TW201027577A - Parallel plate magnetic capacitor - Google Patents

Parallel plate magnetic capacitor Download PDF

Info

Publication number
TW201027577A
TW201027577A TW099100586A TW99100586A TW201027577A TW 201027577 A TW201027577 A TW 201027577A TW 099100586 A TW099100586 A TW 099100586A TW 99100586 A TW99100586 A TW 99100586A TW 201027577 A TW201027577 A TW 201027577A
Authority
TW
Taiwan
Prior art keywords
finger structure
parallel plate
interface
plane
capacitance value
Prior art date
Application number
TW099100586A
Other languages
Chinese (zh)
Inventor
James Chyi Lai
Original Assignee
Northern Lights Semiconductor
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Lights Semiconductor filed Critical Northern Lights Semiconductor
Publication of TW201027577A publication Critical patent/TW201027577A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • H01G4/385Single unit multiple capacitors, e.g. dual capacitor in one coil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

A magnetic capacitor includes a first conductive magnetic metal having a first upper finger located on an upper plane and a first lower finger located on a lower plane. The capacitor also includes a second conductive magnetic metal having a second upper finger and a second lower finger, the second upper finger located on the upper plane such that the second upper finger is next to the first upper finger forming a first interface and on top of the first lower finger forming a second interface, the second lower finger located on the lower plane such that the second lower finger is next to the first lower finger forming a third interface and below the first upper finger forming a fourth interface. Finally, the capacitor includes a dielectric material located in the first interface, the second interface, the third interface, and the fourth interface.

Description

201027577 . 六、發明說明: . 【發明所屬之技術領域】 本發明是有關於一種電能儲存裝置,且特別是有關於 一種平行板磁性電容器之裝置。 ' 【先前技術】 一般而言,平行板電容器的構造是由兩個平行的金屬 板及中間的絕緣材料所構成,電容值的計算可用公式(1)表 ❹ 示,而電容值對應之能量可用公式(2)表示:201027577. VI. Description of the Invention: 1. Field of the Invention The present invention relates to an electrical energy storage device, and more particularly to a device for a parallel plate magnetic capacitor. [Prior Art] In general, the construction of a parallel plate capacitor is composed of two parallel metal plates and an intermediate insulating material. The calculation of the capacitance value can be expressed by the formula (1), and the energy corresponding to the capacitance value is available. Equation (2) means:

