoxytrimethylsilane), 甲氧基三甲基石夕院(Methoxytrimethylsilane), 二乙氧基二乙基石夕烧(Diethoxydiethylsilane), ' 二乙氧基二甲基石夕烧(Diethoxydimethylsilane), 7 201031588 • 二乙氧基(甲基)乙烯基矽烷(Diethoxy(methyl)vinylsilane), 1,2-雙(三乙氧矽基)代乙烷(1,2-3丨3(11^111〇\73丨171)6讣&amp;116)’ 1,2-雙(三甲氧矽基)代乙烷 (1,2-Bis(trimethoxysilyl)ethane) &gt; (氯甲基)三乙氧碎烧(((^111〇1*011^1;]1}^1)1:1^1;]10又&gt;^13116), . 1,3 -二甲基四甲氧基二矽氧烷 (1,3- Dimethyltetramethoxydisiloxane) 5 乙基三甲氧基石夕烧(Ethyltrimethoxysil.ane), 〇 三乙氧基(乙基)碎烧(Tri ethoxy (ethyl) si lane), 三乙氧基(甲基)石夕烧(Triethoxymethylsilane), 三甲氧基(乙烯基)石夕烧(丁1^11161;]10乂7(¥111;^1)311&amp;116), 三甲氧基甲基石夕炫(Trimethoxymethylsilane), 雙(三氣石夕基)乙快(Bis(trichl.orosilyl)acetylene), 1,2-雙(三氣碎基)代乙烧(1,2-Bis(trichlorosilyl)ethane), 雙(三氯石夕基)代甲烧(Bis(trichlorosilyl)methane), 第三丁 基三氣石夕烧(ieri-Butyltrichlorosilane), 乙基二氣石夕.烧(Ethyltrichlorosilane), 六亂二石夕烧(Hexachlorodisilane), 曱基二氯石夕烧(Methyltrichlorosilane),或 二氣(二氣甲基)石夕烧(Trichloro(dichloromethyl)silane)。更 佳的,該偶合劑為3-異氰基-丙基三乙氧基矽烷。 較佳的’該無機氧化物前驅物為碎烧氧化物、銘烧氧 化物、鈦烷氧化物或锆鋁烷氧化物。更佳的,該烷氧化物 在溶膠-凝膠條件下被進行反應以在偶合劑改質的奈米碳 8 201031588 &quot; 管的表面上形成無機氧化物層。最佳的,該無機氧化物層 的形成包含將偶合劑改質的奈米碳管分散於一有機液熊媒 體中;及將該烷氧化物及水加入於所獲得的分散液,及使 該院氧化物進行水解及縮合反應而在偶合劑改質的奈米碳 • 管的表面上形成無機氧化物層。於本發明的一較佳實施例 •中’該有機液態媒體為無水酵,該烷氧化物為鋁烷氧化物, 及該無機氧化物為α】2〇3。較佳的,該有機液態媒體為無水 乙醇’及該鋁烷氧化物為鋁異丙氧化物(aluminum © isoProP〇xide)。於本發明的另一較佳實施例中,該有機液 態媒體為無水醇,該烷氧化物為矽烷氧化物,及該無機氧 化物為Si〇2。較佳的,其中該有機液態媒體為無水乙醇, 及該矽烷氧化物為3 _胺丙基三乙氧基矽烷(3_amin〇pr〇pyi triethoxysilane)。 較佳的,該有機改質奈米碳管的有機官能基為羥基。 更佳的’其中該$備有機改質奈米碳f包含將奈米碳管材 ❹料和強酸或強酸混合物在迴流情況下進行酸化。更佳的, 將奈米碳管材料與濃硫酸··濃硝酸重量比為3:2至1:1的強 酸混合物,奈米碳管材料與強酸混合物重量為約1:10至 G及在5(M〇〇°c下迴流反應6_48小時。當該有機改 、只反的有機g能基為羥基時,較佳的,該偶合劑為 3_胺丙基三乙氧基矽烷。 本發明亦提供_ #導熱電絕緣奈米碳管/高分子複合 材料的费播古、、i &gt; 太、, '’匕含準備有機改質奈米碳管,該有機改 /、只碳S的表面上鍵結有有機官能基;將一偶合劑與該 9 201031588 • 有機改質奈米碳管的有機官能基反應,得到以偶合劑改質 的奈米碳管,以利於後續的無機氧化物的自組裝反應在該 奈米碳管的表面上發生;將無機氧化物前驅物在該偶合劑 改質的奈米碳管存在下及於水熱條件或溶膠_凝膠條件下 進行反應,以在偶合劑改質的奈米碳管的表面上形成無機 • 氧化物層’而得到導熱電絕緣奈米碳管;及將該導熱電絕 緣奈米碳管與一高分子混合,其中該導熱電絕緣奈米碳管: 高分子的重量比為0.1:100至10至100。 〇 較佳的’該高分子選自聚丙烯酸,聚甲基丙烯酸,聚 丙烯酸曱酯,聚f基丙烯酸甲酯,可溶性聚醯亞胺,可溶 性聚醯胺醯亞胺’聚醯胺,聚苯乙烯,可溶性聚胺基甲酸 酯,不飽和聚酯,丙烯腈_丁二烯_苯乙烯共聚物,聚醚砜 (Poly-ether-sulfone, PES),可溶性聚醚醯亞胺 (Poly-ether-imide,PEI),聚乙烯酯(p〇iy(vinyl ester)),熱塑 性聚胺基甲酸酯(TPU),聚矽氧(silicone)及環氧樹脂所組成 的群組。更佳的’該高分子為環氧樹脂。 實施方式 本發明提供一種界面絕緣包覆技術,適用於導電碳材 之界面無機物包覆,其可被應用於熱界面材料組成物,如 消費性3C、工業、汽車、醫療、航太及通訊等電子產品用 之散熱產品。 於本發明的一較佳實施例中一種導熱電絕緣之奈米碳 官被製備,其利用奈米碳管之高導熱特性與無機物之高導 201031588 熱性形成協同效應,使導熱電絕緣之奈米碳管的熱傳導係 數可被維持,再利用表面無機物層阻礙奈米碳管π電子雲 傳遞’而降低導熱電絕緣之奈米碳管之體積電阻值至 ohm-cm 程度。 本發明界面絕緣包覆技術包括先於奈米碳管材料表面 進行有機化改質使其均勻分散於一有機溶劑中並且其表 面上的有機官能基可與偶合劑反應;接著進行偶合劑改 質,以使得後續的無機氧化物的自組裝反應在該奈米碳管 ® 的表面上發生,及以無機氧化物前驅物進行溶膠_凝膠反 應,而製備出單根的連續相無機氧化物層包覆奈米碳管的 心構°上述之導熱電絕緣奈米碳管之無機氧化物層,可為 一氧化梦、二氧化鈦、三氧化二鋁或其等之混合。 適用於本發明的奈米碳管材料的有機改質方法包含 (仁不限於)Friedel-Crafts醢化法,酸化法,我國專利申請 第97134469號案所揭示的聚醚胺改質法及我國專利申請 _ 第97146052號案所揭示的醯氣-醯胺化改質法,該等我國 專利申請案的内容藉由參考方式被併入本案。 適用於本發明的偶合劑包含(但不限於)矽烷偶合劑、 鈦系偶合劑、锆鋁系偶合劑、金屬系偶合劑。 適用於本發明的無機氧化物前驅物以進行溶膠-凝勝 反應的一例子為金屬烷氧化物(alk〇xides)。 本發明將藉由下列實施例被進一步了解,該等實施例 僅作為說明之用,而非用於限制本發明範圍。 於下列的實施例及對照例中使用以下材料: 11 201031588 • 多壁奈米碳管(P-MWCNT): The CNT Company製造,仁川, 韓國。此奈米碳管以CVD方法製造。奈米碳管純度為93%, 直徑為10-50 nm,長度為1-25 μηι,比表面積為150-250 m、·1 〇 1,3,5-苯三叛酸(l,3,5-Benzenetricarboxylic acid) (BTC) (Acros Organics Co.) 3-異氰基-丙基三乙氧基破烧(3-Isocyanatopropyl triethoxysilane) (ICPES) (Acros Organics Co.) 〇 3 -胺丙基三乙氧基梦烧(3-Aminopropyltriethoxysilane) 98% (APTES) (Alfa Aesar Chemical Co.) 銘異丙氧化物(Aluminum isopropoxide) (Acros Organics Co_) 多填酸(Polyphosphoric acid) &gt;83% phosphate (as P2O5) basis (PPA) (Acros Organics Co.) 二碳五氧化物 Phosphorus pentoxide (P2O5), 98%,extra pure (Acros Organics Co.) 三乙基胺 Triethylamine 99% (TEA) (Acros Organics Co.) 四氫吱鳴(TetrahydrofUran) (anhydrous) (THF) 硝酸(Nitric acid) (HN03)(台灣聯工化學製藥公司) 硫酸(SulfUric acid) (H2S04)(台灣聯工化學製藥公司) 實施例1 12 201031588 &gt;Friedel Crafts acylationThe Friedel-Crafts aCyUti〇n reaction is known as a reaction, for example, http://en.Wikipedia.〇rg/wiki/Friedel_Crafts_reacti〇n has been described in detail. SUMMARY OF THE INVENTION The present invention discloses an insulating coating technique to solve the technical bottleneck in which the carbon nanotube material is applied to the conductive interface of the thermal interface material without electrical insulation. A primary object of the present invention is to provide a method of preparing a thermally conductive electrically insulating carbon nanotube material. Another object of the present invention is to provide a method of preparing &amp; interface materials. The method for preparing a thermally conductive electrically insulating carbon nanotube according to the present invention includes preparing an organic modified carbon nanotube, and the organic modified carbon nanotube is bonded with an organic functional group on the surface; A coupling agent reacts with the organic functional group of the organic modified carbon nanotube to obtain a nanocarbon b modified with a coupling agent to facilitate subsequent self-assembly reaction of the inorganic oxide on the surface of the carbon nanotube: The occurrence of 'the coupling agent to the organic modified carbon nanotubes is 7.1 to ι:10; and the inorganic oxide precursor in the presence of the coupling agent modified carbon nanotubes and in the heat of water The reaction is carried out under conditions or lyotropic conditions to form an inorganic oxide layer on the surface of the coupling-modified carbon nanotubes. 'The inorganic oxide precursor is modified by the coupling agent of nano 5 201031588 ' The carbon tube has a weight ratio of 25:1 to 1:1. The carbon nanotube materials suitable for use in the method of the present invention may be single walled carbon nanotubes (SWCNTs), double walled carbon nanotubes (DWCNTs), and multi-walled carbon nanotubes ( Multi-walled carbon nanotubes (MWCNT), carbon-phase-reduced carbon fiber (vgcf), carbon fiber (CF), nano-graphite (nano), such as "plates, NGPs" and other carbon derivatives. The organic functional group of the carbon nanotube is an amine group, a hydroxyl group or a carboxyl group. More preferably, the organic functional group of the organic modified carbon nanotube is a carboxyl group. Preferably, the carboxyl group is derived from being grafted to -C(0)-R-COOH on the surface of the carbon nanotubes, where R is an alkylene group of C1_C26, an alkenyl group of C2 C26 or an aromatic group of C6-C12. Che Gujia's 'The preparation of organically modified nai The carbon nanotube tube comprises a carbon nanotube material and a monoanhydride, a hydrazine compound or a compound having a polycarboxylic acid in a solvent and a catalyst, and in an inert atmosphere and under reflux, the Friedel-Crafts醯More preferably, the carbon nanotube material and the compound having a polycarboxylic acid are subjected to Fr The iedel-Crafts deuteration reaction. Preferably, the polycarboxylic acid compound is 1,3'5-benzenetricarboxylic acid, and the solvent is polyphosphoric acid. And the catalyst is p2〇5. Preferably, when the organic functional group of the organic modified carbon nanotube is a carboxyl group, the coupling agent is 3-aminopropyldiethoxylate (3_amin〇pr〇) Pyltrieth〇xysUane (APTES)), 6 201031588 'Vinyltriethoxysilane, 3-Isocy an at o-propyl triethoxy silane &gt ; Diethylphosphatoethyltriethoxysilane, 2-(Diphenyl phosphino)ethyltri ethoxy si lane &gt; Phenyltrimethoxy Phenyltrimethoxysilane, Phenyltriethoxysilane, (3-(Methylamino)propyl)trimethoxysilane » Diethoxy Diethoxydiethylsilane, diethoxy dimethyl sulphur Diethoxydimethylsilane, Diethoxy(methyl)vinylsilane, 1,3-diethoxy-1,1,3,3-tetradecyldioxane (Diethoxydimethylsilane) l,3-Diethoxy-l,l,3,3-tetramethyldisiloxane), Dimethoxydimethylsilane, Dimethoxymethylvinylsilane, Gas-A Oxy-dimethyl dream burning (〇11〇: 1:0-11161; 110乂; /-(1111161; 11}^1311&116), ethoxy (dimethyl) vinyl stone smelting (ugly 1 :]10 parent 7 (to 11161; 11乂1) ¥111&gt;4311&amp;116), Ethoxytrimethylsilane, Methoxytrimethylsilane, diethoxydi Diethoxydiethylsilane, 'Diethoxydimethylsilane, 7 201031588 • Diethoxy(methyl)vinylsilane, 1,2-double (triethoxyindolyl) ethane (1,2-3丨3 (11^111〇\73丨171)6讣&116)' 1,2-bis(trimethoxyindenyl)ethane (1,2-Bis(trimethoxysilyl)ethane) &gt; (chloromethyl) triethoxylate (((^111〇1*011^1;]1}^1)1:1^1;]10 &gt;^13116), . 1,3-Dimethyltetramethoxydisiloxane 5 Ethyltrimethoxysil.ane, 〇Triethoxy (B Tri ethoxy (ethyl) si lane, triethoxymethylsilane, trimethoxy (vinyl) Shi Xia (Ding 1^11161;] 10乂7 ( ¥111;^1)311&amp;116), Trimethoxymethylsilane, Bis(trichl.orosilyl)acetylene, 1,2-double (three Gasoline) 1,2-Bis(trichlorosilyl)ethane, Bis(trichlorosilyl)methane, Tert-butyl triphosite (ieri- Butyltrichlorosilane, Ethyltrichlorosilane, Hexachlorodisilane, Methyltrichlorosilane, or Diqi (Dimethyl) Teichal (Trichlo) Ro(dichloromethyl)silane). More preferably, the coupling agent is 3-isocyano-propyltriethoxydecane. Preferably, the inorganic oxide precursor is a calcined oxide, an agglomerated oxide, a titanium alkoxide or a zirconium alkoxide. More preferably, the alkoxide is reacted under sol-gel conditions to form an inorganic oxide layer on the surface of the coupling modified nanocarbon 8 201031588 &quot; tube. Preferably, the forming of the inorganic oxide layer comprises dispersing a coupling agent modified carbon nanotube in an organic liquid bear medium; and adding the alkoxide and water to the obtained dispersion, and The oxide of the house undergoes hydrolysis and condensation reactions to form an inorganic oxide layer on the surface of the nanocarbon tube modified by the coupling agent. In a preferred embodiment of the invention, the organic liquid medium is anhydrous, the alkoxide is an aluminum alkoxide, and the inorganic oxide is α]2〇3. Preferably, the organic liquid medium is anhydrous ethanol' and the aluminum alkoxide is aluminum isopropanide. In another preferred embodiment of the invention, the organic liquid medium is an anhydrous alcohol, the alkoxide is a decane oxide, and the inorganic oxide is Si〇2. Preferably, the organic liquid medium is anhydrous ethanol, and the decane oxide is 3-a-aminopropyltriethoxysilane. Preferably, the organic functional group of the organically modified carbon nanotube is a hydroxyl group. More preferably, wherein the organically modified nanocarbon f comprises acidification of a mixture of nanocarbon tubing and a strong acid or strong acid under reflux. More preferably, the weight ratio of the carbon nanotube material to the concentrated sulfuric acid·concentrated nitric acid is from 3:2 to 1:1, and the weight of the carbon nanotube material and the strong acid mixture is about 1:10 to G and at 5 (Reflowing reaction at M 〇〇 °c for 6 to 48 hours. When the organically modified, only inverted organic g energy group is a hydroxyl group, preferably, the coupling agent is 3-aminopropyltriethoxydecane. Provide _ #thermally insulated nano carbon tube / polymer composite material Fei Bo Gu, i &gt; too,, ''匕 containing prepared organic modified carbon nanotubes, the organic modified /, only carbon S surface An organic functional group is bonded to the upper bond; a coupling agent is reacted with the organic functional group of the organic modified nanocarbon tube to obtain a carbon nanotube modified with a coupling agent to facilitate subsequent inorganic oxide a self-assembly reaction occurs on the surface of the carbon nanotube; the inorganic oxide precursor is reacted in the presence of the coupling-modified carbon nanotube and under hydrothermal conditions or sol-gel conditions to An inorganic oxide layer is formed on the surface of the modified carbon nanotube of the coupling agent to obtain a thermally conductive electrically insulating nano And mixing the thermally conductive electrically insulating carbon nanotube with a polymer, wherein the thermally conductive electrically insulating carbon nanotube: the weight ratio of the polymer is from 0.1:100 to 10 to 100. Selected from polyacrylic acid, polymethacrylic acid, poly(decyl acrylate), poly-f-methyl acrylate, soluble polyimine, soluble polyamido quinone imine, polystyrene, soluble polyurethane Ester, unsaturated polyester, acrylonitrile-butadiene-styrene copolymer, poly-ether-sulfone (PES), soluble polyetheretherimide (PEI), polyethylene A group consisting of p〇iy (vinyl ester), thermoplastic polyurethane (TPU), silicone, and epoxy resin. More preferably, the polymer is an epoxy resin. Embodiments The present invention provides an interface insulating coating technique suitable for interfacial inorganic coating of conductive carbon materials, which can be applied to thermal interface material compositions such as consumer 3C, industrial, automotive, medical, aerospace, and communication. A heat dissipation product for an electronic product. In a preferred embodiment of the present invention A thermally conductive and electrically insulating nano carbon official is prepared, which utilizes the high thermal conductivity of the carbon nanotubes to form a synergistic effect with the high conductivity of the inorganic material 201031588, so that the heat transfer coefficient of the thermally conductive electrically insulating carbon nanotube can be maintained, and then The surface inorganic layer is used to block the π electron cloud transfer of the carbon nanotubes to reduce the volume resistance of the thermally conductive electrically insulating nano carbon tube to an ohm-cm level. The interface insulating coating technique of the present invention includes the surface of the carbon nanotube material prior to The organic modification is carried out to uniformly disperse in an organic solvent and the organic functional groups on the surface thereof can be reacted with the coupling agent; then the coupling agent is modified so that the subsequent inorganic oxide self-assembly reaction is in the nano The surface of the carbon tube® occurs, and the sol-gel reaction is carried out with an inorganic oxide precursor to prepare a single continuous phase inorganic oxide layer covering the core structure of the carbon nanotube. The inorganic oxide layer of the carbon nanotube can be a mixture of monoxide, titanium dioxide, aluminum oxide or the like. The organic upgrading method for the carbon nanotube material suitable for the present invention includes (in addition to) Friedel-Crafts deuteration method, acidification method, polyether amine modification method disclosed in Chinese Patent Application No. 97134469, and Chinese patent The helium-deuteration modification method disclosed in the application No. 97146052, the contents of which are incorporated herein by reference. Coupling agents suitable for use in the present invention include, but are not limited to, decane coupling agents, titanium coupling agents, zirconium aluminum coupling agents, and metal coupling agents. An example of a sol-gel reaction suitable for use in the inorganic oxide precursor of the present invention is a metal alkoxide (alk〇xides). The invention is further understood by the following examples, which are intended to be illustrative only and not to limit the scope of the invention. The following materials were used in the following examples and comparative examples: 11 201031588 • Multi-walled carbon nanotubes (P-MWCNT): manufactured by The CNT Company, Incheon, Korea. This carbon nanotube is manufactured by a CVD method. The carbon nanotubes have a purity of 93%, a diameter of 10-50 nm, a length of 1-25 μηι, a specific surface area of 150-250 m, ·1 〇1,3,5-benzene tri-rebel (l,3,5 -Benzenetricarboxylic acid) (BTC) (Acros Organics Co.) 3-Isocyanatopropyl triethoxysilane (ICPES) (Acros Organics Co.) 〇3 -Aminopropyltriethyl 3-Aminopropyltriethoxysilane 98% (APTES) (Alfa Aesar Chemical Co.) Aluminium isopropoxide (Acros Organics Co_) Polyphosphoric acid &gt;83% phosphate (as P2O5 Basis (PPA) (Acros Organics Co.) Phosphorus pentoxide (P2O5), 98%, ultra pure (Acros Organics Co.) Triethylamine 99% (TEA) (Acros Organics Co.) TetrahydrofUran (anhydrous) (THF) Nitric acid (HN03) (Taiwan Liangong Chemical Pharmaceutical Co., Ltd.) Sulfuric acid (H2S04) (Taiwan Liangong Chemical Pharmaceutical Co., Ltd.) Example 1 12 201031588 &gt ;Friedel Crafts acylation

