TW201030349A - System and method for testing an electrostatic chuck - Google Patents
System and method for testing an electrostatic chuck Download PDFInfo
- Publication number
- TW201030349A TW201030349A TW98134383A TW98134383A TW201030349A TW 201030349 A TW201030349 A TW 201030349A TW 98134383 A TW98134383 A TW 98134383A TW 98134383 A TW98134383 A TW 98134383A TW 201030349 A TW201030349 A TW 201030349A
- Authority
- TW
- Taiwan
- Prior art keywords
- parameter
- electrode
- measuring
- frequency
- esc
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/6831—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
- H01L21/6833—Details of electrostatic chucks
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Measurement Of Resistance Or Impedance (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
Abstract
Description
201030349 六、發明說明: 【發明所屬之技術領域】 本發明關於靜電夾盤之測試系統及方法。 【先前技術】 靜電夾盤(ESC, electrostatic chuck)對於精密半導體晶圓製程 而言為必要。現行的夾盤可被分成兩種主要類別,各類別具有其 特定長處及缺點。 ~201030349 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a test system and method for an electrostatic chuck. [Prior Art] An electrostatic chuck (ESC) is necessary for a precision semiconductor wafer process. Current chucks can be divided into two main categories, each with its specific strengths and weaknesses. ~
在聚醯亞胺ESC(PESC)中的介電質為強絕緣體,因此,大部 分所施加的電壓降(voltage drop)越過介電質而產生庫倫夾持力。不 幸地’ PESC工作表面對於刮痕極度敏感。再者,pESC易受到微 粒嵌入的影響,其會導致晶圓背面與PESC上之銅電極之間的電 弧作用(arcing)。又再者,PESC不能在高溫使用’因為高溫運作會 導致水份濕氣之水泡遍及聚醯亞胺層。 部分傳導之陶瓷ESC(CESC)需要固定電流以達到足夠的夾持 力’因此CESC漏電流較大,f要比PESC大的電源。上述電流 相依之夾持力(已知為johnsen_Rahbek效應)與pESC中的庫倫力相 比為小。 00具有陽極極化三氧化鋁(Ab〇3)之CESC (—般可取得者僅作為 早極裝置)乃對濕氣極度敏感。再者,在某些雙極性ESC中陽極極 來作為ESC絕緣層。然而,電弧作用及陽極極化缺陷通 吊導致此類ESC提早故障。 ,雜的氧化_已用來作為某些⑶犯之蝴應用。換雜的 究協助控制其電阻率在Johnsen_RahbekESc電阻率範圍中。但 =璃相(glass Phase)上的晶界侵蝕(grain b〇undajy甜㈣)會改變 面粗糙度因而增加電阻率。再者,粗鏠之陶瓷表面將導 °、在無晶圓自動清潔猶環期間陶-絲面上之侵姓(在陶 倫Ξ阻抗通常導致陶竟之阻抗從Johnson_Rahbeck型阻抗變成庫 電圓 兩純度陶£〇氧他)已廣泛时作為ESC表面上之介 201030349The dielectric in polyimine ESC (PESC) is a strong insulator, so most of the applied voltage drop across the dielectric produces a Coulomb clamping force. Unfortunately, the PESC working surface is extremely sensitive to scratches. Furthermore, pESC is susceptible to microparticle embedding which can cause arcing between the backside of the wafer and the copper electrode on the PESC. Furthermore, PESC cannot be used at high temperatures. Because of the high temperature operation, water vesicles of moisture are spread throughout the polyimide layer. Partially Conducted Ceramic ESC (CESC) requires a fixed current to achieve sufficient clamping force. Therefore CESC has a large leakage current and f is a larger power supply than PESC. The current-dependent clamping force (known as the johnsen_Rahbek effect) is small compared to the Coulomb force in pESC. 00 CESC with anodically polarized alumina (Ab〇3) (commonly available as an early-polar device) is extremely sensitive to moisture. Furthermore, in some bipolar ESCs, the anode is used as an ESC insulating layer. However, arcing and anodic polarization defects lead to early failure of such ESCs. , Miscellaneous Oxidation _ has been used as a butterfly application for some (3) crimes. The alternatives help control the resistivity in the Johnsen_RahbekESc resistivity range. However, grain boundary erosion (grain b〇undajy sweetness (4)) on the glass phase changes the surface roughness and thus increases the electrical resistivity. In addition, the rough ceramic surface will lead to the invading of the ceramic-filament surface during the waferless automatic cleaning of the Judah (the resistance in the Taulun 通常 usually causes the impedance of the Tao to change from the Johnson_Rahbeck type impedance to the library electric circle. Purity Tao [Oxygen He) has been widely used as an interface on the ESC 201030349
盤層(^electric puck layer}。其已用來作為單極或雙極Esc 其因南電阻f而絲作為庫倫ESC。綱嶋燒結喊 二雰【:層高純度氧化銘(如純度99.7%或更高)可用來作為ESCT 最近採用之CESC(使用燒結的氮化鋁(aiN)介電質)有 ,傳特性。陶瓷材料之電阻率為溫度相依且比pESC更多變。盥 氧化銘相比,A1N具有較好的熱導性。因此,其已受/雍 用如運作在20代以上之高溫ESC。在大部分的情況下 面具有台面(mesa surface)圖案以控制與晶圓表面之Esc接觸面 積。趨之主要問題為f %、剛及其他氟基氣體用於腔 中時其會產生A1F3微粒。簾3為蝴腔室技射之主要微。 由於A1N電阻率取決於操作溫度(如j〇hnsen_Rahbek ESc),選取人 適種類之A1N以維持可使用的電阻率以及在高密度 俘= 電漿-阻抗為非常重要。 災卜保待冋 依據終端使用者需求及安裝設備,PESC或CESC之每一者將 令人滿意地支承(夾持)及釋放(解除夾持)。一般而言,不管 用 哪種ESC ’ ESC之電容及電阻率為ESC功能之兩關鍵參數。 圖1闡明習知的雙極性靜電夾盤(Esc)100之平面視圖。Esc 1〇〇具有頂面102及安裝突出部1〇4。ESC 100包含第一電極1〇6 及第二電極108。第一電極1〇6包含内電極部11〇及外電極部112。 圖2闡明沿耆線χ-χ之ESC的橫剖面圖。如圖2所示,esc 1〇〇 包含後表面,或基底,114。 上 安裝突出部104上之安裝孔(未顯示)使ESC1〇〇安裝於系統 在運作中,在第一電極106及第二電極1〇8施加第一電壓差。 電壓差產生電場,其用來吸引及支承晶圓以進行處理。當處理完 成時,在第一電極106及第二電極108施加第二電壓差(解除央^ 電壓)以釋放晶圓。 ^ . 雖然簡短說明如上,習知ESC上之電壓控制(無論單一或多極) 為關鍵。如此’可能影響上述電壓控制之ESC之許多參數因而亦 201030349 為關鍵。非限制性參數包含:電阻、電容、阻抗及頻率相位偏移。 再者,可對ESC之各獨立部分進一步分析參數,而非分析整體 盤之參數。其非限制性範例包含,從一電極至另一電極所量測 對,)之特定參數,從頂面上之一電極至基底所量測(極對基底)之 特定參數。 