c=e〇ekA r (1) E =(1/2)CV2 (2) 其中,C代表平行板電容器的電容值,e〇代表真空中的介 電常數,ek代表材料的相對介電常數,A代表平行板的介 面面積,r代表兩平行板間的距離,E是表示能量,而V是 施加的偏壓。公式(1)指出平行板電容器的電容值正比於平 行板的介面面積。舉例來說,請參考第1圖,其係為一傳 統的平行板電容器的剖面圖。該平行板電容器100包含: 一上導體板102、一下導體板104與一絕緣層106,其中該 絕緣層106在該上導體板102與下導體板104中間,該上 導體板102的寬度及深度分別是18單位及2單位,因此, A為18x2二16平方單位,其中電容值108正比於A。 如上述之平行板電容器100,在不改變ek與r的情況 下,為了增加平行板電容器的電容值,需增加兩導體板的 201027577 . 面積。因此,電容值與電容器尺寸之間,必須做出取捨, 否則要在電容器尺寸維持不變的情況下增加電容值,將會 遇到瓶頸。 因此本發明的目的就是在提供一種新平行板電容器, 在電容器的體積維持不變的情況下,用以增加電容值。 【發明内容】 本發明的目的就是在提供一種平行板磁性電容器,用 φ 以增加電容值,其中該平行板磁性電容器與傳統平行板電 容器的尺寸相同。該平行板磁性電容器包含:第一導電磁 性金屬、第二導電磁性金屬與一絕緣層。導電磁性金屬具 有指狀結構,並在指狀結構間產生電容值。 本發明的另一目的是在提供一種平行板磁性電容器, 其包含:第一導電磁性金屬具有第一上指狀結構位於一上 平面,以及第一下指狀結構位於一下平面,第一上指狀結 構電性連接於第一下指狀結構;第二導電磁性金屬具有第 φ 二上指狀結構以及第二下指狀結構,第二上指狀結構位於 該上平面,且係位於第一上指狀結構旁而形成第一界面, 並位於第一下指狀結構之上而形成第二界面,第二下指狀 結構位於該下平面,且位於第一下指狀結構旁而形成第三 界面,並位於第一上指狀結構之下而形成第四界面,第二 上指狀結構電性連接於第一下指狀結構;以及介電層位於 第一界面、第二界面、第三界面以及第四界面之中。 以下將以一實施例對上述之說明以及接下來的實施方 式做詳細的描述,並對本發明提供更進一步的解釋。 201027577 【實施方式】 需瞭解下列說明為提供不同的實施例,藉以實施本發 明的不同特徵。下列描述元件及配置的特定實施例係用以 簡化本發明說明,其當然僅為例示說明,而非用以限制。 請參照第2圖,其繪示依照本發明一實施例的一種平 行板磁性電容器的剖面圖。一磁性電容器200包含:第一 導電磁性金屬202、第二導電磁性金屬204與介電層206, 其中第一導電磁性金屬202具有第一上指狀結構208位於 上平面212,以及第一下指狀結構210位於下平面214,第 一上指狀結構208電性連接於第一下指狀結構210,其中 電性連接係經由導體片260,稍後會提供更進一步的解釋。 第二導電磁性金屬204具有第二上指狀結構218以及 第二下指狀結構220,第二上指狀結構218位於上平面 212,第二上指狀結構218係位於第一上指狀結構208旁, 在第一上指狀結構208的側面222與第二上指狀結構218 的側面224,形成第一界面226。再者,第二上指狀結構 218並位於該第一下指狀結構210之上,在第二上指狀結 構218的底面228與第一下指狀結構210的頂面230,形 成第二界面232。 同理,第二下指狀結構220位於下平面214,且位於 第一下指狀結構210旁,第一上指狀結構208的底面與第 二下指狀結構220的頂面形成第三界面234。在第二下指 狀結構220的侧面與第一下指狀結構210的側面,形成第 四界面236 〇 201027577c=e〇ekA r (1) E =(1/2)CV2 (2) where C represents the capacitance of the parallel plate capacitor, e〇 represents the dielectric constant in vacuum, and ek represents the relative dielectric constant of the material. A represents the interface area of the parallel plates, r represents the distance between the two parallel plates, E represents energy, and V is the applied bias. Equation (1) indicates that the capacitance of the parallel plate capacitor is proportional to the interface area of the parallel plate. For example, please refer to Figure 1, which is a cross-sectional view of a conventional parallel plate capacitor. The parallel plate capacitor 100 comprises: an upper conductor plate 102, a lower conductor plate 104 and an insulating layer 106, wherein the insulating layer 106 is intermediate the upper conductor plate 102 and the lower conductor plate 104, and the width and depth of the upper conductor plate 102 They are 18 units and 2 units respectively. Therefore, A is 18x2 and 16 square units, and the capacitance value 108 is proportional to A. As in the parallel plate capacitor 100 described above, in order to increase the capacitance value of the parallel plate capacitor without changing ek and r, it is necessary to increase the area of the two-conductor plate 201027577. Therefore, between the capacitance value and the capacitor size, a trade-off must be made. Otherwise, the capacitor value will be increased while the capacitor size remains unchanged, and a bottleneck will be encountered. It is therefore an object of the present invention to provide a new parallel plate capacitor for increasing the capacitance value while maintaining the volume of the capacitor. SUMMARY OF THE INVENTION It is an object of the present invention to provide a parallel plate magnetic capacitor with φ to increase the capacitance value, wherein the parallel plate magnetic capacitor is the same size as a conventional parallel plate capacitor. The parallel plate magnetic capacitor includes a first conductive magnetic metal, a second conductive magnetic metal, and an insulating layer. The conductive magnetic metal has a finger-like structure and produces a capacitance value between the finger structures. Another object of the present invention is to provide a parallel plate magnetic capacitor comprising: a first conductive magnetic metal having a first upper finger structure on an upper plane, and a first lower finger structure on a lower plane, a first upper finger The second structure is electrically connected to the first lower finger structure; the second conductive magnetic metal has a first φ upper finger structure and a second lower finger structure, and the second upper finger structure is located on the upper plane, and is located at the first Forming a first interface adjacent to the upper finger structure, and forming a second interface on the first lower finger structure, the second lower finger structure is located on the lower plane, and is located beside the first lower finger structure to form a second interface a third interface, and is located under the first upper finger structure to form a fourth interface, the second upper finger structure is electrically connected to the first lower finger structure; and the dielectric layer is located at the first interface, the second interface, Among the three interfaces and the fourth interface. The above description and the following embodiments will be described in detail with reference to an embodiment, and further explanation of the invention. 201027577 [Embodiment] It is to be understood that the following description is provided to illustrate various embodiments of the invention. The following description of the specific embodiments of the present invention is intended to be illustrative of the invention and is not intended to be limiting. Referring to FIG. 2, a cross-sectional view of a parallel plate magnetic capacitor in accordance with an embodiment of the present invention is shown. A magnetic capacitor 200 includes: a first conductive magnetic metal 202, a second conductive magnetic metal 204, and a dielectric layer 206, wherein the first conductive magnetic metal 202 has a first upper finger structure 208 on the upper plane 212, and a first lower finger The second structure 208 is electrically connected to the first lower finger structure 210, wherein the electrical connection is via the conductor piece 260, which will be further explained later. The second conductive magnetic metal 204 has a second upper finger structure 218 and a second lower finger structure 220. The second upper finger structure 218 is located on the upper plane 212, and the second upper finger structure 218 is located on the first upper finger structure. Next to the 208, a first interface 226 is formed on the side 222 of the first upper finger 208 and the side 224 of the second upper finger 218. Furthermore, the second upper finger structure 218 is located above the first lower finger structure 210, and forms a second surface 228 of the second upper finger structure 218 and the top surface 230 of the first lower finger structure 210. Interface 232. Similarly, the second lower finger structure 220 is located on the lower plane 214 and is located beside the first lower finger structure 210. The bottom surface of the first upper finger structure 208 forms a third interface with the top surface of the second lower finger structure 220. 234. On the side of the second lower finger structure 220 and the side of the first lower finger structure 210, a fourth interface 236 〇 201027577 is formed.