本實施例的Friedel-Crafts醢化法改質奈米碳管的反應 式如上所示。將未改質且經過真空乾燥的碳奈米管 (P-MWCNT) 0.5克、乾燥1,3,5-苯三羧酸1克、多磷酸(PPA) 〇 50克、二磷五氧化物12.5克與磷酸0.05 ml加入至250 ml 三頸圓底燒瓶中,其中固體粉末(P-MWCNT+ 1,3,5-苯三羧 酸)須占多磷酸8 wt%以下,且二磷五氧化物與多磷酸的重 量比需大於0.25。隨即置入迴流氮氣系統之下,常溫下利 用低轉速機械攪拌先進行初步攪拌混合20分鐘,然後升溫 至130°C反應,並以較高轉速機械攪拌,形成均一相反應 系統,保持溫度130°C並進行反應12小時。 反應完成之後,先進行降溫至常溫,再加入大量蒸餾 水至250 ml三頸圓底燒瓶中清洗並溶解PPA/P2〇5,經超音 波震盪3小時後將溶液抽氣過濾、烘乾得到暗灰色粉末。 將全部暗灰色粉末加入500 ml丙酮中進行溶解未反應之 1,3,5-苯三羧酸,經超音波震盪三小時後進行抽氣過濾、烘 乾得到深暗灰色粉末,並且再經過真空烘乾此粉末,得到 的產物則為以 Friedel-Craft醯化法改質之碳奈米管 (BTC-g-MWCNT) 0_6克。再藉由XPS和拉曼光譜(Raman Spectrum)鑑定出該有機改質奈米碳管BTC-g-MWCNT具有 13 201031588 • 羧酸官能基。 將0.3克BTC-g-MWCNT及300 ml無水之THF調配成 碳奈米管溶液,將其置於500 ml三頸圓底燒瓶並同時通入 氮氣,將三頸圓底燒瓶進行超音波震盪3小時後隨即架至 迴流通氮氣系統下進行磁石攪拌,接者將3 ml三乙基胺 (TEA)觸媒及3-異氰基-丙基三乙氧基矽烷(ICPES)加入系 統之中,其中BTC-g-MWCNT : ICPES重量比為1:3,並進 行加溫攪拌,將溫度控制在50°C並且持續反應24小時。 © 反應完成後,加入300 ml無水丙酮至三頸燒瓶中並進 行超音波震盪1小時,充分清洗並溶解觸媒以及未反應完 的矽氧烷偶合劑,接者進行抽氣過濾及真空烘乾後會得到 黑色粉末即為產物(0.34 克)。此產物簡稱為 ICPES-BTC-g-MWCNT,其係利用1,3,5-苯三羧酸接枝在碳 奈米管表面上使其帶有羧酸官能基,再與3-異氰基-丙基三 乙氧基矽烷之異氰基官能基進行醯胺化反應,使矽氧烷做 接枝在碳奈米管表面。 W 將鋁異丙氧化物(1.5克)與無水乙醇(300 ml)加入500 ml三頸圓底燒瓶中並通入氮氣且持續磁石攪拌,再將 I(;PES-BTC-g-MWCNT (0_3克)加入並進行超音波震盪3小 時後隨及置入氮氣迴流系統中再使用蠕動幫浦緩慢滴入蒸 镏水(pH 2~3) (0.365 ml, 0.02 mole H20,pH 0.255,利用 HC1 調配酸驗值)進入燒瓶中,其中 ICPES-BTC-g-MWCNT :無水乙醇:蒸餾水:鋁異丙氧化物 的重量比為1 : 234 : 1.2 1 6 : 5,將溫度緩慢升至迴流温度, 14 201031588 反應5小時。 反應完成後,加入500 ml丙綱進行超音波震盈1 ^ 時’充分清洗且溶解未反應完的鋁異丙氧化物,接著進行 抽氣過濾並且真空烘乾得到微亮黑色粉末產物,簡稱為 Al2〇3@BTC-MWCNT。 實施例2 將0.5克未改質且經過真空乾燥的碳奈米管 G (P-MWCNT)、1克乾燥1,3,5_苯三羧酸、5〇克多磷酸、12 5 克一磷五氧化物與適量ml磷酸加入至250 ml三頸圓 底燒瓶中’其中固體粉末須占多鱗酸8 wt%以下,且二磷五 氧化物與多磷酸的重量比需大於0.25,隨即置入迴流氮氣 系統之下,常溫下利用低轉速機械攪拌先進行初步攪拌混 合20分鐘,然後升溫至130°c反應,並以較高轉速機械攪 拌,形成均一相反應系統,保持溫度並進行反應丨2小時。 ⑩ 反應完成之後,先進行降溫至常溫,再加入大量蒸餾 水及微量鹽酸至250 ml三頸圓底燒瓶中清洗並溶解 PPA/P2〇5,經超音波震盪3小時後將溶液抽濾烘乾得到暗 灰色粉末,將暗灰色粉末加入5〇〇 mi丙酮中進行溶解未反 應之1,3,5-苯三羧酸,經超音波震盪三小時後進行抽濾烘乾 得到深暗灰色粉末’並且再經過真空烘乾此粉末,得到的 產物則為以Friedel-Craft醢化法改質之碳奈米管 (BTC-g-MWCNT) 0.6 克。 將〇.3克8!'(:1-]^\\^1^及30〇1111無水之1^1?調配成 15 201031588 碳奈米管溶液,將其置於500 ml三頸圓底燒瓶並同時通入 氮氣’將二頸圓底燒瓶進行超音波震盪3小時後隨即架至 迴流通氮氣系統下進行磁石攪拌,接者將3 ml三乙基胺 (TEA)及3-異氰基-丙基三乙氧基矽烷(ICPes)加入系統之 中’其中BTC-g-MWCNT: ICPES的重量比為1:3,並進行 加溫攪拌’將溫度控制在50。(:並且持續反應24小時。 反應完成後,加入300 ml無水丙酮至三頸燒瓶中並進 行超音波震盪1小時,充分清洗並溶解觸媒以及未反應完 的石夕氧烧偶合劑,接者進行抽氣過濾及真空烘乾後會得到 黑色粉末即為產物(0.34克)。此產物簡稱為 ICPES-BTC-g-MWCNT’其係利用l,3,5-苯三羧酸接枝在碳 奈米管表面上使其帶有羧酸官能基,再與3·異氰基_丙基三 乙氧基矽烷之異氰基官能基進行醯胺化反應,使矽氧燒做 接枝在碳奈米管表面。 將 0.3 克 ICPES-BTC-g-MWCNT、300 ml 無水乙醇及 (pH 2〜3) (0.365 ml,0.02 mole H20, pH 0.255,利用 HC1 調 配酸鹼值)的蒸餾水加入500 ml三頸圓底燒瓶中並通入氮 氣,進行超音波震盪3小時後,隨即將三頸圓底燒瓶置入 氮氣迴流系統中並持縯磁石授拌,然後再使用螺動幫浦緩 滴入1.5克·3 -胺丙基三乙氧基碎烧進入燒瓶中,其中 ICPES-BTC-g-MWCNT :無水乙醇:蒸餾水:3-胺丙基三乙 氧基石夕炫的重量比為1 : 2 3 4 : 1.216 : 5 ’系統先進行冰浴 後再將溫度緩慢升至50°C,反應5小時。 反應完成後,加入500 ml丙_進行超音波震盪i小 16 201031588 時’充分清洗且溶解未反應完的3 -胺丙基三乙氧基妙境, 接著進行抽氣過濾並且真空烘乾得到微亮黑色粉末產物, 簡稱為 Si02@BTC-MWCNT。 實施例_ 3 1 〇克多壁奈米碳管分散於濃硫酸與濃硝酸中(濃硫酸 與濃硝酸重量比為3:2 ;多壁奈米碳管與混酸重量比為 1:100),在60°C下迴流24小時,反應完成後將已改質多壁 © 奈米碳管/混酸分散液倒入2000 ml純水中,並且過遽清洗 乾淨,放入烘箱中烘乾收集^ 0.3克酸化多壁奈米碳管(簡 稱AO-MWCNT)分散於150 ml的DMAc中,將溶液於10°c 下放入超音波振盪機中,加入9?{;10-3〇1〇16(15克)的石夕氧 烧化合物ΑΡΤΕS (3-胺丙基三乙氧基石夕烧)在6〇。〇下反應12 小時,反應元成後過濾' 並以異丙酵清洗乾淨,放入烘箱中 烘乾收集。矽氧烧化合物改質多壁奈米碳管(簡稱 SA_MWCNT)以超音波振盪機分散於異丙醇中,並於10°C 下加入銘異丙氧化物(Aluminum isopropoxide, AlO-iPr)並 且分散均勻後’再滴入純水與1 jy [硝酸(純水與1 μ硝酸之 重量比為50:1) ’其中SA-MWCNT: AlO-iPr:異丙醇:純水之 重量比為1:5 :1 800:1 0,在於90°C加熱迴流3小時後,以 120 C烘乾再用丙酮清洗純化後即得產物(簡稱 Al2〇3@SA-MWCNT)。 實施例4 17 201031588 1.0克多壁奈米碳管分散於濃硫酸與濃硝酸令(濃硫酸 與濃硝酸重量比為3:2 ;多壁奈米碳管與混酸重量比為 1_100)’在60C下迴流24小時,反應完成後將已改質多壁 奈米碳管/混酸分散液倒入2 0 0 0 m 1純水中,並且過漁清洗 乾淨,放入烘箱中烘乾收集。〇·3克酸化多壁奈米碳管(簡 稱AO-MWCNT)分散於150 ml的DMAc中,將溶液於1 〇。匚 下放入超音波振盪機中,加入9X i(T3rnole(1.5克)的梦氧 烷化合物APTES (3-胺丙基三乙氧基矽烷)在60它下反應12 ❹ 小時’反應完成後過濾並以異丙醇清洗乾淨,放入烘箱中 烘乾收集。矽氧烷化合物改質多壁奈米碳管(sa_mwcnt) 以超音波振盪機分散於異丙醇中,並於1〇t下加入aPtes 並且分散均勻後,再滴入純水與1Μ硝酸(純水與1 μ硝酸 之重量比為50:1),其中SA-MWCNT: APTES:異丙醇:純水 之重量比為1:5··800:5〇,攪拌24小時後以1〇〇。(:烘乾,再 用丙酮清洗純化後即得產物(簡稱Si〇2@SA_MwCNT)。 ©對實施例1 -4製備出的導熱電絕緣奈米碳管進行物性 分析。物性分析包括熱傳導係數、體積電阻及TEM。結果 被列於表一。 體積電阻測試使用 Hewlett Packard multimeter 3457A 進行測试。先將預測樣品在8〇。〇下烘乾,並秤取5〇 的 樣品放於一内部預先塞入有一管徑為丨^瓜的銅圓柱的中空 壓克力圓官柱裡,再利用另一個相同管徑的銅圓柱壓於樣 品上方並施加〇. 5 kg的重量進行壓錠,並量測其電阻值R , 代入下式求得樣品的體積電阻: 18 201031588The reaction formula of the Friedel-Crafts deuterated modified carbon nanotube of this example is as shown above. 0.5 g of unmodified and vacuum-dried carbon nanotubes (P-MWCNT), 1 g of dry 1,3,5-benzenetricarboxylic acid, 50 g of polyphosphoric acid (PPA), 22.5 of diphosphorus pentoxide克 and 0.05 ml of phosphoric acid were added to a 250 ml three-necked round bottom flask, in which the solid powder (P-MWCNT+ 1,3,5-benzenetricarboxylic acid) had to account for less than 8 wt% of polyphosphoric acid, and the diphosphorus pentoxide The weight ratio of polyphosphoric acid needs to be greater than 0.25. Immediately under the reflux nitrogen system, the mixture was stirred for 15 minutes at room temperature with low-speed mechanical stirring, then heated to 130 ° C, and mechanically stirred at a higher speed to form a homogeneous phase reaction system, maintaining a temperature of 130 °. C and carry out the reaction for 12 hours. After the reaction is completed, the temperature is lowered to normal temperature, and then a large amount of distilled water is added to a 250 ml three-necked round bottom flask to be washed and dissolved in PPA/P2〇5. After ultrasonic vibration for 3 hours, the solution is suction filtered and dried to obtain a dark gray. powder. All dark gray powder was added to 500 ml of acetone to dissolve unreacted 1,3,5-benzenetricarboxylic acid, and after ultrasonic vibration for three hours, it was suction filtered, dried to obtain a dark gray powder, and then passed through a vacuum. The powder was dried, and the obtained product was a carbon nanotube (BTC-g-MWCNT) modified by Friedel-Craft deuteration method, 0-6 g. The organically modified carbon nanotube BTC-g-MWCNT was identified by XPS and Raman Spectrum as having 13 201031588 • carboxylic acid functional groups. 0.3 g of BTC-g-MWCNT and 300 ml of anhydrous THF were mixed into a carbon nanotube solution, which was placed in a 500 ml three-necked round bottom flask while nitrogen gas was introduced to ultrasonically oscillate the three-necked round bottom flask. After an hour, the magnet was stirred under a reflux nitrogen system, and 3 ml of triethylamine (TEA) catalyst and 3-isocyano-propyltriethoxydecane (ICPES) were added to the system. Wherein BTC-g-MWCNT: ICPES weight ratio was 1:3, and heating and stirring were carried out, the temperature was controlled at 50 ° C and the reaction was continued for 24 hours. © After the reaction is completed, add 300 ml of anhydrous acetone to a three-necked flask and perform ultrasonic vibration for 1 hour to thoroughly clean and dissolve the catalyst and the unreacted oxirane coupling agent, and then perform suction filtration and vacuum drying. After that, a black powder was obtained as a product (0.34 g). This product is abbreviated as ICPES-BTC-g-MWCNT, which is grafted on the surface of carbon nanotubes with 1,3,5-benzenetricarboxylic acid to carry a carboxylic acid functional group, and then with 3-isocyano group. The isocyano functional group of -propyltriethoxydecane is subjected to a guanidation reaction to graft the oxime on the surface of the carbon nanotube. W Add aluminum isopropoxide (1.5 g) and absolute ethanol (300 ml) to a 500 ml 3-neck round bottom flask and pass nitrogen gas and continue magnet stirring, then I(;PES-BTC-g-MWCNT (0_3)克) After adding and performing ultrasonic vibration for 3 hours, put it into the nitrogen reflux system and slowly use the peristaltic pump to slowly drip the distilled water (pH 2~3) (0.365 ml, 0.02 mole H20, pH 0.255, using HC1 blending) Acid test) into the flask, wherein ICPES-BTC-g-MWCNT: absolute ethanol: distilled water: aluminum isopropoxide weight ratio of 1: 234 : 1.2 1 6 : 5, the temperature is slowly raised to reflux temperature, 14 201031588 Reaction for 5 hours. After the reaction is completed, 500 ml of agitation is added for ultrasonic shock 1 ^ 'full cleaning and dissolution of unreacted aluminum isopropoxide, followed by suction filtration and vacuum drying to obtain a slightly bright black Powder product, abbreviated as Al2〇3@BTC-MWCNT. Example 2 0.5 g of unmodified and vacuum dried carbon nanotube G (P-MWCNT), 1 g of dry 1,3,5-benzenetricarboxylate Acid, 5 gram polyphosphoric acid, 12 5 grams of phosphorus pentoxide and an appropriate amount of phosphoric acid added to 250 ml three-necked round bottom In the middle, the solid powder must account for less than 8 wt% of squaric acid, and the weight ratio of diphosphorus pentoxide to polyphosphoric acid should be greater than 0.25, and then placed under a refluxing nitrogen system, and the mechanical stirring at low speed is used first at normal temperature. Stirring and mixing for 20 minutes, then raising the temperature to 130 ° C, and mechanically stirring at a higher speed to form a homogeneous phase reaction system, maintaining the temperature and carrying out the reaction for 2 hours. 