TW201027154A - Optical transmission/reception module - Google Patents

Optical transmission/reception module Download PDF

Info

Publication number
TW201027154A
TW201027154A TW098107622A TW98107622A TW201027154A TW 201027154 A TW201027154 A TW 201027154A TW 098107622 A TW098107622 A TW 098107622A TW 98107622 A TW98107622 A TW 98107622A TW 201027154 A TW201027154 A TW 201027154A
Authority
TW
Taiwan
Prior art keywords
grating
wavelength
fiber
optical
fiber portion
Prior art date
Application number
TW098107622A
Other languages
Chinese (zh)
Other versions
TWI402550B (en
Inventor
Hiroyuki Ozaki
Satoshi Nishikawa
Masakazu Takabayashi
Masatoshi Katayama
Kiichi Yoshiara
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of TW201027154A publication Critical patent/TW201027154A/en
Application granted granted Critical
Publication of TWI402550B publication Critical patent/TWI402550B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres

Abstract

An optical transmission/reception module which can ensure the transmission quality without providing a collimating optical device and a narrow-band filter. A fiber (7) with a grating which has a function of the narrow-band filter to block transmission of an optical signal in a band other than a narrow band containing a wavelength of 1310 nm, a narrow band containing a wavelength of 1490 nm, and a narrow band containing a wavelength of 1550 nm is used as an optical fiber for transmitting an optical signal with the wavelength of 1310 nm that has passed through WDM filters (4, 5) to a station and transmitting optical signals with the wavelengths of 1490 nm and 1550 nm transmitted from the station to the WDM filter (5).

Description

201027154 六、發明說明: 【發明所屬之技術領域】 本發明係有關於光收發模組,且特別有關於搭載在使 用光纖來提供加入者最大傳輸速度1Gbit/秒的網路服務之 GE-P0N(Gigabit Ethernet-Passive Optical Network System)的加入者端光纖終端裝置(0ptical Ne1:w〇rk Unit, 〇NU)内’用來處理光信號與電信號的轉換之光收發模組。 胃 【先前技術】 GE-P0N系統是由設置於中央局之局端光纖終端裝置 (Optical Line Terminal, 0LT)、將傳送路徑分為最大 32 條之分光器、設置於加入者家中之加入者端光纖終端裝置 所構成。 局端光纖終端裝置向加入者端光纖終端裝置傳輸之下 行的資料/聲音信號分配到14 9 0 nm的波長,下行的類比影 • 像信號中分配到155 Onm的波長。 另一方面,加入者端光纖終端裝置向局端光纖終端裝 置傳輸之上行資料信號分配到131 〇的波長。 如此一來,GE-P0N系統使用能夠分割複數波長的分波 多工(Wavelength Division Multiplexing, WDM)技術,進 行一芯雙向的光通信。 但是GE-P0N系統中,下行的資料/聲音信號與類比影 像信號的光波長頻帶中必須設置保護頻帶。也就是說為了 避免上述光波長頻帶以外的光波長收發’必須要使用加入 2108-10361-PF 3 201027154 者端光纖終端裝置設置保護頻帶的光通訊模組。 如上所述,必須要使用加入者端光纖終端裝置設置保 護頻的光通訊模組’例如專利文獻1所揭露之收發模組 中,藉由使用WDM濾波器解多工複數波長的光信號,實現 心雙向的光通彳§。但是此收發模組中,瀘、波器與光 纖之間只是單純的光學元件鏡面連接,並不適合使用於要 在下行的資料/聲音信號與類比影像信號的光波長附近設 置保護頻帶的GE-P0N系統中。 第14圖為以專利文獻1所揭露的收發模組之發散光 (divergence light)所形成的濾波器特性之說明圖。第14 圖的矩形部分表示規格内容。 如第14圖所示,將發散光入射加入者端光纖終端裝置 的光收發模組内部的窄頻帶濾波器的情況下,光收發模組 的發散光會穿過保護頻帶(波長帶;Ι1_α)。 田保濩頻ΤΤ與資料/聲音信號與或類比影像信號的光 波長相#時’依入射光對窄頻帶濾波器的角度,窄頻帶遽 波器的濾過特性會有所改變,因此有必要保持窄頻帶爐波 器的滤過特性,並且確保傳輸品質。 要保持窄頻f濾波器的濾過特性並確保傳輸品質,最 好設置將光纖輸丨的發散光轉換為平行光的準直儀 (collimator)等,調整入射光對窄頻帶濾波器的角度。 例如專利文獻2中所揭露的收發裝置,該收發裝置設 置窄頻帶濾波器與準直儀。 第15圖為由專利文獻2所揭露的收發模組的平行光所201027154 VI. Description of the Invention: [Technical Field] The present invention relates to an optical transceiver module, and more particularly to a GE-P0N (on a network service that uses an optical fiber to provide a maximum transmission speed of 1 Gbit/s for a subscriber) Gigabit Ethernet-Passive Optical Network System) In the optical fiber terminal device (0ptical Ne1: w〇rk Unit, 〇NU), the optical transceiver module for processing the conversion of optical signals and electrical signals. Stomach [Prior Art] The GE-P0N system is a splitter that is installed in the central office by the Optical Line Terminal (0LT), which divides the transmission path into a maximum of 32, and is placed in the subscriber's home. The optical fiber terminal device is composed of. The data/sound signal transmitted by the central office fiber optic terminal device to the subscriber end fiber optic terminal device is allocated to the wavelength of 149 nm, and the downstream analog image is assigned to the wavelength of 155 Onm. On the other hand, the subscriber data terminal device transmits the uplink data signal transmitted to the central office fiber optic terminal device to a wavelength of 131 。. In this way, the GE-P0N system uses a Wavelength Division Multiplexing (WDM) technology capable of dividing a complex wavelength to perform one-core bidirectional optical communication. However, in the GE-P0N system, a guard band must be set in the optical wavelength band of the downlink data/sound signal and analog image signal. That is to say, in order to avoid transmission and reception of optical wavelengths other than the above-mentioned optical wavelength band, it is necessary to use an optical communication module in which a guard band is set by adding a 2108-10361-PF 3 201027154 optical fiber terminal device. As described above, it is necessary to use a subscriber-side optical fiber terminal device to set a frequency-protected optical communication module. For example, in the transceiver module disclosed in Patent Document 1, the WDM filter is used to solve the multiplexed optical signal of the complex wavelength. The two-way light of the heart is 彳§. However, in this transceiver module, only the optical components are mirror-connected between the 泸, the waver and the optical fiber, and are not suitable for the GE-P0N to be set in the vicinity of the optical wavelength of the downlink data/sound signal and the analog image signal. In the system. Fig. 14 is an explanatory diagram of filter characteristics formed by the divergence light of the transceiver module disclosed in Patent Document 1. The rectangular portion of Figure 14 shows the specifications. As shown in Fig. 14, in the case where a divergent light is incident on a narrowband filter inside the optical transceiver module of the subscriber fiber terminal device, the divergent light of the optical transceiver module passes through the guard band (wavelength band; Ι1_α). . When the field wavelength of the data and sound signals and or analog image signals is #, the filter characteristics of the narrow-band chopper will change depending on the angle of the incident light to the narrow-band filter, so it is necessary to keep it narrow. The filter characteristics of the band filter and ensure the transmission quality. To maintain the filtering characteristics of the narrow-band f filter and ensure the transmission quality, it is preferable to set a collimator that converts the divergent light of the optical fiber into parallel light, and adjust the angle of the incident light to the narrow-band filter. For example, the transceiver device disclosed in Patent Document 2 is provided with a narrowband filter and a collimator. Figure 15 is a parallel light of the transceiver module disclosed in Patent Document 2.

2108-10361-PF 4 201027154 形成的濾波器特性之說明圖。第15圖的矩形部分表示規格 内容。 如第15圖所示’設置波長帶(又ι_α)、又、,丄 ν Λ I + α ) 的保護頻帶’可以避開不必要光波長的收發。 又在專利文獻3中揭露傾斜的光纖光栅與不傾斜的光 纖光柵所組合的結構’來做為低反射且4〇dB以μ * Α上鬲穿透損2108-10361-PF 4 201027154 An illustration of the characteristics of the resulting filter. The rectangular portion of Fig. 15 indicates the specifications. As shown in Fig. 15, the guard band ' of the wavelength band (also ι_α), and 丄 ν Λ I + α ) can avoid transmission and reception of unnecessary light wavelengths. Further, in Patent Document 3, the structure in which the oblique fiber grating is combined with the non-tilted fiber grating is disclosed as low reflection and 4 〇 dB is transmitted through the μ * Α upper 鬲.

失的濾波器。僅使用傾斜光纖光柵並不容易獲得低反射且 φ 40dB以上高穿透損失的特性’但一般認為組合具有2〇dB 左右穿透損失的傾斜光纖光栅與不傾斜光纖光柵,可以獲 得低反射且40dB以上高穿透損失特性。 而像這樣使用光纖式濾波器的光收發模組的結構,並 不在此做說明。 專利文獻1 :特表2003-524789號公報(第2圖a) 專利文獻2:特開2005_26022〇號公報(段落[刚9]、 [0010]行、第4圖) • 專利文獻3 :特許第36丨278〇號 【發明内容】 發明欲解決的課題 習知的光收發模組如上 話可以保持窄頻帶濾波器的 置準直儀會增加零件的數目 的成本也會提高。 述的結構,因此設置準直儀的 特性並確保傳輪品質。然而設 ,使得小型化困難、零件材料 器使用傾斜的光纖光 又因為習知使用光纖光柵的濾波Lost filter. It is not easy to obtain low reflection and high penetration loss of φ 40dB or more using only slanted fiber gratings. However, it is generally considered that combining oblique fiber gratings with non-tilting fiber gratings with a transmission loss of about 2 〇 dB can achieve low reflection and 40 dB. Above high penetration loss characteristics. The structure of the optical transceiver module using the optical fiber filter as described above is not described here. Patent Document 1: Japanese Laid-Open Patent Publication No. 2003-524789 (Patent 2) A Patent Document 2: JP-A-2005-26022A (Polony [Just 9], [0010], 4th)) Patent Document 3: Licensed 36 丨 〇 【 【 【 【 【 【 【 【 【 发明 发明 发明 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The structure described thus sets the characteristics of the collimator and ensures the quality of the transfer wheel. However, it is difficult to miniaturize, and the material of the part material uses oblique fiber light because of the conventional filtering using fiber grating.