介電層206位於第一界面226、第二界面232、第三界 面234以及第四界面236之中,其中第一界面226、第二 界面232、第三界面234以及第四界面236相對產生的電 容值分別為第一電容值238、第二電容值240、第三電容值 242以及該第四電容值244。舉例來說’每個界面產生的電 容值為4單位’當第一導電磁性金屬202以及該第二導電 磁性金屬204載有電壓時,第一電容值238、第二電容值 24〇、第三電容值242以及該第四電容值244之合為該磁性 電容器之總電容值,其係為16單位。 此外’當第一導電磁性金屬202和第二導電磁性金屬 204經電性偏壓後’它們會具有磁性極化於本身中,其中 第2圖所示的箭號便是代表磁性極化。此處的極化是電動 力學中波(如:光和其他電磁輻射)的一個重要特性,其與 ,波(如:常見的聲波)不同,電磁波是三維的橫波,且正 是由於其向量特性,從而產生出極化這一現象。 匕研參照第2圖,第一導電磁性金屬2〇2更包含第三上 狀、^構246,且第一導電磁性金屬2〇4更包含第三下指 構2伯’用以產生額外之電容值25〇、2S2及254。第 結構246位於第二上指狀結構218對面第一上指The dielectric layer 206 is located in the first interface 226, the second interface 232, the third interface 234, and the fourth interface 236, wherein the first interface 226, the second interface 232, the third interface 234, and the fourth interface 236 are relatively generated. The capacitance values are a first capacitance value 238, a second capacitance value 240, a third capacitance value 242, and the fourth capacitance value 244, respectively. For example, 'the capacitance value generated by each interface is 4 units'. When the first conductive magnetic metal 202 and the second conductive magnetic metal 204 carry a voltage, the first capacitance value 238, the second capacitance value 24 〇, and the third The sum of the capacitance value 242 and the fourth capacitance value 244 is the total capacitance value of the magnetic capacitor, which is 16 units. Further, when the first conductive magnetic metal 202 and the second conductive magnetic metal 204 are electrically biased, they will have magnetic polarization in themselves, and the arrow shown in Fig. 2 represents magnetic polarization. Polarization here is an important characteristic of electrodynamic waves (such as light and other electromagnetic radiation). Unlike waves (such as common acoustic waves), electromagnetic waves are three-dimensional transverse waves, and because of their vector characteristics. , thus producing the phenomenon of polarization. Referring to FIG. 2, the first conductive magnetic metal 2〇2 further includes a third upper shape, and the first conductive magnetic metal 2〇4 further includes a third lower finger 2' for generating additional Capacitance values are 25〇, 2S2 and 254. The first structure 246 is located opposite the first upper finger 218 and the first upper finger