一^electric puck layer}. It has been used as a unipolar or bipolar Esc. It is used as a Coulomb ESC due to the south resistance f. The sinter is called a high-purity oxidation (such as a purity of 99.7% or more). High) can be used as the CESC (using sintered aluminum nitride (aiN) dielectric) recently adopted by ESCT. The resistivity of ceramic materials is temperature dependent and more variable than pESC. A1N has good thermal conductivity. Therefore, it has been used for high temperature ESCs that operate for more than 20 generations. In most cases, there is a mesa surface pattern to control the Esc contact area with the wafer surface. The main problem is that f%, just other and other fluorine-based gases will produce A1F3 particles when used in the cavity. Curtain 3 is the main micro-pattern of the butterfly chamber. Since A1N resistivity depends on the operating temperature (such as j〇 hnsen_Rahbek ESc), it is very important to select the suitable type of A1N to maintain the usable resistivity and the high-density capture-plasma-impedance. The disaster recovery depends on the end user needs and installation equipment, PESC or CESC One will satisfactorily support (clamp) and release (solution Clamping. In general, no matter which ESC 'ESC capacitor and resistivity are used, the two key parameters of the ESC function. Figure 1 illustrates a plan view of a conventional bipolar electrostatic chuck (Esc) 100. Esc 1〇 The crucible has a top surface 102 and a mounting protrusion 1〇4. The ESC 100 includes a first electrode 1〇6 and a second electrode 108. The first electrode 1〇6 includes an inner electrode portion 11〇 and an outer electrode portion 112. A cross-sectional view of the ESC of the χ-χχ. As shown in Fig. 2, the esc 1 〇〇 includes a rear surface, or a substrate, 114. A mounting hole (not shown) on the upper mounting protrusion 104 allows the ESC1 〇〇 to be mounted on The system is in operation, applying a first voltage difference between the first electrode 106 and the second electrode 110. The voltage difference generates an electric field that is used to attract and support the wafer for processing. When the process is complete, at the first electrode 106 And applying a second voltage difference (releasing the voltage) to the second electrode 108 to release the wafer. ^. Although briefly stated above, the voltage control (whether single or multi-pole) on the conventional ESC is critical. Many of the parameters of the voltage controlled ESC are therefore also critical for 201030349. Unrestricted The numbers include: resistance, capacitance, impedance, and frequency phase offset. Furthermore, the parameters of the individual sections of the ESC can be further analyzed, rather than analyzing the parameters of the overall disk. Non-limiting examples include from one electrode to the other. The specific parameters of the measured pair are measured from one of the electrodes on the top surface to the substrate (polar to substrate). One
圖3闡明量測ESC 100參數之習知技術。在此,舰1〇 含^測端子312、308及310 ’能夠容許基底114、第一電極1〇6 及第二電極108之特性之分別量測。習知量測裝置3〇2包含第一 端子304及第二端子306。在此例子中,習知量測裝置3〇2 ❿兩點之間之ESCKK)之特性。如圖示,第一端子3〇4可連 J 或量測端子遍,而第二端子3〇6可連接至量測端子 312或置測端子31〇。 依此方式,當第一端子304連接至量測端子3〇8且當第二端 ί量測端*312時ϋ極106之特性可利用極對 ίί,,測。同樣地,當第一端子3〇4連接至量測端子· 田第一編子306連接至量測端子310時,第一電極106及第二 之特性可利用極對極測量來量測。同樣地,當第一端子 财312且當第二端子306連接至量測端子310 f ’ 電極⑽之特性可_極對基制量來量測。 時,ϋίϊ,習知技術中,#習知量測裝置302能量測電阻 广夕铱 σ 1測從極對基底之第一電極106之電阻、從極對基 極r之電阻及從極對極之第—電極娜與第二電ί 容時,何r者。同樣地’當習知量測裝置302能量測電 Α底之第-雷:里測從極對基底之第一電極106之電容、從極對 S 之電容及從極對極之第一電極106與第二電 第二雷=耵丞履之弟電極1〇6之電感、從極對基底之 之雷咸$ 之電感及從極對極之第一電極106與第二電極108 ^ 3〇2能量測阻抗時,使用 于基底之弟一电極1〇6之阻抗、從極對基底之第二 5 201030349 電極108之阻抗及從極對極之第一電極 ίί=—者。當習知量測裝置302能量測 2 22基:ί可基底之第-電極伽之=2 ㈣對極之第-電 明上雙簡單之方式)。未顯示或說 未具體說日耕多其他種類之習,並 知技術I子在以制脱之频及二Sr重要概念為習 、土商^的5氣效能最重要。因此,在出貨給客戶之前,;ESC製 可;;判:製執保證檢驗。-習知品質保證檢驗 非的朦之具齡數是否在預定可接受翻内,其 制性⑱例包含:量測的電阻大於等於邮且小於等於r ω ;、 ϋϊΪΪΐί等^叫於等於好;量測的阻抗大於等^ΖιΩ ω 2及置測的頻率她偏移大於等於%且小於等於 •Ι^ί^ 中’製造商以預定頻率以加電流或電壓至端子(如 在製^芮要特性(如赠姆計(0hmmeter)量測之電阻) 在W商之可接受度之預絲_,_定脱為可接受。 ^下方表1中之例子,會在數個ESC(p/n718_綱523_28 ti f 3·478 5ι] 3·777 裝置(Ser. No.) __1 電容(nF) 与狄輝· 電阻率(Megohms) D19469 3.726 3.829 ~ D17303 3.777 3.244 ~ D18469 3.725 3.829 ~~ D17424 — 3.640 2.672 ~ D17697 3.478 2.267 ~~ 表1 201030349 小之電 應注意,這些裝置被製额視為可妓。絲 ίϊϊϊ過最大容許雜之程度,或第二裝置接近具有太ί、 =之使,降低。㈣目視檢驗清楚地指出Figure 3 illustrates a prior art technique for measuring ESC 100 parameters. Here, the ship's test terminals 312, 308, and 310' can accommodate the respective measurements of the characteristics of the substrate 114, the first electrode 1〇6, and the second electrode 108. The conventional measuring device 3〇2 includes a first terminal 304 and a second terminal 306. In this example, the characteristics of the conventional measuring device 3〇2 ES ESCKK between two points. As shown, the first terminal 3〇4 can be connected to J or the measurement terminal, and the second terminal 3〇6 can be connected to the measurement terminal 312 or the detection terminal 31〇. In this manner, the characteristics of the drain 106 can be measured using the pole pair ίί, when the first terminal 304 is connected