2108-10361-PF 5 201027154 桃來獲得20dB的高穿 (Bragg)反射波長帶或 了低反射特性。 透損失,增加感光強度的話在布拉格 損失波長帶容易產生殘留反射,減損 本發明為解決上述問題以不設置準直儀或 波益,進而獲得可確保傳送品f的光收發模組為目的。“ 做為由分波多工的裝 发置將穿透的第1波長帶的光信號 往局端傳送的同時,將由A娃恭,、, 將由局端發达的帛2及第3波長帶 光信號傳送至分波多工裝置的夯纏驴番 衣置的九纖裝置,本發明之光收發 模組使用具有阻止第i、第2及笛且册 弟2及第3波長帶以外的光信 穿透的窄頻帶濾波器功能的光柵光纖。 根據本發明’做為由分波多工的裝置將穿透的第"皮 長帶的光信號往局端傳送的同時,將由局端發送的第2及 第3波長帶的光信號傳送至分波多工裝置的光纖裴置,光 收發模組使用具有阻止帛i、第2及第3波長帶以外的光 信號穿透的窄頻帶濾波器功能的光栅光纖。而由於以上的 組成,本發明不必、設置準直儀或窄頻帶濾波器,而能夠^ 保傳送的品質,因此達到小型化以及減低零件材料的目的。 【實施方式】 實施例1 第1圖為根據本發明實施例1所顯示之光收發模组之 組成說明圖。第1圖所示之光收發模組會實裝於加 、 八者端 光纖終端裝置。 在第1圖中,發送模組丨將上行的資料電信號轉換為 2108-10361-PF 6 201027154 1310ηπι波長的光信號,再將此光波長輪出至WDM濾波器4。 接收模組2為第1接收模組,接收由WM濾波器4而 來的下行資料/聲音之149 Onm波長的光信號(包含第2波長 帶的光信號)後’將該光信號轉換成電信號。 接收模組3為第2接收模組’接收由接收由WDM濾波 器5而來的類比影像之1 550nm波長的光信號(包含第3波 長帶的光信號)後’將該光信號轉換成電信號。 Φ 第1圖中顯示由發送模組1所發送的第1波長帶的光 信號為1 31 〇nm ’接收模組2接收的第2波長帶的光信號為 149〇11111’接收模組3接收的第3波長帶的光信號為155〇11111, 但以上僅為一個例子,第1、第2及第3波長帶也可以是 其他的波長帶。 WDM濾、波器4為第1分波多工濾波器,—方面讓發送 模組1所輸出之波長1310nm的光信號穿透,往wdm濾波器 5端;一方面將穿透WDM濾波器5之波長U90nm的光信號 φ 反射至接收模組2端。 WDM瀘、波器5為第2分波多工濾波器,一方面讓穿透 WDM ;慮波器4之波長1310 nm的光信號穿透,往光纖連接器 6(f iber ferrule)端,同時讓光纖連接器6輸出波長14g〇nm 的光信號穿透,往WDM濾波器4端;一方面將光纖連接器 6輸出波長I550nm的光信號反射至接收模組3。WDM減波 器4、5構成整個分波多工裝置。 光纖連接器6是收容光拇光纖7的收容零件,在第1 圖中設置於鄰接WDM濾波器5之右侧。 2108-10361-PF 7 201027154 光栅光纖7 —方面傳輸穿透WDM濾波器5之波長 131 Onni的光信號,往連接器8端輸出,另一方面傳輸由連 接器8端入射之波長1490nm、155〇nm的光信號(由局端發 送的光信號)’往WDM濾波器5端輸出。光栅光纖7具有阻 止含波長1310ηιη的窄頻帶(第丄波長帶)、含波長U9〇nm 的乍頻ττ(第2波長帶)以及含波長1550 nm的窄頻帶(第3 波長帶)以外的頻帶之光信號穿透的窄頻帶濾波器之功能。 連接器8唯一連接零件,連接光柵光纖7的一端,且 連接單模光纖(single mode fiber)的一端。單模光纖的另 外一端連接於局端光纖終端裝置。 接著說明根據實施例1之光收發模組的運作。一開始 將說明加入者端光纖終端裝置内的光收發模組將上行資料 信號發送至局端光纖終端裝置的運作。 發送模組1接受上行資料的電信號後,將電信號轉換 為波長1310mn的光信號並將此光信號往WDM濾波器4輸 出。 WDM濾波器4接受從發送模組!來的波長131〇四的光 信號後,讓此光信號穿透,往WM濾波器5端。 WDM濾波器5將讓穿透ffDM濾波器4而來的波長13〗〇⑽ 的光信號穿透,並往光纖連接器6端。 因為波長131〇nm的光信號入射光纖連接器6,波長 UlOriin的光信號在光栅光纖7中傳輸,並從連接器8朝單 模光纖射出。 接著將說明加入者端光纖終端裝置内的光收發模組接2108-10361-PF 5 201027154 Peach to obtain a 20 dB high Bragg reflection wavelength band or low reflection characteristics. In order to solve the above problem, the present invention solves the above problems without providing a collimator or a wave, and further obtains an optical transceiver module capable of securing the transported product f. "As the optical signal of the first wavelength band that will be transmitted by the split-wave multiplexer is transmitted to the central office, it will be lighted by A, and will be lighted by the 帛2 and 3rd wavelengths developed by the central office. The signal is transmitted to the nine-fiber device of the split-wave multiplexing device of the split-wave multiplexing device, and the optical transceiver module of the present invention uses optical signal penetration preventing the i-th, second, and flute, and the second and third wavelength bands. The narrow-band filter function of the grating fiber. According to the invention, the device transmits the optical signal of the "long" strip to the central office by the split-multiplexing device, and the second and the second end are sent by the central office. The optical signal of the third wavelength band is transmitted to the optical fiber device of the split-wave multiplexing device, and the optical transceiver module uses a grating fiber having a function of a narrow-band filter that blocks the penetration of optical signals other than the 帛i, the second and third wavelength bands. However, due to the above composition, the present invention does not require a collimator or a narrow-band filter, and can ensure the quality of the transmission, thereby achieving the object of miniaturization and reduction of the material of the part. [Embodiment] Embodiment 1 FIG. Shown according to embodiment 1 of the present invention The optical transceiver module shown in Figure 1 is mounted on the add-on and eight-end fiber optic terminal devices. In Figure 1, the transmitting module converts the upstream data electrical signals into 2108-10361-PF 6 201027154 1310ηπι wavelength optical signal, and then the optical wavelength is rotated to the WDM filter 4. The receiving module 2 is the first receiving module, and receives the downlink data/sound generated by the WM filter 4. The 149 Onm wavelength optical signal (including the optical signal of the second wavelength band) is then converted into an electrical signal by the optical signal. The receiving module 3 is the second receiving module 'received by the receiving WDM filter 5 Analogous image 1 550nm wavelength optical signal (including the third wavelength band optical signal) and then 'convert the optical signal into an electrical signal. Φ Figure 1 shows the light of the first wavelength band transmitted by the transmitting module 1. The signal is 1 31 〇nm. The optical signal of the second wavelength band received by the receiving module 2 is 149〇11111. The optical signal of the third wavelength band received by the receiving module 3 is 155〇11111, but the above is only an example. The first, second and third wavelength bands may also be other wavelength bands. The wave filter 4 is a first wavelength division multiplexing filter, and the optical signal of the wavelength 1310 nm outputted by the transmitting module 1 is penetrated to the 5 end of the wdm filter; on the one hand, the wavelength of the WDM filter 5 is penetrated by U90 nm. The optical signal φ is reflected to the receiving module 2. The WDM 泸 and the waver 5 are the second multiplexed multiplex filter, which penetrates the WDM; the optical signal of the wavelength of 1310 nm of the filter 4 penetrates to the optical fiber. The connector 6 (f iber ferrule) end, at the same time, the optical connector 6 outputs an optical signal with a wavelength of 14 g 〇 nm to the WDM filter 4 end; on the one hand, the optical connector 6 outputs an optical signal having a wavelength of I550 nm to be received. Module 3. The WDM reducers 4, 5 constitute the entire split multiplexer. The optical fiber connector 6 is a housing member for accommodating the optical fiber 7 and is provided on the right side of the adjacent WDM filter 5 in Fig. 1 . 2108-10361-PF 7 201027154 The grating fiber 7 transmits an optical signal that penetrates the wavelength 131 Onni of the WDM filter 5 to the output of the connector 8 and transmits the wavelength of 1490 nm and 155 入射 incident from the end of the connector 8 on the other hand. The optical signal of nm (the optical signal transmitted by the central office) is output to the WDM filter 5 terminal. The grating fiber 7 has a narrow band (the second wavelength band) including the wavelength 1310 ηη, a 乍 frequency ττ (the second wavelength band) including the wavelength U9 〇 nm, and a band other than the narrow band (the third wavelength band) having a wavelength of 1550 nm. The function of a narrow band filter that the light signal penetrates. The connector 8 is the only connecting part that connects one end of the grating fiber 7 and is connected to one end of a single mode fiber. The other end of the single mode fiber is connected to the central end fiber optic terminal device. Next, the operation of the optical transceiver module according to the first embodiment will be described. Initially, the operation of the optical transceiver module in the subscriber end fiber optic terminal device to transmit the uplink data signal to the central office fiber optic terminal device will be described. After receiving the electrical signal of the uplink data, the transmitting module 1 converts the electrical signal into an optical signal having a wavelength of 1310 mn and outputs the optical signal to the WDM filter 4. The WDM filter 4 accepts the slave transmit module! After the light signal of the wavelength of 131〇, the light signal is transmitted to the end of the WM filter 5 . The WDM filter 5 will pass the optical signal of the wavelength 13 〇 (10) which penetrates the ffDM filter 4 to the end of the optical fiber connector 6. Since an optical signal having a wavelength of 131 〇 nm is incident on the optical fiber connector 6, the optical signal of the wavelength UlOriin is transmitted in the grating optical fiber 7 and is emitted from the connector 8 toward the single mode optical fiber. Next, the optical transceiver module in the subscriber end fiber optic terminal device will be described.

2108-10361-PF 8 201027154 收下行資料/聲音信號及類比影像信號的運作 局端光纖終端裝置所發送的下行資料/聲音信號為波 長1490nm的光信號,下行的類比影像信號為波長ι55〇的 光信號,兩個光信號在單模光纖中傳輸並往連接器8入射。 接著波長1490nm、1 550nm的光信號在光柵光纖7中傳 輸’從光纖連接器6往WDM濾波器5射出。 WDM濾波器5接收光栅光纖6傳來的波長149〇nm、 ^ 1550nm的光信號後,分離波長ΗΘΟηιη的光信號與波長 1550nm的光信號,讓波長1490nm的光信號穿透,往wdm 濾波器4端;波長1550nm的光信號反射向接收模組3端。 接收模組3接收WDM濾波器5傳來的波長155〇rm光信 號後’將波長1550nm的光信號轉換為電信號,輸出為電信 號的下行類比影像信號。 WDM濾、波器4將穿透WDM滤波器5之波長1490nm的光 信號往接收模組2端反射。 • 接收模組2接收WDM濾波器4來的波長i49〇nm的光信 號後,將波長1490nm的光信號轉換為電信號,輸出為電信 號的下行資料/聲音信號。 在此光柵光纖7會利用紫外光往光纖照射後折射率上 升的光感應折射率變化。 也就是說光栅光纖7在紫外光往光纖照射後,光纖的 核心(core)或外殼(cladding)會形成光栅,折射率周期性 地變化。 根據上述理由,光栅光纖7能夠只反射對應該週期的 2108-10361-PF 9 201027154 特定光波長,因此光栅光纖7做為具有光濾波器(窄頻帶淚 波器)功能的光纖裝置使用。 ~ 又因為光栅光線7能夠直接在光纖中非破壞性地形成 光栅,故可以用低成本製造。又因為能夠輕易地變化中心 波長、頻寬、反射率等光學特性,而具備低損失、小型化^ 高可靠度的優點。 第1圖的光收發模組中實裝的光栅光纖7雖然會讓含 波長1310nin的窄頻帶光信號、含波長ι49〇ηίπ的窄頻帶光 信號及含波長1550nm的窄頻帶光信號穿透,但會讓上述3 個窄頻帶以外的頻帶的光波長衰減,光柵光纖7具有這樣 的窄頻帶濾波器功能❶ 因此,不需要像習知的光收發模組一樣在内部具備窄 頻帶濾波器。也因為不需要將光波長從發散光轉換為平行 光’所以不需要像習知的光收發模組一樣配置準直儀。 光栅光纖7並且能夠讓含波長1310 nm的窄頻帶光信 號、含波長1 49 0nm的窄頻帶光信號及含波長155〇ηπι的窄 頻帶以外的頻帶光信號從核心往外殼能量擴散,確保反射 衰減量。 第2圖為表示光纖光栅特性的說明圖。如第2圖所示 並沒有設置窄頻帶濾波器與準直儀,在設有波長帶 (λΐ-α)、又、(λΗα)保護頻帶的GE-pon系統中,能夠 迴避逋需要的光波長收發。第2圖中矩形部分表示規格内 容。 如上所述根據實施例1 ’做為將穿透WDM濾波器4、5 2108-10361-PF 10 201027154 而來的波長131 Omn光信號傳送,同時傳送來自局端的波長 M90nm、155〇nm的光信號至濾波器5端的光纖,該光 纖會使用具有阻止(使其反射)含波長131〇nm的窄頻帶光 信號、含波長1490nm的窄頻帶光信號及含波長155〇nm的 窄頻帶以外的頻帶光信號透過的窄頻帶濾波器功能的光栅 光纖7來構成。因此不需要設置窄頻帶濾波器與準直儀, 而月b夠確保傳輸品質,最後達成小型化及零件材料成本減 低的效果。 實施例2 第3圖為根據本發明實施例2所顯示之光收發模组之 组成說明圖。在第3圖中,與說明實施例i的第】圖相同 標號者代表同樣的部分,在此省略說明。 光栅光纖連接器9收納相當於第1圖中光柵光纖7的 光柵部分。 光纖10的一端與收納於光柵光纖連接器9内的光栅光 ^ 纖連接,傳送穿透WDM濾波器5而來的波長1310ηιη的光信 號,往連接器8端輸出;另一方面傳送由連接器8端入射 的波長1490nm、1 550nm的光信號(由局端發送的光信號), 往WDM濾波器5端輸出。 在上述實施例1中,光纖連接器6與連接器8之間連 接光柵光纖7,因為藉由折射率變化將光柵光纖7的光栅 長度縮短,而成為光柵部分收納於光纖連接器6内的實施 例2。具體說明如下。 另外著眼於折射率變化量放大n倍,就能夠將第3圖2108-10361-PF 8 201027154 Receiving downlink data/sound signals and analog image signals The downlink data/sound signals transmitted by the central office fiber optic terminal devices are optical signals with a wavelength of 1490 nm, and the descending analog image signals are light with a wavelength of ι 55 〇. The signals, the two optical signals are transmitted in a single mode fiber and incident on the connector 8. Then, an optical signal having a wavelength of 1490 nm and 1 550 nm is transmitted through the grating fiber 7 to be emitted from the optical connector 6 to the WDM filter 5. The WDM filter 5 receives the optical signal of the wavelength 149〇nm and ^1550nm transmitted from the grating fiber 6, and then separates the optical signal of the wavelength ΗΘΟηιη and the optical signal of the wavelength of 1550 nm, and transmits the optical signal of the wavelength of 1490 nm to the wdm filter 4. The optical signal with a wavelength of 1550 nm is reflected to the end of the receiving module 3. The receiving module 3 receives the optical signal of the wavelength 155 〇rm transmitted from the WDM filter 5, and converts the optical signal having a wavelength of 1550 nm into an electrical signal, and outputs a downlink analog video signal of the electrical signal. The WDM filter and waver 4 reflects the optical signal of the wavelength of 1490 nm which penetrates the WDM filter 5 to the receiving module 2 end. • The receiving module 2 receives the optical signal of the wavelength i49 〇 nm from the WDM filter 4, converts the optical signal having a wavelength of 1490 nm into an electrical signal, and outputs a downlink data/sound signal of the electrical signal. Here, the grating fiber 7 changes the refractive index of the refractive index which is increased by the ultraviolet light after being irradiated to the optical fiber. That is to say, after the grating optical fiber 7 is irradiated to the optical fiber by ultraviolet light, a core or a cladding of the optical fiber forms a grating, and the refractive index changes periodically. For the above reasons, the grating fiber 7 can reflect only the specific wavelength of light corresponding to the period 2108-10361-PF 9 201027154, and therefore the grating fiber 7 is used as a fiber device having an optical filter (narrow band tear wave) function. ~ Since the grating light 7 can form the grating non-destructively directly in the optical fiber, it can be manufactured at low cost. Moreover, since it is possible to easily change the optical characteristics such as the center wavelength, the bandwidth, and the reflectance, it has the advantages of low loss, miniaturization, and high reliability. The grating fiber 7 installed in the optical transceiver module of Fig. 1 penetrates a narrow-band optical signal having a wavelength of 1310 nin, a narrow-band optical signal having a wavelength of ι49 〇 ηπ, and a narrow-band optical signal having a wavelength of 1550 nm, but The optical wavelengths of the bands other than the above three narrow bands are attenuated, and the grating fiber 7 has such a narrow band filter function. Therefore, it is not necessary to have a narrow band filter inside like a conventional optical transceiver module. Also, since it is not necessary to convert the wavelength of light from divergent light to parallel light, it is not necessary to configure the collimator like a conventional optical transceiver module. The grating fiber 7 can also diffuse a narrow-band optical signal having a wavelength of 1310 nm, a narrow-band optical signal having a wavelength of 190 nm, and a band optical signal having a wavelength other than a narrow band of 155 〇ηπι from the core to the outer casing to ensure reflection failure. Decrease. Fig. 2 is an explanatory view showing the characteristics of the fiber grating. As shown in Fig. 2, the narrowband filter and the collimator are not provided. In the GE-pon system with the wavelength band (λΐ-α) and (λΗα) protection band, the required wavelength of light can be avoided. Send and receive. The rectangular portion in Figure 2 indicates the specifications. According to the embodiment 1 as described above, the wavelength 131 Omn optical signal transmitted through the WDM filter 4, 5 2108-10361-PF 10 201027154 is transmitted while transmitting the optical signals of the wavelengths M90 nm and 155 〇 nm from the central office. To the fiber at the end of the filter 5, the fiber is used to block (make it) a narrow-band optical signal having a wavelength of 131 〇 nm, a narrow-band optical signal having a wavelength of 1490 nm, and a band light other than a narrow band having a wavelength of 155 〇 nm. The narrow-band filter function of the grating fiber 7 through which the signal is transmitted is constructed. Therefore, it is not necessary to provide a narrow-band filter and a collimator, and the monthly b is sufficient to ensure the transmission quality, and finally the miniaturization and the reduction of the cost of the parts and materials are achieved. Embodiment 2 FIG. 3 is a view showing the configuration of an optical transceiver module according to Embodiment 2 of the present invention. In the third embodiment, the same reference numerals are given to the same parts as those in the description of the embodiment i, and the description thereof will be omitted. The grating fiber connector 9 houses a grating portion corresponding to the grating fiber 7 in Fig. 1. One end of the optical fiber 10 is connected to the grating optical fiber housed in the grating optical fiber connector 9, and transmits an optical signal of a wavelength 1310 ηη which penetrates the WDM filter 5, and outputs it to the connector 8 end; An optical signal of 1490 nm and 1 550 nm (an optical signal transmitted by the central office) having an incident end at the 8th end is output to the WDM filter 5 terminal. In the first embodiment described above, the grating optical fiber 7 is connected between the optical fiber connector 6 and the connector 8, and the grating length of the grating optical fiber 7 is shortened by the refractive index change, and the grating portion is housed in the optical fiber connector 6. Example 2. The details are as follows. In addition, focusing on the magnification change of the refractive index by n times, the third figure can be