力、=2G8的另-旁。同理,該磁性電容器謂的結構 依此類推,第一暮雷诚,卜士 a @ J 雷㈣⑽ 屬2G2所有的指狀結構彼此間 間電性連接。 金屬撕所有的指狀結構彼此 為了說明兩電容器 100與電容器200,其中 具有相同尺寸,此處稱之為電容器 且電容器200的電容值大於電容器 201027577 Γ 2^ 4 208 ^ ^ ( ^ Ϊ疋因:第木t是2單位),且每個指狀結構有相同的尺 寸。因此,第1容值為4平方單位,其餘的電容 2W244···^^^Force, = 2G8's other side. Similarly, the magnetic capacitor is said to have the same structure, the first 暮雷诚, 士士 a @ J 雷(四)(10) belongs to 2G2 all the finger structures are electrically connected to each other. The metal tears all the finger structures to each other in order to illustrate the two capacitors 100 and the capacitor 200, which have the same size, referred to herein as a capacitor and the capacitance value of the capacitor 200 is greater than the capacitor 201027577 Γ 2^ 4 208 ^ ^ ( ^ Cause: The first wood t is 2 units) and each finger structure has the same size. Therefore, the first capacitance is 4 square units, and the remaining capacitance is 2W244···^^^

指狀結構間彼此的距離為2單位,在寬18單位且深2單位 的磁性電容器2G0中,有13個電容值,其均為彳平方單位, 總電容值相當於52平方單位。請參照第1圖,平行板電容 益100的電谷值為36平方單位。電容器200的電容值幾乎 為電容器100#電容值的M倍,幾乎增加了 5〇%。此外, 有鑑於上述用於本發明實施例中電容器 因此可使用更多種介電材料,且其介電常數二:健 存時因磁性效應而有數量級數的增加。如此一來,平行板 磁性電谷器的電谷便可因磁效應或所謂的「巨磁電容效應 (Colossal Magnetic Capacitance effect)」而有所增加。平行 板磁性電谷器的電容可利用下述等式(a)來作運算取得:The distance between the finger structures is 2 units, and in the magnetic capacitor 2G0 having a width of 18 units and a depth of 2 units, there are 13 capacitance values, which are all 彳 square units, and the total capacitance value corresponds to 52 square units. Referring to Figure 1, the parallel cell capacitor 100 has an electric valley value of 36 square units. The capacitance value of the capacitor 200 is almost M times the capacitance value of the capacitor 100#, which is almost increased by 〇%. Furthermore, in view of the above-described capacitors used in the embodiments of the present invention, a wider variety of dielectric materials can be used, and their dielectric constants two: an increase in the order of magnitude due to magnetic effects during storage. As a result, the electric valley of the parallel plate magnetic grid can be increased by the magnetic effect or the so-called "Colossal Magnetic Capacitance effect". The capacitance of the parallel plate magnetic grid can be obtained by the following equation (a):