10 After the reaction is completed, firstly, the temperature is lowered to normal temperature, and then a large amount is added. Distilled water and traces of hydrochloric acid into a 250 ml three-necked round bottom flask were washed and dissolved in PPA/P2〇5. After ultrasonic vibration for 3 hours, the solution was filtered by suction to obtain a dark gray powder, and the dark gray powder was added to 5 〇〇mi acetone. Dissolving unreacted 1,3,5-benzenetricarboxylic acid, after ultrasonic vibration for three hours, suction filtration to obtain a dark dark gray powder' and then vacuum drying the powder, the obtained product is Friedel-Craft deuterated carbon nanotubes (BTC-g-MWCNT) 0.6 g. Will be 3.3 g 8!'(:1-]^\\^1^ and 30〇1111 anhydrous 1^ 1? Dispense into 15 201031588 carbon nanotube solution, put it in 5 00 ml three-necked round bottom flask with nitrogen gas at the same time. The two-necked round bottom flask was subjected to ultrasonic vibration for 3 hours and then placed under reflux to a nitrogen system for magnet stirring. 3 ml of triethylamine (TEA) was taken. And 3-isocyano-propyltriethoxydecane (ICPes) was added to the system where the weight ratio of BTC-g-MWCNT: ICPES was 1:3, and heating was carried out to control the temperature to 50. (: and continue to react for 24 hours. After the reaction is completed, 300 ml of anhydrous acetone is added to a three-necked flask and subjected to ultrasonic vibration for 1 hour, and the catalyst is completely washed and dissolved, and the unreacted Shihe oxygen burning coupling agent is received. After suction filtration and vacuum drying, a black powder is obtained as a product (0.34 g). This product is abbreviated as ICPES-BTC-g-MWCNT' which is grafted on carbon by 1,3,5-benzenetricarboxylic acid. The surface of the nanotube is provided with a carboxylic acid functional group, and then subjected to a guanidinium reaction with an isocyano functional group of 3·isocyanyl-propyltriethoxydecane to cause the oxime to be grafted to the carbon. Surface of the nanotubes. Add 0.3 g of ICPES-BTC-g-MWCNT, 300 ml of absolute ethanol and (pH 2~3) (0.365 ml, 0.02 mole H20, pH 0.255, using HC1 to adjust the pH) to 500 ml of distilled water. The three-necked round bottom flask was purged with nitrogen and subjected to ultrasonic vibration for 3 hours. Then, the three-necked round bottom flask was placed in a nitrogen reflux system and magnetized, and then screwed into the 1.5.克·3-Apropylpropyl triethoxy is calcined into a flask, wherein ICPES-BTC-g-MWCNT: anhydrous Alcohol: Distilled water: 3-aminopropyltriethoxy-Xi Xing's weight ratio is 1: 2 3 4 : 1.216 : 5 'The system is first subjected to an ice bath, then the temperature is slowly raised to 50 ° C, and the reaction is carried out for 5 hours. After adding 500 ml of C _ for ultrasonic shock i small 16 201031588 'full cleaning and dissolution of unreacted 3-aminopropyl triethoxy Wonderland, followed by suction filtration and vacuum drying to obtain a slightly bright black Powder product, abbreviated as SiO 2 @ BTC-MWCNT. Example _ 3 1 〇 多 multi-walled carbon nanotubes dispersed in concentrated sulfuric acid and concentrated nitric acid (concentrated sulfuric acid and concentrated nitric acid weight ratio of 3:2; multi-walled nanocarbon The weight ratio of the tube to the mixed acid is 1:100), and the mixture is refluxed at 60 ° C for 24 hours. After the reaction is completed, the modified multi-walled CN carbon nanotube/mixed acid dispersion is poured into 2000 ml of pure water and rinsed overnight. Clean and put in an oven for drying and collecting. 0.3 g of acidified multi-walled carbon nanotubes (AO-MWCNT for short) is dispersed in 150 ml of DMAc, and the solution is placed in an ultrasonic oscillator at 10 ° C. ?{;10-3〇1〇16 (15 g) of the Xixi oxygen-burning compound ΑΡΤΕS (3-aminopropyltriethoxy zexi) at 6 〇. The reaction was carried out for 12 hours, and the reaction element was filtered and then washed with isopropanol and placed in an oven for drying. The anaerobic compound modified multi-walled carbon nanotube (SA_MWCNT) was dispersed in an ultrasonic oscillator. Add isopropyl isopropoxide (AlO-iPr) to isopropanol at 10 ° C and disperse evenly and then add dropwise pure water to 1 jy [nitrogen (weight ratio of pure water to 1 μ nitric acid) 50:1) 'In which the weight ratio of SA-MWCNT: AlO-iPr: isopropanol: pure water is 1:5:1 800:1 0, after heating at reflux for 3 hours at 90 ° C, drying at 120 C After washing and purifying with acetone, the product (abbreviated as Al2〇3@SA-MWCNT) was obtained. Example 4 17 201031588 1.0 gram multi-walled carbon nanotubes dispersed in concentrated sulfuric acid and concentrated nitric acid (weight ratio of concentrated sulfuric acid to concentrated nitric acid is 3:2; weight ratio of multi-walled carbon nanotubes to mixed acid is 1_100)' at 60C After refluxing for 24 hours, after the reaction is completed, the modified multi-walled carbon nanotube/mixed acid dispersion is poured into 200 ml of pure water, and cleaned by overfishing, and placed in an oven for drying and collecting. 3·3 g of acidified multi-walled carbon nanotubes (abbreviated as AO-MWCNT) was dispersed in 150 ml of DMAc and the solution was taken at 1 Torr. Put the armpit into an ultrasonic oscillator and add 9X i (T3rnole (1.5 g) of the dream oxygen compound APTES (3-aminopropyltriethoxydecane) to react at 60 ° 12 ❹ hours. It was cleaned with isopropyl alcohol and placed in an oven for drying. The decyl oxide compound modified multi-walled carbon nanotube (sa_mwcnt) was dispersed in isopropanol with an ultrasonic oscillator and added at 1 〇t. After aPtes is evenly dispersed, the pure water is added dropwise with 1 Μ nitric acid (the weight ratio of pure water to 1 μ nitric acid is 50:1), wherein the weight ratio of SA-MWCNT: APTES: isopropyl alcohol: pure water is 1:5. ··800:5〇, after stirring for 24 hours, 1 〇〇. (: Drying, and then washing with acetone to obtain the product (abbreviated as Si〇2@SA_MwCNT). © Heat conduction prepared in Example 1-4 Physical properties were analyzed by electrical insulating carbon nanotubes. Physical properties including heat transfer coefficient, volume resistance and TEM. The results are listed in Table 1. The volume resistance test was performed using Hewlett Packard multimeter 3457A. The predicted sample was first 8 〇. Dry and weigh 5 〇 of the sample and place it in an internal pre-filled tube with a diameter of 丨^ In the hollow cylindrical column of the copper cylinder, another copper cylinder of the same diameter is pressed over the sample and a weight of 5 kg is applied to the ingot, and the resistance value R is measured and substituted into the following formula. The volume resistance of the sample: 18 201031588