2108-10361-PF 11 201027154 、 中的光概光纖連接器9的光栅長度縮短為1/π2倍此一特 徵光柵光纖連接器9讓光纖連接器内的光織核心光栅化。 如此一來可以減少光纖多餘的長度處理空間,也就是 說能夠簡短光纖10的長度,因此加入者端光纖終端裝置可 以節省空間。由因為光纖長度的縮短,也可以達到材料成 本減低的目標。 因此,實施例2的光收發信模組比起實施例丨的光收 發信模組更能達成小型化、零件材料成本減低的效果。 實施例3 第4圖為根據本發明實施例3所顯示之光收發模組之 組成說明圖。在第4圖中,與第i圖及第3圖相同標號者 代表同樣的部分,在此省略說明。 光柵連接器11收納相當於第丨圖中光栅光纖7的光柵 部分。 在上述實施例1中,光纖連接器6與連接器8之間連 接光柵光纖7,因為藉由折射率變化將光拇光纖7的光概 長度縮短,而成為光柵部分收納於連接器8内的實施例3。 具體說明如下。 另外著眼於將折射率變化量放大〇倍,就能夠將將第 4圖中的光柵連接器U的光柵長度縮短為1/w2倍此一特 徵’光栅連接器U設置了讓連接器内域核心光栅化的部 份。 如此-來可以減少光纖多餘的長度處理空間,因此加 入者端光纖終端寰置可以節省空間。由因為光纖長度的縮 2108-10361-ρρ 201027154 短,也可以達到材料成本減低的目標。 因此’實施例3的光收發信模組比起實施例1的光收 發信模組更能達成小型化、零件材料成本減低的效果。 實施例4 第5圖為根據本發明實施例4所顯示之光收發模組之 組成說明圖。在第5圖中,與第1圖相同標號者代表同樣 的部分,在此省略說明。 參光柵插座12(grating receptacle)為一光模組零件, 設置於第5圖中鄰接WDM濾波器5的右側,連接單模光纖 的一端,並具有與光模組調整光軸功能及與外部連接器連 接的結構。 光柵插座12收納相當於第丨圖中光柵光纖7的光栅部 分。 在上述實施例1中’光纖連接器6與連接器8之間連 接光柵光纖7,因為藉由折射率變化將光柵光纖7的光柵 ϋ 長度縮短,而成為光柵部分收納於插座内的實施例4。具 體說明如下。 另外者眼於將折射率變化量放大η倍,就能夠將將第 5圖中的光栅插座12的光柵長度縮短為1/«2倍此一特 徵,光栅插座12讓插座内光纖核心光栅化。 如此一來可以減少光纖多餘的長度處理空間,因此加 入者端光纖終端裝置可以節省空間。由因為光纖長度的縮 短,也可以達到材料成本減低的目標。 因此’實施例4的光收發信模組比起實施例1的光收 2108-10361-pf 13 201027154 發信模組更能達成小型化、零件材料成本減低的效果。 實施例5 、第6圖為根據本發明實施例5所顯示之光收發模組用 的光纖光栅之組成說明圖。 如第6圖所示,外殼14以圓柱狀地包覆住核心13, 核心13具有傾斜光纖光柵部分15與雜光衰減用光纖部分 16° 在實施例5中,使用傾斜光纖光栅做為波長遽波器。 以下首先說明傾斜光纖光柵部分15的製作方法。光纖光栅 藉由將將光纖暴露於紫外光來製作。所使用的光纖最好是 /、連接於外部(連接器8端(參考第丨圖),穿透光的入射端) 至光收發模組間的光纖在核心直徑、數值孔徑(numericai aperture)等光學特性具有互換性的類型。若光學特性沒有 互換性的話,透過光纖連接器等與光收發信模組及外部光 纖連接的情況下,會產生連接的損失而形成信號劣化的原 因。在本實施例中,並不使用一般用於光痛訊的石英玻璃 系光纖(石英玻璃外殼與添加Ge(鍺)核心所形成),而使用 添加Ge與B(蝴)來提升感光度的光感應光纖。具體來說, 外殼同樣是石英玻璃,核心添加與B,使用模場直徑 (mode field diameter)、數值孔徑、外殼直徑與外部的單 模光纖(single mode fiber)相同格式的光纖,模場直徑為 約10 y m,數值孔徑為〇· 13 # m,外殼直徑為125 # m。 在光纖光栅曝光前為了提高感光度,於高壓氫氣(1〇〇 大氣壓)中處理2個星期後,照射Nd-YAG雷射(輸出功率 2108-10361-PF 14 201027154 200mW、波長266nm)形成光栅。曝光用雷射最好使用準分 子雷射(eXCinierlaser)。照射紫外光的部分先除去光纖的 保護層使它露出外殼,使其在接近相位光罩的狀態下曝光。 相位光罩會調整成以波長l 55//m帶為布拉格波長的 週期,光罩週期構造會設定與光纖延伸方向的垂直線夾$ 角的傾斜。0制定在—90。〜90。的範圍内。 在傾斜光纖光栅部分15,較布拉格波長短的波長端會 • 產生稱為外殼模式的穿透損失。週期均一的光栅下,外殼 模式損失會形成週期性的梳狀頻譜,而光栅内週期變化的 啁啾光柵(chirped grating)下,則頻譜形狀會平均化形 成寬廣形的頻譜。 為了說明光纖光柵的光學特性,我們使用第7圓中表 示傾斜光纖光栅部分15的頻譜測定範例圖。光纖光柵是在 使用光感應光織、相位光罩傾斜約3.丨。、光栅長度為5咖、 啁啾量為0.4nm的條件下曝光而得。第7圖表示穿透損失 •與反射頻譜。布拉格反射存在於波長1556nm〜1557nm,因 為將傾斜角度調整成為布拉格反射減小的條件下,因此反 射強度為-30dB以下較小的值。因為反射強度非常小上 述的波長中在穿透損失的頻譜並不會出現結構。在穿透損 失頻譜上比1553nm短的波長端所出現的損失為上述外殼 模式所造成的。光柵光纖因為有啁啾,梳狀的頻譜構造會 平均化。1 555nm附近的損失則是基本傳輸模式往高階的 LP11模式的反射所造成的頻譜構造,也稱為鬼線光栅。在 曝光前的光纖,這個模式穿輸損失較大而不會出現頻譜構 2108-10361-PF 15 201027154 造,藉由光拇曝光,核心的平均折射率提高,傳輸損失減 少,就會形成如第7圖般轉變為 ^失減 π斗·卢止^ a 八牙透相失。因為LP11 松式在先栅未曝光的光纖區域 c ^ ^ ^ I衣减故原來一般皆認為 反射強度不會變大’但卻因為夯 ,ή 為光栅不均一等的影響而有殘 留反射的情形發生。出現在第7The grating length of the optical fiber connector 9 in 2108-10361-PF 11 201027154 is shortened by 1/π 2 times. This feature grating fiber connector 9 rasterizes the optical fiber core in the fiber connector. In this way, the excess length processing space of the optical fiber can be reduced, that is, the length of the optical fiber 10 can be shortened, so that the subscriber-side optical fiber terminal device can save space. Due to the shortened fiber length, the goal of material cost reduction can also be achieved. Therefore, the optical transceiver module of the second embodiment can achieve a smaller size and a lower cost of parts and materials than the optical transceiver module of the embodiment. Embodiment 3 Fig. 4 is a view showing the configuration of an optical transceiver module according to Embodiment 3 of the present invention. In the fourth drawing, the same reference numerals are given to the same parts as those in the i-th and third figures, and the description thereof is omitted here. The grating connector 11 houses a grating portion corresponding to the grating fiber 7 in the second drawing. In the first embodiment, the grating optical fiber 7 is connected between the optical fiber connector 6 and the connector 8. Since the optical length of the optical fiber 7 is shortened by the refractive index change, the grating portion is housed in the connector 8. Example 3. The details are as follows. In addition, focusing on the magnification of the refractive index change by a factor of two, the grating length of the grating connector U in Fig. 4 can be shortened to 1/w2 times. This feature 'grating connector U is set to let the inner core of the connector The rasterized part. In this way, the excess length of the fiber can be reduced, so the add-in fiber optic terminal can save space. Due to the short length of the fiber length 2108-10361-ρρ 201027154, the goal of material cost reduction can also be achieved. Therefore, the optical transceiver module of the third embodiment can achieve a smaller size and lower cost of parts and materials than the optical transceiver module of the first embodiment. Embodiment 4 Fig. 5 is a view showing the configuration of an optical transceiver module according to Embodiment 4 of the present invention. In the fifth drawing, the same reference numerals as those in the first embodiment denote the same portions, and the description thereof will be omitted. The grating receptacle 12 is an optical module component disposed on the right side of the WDM filter 5 in FIG. 5, connected to one end of the single-mode fiber, and has an optical axis function and an external connection with the optical module. The structure of the connected device. The grating socket 12 houses a grating portion corresponding to the grating fiber 7 in the first drawing. In the above-described first embodiment, the grating optical fiber 7 is connected between the optical fiber connector 6 and the connector 8, and since the grating length of the grating optical fiber 7 is shortened by the refractive index change, the grating portion is housed in the socket. . The specific description is as follows. Further, by enlarging the refractive index change amount by n times, the grating length of the grating socket 12 in Fig. 5 can be shortened to 1/«2 times, and the grating socket 12 rasterizes the optical fiber core in the socket. In this way, the excess length processing space of the optical fiber can be reduced, so that the adder-side optical fiber terminal device can save space. Due to the shortening of the length of the fiber, the goal of material cost reduction can also be achieved. Therefore, the optical transceiver module of the fourth embodiment can achieve the effect of miniaturization and reduction in the cost of parts and materials compared to the light receiving module of the first embodiment of the optical transceiver 2108-10361-pf 13 201027154. Embodiment 5 and Fig. 6 are explanatory diagrams showing the composition of a fiber grating for an optical transceiver module according to Embodiment 5 of the present invention. As shown in Fig. 6, the outer casing 14 covers the core 13 in a cylindrical shape, and the core 13 has an inclined fiber grating portion 15 and a stray light attenuation fiber portion 16°. In the embodiment 5, the inclined fiber grating is used as the wavelength 遽. Waves. First, a method of fabricating the oblique fiber grating portion 15 will be described below. Fiber gratings are fabricated by exposing the fibers to ultraviolet light. The fiber used is preferably /, connected to the outside (connector 8 end (refer to the figure), the incident end of the light penetration) to the optical fiber between the optical transceiver module in the core diameter, numerical aperture (numericai aperture), etc. Optical properties are of an interchangeable type. If the optical characteristics are not interchangeable, when the optical transceiver module or the external optical fiber is connected through a fiber connector or the like, a loss of connection occurs and a signal is deteriorated. In this embodiment, the quartz glass-based optical fiber (the quartz glass casing and the added Ge (germanium core)) generally used for the photo-chancement is not used, and the light in which the sensitivity is added by adding Ge and B (butterfly) is used. Induction fiber. Specifically, the outer casing is also quartz glass, and the core is added with B. The mode field diameter, the numerical aperture, and the outer diameter of the casing are the same as that of the external single mode fiber. The mode field diameter is About 10 ym, the numerical aperture is 〇· 13 # m, and the outer diameter is 125 # m. In order to increase the sensitivity before the fiber grating exposure, after treatment for 2 weeks in high-pressure hydrogen gas (1 Torr atmosphere), a Nd-YAG laser (output power 2108-10361-PF 14 201027154 200 mW, wavelength 266 nm) was irradiated to form a grating. Exposure lasers are best used with a quasi-molecular laser (eXCinierlaser). The portion that illuminates the ultraviolet light first removes the protective layer of the optical fiber to expose it to the outer casing, exposing it in a state close to the phase mask. The phase mask is adjusted to a period in which the wavelength of 55 k/m is the Bragg wavelength, and the mask period configuration sets the tilt of the angle of the vertical line with the direction in which the fiber extends. 0 is formulated at -90. ~90. In the range. In the oblique fiber grating portion 15, a wavelength end shorter than the Bragg wavelength causes a penetration loss called a casing mode. Under a uniformly uniform grating, the loss of the outer casing mode creates a periodic comb-like spectrum, and under the chirped grating with periodic variations in the grating, the spectral shape is averaged to form a broad spectrum. To illustrate the optical characteristics of the fiber grating, we use an example of the spectrum measurement of the oblique fiber grating portion 15 in the seventh circle. The fiber grating is etched using light-induced light, and the phase mask is tilted by about 3. The grating length is 5 coffee, and the amount of germanium is 0.4 nm. Figure 7 shows the penetration loss and the reflection spectrum. The Bragg reflection exists at a wavelength of 1556 nm to 1557 nm, and since the tilt angle is adjusted to a condition that Bragg reflection is reduced, the reflection intensity is a value smaller than -30 dB. Since the reflection intensity is very small, the spectrum of the penetration loss in the above wavelength does not have a structure. The loss occurring at the wavelength end shorter than the 1553 nm in the transmission loss spectrum is caused by the above-described housing mode. Because of the flaws in the grating fiber, the comb-like spectral structure is averaged. The loss around 1 555 nm is the spectral structure caused by the reflection of the basic transmission mode to the higher order LP11 mode, also known as the ghost line grating. In the fiber before exposure, this mode has a large loss of transmission and does not occur in the spectrum structure 2108-10361-PF 15 201027154. With the light thumb exposure, the average refractive index of the core is increased, and the transmission loss is reduced. 7 shows a change to ^ loss π bucket · Lu stop ^ a eight teeth through the loss. Because the LP11 loose type is in the unexposed fiber area c ^ ^ ^ I, it is generally considered that the reflection intensity does not become large, but because of the 夯, ή is the effect of the uneven reflection of the grating and there is residual reflection. occur. Appeared in the 7th