• Q — e^ekecMcA r (a) 其中eCMc是因巨磁電容效應所產生之係數。此外,上述第 一導電磁性金屬202和第二導電磁性金屬204,可使用如 CoNiFe..·等合金磁性材料來製作。 請參照第3圖,係繪示依照本發明另一較佳實施例的 一種平行板磁性電容器的俯視圖。第一上指狀結構208、 第三上指狀結構246與類似的上指狀結構256均位於上平 面212,第一下指狀結構210與類似的下指狀結構258皆 201027577 位於下平面214。如先前所述,在上平面212上,第一婁 電材料202的指狀結構έ由 片& 面2Μ上,第一導電:3體月260電性連接,·在下平 ⑽電性連接。狀結__片 經由短接262電性連接 二12 = 广= 短接262在第-導電磁性金物上的其^;構其中 發明較佳實施例可知,在本發明之磁性電容 構可增加電容值。且=二器:f:情況下’本發明之結 料減少,係由於使用不同‘行板:相:::所需的導體材 容值’而傳統平行板電容器只靠兩塊平=狀結構產生電 如此一來,本發明之平行板磁性電容ϋ所Ϊ產生電容值。 加’使得該平行板磁性電容器的重量減^的介電物質增 換句話說’假如電容值不需要增加 板磁性電容H的電容值與傳統平行板電,本發明之平行 了,那麼電容器的體積可以縮小。依照上^器相同的情況 器,使用相同的幾何結構,電容器可擴充崦實施例的電容 上述實施例可知-結構圖,其中該結構圖J數個平面’由 狀電極分別位於不同平面的相對的角落.L含兩個第一柱 極分別位於不同平面_餘角落。舉例=㈣二柱狀電 柱狀電極分別位於第—平面之右角落,以二二假如二第一 角落;則二第二柱狀電極分別位於第—平第二平面之左 及第二平面之右角落;—絕緣層位於第之左角落,以 二柱狀電極之間,其中第一柱狀電極以及^狀電極以及第 間產生電容值。 年二柱狀電: 201027577 * 根據上述之結構圖,在第二平面下,可增加第三平面, . 用以擴充電容器。一第三柱狀電極與一第四柱狀電極在第 二平面上,並且與第二平面之柱狀電極產生電容值。 根據前述實施例’介電材料可圍繞於磁性層之間,以 獲件巨磁電容(c〇l〇ssal magnet〇 capacitance)’而介電材料 在7°件操作時其等效介電常數可高達1〇9的數量級數。此 外’磁性電容器在製作上相較於傳統平板電容器而言,可 節省原先所需的重量、體積和製作成本,而成為具有高附 ❿ 加價值的電容器。 雖然本發明已以實施方式揭露如上,然其並非用以限 疋本發明,任何本領域具通常知識者,在不脫離本發明之 精神和範園内’當可作各種之更動與潤飾,因此本發明之 保護範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 第1圖是一種傳統平行板電容器的剖面圖。 鲁第2圖係繪示依照本發明一較佳實施例的一種平行板 磁性電容器的剖面圖。 第3圖係繪示依照本發明另一較佳實施例的一種平行 板磁性電容器的俯視圖。 【主要元件符號說明】 10〇 ·傳統平行板電容器 102 :上導體板 104 :下導體板 106 :絕緣層 201027577• Q — e^ekecMcA r (a) where eCMc is the coefficient due to the giant magneto-capacitance effect. Further, the first conductive magnetic metal 202 and the second conductive magnetic metal 204 described above can be produced using an alloy magnetic material such as CoNiFe.. Referring to Figure 3, there is shown a plan view of a parallel plate magnetic capacitor in accordance with another embodiment of the present invention. The first upper finger structure 208, the third upper finger structure 246 and the similar upper finger structure 256 are both located on the upper plane 212, and the first lower finger structure 210 and the similar lower finger structure 258 are both 201027577 located in the lower plane 214. . As previously described, on the upper plane 212, the finger structure of the first germanium material 202 is formed by the sheet & face 2, the first conductive: 3 body month 260 is electrically connected, and the lower layer (10) is electrically connected. The junction of the magnetic capacitor structure of the present invention can be increased by the short circuit connection 262 electrically connecting two 12 = wide = shorting 262 on the first conductive magnetic gold material. value. And = two: f: In the case of the invention, the reduction of the material is due to the use of different 'row plates: phase::: required conductor material capacity' and the conventional parallel plate capacitors rely on only two flat = structures In this way, the parallel plate magnetic capacitor of the present invention generates a capacitance value. Adding 'the dielectric material that reduces the weight of the parallel plate magnetic capacitor, in other words, 'If the capacitance value does not need to increase the capacitance value of the plate magnetic capacitance H and the conventional parallel plate, the parallel of the present invention, then the volume of the capacitor Can be reduced. According to the same case of the upper device, the same geometry can be used, and the capacitor can be expanded. The capacitance of the embodiment can be seen from the above embodiment - the structural diagram, wherein the number of planes of the structure J is located opposite to each other in different planes The corner .L has two first poles located in different planes_left corners. For example, (4) the two columnar electric columnar electrodes are respectively located at the right corner of the first plane, and the second columnar electrodes are respectively located at the left and the second plane of the second plane of the first plane. a corner; the insulating layer is located at the left corner of the first column, between the two columnar electrodes, wherein the first columnar electrode and the electrode and the inter-electrode generate a capacitance value. Year 2 columnar electricity: 201027577 * According to the above structure diagram, in the second plane, the third plane can be added, to expand the capacitor. A third columnar electrode and a fourth columnar electrode are on the second plane, and a capacitance value is generated with the columnar electrode of the second plane. According to the foregoing embodiment, the dielectric material may be surrounded between the magnetic layers to obtain a bulk magnetic capacitance (c〇l〇ssal magnet〇capacitance)', and the dielectric constant of the dielectric material when operating at 7° may be Up to 1〇9 order of magnitude. In addition, the magnetic capacitor can save the original weight, volume and manufacturing cost compared with the conventional flat-plate capacitor, and become a capacitor with high added value. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any person skilled in the art can make various changes and refinements without departing from the spirit and scope of the present invention. The scope of protection is subject to the definition of the scope of the patent application. [Simple description of the drawing] Fig. 1 is a cross-sectional view of a conventional parallel plate capacitor. Figure 2 is a cross-sectional view showing a parallel plate magnetic capacitor in accordance with a preferred embodiment of the present invention. Figure 3 is a plan view showing a parallel plate magnetic capacitor in accordance with another preferred embodiment of the present invention. [Description of main component symbols] 10〇 · Conventional parallel plate capacitor 102: Upper conductor plate 104: Lower conductor plate 106: Insulation layer 201027577