L σ —-L σ ---

Rx A m 1 R =— σ 式中之σ:粉體導電度;R:粉體量測電阻值;L·.樣品高度; 及A:銅柱表面積(0.785 cm2) ; IT :粉體體積電阻 Q 熱傳導係數測量方式為將奈米碳管粉末於15 ton、3 分鐘下,製成圓碇,於 HotdiskTPS2500 (Salagatanl6FSE-753 30 Uppsala Sweden)測試。 表一 \ 包覆物質 ΊΈΜ型態 熱傳導係數 (W/mK) 體積電阻 (ohm-cm) Si〇2 Al2〇3 奈米碳管 — —— 6.4 10 實施例1 連續相包覆約7-20 run, 具有不規則表面 10.0 4.82 X 106 實施例2 連續相包覆約7-10 nm, 具有平整表面 5.2 3.13 X 106 實施例3 柱狀不連續包覆,具有不 規則表面 8.2 7.07 X 106 實施例4 連續相包覆約7-10 nm, 具有平整表面 4.0 3.77 X 106 19 201031588 * 由上述表一的結果可知,在實施例1-4所製備的本發 明之導熱電絕緣奈米碳管中,實施例1之導熱電絕緣奈米 碳管具有最高的熱傳導係數。實施例1 (3)之導熱電絕緣奈 米碳管的熱傳導係數相較於實施例2 (4)的導熱電絕緣奈米 碳管具有較高的熱傳導係數,主要係三氧化二鋁(實施例〇 之熱傳導係數較二氧化矽(實施例2)高。另外有可能是因為 FnedeUCrafts acylati〇n法可以有效地官能基化奈米碳管表 面達到良好的分散性,並且避免對奈米碳管表面結構形成 © 4壞性’而保持其奈米碳管本身的優良熱傳導性質。而酸 化法雖可官能基化奈米碳管,但是此方法會部份地破壞奈 米碳管之結構,具有缺陷之奈米碳管其熱傳導等其他物性 皆會下降。 實施例1-4的本發明之導熱電絕緣奈米碳管之执傳導 係數介g10.0W/mK然比二氧化碎本身之熱傳導係數Μ W/mK尚’但其等之電絕緣性相較於未改質的奈米碳管卻 明顯提升。Rx A m 1 R =— σ where σ: powder conductivity; R: powder measurement resistance; L·. sample height; and A: copper column surface area (0.785 cm2); IT: powder volume resistance The Q heat transfer coefficient was measured by making the carbon nanotube powder into a round file at 15 ton for 3 minutes and testing it on a Hotdisk TPS 2500 (Salagatanl 6FSE-753 30 Uppsala Sweden). Table 1 \ Coating material ΊΈΜ type heat transfer coefficient (W / mK) Volume resistance (ohm-cm) Si 〇 2 Al2 〇 3 carbon nanotubes - 6.4 10 Example 1 continuous phase coating about 7-20 run , with irregular surface 10.0 4.82 X 106 Example 2 continuous phase coating about 7-10 nm, with flat surface 5.2 3.13 X 106 Example 3 columnar discontinuous coating with irregular surface 8.2 7.07 X 106 Example 4 Continuous phase coating about 7-10 nm, with a flat surface 4.0 3.77 X 106 19 201031588 * From the results of the above Table 1, it can be seen that in the thermally conductive electrically insulating carbon nanotube of the present invention prepared in Examples 1-4, The thermally conductive electrically insulating carbon nanotube of Example 1 has the highest thermal conductivity. The heat transfer coefficient of the thermally conductive electrically insulating carbon nanotube of the embodiment 1 (3) has a higher heat transfer coefficient than that of the thermally conductive electrically insulating carbon nanotube of the embodiment 2 (4), and is mainly aluminum oxide (Example) The heat transfer coefficient of bismuth is higher than that of cerium oxide (Example 2). It is also possible that the FnedeUCrafts acylati〇n method can effectively functionalize the surface of the carbon nanotubes to achieve good dispersibility and avoid the surface of the carbon nanotubes. The structure forms a "bad" while maintaining the excellent heat transfer properties of the carbon nanotube itself. While the acidification method can functionalize the carbon nanotubes, this method partially destroys the structure of the carbon nanotubes and has defects. The carbon nanotubes have other properties such as heat conduction, etc. The conduction coefficient of the thermally conductive electrically insulating carbon nanotube of the present invention of Example 1-4 is g10.0W/mK, which is better than the thermal conductivity of the dioxide. W/mK is still 'but its electrical insulation is significantly improved compared to unmodified carbon nanotubes.

G 實施例5 材料: 衣氧树月曰.NPEL-128,南亞塑膠工業股份有限公司 硬化劑.Jeffamine® D_4〇〇 Huntsman c〇 三氧化二紹m小1μηι,由工研院材化所提供 環氧樹脂製備方式: 20 201031588 1. 配置環氧樹脂與硬化劑莫耳比為上丨並以高速攪拌混人 均勻。 2. 利用真空除泡,消除氣泡,並將混合物置入模具(6 X 6 cm X 5 mm),再次真空除泡。 3.膜具置於真空烘箱,以階段式升溫方式進行硬化, 60〇C 2 小時、1〇〇。(: 〇 5 小時、16〇〇c 2 小時。 〇 ❹ 導熱電絕緣奈米碳管/環氧樹脂複合材料製備方式·· 1. 將適量實施例1製備的導熱電絕緣奈米碳管以超音波 震盪分散於THF中。 ' 2. 配置環氧樹脂與硬化劑莫耳比為2:1並以高速搜摔混 合均句後,添加上述混合溶液,再次授摔分散。實: 例1製備的本發明之導熱電絕緣奈米碳管添加量為1 咖(每H)0重量份環氧樹脂使用i重量份奈米碳管 3. 利用真空除泡,消除氣泡與部分,並將混合物置 入模具^⑽^^咖^^爪叫’再次真空除泡。 4·膜具置於真空烘箱,以階段式升溫方式進行硬化, 60oC2 小時、ι〇〇〇「η&lt; | dju , ^ UU L 0 5 小時、160〇C 2 小時。 二氧化二鋁/環氧樹脂複合材料製備方式·· 1. 將適量三氧化:㉝以超音波震盈分散於中。 2. 配置環氧樹脂與硬化劑莫耳比為2:ι並以高速攪拌混 合均勻後’添加上述混合溶液,再次授摔分散。三氧 化二銘添加量為80 phr(三氧化二紹添加量為環氧樹 21 201031588 脂總重量的44%)。 3. 利用真空除泡,消除氣泡與部分THF,並將混合物置 入模具(6cm X 6cm X 5mm),再次真空除泡。 4. 膜具置於真空烘箱進行硬化,以階段式升溫方式,60 度2小時、100度0.5小時、160度2小時。 熱界面材料的熱傳導係數的測量係使用熱傳導量測儀 Hot disk TPS 2500 (製造商 Salagatan 16F SE-753 30 Q Uppsala Sweden)依瞬變平面熱源法(Transient Plane Source Method, TPS)進行[J. Phys· D: Appl. Phys·,Vol. 12, 1979.]。熱界面材料的體積阻抗測量方式係使用 Toadkk SM8220 ultra megahmmeter,Japan (高阻計)進行。結果列於 表二。 表二 體積電阻(ohm-cm) 熱傳導係數(W/mK) 純環氧樹脂 1.22xl014 0.20 導熱電絕緣奈米碳管1 3.33 x 1014 0.99 phr/環氧樹脂複合材料 三氧化二銘80 phr/環氧 6.12 x 1015 1.03 樹脂複合材料 表二顯示本發明的導熱電絕緣奈米碳管/環氧樹脂複 合材料具有體積電阻為十次方以上,為電絕緣材料;而其 22 201031588 熱傳導係數0.99 W/mK已接近—般熱界面材料之不低於熱 傳導係數1 W/mK的需求,可應用於電子封裝作為熱界面 材料。而傳統三氧化二鋁添加於環氧樹脂中需添加8〇phr 才可達到03 W/mK的熱傳導係數,其添加含量相當高, 與目前商業上熱界面材料需添加約5〇〜9〇 wt%的金屬或陶 瓷導熱粉體的用量吻合(資料來源:中華民國專利tw 1290565熱界面材❹組成物)。而本發明之導熱電絕緣奈G Example 5 Material: Yi Ningshu Yuetiao. NPEL-128, South Asia Plastics Industry Co., Ltd. Hardener. Jeffamine® D_4〇〇Huntsman c〇3 Oxidation M small 1μηι, provided by the Institute of Chemical Engineering Oxygen resin preparation method: 20 201031588 1. Configure the epoxy resin and hardener molar ratio as the upper crucible and stir evenly at high speed. 2. Defoam by vacuum, eliminate air bubbles, place the mixture into the mold (6 X 6 cm X 5 mm), and vacuum defoam again. 3. The membrane was placed in a vacuum oven and hardened in a staged heating mode, 60 ° C for 2 hours, 1 Torr. (: 〇 5 hours, 16 〇〇 c 2 hours. 制备 Thermal Conductive Insulation Nano Carbon Tube / Epoxy Resin Composite Preparation Method · 1. Appropriate amount of the thermally conductive electrically insulating carbon nanotube prepared in Example 1 The sound wave is dispersed in the THF. ' 2. After the epoxy resin and the hardener molar ratio are 2:1 and the high-speed search and mixing are mixed, the above mixed solution is added and the dispersion is again dispersed. The heat conductive electric insulating carbon nanotube of the invention is added in an amount of 1 coffee (per H), 0 parts by weight of epoxy resin, using i parts by weight of carbon nanotubes. 3. Defoaming by vacuum, eliminating bubbles and parts, and placing the mixture Mold ^ (10) ^ ^ coffee ^ ^ claw called 're-vacuum defoaming. 4 · The film is placed in a vacuum oven, hardened by stage heating, 60oC2 hours, ι〇〇〇 "η&lt; | dju , ^ UU L 0 5 hours, 160 〇C 2 hours. Preparation of Al2O3/Epoxy Resin Composites·· 1. Disperse the appropriate amount of trioxide: 33 in the ultrasonic shock. 2. Configure epoxy resin and hardener The ear ratio is 2: ι and the mixture is evenly mixed at a high speed, then the above mixed solution is added, and the mixture is again given. The amount of osmium trioxide added is 80 phr (the amount of bismuth trioxide added is 44% of the total weight of the epoxy tree 21 201031588). 3. Vacuum defoaming is used to eliminate bubbles and part of THF, and the mixture is placed. Mold (6cm X 6cm X 5mm), vacuum defoam again. 4. The film is placed in a vacuum oven for hardening, in a staged heating mode, 60 degrees 2 hours, 100 degrees 0.5 hours, 160 degrees 2 hours. Thermal interface material The thermal conductivity was measured using a thermal conductivity meter Hot disk TPS 2500 (manufacturer Salagatan 16F SE-753 30 Q Uppsala Sweden) according to the Transient Plane Source Method (TPS) [J. Phys· D: Appl Phys·, Vol. 12, 1979.] The volumetric impedance measurement of thermal interface materials was performed using Toadkk SM8220 ultra megahmmeter, Japan (high resistance meter). The results are shown in Table 2. Table 2 Volume resistance (ohm-cm) Thermal Conductivity (W/mK) Pure Epoxy Resin 1.22xl014 0.20 Thermally Conductive Insulated Carbon Nanotubes 1.33 x 1014 0.99 phr/Epoxy Resin Composites Oxygen Dioxide 80 phr/Epoxy 6.12 x 1015 1.03 Resin Composite Table Two shows the invention The thermally conductive electrically insulating carbon nanotube/epoxy composite has a volume resistance of more than ten powers and is an electrically insulating material; and its 22 201031588 heat transfer coefficient of 0.99 W/mK is close to the thermal conductivity of the material. The requirement of 1 W/mK can be applied to electronic packaging as a thermal interface material. However, the addition of 8 phr of conventional Al2O3 to epoxy resin can achieve a heat transfer coefficient of 03 W/mK, which is quite high. It is about 5〇~9〇wt with the current commercial thermal interface materials. The amount of metal or ceramic thermal powder is consistent (source: Republic of China patent tw 1290565 thermal interface material ❹ composition). The thermally conductive electrically insulating nai of the present invention