皮長 1 554nm〜1 555M 的反射強度伽左右的構造就是如同上述殘 起的結果。 因為布拉格反射強度以及外殼模式和鬼線光栅的穿透 損失會依傾斜角度而改變,因此要獲得所希望的特性,必 須要調整曝光時光罩的傾斜肖度。特別是布拉格反射具有 對光柵傾斜角度敏感的相依特質。光纖光栅的長度越長、 曝光造成的折射率變化越大,穿透損失就越大,但是曝光 所產生的折射率變化會因為使用的光纖特性而有一定的上 限。因此,為了要獲得所希望的穿透損失,首先假定固有 的適合的折射率變化於要使用的光纖上,接著考慮能夠獲 得必要的穿透損失所需要的光柵長度來進行曝光。 要在GE-P0N用光收發模組中使用,波長濾波器的特性 必須是在波長131〇nm帶的使用波長λ A、1490nm帶的使用 波長λ b以及155Onm帶使用的波長又c之穿透損失較小, 在使用波長附近的保護頻帶(例如波長帶λ C- α )穿過損失 較大’並且在這些波長帶有較低反射。 假定光栅長度50mm、光柵傾斜角度4. 5。、曝光造成的 折射率變化2χΚΓ3的情況下,光纖光柵的穿透反射頻譜(計 算結果)顯示於第8圖中。 2108-10361-PF 16 201027154 要實現所要求的穿透損失波長寬(例如1. 5 nm),使用 啁歌光栅。光纖光柵的布拉格波長最大值與最小值的差, 也就是啁啾量設為2· 7nm。又為了減低反射,則假定在光 栅兩端的部分做使折射率變化量緩緩減小的切趾處理。The structure of the reflection intensity of about 1 554 nm to 1 555 M is the result of the above-mentioned residual. Since the Bragg reflection intensity and the penetration loss of the shell mode and the ghost line grating vary depending on the tilt angle, it is necessary to adjust the tilt of the mask during exposure in order to obtain the desired characteristics. In particular, the Bragg reflection has a dependent property that is sensitive to the tilt angle of the grating. The longer the length of the fiber grating, the greater the refractive index change caused by the exposure, the greater the penetration loss, but the refractive index change caused by the exposure will have a certain upper limit due to the characteristics of the fiber used. Therefore, in order to obtain the desired penetration loss, it is first assumed that the inherently suitable refractive index changes over the fiber to be used, and then the exposure is performed in consideration of the grating length required to obtain the necessary penetration loss. To be used in the GE-P0N optical transceiver module, the characteristics of the wavelength filter must be the wavelength λ A in the wavelength band 131 〇 nm, the wavelength λ b used in the 1490 nm band, and the wavelength used in the 155Onm band. The loss is small, the protection band near the wavelength of use (eg wavelength band λ C-α ) has a large loss through ' and has a lower reflection at these wavelengths. 5。 The grating length is 50mm, the grating tilt angle is 4.5. In the case where the refractive index change due to exposure is 2 χΚΓ 3, the transmission reflection spectrum (calculation result) of the fiber grating is shown in Fig. 8. 2108-10361-PF 16 201027154 To achieve the required penetration loss wavelength (eg 1.5 nm), use a chorus grating. The difference between the maximum and minimum values of the Bragg wavelength of the fiber grating, that is, the amount of 啁啾 is set to 2.7 nm. Further, in order to reduce the reflection, it is assumed that a portion of both ends of the grating is subjected to an apodization process in which the amount of change in refractive index is gradually reduced.

從第8圖中,可以確認在1 552ηπι的使用波長;1C穿透 損失小、在比使用波長短的波長端的保護頻帶(波長帶 λ C- α )穿透損失在4〇dB以上(參照第8a圊)、反射強度小 (參考第8b圖)這些事項,並得知計算上滿足要求的規格。 因為光纖核心内的光栅傾斜是光罩傾斜角度的約145 倍,製作時光罩傾斜角度定於31度。但是測定實際試作 讀光纖光柵的穿透頻譜時,發現了在光栅部分產生於外殼 部分傳輸的雜光,使得穿透損失減小的問題。我們對於這 樣的問題,利用外殼傳輸光在光纖保護層介面所造成的衰 減,並藉由在光纖光栅的端部設置雜光衰減用光纖部分來 找出能夠迴避穿透損失的方法。而要獲得4〇άβ以上的穿透 :失,經過測定我們確認、了最好設置雜光衰減用光纖部 分。第9圖顯示對於同—個傾斜光纖光栅部分,改變雜 光哀減用光纖部分1 6的長度所測定的穿透損失之結果。從 第9圓中’可以知道要得到4〇⑽以上的穿透損失,最二 設置16cm以上的雜光衰減用光纖部分16。 ’最好在上述 上的雜光衰減 因此,要使用於GE-P0N用的光收發模組 的傾斜光纖光栅部分15附加上長度16cm以 用光纖部分1 6。 關於反射特性,進行改變傾斜角度的試作,確認了在From Fig. 8, it can be confirmed that the use wavelength is 1 552 ηι; the 1C penetration loss is small, and the transmission band (wavelength band λ C- α ) at the wavelength end shorter than the use wavelength has a penetration loss of 4 〇 dB or more (refer to 8a圊), the reflection intensity is small (refer to Figure 8b), and it is known that the calculation meets the required specifications. Since the grating tilt in the core of the fiber is about 145 times the tilt angle of the mask, the tilt angle of the mask is set at 31 degrees. However, when the penetration spectrum of the fiber grating was actually measured, the stray light generated in the grating portion was found to be transmitted in the casing portion, so that the penetration loss was reduced. For such problems, we use the outer casing to transmit light in the fiber protective layer interface, and find a way to avoid the penetration loss by providing a portion of the fiber grating at the end of the fiber grating. However, it is necessary to obtain a penetration of 4 〇άβ or more: after measurement, it is confirmed that it is preferable to provide a fiber portion for stray light attenuation. Fig. 9 shows the results of the penetration loss measured by changing the length of the fiber portion 16 for the astigmatism for the same oblique fiber grating portion. It is known from the ninth circle that a penetration loss of 4 〇 (10) or more is obtained, and at least a fiber light portion 16 for the stray light attenuation of 16 cm or more is provided. Preferably, the stray light attenuation is as described above. Therefore, the inclined fiber grating portion 15 for the optical transceiver module for the GE-P0N is attached with a length of 16 cm for the optical fiber portion 16. With regard to the reflection characteristics, a test to change the tilt angle was confirmed.