to the measurement terminal 3〇8 and when the second terminal 384 is measured. Similarly, when the first terminal 3〇4 is connected to the measurement terminal • the first editor 306 is connected to the measurement terminal 310, the characteristics of the first electrode 106 and the second can be measured using the pole-to-pole measurement. Similarly, when the first terminal 312 and when the second terminal 306 is connected to the measuring terminal 310 f 'the characteristic of the electrode (10) can be measured by the base amount. In the conventional technique, the conventional measuring device 302 measures the resistance of the first electrode 106 from the pole to the base, the resistance of the pole to the base r, and the pair of poles. The first pole - the electrode and the second electricity, when r. Similarly, when the conventional measuring device 302 is capable of measuring the bottom of the bottom of the energy measuring device, the capacitance of the first electrode 106 from the pole pair substrate, the capacitance of the pole pair S, and the first electrode of the pole pair pole are measured. 106 and the second electric second mine = the inductance of the electrode 1 〇 6 of the electrode, the inductance of the slanting electrode from the pole to the base, and the first electrode 106 and the second electrode 108 ^ 3 从 from the pole opposite pole 2 When measuring the impedance of the energy, it is used for the impedance of the electrode of the substrate, the impedance of the electrode 1〇6, the impedance of the electrode 5 from the pole to the base, the impedance of the electrode 108, and the polarity of the electrode from the pole to the pole. When the conventional measuring device 302 measures the energy of the 22 base: ί can be the base of the base - the electrode gamma = 2 (four) the opposite of the pole - the second simple way). It is not shown or said that there are many other types of habits, and it is most important to know that the technology I is in the frequency of the system and the two important concepts of Sr. Therefore, before shipping to the customer, the ESC system can be used; - The quality assurance test does not determine whether the number of ages is not within the predetermined acceptable turnover, and the 18 cases of the system include: the measured resistance is greater than or equal to the post and less than or equal to r ω; ϋϊΪΪΐί, etc. is equal to good; The measured impedance is greater than the equal ^ΖιΩ ω 2 and the measured frequency. The offset is greater than or equal to % and less than or equal to • Ι^ί^ where the manufacturer supplies the current or voltage to the terminal at a predetermined frequency (eg, in the system) Characteristics (such as the resistance measured by the 0hmmeter) The pre-wire _, _ ding is acceptable in the acceptance of W. ^ The example in Table 1 below will be in several ESCs (p/n718 _纲523_28 ti f 3·478 5ι] 3·777 device (Ser. No.) __1 Capacitance (nF) and Dihui · Resistivity (Megohms) D19469 3.726 3.829 ~ D17303 3.777 3.244 ~ D18469 3.725 3.829 ~~ D17424 — 3.640 2.672 ~ D17697 3.478 2.267 ~~ Table 1 201030349 Small electricity should pay attention to the fact that these devices are considered as sturdy. The maximum allowable miscellaneousness of the wire, or the second device is close to having too ί, =, and lower. (4) Visual inspection clearly indicates
ESC =陷(裂痕、深到痕、殘留微粒)則馬上置換為適當。杏ESC 々人滿意地執行時便難以隔絕起因,製 :二 ,。技藝之目前狀態並未提供==== ,〖生缺陷。習知的特性測試 即細C絲令, 或後細、非侵人性的方法叫定ESC之適合性以供初始 【發明内容】 預測财法用以ESC = trap (cracks, deep to traces, residual particles) is immediately replaced with appropriate. When the apricot ESC is satisfactorily executed, it is difficult to isolate the cause. System: II. The current state of the art does not provide ====, and the birth defect. The conventional characteristic test, that is, the fine C filament order, or the fine and non-invasive method is called the suitability of the ESC for the initial [invention]
具有 ,其中ESC 頻帶範_建蝴c之參法包含在 量挪ESC之參數。狀預d界限’及销帶範圍内 率之======種方f,利用在單一頻 函數參^數,在鮮範_產生參數 敝她知下限及 表备㈣之實雜態’使用—種絲,細在單—頻率之 =限及在單—辭之參數之已知下限來建立靜電夾盤 參數之可接找限。該方法包含在解範_制靜電 201030349 ί 嫌,基於複 定數目之標準差,利用參數3定ί目數之預 受上限及參數之可接受下限。駄數目之彳4差產生參數之可接 提出聰雜75部絲在町說明中 別指出的手段尬錄實範圍中特 【實施方式】 現在將參相4_15綱本發明之實施樣雜。 圖4 細c 100之參數的例示性技術。 方法不同,於其中圖4之方法包含頻率變庫 - ΐ子、^fi之習知量測裝置302。頻率響應分析儀曰‘ :〇2 τ在兩點量測職。之特性。如所二丨中第 端子’而第二端子406可連接至量測 工方法,當第一端子4〇4連接至量測端子308且當第二端 雷極106 Ϊίΐ測端子312時>1可利用極對基底測量來量測第一 日者笛山。同樣地,當第一端子404連接至量測端子308 連接至量測端子310時,可利用極對極測量來 里測第一電極106及第二電極108之特性。同樣地,當第一端子 4=4連接至量測^子312且當第二端子406連接至量測端子31〇 時,可利用極對基底測量來量測第二電極1〇8之特性。 因為與圖3所示之方法之習知量測褒置302 $同,依據本發 明之實施例,頻率響應分析儀402在一頻帶之上量測特性。換言 ,,在白知方法中,任何特定特性-無論其為阻抗、電阻、電容等 等,/且無論其從極對極、基底對基底、表面等等被量測-乃在單一 頻率上里測。依據本發明之實施例,任何特定特性可在一頻帶之 201030349 上被量測。以下將更詳細說明關於圖5。 