Q ❹ 米碳管,因高長捏比,僅需添加1咖即達到g.99 W/抓 的熱傳導係數。 綜上所述,在本發明之導熱電絕緣奈米碳管,利用界 面絕緣包覆技術,使碳奈米管應用於高熱傳導之熱界面材 料兩域巾且,本發明的導熱電絕緣奈米碳管於製備時奈 =碳管的表面被修飾而具有官能基,因此有效提升奈米: e刀散加工性’可針對後端應用而被修飾產生化學鍵結, 並維持奈米碳管的特性。因此本發明料熱電絕緣奈: 管不會降低熱界面材料之機械性質。 雖然本發明已經以較佳實施例揭露如上,然其並非用 以限定本發明範圍,任何熟習此技藝者,在不脫離本發明 之精神和範圍内’當可做出不脫離本案後附之中請二 圍的更動與修飾。 乾 23Q ❹ Carbon tube, due to the high length pinch ratio, only need to add 1 coffee to reach the heat transfer coefficient of g.99 W/grab. In summary, in the thermally conductive electrically insulating carbon nanotube of the present invention, the carbon nanotube tube is applied to the high thermal conduction thermal interface material by using the interface insulation coating technology, and the thermally conductive electrically insulating nanometer of the invention When the carbon tube is prepared, the surface of the carbon tube is modified to have a functional group, thus effectively enhancing the nano: e-knife processability' can be modified to produce chemical bonds for the back end application, and maintain the characteristics of the carbon nanotubes. . Therefore, the present invention provides thermoelectric insulation: the tube does not reduce the mechanical properties of the thermal interface material. The present invention has been disclosed in the above preferred embodiments, and is not intended to limit the scope of the present invention, and those skilled in the art can be made without departing from the scope of the invention. Please change and modify the surrounding area. Dry 23

Claims (1)