2108-10361-PF 17 201027154 么1附近的反射強度極小。藉由調整最適合的傾斜角度、 光拇平均的曝光,能夠獲得良好的低反射特性。 藉由以上本實施例所說明的光纖光栅,在使用於 GE-P0N用的光收發模組的波長領域内能夠獲得必要的波長 特性,因此可以實現實施例1與實施例3所說明的運作, 而達成加入者端光纖終端裝置的省空間化。 實施例62108-10361-PF 17 201027154 The reflection intensity near the 1 is extremely small. Good low reflection characteristics can be obtained by adjusting the most suitable tilt angle and light average exposure. According to the fiber grating described in the above embodiment, the necessary wavelength characteristics can be obtained in the wavelength range of the optical transceiver module for the GE-P0N, so that the operations described in the first embodiment and the third embodiment can be realized. The space saving of the subscriber end fiber optic terminal device is achieved. Example 6

第1〇圖為根據本發明實施例6所顯示之光收發模組用 之光纖光桃構造說明圖。 如第10圖所示,本實施例中做為一個光纖光栅,使用 傾斜光纖光拇部分17a(第1種光栅光纖群)及連結 用非傾斜光纖光栅部分17b(第2種光栅光纖群)兩個光^ 部分所連結的構造°與第6圖相同標號者代表同樣的部 分,在此省略說明。 光纖會使用與實施例5相同的光感應光纖。以下將說 明各別的光栅特性。Fig. 1 is a view showing the configuration of a fiber optic peach for an optical transceiver module according to a sixth embodiment of the present invention. As shown in Fig. 10, in the present embodiment, a fiber grating is used, and the oblique fiber optical portion 17a (the first grating fiber group) and the non-tilting fiber grating portion 17b (the second grating fiber group) are used. The same reference numerals as in the sixth embodiment denote the same portions, and the description thereof will be omitted. The same optical sensing fiber as in Embodiment 5 is used for the optical fiber. The individual grating characteristics will be explained below.

連結用傾斜光纖光栅部分17a是以具有布拉格反射 小的傾斜角度及外殼模式導致的12._以上的穿透捐 來製作。又連結用非傾斜光纖光栅部分m是以在連結 傾斜光纖光栅部分1 7a Μ μ,+、k h Μ 丨仏的上述外殼模式損失波長下生成 拉格反射這樣的週期,央制 來製作於接近連結用傾斜光纖光 部分17a的位置。备接,、,、* ^ 蚨後乂連結用傾斜光纖光柵部分i 7 連結用非傾斜光纖光柵部分 > 刀及雜光衮減用光纖部 這樣的順序連結製作。遠姓 建、用傾斜光纖光栅部分1 7a ^The connecting inclined fiber grating portion 17a is produced by a penetration of 12._ or more caused by a small angle of inclination of the Bragg reflection and a casing mode. Further, the non-tilted fiber grating portion m for connection is a cycle in which a lattice reflection is generated at a wavelength of the outer casing mode in which the oblique fiber grating portions 17a Μ μ, +, kh Μ 连结 are connected, and the central system is manufactured to be close to the link. The position of the optical fiber portion 17a is inclined. For the connection, the slanting fiber grating portion i 7 is connected to the non-tilted fiber grating portion > the knives and the stray light reduction fiber portion are sequentially connected. Far surname build, use oblique fiber grating part 1 7a ^

2108-10361-PF 18 201027154 外部(連接器8端(參考第j 有可能各別地曝光,也有可 的相位光罩一起曝光,但— 光。 圖))連接的一端。各別的光栅 能使用對應的兩種形式所形成 般偏好能夠減低成本的—起曝 連結用非傾斜光纖光柵部分Hb具有布拉格反射所導 致的反射強度大的波長帶,此波長帶的中心波長為布拉格 波長。連結用傾斜光纖光栅部分na之穿透損失巨大的波 籲帶盡可此地包含連結用非傾斜光纖光桃部分爪的反射 波長帶’因此能夠減低由外部端所看見的連結用非傾斜光 纖光栅部分17b的布拉格反射強度。若是在連結用非傾斜 光纖光栅部分l7b的布拉格反射波長帶裡包含了連結用傾 斜光纖光柵部分l7a的穿透損失小的波長,這個波長從外 部端看到的反射強度會增大。 如上所述,在使由外部端看的連結用非傾斜光纖光栅 φ 部分1 ?b的布拉格反射強度減小的狀態下,全光纖光栅的 穿透知失在連結用非傾斜光纖光栅部分丨7b的布拉格反射 波長帶會特別地增大,因此做為光收發模組所使用的波長 濾波器,穿透阻止波長範圍最好包含於上述布拉格波長帶 裡。又在穿透阻止波長範圍較廣的情況下,可以藉由將光 罩啁啾化來擴大波長範圍。 做為波長位置的相對關係,由於外殼模式所形成的穿 透損失會在比布拉格反射短的波長生成,將穿透阻止波長 (包含於連結用非傾斜光纖光柵部分17b的布拉格反射所 形成的穿透損失波長帶)設置於比連結用傾斜光纖光柵部 2108-10361-PF 19 201027154 分17a的布拉格波長帶短的波長端,並且不要讓布拉格反 射在比連結用㈣光纖光柵部4 i7a㈣拉格波長帶長的 波長端產生’如此—來就可以減低由外部端所看見的連結 用非傾斜光纖光栅部分17b的布拉格反射強度。因為連結 用傾斜光纖光栅㈣17a的布拉格強度藉由調整傾斜角度 咸J所以可以得到在全波長都有反射強度小的波長減波 器特性。 “2108-10361-PF 18 201027154 External (connector 8 end (refer to j may be exposed separately, there is also a phase reticle exposed together, but - light. Fig.)) One end of the connection. The respective gratings can be reduced in cost by using the corresponding two forms. The non-tilted fiber grating portion Hb for the exposure connection has a wavelength band with high reflection intensity caused by Bragg reflection, and the center wavelength of the wavelength band is Prague wavelength. The wave loss of the connecting oblique fiber grating portion na is large, and the reflection wavelength band of the connecting non-tilted fiber peach portion claws can be included. Therefore, the non-tilted fiber grating portion for connection which is seen by the external end can be reduced. 17b Bragg reflection intensity. If the wavelength of the transmission loss of the connecting oblique fiber grating portion 17a is small in the Bragg reflection wavelength band of the non-tilting fiber grating portion 17b for connection, the reflection intensity of this wavelength from the outer end is increased. As described above, in the state where the Bragg reflection intensity of the non-tilted fiber grating φ portion 1 ? b for connection for the connection viewed from the external end is reduced, the penetration of the all-fiber grating is lost in the non-tilted fiber grating portion 丨 7b for connection. The Bragg reflection wavelength band is particularly increased, so that as the wavelength filter used in the optical transceiver module, the penetration blocking wavelength range is preferably included in the above-mentioned Bragg wavelength band. In the case where the penetration prevention wavelength range is wide, the wavelength range can be enlarged by deuterating the mask. As a relative relationship of the wavelength positions, the penetration loss due to the outer casing pattern is generated at a wavelength shorter than the Bragg reflection, and the penetration preventing wavelength (the piercing reflection included in the non-tilted fiber grating portion 17b for connection) is formed. The transmission loss wavelength band is disposed at a wavelength end shorter than the Bragg wavelength band of the connection oblique fiber grating portion 2108-10361-PF 19 201027154 minutes 17a, and does not allow the Bragg reflection at the ratio (4) fiber grating portion 4 i7a (four) Lager wavelength The wavelength end of the strip produces 'as a' to reduce the Bragg reflection intensity of the non-tilted fiber grating portion 17b for connection seen from the outer end. Since the Bragg intensity of the oblique fiber grating (4) 17a is adjusted by adjusting the inclination angle of the salt J, it is possible to obtain a wavelength reducer characteristic having a small reflection intensity at all wavelengths. "

在所希望的穿透阻止波長範圍内,在連結用傾斜光纖 光栅部分na之光穿透損失與在連結用非傾斜光纖光拇部 分1 7b之光穿透損失分別以L1 (dB)、L2(dB)表示時,必須 滿足「Llh2.5’ L1+L2“G」(第丨條件)。 又在上述穿透阻止波長範圍與在傾斜光栅的布拉格波 長帶的傾斜光栅反射率分別以m⑽、R2⑽表示,在穿 透阻止波長範圍的非傾斜光柵的反射率以RO(dB)表示時, 必須滿足以下第(1)式(第2條件) —Ill _/iU+2IlIn the desired penetration preventing wavelength range, the light penetration loss of the oblique fiber grating portion na for connection and the light transmission loss of the optical portion 11b of the non-tilting fiber for connection are respectively L1 (dB), L2 ( When expressed in dB), "Llh2.5' L1+L2 "G" (the third condition) must be satisfied. Further, in the above-mentioned penetration preventing wavelength range and the oblique grating reflectance in the Bragg wavelength band of the oblique grating, respectively, m(10), R2(10), and when the reflectance of the non-tilted grating in the penetration blocking wavelength range is expressed by RO (dB), it is necessary to Satisfy the following formula (1) (2nd condition) - Ill _ / iU + 2Il

l〇l〇gp〇-+l〇—]^25) ^^_25 (] 滿足上述第1及第2條件同時’能夠調整連結用傾 光纖光栅部分l7a的傾斜光栅傾斜角度、週期、雜光衰 用光纖4分16的長度,達成在上述穿透阻止波長範圍的 濾'波器全體之光穿读θ 穿透知失取小值在40dB以上以及全波 帶的反射率在-25dB以下。 舉例來說,連姓田仏, °用傾斜光纖光栅部分1 7a的長 45mm、連結用非傾斜也 、、先纖光柵部分1 7b長度1 〇min、相位L〇l〇gp〇-+l〇—]^25) ^^_25 (] satisfies the above first and second conditions while simultaneously adjusting the tilt angle, period, and noise of the tilted grating of the connected tilted fiber grating portion l7a With the length of the fiber 4 minutes, the light penetration of the filter in the above-mentioned penetration-preventing wavelength range is achieved. The penetration of the light is less than 40 dB and the reflectance of the full band is below -25 dB. In other words, even the surname Tian Hao, ° with the inclined fiber grating portion 17 7a length 45mm, the connection non-tilt also, the fiber grating portion 17b length 1 〇 min, phase

2108-10361-PF 20 201027154 罩傾斜角度3」。…周啾量2.7酿、折射率變化匕幻沪、有 切趾處理,在這樣條件的連結光纖光柵特性計算結果表示 於第11®中。我們可以看出穿透損失(參考第Ua圖)、反 射(參考f Ub圖)中任一個皆滿足上述的條件。切趾處理 為6階超高斯(super Gaussian)分佈,但也可以是2階或 4階超高斯分佈。2108-10361-PF 20 201027154 Cover tilt angle 3". ...The amount of 2.7 brewing, refractive index change, illusion, and apodization, and the calculation results of the connected fiber grating characteristics under such conditions are shown in the 11th. We can see that any of the penetration loss (refer to the Ua diagram) and the reflection (refer to the f Ub diagram) satisfy the above conditions. The apodization process is a 6th-order super Gaussian distribution, but it can also be a 2nd or 4th order super Gaussian distribution.

在第11a圖中,1 550帶可以看到有波長寬2nm _4〇dBIn Figure 11a, the 1 550 band can be seen with a wavelength width of 2 nm _4 〇 dB.