、舰阻抗之圖’其為利用鮮響應分析儀術從量There is a parameter in which the ESC band is included in the parameter of the ESC. The shape of the pre-d boundary 'and the rate within the pin band ====== the kind of f, using the single frequency function parameter, in the fresh _ generating parameters 敝 she knows the lower limit and the table (4) the real miscellaneous ' Use the seeding, fine in the single-frequency = limit and the known lower limit of the parameters of the single-word to establish the limit of the electrostatic chuck parameters. The method consists of using the parameter 3 to determine the upper limit of the mesh and the acceptable lower limit of the parameter based on the standard deviation of the set number. The difference between the number of 駄4 and the difference in the number of parameters is available. The method of arranging the 75 parts of the wire in the town description is not indicated. 尬 The range of the record is special. [Embodiment] The implementation of the invention is now mixed with the 4_15. Figure 4 illustrates an exemplary technique for the parameters of the fine c 100. The method is different, and the method of FIG. 4 includes a frequency measuring library - a conventional measuring device 302 of scorpion and ^fi. The frequency response analyzer 曰 ‘ :〇2 τ is measured at two points. Characteristics. The second terminal 406 can be connected to the measuring method, when the first terminal 4〇4 is connected to the measuring terminal 308 and when the second terminal lightning pole 106 Ϊί detecting the terminal 312> The pole-to-base measurement can be used to measure the first day of the whistle. Similarly, when the first terminal 404 is connected to the measurement terminal 308 and connected to the measurement terminal 310, the characteristics of the first electrode 106 and the second electrode 108 can be measured using the pole-to-pole measurement. Similarly, when the first terminal 4=4 is connected to the measuring electrode 312 and when the second terminal 406 is connected to the measuring terminal 31〇, the pole-to-substrate measurement can be utilized to measure the characteristics of the second electrode 1〇8. Because of the same conventional measurement device 302$ as the method illustrated in Figure 3, frequency response analyzer 402 measures characteristics over a frequency band in accordance with an embodiment of the present invention. In other words, in the white method, any particular characteristic - whether it is impedance, resistance, capacitance, etc., / and whether it is measured from pole to pole, substrate to substrate, surface, etc. - is on a single frequency Measurement. In accordance with an embodiment of the present invention, any particular characteristic can be measured on 201030349 in a frequency band. Figure 5 will be described in more detail below. , the map of the ship's impedance, which is the use of fresh response analyzer
,頻率響應分析儀搬在具有最低頻率』二= 疋頻,量測阻抗。使用者可蚊特定頻帶,且可包|esc J 將可此被使用之頻率。再者,頻率響應分 A 點5G2之阻抗。點5G2The frequency response analyzer is moved at the lowest frequency 』 two = 疋 frequency, measuring impedance. The user can mosquito a specific frequency band and can encode the frequency at which |esc J can be used. Furthermore, the frequency response is divided into the impedance of point 5G2. Point 5G2
508對於最後頻率//之最後阻抗々。·點506對t於二,,g商 可能習知方法參考圖3在此頻率量H 之阻好』工作聰 =受。依據本 發明之實_讀立ESC錄之可較邊 在;,職造商可 =ίί^±σ,纟綱瓣㈣=== 阻$3 ί w附近之預定可接受偏差±σ可用來產生可接受 接受偏差±σ &赋之預定可508 is the last impedance 对于 for the last frequency //. · Point 506 vs. t, the g quotient may refer to Figure 3 at this frequency amount H. According to the actual implementation of the present invention, the reading of the ESC can be compared; the manufacturer can = ίί^±σ, the 瓣 瓣 (4) === 阻 $3 ί w The predetermined acceptable deviation ± σ can be used to generate Accept the acceptance deviation ± σ &
之可接受阻抗函數為^下量^子31G到量測端子312所量測之ESC 作例子中’關於圖5,線51G之斜率為線性。在其他運 得量::數:==。’獲得斜率之-一 依據本發明之實施狀建立ESC參數之可接受邊界的另一方 201030349 J包含量測已知為可接叙複數之Esc。圖8,例如,w述上 / 。在圖中,線510之部分8〇2以複數之線8〇4為上限且以 =806為下限。複數之線綱對應至已知為可接受然而具有騰 十應至線510之稍微高之阻抗的複數之ESC之阻抗函數,而 ,線806 f#應至已知為可接受然而具有ESC對應至線51〇之^ 低之阻抗的複數之ESC之阻抗函數。 儆 線802、複數之線804及複數之線8〇6接著可透過平均值 函數加上標準差而被絲產纽抗函數之可接受之赫。例如, © t ^所示’利用線8〇2、複數之線謝及複數之線咖之預定標 準^來產生上邊界9〇2及下邊界9〇4。在此例子中,假設線別才、 ,複數之線804及複數之線806之平均值函數。如此,線9〇2 為從量測端子31G到量測端子312所量測之ESC之可接受阻 數之上邊界,而線904將為從量測端子31〇到量測端子312 測之ESC之可接受阻抗函數之下邊界。 ϋ 一丨ΐ ESC參數之可接受邊界被建立,可錄本發明之實施樣 L來測試ESC(無論新的或使用過的)以判定是否其仍為可接受 在將參考圖10說明測試ESC之可接受性的例示性方法。 圖10為依據本發明之測試Esc之可接受性之例示性程序的邏 Ο 圖所示’程序1000開始_〇2)且決定欲被量測之參 =1004)。為了討論之目的,假設欲被量測之參數為阻抗,使用 頻率響應分析儀402從使用過的Esc之量測端子31〇到使 ESC之量測端子312量測。 一旦決定欲被量測之參數,頻率響應分析儀4〇2掃描一 頻帶(s祕)並量測相對應的阻抗。圖n顯示使用過之Esc ,的阻抗函數與ESCUK)之阻抗函數(其在此範财已知為可接 =之圖。如圖所示’使用過的Esc之量測的阻抗函數不同 ;、v 510 ’其為ESC 100之1測的阻抗函數。類似於以上討論之圖 ,頻率響應分析儀402在具有初始頻率办及最終頻率預定 頻帶内量測阻抗。現在將參考圖u說明量測的阻抗函數腿鱼 量測的阻抗函數510之間的區別。 '、 10 201030349 類似於以上討論之圖7 ’圖12包含關於量測的阻抗函數之建 立的可接受上下限。具體而言,線702為從量測端子31〇到量測 端子312所量測之ESC之可接受阻抗函數之上邊界,而線7〇4為 從量測端子310到量測端子312所量測之ESC之可接受阻抗函數 之下邊界。