201031588 七、申請專利範圍: i -種導熱電絕緣奈米碳管的製備方法 機改質奈米碳管,該有機改質太乎磁w包3準備有 摭—处 貞不木碳管的表面上鍵社古古 α:Γ得將一偶合劑與該有機改質奈米碳管的有機宫能 :應,得到以偶合劍改質的奈米碳管, 機氧化物的自組裝反應在該奈米碳管的表面^續^無 該偶合劑對該右地并@★ 上發生,其中 則對該有機改質奈米碳管的重量比為7:1至 及將無機氧化物前驅物在該偶合劑, ❹ 及於水熱條件或溶膠-凝膠條件下進行反應=2下 質的太伞—# 疋玎汉應,以在偶合劑改 化物::Γ的表面上形成無機氧化物層,其中該無機氧 …別驅物對該偶合劑改質的奈米碳管的重量比為25:1至 米碳I如中請專利範圍第1項的方法,其中該有機改質奈 ' &amp;有機g能基為胺基、經基或緩基。 如申請專利範圍第2項的方法,其中該有機改質奈 米碳管的有機官能基為羧基。 如申叫專利範圍第3項的方法,其中該羧基係來自 於被接枝於奈米碳管表面的-C(0)-R-COOH,其中R為 C1 C26的伸烷基、C2-C26的伸烯基或C6_C12的芳香基。 5.種如申請專利範圍第4項的方法,其中該準備有機 24 201031588 ?文質奈米碳管包含將奈米碳管材料和-酸肝、酿氣化物或 具多元羧酸的化合物於一溶劑中及一觸媒的存在下及在惰 氣氣氛及迴流情況下進行Friedel_Crafts醯化反應。 6.如申請專利範m第5項的方法,其中該準備有機改 質奈米碳管包含將奈米碳管材料與具多元叛酸的化合物進 行Friedel-Crafts醯化反應。 ® 7.如申請專利範圍帛6項的方*,其中該具多元羧酸 的化合物為 1,3,5-苯三羧酸(1,3,5_benzenetricarb〇xyUc acid) ’該溶劑為多磷酸(p〇lyph〇sph〇ric扣⑷及該觸媒為 P2〇5。 8.如申請專利範圍第4項的方法,其中該偶合劑為 3-胺丙基二乙氧基石夕烧(3-aminopropyltriethoxysilane (APTES)), 乙稀基二乙氧基發烧(Vinyltriethoxysilane), 3 -異氣基-丙基二乙氧基碎烧(3 - Isocy anato-propyltriethoxysilane), 二乙基礴酸基乙基三乙氧基石夕烧 (Diethylphosphatoethyltri ethoxy silane) » 2-(二苯膦基)乙基三乙氧基石夕烧(2-(Diphenyl phosphino)ethyltriethoxysilane) &gt; 苯基三曱氧基石夕烧(Phenyltrimethoxysilane), 25 201031588 苯基三乙氧基碎烧(Phenyltriethoxysilane), (3-曱胺基)丙基三甲氧基矽烷 ((3-(Me thy lamino)propyl) trim ethoxy silane) &gt; 二乙氧基二乙基石夕烧(Diethoxy diethyl silane), 二乙氧基二甲基碎烧(Diethoxy dimethyl si lane), 二乙氧基(甲基)乙稀基梦烧(Di ethoxy (methyl) vinyl silane ), 1,3-二乙氧基-1,1,3,3-四甲基二矽氧烷 (1,3-Diethoxy-1,1,3,3-tetramethyldisiloxane) &gt; ❹ 二甲氧基二曱基珍院(Dimethoxy dimethyl si lane), 二曱氧基甲基乙稀基石夕烧(Dimethoxymethylvinylsilane), 氯-甲氧基-二甲基碎烧(Chloro-methoxy-dimethylsilane), 乙氧基(二甲基)乙豨基石夕烧(Ethoxy(dimethyl)vinylsilane), 乙氧基二甲基碎烧(Ethoxytri.methylsilane), 甲氧基三甲基石夕烧(Methoxytrimethylsilane), 二乙氧基二乙基石夕燒(Diethoxydiethylsilane), 二乙氧基二曱基石夕烧(Diethoxydimethylsilane), ❹ 二乙氧基(曱基)乙烯基碎烧(Diethoxy (methyl) vinyl si lane), 1,2-雙(三乙氧碎基)代乙烧(1,2-818(1;1461:11〇乂}^1丫1)61:11&amp;116), 1,2-雙(三曱氧矽基)代乙烷 (l,2-Bis(trimethoxysilyl)ethane), (氣甲基)三乙氧石夕烧((Chloromethyl)triethoxysilane), 1,3-二曱基四甲氧基二矽氧烷 (1,3 -Dimethyltetramethoxydisiloxane) » 乙基三甲氧基石夕烧(Ethyltrimethoxysilane), 26 201031588 '三乙氧基(乙基)石夕烧(Triethoxy(ethyl)silane), 三乙氧基(甲基)梦烧(Triethoxymethylsilane), 三甲氧基(乙烯基)石夕烧(Trimethoxy(vinyl)silane) ’ 三甲氧基甲基石夕炫&gt; (Trimethoxymethylsilane), 雙(三氣石夕基)乙炔(Bis(trichlorosilyl)acetylene), 1,2-雙(三氣石夕基)代乙烧(1,2-;^8(1;14〇111〇1*〇51171)61;11&amp;116), 雙(三氣碎基)代甲烧(Bis(trichlorosilyl)methane), 第三丁 基三氯石夕烧(ieri-Butyltrichlorosilane), ❹ 乙基三氣石夕烧(Ethyltrichlorosilane), 六氯二梦烧(Hexachlorodisilane), 甲基三氣石夕炫&gt;(^461;]^11;1^111〇]*0311&amp;116),或 二氣(一氯甲基)碎烧(Trichloro(dichloromethyl)silane)。 9.如申請專利範圍第8項的方法,其中該偶合劑為3_ 異亂基-丙基三乙氧基碎烧。 〇 1 〇·如申請專利範圍第1項的方法,其中該無機氧化 物前驅物為矽烷氧化物、鋁烷氧化物、鈦烷氧化物或錯鋁 烧氧化物。 11.如申請專利範圍第10項的方法,其中該烷氡化物 在溶膠-凝膠條件下被進行反應以在偶合劑改質的奈米碳 管的表面上形成無機氧化物層。 27 201031588 . 12.如申請專利範圍第&quot;項的方法,纟中該無機氧化 物層的形成包含將偶合劑改質的奈米碳管分散於—有機液 態媒體中;及將該烷氧化物及水加入於所獲得的分散液, 及使該烷氧化物進行水解及縮合反應而在偶合劑改質的奈 米碳管的表面上形成無機氧化物層。 13. 如申請專利範圍第12項的方法,其中該有機液態 媒體為無水酵,該烷氧化物為鋁烷氧化物,及該無機氧化 〇 物為 ai2o3。 14. 如申明專利範圍第項的方法,其中該有機液態 媒體為無水醇,該烷氧化物為矽烷氧化物,及該無機氧化 物為Si02。 15. 如申請專利範圍第13項的方法,其中該有機液態 ❹媒體為無水乙醇,及該鋁烷氧化物為鋁異丙氧化物 (aluminum isopropoxide) 〇 16·如申請專利範圍第14項的方法,其中該有機液態 媒體為無水乙醇,及該矽烷氧化物為3_胺丙基三乙氡基矽 烧(3-aminopr〇pyl triethoxysilane) 0 17·如申請專利範圍第2項的方法,其中該有機改質 奈米碳管的有機官能基為羥基。 28 201031588 18.如申請專利範圍第17項的方法,其中該準備有機 改質奈米碳管包含將奈米碳管材料和強酸或強酸混合物在 迴流情況下進行酸化。 19·如申凊專利範圍第18項的方法,其中該酸化包含 將奈米碳管材料與濃硫酸:濃石肖酸重量比為3:2至1:1的強 酸混合物,奈米碳管材料與強酸混合物重量為約1:1〇至 © i:2gg ’及在mvc下迴流反應6 48小時。 2〇·如申請專利範圍第18項的方法,其中該偶合劑為 3胺丙基二乙氧基矽烷,乙烯基三乙氧基矽烷,異氰基_ 丙基三乙氧基矽烷,二乙基磷酸基乙基三乙氧基矽烷, 2-(一苯膦基)乙基三乙氧基矽烷,苯基三甲氧基矽烷,苯基 三乙氧基矽烷’(3-甲胺基)丙基三甲氧基矽烷,二乙氧基二 Q 乙基矽烷,二乙氧基二甲基矽烷,二乙氧基(甲基)乙烯基 夕烧L 3-一乙氧基- l,i,3,3-四甲基二石夕氧烧,二甲氧基二 甲基矽烷,二甲氧基曱基乙烯基矽烷,氯-曱氧基-二曱基 矽烷,乙氧基(二甲基)乙烯基矽烷’乙氧基二甲基矽烷, 曱氧基—曱基石夕烧,二乙氧基二乙基珍烧,二乙氧基二曱 基石夕燒,一乙軋基(曱基)乙稀基石夕燒,1,2_雙(三乙氧石夕基) 代乙烷,1,2-雙(三曱氧矽基)代乙烷,(氯曱基)三乙氧矽烷, I’3 —甲基四甲氧基二矽氧烧,乙基三甲氧基矽炫,三乙氧 基(乙基)矽烷,三乙氧基(甲基)矽烷,三甲氧基(乙烯基)矽 29 201031588 « 烷,三甲氧基甲基矽烷,雙(三氣矽基)乙炔,1,2-雙(三氣 矽基)代乙烷,雙(三氯矽基)代甲烷’第三丁基三氣矽烷, 乙基三氯碎烧,六氣二砍烧,曱基三氣石夕烧,或三氣(二氣 甲基)矽烷。 21·如申請專利範圍第20項的方法,其中該偶合劑為 胺丙基三乙氧基石夕烧。 〇 22. 如申請專利範圍第1項的方法,其中該有機改質 奈米碳管係使用選自下列群組的奈米碳管材料進行改質, 單壁奈米碳管(single walled carbon nanotubes,SWCNT)、 雙壁奈米碳管(double walled carbon nanotubes,DWCNT)、 夕壁奈米兔管(multi walled carbon nanotubes,MWCNT)、氣 相成長奈米碳纖維(VGCF)、碳纖維(CF)、奈米石墨片(nan〇 grapheme plates,NGPs)及其混合所組成之群組。 23. —種導熱電絕緣奈米碳管/高分子複合材料的製 備方法,&amp;含準備有機改質奈米石炭管,帛有機改質奈米碳 管的表面上鍵結有有機官能基;將一偶合劑與該有機改質 奈米碳管的有機官能基反應,得到以偶合劑改f的奈米碳 管,以利於後續的無機氧化物的自組裝反應在該奈米碳管 的,面上發生·’將無機氧化物前驅物在該偶合劑改質的: 米碳管存在下及於水熱條件或溶膠_凝膠條件下進行反 應,以在偶合劑改質的奈米碳管的表面上形成無機氧化物 30 201031588 » ' 層,而得到導熱電絕緣奈米碳管;及將該導熱電絕緣奈米 碳管與一高分子混合’其中該導熱電絕緣奈米碳管:高分子 的重量比為0·1:100至10至100。 24. 如申請專利範圍第23項的方法’其中該尚分子選 自聚丙烯酸,聚甲基丙烯酸’聚丙烯酸甲醋’聚甲基丙烯 酸甲酯,可溶性聚醯亞胺,可溶性聚醯胺醯亞胺’聚醯胺, 聚苯乙烯,可溶性聚胺基甲酸酯,不飽和聚酯,丙烯腈-丁 Ο 二烯-苯乙烯共聚物,聚醚颯(Poly-ether-sulfone,PES),可 溶性聚醚酿亞胺(Poly-ether-imide,PEI),聚乙烯西旨 (poly(vinyl ester)),熱塑性聚胺基甲酸酯(TPU),聚石夕氧 (silicone)及環氧樹脂所組成的群組。 25. 如申請專利範圍第24項的方法,其中該高分子為 環氧樹脂。 ❿ 31 201031588 四、指定代表圖: (一) 本案指定代表圖為:第( )圖。 (二) 本代表圖之元件符號簡單說明: [無] 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:201031588 VII. Patent application scope: i - Preparation method of heat-conductive and electrically insulating carbon nanotubes Machine modified nano carbon tube, the organic modification is too magnetic w package 3 prepared for 摭 - at the surface of the non-wood carbon tube Shangjianshe Gugu α: The organic palace of the coupling agent and the organic modified carbon nanotubes: should, obtain the carbon nanotube modified by the coupling sword, the self-assembly reaction of the organic oxide The surface of the carbon nanotubes is continued. ^The coupling agent does not occur on the right side and on the @★, wherein the weight ratio of the organic modified carbon nanotubes is 7:1 and the inorganic oxide precursor is present. The coupling agent, ❹ and the reaction under hydrothermal conditions or sol-gel conditions = 2 under the umbrella - #疋玎汉应, to form an inorganic oxide layer on the surface of the coupling agent:: Γ , wherein the weight ratio of the inorganic oxygen to the carbon nanotubes modified by the coupling agent is from 25:1 to m carbon I, as in the method of claim 1, wherein the organic modified nai &amp; The organic g energy group is an amine group, a trans group or a slow group. The method of claim 2, wherein the organic functional group of the organically modified carbon nanotube is a carboxyl group. The method of claim 3, wherein the carboxyl group is derived from -C(0)-R-COOH grafted to the surface of the carbon nanotube, wherein R is a C1 C26 alkyl group, C2-C26 An alkenyl group or an aromatic group of C6_C12. 5. The method of claim 4, wherein the preparation of the organic 24 201031588 ? textural carbon nanotubes comprises a carbon nanotube material and a - acid liver, a vaginal compound or a compound having a polycarboxylic acid The Friedel_Crafts deuteration reaction is carried out in the presence of a solvent and in an inert atmosphere and under reflux. 6. The method of claim 5, wherein the preparing the organically modified carbon nanotube comprises performing a Friedel-Crafts deuteration reaction with the carbon nanotube material and the compound having a plurality of tickotropic acids. ® 7. As claimed in paragraph 6 of the patent scope, wherein the compound having a polycarboxylic acid is 1,3,5-benzenetricarboxylic acid (1,3,5-benzenetricarb〇xyUc acid) 'the solvent is polyphosphoric acid ( P〇lyph〇sph〇ric buckle (4) and the catalyst are P2〇5. 