108 : 電容值 200 202 : 第一導電材料 204 206 : 絕緣層 208 210 : 第一下指狀結構 212 214 : 下平面 218 220 : 第二下指狀結構 222 224 : 侧面 226 228 : 底面 230 232 : 第二界面 234 236 : 第四界面 238 240 : 第二電容值 242 244 : 第四電容值 246 248 : 第三下指狀結構 250 252 : 電容值 254 256 : 類似的上指狀結構 258 260 : 導體片 262 平行板電容器 第二導電材料 第一上指狀結構 上平面 第二上指狀結構 侧面 第一界面 頂面 第三界面 第一電容值 第三電容值 第三上指狀結構 電容值 電容值 類似的下指狀結構 短接 11108 : capacitance value 200 202 : first conductive material 204 206 : insulating layer 208 210 : first lower finger structure 212 214 : lower plane 218 220 : second lower finger structure 222 224 : side 226 228 : bottom surface 230 232 : Second interface 234 236 : fourth interface 238 240 : second capacitance value 242 244 : fourth capacitance value 246 248 : third lower finger structure 250 252 : capacitance value 254 256 : similar upper finger structure 258 260 : conductor Sheet 262 parallel plate capacitor second conductive material first upper finger structure upper plane second upper finger structure side first interface top surface third interface first capacitance value third capacitance value third upper finger structure capacitance value capacitance value Similar lower finger structure shorted 11

Claims (1)