The acceptable impedance function is in the example of the ESC measured by the measurement element 312 to the measurement terminal 312. With respect to Figure 5, the slope of the line 51G is linear. In other shipments:: number: ==. The one that obtains the slope - the other party that establishes the acceptable boundary of the ESC parameter in accordance with an embodiment of the present invention 201030349 J includes measuring the Esc known to be a complex number. Figure 8, for example, w describes /. In the figure, the portion 8〇2 of the line 510 has an upper limit of the line 8〇4 and a lower limit of =806. The complex line corresponds to an impedance function of a complex number of ESCs that are known to be acceptable but have a slightly higher impedance to the line 510, while line 806 f# should be known to be acceptable but have an ESC corresponding to the line. 51〇^ The impedance function of the complex ESC of the low impedance. The line 802, the complex line 804, and the complex line 8〇6 can then be accepted by the mean value function plus the standard deviation. For example, as shown by © t ^, the upper boundary 9〇2 and the lower boundary 9〇4 are generated by using the line 8〇2, the plural line and the predetermined standard of the line coffee. In this example, the mean function of the line, the complex line 804, and the complex line 806 is assumed. Thus, line 9〇2 is the upper bound of the acceptable resistance of the ESC measured from measurement terminal 31G to measurement terminal 312, and line 904 will be the ESC measured from measurement terminal 31 to measurement terminal 312. The boundary below the acceptable impedance function.可接受 An acceptable boundary for the ESC parameter is established, and the embodiment L of the present invention can be recorded to test the ESC (whether new or used) to determine if it is still acceptable. The ESC will be tested with reference to FIG. An exemplary method of acceptability. Figure 10 is a logic diagram of an exemplary procedure for testing the acceptability of Esc in accordance with the present invention. The program 1000 starts _〇2 and determines the parameter to be measured =1004). For purposes of discussion, assuming that the parameter to be measured is an impedance, the frequency response analyzer 402 is used to measure the ESC measurement terminal 312 from the used measurement terminal 31 of the ESC. Once the parameters to be measured are determined, the frequency response analyzer 4〇2 scans a frequency band and measures the corresponding impedance. Figure n shows the impedance function of the used Esc, and the impedance function of ESCUK), which is known as the connectable= graph. The impedance function measured by the used Esc is different as shown in the figure; v 510 'which is the impedance function measured by the ESC 100. Similar to the diagram discussed above, the frequency response analyzer 402 measures the impedance within a predetermined frequency band having an initial frequency and a final frequency. The measurement will now be described with reference to Figure u. The difference between the impedance function 510 of the impedance function leg fish measurement. ', 10 201030349 Similar to Figure 7 of the above discussion, Figure 12 contains acceptable upper and lower limits for the establishment of the impedance function of the measurement. Specifically, line 702 The upper boundary of the acceptable impedance function of the ESC measured from the measurement terminal 31 to the measurement terminal 312, and the line 7〇4 is acceptable for the ESC measured from the measurement terminal 310 to the measurement terminal 312. The boundary below the impedance function.
在本範例中,量測的阻抗函數1102包含第一部分12〇2、第二 部分1204及第三部分1206。第一部分12〇2與第三部分12〇6兩^ 皆在線702及704之範圍内因而能被視為可接受。然而部分12〇4 f線704下方因而會被視為不可接受。再者,部分1204之斜率顯 著地不同於線51〇之斜率因而會被視為不可接受。 部分1202之部分1208(其從在頻率/β所量測之阻抗乙延伸至 在頻率Λ所量測之阻抗Ζ0)位於線702與704内,但且有顯荖鱼綠 5^相異之斜率。地,部_6之部細。在顯頻者率〉線In this example, the measured impedance function 1102 includes a first portion 12A2, a second portion 1204, and a third portion 1206. The first portion 12〇2 and the third portion 12〇6 are both within the range of 702 and 704 and thus can be considered acceptable. However, the portion below the 12 〇 4 f line 704 is thus considered unacceptable. Again, the slope of portion 1204 is significantly different from the slope of line 51 and is therefore considered unacceptable. Portion 1208 of portion 1202 (which extends from impedance B measured at frequency /β to impedance Ζ0 measured at frequency )) is located in lines 702 and 704, but has a slope that is distinct from squid green . Ground, part of the _6 is fine. In the frequency of the frequency > line
Hi ϋ2"延伸至在頻率Λ所量測之阻抗細具有顯著與i 相異之斜率。如此,雖然部分1208及1210之内的量測阻抗為 可接受’但在相對頻帶内的阻抗改變率可能上升(考慮到穩定性)、、。Hi ϋ2" extends to the impedance measured at frequency 细 with a significantly different slope from i. Thus, although the measured impedances within portions 1208 and 1210 are acceptable 'but the rate of change in impedance within the relative frequency band may increase (considering stability).