8. The method of claim 4, wherein the coupling agent is 3-aminopropyldiethoxysilane (3-aminopropyltriethoxysilane) (APTES)), Vinyltriethoxysilane, 3-isocy anato-propyltriethoxysilane, diethyl decanoic acid ethyl Diethylphosphatoethyltri ethoxy silane » 2-(Diphenyl phosphino)ethyltriethoxysilane &gt; Phenyltrimethoxysilane, 25 201031588 Phenyltriethoxysilane, (3-(Me thylamino)propyl) trim ethoxy silane) &gt; Diethoxydiethyl Diethoxy diethyl silane, diethoxy dimethyl Diethoxy dimethyl si lane, Di ethoxy (methyl) vinyl silane , 1,3-diethoxy-1,1,3,3-tetra 1,3-Diethoxy-1,1,3,3-tetramethyldisiloxane &gt; Dimethoxy dimethyl si lane, Dimethoxymethylethyl sulphate Dimethoxymethylvinylsilane, Chloro-methoxy-dimethylsilane, Ethoxy(dimethyl)vinylsilane, Ethoxy Ethoxytri.methylsilane, Methoxytrimethylsilane, Diethoxydiethylsilane, Diethoxydimethylsilane, Di-Ethylene Diethoxy (methyl) vinyl si lane, 1,2-bis(triethoxyl)pyrene (1,2-818 (1;1461:11〇乂) ^1丫1)61:11&amp;116), 1,2-bis(trimethoxysilyl)ethane, (gas methyl) (Chloromethyl triethoxysilane), 1,3-dimethyltetramethoxydisiloxane » Ethyltrimethoxysilane, 26 201031588 'Three Triethoxy (ethyl) silane, triethoxymethylsilane, trimethoxy (vinyl) silane Trimethoxymethylsilane, Bis (trichlorosilyl) acetylene, 1,2-bis (three gas stone), Ethylene (1,2) -;^8(1;14〇111〇1*〇51171)61;11&116), Bis(trichlorosilyl)methane, tributyl sulphate (ieri-Butyltrichlorosilane), th Ethyltrichlorosilane, Hexachlorodisilane, Methyl smectite &gt;(^461;]^11;1^111〇]* 0311 & 116), or Trichloro (dichloromethyl) silane. 9. The method of claim 8, wherein the coupling agent is 3_disorganized-propyltriethoxy calcined. The method of claim 1, wherein the inorganic oxide precursor is a decane oxide, an aluminum alkoxide, a titanium alkoxide or a misalloyed oxide. 11. The method of claim 10, wherein the alkane halide is reacted under sol-gel conditions to form an inorganic oxide layer on the surface of the coupling-modified carbon nanotube. 27 201031588. 12. The method of claim 2, wherein the forming of the inorganic oxide layer comprises dispersing a coupling agent modified carbon nanotube in an organic liquid medium; and the alkoxide Water and the obtained dispersion are added, and the alkoxide is subjected to hydrolysis and condensation reaction to form an inorganic oxide layer on the surface of the carbon nanotube modified by the coupling agent. 13. The method of claim 12, wherein the organic liquid medium is anhydrous, the alkoxide is an aluminoxane, and the inorganic cerium oxide is ai2o3. 14. The method of claim 2, wherein the organic liquid medium is an anhydrous alcohol, the alkoxide is a decane oxide, and the inorganic oxide is SiO 2 . 15. The method of claim 13, wherein the organic liquid hydrazine medium is anhydrous ethanol, and the aluminoxane oxide is aluminum isopropoxide 〇16. The method of claim 14 Wherein the organic liquid medium is anhydrous ethanol, and the decane oxide is 3-aminopr〇pyl triethoxysilane. The method of claim 2, wherein The organic functional group of the organically modified carbon nanotube is a hydroxyl group. The method of claim 17, wherein the preparing the organically modified carbon nanotube comprises acidating the mixture of the carbon nanotube material and the strong acid or strong acid under reflux. 19. The method of claim 18, wherein the acidifying comprises a strong acid mixture having a weight ratio of the carbon nanotube material to the concentrated sulfuric acid: concentrated sulfuric acid of from 3:2 to 1:1, the carbon nanotube material. The weight of the mixture with the strong acid was about 1:1 Torr to © i: 2 gg ' and refluxed under mvc for 6 48 hours. 2. The method of claim 18, wherein the coupling agent is 3 aminopropyl diethoxy decane, vinyl triethoxy decane, isocyano propyl triethoxy decane, diethyl Phosphate-ethyltriethoxydecane, 2-(monophenylphosphino)ethyltriethoxydecane, phenyltrimethoxydecane, phenyltriethoxydecane'(3-methylamino)propene Trimethoxy decane, diethoxy di Q ethyl decane, diethoxy dimethyl decane, diethoxy (methyl) vinyl sulphone L 3- ethoxy- l, i, 3 , 3-tetramethyldiazepine, dimethoxy dimethyl decane, dimethoxy decyl vinyl decane, chloro-decyloxy-didecyl decane, ethoxy (dimethyl) Vinyl decane 'ethoxy dimethyl decane, decyloxy- fluorenyl sulphate, diethoxy diethyl sulphur, diethoxy fluorenyl sulphate, sulphate Dilute basestone, 1,2_bis(triethoxysulphate), ethane, 1,2-bis(trioxomethoxy)ethane, (chloroindenyl)triethoxy decane, I' 3-methyltetramethoxydioxane, ethyl three Oxime, triethoxy(ethyl)decane, triethoxy(methyl)decane,trimethoxy(vinyl)oxime 29 201031588 « alkane, trimethoxymethylnonane, double (three gas enthalpy Acetylene, 1,2-bis(trimethylsulfonyl)-substituted ethane, bis(trichloroindenyl)methane, 't-butyltrioxane, ethyl trichloride, six gas, two chopped, Strontium three gas stone burning, or three gas (dimethyl) decane. 21. The method of claim 20, wherein the coupling agent is amine propyl triethoxylate. 〇 22. The method of claim 1, wherein the organically modified carbon nanotubes are modified with a carbon nanotube material selected from the group consisting of single walled carbon nanotubes , SWCNT), double walled carbon nanotubes (DWCNT), multi walled carbon nanotubes (MWCNT), vapor grown nano carbon fiber (VGCF), carbon fiber (CF), nai A group consisting of nanographeme plates (NGPs) and their blends. 23. A method for preparing a thermally conductive electrically insulating carbon nanotube/polymer composite, comprising: preparing an organically modified nanocarboniferous tube, and an organic functional group bonded to a surface of the organically modified carbon nanotube; Reacting a coupling agent with an organic functional group of the organic modified carbon nanotube to obtain a carbon nanotube modified by a coupling agent to facilitate subsequent self-assembly reaction of the inorganic oxide in the carbon nanotube, On the surface, 'the inorganic oxide precursor is modified in the presence of the coupling agent: in the presence of a carbon nanotube and under hydrothermal conditions or sol-gel conditions, to modify the carbon nanotubes in the coupling agent. Forming an inorganic oxide 30 201031588 » 'layer, and obtaining a thermally conductive electrically insulating carbon nanotube; and mixing the thermally conductive electrically insulating carbon nanotube with a polymer' wherein the thermally conductive electrically insulating carbon nanotube: high The molecular weight ratio is from 0.1 to 100 to 10 to 100. 24. The method of claim 23, wherein the molecule is selected from the group consisting of polyacrylic acid, polymethacrylic acid 'polyacrylic acid methyl vinegar' polymethyl methacrylate, soluble polyimine, soluble polyamidopyrene Amine 'polyamide, polystyrene, soluble polyurethane, unsaturated polyester, acrylonitrile-butadiene-styrene copolymer, poly-ether-sulfone (PES), soluble Poly-ether-imide (PEI), poly(vinyl ester), thermoplastic polyurethane (TPU), polysilicon (silicone) and epoxy resin The group consisting of. 25. The method of claim 24, wherein the polymer is an epoxy resin. ❿ 31 201031588 IV. Designated representative map: (1) The representative representative of the case is: ( ). (2) A brief description of the symbol of the representative figure: [None] 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW098105549A 2009-02-20 2009-02-20 Processes for preparing thermally conductive and electrically insulative carbon nanotubes and for preparing a thermal interface material TW201031588A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098105549A TW201031588A (en) 2009-02-20 2009-02-20 Processes for preparing thermally conductive and electrically insulative carbon nanotubes and for preparing a thermal interface material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098105549A TW201031588A (en) 2009-02-20 2009-02-20 Processes for preparing thermally conductive and electrically insulative carbon nanotubes and for preparing a thermal interface material

Publications (1)

Publication Number Publication Date
TW201031588A true TW201031588A (en) 2010-09-01

Family

ID=44854587

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098105549A TW201031588A (en) 2009-02-20 2009-02-20 Processes for preparing thermally conductive and electrically insulative carbon nanotubes and for preparing a thermal interface material

Country Status (1)

Country Link
TW (1) TW201031588A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986365A1 (en) * 2012-01-31 2013-08-02 Commissariat Energie Atomique Use of a composite material comprising a polymer matrix of carbon nanotubes comprising an epoxy matrix and a polyester imide matrix, as an electrically insulating and thermally conductive material
CN111410770A (en) * 2019-01-08 2020-07-14 北京化工大学 Nano gamma-alumina loaded carbon nanotube, preparation method and high-thermal-conductivity electrical-insulation elastomer thermal interface material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2986365A1 (en) * 2012-01-31 2013-08-02 Commissariat Energie Atomique Use of a composite material comprising a polymer matrix of carbon nanotubes comprising an epoxy matrix and a polyester imide matrix, as an electrically insulating and thermally conductive material
CN111410770A (en) * 2019-01-08 2020-07-14 北京化工大学 Nano gamma-alumina loaded carbon nanotube, preparation method and high-thermal-conductivity electrical-insulation elastomer thermal interface material
CN111410770B (en) * 2019-01-08 2021-07-20 北京化工大学 Nano gamma-alumina loaded carbon nanotube, preparation method and high-thermal-conductivity electrical-insulation elastomer thermal interface material

Similar Documents

Publication Publication Date Title
Shen et al. Silica coating onto graphene for improving thermal conductivity and electrical insulation of graphene/polydimethylsiloxane nanocomposites
Guo et al. High thermal conductive poly (vinylidene fluoride)-based composites with well-dispersed carbon nanotubes/graphene three-dimensional network structure via reduced interfacial thermal resistance
Carrado et al. In situ synthesis of polymer− clay nanocomposites from silicate gels
Luo et al. Microwave-absorbing polymer-derived ceramics from cobalt-coordinated poly (dimethylsilylene) diacetylenes
KR101218508B1 (en) Ceramic-carbon composites and its process
CN105385106B (en) A kind of preparation method of high heat conductivity insulation composite
Min et al. Functionalized mesoporous silica/polyimide nanocomposite thin films with improved mechanical properties and low dielectric constant
Liu et al. Enhanced dielectric performance of polyimide composites with modified sandwich-like SiO2@ GO hybrids
Choi et al. Synthesis of silica-coated graphite by enolization of polyvinylpyrrolidone and its thermal and electrical conductivity in polymer composites
JP5102179B2 (en) Thermally conductive composition and method for producing the same
JP6803874B2 (en) Carbon-modified Boron Nitride, Its Manufacturing Method and Highly Thermally Conductive Resin Composition
CN101831175A (en) Colorless and transparent polyimide nano-composite material membrane and preparation method thereof
WO2017150589A1 (en) Composition for heat-dissipating member, heat-dissipating member, electronic instrument, and method for producing heat-dissipating member
Lin et al. Structure and mechanical properties of the hybrid films of well dispersed SiO 2 nanoparticle in polyimide (PI/SiO 2) prepared by sol–gel process
CN113716966B (en) SiCN ceramic aerogel and preparation method and application thereof
Liao et al. A novel approach to prepare graphene oxide/soluble polyimide composite films with a low dielectric constant and high mechanical properties
TW201031588A (en) Processes for preparing thermally conductive and electrically insulative carbon nanotubes and for preparing a thermal interface material
Wang et al. Facile fabrication of multi-walled carbon nanotubes and its enhancement on thermally conductive adhesive applied in heat dissipation devices
Lee et al. Nonaqueous synthesis of nanosilica in epoxy resin matrix and thermal properties of their cured nanocomposites
WO2021153683A1 (en) Silsesquioxane derivative and use therefor
Kong et al. Conformal BN coating to enhance the electrical insulation and thermal conductivity of spherical graphite fillers for electronic encapsulation field
JP5565694B2 (en) Boron nitride nanotube derivative, dispersion thereof, and method for producing boron nitride nanotube derivative
Hsu et al. Preparation and characterization of silsesquioxane-graphene oxide modified soluble polyimide nanocomposites with excellent dispersibility and enhanced tensile properties
Chen et al. Recent advances in precursor-derived ceramics integrated with two-dimensional materials
CN115637045A (en) Heat-conducting electric-insulation polyimide film