以上的大穿透損失,這是由如前述連結用非傾斜光纖光拇 部分m的布拉格反射所導致。另—方面,從這個波長帶 到短波長端之間的寬廣的穿透損失是由連、结用傾斜光纖光 栅部分17a的外殼模式穿透損失所導致,兩個光拇的波長 位置之相對關係如前所述。又第u圖中可以看見的155〇⑽ 帶的兩種類反射帶中’短波長端為連結用非傾斜光纖光拇 部分m的布拉格反射由於連結用傾斜光纖光柵部分na 的外殼模式穿透損失而減低的結果。長波長端為連結用傾 斜光纖光柵部分i7a的布拉格反射強度,由於傾斜角度的 調整而減低。 這樣連接構造的光纖光柵比起實施例5中所說明的] 個種類的傾斜光纖光栅,對於相同折射率變化量較容易得 到光纖長度短且穿透損失高的結果,因此有製造較易的效 果。又傾斜光栅的每單位長度的嗎啾量能做大,因此有較 易獲得低反射特性的效果 藉由以上本實施例所說明的光纖光柵,在使用於 GE-P0N用的光收發模組的波長領域内能夠獲得必要的波長The above large penetration loss is caused by Bragg reflection of the optical portion m of the non-tilted fiber as described above. On the other hand, the wide penetration loss from this wavelength band to the short wavelength end is caused by the loss of the outer casing mode of the slanted fiber grating portion 17a, and the relative position of the wavelength positions of the two optical arms. As mentioned earlier. In the two types of reflection bands of the 155 〇 (10) band which can be seen in Fig. u, the short-wavelength end is the Bragg reflection of the optical portion b of the non-tilted fiber for connection, and the outer mode mode penetration loss of the inclined yoke grating portion na is Reduce the result. The Bragg reflection intensity at the long wavelength end of the coupled oblique fiber grating portion i7a is reduced by the adjustment of the tilt angle. The fiber grating of such a connection structure has a shorter length of the fiber and a higher penetration loss for the same refractive index change amount than the inclined fiber grating of the type described in the fifth embodiment, and thus has a relatively easy manufacturing effect. . Further, the amount of erbium per unit length of the slanted grating can be made larger, so that the effect of obtaining the low reflection characteristic is easier. The fiber grating described in the above embodiment is used in the optical transceiver module for the GE-P0N. The necessary wavelengths can be obtained in the wavelength field

2108-10361-PF 201027154 特性,因此可以實現會始 現實施例1與實施例3所說明的運 而達成加入者端光纖終端裝置的省空間化。 實施例7 第12圖為根據本發明實施例 光纖光栅的構造說明圖。 之先收發杈組用 如第1 2圖所示,太音始/士 連…1… 光纖光栅,使用 種::栅部…連結用第2傾斜光栅部分 =1種光栅光纖群)與連結用非傾斜光纖 咖第2種光栅光纖群)所連結的構造。因此傾斜光栅呈現 2種傾斜先栅部分18a、18b的連結結構。與第6圖或第10 圖相同標號者代表同樣的部分,在此省略說明。 =使用與實施例5及實施…同的光感應光 纖。以下將說明各別的光柵特性。 傾斜光纖部分是將連結用第i傾斜光桃部分.(第 1(傾斜)光栅)以布拉格反射較小的傾斜角度製作,並將連 傾斜光柵部分18b(第2(傾斜)光栅)以同樣傾斜角 又。在第1光拇與第2光栅,以同樣的週期與同樣的 ㈣量做到穿透損失波長的重疊,但會做到將帛i光柵的 順F加BraggG加ing)減小,切是料單位長度的 啁啾量增大。如此-來,第1光栅的反射率可以比第2光 柵的反射率來得小。 連結用非傾斜光纖光栅部分17b與雜光衰減用光纖部 實施例6減的方法製作。連結用非傾斜光纖 光柵h 17b(非傾斜光柵)是以在傾斜光柵的上述外殼模 2108^1〇361-Pp 22 201027154 式損失波長下會生成布拉格反射這樣的週期,製作於接近 傾斜光栅部分18b的位置。最後以連結用帛i傾斜光拇部 分18a、連結用第2傾斜光柵部分m、連結用非傾斜光纖 光柵部分17b及雜光衰減用光纖部分16這樣的順序連結製 作。連結用第1傾斜光栅部> 18a是與外部連接的一端。 各別的光柵有可能各別地曝光’也有可能使用對應的兩種With the characteristics of 2108-10361-PF 201027154, it is possible to realize the space saving of the subscriber-side optical fiber terminal device as described in the first embodiment and the third embodiment. Embodiment 7 Fig. 12 is a view showing the configuration of a fiber grating according to an embodiment of the present invention. For the first transmission and reception group, as shown in Fig. 2, the sound of the beginning of the sound is too long. 1... Fiber grating, the type of use:: the gate is used to connect the second oblique grating portion = 1 type of grating fiber group) The structure in which the non-tilted fiber coffee type 2 grating fiber group is connected. Therefore, the inclined grating exhibits a joint structure of the two inclined first gate portions 18a, 18b. The same reference numerals as those in Fig. 6 or Fig. 10 denote the same portions, and the description thereof will be omitted. = The same optical sensing fiber as in Example 5 and the implementation was used. The individual grating characteristics will be explained below. The inclined fiber portion is formed by connecting the ith oblique peach portion (the first (inclination) grating) with a small inclination angle of Bragg reflection, and tilting the connected oblique grating portion 18b (second (tilted) grating) Corner again. In the first optical thumb and the second grating, the overlap of the transmission loss wavelength is achieved in the same period and the same (four) amount, but the cis F plus BraggG plus ing) of the 帛i grating is reduced. The amount of unit length increases. In this way, the reflectance of the first grating can be made smaller than the reflectance of the second grating. The non-tilting fiber grating portion 17b for connection and the fiber portion for stray light attenuation were produced by the method of Example 6. The non-tilted fiber grating h 17b for connection (non-tilted grating) is a period in which a Bragg reflection is generated at a wavelength loss of the above-mentioned casing mode 2108^1 361-Pp 22 201027154 of the oblique grating, and is formed in the approaching oblique grating portion 18b. s position. Finally, the connection is made by connecting the y1 oblique light thumb portion 18a, the second inclined grating portion m for connection, the non-tilting fiber grating portion 17b for connection, and the stray light attenuation fiber portion 16. The first inclined grating portion for connection > 18a is one end that is connected to the outside. Individual gratings may be exposed separately. It is also possible to use the corresponding two

形式所形成的相位光罩-起曝光,但__般偏好能夠減低成 本的一起曝光。 在所希望的穿透阻止波長範圍,上述第1傾斜光栅的 光穿透損失、上述第2傾斜光柵的光穿透損失及上述非傾 斜光柵的光穿透損失分別以L11(dB)、L21(dB)、L2(dB)表 示時,必須滿足「L1122.5, L11+L21212.5, L2 215」(第 3條件)。 在上述穿透阻止波長範圍與在上述第1傾斜光栅的布 拉格波長帶的上述第1傾斜光栅光反射率分別以 β11((1Β)、R12(dB)表示;在上述非傾斜光栅的布拉格反射 導致的穿透損失波長帶與在上述第i及第2傾斜光柵的布 拉格波長帶的上述第2傾斜光柵光反射率分別以 R21(dB)、R22(dB)表示時,必須滿足以下第(2)式及第(3) 式(第4條件)。 ^11 R21+2L11 R0+2LU+2L2\ lOlogJlO^+10——f +1(Γ—~ϊό—~]幺一25 …(2) R12 R22 lOlogPOi+lcT^]幺-25 ...(3) 2108-10361-PF 23 201027154 滿足上述第3及第4條件同時’能夠調整光柵傾斜角、 週期、雜光衰減用光纖的長度,達成在上述穿透阻止波手 範圍的光濾波器全體之光穿透損失最小值在4DdB以上以 及全波長帶的反射率在-2 5dB以下。 舉例來說,連結用第1傾斜光栅部分18a的長度i 〇mm、 連結用第2傾斜光栅部分18b的長度35mm、連結用非傾斜 光纖光柵部分17b長度1 Omm、相位光罩傾斜角度3丨。、喝 啾量2. 7rm、折射率變化1.2χΗΓ3、與實施例6相同的切趾 處理’這樣的話可以獲得穿透損失、反射任一個接滿足上 述的條件的特性。 這樣連接構造的光纖光柵比起實施例6中所說明的2 個種類的傾斜光纖光栅,較容易得到低反射特性且製造較 易的效果。這是因為考慮波長濾波器全體的反射特性時, 上述第1傾斜光栅能夠將傾斜光柵的每單位長度的啁啾量 做大,因此能夠做成低反射,上述第2傾斜光柵導致的反 射貢獻會藉由上述第1傾斜光栅的穿透損失下降。 為了在穿透阻止波長範圍附近,由外部端所看到的光 栅全體有低反射特性,靠近外部端的傾斜光柵的穿透損失 波長範圍必須包含更内部端的傾斜光栅反射波長範圍。又 傾斜光栅的每單位長度的嗎啾量越大越容易得到低反射的 光柵’但穿透損失也會減少。因此對於接近外部端的傾斜 光栅’調整全喝嗽量使穿透損失波長範圍在較内部端的傾 斜光柵的反射波長範圍以上、調整每單位長度的啁啾量與 光纖光柵的長度使反射減低效果具有ldB“上明顯的穿透The phase mask formed by the form is exposed, but the __like preference can reduce the exposure of the cost together. The light penetration loss of the first oblique grating, the light transmission loss of the second oblique grating, and the light penetration loss of the non-tilted grating are L11 (dB) and L21, respectively, in a desired penetration preventing wavelength range. When dB) and L2 (dB) are expressed, "L1122.5, L11+L21212.5, L2 215" (third condition) must be satisfied. The first blocking grating light reflectance in the above-described penetration preventing wavelength range and the Bragg wavelength band of the first oblique grating is expressed by β11 ((1Β), R12 (dB), respectively; and Bragg reflection in the non-tilted grating is caused by When the penetration loss wavelength band and the second oblique grating light reflectance in the Bragg wavelength band of the i-th and second oblique gratings are expressed by R21 (dB) and R22 (dB), respectively, the following (2) must be satisfied. Equation and (3) (4th condition). ^11 R21+2L11 R0+2LU+2L2\ lOlogJlO^+10——f +1(Γ—~ϊό—~]幺一25 ...(2) R12 R22 lOlogPOi+lcT^]幺-25 (3) 2108-10361-PF 23 201027154 The above-mentioned third and fourth conditions are satisfied, and the length of the grating tilt angle, the period, and the stray light attenuation fiber can be adjusted. The minimum light penetration loss of the optical filter penetrating the wave-blocking range is above 4 DdB and the reflectance of the full-wavelength band is -25 dB or less. For example, the length i of the first inclined grating portion 18a for connection is 〇 Mm, the length of the second inclined grating portion 18b for connection 35 mm, and the length of the non-tilted fiber grating portion 17b for connection 1 Omm, phase reticle tilt angle 3 丨, 啾 2 2. 7 rm, refractive index change 1.2 χΗΓ 3, the same apodization treatment as in Example 6 can be used to obtain penetration loss and reflection. The fiber grating of such a connection structure is easier to obtain low reflection characteristics and easier to manufacture than the two types of oblique fiber gratings described in Embodiment 6. This is because the reflection characteristics of the entire wavelength filter are considered. In this case, the first oblique grating can increase the amount of enthalpy per unit length of the oblique grating, so that low reflection can be achieved, and the reflection contribution by the second oblique grating is caused by the penetration loss of the first oblique grating. In order to be in the vicinity of the penetration blocking wavelength range, the grating as seen from the external end has low reflection characteristics, and the penetration loss wavelength range of the oblique grating near the outer end must include the reflection wavelength range of the inclined grating at the inner end. The larger the amount per unit length, the easier it is to get a low-reflection grating' but the penetration loss is also reduced. The tilting grating near the outer end adjusts the total amount of light to make the transmission loss wavelength range above the reflection wavelength range of the inclined grating at the inner end, adjust the amount of enthalpy per unit length and the length of the fiber grating to have the effect of reducing the reflection on the LDB. Obvious penetration

2108-10361-PF 201027154 損失、也調整波長位置使穿透損失波長範圍包含較内部端 的傾斜光栅的反射波長範圍’藉由以上這些方法,能夠獲 得由外部端看的光栅全體具有低反射的特性。 又為了減低在最外部端的傾斜光栅的穿透損失波長的 反射,會使用例如以下的做法。如第7圖所示,穿透損失 波長與反射波長是大致是相同的波長,因此例如將上述第 1傾斜光柵的布拉格波長帶與第2傾斜光柵的布拉格波長 φ 帶設置在相同波長位置、第1傾斜光栅的全啁啾量設置在 第2傾斜光拇的全喝散量以上、第1傾斜光柵的布拉格波 長帶包含第2傾斜光柵的布拉格波長帶,如此一來第1傾 斜光柵的穿透損失波長帶就能夠包含第2傾斜光柵的反射 波長帶,外部端看的光柵全體就能夠獲得具有低反射的特 性。 ' 像這樣傾斜光柵的多工化,若將多工度從連結兩個再 參 增大的話,會有變得容易獲得更低的反射特性的效果。此 時,在各傾斜光㈣置相同的㈣,增加外部連接端附近 的傾斜光栅之每單位長度的嗎散量,使全嗎漱量相同或在 此之上的話比較好。 藉由以上本實施例所說明的光纖光栅,在使用於 GE-P0N用的光收發模組的波長領域内能夠獲得必要的波長 特性’因此可以實現實施例!與實施例3所說明的運作, 而達成加入者端光纖終端裝置的省空間化。 實施例8 第13圖為根據本發明實施例8所顯示之光收發模纽用2108-10361-PF 201027154 Loss, also adjusts the wavelength position so that the transmission loss wavelength range includes the reflection wavelength range of the inclined grating at the inner end. By the above methods, it is possible to obtain a low reflection characteristic of the entire grating viewed from the external end. Further, in order to reduce the reflection of the wavelength of the penetration loss of the inclined grating at the outermost end, for example, the following method is used. As shown in Fig. 7, since the transmission loss wavelength and the reflection wavelength are substantially the same wavelength, for example, the Bragg wavelength band of the first oblique grating and the Bragg wavelength φ band of the second oblique grating are set at the same wavelength position, The total amount of tilting grating is set to be higher than the total amount of scattering of the second oblique light, and the Bragg wavelength band of the first oblique grating includes the Bragg wavelength band of the second oblique grating, so that the first oblique grating penetrates. The loss wavelength band can include the reflection wavelength band of the second oblique grating, and the entire grating viewed from the external end can have low reflection characteristics. When the multiplexing of the grating is tilted like this, if the multiplex is increased from the two couplings, the effect of lowering the reflection characteristics can be easily obtained. At this time, it is preferable to set the same (4) for each oblique light (4) and increase the amount of dispersion per unit length of the inclined grating near the external connection end so that the total amount is equal to or higher than the above. According to the fiber grating described in the above embodiment, the necessary wavelength characteristics can be obtained in the wavelength range of the optical transceiver module for the GE-P0N. Thus, the embodiment can be realized! In the operation described in the third embodiment, the space saving of the subscriber end fiber terminal device is achieved. Embodiment 8 FIG. 13 is a diagram showing an optical transceiver module according to Embodiment 8 of the present invention.