到旦—,、參數被量測,在本範例巾,從量測端子310 可議、ΐ量1之ESC之阻抗函數’其被判定是否ESC為 商之^獅依據f知技術’假如® 12之ESC在製造 在線贈之點1212上之相 1204、= 4射。細’依據本發明,按照在部分 受ESC 100$ 之線1102之斜率本質上與具有、線510之可接 ιΐΐϋ解獨可推斷ESC為不可接受。再者,按照部分 04低於線704可推斷ESC為不可接受。 差可in上量測參數之大小之偏差或制參數之改變率之偏 含:在Isc或可能的問題之任何一者,其非限制範例包 至少—部八中完全故障;壓力,其會導致在;ESC之 試之特iLcHt障。再者’依據本發明’使用者可判定被測 以二 =5:為可接受,但在另-頻帶中為可Once the parameters are measured, in this sample towel, the impedance function of the ESC from the measurement terminal 310 is negligible, and the ESC is judged whether the ESC is the quotation of the lion. The ESC is in the phase 1204, = 4 shots on the point 1212 of the online gift. In accordance with the present invention, it is inferred that the ESC is unacceptable in accordance with the slope of the line 1102 that is partially subjected to the ESC 100$ and essentially the splicing of the line 510. Again, according to section 04 below line 704, the ESC can be inferred to be unacceptable. The difference may be the deviation of the size of the measured parameter or the bias of the rate of change of the parameter: in either of the Isc or the possible problem, the non-limiting example package is at least a complete failure in the eighth; the pressure, which causes In the ESC test, the special iLcHt barrier. Further, according to the present invention, the user can determine that the measured is 2 = 5: acceptable, but in the other - band
J圖12,使用者可判定被測試之ESC從頻率A 11 201030349 到頻率以及從頻率爲到頻率々為可接受。如此,其可以更受限 制的方式被使用,而非丟棄測試之ESC。 回到圖10 ’假如測試之ESC被判定為不可接受,則其被丢棄 (S1010)。假如測試之esc被判定為可接受,則使用者可期望對^ 他參數做進一步的測試(S1012)。 ’、 參考圖4-12之本發明之上述例示性實施例係針對一雙極性 ESC,其中量測之參數為從量測端子31〇至量測端子312之阻 當然可量測其他參數。 ❹ 圖13暴員示具有圖7之阻抗函數及電容函數1302之圖。ESC 1〇〇 之電容顯示為從量測端子310至量測端子312所量測,及從初始 頻率Λ至最終頻率方所量測。圖同時闡明電容函數之可接受上^ 1^)4及電容函數之可接受下限脳。如±述之先前實施例中討論 關於阻抗,可以許多方式來決定這些可接受邊界。 …回到圖10,假如新參數欲被量測(sl〇〇4),例如圖13所示之 電容’則制的電容函數與可接受上限13G4及可接受下限i細 相比較(以類似於上述關於阻抗之方式)。 ESC 例Γ圖1〇之步驟_2之『其他參數』可為從 ==測量。例如,無參數可為從量測端子31〇 〇 I i狀阻抗。如此’新測量將為極對極阻抗。 奸頻聿/ 5目曰里測端子310至量測端子312所量測,及從初 ^在卜7/所量測的聰刚之阻抗之線510及線 =大510及1402之阻抗斜率為相似,而線1搬 之阻抗大小稍微低於線510之阻抗大小。J Figure 12, the user can determine that the ESC being tested is acceptable from frequency A 11 201030349 to frequency and from frequency to frequency 々. As such, it can be used in a more restricted manner, rather than discarding the ESC of the test. Returning to Fig. 10, if the ESC of the test is judged to be unacceptable, it is discarded (S1010). If the test esc is judged to be acceptable, the user may desire to further test the parameters (S1012). The above-described exemplary embodiment of the present invention with reference to Figures 4-12 is directed to a bipolar ESC in which the measured parameter is the resistance from the measurement terminal 31 〇 to the measurement terminal 312. Of course, other parameters can be measured. ❹ Figure 13 is a diagram showing the impedance function of Figure 7 and the capacitance function 1302. The capacitance of the ESC 1〇〇 is measured from the measurement terminal 310 to the measurement terminal 312 and measured from the initial frequency Λ to the final frequency. The figure also clarifies the acceptable upper limit of the capacitance function ^ 1 ^) 4 and the lower limit of the capacitance function 脳. These acceptable boundaries can be determined in a number of ways, as discussed in the previous embodiments of the description. ...back to Figure 10, if the new parameter is to be measured (sl 〇〇 4), such as the capacitance shown in Figure 13, the capacitance function is compared with the acceptable upper limit 13G4 and the acceptable lower limit i (similar to The above method of impedance). The "other parameters" of step ES of Figure 1 of the ESC example can be measured from ==. For example, no parameter can be the impedance from the measurement terminal 31 〇 I i . So 'the new measurement will be the pole-to-pole impedance. Measured by the frequency of the terminal 310 to the measuring terminal 312, and the impedance slope of the line 510 and the line = 510 and 1402 of the impedance of the Conggang measured from the initial Similarly, the impedance of line 1 is slightly lower than the impedance of line 510.
在其他實施例中,圖1〇之步驟sl〇12之『A 同參數之新測量(從ESC上的相同璋,同環j』I為相 15闡明線510、線1502及線15〇4。綠:二層兄酿度下)。圖 的終頻率㈣測, 端子,至量測端子312所量 ==== 所涛及從第二溫度4(其中4>•量測的 12 201030349 測端子31G至量測端子312所量測,及從初始 率6所量測,及從第三溫度_㈣所量測的 ,ESC 電場以夾持、支承及解除夾持晶圓以 ίίϊΖ i之制重轉數。在具 下將更詳細說明乃透過頻率響應分析儀量測阻抗來決定電容,以 312 私曰、3丨#7十 罨路如圖16所不。在圖中,電阻1602相當 ^ 謂與量測端子312之間之全部電Μ電容1_相當 22:! f〇與量測端子312之間之全部電容。因為電阻1602 咖1〇〇(從量測端子310至量測端子312所量 測)之王。卩阻抗Z可從基本電路理論推導如下: z= -ML· JR2x〇 其中 R2+x〇2 " r2+xcIn other embodiments, the new measurement of the same parameter (steps from the ESC, the same ring j) I for phase 15 illustrates line 510, line 1502, and line 15〇4. Green: the second layer of brothers under the degree). The final frequency (four) of the graph, the terminal, the measurement terminal 312 amount ==== is measured by the second temperature 4 (where 4>• measured 12 201030349 measuring terminal 31G to the measuring terminal 312, And measured from the initial rate of 6 and measured from the third temperature _ (four), the ESC electric field is used to clamp, support and release the clamping wafer to re-number the number of y, which will be described in more detail below. The capacitance is determined by the frequency response analyzer to measure the capacitance, with 312 曰 曰, 3 丨 #7 罨 罨 如图 as shown in Figure 16. In the figure, the resistor 1602 is equivalent to the total electricity between the measuring terminal 312 The tantalum capacitor 1_ is equivalent to 22:! f〇 and the total capacitance between the measurement terminals 312. Because the resistor 1602 is the king of the measurement (measured from the measurement terminal 310 to the measurement terminal 312). The basic circuit theory is derived as follows: z= -ML· JR2x〇 where R2+x〇2 " r2+xc
Xc = l/((〇C) » 且 ;中c 令阻抗’以歐姆(〇hm)量測’ ω為^入信號之驅動頻 量測。’、、4,以法鄉細)量測’而R為電阻,以歐姆(Ohm)Xc = l/((〇C) » and; in c let the impedance 'measured in ohms (〇hm)' ω is the driving frequency measurement of the input signal. ', , 4, measured by the method of the law" And R is the resistance, in ohms (Ohm)
100 知阻抗函數,且利用頻率響應分析儀402量測ESC 娜财酬鋪,可判定 上谷及電阻之可接受性的已知上下限(例如先前已由 定Ese _之量㈣來決 抗之波細_=^====於量測阻 之#顯數頻雜上之波德她® 17G2及阻抗圖1704 ΪΪΓΐΞΓ ΐί”圖17G2 _頻率多大會相位偏移,其係 土; U几之農部及貫部來計算。應注意波德相位圖1702在圖 13 201030349 上l〇g2到l〇g4之間維持一穩定斜率。如此,在這此 、,其表示ESC1。。應維持穩定的夾持:支承及ί除 上述例示性實施例包含雙極性ESC之測試。當 日 =試飾種類之ESC。再者,依據本發明,任田何 測 > 數、從不同夏測埠或位置之任何數目測 任何數目之溫度可用來舣可接錄。以& ESC測罝之 為了特定的晶圓生產設備而修改方法,基於安 造、所選擇之測試設借、及合適的專屬製程, ❿ 用之各個不同種類/模型/系列之ESC的接受 ^在^又備使 的^行鞭前,‘穆: ίϊ;ϊ後’每次ESC被測試’測量值會加入其記錄中,直到ί 不未讀受糊,—_ ❹ 二漏=上教導許多做及變化為可能。如上所述之例示性 i明從解釋本發明及其實際翻之原理而被挑選及 ^用各種修1:減it技藝者能最佳朗本發明之各種實施例並 附加之申^專利範考慮的特定用途。本發明之範蜂係由 【圖式簡單說明】 施例併ϊίΐ成說ϊ書之—部分之附圖乃闡明本發明之例示性實 二=明書一起用來解釋本發明之原理。在圖示中: ^ =習知的雙極性Esc之平面視圖; 之習知雙極性Esc之橫剖面®; Ϊ閣明量測esc之參數的習知技術; 術;闡明依據本發明之實施樣態之量測ESC參數的例示性技 14 201030349 圖5為性阻抗之圖,為ESC之頻率函數; =ϋ不在^商之頻率所量測之參數的製造商選取容許度; ,實施 上紗量測參 容許度之例示性方法; 、 圖8義複數之4測阻抗如作為械應之複數之默的頻率100 Know the impedance function, and use the frequency response analyzer 402 to measure the ESC Naifu reward shop, can determine the upper and lower limits of the acceptability of the upper valley and the resistance (for example, the wave that has been determined by the amount of Ese _ (four) Thin _=^====############################################################################################################# It is noted that the Bode phase diagram 1702 maintains a stable slope between l〇g2 and l〇g4 on Figure 13 201030349. Thus, here, it represents ESC1. The stable clamp should be maintained. Support: and support The above exemplary embodiment includes a test for bipolar ESC. Day = ESC of the type of trial. Further, according to the present invention, any number of measurements, from different summer measurements or positions Any number of temperatures can be used for the measurement. The method is modified by & ESC for specific wafer production equipment, based on safety, selected test equipment, and appropriate proprietary processes. The acceptance of the ESC of each of the different types/models/series ^ Before the whip, 'Mu: ίϊ; after the 'Every ESC is tested' measurement will be added to its record until ί is not read, - _ ❹ two leaks = teach many do and change possible The exemplary embodiments described above are selected from the explanation of the present invention and the principles of the actual implementation thereof, and various modifications and subtractive techniques are available to those skilled in the art. The specific use of the present invention is set forth in the accompanying drawings, and the accompanying drawings illustrate the exemplary embodiments of the present invention. In the illustration: ^ = a plan view of a conventional bipolar Esc; a cross-section of a conventional bipolar Esc®; a conventional technique for measuring the parameters of an esc; An exemplary technique for measuring the ESC parameters of the implementation mode 14 201030349 Figure 5 is a graph of the impedance impedance, which is the frequency function of the ESC; = 制造 the manufacturer's selection tolerance of the parameter measured at the frequency of the quotient; An exemplary method for measuring the tolerance of the upper yarn; As the frequency of Mo should be in a plurality of mechanical
容許實施樣態在-頻帶上建立量 流程=為_依據本㈣之實雜態麟跳之齡性方法的 之兩量測阻抗函數之圖形; 上之=,⑽轉於制的略錄疊加於其 示性目13糾錢5之阻抗絲以及例 示性:圖14為具有圖5之阻抗函數以及例 依據本發明之實施樣態,圖15 不同溫度量測的例示性量測之阻抗函、數、的圖^ .阻抗》i/數以及在 為—rc電路的示意圖& 圖17為顯4贼她偏移料辭之對數函_圖形。 【主要元件符號說明】 100 ESC 102 頂面 104 安裝突出部 106 第一電極 108 第二電極 110 内電極部 112 外電極部 15 201030349 114 基底 302 習知量測裝置 304 第一端子 306 第二端子 308 量測端子 310 量測端子 312 量測端子 402 頻率響應分析儀 404 第一端子 406 第二端子 502 點 504 點 506 點 508 點 510 線 702 線 704 線 802 部分 804 線 806 線 902 上邊界 904 下邊界 1000 程序 1102 阻抗函數 1202 第一部分 1204 第二部分 1206 第三部分 1208 部分 1210 部分 1212 點 201030349 1302電容函數 1304上限 - 1306下限 1402 線 1502 線 1504 線 1602電阻 1604電容 1702波德相位圖 φ 1704阻抗圖 S1002開始 S1004決定參數 S1006掃描 S1008可接受? S1010丟棄 S1012新參數? S1014停止Allowing the implementation of the mode to establish the quantity flow on the -frequency band = _ according to the (4) of the real hybrid state of the age of the method of measuring the impedance function of the two; the above =, (10) conversion system is superimposed on The impedance wire of the explanatory object 13 and the exemplary embodiment: FIG. 14 is an impedance function and the number of the exemplary measurement with the impedance function of FIG. 5 and the embodiment according to the present invention. Figure ^. Impedance" i / number and in the schematic diagram of the -rc circuit & Figure 17 is the logarithmic function of the thief her offset material _ graphics. [Main component symbol description] 100 ESC 102 top surface 104 mounting protrusion 106 first electrode 108 second electrode 110 inner electrode portion 112 outer electrode portion 15 201030349 114 substrate 302 conventional measuring device 304 first terminal 306 second terminal 308 Measuring terminal 310 Measuring terminal 312 Measuring terminal 402 Frequency response analyzer 404 First terminal 406 Second terminal 502 Point 504 Point 506 Point 508 Point 510 Line 702 Line 704 Line 802 Part 804 Line 806 Line 902 Upper boundary 904 Lower boundary 1000 Program 1102 Impedance Function 1202 Part 1 1204 Part 2 1206 Part 3 1208 Part 1210 Part 1212 Point 201030349 1302 Capacitor Function 1304 Upper Limit - 1306 Lower Limit 1402 Line 1502 Line 1504 Line 1602 Resistance 1604 Capacitance 1702 Bode Phase Diagram φ 1704 Impedance Diagram S1002 starts S1004 to determine parameter S1006 scan S1008 acceptable? S1010 discards the new parameters of S1012? S1014 stopped
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/249,215 US8143904B2 (en) | 2008-10-10 | 2008-10-10 | System and method for testing an electrostatic chuck |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201030349A true TW201030349A (en) | 2010-08-16 |
TWI484195B TWI484195B (en) | 2015-05-11 |
Family
ID=42098290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW098134383A TWI484195B (en) | 2008-10-10 | 2009-10-09 | System and method for testing an electrostatic chuck |
Country Status (6)
Country | Link |
---|---|
US (2) | US8143904B2 (en) |
KR (1) | KR101670097B1 (en) |
CN (1) | CN102171809B (en) |
SG (1) | SG194409A1 (en) |
TW (1) | TWI484195B (en) |
WO (1) | WO2010042908A2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10656194B2 (en) * | 2014-10-28 | 2020-05-19 | Applied Materials, Inc. | Real-time measurement of a surface charge profile of an electrostatic chuck |
CN109545731B (en) * | 2018-11-20 | 2021-12-28 | 合肥京东方显示技术有限公司 | Transfer head, manufacturing method thereof, transfer method and transfer device |
US11437262B2 (en) * | 2018-12-12 | 2022-09-06 | Applied Materials, Inc | Wafer de-chucking detection and arcing prevention |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2973758B2 (en) * | 1993-01-06 | 1999-11-08 | 日新電機株式会社 | Electrostatic chuck |
TW334609B (en) * | 1996-09-19 | 1998-06-21 | Hitachi Ltd | Electrostatic chuck, method and device for processing sanyle use the same |
JPH10303287A (en) * | 1997-04-25 | 1998-11-13 | Mitsubishi Electric Corp | Electrostatic chuck equipment and semiconductor device |
US6075375A (en) * | 1997-06-11 | 2000-06-13 | Applied Materials, Inc. | Apparatus for wafer detection |
US6430022B2 (en) * | 1999-04-19 | 2002-08-06 | Applied Materials, Inc. | Method and apparatus for controlling chucking force in an electrostatic |
US6853953B2 (en) * | 2001-08-07 | 2005-02-08 | Tokyo Electron Limited | Method for characterizing the performance of an electrostatic chuck |
JP2004111310A (en) * | 2002-09-20 | 2004-04-08 | Nissin Ion Equipment Co Ltd | Charged voltage measuring device for substrate and ion beam irradiation device |
US20050022736A1 (en) | 2003-07-29 | 2005-02-03 | Lam Research Inc., A Delaware Corporation | Method for balancing return currents in plasma processing apparatus |
CN2807475Y (en) * | 2005-03-29 | 2006-08-16 | 北京北方微电子基地设备工艺研究中心有限责任公司 | Electrostatic chuck function testing device |
JP2008047564A (en) * | 2006-08-10 | 2008-02-28 | Tokyo Electron Ltd | Vacuum treatment apparatus, diagnosis method of electrostatic chuck, and storage medium |
JP5102500B2 (en) * | 2007-01-22 | 2012-12-19 | 東京エレクトロン株式会社 | Substrate processing equipment |
-
2008
- 2008-10-10 US US12/249,215 patent/US8143904B2/en active Active
-
2009
- 2009-10-09 TW TW098134383A patent/TWI484195B/en active
- 2009-10-10 SG SG2013074539A patent/SG194409A1/en unknown
- 2009-10-10 WO PCT/US2009/060290 patent/WO2010042908A2/en active Application Filing
- 2009-10-10 CN CN200980139294.3A patent/CN102171809B/en active Active
- 2009-10-10 KR KR1020117008224A patent/KR101670097B1/en active IP Right Grant
-
2012
- 2012-02-13 US US13/372,423 patent/US9082805B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
SG194409A1 (en) | 2013-11-29 |
WO2010042908A2 (en) | 2010-04-15 |
US20120153971A1 (en) | 2012-06-21 |
WO2010042908A3 (en) | 2010-07-15 |
US8143904B2 (en) | 2012-03-27 |
TWI484195B (en) | 2015-05-11 |
CN102171809A (en) | 2011-08-31 |
CN102171809B (en) | 2014-03-12 |
KR20110091649A (en) | 2011-08-12 |
US20100090711A1 (en) | 2010-04-15 |
US9082805B2 (en) | 2015-07-14 |
KR101670097B1 (en) | 2016-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100674972B1 (en) | System and method of measuring pulse properties of semiconductor device | |
JPH09152457A (en) | Electric wiring inspection method and apparatus | |
US10644234B2 (en) | Method for producing magnetic memory comprising magnetic tunnel junction element | |
TW201030349A (en) | System and method for testing an electrostatic chuck | |
KR20230006866A (en) | Method for measuring temperature-modulation characteristics of test samples | |
JP6420957B2 (en) | Test apparatus and method | |
JP2006013532A (en) | Apparatus and method for detecting soft breakdown of dielectric layer of semiconductor wafer | |
TW200947577A (en) | Evaluating method and measuring circuit of insulating film | |
WO2003050552B1 (en) | Testing current perpendicular to plane giant magnetoresistance multilayer devices | |
JP2000329818A (en) | Esd resistance evaluation method for electronic element, esd resistance testing device and esd resistance evaluation device | |
JP2023005270A (en) | Electronic component testing device | |
KR20190086463A (en) | Resistance measuring device and resistance measuring method | |
JP4467373B2 (en) | Resistance measuring method and apparatus | |
JPH0829475A (en) | Contact probe of mounted substrate inspection device | |
TWI516774B (en) | Method and apparatus of inspecting insulation | |
US20150369899A1 (en) | Method for characterising an electrical connection device intended to be hybridized to an electronic device | |
TW200952107A (en) | Testing unit and test system | |
TW201621333A (en) | Tester for device, method of operating switching circuit, and method of testing device | |
JP2002156402A (en) | Method and apparatus for inspecting characteristic of semiconductor element | |
JP4866998B2 (en) | Electronic device measuring device | |
TW200848751A (en) | Testing circuit and integrated circuit | |
CN113257788B (en) | Test structure and test method thereof | |
JP2023531875A (en) | Solution-free sensor calibration | |
JP2618926B2 (en) | Electrical property measurement system | |
GB2460310A (en) | Semiconductor arrangement and method of measuring a resistance |