201027577 , • 七、申謗專利範園·· • 1. 一種平行板磁性電容器,包含: 上^第—導電磁性金屬,具有―第—上指狀結構㈣- ΐ::禮Γ一第一下指狀結構位於-下平面,該第-上 扣狀…構電性連接於該第一下指狀結構; 一第二導電磁性金屬,具有一第二上指 第二下指狀結構’該第二上指狀結構與該第二構 該第二上指狀結構位於該上平面=第: > 扣狀、、、。構係位於該第一上指狀結構旁而形成一 U第:上指狀結構並位於該第一下指狀結構之上而形 一丨面,該第二下指狀結構位於該下平面,該第一 下指狀結構係位於該第一下指狀結構旁而形 t 结構並位於該第一上指狀結構之下:形 战第四界面;以及 一介電材料位於該第-界面、該第二界面 面以及該第四界面之中。 罘—界 发中申清專利範圍第1項所述之平行板磁性電容器, 二〇第一上指狀結構、該第-下指狀結構、該第二上沪 狀結構以及該第二下指狀結構係磁性金屬線。 曰 如申料請第β所叙平行板雜電容哭, 二二當該第—導電磁性金屬以及該第二導電磁性金屬“ ^而具有磁性極化時,該第—界面,該第二界面, 二界面’以及該細界面助對產生該第―電容值,該/ 12 201027577 ^ 二電容值,該第三電容值,以及該第四電容值。 4. 如申請專利範圍第3項所述之平行板磁性電容器, 其中該第一電容值、該第二電容值、該第三電容值以及該 第四電容值之合為該磁性電容器之一總電容值。 5. 如申請專利範圍第1項所述之平行板磁性電容器, 其中該第一導電磁性金屬更包含一第三上指狀結構位於該 φ 上平面,該第三上指狀結構係位於該第二上指狀结構之另 一旁而形成一第五界面,該第三上指狀結構電性連接於該 第一下指狀結構。 6. 如申請專利範圍第5項所述之平行板磁性電容器, 其中該第五界面產生該電容器之一第五電容值。 7. 如申請專利範圍第5項所述之平行板磁性電容器, ❿ 該第二導電磁性金屬更包含一第三下指狀結構位於該下平 面,該第三下指狀結構係位於該第三上指狀結構之另一旁 而形成一第六界面,該第三下指狀結構電性連接於該第二 上指狀結構。 8. 如申請專利範圍第7項所述之平行板磁性電容器, 其中該第六界面產生該電容器之一第六電容值。 13 201027577 9. 平面之右角落,以及一 種平行板磁性電容器,包含: 二個第一柱狀電極彼此電性連接, 平面之左角落; 平面之極彼此紐連接,並分職於該第〜 千面之^落,以及該第二平面之右角落;以及 ;1電層,位於該第一柱狀電極以及該第-柱狀雷& 之間,其中該第一柱狀雷柱狀電極 電容值。 往狀電極以及該第二柱⑯電極之間產生 突請專利範圍第9項所述之平行板磁性電容 器’其中該弟―柱狀電極具有—第—電壓,以及該第二挺 狀電極具有與該第-電壓不同之—第二電壓。 n_如申請專利範圍第9項所述之平行板磁性 ’其中該第一平面位於該第二平面之上 12. 如申請專利範圍第9項所述之平行板磁性 器,更包含: ^ 一第三柱狀電極位於一第三平面之右角落,其中該 三平面位於該第二平面之下;以及 一第四柱狀電極位於一第三平面之左角落。 13. 如申請專利範圍第12項所述之平行板磁性電容 器’其中第二柱狀電極具有該第一電壓,以及該第二挺狀 14 201027577 電極具有該第二電壓。 14.如申請專利範圍第12項所述之平行板磁性電容 器,其中該介電層位於該第三柱狀電極以及該第四柱狀電 極之間,其中該第一柱狀電極以及該第二柱狀電極之間產 生電容值。 15201027577 , • VII. Shen Yuan Patent Fan Park ·· 1. 1. A parallel plate magnetic capacitor, comprising: upper ^ first - conductive magnetic metal, with "first - upper finger structure (four) - ΐ:: 礼一一下The finger-shaped structure is located at a lower plane, the first-up button-shaped structure is electrically connected to the first lower finger-shaped structure; and the second conductive magnetic metal has a second upper finger and a second lower finger-shaped structure The second upper finger structure and the second structure of the second upper finger structure are located on the upper plane = the first: > button shape, . The structure is located beside the first upper finger structure to form a U: upper finger structure and is located above the first lower finger structure to form a meandering surface, the second lower finger structure is located in the lower plane, The first lower finger structure is located next to the first lower finger structure and is formed below the first upper finger structure: a fourth interface is formed; and a dielectric material is located at the first interface, The second interface surface and the fourth interface. The parallel plate magnetic capacitor according to item 1 of the patent scope of Shen Qingjie, the first upper finger structure, the first-lower finger structure, the second upper Shanghai structure and the second lower finger The structure is a magnetic metal wire. For example, please refer to the parallel plate capacitors in the beta, crying, and when the first conductive magnetic metal and the second conductive magnetic metal have magnetic polarization, the first interface, the second interface, The second interface 'and the fine interface help pair generate the first capacitance value, the / 12 201027577 ^ two capacitance value, the third capacitance value, and the fourth capacitance value. 4. As described in claim 3 a parallel plate magnetic capacitor, wherein the combination of the first capacitance value, the second capacitance value, the third capacitance value, and the fourth capacitance value is a total capacitance value of the magnetic capacitor. 5. The parallel plate magnetic capacitor, wherein the first conductive magnetic metal further comprises a third upper finger structure located on the upper plane of the φ, and the third upper finger structure is located on the other side of the second upper finger structure Forming a fifth interface, the third upper finger structure is electrically connected to the first lower finger structure. 6. The parallel plate magnetic capacitor of claim 5, wherein the fifth interface generates the capacitor One of the fifth 7. The parallel plate magnetic capacitor of claim 5, wherein the second conductive magnetic metal further comprises a third lower finger structure located in the lower plane, the third lower finger structure being located The other side of the third upper finger structure forms a sixth interface, and the third lower finger structure is electrically connected to the second upper finger structure. 8. The parallel plate according to claim 7 a magnetic capacitor, wherein the sixth interface generates a sixth capacitance value of the capacitor. 13 201027577 9. The right corner of the plane, and a parallel plate magnetic capacitor, comprising: the two first column electrodes are electrically connected to each other, the plane a left corner; a plane pole is connected to each other and is assigned to the first to the right of the second plane; and an electrical layer located at the first columnar electrode and the first column Between the thunder and the amp; wherein the first columnar columnar electrode capacitance value. The parallel electrode and the second column 16 electrode generate a parallel plate magnetic capacitor as described in claim 9 Brother-column The electrode has a -first voltage, and the second positive electrode has a second voltage different from the first voltage. n_parallel plate magnetic as described in claim 9 wherein the first plane is located The parallel plate magnetic device of claim 9, further comprising: ^ a third columnar electrode located at a right corner of a third plane, wherein the three plane is located at the second plane And a fourth columnar electrode is located at a left corner of a third plane. The parallel plate magnetic capacitor of claim 12, wherein the second columnar electrode has the first voltage, and the The second shape 14 201027577 electrode has the second voltage. 14. The parallel plate magnetic capacitor of claim 12, wherein the dielectric layer is between the third columnar electrode and the fourth columnar electrode, wherein the first columnar electrode and the second A capacitance value is generated between the columnar electrodes. 15
TW099100586A 2009-01-12 2010-01-11 Parallel plate magnetic capacitor TW201027577A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0900432A GB2466840B (en) 2009-01-12 2009-01-12 A parallel plate magnetic capacitor and electric energy storage device

Publications (1)

Publication Number Publication Date
TW201027577A true TW201027577A (en) 2010-07-16

Family

ID=40379451

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099100586A TW201027577A (en) 2009-01-12 2010-01-11 Parallel plate magnetic capacitor

Country Status (6)

Country Link
JP (2) JP2010161369A (en)
KR (1) KR20100083106A (en)
CN (1) CN101777422B (en)
FR (1) FR2941085A1 (en)
GB (1) GB2466840B (en)
TW (1) TW201027577A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683007A (en) * 2011-03-07 2012-09-19 詹前疆 Power storage element
US20140042987A1 (en) * 2012-08-09 2014-02-13 Northern Lights Semiconductor Corp. Lightning energy storage system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2700959B2 (en) * 1991-02-25 1998-01-21 三菱電機株式会社 Integrated circuit capacitors
US5208725A (en) * 1992-08-19 1993-05-04 Akcasu Osman E High capacitance structure in a semiconductor device
US5583359A (en) * 1995-03-03 1996-12-10 Northern Telecom Limited Capacitor structure for an integrated circuit
JP2000012381A (en) * 1998-06-25 2000-01-14 Toshiba Corp Thin film capacitor
US6570210B1 (en) * 2000-06-19 2003-05-27 Koninklijke Philips Electronics N.V. Multilayer pillar array capacitor structure for deep sub-micron CMOS
US6974744B1 (en) * 2000-09-05 2005-12-13 Marvell International Ltd. Fringing capacitor structure
US6737698B1 (en) * 2002-03-11 2004-05-18 Silicon Laboratories, Inc. Shielded capacitor structure
US7342755B1 (en) * 2005-01-26 2008-03-11 Horvat Branimir L High energy capacitor and charging procedures
US20080174933A1 (en) * 2007-01-19 2008-07-24 Western Lights Semiconductor Corp. Apparatus and Method to Store Electrical Energy
US20080174936A1 (en) * 2007-01-19 2008-07-24 Western Lights Semiconductor Corp. Apparatus and Method to Store Electrical Energy

Also Published As

Publication number Publication date
JP3180779U (en) 2013-01-10
CN101777422A (en) 2010-07-14
GB2466840B (en) 2011-02-23
GB2466840A (en) 2010-07-14
CN101777422B (en) 2013-02-13
FR2941085A1 (en) 2010-07-16
KR20100083106A (en) 2010-07-21
JP2010161369A (en) 2010-07-22
GB0900432D0 (en) 2009-02-11

Similar Documents

Publication Publication Date Title
TWI321330B (en) Monolithic capacitor
TWI229354B (en) Capacitor pair structure for increasing the match thereof
US6661640B2 (en) Multilayer ceramic electronic device
TWI564919B (en) Reserve power supply with electrode plates clipping with auxiliary conductors
CN102474203B (en) Electrostatic induction power generator
CN102790599B (en) Filter
Liu et al. Planar ultracapacitors of miniature interdigital electrode loaded with hydrous RuO2 and RuO2 nanorods
JP2017510042A5 (en)
TW200300948A (en) Multilayer capacitor
CN103415994B (en) Device for transfer surface sound wave
CN205195598U (en) Composite nanowire generator
TWI258865B (en) Longitudinal plate capacitor structure
JPWO2011155078A1 (en) Electric energy storage device
JP2009260353A (en) Apparatus for storing electric energy
TWI273613B (en) Capacitor structure
TW201027577A (en) Parallel plate magnetic capacitor
Li et al. Ultra-high output triboelectric nanogenerator based on synergies of material modification and charge pumping
Anagha et al. Simulation studies on the Design and Analysis of Interdigital and Fractal-Based Micro-Supercapacitors
CN203456296U (en) Double-surface aluminum-metalized polyester film with middle edges
TW201135766A (en) Energy storage device
TW201222589A (en) Solid-state super capacitor and manufacturing method thereof
Gong et al. Theoretical and experimental study of a monocharged electret for pressure sensor applications
WO2022021227A1 (en) Electrode plate, electrochemical device and electronic device
TWI626669B (en) Thin film capacitor and manufacturing method thereof
CN205751869U (en) A kind of stacked gas capacitor