2108-10361-PF 25 201027154 之光纖光栅製作說明圖。 光纖光栅由紫外光的波光來製作,但因為通過相位光 罩的紫外光穿透光纖外殼表面時發生光線折射所以在光 纖内曝光的構造傾斜角度實際上會是相位光罩傾斜角度的 1.45倍。又由於外殼的圓柱集光效果,光拇構造有不均一 之虞。 在本實施例中,如第13(a)圖所示’在介電板Μ上光 纖(核心13、外殼14)周圍會以紫外光穿透性液體Μ填滿, 並用曝光用照射紫外光21透過相位光罩2〇曝光。 舉例來說’使用水來當曝光用照射紫外光21的情況 下,會因為水的折射率與光纖外殼的折射率相近,使得外 殼14表面的折射效果降低。最後光纖内實際曝光的構造傾 斜角度會是相位光單20的約U倍。相位光罩2〇的傾斜 角度的調整精準度會由機械的公差而丨,考慮以所希望的 傾斜角度製作光纖光柵的話,光纖内實際曝光的構造傾斜 角度與相位光罩20的傾斜角度比小的話,能夠提高光線内 實際曝光的構造傾斜角度的精準度。在這個情況下可以改 善30。/則度精準度。要獲得低反射㈣,必須調整傾斜 角度到希望的大小,角度偏離的話布拉格反射會增大,因 此改善角度精準度會有低反射特性製造容易的成效。 同樣的角度精準度改善效果如第13(b)圖所示,在溝 狀介電板23上的溝部23g設置光纖(核心13、外殼14), 藉由曝光用照射紫外光21透過相位光罩2〇曝光而得。 舉例來說,使用附上溝的石英破璃板做為溝狀介電板2108-10361-PF 25 201027154 FBG production diagram. The fiber grating is made of ultraviolet light, but since the ultraviolet light passing through the phase mask penetrates the surface of the fiber casing, the angle of inclination of the structure exposed in the fiber is actually 1.45 times that of the phase mask. Due to the cylindrical light collecting effect of the outer casing, the optical structure of the light has a non-uniformity. In this embodiment, as shown in Fig. 13(a), the optical fiber (core 13, outer casing 14) is filled with ultraviolet light penetrating liquid enthalpy, and ultraviolet light is irradiated by exposure. Exposure through the phase mask 2 〇. For example, when water is used to irradiate the ultraviolet light 21 for exposure, the refractive effect of the surface of the outer casing 14 is lowered because the refractive index of water is close to the refractive index of the outer casing of the optical fiber. Finally, the structural tilt angle of the actual exposure in the fiber will be about U times that of the phase light sheet 20. The adjustment accuracy of the tilt angle of the phase mask 2 会 is 由 机械 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨 丨In this case, the accuracy of the structural tilt angle of the actual exposure in the light can be improved. In this case, you can improve 30. / Degree accuracy. To obtain low reflection (4), the tilt angle must be adjusted to the desired size. If the angle is deviated, the Bragg reflection will increase. Therefore, improving the angle accuracy will result in low reflection characteristics and easy production. The same angle accuracy improvement effect is as shown in Fig. 13(b), in which the optical fiber (core 13, casing 14) is provided in the groove portion 23g on the groove-shaped dielectric plate 23, and the phase mask is transmitted through the exposure ultraviolet light 21 for exposure. 2 〇 exposure derived. For example, using a quartz glass plate with a groove as a grooved dielectric plate

2108-10361-PF 201027154 23的情況下’因為與光纖外殼的折射率沒有差異,所以在 外殼的表面不會產生光線的折射。最後光纖内的實際曝光 構造傾斜角度會與相位光罩的傾斜角度相同,而能夠進一 步改善光柵角度的精準度。設於溝狀介電板23上的溝部 2 3g不需要與光纖外殼的形狀完全一致,即使是容易形成v 字型溝也能得到相同的結果。 藉由以上本實施例所說明的光纖光柵,在使用於 • GE-P0N用的光收發模組的波長領域内能夠獲得必要的波長 特性,因此可以實現實施例1與實施例3所說明的運作, 而達成加入者端光纖終端裝置的省空間化。 本發明已如上詳細說明,但上述說明並非全部情況下 的範例,且本發明也不限於此。在不脫離本發明範_内也 可以想到本說明書沒有說明範例的其他變形實施例。 【圖式簡單說明】 _ 第1圖為根據本發明實施例1所顯示之光收發模組之 組成說明圖。 第2圖為表示光纖光柵特性的說明圖。 第3圖為根據本發明實施例2所顯示之光收發模組之 組成說明圖。 第4圖為根據本發明實施例3所顯示之光收發模組之 組成說明圖。 第5圖為根據本發明實施例4所顯示之光收發模組之 組成說明圖。 2108-10361-PF 27 201027154 第6圖為根據本發明實施例5所顯示之光收發模組用 的光纖光栅之組成說明圖。 第7圖表示穿透損失與反射頻譜。 第8a圖表示在一設定條件下穿透率對波長曲線圖。 第8b圖表示在一設定條件下反射衰減量對波長曲線 圖。 第9圖顯示對於同一個傾斜光纖光栅部分,改變雜光 衰減用光纖部分的長度所測定的穿透損失之曲線圖。 第10圖為根據本發明實施例6所顯示之光收發模組用 之光纖光柵構造說明圖。 第11a圖表示在一設定條件下穿透率對波長曲線圖。 第lib圖表示在一設定條件下反射衰減量對波長曲線 圖。 第12圖為根據本發明實施例7所顯示之光收發模組用 光纖光栅的構造說明圖。 第13圖為根據本發明實施例8所顯示之光收發模組用 之光纖光栅製作說明圖。 第14圖為以專利文獻丨所揭露的收發模組之發散光所 形成的濾波器特性之說明圖。 第15圖為由專利文獻2所揭露的收發模組的平行光所 形成的濾波器特性之說明圖。 2〜接收模組; 【主要元件符號說明】 1〜發送模組;In the case of 2108-10361-PF 201027154 23, since there is no difference in refractive index from the outer casing of the optical fiber, no refraction of light is generated on the surface of the outer casing. Finally, the actual exposure structure in the fiber will have the same tilt angle as the phase mask, and the accuracy of the grating angle can be further improved. The groove portion 2 3g provided on the groove-shaped dielectric plate 23 does not need to have the same shape as that of the optical fiber case, and the same result can be obtained even if the v-shaped groove is easily formed. According to the fiber grating described in the above embodiment, the necessary wavelength characteristics can be obtained in the wavelength range of the optical transceiver module for the GE-P0N, so that the operations described in the first embodiment and the third embodiment can be realized. And to achieve space saving of the subscriber end fiber optic terminal device. The present invention has been described in detail above, but the above description is not an example in all cases, and the present invention is not limited thereto. It is also contemplated that other variant embodiments of the examples are not described in this specification without departing from the scope of the invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing the composition of an optical transceiver module according to Embodiment 1 of the present invention. Fig. 2 is an explanatory view showing the characteristics of the fiber grating. Fig. 3 is a view showing the configuration of an optical transceiver module according to a second embodiment of the present invention. Fig. 4 is a view showing the configuration of an optical transceiver module according to a third embodiment of the present invention. Fig. 5 is a view showing the configuration of an optical transceiver module according to a fourth embodiment of the present invention. 2108-10361-PF 27 201027154 Fig. 6 is an explanatory diagram showing the composition of a fiber grating for an optical transceiver module according to Embodiment 5 of the present invention. Figure 7 shows the penetration loss and reflection spectrum. Figure 8a shows the plot of transmittance versus wavelength under a set condition. Figure 8b shows the reflection attenuation versus wavelength curve under a set condition. Fig. 9 is a graph showing the penetration loss measured by changing the length of the stray light attenuation fiber portion for the same oblique fiber grating portion. Fig. 10 is a view showing the configuration of a fiber grating for an optical transceiver module according to a sixth embodiment of the present invention. Figure 11a shows the plot of transmittance versus wavelength under a set condition. The lib diagram shows the reflection attenuation versus wavelength curve under a set condition. Fig. 12 is a view showing the configuration of a fiber grating for an optical transceiver module according to a seventh embodiment of the present invention. Fig. 13 is a view showing the fabrication of a fiber grating for an optical transceiver module according to Embodiment 8 of the present invention. Fig. 14 is an explanatory view showing the characteristics of the filter formed by the divergent light of the transceiver module disclosed in the patent document. Fig. 15 is an explanatory diagram showing the characteristics of the filter formed by the parallel light of the transceiver module disclosed in Patent Document 2. 2~ receiving module; [main component symbol description] 1~ sending module;

2108-10361-PF 201027154 3〜接收模組; 5〜¥DM濾波器; 4~WDM濾波器 6〜光靝連接器 7〜光柵光纖; 8〜連接器; 9〜光柵光纖連接器; 10〜光纖; 11〜光柵連接器; 1 3〜核心; 1 5 ~傾斜光織光柵部分; 12〜光栅插座; 14〜外殼, 16〜雜光衰減用光纖部分2108-10361-PF 201027154 3~ receiving module; 5~¥DM filter; 4~WDM filter 6~optical connector 7~grating fiber; 8~ connector; 9~grating fiber connector; 10~ fiber ; 11 ~ grating connector; 1 3 ~ core; 1 5 ~ inclined light woven grating part; 12 ~ grating socket; 14 ~ housing, 16 ~ stray light attenuation with fiber part

17a〜連結用傾斜光織先栅部分; Hb〜連結用非傾斜光纖先柵部分 18&~連結用第1傾斜光栅部分; 18b〜連結用第2傾斜光栅部分; 19〜介電板; 21〜曝光用照射紫外光; 23〜溝狀介電板; 20〜相位光罩; 22〜紫外光穿透性液體; 2 3 g ~溝部。 2108-10361-pp 2917a to slanted optical woven first grating portion; Hb ~ non-tilting optical fiber first grating portion 18&~ connecting first inclined grating portion; 18b to connecting second oblique grating portion; 19~ dielectric plate; 21~ Exposure to ultraviolet light; 23~ grooved dielectric plate; 20~ phase mask; 22~ ultraviolet light penetrating liquid; 2 3 g ~ groove. 2108-10361-pp 29

Claims (1)

201027154 七、申請專利範圍: 1·-種光收發模組,具有發送或接收特定使用波長的 =號的發送/接收模組、光學連接於上述發送/接收模組 ’傳运光信號的光纖,在上述使用波長附近必須有穿透阻 止波長範圍,上述光收發模組包括: 傾斜光栅光纖部分(15,m,18a,18b),具有對傳送 方向的垂直線傾斜的光柵,使得在上述穿透 的穿透損失在μ值以上,反射強度在既^值以下長乾圍 雜光衰減用光纖部分(16),用來衰減傳送於上述光纖 的外殼的雜光, 2中上述光收發模組由上述傾斜光栅光纖部分與上述 =光衰減用光纖部分光學連接而成,上述傾斜光栅光纖部 分形成於穿透光的入射端,上述雜光衰減用光纖部分形成 於穿透光的射出端。 • 2.如申請專利範圍第1項所述之光收發模組,上述光 纖更包括光學連接於上述傾斜光柵光纖部分與上述雜光衰 減用光纖部分之間,並具有大致垂直於傳送方向的光柵的 垂直光柵光纖部(17b)。 3·如申請專利範圍第2項所述之光收發模組,上述傾 斜光柵光纖部分由啁啾光柵形成, 其中上述垂直光栅光纖部分具有布拉格反射形成的穿 透損失波長帶,將包含於上述穿透損失波長帶的上述穿透 阻止波長範圍設於比上述傾斜光柵光纖的布拉格波長帶短 的波長端,使得在比上述傾斜光柵光纖部分的布技格波長 2108-10361〜pF 30 201027154 » 帶長的波長端不會產生布拉格反射。 4.如申請專利範圍第2項所述之光收發模組,上述傾 斜光柵光纖部分由穿透光入射端以第1傾斜光柵光纖部 分、第2傾斜光柵光纖部分(18a,18b)的順序形成, 其中上述第1傾斜光栅光纖部分的每單位長度之啁歌 量比上述第2傾斜光柵光纖部分的每單位長度之啁啾量 大,並且上述第1傾斜光栅光纖部分的穿透損失波長帶包 • 含上述第2傾斜光柵光纖部分的反射波長帶。 5.如申請專利範圍第3項所述之光收發模組,上述光 栅的傾斜角度、週期、及上述雜光衰減用光纖部分的長度 會以達成下列條件來做調整,包括: 在上述穿透阻止波長範圍,上述傾斜光栅光纖部分的 光穿透損失與上述垂直光柵光纖部分的光穿透損失分別以 Ll(dB)、L2(dB)表示時,滿足「l1>12 5,U+L224()」, 在上述穿透阻止波長範圍與在上述傾斜光栅光織部分 ❹的布拉格波長帶中,上述傾斜光柵光纖部分的反射率分別 以Rl(dB)、R2(dB)表示,在上述穿透阻止波長範圍的上述 垂直光柵光纖部分的反射率以R〇(dB)表示時,滿足以下第 ⑴式。 Rl R0+2U 101〇邰0、10~1^-25,心一25 …⑴ 6.如申請專利範圍第4項所述之光收發模組,上述光 柵的傾斜角度、週期、啁啾量、及上述雜光衰減用光纖部 分長度會以達成下列條件來做調整,包括: 2108-10361-PF 31 201027154 在上述穿透阻止波長範圍内, V U ^ 上述第1傾斜光栅光纖 部分的的光穿透損失、卜# I。AK X, 〇 貝 1述第2傾斜光栅光纖部分的光穿 透損失及上述垂直光栅光纖部分的光穿透損失分別以 ⑴⑽)' L21(dB)' L2(dB)表示時’滿足「⑴& 5, L11+L21 >12. 5,L2215」, · 在上述穿透阻止波長範圍與在上述第i傾斜光拇光纖 部分的布拉格波長帶的上述第i傾斜光柵光纖部分的光反 射率分別以Rll(dB)、R12(dB)表示; 在上述垂直光柵光纖部分的布拉格反射形成的穿透損 失波長帶與在上述第i及第2傾斜光栅光纖部分的布拉格 波長帶的上述第2傾斜光柵光纖部分的光反射率分別以 R21(dB)、R22(dB)表示時,必須滿足以下第式及第(3) 式。 -R21+2Z11 R0+2L\ 1+2Z21 101og|10 ]〇 +1〇 10 +10 i〇 1 幺一25 R12 R22 — …(2) HHogPO 10+l〇i|f25 …(3) 7· —種光收發模組,具有發送或接收特定使用波長的 光信號的發送/接收模組、光學連接於上述發送/接收模組 並傳送光信號的光纖’在上述使用波長附近必須有穿透阻 止波長範圍,上述光收發模組包括: 至少一個光栅光纖部分(15,17a,17b,18a,18b), 具有光栅’使得在上述穿透阻止波長範圍的穿透損失在既 定值以上; 雜光衰減用光纖部分(16),用來衰減傳送於上述光纖 2108-10361-PF 32 201027154 « ' 的外殼的雜光, 其中上述光收發模組由上述光柵光纖部分與上述雜光 哀減用光纖部分光學連接而成,上述光柵光纖部分形成於 穿透光的入射端’上述雜光衰減用光纖部分形成於穿透光 的射出端。201027154 VII. Patent application scope: 1. The optical transceiver module has a transmitting/receiving module that transmits or receives a specific wavelength of =, and an optical fiber optically connected to the transmitting/receiving module to transmit optical signals. There must be a penetration blocking wavelength range in the vicinity of the above-mentioned wavelength of use. The optical transceiver module includes: an inclined grating fiber portion (15, m, 18a, 18b) having a grating inclined to a vertical line in the conveying direction, so that the above-mentioned penetration The penetration loss is above the μ value, and the reflection intensity is below the value of the long dry fiber stray light attenuation fiber portion (16) for attenuating the stray light transmitted to the outer casing of the optical fiber, wherein the optical transceiver module is The oblique grating fiber portion is optically connected to the optical fiber portion for the light attenuation, the oblique grating fiber portion is formed at an incident end of the transmitted light, and the stray light attenuation fiber portion is formed at an exit end of the transmitted light. 2. The optical transceiver module of claim 1, wherein the optical fiber further comprises an optical connection between the oblique grating fiber portion and the stray light attenuation fiber portion, and has a grating substantially perpendicular to the transmission direction. Vertical grating fiber section (17b). 3. The optical transceiver module according to claim 2, wherein the oblique grating fiber portion is formed by a chirped grating, wherein the vertical grating fiber portion has a transmission loss wavelength band formed by Bragg reflection, and is included in the wearing The above-mentioned penetration preventing wavelength range of the transmission loss wavelength band is set at a wavelength end shorter than the Bragg wavelength band of the oblique grating fiber, so that the wavelength of the fabric is 2108-10361~pF 30 201027154 » longer than the oblique grating fiber portion The wavelength end does not produce Bragg reflection. 4. The optical transceiver module according to claim 2, wherein the oblique grating fiber portion is formed by the first oblique grating fiber portion and the second oblique grating fiber portion (18a, 18b) in the light incident end. The amount of yangk per unit length of the first inclined grating fiber portion is larger than the amount of enthalpy per unit length of the second inclined grating fiber portion, and the penetration loss wavelength band of the first oblique grating fiber portion • Reflected wavelength band containing the second oblique grating fiber portion. 5. The optical transceiver module according to claim 3, wherein the tilt angle, the period of the grating, and the length of the fiber portion for the stray light attenuation are adjusted according to the following conditions, including: The wavelength range is blocked, and the light transmission loss of the inclined grating fiber portion and the light penetration loss of the vertical grating fiber portion are expressed by L1 (dB) and L2 (dB), respectively, satisfying "l1>12 5, U+L224 ( In the above-mentioned penetration preventing wavelength range and the Bragg wavelength band of the oblique grating optical fiber portion, the reflectance of the oblique grating fiber portion is expressed by R1 (dB) and R2 (dB), respectively, in the above-mentioned penetration. When the reflectance of the above-mentioned vertical grating fiber portion of the blocking wavelength range is expressed by R 〇 (dB), the following formula (1) is satisfied. Rl R0+2U 101〇邰0, 10~1^-25, 心一25 ... (1) 6. The optical transceiver module according to claim 4, wherein the grating has an inclination angle, a period, a volume, and And the length of the fiber portion for the stray light attenuation is adjusted according to the following conditions, including: 2108-10361-PF 31 201027154 In the above-mentioned penetration prevention wavelength range, VU ^ light penetration of the first oblique grating fiber portion Loss, Bu # I. AK X, the light penetration loss of the second oblique grating fiber portion of the mussel and the light penetration loss of the vertical grating fiber portion are respectively represented by (1)(10))' L21(dB)' L2(dB), and '(1)& 5, L11+L21 >12.5, L2215", · The light reflectance of the ith slant grating fiber portion of the above-mentioned ith oblique grating fiber band in the above-mentioned penetration preventing wavelength range and the Bragg wavelength band at the ith oblique optical fiber portion, respectively R11 (dB), R12 (dB); a penetration loss wavelength band formed by Bragg reflection in the vertical grating fiber portion and the second oblique grating fiber in a Bragg wavelength band of the i-th and second oblique grating fiber portions When the partial light reflectance is expressed by R21 (dB) or R22 (dB), the following formula and formula (3) must be satisfied. -R21+2Z11 R0+2L\ 1+2Z21 101og|10 ]〇+1〇10 +10 i〇1 幺一25 R12 R22 — ...(2) HHogPO 10+l〇i|f25 ...(3) 7· — An optical transceiver module having a transmitting/receiving module for transmitting or receiving an optical signal of a specific wavelength of use, an optical fiber optically connected to the transmitting/receiving module and transmitting an optical signal' must have a penetration preventing wavelength near the above-mentioned use wavelength The optical transceiver module includes: at least one grating fiber portion (15, 17a, 17b, 18a, 18b) having a grating such that a penetration loss in the above-mentioned penetration blocking wavelength range is above a predetermined value; The optical fiber portion (16) is configured to attenuate the stray light transmitted to the outer casing of the optical fiber 2108-10361-PF 32 201027154 « ', wherein the optical transceiver module is optically connected to the optical fiber portion of the stray light reduction portion by the grating optical fiber portion The grating fiber portion is formed at an incident end of the transmitted light. The portion of the stray light attenuation fiber is formed at an exit end of the transmitted light. 2108-10361-PF 332108-10361-PF 33
TW098107622A 2009-01-09 2009-03-10 Optical transceiver module TWI402550B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050226 WO2010079611A1 (en) 2009-01-09 2009-01-09 Optical transmission/reception module

Publications (2)

Publication Number Publication Date
TW201027154A true TW201027154A (en) 2010-07-16
TWI402550B TWI402550B (en) 2013-07-21

Family

ID=42316389

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098107622A TWI402550B (en) 2009-01-09 2009-03-10 Optical transceiver module

Country Status (4)

Country Link
JP (1) JP5279847B2 (en)
CN (1) CN102177455B (en)
TW (1) TWI402550B (en)
WO (1) WO2010079611A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808299A (en) * 2015-05-08 2015-07-29 福州宏旭科技有限公司 Multi-wavelength component for fiber optic communication
CN107424246B (en) * 2017-04-11 2021-04-20 京东方科技集团股份有限公司 Visible light communication password unlocking device and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3591932B2 (en) * 1995-08-28 2004-11-24 住友電気工業株式会社 Semiconductor light receiving element
JP2003524789A (en) * 1998-04-30 2003-08-19 インフィネオン テクノロジース アクチエンゲゼルシャフト Bidirectional optical module for multi-channel applications
CN1200290C (en) * 2003-05-30 2005-05-04 中国科学院上海光学精密机械研究所 Bandwidth-adjustable bevelled optical fiber raster and its manufacturing method
JP2004361502A (en) * 2003-06-02 2004-12-24 Sumitomo Electric Ind Ltd Optical transmission reception module

Also Published As

Publication number Publication date
JP5279847B2 (en) 2013-09-04
CN102177455A (en) 2011-09-07
TWI402550B (en) 2013-07-21
JPWO2010079611A1 (en) 2012-06-21
CN102177455B (en) 2015-08-12
WO2010079611A1 (en) 2010-07-15

Similar Documents

Publication Publication Date Title
CA2119045C (en) Optical waveguiding component comprising a band-pass filter
US7272287B2 (en) Optical fiber filter for suppression of amplified spontaneous emission
WO1999010770A1 (en) Non-linear optical fiber, optical fiber coil, and wavelength converter
Choi et al. Novel all-fiber bandpass filter based on hollow optical fiber
US6321008B1 (en) Filter optical waveguide with inclination and linear chirp
JPH1082918A (en) Optical fiber grating
KR20050058381A (en) Quasi slanted fiber bragg grating, multiple series fiber bragg grating, optical fiber type coupler and optical connector
JP4284866B2 (en) Dispersion compensation module
US6999659B1 (en) Fiber transmission element for generating a chromatic dispersion
TW201027154A (en) Optical transmission/reception module
JP2004226964A (en) Wideband dispersion control optical fiber
US20050175284A1 (en) Optical filter
CA2392647A1 (en) Optical fiber and optical signal transmission system using this optical fiber
JP2002090557A (en) Optical waveguide type diffraction grating element, method for manufacturing optical waveguide type diffraction grating element, multiplexing and demultiplexing module, and optical transmission system
WO2001098803A1 (en) Slant short-period grating
JP2003004957A (en) Optical waveguide and method for creating asymmetrical optical filter device
CN113189696A (en) Optical fiber filter and optical fiber amplifier
JP3271886B2 (en) Optical attenuating optical fiber
CA2277665C (en) Optical waveguiding component comprising a band-pass filter
JP2003302547A (en) Optical fiber, slanted optical fiber grating, band rejection optical fiber, gain equalizing optical filter for optical amplifier, and optical amplifier module
EP1288683A1 (en) Slanted Bragg grating optical fiber and process for manufacturing such a fiber
Lobo et al. Gain-flattening filter design using rotationally symmetric crossed gratings
Prajwalasimha et al. Macro bending loss in single mode optical fibre cable for long haul optical networks
WO2000050943A1 (en) High isolation couplers
Chen et al. Mode division multiplexing using chip-scale silicon coupled vertical gratings

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees