WO2010079611A1 - Optical transmission/reception module - Google Patents

Optical transmission/reception module Download PDF

Info

Publication number
WO2010079611A1
WO2010079611A1 PCT/JP2009/050226 JP2009050226W WO2010079611A1 WO 2010079611 A1 WO2010079611 A1 WO 2010079611A1 JP 2009050226 W JP2009050226 W JP 2009050226W WO 2010079611 A1 WO2010079611 A1 WO 2010079611A1
Authority
WO
WIPO (PCT)
Prior art keywords
grating
fiber
optical
wavelength
transmission
Prior art date
Application number
PCT/JP2009/050226
Other languages
French (fr)
Japanese (ja)
Inventor
弘幸 尾崎
智志 西川
正和 高林
政利 片山
喜市 吉新
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2009/050226 priority Critical patent/WO2010079611A1/en
Priority to CN200980130330.XA priority patent/CN102177455B/en
Priority to JP2010545670A priority patent/JP5279847B2/en
Priority to TW098107622A priority patent/TWI402550B/en
Publication of WO2010079611A1 publication Critical patent/WO2010079611A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4215Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical elements being wavelength selective optical elements, e.g. variable wavelength optical modules or wavelength lockers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/14Mode converters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4207Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms with optical elements reducing the sensitivity to optical feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres

Definitions

  • the present invention is a subscriber-side optical line termination device of GE-PON (Gigabit Ethernet (registered trademark) -Passive Optical Network System) that provides subscribers with Internet service with a maximum transmission rate of 1 Gbit / s using an optical fiber.
  • the present invention relates to an optical transmission / reception module mounted in an (ONU: Optical Network Unit) and performing processing of converting an optical signal into an electrical signal and processing of converting an electrical signal into an optical signal.
  • the GE-PON system comprises a station-side Optical Line Terminal (OLT) installed at a center station, an optical branching unit for branching transmission lines up to 32 and a subscriber installed at a subscriber's premises. It consists of a side optical line termination device.
  • OLT Optical Line Terminal
  • the downstream data / voice signal transmitted from the station-side optical line termination to the subscriber-side optical line termination is assigned a wavelength of 1490 nm, and the downstream analog video signal is assigned a wavelength of 1550 nm.
  • a wavelength of 1310 nm is allocated to the upstream data signal transmitted from the subscriber-side optical line terminal to the station-side optical line terminal.
  • the GE-PON system performs single-core bidirectional optical communication using wavelength division multiplexing (WDM) to which a plurality of wavelengths are allocated.
  • WDM wavelength division multiplexing
  • an optical transmission / reception module in which the subscriber-side optical line termination device is provided with a guard band.
  • a plurality of WDM filters are used.
  • Single-core bidirectional optical communication is realized by separating and multiplexing wavelength optical signals.
  • guards adjacent to the optical wavelength of the downstream data / audio signal and the optical wavelength of the analog video signal can be obtained only by simply connecting the lens coupling optical element between the WDM filter and the optical fiber. It can not be applied to the GE-PON system in which the band is provided.
  • FIG. 14 is an explanatory view showing a filter characteristic by diffused light (divergence light) of the receiving module disclosed in Patent Document 1. As shown in FIG. The rectangular portions in FIG. 14 mean standard specifications.
  • the diffused light of the optical transmission / reception module is a guard band (wavelength band ⁇ 1- ⁇ Through).
  • the filter characteristics of the narrow band filter change depending on the angle of the incident light with respect to the narrow band filter. It is necessary to maintain the transmission quality by maintaining the filter characteristics of the band pass filter.
  • a narrow band filter is provided by installing a collimating optical device or the like for converting diffused light output from the optical fiber into parallel light (collimator light). It is sufficient to adjust the angle of incident light with respect to.
  • Patent Document 2 discloses a transmitting / receiving module in which a narrow band filter and a collimating optical device are installed.
  • FIG. 15 is an explanatory view showing filter characteristics by parallel light of the transmission / reception module disclosed in Patent Document 2. As shown in FIG. The rectangular portions in FIG. 15 mean standard specifications.
  • guard bands in the wavelength bands ( ⁇ 1 ⁇ ), ⁇ 1, and ( ⁇ 1 + ⁇ ) are provided, and transmission and reception of unnecessary light wavelengths can be avoided.
  • Patent Document 3 discloses a configuration in which a tilted fiber grating and a non-tilted fiber grating are combined as a low reflection and high transmission loss wavelength filter of 40 dB or more. It is not easy to obtain low reflection and high transmission loss characteristics of 40 dB or more with only tilted gratings, but combining inclined and non-tilted fiber gratings with transmission loss of about 20 dB results in low reflection and high transmission loss of 40 dB or more. It is believed that the characteristics can be obtained.
  • the conventional light transmitting / receiving module is configured as described above, if the collimating optical device is installed, it is possible to maintain the filter characteristics of the narrow band filter and secure the transmission quality.
  • the number of parts increases as the collimating optics are installed. For this reason, there existed a subject that size reduction became difficult and member cost became high.
  • the wavelength filter using the conventional fiber grating when the exposure intensity is increased to obtain a high transmission loss of about 20 dB with the inclined fiber grating, residual reflection in the Bragg reflection wavelength band or the loss wavelength band tends to occur, and low There is a problem that the reflection characteristic is lost.
  • the present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to obtain an optical transmission / reception module capable of securing transmission quality without installing a collimating optical device or a narrow band filter. Do.
  • the optical transmitting and receiving module transmits the optical signal of the first wavelength band transmitted by the wavelength division multiplexing means to the station side, and the optical signals of the second and third wavelength bands transmitted from the station side.
  • the optical signal of the first wavelength band transmitted by the wavelength division multiplexing means is transmitted to the station side, and the optical signals of the second and third wavelength bands transmitted from the station side are wavelength separated.
  • an optical fiber to be transmitted to the multiplexing means is configured to use a fiber with a grating having the function of a narrow band filter that blocks transmission of optical signals in bands other than the first, second and third wavelength bands,
  • the transmission quality can be secured without installing the mating optical device or the narrow band filter, and as a result, the size reduction and the cost reduction of the members can be achieved.
  • FIG. 2 is an explanatory view showing a configuration of an optical transmission and reception module according to Embodiment 1. It is explanatory drawing which shows a fiber grating characteristic.
  • FIG. 8 is an explanatory view showing a configuration of an optical transmission and reception module according to a second embodiment.
  • FIG. 13 is an explanatory view showing a configuration of an optical transmission and reception module according to a third embodiment.
  • FIG. 18 is an explanatory view showing a configuration of an optical transmission and reception module according to a fourth embodiment.
  • FIG. 18 is an explanatory view showing a configuration of a fiber grating for an optical transmission and reception module according to a fifth embodiment.
  • 21 is a graph showing an example of spectrum measurement of the tilted fiber grating according to the fifth embodiment.
  • FIG. 21 is a graph showing an example of spectrum calculation of the tilted fiber grating according to the fifth embodiment. 21 is a graph showing measurement results of transmission loss of a tilted fiber grating when the length of an optical fiber portion for stray light attenuation according to Embodiment 5 is changed.
  • FIG. 16 is an explanatory view showing a configuration of a fiber grating for an optical transmission and reception module according to a sixth embodiment. It is a graph which shows the example of spectrum calculation of the inclined fiber grating by Embodiment 6.
  • FIG. FIG. 21 is an explanatory drawing showing the configuration of a fiber grating for an optical transmission / reception module according to a seventh embodiment.
  • 21 is an explanatory drawing showing a method of manufacturing a fiber grating for an optical transmission / reception module according to Embodiment 8. It is explanatory drawing which shows the filter characteristic by the diffused light of the conventional transmission / reception module. It is explanatory drawing which shows the filter characteristic by parallel light of the conventional transmission / reception module.
  • FIG. 1 is an explanatory view showing a configuration of an optical transmission / reception module according to a first embodiment of the present invention.
  • the optical transmission / reception module shown in FIG. 1 is mounted on a subscriber-side optical line termination device.
  • the transmission module 1 converts an electrical signal, which is an upstream data signal, into an optical signal of 1310 nm wavelength (optical signal included in the first wavelength band), and outputs the optical wavelength to the WDM filter 4 It is.
  • the receiving module 2 When receiving an optical signal (optical signal included in the second wavelength band) having a wavelength of 1490 nm, which is a downstream data / voice signal from the WDM filter 4, the receiving module 2 converts the optical signal into an electrical signal. It is a receiving module.
  • the receiving module 3 When receiving an optical signal of 1550 nm wavelength (an optical signal included in the third wavelength band), which is a downstream analog video signal, from the WDM filter 5, the receiving module 3 converts the optical signal into an electric signal. It is a module.
  • the optical signal of the first wavelength band transmitted by the transmitting module 1 is an optical signal of 1310 nm
  • the optical signal of the second wavelength band received by the receiving module 2 is an optical signal of 1490 nm
  • the receiving module 3 Although an example is shown in which the optical signal of the third wavelength band to be received is an optical signal of 1550 nm, this is merely an example, and the first, second, and third wavelength bands are other wavelength bands. It goes without saying that it is also possible.
  • the WDM filter 4 transmits the light signal of wavelength 1310 nm output from the transmission module 1 to the WDM filter 5 side, and reflects the light signal of wavelength 1490 nm transmitted through the WDM filter 5 to the reception module 2 side. It is a separation multiplex filter.
  • the WDM filter 5 transmits the optical signal of wavelength 1310 nm transmitted through the WDM filter 4 to the side of the fiber ferrule 6 and transmits the optical signal of wavelength 1490 nm output from the fiber ferrule 6 to the side of the WDM filter 4 while the fiber ferrule 6 is a second wavelength division multiplex filter that reflects the optical signal of wavelength 1550 nm output from the light source 6 to the receiving module 3 side.
  • the WDM filters 4 and 5 constitute a wavelength demultiplexing means.
  • the fiber ferrule 6 is a housing member for housing the fiber 7 with a grating, and is provided on the right of the WDM filter 5 in the figure.
  • the fiber 7 with grating transmits the optical signal of wavelength 1310 nm transmitted through the WDM filter 5 and outputs it to the connector 8 side, while the optical signal of wavelength 1490 nm and 1550 nm incident from the connector 8 side (transmitted from the station side ) Is an optical fiber that transmits the optical signal to the WDM filter 5 side.
  • the fiber 7 with grating has a band other than a narrow band (first wavelength band) including a wavelength 1310 nm, a narrow band (second wavelength band) including a wavelength 1490 nm, and a narrow band (third wavelength band) including a wavelength 1550 nm. And the function of a narrow band filter to block the transmission of the light signal.
  • the connector 8 is a connecting member to which one end of the fiber with grating 7 is connected and to which one end of a single mode fiber is connected. The other end of the single mode fiber is connected to the station side optical line termination device.
  • optical transmission and reception module Next, the operation of the optical transmission and reception module according to the first embodiment will be described. First, an operation of the optical transmission and reception module in the subscriber-side optical line termination apparatus transmitting an upstream data signal to the station-side optical line termination apparatus will be described.
  • the transmission module 1 When receiving an electrical signal that is an upstream data signal, the transmission module 1 converts the electrical signal into an optical signal with a wavelength of 1310 nm, and outputs the optical signal to the WDM filter 4.
  • the WDM filter 4 When the WDM filter 4 receives an optical signal of wavelength 1310 nm from the transmission module 1, the WDM filter 4 transmits the optical signal of wavelength 1310 nm to the WDM filter 5 side.
  • the WDM filter 5 transmits the light signal of wavelength 1310 nm transmitted through the WDM filter 4 to the fiber ferrule 6 side.
  • optical transmission / reception module in the subscriber-side optical line termination device receiving downstream data / voice signals and analog video signals from the station-side optical line termination device will be described.
  • An optical signal with a wavelength of 1490 nm, which is a downstream data / voice signal transmitted from the station-side optical line terminal, and an optical signal with a wavelength of 1550 nm, which is a downstream analog video signal, are transmitted through a single mode fiber. It is incident from.
  • optical signals of wavelengths 1490 nm and 1550 nm are transmitted through the fiber 7 with a grating, and emitted from the fiber ferrule 6 to the WDM filter 5.
  • the WDM filter 5 When the WDM filter 5 receives an optical signal with a wavelength of 1490 nm and 1550 nm from the fiber ferrule 6, the WDM filter 5 separates the optical signal with a wavelength of 1490 nm and the optical signal with a wavelength of 1550 nm and transmits the optical signal with a wavelength of 1490 nm to the WDM filter 4 side The light signal of wavelength 1550 nm is reflected to the receiving module 3 side.
  • the receiving module 3 receives the optical signal of wavelength 1550 nm from the WDM filter 5, the receiving module 3 converts the optical signal of wavelength 1550 nm into an electrical signal, and outputs a downstream analog video signal which is an electrical signal.
  • the WDM filter 4 reflects the light signal of wavelength 1490 nm transmitted through the WDM filter 5 to the receiving module 2 side.
  • the reception module 2 receives the light signal of wavelength 1490 nm from the WDM filter 4, the reception module 2 converts the light signal of wavelength 1490 nm into an electric signal, and outputs downstream data / voice signal which is an electric signal.
  • the fiber with grating 7 utilizes a light-induced refractive index change in which the refractive index increases when ultraviolet light is irradiated to the optical fiber.
  • the fiber with grating 7 when the fiber with grating 7 is irradiated with ultraviolet light to the optical fiber, a diffraction grating is formed in the core or cladding of the optical fiber, and the periodic refractive index changes.
  • the grating-equipped fiber 7 can reflect only a specific light wavelength corresponding to the period, it is used as an optical fiber type device having the function of an optical filter (narrow band filter).
  • the grating-equipped fiber 7 can directly form the diffraction grating in the optical fiber nondestructively, it can be manufactured at low cost.
  • optical characteristics such as center wavelength, bandwidth, and reflectance can be easily changed, it has an advantage that low loss, miniaturization, and high reliability can be obtained.
  • the grating-equipped fiber 7 implemented in the optical transceiver module of FIG. 1 transmits a narrow band optical signal including a wavelength 1310 nm, a narrow band optical signal including a wavelength 1490 nm, and a narrow band optical signal including a wavelength 1550 nm.
  • a narrow band filter for attenuating optical signals in bands other than the above three narrow bands.
  • the fiber 7 with a grating has an optical signal of a narrow band including a wavelength of 1310 nm, a narrow band including a wavelength of 1490 nm, and a band other than the narrow band including a wavelength of 1550 nm, energy diffused from the core in the fiber to the cladding Can be secured.
  • FIG. 2 is an explanatory view showing a fiber grating characteristic. As apparent from FIG. 2, it is unnecessary in the GE-PON system in which guard bands of wavelength bands ( ⁇ 1 - ⁇ ), ⁇ 1, ( ⁇ 1 + ⁇ ) are provided without installing narrow band filters and collimator optical devices. Transmission and reception of light wavelengths can be avoided.
  • the rectangular portion in FIG. 2 means a standard specification.
  • the optical signal of wavelength 1310 nm transmitted through the WDM filters 4 and 5 is transmitted to the station side, and the wavelengths 1490 nm and 1550 nm transmitted from the station side are transmitted.
  • An optical fiber for transmitting an optical signal to the WDM filter 5 side includes blocking (reflecting) transmission of a narrow band including wavelength 1310 nm, a narrow band including wavelength 1490 nm, and a band other than a narrow band including wavelength 1550 nm It is comprised so that the fiber 7 with a grating which has a function of a band pass filter may be used. For this reason, transmission quality can be ensured without installing a narrow band filter and collimating optical equipment, and as a result, it is possible to achieve miniaturization and reduction in member cost.
  • FIG. 3 is an explanatory view showing the configuration of an optical transmission / reception module according to a second embodiment of the present invention.
  • FIG. 3 since the same reference numerals as in FIG. 1 described in the first embodiment indicate the same or corresponding parts, the description will be appropriately omitted.
  • the fiber ferrule 9 with a grating is a fiber ferrule which accommodates the part equivalent to the grating part in the fiber 7 with a grating of FIG.
  • One end of the optical fiber 10 is connected to the fiber with grating housed in the fiber ferrule 9 with grating, and transmits the optical signal of wavelength 1310 nm transmitted through the WDM filter 5 and outputs it to the connector 8 side.
  • An optical signal (optical signal transmitted from the station side) of wavelengths 1490 nm and 1550 nm incident from the 8 side is transmitted and output to the WDM filter 5 side.
  • the fiber with grating 7 is connected between the fiber ferrule 6 and the connector 8.
  • the grating length of the fiber with grating 7 is shortened by changing the refractive index.
  • the grating portion is housed in the fiber ferrule 6. Specifically, it is as follows.
  • the fiber ferrule 9 with a grating shown in FIG. 3 is made to grating the core of the fiber in the fiber ferrule, noting that the grating length can be shortened to 1 / n 2 when the refractive index change amount is multiplied by n. It is a thing.
  • the optical transmission and reception module of the second embodiment exhibits the effect of being able to reduce the size and cost of the member more than the optical transmission and reception module of the first embodiment.
  • FIG. 4 is an explanatory view showing a configuration of an optical transmission and reception module according to a third embodiment of the present invention.
  • the same reference numerals as in FIGS. 1 and 3 denote the same or corresponding parts, and therefore the description will be appropriately omitted.
  • the connector with grating 11 is a connector that accommodates a portion corresponding to the grating portion in the fiber with grating 7 of FIG. 1.
  • the grating length of the fiber 7 with a grating is shortened by the change of the refractive index.
  • the grating portion of the fiber 7 with a grating is accommodated in the connector 8 by doing this. Specifically, it is as follows.
  • the grating of the core of the optical fiber in the connector 11 is made to grating A part is provided.
  • the area for extra fiber length processing can be reduced, and space saving of the subscriber-side optical line termination device can be achieved.
  • the direct material cost can be reduced.
  • the optical transmission and reception module of the third embodiment exhibits the effect of achieving the downsizing and the reduction of the member cost more than the optical transmission and reception module of the first embodiment.
  • FIG. 5 is an explanatory view showing a configuration of an optical transmission and reception module according to a fourth embodiment of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and therefore the description will be appropriately omitted.
  • the receptacle 12 with grating is disposed on the right of the WDM filter 5 in the figure and connected to one end of a single mode fiber, and has an optical axis adjustment function with the optical module and a connection mechanism with an external connector. It is a module part.
  • the receptacle 12 with a grating accommodates a portion corresponding to the grating portion in the fiber 7 with a grating in FIG. 1.
  • Embodiment 4 stores the fiber 7 with a grating in a receptacle. Specifically, it is as follows.
  • the receptacle 12 with a grating shown in FIG. 5 is one in which the grating length can be shortened to 1 / n 2 if the refractive index change amount is multiplied by n, and the grating is made in the core of the fiber in the receptacle. is there.
  • the area for extra fiber length processing can be reduced, and space saving of the subscriber-side optical line termination device can be achieved.
  • the direct material cost can be reduced.
  • the optical transmission and reception module of the fourth embodiment achieves the effect of being able to reduce the size and cost of the member more than the optical transmission and reception module of the first embodiment.
  • FIG. 6 is an explanatory view showing a structure of a fiber grating for an optical transmitting and receiving module according to a fifth embodiment of the present invention.
  • a clad 14 is provided to cover the core 13 in a concentric manner, and the core 13 has an inclined fiber grating portion 15 and an optical fiber portion 16 for attenuating stray light.
  • a tilted fiber grating is used as a wavelength filter.
  • the manufacturing method of the inclined fiber grating part 15 is demonstrated first.
  • Optical fiber gratings are fabricated by ultraviolet light exposure to optical fibers.
  • the optical fiber to be used is compatible with the optical fiber connected to the optical transceiver module from the outside (connector 8 side (see Fig. 1), incident side of transmitted light) and optical characteristics such as core diameter and numerical aperture. A model is desirable. If there is no optical compatibility, a connection loss occurs when the optical transceiver module and the external fiber are connected via an optical fiber connector or the like, which causes signal degradation.
  • the cladding is the same quartz glass, and Ge and B are added to the core, and the mode field diameter, numerical aperture and cladding diameter are in the same specification as that of the external single mode fiber, using the mode
  • the field diameter is about 10 ⁇ m
  • the numerical aperture is about 0.13
  • the cladding diameter is 125 ⁇ m.
  • the grating Before exposure of the fiber grating, after two weeks treatment in high pressure hydrogen (100 atm) atmosphere to enhance exposure sensitivity, the grating is formed by irradiating Nd-YAG laser (output 200 mW, wavelength 266 nm) did.
  • the laser for exposure may use an excimer laser.
  • the portion to be irradiated with ultraviolet light is exposed in a state in which the coating of the fiber is removed to expose the cladding and brought close to the phase mask.
  • the period of the phase mask is adjusted so that the wavelength of the 1.55 ⁇ m band is a Bragg wavelength, and the periodic structure of the mask is inclined at an angle ⁇ (see FIG. 6) with respect to the vertical line in the longitudinal direction of the optical fiber.
  • is defined in the range of more than ⁇ 90 ° and less than 90 °.
  • cladding mode occurs on the short wavelength side of the Bragg wavelength.
  • the cladding mode loss has a periodic comb-like spectrum shape, but in a chirped grating whose period is changed in the grating, the spectrum shape is averaged into a broad spectrum shape.
  • FIG. 7 shows the spectrum of transmission loss and reflection.
  • Bragg reflection is present at a wavelength of 1556 to 1557 nm
  • the reflection angle has a small value of ⁇ 30 dB or less because the inclination angle is adjusted to a condition under which Bragg reflection becomes smaller. Since the reflection intensity is sufficiently small, no structure appears in the transmission loss spectrum at the above wavelength.
  • the loss appearing on the shorter wavelength side than 1553 nm in the transmission loss spectrum is due to the cladding mode described above. Since the fiber grating is chirped, the comb-like spectral structure is averaged. The loss near 1555 nm is a spectral structure due to the reflection from the fundamental propagation mode to the high order LP11 mode, also called ghost grating. In the optical fiber before exposure, this mode has a large propagation loss and does not appear as a spectral structure. However, when the average refractive index of the core is increased by the exposure of the grating and the propagation loss is reduced, as shown in FIG. It will increase.
  • the reflection intensity does not originally increase, but residual reflection may occur due to the influence of the nonuniformity of the grating and the like.
  • the structure with a reflection intensity of -25 dB appearing at wavelengths 1554 to 1555 nm in FIG. 7 is due to such residual reflection.
  • the Bragg reflection intensity and the transmission loss of the cladding mode and the ghost grating vary depending on the grating tilt angle, it is necessary to adjust the mask tilt angle at the time of exposure in order to obtain the desired characteristics.
  • the Bragg reflection has the property of being sensitive to the grating tilt angle.
  • the transmission loss increases as the change in refractive index due to exposure increases, but the change in refractive index caused by exposure is determined by the characteristics of the fiber used. Therefore, in order to obtain the desired transmission loss, first assume an appropriate refractive index change inherent to the fiber used, and then perform exposure in consideration of the grating length that can obtain the required transmission loss. Do.
  • the transmission loss is small at the use wavelength ⁇ C in the 1550 nm band, It is necessary that the transmission loss is large in the guard band (for example, the wavelength band ⁇ C- ⁇ ) and low reflection in those wavelength bands.
  • a chirped grating In order to realize the required transmission loss wavelength width (for example, 1.5 nm), a chirped grating is used.
  • the amount of chirp which is the difference between the maximum value and the minimum value of the Bragg wavelength of the fiber grating, was 2.7 nm.
  • apodization processing is assumed in which the amount of change in refractive index is gradually reduced at both ends of the grating.
  • the transmission loss at the used wavelength ⁇ C at 1552 nm is small, and the transmission loss at the guard band wavelength band (wavelength band ⁇ C- ⁇ ) shorter than the used wavelength is 40 dB or more (Fig. 8 (a)) It can be confirmed that the reflection intensity is small (see FIG. 8 (b)), and it is understood that the required specifications are satisfied in calculation. Since the tilt of the grating in the fiber core is about 1.45 times the mask tilt angle, the mask tilt angle is 3.1 degrees at the time of fabrication. However, when the transmission spectrum of the fiber grating actually manufactured was measured, it became clear that the stray light which propagates a clad part arises in a grating part, and the problem to which a transmission loss becomes small arises.
  • FIG. 9 is a graph showing the results of measuring the transmission loss by changing the length of the stray light attenuating optical fiber portion 16 with respect to the same inclined fiber grating portion 15. It can be understood from FIG. 9 that in order to obtain the transmission loss of 40 dB or more, the stray light attenuating optical fiber portion 16 of 16 cm or more may be provided.
  • the stray light attenuating optical fiber portion 16 having a length of 16 cm or more is attached to the aforementioned inclined fiber grating portion 15.
  • FIG. 10 is an explanatory view showing a structure of a fiber grating for an optical transmitting and receiving module according to a sixth embodiment of the present invention.
  • connection inclined fiber grating portion 17a fiber group with first type grating
  • connection non-inclined fiber grating portion 17b fiber group with second type grating
  • two grating portions connected with each other are used.
  • the same reference numerals as in FIG. 6 denote the same or corresponding parts, and therefore the description will be appropriately omitted.
  • the same photosensitive fiber as in the fifth embodiment is used. Below, the characteristic of each grating is explained.
  • the coupling inclined fiber grating portion 17a is manufactured to have an inclination angle at which the Bragg reflection becomes small, and to have a transmission loss of 12.5 dB or more due to the cladding mode. Further, the connection non-inclined fiber grating part 17b is manufactured at a position close to the connection inclined fiber grating part 17a with a period such that Bragg reflection occurs at the cladding mode loss wavelength of the connection inclined fiber grating part 17a. Finally, the coupling inclined fiber grating portion 17a, the coupling non-inclination fiber grating portion 17b, and the stray light attenuating optical fiber portion 16 are manufactured to be coupled in this order.
  • connection inclined fiber grating portion 17a is on the connection side with the outside (connector 8 side (see FIG. 1)). Although it is possible to expose each grating separately or to perform batch exposure using a phase mask on which two corresponding types of patterns are formed, it is preferable to perform batch exposure because the cost can be reduced.
  • the coupling non-inclined fiber grating portion 17b has a wavelength band in which the reflection intensity by Bragg reflection is large, and the center wavelength thereof is the Bragg wavelength.
  • the wavelength band where the transmission loss of the connection inclined fiber grating part 17a is sufficiently large include the reflection wavelength band of the connection non-inclination fiber grating part 17b, the connection non-inclination no fiber grating part 17b viewed from the outside The intensity of the Bragg reflection can be reduced. If the transmission loss of the coupling inclined fiber grating portion 17a is small in the Bragg reflection wavelength band of the coupling non-inclined fiber grating portion 17b, the reflection intensity viewed from the outside at that wavelength becomes large.
  • the transmission loss of all the fiber gratings is the Bragg reflection wavelength band of the connection non-inclined fiber grating part 17b.
  • the transmission blocking wavelength range may be included in the above-mentioned Bragg wavelength band because it becomes large.
  • the wavelength range can be expanded by chirping the grating.
  • the transmission loss due to the cladding mode occurs at a shorter wavelength than the Bragg reflection, so the transmission blocking wavelength range included in the transmission loss wavelength band due to the Bragg reflection of the connection non-inclined fiber grating portion 17b is connected
  • the shorter wavelength side than the Bragg wavelength band of the inclined fiber grating portion 17a for the left side and preventing the Bragg reflection on the longer wavelength side than the Bragg wavelength band of the connected inclined fiber grating portion 17a. It is possible to reduce the intensity of the Bragg reflection of the coupling non-inclined fiber grating portion 17b viewed from the side.
  • the Bragg reflection intensity of the coupling inclined fiber grating portion 17a is reduced by adjusting the inclination angle, so that it is possible to obtain wavelength filter characteristics in which the reflection intensity is small at all wavelengths.
  • the light transmission loss of the inclined grating in the connection inclined fiber grating portion 17a and the light transmission loss of the non-tiled grating in the connection non-inclined fiber grating portion 17b are L1 (dB) and L2 (L In the case of dB), it is necessary to satisfy “L1 ⁇ 12.5, L1 + L2 ⁇ 40” (first condition).
  • R1 (dB) and R2 (dB) be the light reflectances of the inclined gratings in the above transmission blocking wavelength range and the Bragg wavelength band of the inclined grating, and let the reflectance of the non-tilting grating in the transmission blocking wavelength range be R0 ( In the case of dB), it is necessary to satisfy the following equation (1) (second condition).
  • the first and second conditions are satisfied, and the minimum value of the light transmission loss of the entire optical filter in the transmission blocking wavelength range is 40 dB or more, and the light reflectance is ⁇ 25 dB or less over the entire wavelength band.
  • the connecting inclined fiber grating portion 17a has a length of 45 mm
  • the connecting non-inclined fiber grating portion 17b has a length of 10 mm
  • the phase mask inclination angle is 3.1 degrees
  • the chirp amount is 2.7 nm
  • the refractive index change amount The calculation result of the optical characteristics of the coupled fiber grating when the apodization processing is performed is 1.2 ⁇ 10 -3 is shown in the graph of FIG. It can be seen that both the transmission loss (see FIG. 11 (a)) and the reflection (see FIG. 11 (b)) satisfy the above specifications (conditions).
  • the apodization treatment has a sixth order super Gaussian shape, it may have a second order or fourth order super Gaussian shape.
  • FIG. 11A a large transmission loss of ⁇ 40 dB or more is observed at a wavelength width of about 2 nm in the 1550 nm band, which is due to the Bragg reflection of the connection non-inclined fiber grating portion 17b as described above.
  • the broad transmission loss from this wavelength band to the short wavelength side is due to the transmission loss of the cladding mode of the connection sloped fiber grating portion 17a, and the relative relationship between the wavelength positions of the two gratings is as described above.
  • the Bragg reflection of the connection non-inclined fiber grating portion 17b transmits the cladding mode of the connection inclined fiber grating portion 17a on the short wavelength side. It is reduced by the loss.
  • the long wavelength side is the Bragg reflection intensity of the coupling inclined fiber grating portion 17a, which is reduced by adjusting the inclination angle.
  • the fiber grating having such a connection structure can be manufactured because high transmission loss can be obtained with a short fiber length for the same amount of change in refractive index as compared with the case of one type of inclined fiber grating described in the fifth embodiment. Has the effect of facilitating In addition, since the amount of chirp per unit length of the tilted grating can be increased, there is an effect that low reflection characteristics can be easily obtained.
  • FIG. 12 is an explanatory view showing a structure of a fiber grating for an optical transmission / reception module according to a seventh embodiment of the present invention.
  • the coupling first inclined grating portion 18 a and the coupling second inclined grating portion 18 b (fiber group with first type grating) and the coupling non-inclined fiber grating It is set as the structure which connected the part 17b (2nd type grating attached fiber group). Therefore, the inclined grating portion has a structure in which two types of inclined grating portions 18a and 18b are connected.
  • the same reference numerals as in FIG. 6 or FIG. 10 denote the same or corresponding parts, and therefore the description will be appropriately omitted.
  • the same photosensitive fiber as in the case of the fifth and sixth embodiments is used. Below, the characteristic of each grating is explained.
  • the inclined grating section is produced by connecting the first inclined grating section 18a for connection (first (inclined) grating) at an inclination angle at which the Bragg reflection becomes small, and the second inclined grating section for connection 18b (second (inclined) grating ) Are also made at the same inclination angle.
  • the transmission loss wavelength is made to overlap with the same period and the same amount of chirp, but the first grating has a smaller FBG (Fiber Bragg Grating) length, that is, Make the amount of chirp per unit length large. By doing this, the reflectance of the first grating can be made smaller than the reflectance of the second grating.
  • FBG Fiber Bragg Grating
  • the coupling non-inclined fiber grating portion 17b and the stray light attenuating optical fiber portion 16 are manufactured in the same manner as in the sixth embodiment.
  • the connection non-inclined fiber grating part 17b (non-inclined grating) is fabricated at a position close to the inclined grating part 18b with a period such that Bragg reflection occurs at the cladding mode loss wavelength of the inclined grating.
  • the connecting first inclined grating portion 18a, the connecting second inclined grating portion 18b, the connecting non-inclined fiber grating portion 17b, and the stray light attenuating optical fiber portion 16 are manufactured to be connected in this order.
  • the coupling first inclined grating portion 18 a is on the connection side with the outside.
  • the light transmission loss of the first inclined grating, the light transmission loss of the second inclined grating, and the light transmission loss of the non-tilted grating in the desired transmission blocking wavelength range are L11 (dB) and L21 (dB, respectively).
  • L2 (dB) it is necessary to satisfy "L11 ⁇ 2.5, L11 + L21 ⁇ 12.5, L2 ⁇ 15" (third condition).
  • the light reflectivity of the first inclined grating in the transmission blocking wavelength range described above and the Bragg wavelength band of the first inclined grating is R11 (dB) and R12 (dB), respectively, and the Bragg reflection of the non-inclined grating
  • R21 (dB) and R22 (dB) are the light reflectances of the second inclined grating in the transmission loss wavelength band according to and the Bragg wavelength band of the first and second inclined gratings, respectively. It is necessary to satisfy 2) and Formula (3) (fourth condition).
  • prevention wavelength range is 40 dB or more, and light reflectivity becomes -25 dB or less over all the wavelength bands.
  • the length of the connecting first inclined grating portion 18a is 10 mm
  • the length of the connecting second inclined grating portion 18b is 35 mm
  • the length of the connecting non-inclined fiber grating portion 17b is 10 mm
  • the phase mask inclination angle is 3
  • the degree of chirp is 2.7 nm
  • the change in refractive index is 1.2 ⁇ 10 -3
  • the apodized treatment is the same as in the case of the sixth embodiment, both the transmission loss and the reflection have the above specifications ( Characteristics satisfying the condition) are obtained.
  • the fiber grating having such a connection structure can easily obtain low reflection characteristics as compared with the case of the two types of inclined fiber gratings described in the sixth embodiment, and has an effect of facilitating manufacture. This is because the first inclined grating can increase the amount of chirp per unit length of the inclined grating when considering the reflection characteristics of the entire wavelength filter, and therefore the reflection can be made low and the contribution of the reflection by the second inclined grating can be obtained. Is reduced by the transmission loss of the first tilted grating.
  • the transmission loss wavelength range of the tilted grating near the outer side needs to include the reflection wavelength range of the tilted grating on the inner side in order to have low reflection characteristics as the entire grating viewed from the outer side There is. Also, as the amount of chirp per unit length of the tilted grating is larger, it is easier to obtain a low reflective grating, but the transmission loss intensity also decreases.
  • the wavelength position is also adjusted so that the transmission loss wavelength range includes the reflection wavelength range of the inclined grating on the inner side, viewed from the outside Low reflection characteristics can be obtained as a whole.
  • the following is performed.
  • the Bragg wavelength band of the first inclined grating and the Bragg wavelength band of the second inclined grating are at the same wavelength position.
  • the Bragg wavelength band of the first tilted grating includes the Bragg wavelength band of the second tilted grating by setting the total chirp amount of the first tilted grating to be equal to or greater than the total chirp amount of the second tilted grating.
  • the transmission loss wavelength band of the inclined grating can include the reflection wavelength band of the second inclined grating, and low reflection characteristics can be obtained as the entire grating viewed from the outside.
  • Such multiplexing of inclined gratings has the effect that low reflection characteristics can be more easily obtained when the multiplicity is further increased from two connections.
  • the period is the same for each inclined grating, and the amount of chirp per unit length may be larger as the inclination grating is closer to the external connection side, and the total amount of chirp may be the same or more.
  • FIG. 13 is an explanatory drawing showing a method of producing a fiber grating used for an optical transmitter-receiver module according to Embodiment 8 of the present invention.
  • fiber gratings are produced by exposure to ultraviolet light, refraction of light occurs when ultraviolet light passing through the phase mask passes through the surface of the fiber cladding, so that the tilt angle of the structure actually exposed in the fiber is the phase mask Approximately 1.45 times the angle of inclination of the In addition, the light collecting effect of the cylindrical surface of the cladding may cause the structure of the grating to be nonuniform.
  • the periphery of the fiber (core 13 and cladding 14) on the dielectric plate 19 is filled with the ultraviolet light transmitting liquid 22 and a phase mask is formed by the irradiation ultraviolet light 21 for exposure. Expose through 20.
  • the tilt angle of the structure actually exposed in the fiber falls at about 1.1 times the tilt angle of the phase mask 20.
  • the adjustment accuracy of the tilt angle of the phase mask 20 is determined by mechanical tolerances, the tilt angle of the structure actually exposed in the fiber corresponds to that of the phase mask 20 in consideration of producing a fiber grating at a desired tilt angle.
  • the smaller the ratio of the tilt angles the more accurate the tilt angles of the structures actually exposed in the fiber can be. In this case, the angular accuracy can be improved by about 30%.
  • the same angle accuracy improvement effect installs a fiber (core 13, clad 14) in the groove 23g provided in the grooved dielectric plate 23, and applies the irradiation ultraviolet light 21 for exposure. It can also be obtained by exposure through the phase mask 20.
  • the grooved dielectric plate 23 when a groove is provided in a quartz glass plate as the grooved dielectric plate 23, there is no difference between the refractive index of the fiber cladding and the refractive index of the fiber cladding, so that no refraction of light occurs at the cladding surface. As a result, the tilt angle of the structure actually exposed in the fiber is the same as the tilt angle of the phase mask, and the angular accuracy of the grating can be further improved.
  • the groove 23g provided in the grooved dielectric plate 23 does not have to completely match the shape of the fiber cladding, and the same effect can be obtained even if it is a V-shaped groove that can be easily formed, for example.

Abstract

An optical transmission/reception module which can ensure the transmission quality without providing a collimating optical device and a narrow-band filter. A fiber (7) with a grating which has a function of the narrow-band filter to block transmission of an optical signal in a band other than a narrow band containing a wavelength of 1310 nm, a narrow band containing a wavelength of 1490 nm, and a narrow band containing a wavelength of 1550 nm is used as an optical fiber for transmitting an optical signal with the wavelength of 1310 nm that has passed through WDM filters (4, 5) to a station and transmitting optical signals with the wavelengths of 1490 nm and 1550 nm transmitted from the station to the WDM filter (5).

Description

光送受信モジュールOptical transceiver module
 この発明は、光ファイバを用いて、最大伝送速度1Gビット/秒のインターネットサービスを加入者に提供するGE-PON(Gigabit Ethernet(登録商標)-Passive Optical Network System)の加入者側光回線終端装置(ONU:Optical Network Unit)内に搭載されて、光信号を電気信号に変換する処理と、電気信号を光信号に変換する処理を行う光送受信モジュールに関するものである。 The present invention is a subscriber-side optical line termination device of GE-PON (Gigabit Ethernet (registered trademark) -Passive Optical Network System) that provides subscribers with Internet service with a maximum transmission rate of 1 Gbit / s using an optical fiber. The present invention relates to an optical transmission / reception module mounted in an (ONU: Optical Network Unit) and performing processing of converting an optical signal into an electrical signal and processing of converting an electrical signal into an optical signal.
 GE-PONシステムは、センター局に設置される局側光回線終端装置(OLT:Optical Line Terminal)と、伝送路を最大32本に分岐させる光分岐器と、加入者宅内に設置される加入者側光回線終端装置とから構成される。 The GE-PON system comprises a station-side Optical Line Terminal (OLT) installed at a center station, an optical branching unit for branching transmission lines up to 32 and a subscriber installed at a subscriber's premises. It consists of a side optical line termination device.
 局側光回線終端装置から加入者側光回線終端装置に伝送される下りのデータ/音声信号には1490nmの波長が割り当てられ、下りのアナログビデオ信号には1550nmの波長が割り当てられる。 The downstream data / voice signal transmitted from the station-side optical line termination to the subscriber-side optical line termination is assigned a wavelength of 1490 nm, and the downstream analog video signal is assigned a wavelength of 1550 nm.
 一方、加入者側光回線終端装置から局側光回線終端装置に伝送される上りのデータ信号には1310nmの波長が割り当てられる。 On the other hand, a wavelength of 1310 nm is allocated to the upstream data signal transmitted from the subscriber-side optical line terminal to the station-side optical line terminal.
 このように、GE-PONシステムは、複数の波長が割り当てられる波長多重方式(WDM:Wavelength Division Multiplexing)を使用して一芯双方向光通信を行う。 Thus, the GE-PON system performs single-core bidirectional optical communication using wavelength division multiplexing (WDM) to which a plurality of wavelengths are allocated.
 ただし、GE-PONシステムでは、下りのデータ/音声信号の光波長及びアナログビデオ信号の光波長の帯域にはガードバンドを設ける必要がある。即ち、それらの光波長の帯域以外の光波長の送受信を回避するために、加入者側光回線終端装置がガードバンドを設けている光送受信モジュールを使用する必要がある。 However, in the GE-PON system, it is necessary to provide a guard band in the optical wavelength band of the downstream data / voice signal and the optical wavelength band of the analog video signal. That is, in order to avoid transmission and reception of optical wavelengths other than those optical wavelength bands, it is necessary to use an optical transmission and reception module in which the subscriber-side optical line termination device is provided with a guard band.
 上述したように、加入者側光回線終端装置がガードバンドを設けている光送受信モジュールを使用する必要があるが、例えば特許文献1に開示されている送受信モジュールではWDMフィルタを用いて、複数の波長の光信号を分離多重することで、一芯双方向光通信を実現している。しかし、この送受信モジュールでは、WDMフィルタと光ファイバの間にレンズ結合光学素子が単に接続されているだけで、下りのデータ/音声信号の光波長及びアナログビデオ信号の光波長の近傍に隣接するガードバンドが設けられているGE-PONシステムに適用することはできない。 As described above, it is necessary to use an optical transmission / reception module in which the subscriber-side optical line termination device is provided with a guard band. For example, in the transmission / reception module disclosed in Patent Document 1, a plurality of WDM filters are used. Single-core bidirectional optical communication is realized by separating and multiplexing wavelength optical signals. However, in this transmission / reception module, guards adjacent to the optical wavelength of the downstream data / audio signal and the optical wavelength of the analog video signal can be obtained only by simply connecting the lens coupling optical element between the WDM filter and the optical fiber. It can not be applied to the GE-PON system in which the band is provided.
 ここで、図14は特許文献1に開示されている受信モジュールの拡散光(ダイバージェンス光)によるフィルタ特性を示す説明図である。なお、図14における矩形部分は規格仕様を意味している。 Here, FIG. 14 is an explanatory view showing a filter characteristic by diffused light (divergence light) of the receiving module disclosed in Patent Document 1. As shown in FIG. The rectangular portions in FIG. 14 mean standard specifications.
 図14から明らかなように、加入者側光回線終端装置内の光送受信モジュール内部にある狭帯域フィルタに拡散光で入射させた場合、光送受信モジュールの拡散光がガードバンド(波長帯λ1-α)を突き抜けている。 As apparent from FIG. 14, when the narrow band filter in the optical transmission / reception module in the subscriber-side optical line terminal is made incident as diffused light, the diffused light of the optical transmission / reception module is a guard band (wavelength band λ1-α Through).
 ここで、ガードバンドとデータ/音声信号の光波長又はアナログビデオ信号の光波長が隣接している場合、狭帯域フィルタに対する入射光の角度によって、その狭帯域フィルタのフィルタ特性が変化するため、狭帯域フィルタのフィルタ特性を保持して、伝送品質を確保する必要がある。 Here, when the guard band and the light wavelength of the data / voice signal or the light wavelength of the analog video signal are adjacent, the filter characteristics of the narrow band filter change depending on the angle of the incident light with respect to the narrow band filter. It is necessary to maintain the transmission quality by maintaining the filter characteristics of the band pass filter.
 狭帯域フィルタのフィルタ特性を保持して伝送品質を確保するには、光ファイバから出力される拡散光を平行光(コリメータ光)に変換するコリメーティング光学機器等を設置して、狭帯域フィルタに対する入射光の角度を調整するようにすればよい。 In order to maintain the filter characteristics of the narrow band filter and secure the transmission quality, a narrow band filter is provided by installing a collimating optical device or the like for converting diffused light output from the optical fiber into parallel light (collimator light). It is sufficient to adjust the angle of incident light with respect to.
 例えば特許文献2には、狭帯域フィルタとコリメーティング光学機器を設置している送受信モジュールが開示されている。 For example, Patent Document 2 discloses a transmitting / receiving module in which a narrow band filter and a collimating optical device are installed.
 ここで、図15は特許文献2に開示されている送受信モジュールの平行光によるフィルタ特性を示す説明図である。なお、図15における矩形部分は規格仕様を意味している。 Here, FIG. 15 is an explanatory view showing filter characteristics by parallel light of the transmission / reception module disclosed in Patent Document 2. As shown in FIG. The rectangular portions in FIG. 15 mean standard specifications.
 図15から明らかなように、波長帯(λ1-α),λ1,(λ1+α)のガードバンドが設けられており、不要な光波長の送受信を回避することができる。 As apparent from FIG. 15, guard bands in the wavelength bands (λ1−α), λ1, and (λ1 + α) are provided, and transmission and reception of unnecessary light wavelengths can be avoided.
 また、特許文献3には低反射かつ40dB以上の高透過損失の波長フィルタとして、傾斜ファイバグレーティングと傾斜なしファイバグレーティングを組み合わせた構成が開示されている。傾斜グレーティングのみで低反射かつ40dB以上の高透過損失の特性を得るのは容易でないが、20dB程度の透過損失を有する傾斜および傾斜なしファイバグレーティングを組み合わせることで低反射かつ40dB以上の高透過損失の特性を得ることができるとされている。 Further, Patent Document 3 discloses a configuration in which a tilted fiber grating and a non-tilted fiber grating are combined as a low reflection and high transmission loss wavelength filter of 40 dB or more. It is not easy to obtain low reflection and high transmission loss characteristics of 40 dB or more with only tilted gratings, but combining inclined and non-tilted fiber gratings with transmission loss of about 20 dB results in low reflection and high transmission loss of 40 dB or more. It is believed that the characteristics can be obtained.
 なお、このようなファイバ式の波長フィルタを用いた光送受信モジュールの構成はこれまでに報告されていない。 In addition, the structure of the optical transmission / reception module using such a fiber type wavelength filter is not reported until now.
特表2003-524789号公報(図2a)Japanese Patent Publication No. 2003-524789 (FIG. 2a) 特開2005-260220号公報(段落番号[0009],[0010]、図4)JP-A-2005-260220 (Paragraphs [0009], [0010], FIG. 4) 特許第3612780号Patent No. 3612780
 従来の光送受信モジュールは以上のように構成されているので、コリメーティング光学機器を設置すれば、狭帯域フィルタのフィルタ特性を保持して伝送品質を確保することができる。しかし、コリメーティング光学機器を設置する分だけ部品点数が多くなる。このため、小型化が困難になり、部材コストも高くなるなどの課題があった。 Since the conventional light transmitting / receiving module is configured as described above, if the collimating optical device is installed, it is possible to maintain the filter characteristics of the narrow band filter and secure the transmission quality. However, the number of parts increases as the collimating optics are installed. For this reason, there existed a subject that size reduction became difficult and member cost became high.
 また、従来のファイバグレーティングを用いた波長フィルタは、傾斜ファイバグレーティングで20dB程度の高い透過損失を得るために露光強度を強めるとブラッグ反射波長帯や損失波長帯での残留反射が生じやすくなり、低反射特性が損なわれてしまう問題点があった。 Also, in the wavelength filter using the conventional fiber grating, when the exposure intensity is increased to obtain a high transmission loss of about 20 dB with the inclined fiber grating, residual reflection in the Bragg reflection wavelength band or the loss wavelength band tends to occur, and low There is a problem that the reflection characteristic is lost.
 この発明は上記のような課題を解決するためになされたもので、コリメーティング光学機器や狭帯域フィルタを設置することなく、伝送品質を確保することができる光送受信モジュールを得ることを目的とする。 The present invention has been made to solve the above-mentioned problems, and it is an object of the present invention to obtain an optical transmission / reception module capable of securing transmission quality without installing a collimating optical device or a narrow band filter. Do.
 この発明に係る光送受信モジュールは、波長分離多重手段により透過された第1の波長帯の光信号を局側に伝送するとともに、局側から送信された第2及び第3の波長帯の光信号を波長分離多重手段に伝送する光ファイバとして、第1、第2及び第3の波長帯以外の帯域の光信号の透過を阻止する狭帯域フィルタの機能を有するグレーティング付ファイバを用いるようにしたものである。 The optical transmitting and receiving module according to the present invention transmits the optical signal of the first wavelength band transmitted by the wavelength division multiplexing means to the station side, and the optical signals of the second and third wavelength bands transmitted from the station side. A fiber with a grating having the function of a narrow band filter for blocking transmission of optical signals in bands other than the first, second and third wavelength bands as an optical fiber for transmitting It is.
 この発明によれば、波長分離多重手段により透過された第1の波長帯の光信号を局側に伝送するとともに、局側から送信された第2及び第3の波長帯の光信号を波長分離多重手段に伝送する光ファイバとして、第1、第2及び第3の波長帯以外の帯域の光信号の透過を阻止する狭帯域フィルタの機能を有するグレーティング付ファイバを用いるように構成したので、コリメーティング光学機器や狭帯域フィルタを設置することなく、伝送品質を確保することができるようになり、その結果、小型化及び部材コストの低減を図ることができる効果がある。  According to the present invention, the optical signal of the first wavelength band transmitted by the wavelength division multiplexing means is transmitted to the station side, and the optical signals of the second and third wavelength bands transmitted from the station side are wavelength separated. As an optical fiber to be transmitted to the multiplexing means is configured to use a fiber with a grating having the function of a narrow band filter that blocks transmission of optical signals in bands other than the first, second and third wavelength bands, The transmission quality can be secured without installing the mating optical device or the narrow band filter, and as a result, the size reduction and the cost reduction of the members can be achieved.
実施の形態1による光送受信モジュールの構成を示す説明図である。FIG. 2 is an explanatory view showing a configuration of an optical transmission and reception module according to Embodiment 1. ファイバグレーティング特性を示す説明図である。It is explanatory drawing which shows a fiber grating characteristic. 実施の形態2による光送受信モジュールの構成を示す説明図である。FIG. 8 is an explanatory view showing a configuration of an optical transmission and reception module according to a second embodiment. 実施の形態3による光送受信モジュールの構成を示す説明図である。FIG. 13 is an explanatory view showing a configuration of an optical transmission and reception module according to a third embodiment. 実施の形態4による光送受信モジュールの構成を示す説明図である。FIG. 18 is an explanatory view showing a configuration of an optical transmission and reception module according to a fourth embodiment. 実施の形態5による光送受信モジュール用ファイバグレーティングの構成を示す説明図である。FIG. 18 is an explanatory view showing a configuration of a fiber grating for an optical transmission and reception module according to a fifth embodiment. 実施の形態5による傾斜ファイバグレーティングのスペクトル測定例を示すグラフである。21 is a graph showing an example of spectrum measurement of the tilted fiber grating according to the fifth embodiment. 実施の形態5による傾斜ファイバグレーティングのスペクトル計算例を示すグラフである。21 is a graph showing an example of spectrum calculation of the tilted fiber grating according to the fifth embodiment. 実施の形態5による迷光減衰用の光ファイバ部の長さを変えた場合の傾斜ファイバグレーティングの透過損失の測定結果を示すグラフである。21 is a graph showing measurement results of transmission loss of a tilted fiber grating when the length of an optical fiber portion for stray light attenuation according to Embodiment 5 is changed. 実施の形態6による光送受信モジュール用ファイバグレーティングの構成を示す説明図である。FIG. 16 is an explanatory view showing a configuration of a fiber grating for an optical transmission and reception module according to a sixth embodiment. 実施の形態6による傾斜ファイバグレーティングのスペクトル計算例を示すグラフである。It is a graph which shows the example of spectrum calculation of the inclined fiber grating by Embodiment 6. FIG. 実施の形態7による光送受信モジュール用ファイバグレーティングの構成を示す説明図である。FIG. 21 is an explanatory drawing showing the configuration of a fiber grating for an optical transmission / reception module according to a seventh embodiment. 実施の形態8による光送受信モジュール用ファイバグレーティングの製造方法を示す説明図である。FIG. 21 is an explanatory drawing showing a method of manufacturing a fiber grating for an optical transmission / reception module according to Embodiment 8. 従来の送受信モジュールの拡散光によるフィルタ特性を示す説明図である。It is explanatory drawing which shows the filter characteristic by the diffused light of the conventional transmission / reception module. 従来の送受信モジュールの平行光によるフィルタ特性を示す説明図である。It is explanatory drawing which shows the filter characteristic by parallel light of the conventional transmission / reception module.
 <実施の形態1>
 図1はこの発明の実施の形態1による光送受信モジュールの構成を示す説明図である。図1で示す光送受信モジュールは、加入者側光回線終端装置に実装される。
Embodiment 1
FIG. 1 is an explanatory view showing a configuration of an optical transmission / reception module according to a first embodiment of the present invention. The optical transmission / reception module shown in FIG. 1 is mounted on a subscriber-side optical line termination device.
 図1において、送信モジュール1は上りのデータ信号である電気信号を1310nmの波長の光信号(第1の波長帯に含まれる光信号)に変換し、その光波長をWDMフィルタ4に出力するモジュールである。 In FIG. 1, the transmission module 1 converts an electrical signal, which is an upstream data signal, into an optical signal of 1310 nm wavelength (optical signal included in the first wavelength band), and outputs the optical wavelength to the WDM filter 4 It is.
 受信モジュール2はWDMフィルタ4から下りのデータ/音声信号である1490nmの波長の光信号(第2の波長帯に含まれる光信号)を受けると、その光信号を電気信号に変換する第1の受信モジュールである。 When receiving an optical signal (optical signal included in the second wavelength band) having a wavelength of 1490 nm, which is a downstream data / voice signal from the WDM filter 4, the receiving module 2 converts the optical signal into an electrical signal. It is a receiving module.
 受信モジュール3はWDMフィルタ5から下りのアナログビデオ信号である1550nmの波長の光信号(第3の波長帯に含まれる光信号)を受けると、その光信号を電気信号に変換する第2の受信モジュールである。 When receiving an optical signal of 1550 nm wavelength (an optical signal included in the third wavelength band), which is a downstream analog video signal, from the WDM filter 5, the receiving module 3 converts the optical signal into an electric signal. It is a module.
 図1では、送信モジュール1により送信される第1の波長帯の光信号が1310nmの光信号、受信モジュール2により受信される第2の波長帯の光信号が1490nmの光信号、受信モジュール3により受信される第3の波長帯の光信号が1550nmの光信号である例を示しているが、これは一例に過ぎず、第1、第2及び第3の波長帯が他の波長帯であってもよいことは言うまでもない。 In FIG. 1, the optical signal of the first wavelength band transmitted by the transmitting module 1 is an optical signal of 1310 nm, the optical signal of the second wavelength band received by the receiving module 2 is an optical signal of 1490 nm, by the receiving module 3 Although an example is shown in which the optical signal of the third wavelength band to be received is an optical signal of 1550 nm, this is merely an example, and the first, second, and third wavelength bands are other wavelength bands. It goes without saying that it is also possible.
 WDMフィルタ4は送信モジュール1から出力された波長1310nmの光信号をWDMフィルタ5側に透過させる一方、WDMフィルタ5を透過してきた波長1490nmの光信号を受信モジュール2側に反射させる第1の波長分離多重フィルタである。 The WDM filter 4 transmits the light signal of wavelength 1310 nm output from the transmission module 1 to the WDM filter 5 side, and reflects the light signal of wavelength 1490 nm transmitted through the WDM filter 5 to the reception module 2 side. It is a separation multiplex filter.
 WDMフィルタ5はWDMフィルタ4を透過してきた波長1310nmの光信号をファイバフェルール6側に透過させるとともに、ファイバフェルール6から出力された波長1490nmの光信号をWDMフィルタ4側に透過させる一方、ファイバフェルール6から出力された波長1550nmの光信号を受信モジュール3側に反射させる第2の波長分離多重フィルタである。なお、WDMフィルタ4,5から波長分離多重手段が構成されている。 The WDM filter 5 transmits the optical signal of wavelength 1310 nm transmitted through the WDM filter 4 to the side of the fiber ferrule 6 and transmits the optical signal of wavelength 1490 nm output from the fiber ferrule 6 to the side of the WDM filter 4 while the fiber ferrule 6 is a second wavelength division multiplex filter that reflects the optical signal of wavelength 1550 nm output from the light source 6 to the receiving module 3 side. The WDM filters 4 and 5 constitute a wavelength demultiplexing means.
 ファイバフェルール6はグレーティング付ファイバ7を収容するための収容部材であり、図中、WDMフィルタ5の右隣に設けられている。 The fiber ferrule 6 is a housing member for housing the fiber 7 with a grating, and is provided on the right of the WDM filter 5 in the figure.
 グレーティング付ファイバ7はWDMフィルタ5を透過してきた波長1310nmの光信号を伝送してコネクタ8側に出力する一方、コネクタ8側から入射された波長1490nm,1550nmの光信号(局側から送信された光信号)を伝送してWDMフィルタ5側に出力する光ファイバである。このグレーティング付ファイバ7は波長1310nmを含む狭帯域(第1の波長帯)、波長1490nmを含む狭帯域(第2の波長帯)及び波長1550nmを含む狭帯域(第3の波長帯)以外の帯域の光信号の透過を阻止する狭帯域フィルタの機能を有している。 The fiber 7 with grating transmits the optical signal of wavelength 1310 nm transmitted through the WDM filter 5 and outputs it to the connector 8 side, while the optical signal of wavelength 1490 nm and 1550 nm incident from the connector 8 side (transmitted from the station side ) Is an optical fiber that transmits the optical signal to the WDM filter 5 side. The fiber 7 with grating has a band other than a narrow band (first wavelength band) including a wavelength 1310 nm, a narrow band (second wavelength band) including a wavelength 1490 nm, and a narrow band (third wavelength band) including a wavelength 1550 nm. And the function of a narrow band filter to block the transmission of the light signal.
 コネクタ8はグレーティング付ファイバ7の一端が接続され、かつ、シングルモードファイバの一端が接続される接続部材である。なお、シングルモードファイバの他端は局側光回線終端装置と接続されている。 The connector 8 is a connecting member to which one end of the fiber with grating 7 is connected and to which one end of a single mode fiber is connected. The other end of the single mode fiber is connected to the station side optical line termination device.
 次に実施の形態1による光送受信モジュールの動作について説明する。最初に、加入者側光回線終端装置内の光送受信モジュールが上りのデータ信号を局側光回線終端装置に送信する動作を説明する。 Next, the operation of the optical transmission and reception module according to the first embodiment will be described. First, an operation of the optical transmission and reception module in the subscriber-side optical line termination apparatus transmitting an upstream data signal to the station-side optical line termination apparatus will be described.
 送信モジュール1は、上りのデータ信号である電気信号を受けると、その電気信号を1310nmの波長の光信号に変換し、その光信号をWDMフィルタ4に出力する。 When receiving an electrical signal that is an upstream data signal, the transmission module 1 converts the electrical signal into an optical signal with a wavelength of 1310 nm, and outputs the optical signal to the WDM filter 4.
 WDMフィルタ4は、送信モジュール1から波長1310nmの光信号を受けると、波長1310nmの光信号をWDMフィルタ5側に透過させる。 When the WDM filter 4 receives an optical signal of wavelength 1310 nm from the transmission module 1, the WDM filter 4 transmits the optical signal of wavelength 1310 nm to the WDM filter 5 side.
 WDMフィルタ5は、WDMフィルタ4を透過してきた波長1310nmの光信号をファイバフェルール6側に透過させる。 The WDM filter 5 transmits the light signal of wavelength 1310 nm transmitted through the WDM filter 4 to the fiber ferrule 6 side.
 これにより、波長1310nmの光信号がファイバフェルール6に入射されることにより、波長1310nmの光信号がグレーティング付ファイバ7中を伝送されて、コネクタ8からシングルモードファイバに出射される。 As a result, when an optical signal of wavelength 1310 nm is incident on the fiber ferrule 6, an optical signal of wavelength 1310 nm is transmitted in the fiber 7 with a grating and emitted from the connector 8 to a single mode fiber.
 次に、加入者側光回線終端装置内の光送受信モジュールが局側光回線終端装置から下りのデータ/音声信号及びアナログビデオ信号を受信する動作を説明する。 Next, the operation of the optical transmission / reception module in the subscriber-side optical line termination device receiving downstream data / voice signals and analog video signals from the station-side optical line termination device will be described.
 局側光回線終端装置から送信された下りのデータ/音声信号である波長1490nmの光信号と、下りのアナログビデオ信号である波長1550nmの光信号は、シングルモードファイバ中を伝送されて、コネクタ8から入射される。 An optical signal with a wavelength of 1490 nm, which is a downstream data / voice signal transmitted from the station-side optical line terminal, and an optical signal with a wavelength of 1550 nm, which is a downstream analog video signal, are transmitted through a single mode fiber. It is incident from.
 これにより、波長1490nm,1550nmの光信号がグレーティング付ファイバ7中を伝送されて、ファイバフェルール6からWDMフィルタ5に出射される。 As a result, optical signals of wavelengths 1490 nm and 1550 nm are transmitted through the fiber 7 with a grating, and emitted from the fiber ferrule 6 to the WDM filter 5.
 WDMフィルタ5は、ファイバフェルール6から波長1490nm,1550nmの光信号を受けると、波長1490nmの光信号と波長1550nmの光信号を分離して、波長1490nmの光信号をWDMフィルタ4側に透過させる一方、波長1550nmの光信号を受信モジュール3側に反射させる。 When the WDM filter 5 receives an optical signal with a wavelength of 1490 nm and 1550 nm from the fiber ferrule 6, the WDM filter 5 separates the optical signal with a wavelength of 1490 nm and the optical signal with a wavelength of 1550 nm and transmits the optical signal with a wavelength of 1490 nm to the WDM filter 4 side The light signal of wavelength 1550 nm is reflected to the receiving module 3 side.
 受信モジュール3は、WDMフィルタ5から波長1550nmの光信号を受けると、波長1550nmの光信号を電気信号に変換し、電気信号である下りのアナログビデオ信号を出力する。 Receiving the optical signal of wavelength 1550 nm from the WDM filter 5, the receiving module 3 converts the optical signal of wavelength 1550 nm into an electrical signal, and outputs a downstream analog video signal which is an electrical signal.
 WDMフィルタ4は、WDMフィルタ5を透過してきた波長1490nmの光信号を受信モジュール2側に反射させる。 The WDM filter 4 reflects the light signal of wavelength 1490 nm transmitted through the WDM filter 5 to the receiving module 2 side.
 受信モジュール2は、WDMフィルタ4から波長1490nmの光信号を受けると、波長1490nmの光信号を電気信号に変換し、電気信号である下りのデータ/音声信号を出力する。 Receiving the light signal of wavelength 1490 nm from the WDM filter 4, the reception module 2 converts the light signal of wavelength 1490 nm into an electric signal, and outputs downstream data / voice signal which is an electric signal.
 ここで、グレーティング付ファイバ7は、紫外線が光ファイバに照射されると、屈折率が上昇する光誘起屈折率変化を利用しているものである。 Here, the fiber with grating 7 utilizes a light-induced refractive index change in which the refractive index increases when ultraviolet light is irradiated to the optical fiber.
 即ち、グレーティング付ファイバ7は、紫外線が光ファイバに照射されると、光ファイバのコア又はクラッド中に回折格子が形成されて、周期的な屈折率が変化する。 That is, when the fiber with grating 7 is irradiated with ultraviolet light to the optical fiber, a diffraction grating is formed in the core or cladding of the optical fiber, and the periodic refractive index changes.
 これにより、グレーティング付ファイバ7は、その周期に対応する特定の光波長のみを反射させることができるため、光フィルタ(狭帯域フィルタ)の機能を有する光ファイバ型デバイスとして用いられる。 As a result, since the grating-equipped fiber 7 can reflect only a specific light wavelength corresponding to the period, it is used as an optical fiber type device having the function of an optical filter (narrow band filter).
 また、グレーティング付ファイバ7は、光ファイバ中に回折格子を非破壊的に直接形成することができるため、低コストで製造することが可能である。また、中心波長、帯域幅、反射率などの光学特性も容易に変化させることができるため、低損失・小型化・高信頼性が得られる利点を有している。 In addition, since the grating-equipped fiber 7 can directly form the diffraction grating in the optical fiber nondestructively, it can be manufactured at low cost. In addition, since optical characteristics such as center wavelength, bandwidth, and reflectance can be easily changed, it has an advantage that low loss, miniaturization, and high reliability can be obtained.
 図1の光送受信モジュールに実装されているグレーティング付ファイバ7は、波長1310nmを含む狭帯域の光信号、波長1490nmを含む狭帯域の光信号及び波長1550nmを含む狭帯域の光信号については透過させるが、上記3つの狭帯域以外の帯域の光信号については減衰させる狭帯域フィルタの機能を有している。 The grating-equipped fiber 7 implemented in the optical transceiver module of FIG. 1 transmits a narrow band optical signal including a wavelength 1310 nm, a narrow band optical signal including a wavelength 1490 nm, and a narrow band optical signal including a wavelength 1550 nm. However, it has the function of a narrow band filter for attenuating optical signals in bands other than the above three narrow bands.
 したがって、従来の光送受信モジュールのように、内部に狭帯域フィルタを配置する必要がない。これにより、光波長をダイバージェンス光からコリメータ光に変換させる必要がないため、従来の光送受信モジュールのように、コリメータ光学機器を配置する必要がない。 Therefore, it is not necessary to dispose a narrow band filter inside as in the conventional optical transceiver module. As a result, there is no need to convert the light wavelength from divergence light into collimator light, so there is no need to arrange collimator optics as in the conventional light transmitting and receiving module.
 また、グレーティング付ファイバ7は、波長1310nmを含む狭帯域、波長1490nmを含む狭帯域及び波長1550nmを含む狭帯域以外の帯域の光信号をファイバ内のコアからクラッドにエネルギー拡散させることで反射減衰量を確保することができる。 In addition, the fiber 7 with a grating has an optical signal of a narrow band including a wavelength of 1310 nm, a narrow band including a wavelength of 1490 nm, and a band other than the narrow band including a wavelength of 1550 nm, energy diffused from the core in the fiber to the cladding Can be secured.
 ここで、図2はファイバグレーティング特性を示す説明図である。図2から明らかなように、狭帯域フィルタ及びコリメータ光学機器を設置することなく、波長帯(λ1-α),λ1,(λ1+α)のガードバンドが設けられているGE-PONシステムにおいて、不要な光波長の送受信を回避することができる。なお、図2における矩形部分は規格仕様を意味している。 Here, FIG. 2 is an explanatory view showing a fiber grating characteristic. As apparent from FIG. 2, it is unnecessary in the GE-PON system in which guard bands of wavelength bands (λ 1 -α), λ 1, (λ 1 + α) are provided without installing narrow band filters and collimator optical devices. Transmission and reception of light wavelengths can be avoided. The rectangular portion in FIG. 2 means a standard specification.
 以上で明らかなように、この実施の形態1によれば、WDMフィルタ4,5を透過してきた波長1310nmの光信号を局側に伝送するするとともに、局側から送信された波長1490nm,1550nmの光信号をWDMフィルタ5側に伝送する光ファイバとして、波長1310nmを含む狭帯域、波長1490nmを含む狭帯域及び波長1550nmを含む狭帯域以外の帯域の光信号の透過を阻止する(反射させる)狭帯域フィルタの機能を有するグレーティング付ファイバ7を用いるように構成している。このため、狭帯域フィルタ及びコリメーティング光学機器を設置することなく、伝送品質を確保することができるようになり、その結果、小型化及び部材コストの低減を図ることができる効果を奏する。 As apparent from the above, according to the first embodiment, the optical signal of wavelength 1310 nm transmitted through the WDM filters 4 and 5 is transmitted to the station side, and the wavelengths 1490 nm and 1550 nm transmitted from the station side are transmitted. An optical fiber for transmitting an optical signal to the WDM filter 5 side includes blocking (reflecting) transmission of a narrow band including wavelength 1310 nm, a narrow band including wavelength 1490 nm, and a band other than a narrow band including wavelength 1550 nm It is comprised so that the fiber 7 with a grating which has a function of a band pass filter may be used. For this reason, transmission quality can be ensured without installing a narrow band filter and collimating optical equipment, and as a result, it is possible to achieve miniaturization and reduction in member cost.
 <実施の形態2>
 図3はこの発明の実施の形態2による光送受信モジュールの構成を示す説明図である。図3において、実施の形態1で説明した図1と同一符号は同一又は相当部分を示すので説明を適宜省略する。
Second Embodiment
FIG. 3 is an explanatory view showing the configuration of an optical transmission / reception module according to a second embodiment of the present invention. In FIG. 3, since the same reference numerals as in FIG. 1 described in the first embodiment indicate the same or corresponding parts, the description will be appropriately omitted.
 グレーティング付ファイバフェルール9は図1のグレーティング付ファイバ7におけるグレーティング部分に相当する部分を収納しているファイバフェルールである。 The fiber ferrule 9 with a grating is a fiber ferrule which accommodates the part equivalent to the grating part in the fiber 7 with a grating of FIG.
 光ファイバ10は一端がグレーティング付ファイバフェルール9に収納されているグレーティング付ファイバと接続されており、WDMフィルタ5を透過してきた波長1310nmの光信号を伝送してコネクタ8側に出力する一方、コネクタ8側から入射された波長1490nm,1550nmの光信号(局側から送信された光信号)を伝送してWDMフィルタ5側に出力する。 One end of the optical fiber 10 is connected to the fiber with grating housed in the fiber ferrule 9 with grating, and transmits the optical signal of wavelength 1310 nm transmitted through the WDM filter 5 and outputs it to the connector 8 side. An optical signal (optical signal transmitted from the station side) of wavelengths 1490 nm and 1550 nm incident from the 8 side is transmitted and output to the WDM filter 5 side.
 上記実施の形態1では、ファイバフェルール6とコネクタ8の間にグレーティング付ファイバ7が接続されているものについて示したが、そのグレーティング付ファイバ7のグレーティング長を屈折率の変化によって短尺化することで、グレーティング部分をファイバフェルール6内に収納するようにしたのが実施の形態2である。具体的には、以下の通りである。 In the first embodiment described above, the fiber with grating 7 is connected between the fiber ferrule 6 and the connector 8. However, the grating length of the fiber with grating 7 is shortened by changing the refractive index. In the second embodiment, the grating portion is housed in the fiber ferrule 6. Specifically, it is as follows.
 図3のグレーティング付ファイバフェルール9は、屈折率変化量をn倍にすると、グレーティング長を1/n2に短尺化することができることに着目して、ファイバフェルール内のファイバのコアにグレーティングさせたものである。 The fiber ferrule 9 with a grating shown in FIG. 3 is made to grating the core of the fiber in the fiber ferrule, noting that the grating length can be shortened to 1 / n 2 when the refractive index change amount is multiplied by n. It is a thing.
 これにより、ファイバ余長処理の領域を削減することができる、すなわち、光ファイバ10の長さを短くすることができるため、加入者側光回線終端装置の省スペース化が可能になる。また、ファイバ長が短尺化されることにより、直材コストの低減を図ることができる。 As a result, it is possible to reduce the area of extra fiber length processing, that is, to shorten the length of the optical fiber 10, thereby enabling space saving of the subscriber-side optical line termination device. In addition, by shortening the fiber length, the direct material cost can be reduced.
 したがって、実施の形態2の光送受信モジュールは、実施の形態1の光送受信モジュールよりも更に、小型化及び部材コストの低減を図ることができる効果を奏する。 Therefore, the optical transmission and reception module of the second embodiment exhibits the effect of being able to reduce the size and cost of the member more than the optical transmission and reception module of the first embodiment.
 <実施の形態3>
 図4はこの発明の実施の形態3による光送受信モジュールの構成を示す説明図である。図4において、図1及び図3と同一符号は同一又は相当部分を示すので説明を適宜省略する。
Embodiment 3
FIG. 4 is an explanatory view showing a configuration of an optical transmission and reception module according to a third embodiment of the present invention. In FIG. 4, the same reference numerals as in FIGS. 1 and 3 denote the same or corresponding parts, and therefore the description will be appropriately omitted.
 グレーティング付コネクタ11は図1のグレーティング付ファイバ7におけるグレーティング部分に相当する部分を収納しているコネクタである。 The connector with grating 11 is a connector that accommodates a portion corresponding to the grating portion in the fiber with grating 7 of FIG. 1.
 実施の形態1の光送受信モジュールでは、ファイバフェルール6とコネクタ8の間にグレーティング付ファイバ7が接続されているものについて示したが、そのグレーティング付ファイバ7のグレーティング長を屈折率の変化によって短尺化することで、グレーティング付ファイバ7のグレーティング部分をコネクタ8内に収納するようにしたのが実施の形態3である。具体的には、以下の通りである。 In the optical transmitting and receiving module according to the first embodiment, although the fiber 7 with a grating is connected between the fiber ferrule 6 and the connector 8, the grating length of the fiber 7 with a grating is shortened by the change of the refractive index. In the third embodiment, the grating portion of the fiber 7 with a grating is accommodated in the connector 8 by doing this. Specifically, it is as follows.
 図4のグレーティング付コネクタ11は、屈折率変化量をn倍にすると、グレーティング長を1/n2に短尺化することができることに着目して、コネクタ11内の光ファイバのコアにグレーティングさせグレーティング部分を設けたものである。 In the connector with grating 11 of FIG. 4, focusing on the fact that the grating length can be shortened to 1 / n 2 when the refractive index change amount is multiplied by n, the grating of the core of the optical fiber in the connector 11 is made to grating A part is provided.
 これにより、ファイバ余長処理の領域を削減することができるため、加入者側光回線終端装置の省スペース化が可能になる。また、ファイバ長が短尺化されることにより、直材コストの低減を図ることができる。 As a result, the area for extra fiber length processing can be reduced, and space saving of the subscriber-side optical line termination device can be achieved. In addition, by shortening the fiber length, the direct material cost can be reduced.
 したがって、実施の形態3の光送受信モジュールは、実施の形態1の光送受信モジュールよりも更に、小型化及び部材コストの低減を図ることができる効果を奏する。 Therefore, the optical transmission and reception module of the third embodiment exhibits the effect of achieving the downsizing and the reduction of the member cost more than the optical transmission and reception module of the first embodiment.
 <実施の形態4>
 図5はこの発明の実施の形態4による光送受信モジュールの構成を示す説明図である。図5において、図1と同一符号は同一又は相当部分を示すので説明を適宜省略する。
Fourth Preferred Embodiment
FIG. 5 is an explanatory view showing a configuration of an optical transmission and reception module according to a fourth embodiment of the present invention. In FIG. 5, the same reference numerals as those in FIG. 1 denote the same or corresponding parts, and therefore the description will be appropriately omitted.
 グレーティング付レセプタクル12は図中WDMフィルタ5の右隣に設置されて、シングルモードファイバの一端と接続されており、光モジュールとの光軸調整機能及び外部コネクタとの接続機構を有している光モジュール部品である。 The receptacle 12 with grating is disposed on the right of the WDM filter 5 in the figure and connected to one end of a single mode fiber, and has an optical axis adjustment function with the optical module and a connection mechanism with an external connector. It is a module part.
 また、グレーティング付レセプタクル12は図1のグレーティング付ファイバ7におけるグレーティング部分に相当する部分を収納している。 Further, the receptacle 12 with a grating accommodates a portion corresponding to the grating portion in the fiber 7 with a grating in FIG. 1.
 実施の形態1では、ファイバフェルール6とコネクタ8の間にグレーティング付ファイバ7が接続されているものについて示したが、そのグレーティング付ファイバ7のグレーティング長を屈折率の変化によって短尺化することで、グレーティング付ファイバ7をレセプタクル内に収納したのが実施の形態4である。具体的には、以下の通りである。 In the first embodiment, although the fiber 7 with a grating is connected between the fiber ferrule 6 and the connector 8, the grating length of the fiber 7 with a grating is shortened by changing the refractive index, Embodiment 4 stores the fiber 7 with a grating in a receptacle. Specifically, it is as follows.
 図5のグレーティング付レセプタクル12は、屈折率変化量をn倍にすると、グレーティング長を1/n2に短尺化することができることに着目して、レセプタクル内のファイバのコアにグレーティングさせたものである。 The receptacle 12 with a grating shown in FIG. 5 is one in which the grating length can be shortened to 1 / n 2 if the refractive index change amount is multiplied by n, and the grating is made in the core of the fiber in the receptacle. is there.
 これにより、ファイバ余長処理の領域を削減することができるため、加入者側光回線終端装置の省スペース化が可能になる。また、ファイバ長が短尺化されることにより、直材コストの低減を図ることができる。 As a result, the area for extra fiber length processing can be reduced, and space saving of the subscriber-side optical line termination device can be achieved. In addition, by shortening the fiber length, the direct material cost can be reduced.
 したがって、実施の形態4の光送受信モジュールは、実施の形態1の光送受信モジュールよりも更に、小型化及び部材コストの低減を図ることができる効果を奏する。 Therefore, the optical transmission and reception module of the fourth embodiment achieves the effect of being able to reduce the size and cost of the member more than the optical transmission and reception module of the first embodiment.
 <実施の形態5>
 図6はこの発明の実施の形態5による光送受信モジュール用ファイバグレーティングの構造を示す説明図である。
The Fifth Preferred Embodiment
FIG. 6 is an explanatory view showing a structure of a fiber grating for an optical transmitting and receiving module according to a fifth embodiment of the present invention.
 図6に示すように、コア13を円心状に覆ってクラッド14が設けられ、コア13は傾斜ファイバグレーティング部15と、迷光減衰用光ファイバ部16とを有している。 As shown in FIG. 6, a clad 14 is provided to cover the core 13 in a concentric manner, and the core 13 has an inclined fiber grating portion 15 and an optical fiber portion 16 for attenuating stray light.
 実施の形態5では、波長フィルタとして傾斜ファイバグレーティングを用いる。以下ではまず、傾斜ファイバグレーティング部15の作製方法について説明する。光ファイバグレーティングは光ファイバへの紫外光露光により作製する。使用する光ファイバとしては、光送受信モジュールへ外部(コネクタ8側(図1参照)、透過光の入射側)から接続される光ファイバと、コア径や開口数などの光学的特性に互換性がある機種が望ましい。光学的に互換性がないと光ファイバコネクタ等を介して光送受信モジュールと外部ファイバを接続させた場合に接続損失が生じ、信号劣化の原因となってしまう。本実施の形態では、光通信用に用いられる石英ガラス系ファイバ(石英ガラスクラッドとGe(ゲルマニウム)添加コアからなる)ではなく、GeとB(ボロン)を添加して露光感度を高めたいわゆるフォトセンシティブファイバを用いる。具体的には、クラッドは同じ石英ガラスであり、コアにGeとBを添加し、モードフィールド径と開口数とクラッド径を外部の単一モードファイバと同様の仕様とした光ファイバを用い、モードフィールド径が約10μm,開口数が約0.13,クラッド径が125μmである。 In the fifth embodiment, a tilted fiber grating is used as a wavelength filter. Below, the manufacturing method of the inclined fiber grating part 15 is demonstrated first. Optical fiber gratings are fabricated by ultraviolet light exposure to optical fibers. The optical fiber to be used is compatible with the optical fiber connected to the optical transceiver module from the outside (connector 8 side (see Fig. 1), incident side of transmitted light) and optical characteristics such as core diameter and numerical aperture. A model is desirable. If there is no optical compatibility, a connection loss occurs when the optical transceiver module and the external fiber are connected via an optical fiber connector or the like, which causes signal degradation. In the present embodiment, so-called photo in which the exposure sensitivity is enhanced by adding Ge and B (boron) instead of the silica glass-based fiber (composed of silica glass clad and Ge (germanium) doped core) used for optical communication Use sensitive fiber. Specifically, the cladding is the same quartz glass, and Ge and B are added to the core, and the mode field diameter, numerical aperture and cladding diameter are in the same specification as that of the external single mode fiber, using the mode The field diameter is about 10 μm, the numerical aperture is about 0.13, and the cladding diameter is 125 μm.
 ファイバグレーティングの露光前に、露光感度を高めるために高圧水素(100気圧)雰囲気中にて2週間の処理を行った後、Nd-YAGレーザ(出力200mW、波長266nm)を照射してグレーティングを形成した。露光用のレーザは、エキシマレーザを用いてもよい。紫外光を照射する部分は、ファイバの被覆を除去してクラッドが露出するようにしておき、位相マスクに近接させた状態で露光する。 Before exposure of the fiber grating, after two weeks treatment in high pressure hydrogen (100 atm) atmosphere to enhance exposure sensitivity, the grating is formed by irradiating Nd-YAG laser (output 200 mW, wavelength 266 nm) did. The laser for exposure may use an excimer laser. The portion to be irradiated with ultraviolet light is exposed in a state in which the coating of the fiber is removed to expose the cladding and brought close to the phase mask.
 位相マスクは、波長1.55μm帯がブラッグ波長となるように周期が調整されており、マスクの周期構造が光ファイバの長手方向の垂直線に対して角度θ(図6参照)で傾斜しているようにセットする。θは、-90°より大きく90°未満の範囲で規定される。 The period of the phase mask is adjusted so that the wavelength of the 1.55 μm band is a Bragg wavelength, and the periodic structure of the mask is inclined at an angle θ (see FIG. 6) with respect to the vertical line in the longitudinal direction of the optical fiber. Set as you are. θ is defined in the range of more than −90 ° and less than 90 °.
 傾斜ファイバグレーティング部15において、ブラッグ波長より短波長側でクラッドモードと呼ばれる透過損失が生じる。周期が均一なグレーティングでは、クラッドモード損失は周期的なくし状のスペクトル形状となるが、周期をグレーティング内で変化させたチャープグレーティングでは、スペクトル形状が平均化されてブロードなスペクトル形状になる。 In the inclined fiber grating portion 15, a transmission loss called cladding mode occurs on the short wavelength side of the Bragg wavelength. In a grating with a uniform period, the cladding mode loss has a periodic comb-like spectrum shape, but in a chirped grating whose period is changed in the grating, the spectrum shape is averaged into a broad spectrum shape.
 ファイバグレーティングの光学特性を説明するために、図7に傾斜ファイバグレーティング部15のスペクトル測定例を示したグラフを用いる。ファイバグレーティングは、フォトセンシティブファイバを用い、位相マスクを約3.1度傾斜させ、グレーティング長を5mm,チャープ量約0.4nmの条件で露光して得られた。図7には透過損失と反射のスペクトルを示している。ブラッグ反射が波長1556~1557nmに存在するが、傾斜角度をブラッグ反射が小さくなる条件に調整してあるため、反射強度は-30dB以下の小さな値となっている。反射強度が十分小さいため、上記波長には透過損失のスペクトルには構造が現れていない。透過損失スペクトルで1553nmより短波長側に現れる損失は、前述のクラッドモードに起因するものである。ファイバグレーティングがチャープしているので、くし状のスペクトル構造が平均化されている。1555nm付近の損失は、基本伝搬モードから高次のLP11モードへの反射に起因するスペクトル構造であり、ゴーストグレーティングとも呼ばれる。露光前の光ファイバではこのモードは伝搬損失が大きくスペクトル構造としても現れないが、グレーティングの露光によりコアの平均屈折率が高くなって伝搬損失が減少すると、図7に示すように透過損失としては増大するようになる。LP11モードはグレーティングを露光していないファイバ領域では減衰してしまうので、本来は反射強度は大きくならないと考えられるが、グレーティングの不均一性などの影響により残留反射が生じることがある。図7の波長1554~1555nmに現れている反射強度-25dB程度の構造は、そのような残留反射によるものである。 In order to explain the optical characteristics of the fiber grating, a graph showing an example of spectrum measurement of the inclined fiber grating portion 15 in FIG. 7 is used. The fiber grating was obtained by using a photosensitive fiber, tilting the phase mask by about 3.1 degrees, exposing the grating length at 5 mm and the chirp amount at about 0.4 nm. FIG. 7 shows the spectrum of transmission loss and reflection. Although Bragg reflection is present at a wavelength of 1556 to 1557 nm, the reflection angle has a small value of −30 dB or less because the inclination angle is adjusted to a condition under which Bragg reflection becomes smaller. Since the reflection intensity is sufficiently small, no structure appears in the transmission loss spectrum at the above wavelength. The loss appearing on the shorter wavelength side than 1553 nm in the transmission loss spectrum is due to the cladding mode described above. Since the fiber grating is chirped, the comb-like spectral structure is averaged. The loss near 1555 nm is a spectral structure due to the reflection from the fundamental propagation mode to the high order LP11 mode, also called ghost grating. In the optical fiber before exposure, this mode has a large propagation loss and does not appear as a spectral structure. However, when the average refractive index of the core is increased by the exposure of the grating and the propagation loss is reduced, as shown in FIG. It will increase. Since the LP11 mode is attenuated in the fiber area where the grating is not exposed, it is considered that the reflection intensity does not originally increase, but residual reflection may occur due to the influence of the nonuniformity of the grating and the like. The structure with a reflection intensity of -25 dB appearing at wavelengths 1554 to 1555 nm in FIG. 7 is due to such residual reflection.
 ブラッグ反射強度およびクラッドモードとゴーストグレーティングの透過損失は、グレーティング傾斜角度に依存して変化するため、所望の特性を得るためには露光時のマスク傾斜角度の調整が必要である。特にブラッグ反射はグレーティング傾斜角度に敏感に依存する性質がある。ファイバグレーティング長が長いほど、露光による屈折率変化が大きいほど透過損失が大きくなるが、露光により生じる屈折率変化は使用するファイバの特性によって上限が決まっている。そのため、所望の透過損失を得るためには、まず使用するファイバに固有の適正な屈折率変化を想定し、次に必要な透過損失が得られるだけのグレーティング長を考慮して露光を行うようにする。 Since the Bragg reflection intensity and the transmission loss of the cladding mode and the ghost grating vary depending on the grating tilt angle, it is necessary to adjust the mask tilt angle at the time of exposure in order to obtain the desired characteristics. In particular, the Bragg reflection has the property of being sensitive to the grating tilt angle. As the fiber grating length increases, the transmission loss increases as the change in refractive index due to exposure increases, but the change in refractive index caused by exposure is determined by the characteristics of the fiber used. Therefore, in order to obtain the desired transmission loss, first assume an appropriate refractive index change inherent to the fiber used, and then perform exposure in consideration of the grating length that can obtain the required transmission loss. Do.
 GE-PON用光送受信モジュールで使用するためには、波長フィルタの特性として波長1310nm帯の使用波長λAと1490nm帯の使用波長λB、1550nm帯の使用波長λCで透過損失が小さく、使用波長近傍のガードバンド(たとえば波長帯λC-α)で透過損失が大きいことと、それらの波長帯で低反射であることが必要である。 For use in the optical transmission / reception module for GE-PON, as the characteristics of the wavelength filter, the use wavelength λA in the wavelength 1310 nm band, the use wavelength λB in the 1490 nm band, the transmission loss is small at the use wavelength λC in the 1550 nm band, It is necessary that the transmission loss is large in the guard band (for example, the wavelength band λC-α) and low reflection in those wavelength bands.
 グレーティング長を50mm,グレーティングの傾斜角度を4.5度,露光による屈折率変化を2×10-3と想定した場合のファイバグレーティングの透過・反射スペクトル(計算結果)を図8のグラフに示す。 The transmission / reflection spectrum (calculation result) of the fiber grating when the grating length is 50 mm, the inclination angle of the grating is 4.5 degrees, and the change in refractive index due to exposure is 2 × 10 −3 is shown in the graph of FIG.
 要求される透過損失の波長幅(たとえば1.5nm)を実現するために、チャープグレーティングとしている。ファイバグレーティングのブラッグ波長の最大値と最小値の差であるチャープ量は2.7nmとした。また、反射を低減するために、グレーティングの両端部で屈折率変化量を徐々に小さくするアポダイズ処理を想定している。 In order to realize the required transmission loss wavelength width (for example, 1.5 nm), a chirped grating is used. The amount of chirp, which is the difference between the maximum value and the minimum value of the Bragg wavelength of the fiber grating, was 2.7 nm. In addition, in order to reduce reflection, apodization processing is assumed in which the amount of change in refractive index is gradually reduced at both ends of the grating.
 図8から1552nmの使用波長λCでの透過損失が小さいこと、使用波長より短波長側のガードバンド波長帯(波長帯λC-α)での透過損失が40dB以上であること(図8(a) 参照)、反射強度が小さいこと(図8(b) 参照)が確認でき、求められる仕様を計算上は満たすことがわかる。ファイバコア内でのグレーティングの傾斜は、マスク傾斜角度の約1.45倍になるため、作製時にはマスク傾斜角度を3.1度とする。ところが、実際に試作したファイバグレーティングの透過スペクトルを測定したところ、グレーティング部でクラッド部分を伝搬する迷光が生じて透過損失が小さくなってしまう問題が生じることが判明した。われわれはこの問題に対して、クラッド伝搬光がファイバジャケット界面での損失により減衰することを利用して、迷光減衰用の光ファイバ部をファイバグレーティングの端部に設けることで透過損失の減少を回避できることを見出しており、40dB以上の透過損失を得るためには、迷光減衰用の光ファイバ部を設ければよいことを測定で確かめた。図9は同一の傾斜ファイバグレーティング部15に対して迷光減衰用光ファイバ部16の長さを変えて透過損失を測定した結果を示すグラフである。図9から40dB以上の透過損失を得るためには、16cm以上の迷光減衰用光ファイバ部16を設ければよいことがわかる。 From Fig.8, the transmission loss at the used wavelength λC at 1552 nm is small, and the transmission loss at the guard band wavelength band (wavelength band λC-α) shorter than the used wavelength is 40 dB or more (Fig. 8 (a)) It can be confirmed that the reflection intensity is small (see FIG. 8 (b)), and it is understood that the required specifications are satisfied in calculation. Since the tilt of the grating in the fiber core is about 1.45 times the mask tilt angle, the mask tilt angle is 3.1 degrees at the time of fabrication. However, when the transmission spectrum of the fiber grating actually manufactured was measured, it became clear that the stray light which propagates a clad part arises in a grating part, and the problem to which a transmission loss becomes small arises. For this problem, we use the attenuation of the clad propagation light due to the loss at the fiber jacket interface and avoid the reduction of transmission loss by providing an optical fiber part for stray light attenuation at the end of the fiber grating. It has been found that it can be done, and it was confirmed by measurement that it is sufficient to provide an optical fiber part for stray light attenuation in order to obtain a transmission loss of 40 dB or more. FIG. 9 is a graph showing the results of measuring the transmission loss by changing the length of the stray light attenuating optical fiber portion 16 with respect to the same inclined fiber grating portion 15. It can be understood from FIG. 9 that in order to obtain the transmission loss of 40 dB or more, the stray light attenuating optical fiber portion 16 of 16 cm or more may be provided.
 したがって、GE-PON用光送受信モジュールで使用するためには、前述の傾斜ファイバグレーティング部15に長さ16cm以上の迷光減衰用光ファイバ部16が付属した構造とすればよい。 Therefore, in order to be used in the optical transmission / reception module for GE-PON, it is sufficient to adopt a structure in which the stray light attenuating optical fiber portion 16 having a length of 16 cm or more is attached to the aforementioned inclined fiber grating portion 15.
 反射特性については、傾斜角度を変えた試作を行い、3.1度付近で反射強度が極小となることを確認した。傾斜角度を最適に調整し、グレーティングを均一に露光することで良好な低反射特性を得ることができる。 With regard to the reflection characteristics, a trial manufacture was performed in which the inclination angle was changed, and it was confirmed that the reflection intensity became minimum around 3.1 degrees. Good low reflection characteristics can be obtained by adjusting the inclination angle optimally and exposing the grating uniformly.
 以上、本実施の形態で説明したファイバグレーティングにより、GE-PON用光送受信モジュールで使用する波長領域で必要な波長特性が得られるため、実施の形態1及び実施の形態3で説明した事例の動作が実現でき、加入者側光回線終端装置の省スペース化が可能になる。 As described above, since the necessary wavelength characteristics are obtained in the wavelength region used in the optical transmission / reception module for GE-PON by the fiber grating described in the present embodiment, the operation of the example described in the first embodiment and the third embodiment Thus, it is possible to save the space of the subscriber-side optical line termination device.
 <実施の形態6>
 図10はこの発明の実施の形態6による光送受信モジュール用ファイバグレーティングの構造を示す説明図である。
Embodiment 6
FIG. 10 is an explanatory view showing a structure of a fiber grating for an optical transmitting and receiving module according to a sixth embodiment of the present invention.
 図10に示すように、本実施の形態では、ファイバグレーティングとして、連結用傾斜ファイバグレーティング部17a(第1種グレーティング付ファイバ群)と連結用傾斜なしファイバグレーティング部17b(第2種グレーティング付ファイバ群)とからなる2つのグレーティング部を連結した構造を用いる。なお、図6と同一符号は同一又は相当部分を示すので説明を適宜省略する。 As shown in FIG. 10, in this embodiment, as the fiber grating, the connection inclined fiber grating portion 17a (fiber group with first type grating) and the connection non-inclined fiber grating portion 17b (fiber group with second type grating) And two grating portions connected with each other are used. The same reference numerals as in FIG. 6 denote the same or corresponding parts, and therefore the description will be appropriately omitted.
 光ファイバには、実施の形態5の場合と同じフォトセンシティブファイバを用いる。以下では、それぞれのグレーティングの特性について説明する。 As the optical fiber, the same photosensitive fiber as in the fifth embodiment is used. Below, the characteristic of each grating is explained.
 連結用傾斜ファイバグレーティング部17aは、ブラッグ反射が小さくなる傾斜角度とし、クラッドモードによる12.5dB以上の透過損失を有するように作製する。また、連結用傾斜なしファイバグレーティング部17bは、連結用傾斜ファイバグレーティング部17aの上記クラッドモード損失波長でブラッグ反射が生じるような周期で連結用傾斜ファイバグレーティング部17aに近接した位置に作製する。最終的に連結用傾斜ファイバグレーティング部17a、連結用傾斜なしファイバグレーティング部17b及び迷光減衰用光ファイバ部16がこの順序で連結されているように作製する。連結用傾斜ファイバグレーティング部17aが外部(コネクタ8側(図1参照))との接続側になる。それぞれのグレーティングは、別々に露光することも、対応する2種類のパターンが形成された位相マスクを用いて一括で露光することも可能であるが、一括で露光するほうがコストを低減できるので好ましい。 The coupling inclined fiber grating portion 17a is manufactured to have an inclination angle at which the Bragg reflection becomes small, and to have a transmission loss of 12.5 dB or more due to the cladding mode. Further, the connection non-inclined fiber grating part 17b is manufactured at a position close to the connection inclined fiber grating part 17a with a period such that Bragg reflection occurs at the cladding mode loss wavelength of the connection inclined fiber grating part 17a. Finally, the coupling inclined fiber grating portion 17a, the coupling non-inclination fiber grating portion 17b, and the stray light attenuating optical fiber portion 16 are manufactured to be coupled in this order. The connection inclined fiber grating portion 17a is on the connection side with the outside (connector 8 side (see FIG. 1)). Although it is possible to expose each grating separately or to perform batch exposure using a phase mask on which two corresponding types of patterns are formed, it is preferable to perform batch exposure because the cost can be reduced.
 連結用傾斜なしファイバグレーティング部17bは、ブラッグ反射による反射強度が大きい波長帯を有し,その中心波長がブラッグ波長である。連結用傾斜ファイバグレーティング部17aの透過損失が十分大きい波長帯が連結用傾斜なしファイバグレーティング部17bの反射波長帯を含むようにすることで、外部側から見た連結用傾斜なしファイバグレーティング部17bのブラッグ反射の強度を小さくすることができる。もし連結用傾斜なしファイバグレーティング部17bのブラッグ反射波長帯で連結用傾斜ファイバグレーティング部17aの透過損失が小さい波長が含まれると、その波長で外部側から見た反射強度が大きくなってしまう。 The coupling non-inclined fiber grating portion 17b has a wavelength band in which the reflection intensity by Bragg reflection is large, and the center wavelength thereof is the Bragg wavelength. By making the wavelength band where the transmission loss of the connection inclined fiber grating part 17a is sufficiently large include the reflection wavelength band of the connection non-inclination fiber grating part 17b, the connection non-inclination no fiber grating part 17b viewed from the outside The intensity of the Bragg reflection can be reduced. If the transmission loss of the coupling inclined fiber grating portion 17a is small in the Bragg reflection wavelength band of the coupling non-inclined fiber grating portion 17b, the reflection intensity viewed from the outside at that wavelength becomes large.
 上記のように、外部側から見た連結用傾斜なしファイバグレーティング部17bのブラッグ反射の強度を小さくした状態では、全ファイバグレーティングの透過損失は連結用傾斜なしファイバグレーティング部17bのブラッグ反射波長帯で特に大きくなるので、光送受信モジュールで使用する波長フィルタとしては、透過阻止波長範囲が上記ブラッグ波長帯に含まれるようにすればよい。また、透過阻止波長範囲が広い場合は、グレーティングをチャープさせることにより,波長範囲を拡大することができる。 As described above, in the state in which the intensity of the Bragg reflection of the connection non-inclined fiber grating part 17b viewed from the outside is reduced, the transmission loss of all the fiber gratings is the Bragg reflection wavelength band of the connection non-inclined fiber grating part 17b. In particular, as the wavelength filter used in the light transmitting / receiving module, the transmission blocking wavelength range may be included in the above-mentioned Bragg wavelength band because it becomes large. In addition, when the transmission blocking wavelength range is wide, the wavelength range can be expanded by chirping the grating.
 波長位置の相対関係としては、クラッドモードによる透過損失がブラッグ反射よりも短波長で生じることから、連結用傾斜なしファイバグレーティング部17bのブラッグ反射による透過損失波長帯域に含まれる透過阻止波長範囲を連結用傾斜ファイバグレーティング部17aのブラッグ波長帯域よりも短波長側とし、連結用傾斜ファイバグレーティング部17aのブラッグ波長帯域よりも長波長側でブラッグ反射が生じないようにすることで上記のように、外部側から見た連結用傾斜なしファイバグレーティング部17bのブラッグ反射の強度を小さくすることができる。連結用傾斜ファイバグレーティング部17aのブラッグ反射強度は、傾斜角度の調整により小さくされているので、全波長において反射強度が小さい波長フィルタ特性を得ることができる。 As the relative relationship of the wavelength position, the transmission loss due to the cladding mode occurs at a shorter wavelength than the Bragg reflection, so the transmission blocking wavelength range included in the transmission loss wavelength band due to the Bragg reflection of the connection non-inclined fiber grating portion 17b is connected As described above, by setting the shorter wavelength side than the Bragg wavelength band of the inclined fiber grating portion 17a for the left side and preventing the Bragg reflection on the longer wavelength side than the Bragg wavelength band of the connected inclined fiber grating portion 17a. It is possible to reduce the intensity of the Bragg reflection of the coupling non-inclined fiber grating portion 17b viewed from the side. The Bragg reflection intensity of the coupling inclined fiber grating portion 17a is reduced by adjusting the inclination angle, so that it is possible to obtain wavelength filter characteristics in which the reflection intensity is small at all wavelengths.
 所望の透過阻止波長範囲における、連結用傾斜ファイバグレーティング部17aにおける傾斜グレーティングの光透過損失と、連結用傾斜なしファイバグレーティング部17bにける傾斜なしグレーティングの光透過損失をそれぞれL1(dB),L2(dB)とするとき、「L1≧12.5,L1+L2≧40」(第1条件)を満足する必要がある。 In the desired transmission blocking wavelength range, the light transmission loss of the inclined grating in the connection inclined fiber grating portion 17a and the light transmission loss of the non-tiled grating in the connection non-inclined fiber grating portion 17b are L1 (dB) and L2 (L In the case of dB), it is necessary to satisfy “L1 ≧ 12.5, L1 + L2 ≧ 40” (first condition).
 また、上記の透過阻止波長範囲と傾斜グレーティングのブラッグ波長帯域とにおける傾斜グレーティングの光反射率をそれぞれR1(dB),R2(dB)とし、透過阻止波長範囲における傾斜なしグレーティングの反射率をR0(dB)とするとき、以下の式(1)(第2条件)を満足する必要がある。 Let R1 (dB) and R2 (dB) be the light reflectances of the inclined gratings in the above transmission blocking wavelength range and the Bragg wavelength band of the inclined grating, and let the reflectance of the non-tilting grating in the transmission blocking wavelength range be R0 ( In the case of dB), it is necessary to satisfy the following equation (1) (second condition).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 そして、上記第1及び第2条件を満足するとともに、上記透過阻止波長範囲における光フィルタ全体としての光透過損失の最小値が40dB以上、かつ全波長帯域にわたって光反射率が-25dB以下となるように、連結用傾斜ファイバグレーティング部17aにおける傾斜グレーティングの傾斜角度と周期と迷光減衰用光ファイバ部16の光ファイバ長を調整することが可能である。 Then, the first and second conditions are satisfied, and the minimum value of the light transmission loss of the entire optical filter in the transmission blocking wavelength range is 40 dB or more, and the light reflectance is −25 dB or less over the entire wavelength band. In addition, it is possible to adjust the inclination angle and period of the inclined grating in the connection inclined fiber grating portion 17a and the optical fiber length of the stray light attenuating optical fiber portion 16.
 例えば、連結用傾斜ファイバグレーティング部17aの長さを45mm,連結用傾斜なしファイバグレーティング部17bの長さを10mm,位相マスク傾斜角度を3.1度,チャープ量を2.7nm,屈折率変化量を1.2×10-3,アポダイズ処理ありとした場合の連結ファイバグレーティングの光学特性の計算結果を図11のグラフに示す。透過損失(図11(a) 参照)、反射(図11(b) 参照)のいずれも上記の仕様(条件)を満たしていることがわかる。アポダイズ処理は、6次のスーパーガウシアン形状としたが、2次あるいは4次のスーパーガウシアン形状でもよい。 For example, the connecting inclined fiber grating portion 17a has a length of 45 mm, the connecting non-inclined fiber grating portion 17b has a length of 10 mm, the phase mask inclination angle is 3.1 degrees, the chirp amount is 2.7 nm, and the refractive index change amount The calculation result of the optical characteristics of the coupled fiber grating when the apodization processing is performed is 1.2 × 10 -3 is shown in the graph of FIG. It can be seen that both the transmission loss (see FIG. 11 (a)) and the reflection (see FIG. 11 (b)) satisfy the above specifications (conditions). Although the apodization treatment has a sixth order super Gaussian shape, it may have a second order or fourth order super Gaussian shape.
 図11(a)では、1550nm帯に波長幅2nm程度で-40dB以上の大きな透過損失が見られるが、これは前述のように連結用傾斜なしファイバグレーティング部17bのブラッグ反射によるものである。一方、この波長帯から短波長側にかけてのブロードな透過損失は、連結用傾斜ファイバグレーティング部17aのクラッドモードの透過損失によるものであり、2つのグレーティングの波長位置の相対関係が前述のようになっていることがわかる。また、図11(b)に見られる1550nm帯の2種類の反射帯のうち,短波長側は連結用傾斜なしファイバグレーティング部17bのブラッグ反射が、連結用傾斜ファイバグレーティング部17aのクラッドモードの透過損失により低減されたものである。長波長側のものは、連結用傾斜ファイバグレーティング部17aのブラッグ反射強度であり、傾斜角度の調整により低減されている。 In FIG. 11A, a large transmission loss of −40 dB or more is observed at a wavelength width of about 2 nm in the 1550 nm band, which is due to the Bragg reflection of the connection non-inclined fiber grating portion 17b as described above. On the other hand, the broad transmission loss from this wavelength band to the short wavelength side is due to the transmission loss of the cladding mode of the connection sloped fiber grating portion 17a, and the relative relationship between the wavelength positions of the two gratings is as described above. Know that Further, of the two types of reflection bands in the 1550 nm band shown in FIG. 11B, the Bragg reflection of the connection non-inclined fiber grating portion 17b transmits the cladding mode of the connection inclined fiber grating portion 17a on the short wavelength side. It is reduced by the loss. The long wavelength side is the Bragg reflection intensity of the coupling inclined fiber grating portion 17a, which is reduced by adjusting the inclination angle.
 このような連結構造のファイバグレーティングは、実施の形態5で説明した1種類の傾斜ファイバグレーティングの場合に比べて、同じ屈折率変化量に対して短いファイバ長で高い透過損失が得られるので、製造が容易になる効果がある。また、傾斜グレーティングの単位長さあたりのチャープ量を大きくできるので、低反射特性が得やすくなる効果がある。 The fiber grating having such a connection structure can be manufactured because high transmission loss can be obtained with a short fiber length for the same amount of change in refractive index as compared with the case of one type of inclined fiber grating described in the fifth embodiment. Has the effect of facilitating In addition, since the amount of chirp per unit length of the tilted grating can be increased, there is an effect that low reflection characteristics can be easily obtained.
 以上、本実施の形態で説明したファイバグレーティングにより、GE-PON用光送受信モジュールで使用する波長領域で必要な波長特性が得られるため、実施の形態1及び実施の形態3で説明した事例の動作が実現でき、加入者側光回線終端装置の省スペース化が可能になる。 As described above, since the necessary wavelength characteristics are obtained in the wavelength region used in the optical transmission / reception module for GE-PON by the fiber grating described in the present embodiment, the operation of the example described in the first embodiment and the third embodiment Thus, it is possible to save the space of the subscriber-side optical line termination device.
 <実施の形態7>
 図12はこの発明の実施の形態7による光送受信モジュール用ファイバグレーティングの構造を示す説明図である。
Seventh Embodiment
FIG. 12 is an explanatory view showing a structure of a fiber grating for an optical transmission / reception module according to a seventh embodiment of the present invention.
 図12に示すように、本実施の形態では、ファイバグレーティングとして、連結用第1傾斜グレーティング部18a及び連結用第2傾斜グレーティング部18b(第1種グレーティング付ファイバ群)と連結用傾斜なしファイバグレーティング部17b(第2種グレーティング付ファイバ群)とを連結した構造としている。したがって、傾斜グレーティング部は2種類の傾斜グレーティング部18a,18bを連結した構造を呈している。なお、図6又は図10と同一符号は同一又は相当部分を示すので説明を適宜省略する。 As shown in FIG. 12, in the present embodiment, as the fiber grating, the coupling first inclined grating portion 18 a and the coupling second inclined grating portion 18 b (fiber group with first type grating) and the coupling non-inclined fiber grating It is set as the structure which connected the part 17b (2nd type grating attached fiber group). Therefore, the inclined grating portion has a structure in which two types of inclined grating portions 18a and 18b are connected. The same reference numerals as in FIG. 6 or FIG. 10 denote the same or corresponding parts, and therefore the description will be appropriately omitted.
 光ファイバには、実施の形態5及び実施の形態6の場合と同じフォトセンシティブファイバを用いる。以下では、それぞれのグレーティングの特性について説明する。 As the optical fiber, the same photosensitive fiber as in the case of the fifth and sixth embodiments is used. Below, the characteristic of each grating is explained.
 傾斜グレーティング部は、連結用第1傾斜グレーティング部18a(第1の(傾斜)グレーティング)をブラッグ反射が小さくなる傾斜角度で作製し、連結用第2傾斜グレーティング部18b(第2の(傾斜)グレーティング)も同じ傾斜角度で作製する。第1のグレーティングと第2のグレーティングで、同じ周期と同じ大きさのチャープ量で、透過損失波長が重なるようにするが、第1のグレーティングの方がFBG(Fiber Bragg Grating)長を小さく、すなわち単位長さあたりのチャープ量が大きくなるようにする。このようにすることで、第1のグレーティングの反射率が第2のグレーティングの反射率よりも小さくなるようにできる。 The inclined grating section is produced by connecting the first inclined grating section 18a for connection (first (inclined) grating) at an inclination angle at which the Bragg reflection becomes small, and the second inclined grating section for connection 18b (second (inclined) grating ) Are also made at the same inclination angle. In the first grating and the second grating, the transmission loss wavelength is made to overlap with the same period and the same amount of chirp, but the first grating has a smaller FBG (Fiber Bragg Grating) length, that is, Make the amount of chirp per unit length large. By doing this, the reflectance of the first grating can be made smaller than the reflectance of the second grating.
 連結用傾斜なしファイバグレーティング部17bと迷光減衰用光ファイバ部16を、実施の形態6の場合と同様に作製する。連結用傾斜なしファイバグレーティング部17b(傾斜なしグレーティング)は傾斜グレーティングの上記クラッドモード損失波長でブラッグ反射が生じるような周期で傾斜グレーティング部18bに近接した位置に作製する。最終的に連結用第1傾斜グレーティング部18a、連結用第2傾斜グレーティング部18b、連結用傾斜なしファイバグレーティング部17b及び迷光減衰用光ファイバ部16がこの順序で連結されているように作製する。連結用第1傾斜グレーティング部18aが外部との接続側になる。それぞれのグレーティングは、別々に露光することも、対応する3種類のパターンが形成された位相マスクを用いて一括で露光することも可能であるが、一括で露光するほうがコストを低減できるので好ましい。 The coupling non-inclined fiber grating portion 17b and the stray light attenuating optical fiber portion 16 are manufactured in the same manner as in the sixth embodiment. The connection non-inclined fiber grating part 17b (non-inclined grating) is fabricated at a position close to the inclined grating part 18b with a period such that Bragg reflection occurs at the cladding mode loss wavelength of the inclined grating. Finally, the connecting first inclined grating portion 18a, the connecting second inclined grating portion 18b, the connecting non-inclined fiber grating portion 17b, and the stray light attenuating optical fiber portion 16 are manufactured to be connected in this order. The coupling first inclined grating portion 18 a is on the connection side with the outside. Although it is possible to expose each grating separately or collectively by using a phase mask on which three corresponding types of patterns are formed, it is preferable to collectively expose because the cost can be reduced.
 所望の透過阻止波長範囲における、上記第1の傾斜グレーティングの光透過損失と、上記第2の傾斜グレーティングの光透過損失と、上記傾斜なしグレーティングの光透過損失をそれぞれL11(dB),L21(dB),L2(dB)とするとき、「L11≧2.5,L11+L21≧12.5,L2≧15」(第3条件)を満足する必要がある。 The light transmission loss of the first inclined grating, the light transmission loss of the second inclined grating, and the light transmission loss of the non-tilted grating in the desired transmission blocking wavelength range are L11 (dB) and L21 (dB, respectively). And L2 (dB), it is necessary to satisfy "L11 ≧ 2.5, L11 + L21 ≧ 12.5, L2 ≧ 15" (third condition).
 前述した透過阻止波長範囲と上記第1の傾斜グレーティングのブラッグ波長帯域とにおける、上記第1の傾斜グレーティングの光反射率をそれぞれR11(dB),R12(dB)とし、上記傾斜なしグレーティングのブラッグ反射による透過損失波長帯域と上記第1及び第2の傾斜グレーティングのブラッグ波長帯域における、上記第2の傾斜グレーティングの光反射率をそれぞれR21(dB),R22(dB)とするとき、以下の式(2)及び式(3)(第4条件)を満足する必要がある。 The light reflectivity of the first inclined grating in the transmission blocking wavelength range described above and the Bragg wavelength band of the first inclined grating is R11 (dB) and R12 (dB), respectively, and the Bragg reflection of the non-inclined grating Where R21 (dB) and R22 (dB) are the light reflectances of the second inclined grating in the transmission loss wavelength band according to and the Bragg wavelength band of the first and second inclined gratings, respectively. It is necessary to satisfy 2) and Formula (3) (fourth condition).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 そして、上記第3及び第4の条件を満足するとともに、上記透過阻止波長範囲における光フィルタ全体としての光透過損失の最小値が40dB以上、かつ全波長帯域にわたって光反射率が-25dB以下となるように、グレーティングの傾斜角度と周期と迷光減衰用の光ファイバ長を調整することが可能である。 And while satisfying the said 3rd and 4th conditions, the minimum value of the light transmission loss as the whole optical filter in the said transmission blockage | prevention wavelength range is 40 dB or more, and light reflectivity becomes -25 dB or less over all the wavelength bands. Thus, it is possible to adjust the tilt angle and period of the grating and the optical fiber length for stray light attenuation.
 例えば、連結用第1傾斜グレーティング部18aの長さを10mm,連結用第2傾斜グレーティング部18bの長さを35mm,連結用傾斜なしファイバグレーティング部17bの長さを10mm,位相マスク傾斜角度を3.1度,チャープ量を2.7nm,屈折率変化量を1.2×10-3,アポダイズ処理を実施の形態6の場合と同じとすれば、透過損失、反射のいずれも上記の仕様(条件)を満たす特性が得られる。 For example, the length of the connecting first inclined grating portion 18a is 10 mm, the length of the connecting second inclined grating portion 18b is 35 mm, the length of the connecting non-inclined fiber grating portion 17b is 10 mm, and the phase mask inclination angle is 3 Assuming that the degree of chirp is 2.7 nm, the change in refractive index is 1.2 × 10 -3 , and the apodized treatment is the same as in the case of the sixth embodiment, both the transmission loss and the reflection have the above specifications ( Characteristics satisfying the condition) are obtained.
 このような連結構造のファイバグレーティングは、実施の形態6で説明した2種類の傾斜ファイバグレーティングの場合に比べて低反射特性が得られやすく、製造が容易になる効果がある。これは波長フィルタ全体での反射特性を考えるとき、上記第1の傾斜グレーティングは傾斜グレーティングの単位長さあたりのチャープ量を大きくできるので、低反射にでき、上記第2の傾斜グレーティングによる反射の寄与は上記第1の傾斜グレーティングの透過損失により低減されるためである。 The fiber grating having such a connection structure can easily obtain low reflection characteristics as compared with the case of the two types of inclined fiber gratings described in the sixth embodiment, and has an effect of facilitating manufacture. This is because the first inclined grating can increase the amount of chirp per unit length of the inclined grating when considering the reflection characteristics of the entire wavelength filter, and therefore the reflection can be made low and the contribution of the reflection by the second inclined grating can be obtained. Is reduced by the transmission loss of the first tilted grating.
 透過阻止波長範囲近傍において、外部側から見たグレーティング全体として低反射特性であるためには、外部側に近い傾斜グレーティングの透過損失波長範囲が、より内部側の傾斜グレーティングの反射波長範囲を含む必要がある。また、傾斜グレーティングの単位長さあたりのチャープ量が大きいほど低反射なグレーティングが得やすいが、透過損失強度も減少する。したがって、外部側に近い傾斜グレーティングに関して、透過損失波長範囲がより内部側の傾斜グレーティングの反射波長範囲以上になるように全チャープ量を調整し、反射低減効果が明らかな1dB以上の透過損失強度を有するように単位長さあたりのチャープ量とファイバグレーティング長を調整し、透過損失波長範囲が、より内部側の傾斜グレーティングの反射波長範囲を含むように波長位置も調整することで、外部側から見たグレーティング全体として低反射特性が得られるようにできる。 In the vicinity of the transmission blocking wavelength range, the transmission loss wavelength range of the tilted grating near the outer side needs to include the reflection wavelength range of the tilted grating on the inner side in order to have low reflection characteristics as the entire grating viewed from the outer side There is. Also, as the amount of chirp per unit length of the tilted grating is larger, it is easier to obtain a low reflective grating, but the transmission loss intensity also decreases. Therefore, for the tilted grating close to the outside, adjust the total chirp amount so that the transmission loss wavelength range is equal to or more than the reflection wavelength range of the tilted grating on the inner side, and the transmission loss intensity of 1 dB or more By adjusting the amount of chirp per unit length and the fiber grating length so as to have, the wavelength position is also adjusted so that the transmission loss wavelength range includes the reflection wavelength range of the inclined grating on the inner side, viewed from the outside Low reflection characteristics can be obtained as a whole.
 また、最も外部側の傾斜グレーティングの透過損失波長での反射を低減するには、たとえば下記のようにする。図7に示したように、透過損失波長と反射波長はほぼ同波長であるので、たとえば、上記の第1の傾斜グレーティングのブラッグ波長帯と第2の傾斜グレーティングのブラッグ波長帯を同じ波長位置とし、第1の傾斜グレーティングの全チャープ量を第2の傾斜グレーティングの全チャープ量以上として第1の傾斜グレーティングのブラッグ波長帯が第2の傾斜グレーティングのブラッグ波長帯を含むようにすると、第1の傾斜グレーティングの透過損失波長帯が第2の傾斜グレーティングの反射波長帯を含むようにでき、外部側から見たグレーティング全体として低反射特性が得られるようにできる。 Also, in order to reduce the reflection at the transmission loss wavelength of the outermost grating, for example, the following is performed. As shown in FIG. 7, since the transmission loss wavelength and the reflection wavelength are substantially the same wavelength, for example, the Bragg wavelength band of the first inclined grating and the Bragg wavelength band of the second inclined grating are at the same wavelength position. The Bragg wavelength band of the first tilted grating includes the Bragg wavelength band of the second tilted grating by setting the total chirp amount of the first tilted grating to be equal to or greater than the total chirp amount of the second tilted grating. The transmission loss wavelength band of the inclined grating can include the reflection wavelength band of the second inclined grating, and low reflection characteristics can be obtained as the entire grating viewed from the outside.
 このような傾斜グレーティングの多重化は、多重度を2連結からさらに大きくするとより低反射特性が得られやすくなる効果がある。その際、周期は各傾斜グレーティングで同じとし、外部接続側に近い傾斜グレーティングほど単位長さあたりのチャープ量を大きく、全チャープ量は同じかそれ以上とすればよい。 Such multiplexing of inclined gratings has the effect that low reflection characteristics can be more easily obtained when the multiplicity is further increased from two connections. At this time, the period is the same for each inclined grating, and the amount of chirp per unit length may be larger as the inclination grating is closer to the external connection side, and the total amount of chirp may be the same or more.
 以上、本実施の形態で説明したファイバグレーティングにより、GE-PON用光送受信モジュールで使用する波長領域で必要な波長特性が得られるため、実施の形態1及び実施の形態3で説明した事例の動作が実現でき、加入者側光回線終端装置の省スペース化が可能になる。 As described above, since the necessary wavelength characteristics are obtained in the wavelength region used in the optical transmission / reception module for GE-PON by the fiber grating described in the present embodiment, the operation of the example described in the first embodiment and the third embodiment Thus, it is possible to save the space of the subscriber-side optical line termination device.
 <実施の形態8>
 図13はこの発明の実施の形態8による光送受信モジュールに用いるファイバグレーティングの作製方法を示す説明図である。
Embodiment 8
FIG. 13 is an explanatory drawing showing a method of producing a fiber grating used for an optical transmitter-receiver module according to Embodiment 8 of the present invention.
 ファイバグレーティングは紫外光の露光により作製するが、位相マスクを通過した紫外光がファイバクラッド表面を透過する際に光線の屈折が起こるため、ファイバ内で実際に露光される構造の傾斜角度が位相マスクの傾斜角度の約1.45倍になる。また、クラッドの円筒面による集光効果によりグレーティングの構造の不均一になるおそれも生じる。 Although fiber gratings are produced by exposure to ultraviolet light, refraction of light occurs when ultraviolet light passing through the phase mask passes through the surface of the fiber cladding, so that the tilt angle of the structure actually exposed in the fiber is the phase mask Approximately 1.45 times the angle of inclination of the In addition, the light collecting effect of the cylindrical surface of the cladding may cause the structure of the grating to be nonuniform.
 本実施の形態では、図13(a)に示すように、誘電体板19上においてファイバ(コア13,クラッド14)周囲を紫外光透過性液体22で満たして露光用照射紫外光21で位相マスク20を介して露光する。 In the present embodiment, as shown in FIG. 13A, the periphery of the fiber (core 13 and cladding 14) on the dielectric plate 19 is filled with the ultraviolet light transmitting liquid 22 and a phase mask is formed by the irradiation ultraviolet light 21 for exposure. Expose through 20.
 例えば、紫外光透過性液体22として水を用いる場合、水の屈折率がファイバクラッドの屈折率に近いため、クラッド14の表面での屈折の効果が低減される。その結果、ファイバ内で実際に露光される構造の傾斜角度が位相マスク20の傾斜角度の約1.1倍で収まる。位相マスク20の傾斜角度の調整精度は機械的な公差により決まるが、所望の傾斜角度でファイバグレーティングを作製することを考えると、ファイバ内で実際に露光される構造の傾斜角度が位相マスク20の傾斜角度の比が小さいほうがファイバ内で実際に露光される構造の傾斜角度の精度を高くすることができる。この場合には、角度精度が約30%改善できる。低反射特性を得るためには傾斜角度を所望の大きさに調整する必要があり、角度がずれるとブラッグ反射強度が増大してしまうので、角度精度が改善されると低反射特性の製造が容易になる効果がある。 For example, when water is used as the ultraviolet light transmitting liquid 22, the refractive index of water is close to the refractive index of the fiber cladding, so the effect of refraction at the surface of the cladding 14 is reduced. As a result, the tilt angle of the structure actually exposed in the fiber falls at about 1.1 times the tilt angle of the phase mask 20. Although the adjustment accuracy of the tilt angle of the phase mask 20 is determined by mechanical tolerances, the tilt angle of the structure actually exposed in the fiber corresponds to that of the phase mask 20 in consideration of producing a fiber grating at a desired tilt angle. The smaller the ratio of the tilt angles, the more accurate the tilt angles of the structures actually exposed in the fiber can be. In this case, the angular accuracy can be improved by about 30%. In order to obtain low reflection characteristics, it is necessary to adjust the inclination angle to a desired size, and when the angle is deviated, the Bragg reflection intensity is increased, so that manufacturing of the low reflection characteristics is easy when the angle accuracy is improved. Have the effect of
 同様の角度精度改善効果は、図13(b)に示すように、溝つき誘電体板23に設けた溝部23gにファイバ(コア13,クラッド14)を設置して、露光用照射紫外光21を位相マスク20を介して露光することによっても得られる。 The same angle accuracy improvement effect, as shown in FIG. 13 (b), installs a fiber (core 13, clad 14) in the groove 23g provided in the grooved dielectric plate 23, and applies the irradiation ultraviolet light 21 for exposure. It can also be obtained by exposure through the phase mask 20.
 例えば、溝つき誘電体板23として石英ガラス板に溝を設けた場合には、ファイバクラッドの屈折率と差がないのでクラッド表面で光線の屈折が生じないようになる。その結果、ファイバ内で実際に露光される構造の傾斜角度が位相マスクの傾斜角度と同じになり、グレーティングの角度精度がさらに改善できる。溝つき誘電体板23に設けた溝部23gは、ファイバクラッドの形状に完全に一致している必要はなく、たとえば形成しやすいV字型の溝であっても同様の効果が得られる。 For example, when a groove is provided in a quartz glass plate as the grooved dielectric plate 23, there is no difference between the refractive index of the fiber cladding and the refractive index of the fiber cladding, so that no refraction of light occurs at the cladding surface. As a result, the tilt angle of the structure actually exposed in the fiber is the same as the tilt angle of the phase mask, and the angular accuracy of the grating can be further improved. The groove 23g provided in the grooved dielectric plate 23 does not have to completely match the shape of the fiber cladding, and the same effect can be obtained even if it is a V-shaped groove that can be easily formed, for example.
 以上、本実施の形態で説明したファイバグレーティングにより、GE-PON用光送受信モジュールで使用する波長領域で必要な波長特性が得られるため、実施の形態1及び実施の形態3で説明した事例の動作が実現でき、加入者側光回線終端装置の省スペース化が可能になる。 As described above, since the necessary wavelength characteristics are obtained in the wavelength region used in the optical transmission / reception module for GE-PON by the fiber grating described in the present embodiment, the operation of the example described in the first embodiment and the third embodiment Thus, it is possible to save the space of the subscriber-side optical line termination device.
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。 Although the present invention has been described in detail, the above description is an exemplification in all aspects, and the present invention is not limited thereto. It is understood that countless variations not illustrated are conceivable without departing from the scope of the present invention.

Claims (13)

  1.  第1の波長帯の光信号を送信する送信モジュール(1)と、
     前記第1の波長帯と異なる第2の波長帯の光信号を受信する第1の受信モジュール(2)と、
     前記第1及び第2の波長帯と異なる第3の波長帯の光信号を受信する第2の受信モジュール(3)と、
     前記送信モジュールから送信された第1の波長帯の光信号を透過させる一方、前記第2及び第3の波長帯の光信号を分離して、前記第2の波長帯の光信号を前記第1の受信モジュールに出力するとともに、前記第3の波長帯の光信号を前記第2の受信モジュールに出力する波長分離多重手段(4,5)と、
     前記波長分離多重手段により透過された第1の波長帯の光信号を局側に伝送するとともに、前記局側から送信された第2及び第3の波長帯の光信号を前記波長分離多重手段に伝送する一方、前記第1、第2及び第3の波長帯以外の帯域の光信号の透過を阻止する狭帯域フィルタの機能を有するグレーティング付ファイバ(7)とを備えた、
    光送受信モジュール。
    A transmission module (1) for transmitting an optical signal in a first wavelength band;
    A first receiving module (2) for receiving an optical signal of a second wavelength band different from the first wavelength band;
    A second receiving module (3) for receiving an optical signal of a third wavelength band different from the first and second wavelength bands;
    The optical signal of the first wavelength band transmitted from the transmission module is transmitted, while the optical signals of the second and third wavelength bands are separated to obtain the optical signal of the second wavelength band. Wavelength division multiplexing means (4, 5) for outputting the light signal of the third wavelength band to the second reception module while outputting the signal to the reception module of
    The optical signal of the first wavelength band transmitted by the wavelength division multiplexing means is transmitted to the station side, and the optical signals of the second and third wavelength bands transmitted from the station side are transmitted to the wavelength separation multiplexing means And a fiber with grating (7) having the function of a narrow band filter for blocking transmission of optical signals in bands other than the first, second and third wavelength bands while transmitting.
    Optical transceiver module.
  2.  請求項1記載の光送受信モジュールであって、
     前記波長分離多重手段は、前記送信モジュールから送信された前記第1の波長帯の光信号を透過させる一方、前記グレーティング付ファイバにより伝送された前記第2の波長帯の光信号を前記第1の受信モジュール側に反射させる第1の波長分離多重フィルタ(4)と、
     前記第1の波長分離多重フィルタを透過してきた前記第1の波長帯の光信号及び前記グレーティング付ファイバにより伝送された前記第2の波長帯の光信号を透過させる一方、前記グレーティング付ファイバにより伝送された前記第3の波長帯の光信号を前記第2の受信モジュール側に反射させる第2の波長分離多重フィルタ(5)とから構成されていることを特徴とする、
    光送受信モジュール。
    The optical transmission / reception module according to claim 1,
    The wavelength demultiplexing and multiplexing means transmits the optical signal of the first wavelength band transmitted from the transmission module while transmitting the optical signal of the second wavelength band transmitted by the fiber with a grating. A first wavelength demultiplexing filter (4) to be reflected to the receiving module side,
    The optical signal of the first wavelength band transmitted through the first wavelength demultiplexing filter and the optical signal of the second wavelength band transmitted by the fiber with a grating are transmitted, while transmitted by the fiber with a grating And a second wavelength demultiplexing filter (5) for reflecting the optical signal of the third wavelength band to the second receiving module side.
    Optical transceiver module.
  3.  請求項1記載の光送受信モジュールであって、
     前記グレーティング付ファイバは、前記第1、第2及び第3の波長帯以外の帯域の光信号を内部のコアからクラッドにエネルギー拡散させることで反射減衰量を確保することを特徴とする、
    光送受信モジュール。
    The optical transmission / reception module according to claim 1,
    The fiber with grating secures a return loss amount by energy diffusing an optical signal of a band other than the first, second and third wavelength bands from an inner core to a clad.
    Optical transceiver module.
  4.  請求項1ないし請求項3のうち、いずれか1項に記載の光送受信モジュールであって、
     前記波長分離多重手段と前記グレーティング付ファイバの間にファイバフェルール(9)が設けられるとともに、前記グレーティング付ファイバの一端とシングルモードファイバの一端が接続されるコネクタ(8)が設けられ、前記グレーティング付ファイバのグレーティング部分のグレーティング長を屈折率の変化によって短尺化して、前記グレーティング部分を前記ファイバフェルール内に収納していることを特徴とする、
    光送受信モジュール。
    The optical transmission / reception module according to any one of claims 1 to 3, wherein
    A fiber ferrule (9) is provided between the wavelength demultiplexing / multiplexing means and the fiber with a grating, and a connector (8) is provided to connect one end of the fiber with a grating to one end of a single mode fiber. A grating length of a grating portion of a fiber is shortened by a change in refractive index, and the grating portion is accommodated in the fiber ferrule.
    Optical transceiver module.
  5.  請求項1ないし請求項3のうち、いずれか1項に記載の光送受信モジュールであって、
     前記波長分離多重手段と前記グレーティング付ファイバの間に前記ファイバフェルール(6)が設けられるとともに、前記グレーティング付ファイバの一端とシングルモードファイバの一端が接続されるコネクタ(11)が設けられ、前記グレーティング付ファイバのグレーティング部分のグレーティング長を屈折率の変化によって短尺化して、前記グレーティング部分を前記コネクタ内に収納していることを特徴とする、
    光送受信モジュール。
    The optical transmission / reception module according to any one of claims 1 to 3, wherein
    The fiber ferrule (6) is provided between the wavelength demultiplexing / multiplexing means and the fiber with grating, and a connector (11) is provided to connect one end of the fiber with grating to one end of a single mode fiber; The grating length of the grating portion of the attached fiber is shortened by the change of the refractive index, and the grating portion is accommodated in the connector.
    Optical transceiver module.
  6.  請求項1ないし請求項3のうち、いずれか1項に記載の光送受信モジュールであって、
     前記局側に設けられたレセプタクル(12)をさらに備え、
     前記グレーティング付ファイバのグレーティング長を屈折率の変化によって短尺化して、前記グレーティング付ファイバのグレーティング部分を前記レセプタクル内に収納していることを特徴とする、
    光送受信モジュール。
    The optical transmission / reception module according to any one of claims 1 to 3, wherein
    It further comprises a receptacle (12) provided on the station side,
    The grating length of the fiber with grating is shortened according to a change in refractive index, and the grating portion of the fiber with grating is accommodated in the receptacle.
    Optical transceiver module.
  7.  請求項1ないし請求項3のうち、いずれか1項に記載の光送受信モジュールであって、
     前記送信モジュールにより送信される第1の波長帯の光信号が1310nmの光信号、前記第1の受信モジュールにより受信される第2の波長帯の光信号が1490nmの光信号、前記第2の受信モジュールにより受信される第3の波長帯の光信号が1550nmの光信号であることを特徴とする、
    光送受信モジュール。
    The optical transmission / reception module according to any one of claims 1 to 3, wherein
    The optical signal of the first wavelength band transmitted by the transmitting module is an optical signal of 1310 nm, the optical signal of the second wavelength band received by the first receiving module is an optical signal of 1490 nm, the second reception The optical signal of the third wavelength band received by the module is an optical signal of 1550 nm,
    Optical transceiver module.
  8.  請求項1ないし請求項3のうち、いずれか1項に記載の光送受信モジュールであって、
     前記グレーティング付ファイバは、透過光の進行方向に対して傾斜させたグレーティングを有するグレーティング付ファイバ部(15)と、光ファイバのクラッドを伝搬する迷光を減衰させるための迷光減衰用光ファイバ部(16)とが光学的に接続されたものであることを特徴とする、
    光送受信モジュール。
    The optical transmission / reception module according to any one of claims 1 to 3, wherein
    The grating-equipped fiber includes a grating-equipped fiber portion (15) having a grating tilted with respect to the traveling direction of transmitted light, and a stray light attenuating optical fiber portion (16) for attenuating stray light propagating in the cladding of the optical fiber. And are optically connected.
    Optical transceiver module.
  9.  請求項1ないし請求項3のうち、いずれか1項に記載の光送受信モジュールであって、
     前記グレーティング付ファイバとして、少なくとも2つのグレーティング付ファイバ部(17a,17b,18a,18b)と、光ファイバのクラッドを伝搬する迷光を減衰させるための迷光減衰用光ファイバ部(16)とが光学的に接続されており、
     前記少なくとも2つのグレーティング付ファイバ部の少なくとも一つ以上が、透過光の進行方向に対して傾斜させた第1種グレーティング付ファイバ群(17a,18a,18b)として透過光の入射側に配置され、
     かつ前記迷光減衰用光ファイバ部が透過光の出射側に形成され、
     かつ前記少なくとも2つのグレーティング付ファイバ部の他の少なくとも一つが、第二種グレーティング付ファイバ群(17b)として透過光の進行方向に対してほぼ直交した角度となるように形成され、前記の第1種グレーティング付ファイバ群と前記迷光減衰用光ファイバ部との間に配置されていることを特徴とする、
    光送受信モジュール。
    The optical transmission / reception module according to any one of claims 1 to 3, wherein
    As the fiber with grating, at least two fiber portions with grating (17a, 17b, 18a, 18b) and an optical fiber portion for attenuating stray light (16) for attenuating stray light propagating in the cladding of the optical fiber are optically Connected to the
    At least one or more of the at least two grating attached fiber portions are disposed on the incident side of the transmitted light as a first type of grating attached fiber group (17a, 18a, 18b) inclined with respect to the traveling direction of the transmitted light,
    And the stray light attenuating optical fiber part is formed on the outgoing side of the transmitted light,
    And at least one other one of the at least two grating attached fiber sections is formed as an angle of substantially orthogonal to the traveling direction of the transmitted light as the second type grating attached fiber group (17b), Characterized in that it is disposed between a seed grating attached fiber group and the stray light attenuating optical fiber part,
    Optical transceiver module.
  10.  請求項9記載の光送受信モジュールであって、
     前記の第1種グレーティング付ファイバ群がチャープ回折格子からなり、
     かつ第2種グレーティング付ファイバ群のブラッグ反射による透過損失波長帯域に含まれる透過阻止波長範囲を第1種グレーティング付ファイバ群のブラッグ波長帯域よりも短波長側とし、第1種グレーティング付ファイバ群のブラッグ波長帯域よりも長波長側でブラッグ反射が生じないようにしたことを特徴とする、
    光送受信モジュール。
    The optical transmission / reception module according to claim 9, wherein
    The group of fibers with a first type of grating described above comprises a chirped grating,
    And the transmission blocking wavelength range included in the transmission loss wavelength band due to Bragg reflection of the fiber group with the second type grating is on the shorter wavelength side than the Bragg wavelength band of the fiber group with the first type grating, and the fiber group of the first type grating It is characterized in that Bragg reflection does not occur on the longer wavelength side than the Bragg wavelength band,
    Optical transceiver module.
  11.  請求項10記載の光送受信モジュールであって、
     前記第1種グレーティング付ファイバ群が、少なくとも二つ以上の光学的に接続されたチャープ回折格子(18a,18b)からなり、
     当該第1種グレーティング付ファイバ群のうち透過光のもっとも入射側に配置された回折格子の単位長さあたりのチャープ量が他のグレーティング付ファイバの単位長さあたりのチャープ量よりも大きく、
     かつ透過光のもっとも入射側に配置されたグレーティング付ファイバの透過損失波長帯域が他のグレーティング付ファイバの反射波長帯域を含むように構成したことを特徴とする、
    光送受信モジュール。
    The optical transceiver module according to claim 10, wherein
    The group of fibers with the first type of grating comprises at least two or more optically connected chirped diffraction gratings (18a, 18b),
    The chirp amount per unit length of the diffraction grating disposed on the most incident side of the transmitted light in the first type grating fiber group is larger than the chirp amount per unit length of the other grating fiber,
    And, the transmission loss wavelength band of the fiber with a grating disposed on the most incident side of the transmitted light is configured to include the reflection wavelength band of another fiber with a grating,
    Optical transceiver module.
  12.  請求項10記載の光送受信モジュールであって、
     前記第2種グレーティング付ファイバ群のブラッグ反射による透過損失波長帯域に含まれる所望の透過阻止波長範囲における、前記第1種グレーティング付ファイバ群の光透過損失と、前記第2種グレーティング付ファイバ群の光透過損失をそれぞれL1(dB),L2(dB)とするとき、「L1≧12.5,L1+L2≧40」を満足し、
     前記透過阻止波長範囲と第1種グレーティング付ファイバ群のブラッグ波長帯域とにおける第1種グレーティング付ファイバ群の光反射率をそれぞれR1(dB),R2(dB)とし、前記透過阻止波長範囲における第2グレーティング付ファイバ群の反射率をR0(dB)とするとき、以下の式(1)を満足し、
    Figure JPOXMLDOC01-appb-M000001
     さらに、前記透過阻止波長範囲における光フィルタ全体としての光透過損失の最小値が40dB以上、かつ全波長帯域にわたって光反射率が-25dB以下となるようにグレーティングの傾斜角度と周期と迷光減衰用の光ファイバ長が調整されていることを特徴とする、
    光送受信モジュール。
    The optical transceiver module according to claim 10, wherein
    Optical transmission loss of the fiber group with the first type of grating and the fiber group of the second type with grating in the desired transmission blocking wavelength range included in the transmission loss wavelength band of the fiber group with the second type of grating by Bragg reflection Assuming that the light transmission loss is L1 (dB) and L2 (dB), respectively, “L1 12.5 12.5, L1 + L2 40 40” is satisfied,
    Let R1 (dB) and R2 (dB) be the light reflectances of the first-type grating attached fiber group in the transmission-stop wavelength range and the Bragg wavelength band of the first-type grating group, respectively. Assuming that the reflectance of the fiber group with two gratings is R 0 (dB), the following equation (1) is satisfied,
    Figure JPOXMLDOC01-appb-M000001
    Furthermore, for the inclination angle and period of the grating and for the stray light attenuation, the minimum value of the light transmission loss of the entire optical filter in the transmission blocking wavelength range is 40 dB or more, and the light reflectance is -25 dB or less over the entire wavelength band. Characterized in that the optical fiber length is adjusted,
    Optical transceiver module.
  13.  請求項10記載の光送受信モジュールであって、
     前記透過阻止波長範囲における、前記第1種グレーティング付ファイバ群のうち透過光のもっとも入射側に配置された回折格子の光透過損失と、第1種グレーティング付ファイバ群のうち透過光のもっとも入射側に配置されたものを除いたグレーティング付ファイバの光透過損失と、前記第2種グレーティング付ファイバ群の光透過損失をそれぞれL11(dB),L21(dB),L2(dB)とするとき、「L11≧2.5,L11+L21≧12.5,L2≧15」を満足し、
     前記透過阻止波長範囲と第1種グレーティング付ファイバ群のブラッグ波長帯域とにおける、第1種グレーティング付ファイバ群のうち透過光のもっとも入射側に配置された回折格子の光反射率をそれぞれR11(dB),R12(dB)とし、
     第2種グレーティング付ファイバ群のブラッグ反射による透過損失波長帯域と第1種グレーティング付ファイバ群のブラッグ波長帯域とにおける、第1種グレーティング付ファイバ群のうち透過光のもっとも入射側に配置されたものを除いたグレーティング付ファイバの光反射率をそれぞれR21(dB),R22(dB)とするとき、以下の数2,数3を満足し、
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
     さらに、前記透過阻止波長範囲における光フィルタ全体としての光透過損失の最小値が40dB以上、かつ全波長帯域での光反射率が-25dB以下となるようにグレーティングの傾斜角度と周期とチャープ量と迷光減衰用の光ファイバ長が調整されていることを特徴とする、
    光送受信モジュール。
    The optical transceiver module according to claim 10, wherein
    In the transmission blocking wavelength range, the light transmission loss of the diffraction grating disposed on the most incident side of the transmitted light in the group of fibers with the first type grating, and the most incident side of transmitted light in the group of the fibers with first type grating When let L11 (dB), L21 (dB), and L2 (dB) be the light transmission loss of the fiber with a grating excluding those placed in and the light transmission loss of the fiber group with a second type of grating, respectively. Satisfy L11 ≧ 2.5, L11 + L21 ≧ 12.5, L2 ≧ 15 ”,
    The light reflectance of the diffraction grating disposed at the most incident side of the transmitted light in the group of fibers with first type grating in the transmission blocking wavelength range and the Bragg wavelength band of the group of fibers with first type grating is R11 (dB And R12 (dB),
    Of the fiber group with type 1 grating in the transmission loss wavelength band of the fiber group with type 2 grating by Bragg reflection and in the Bragg wavelength band of the fiber group with type 1 grating, the one arranged closest to the transmitted light When the light reflectivity of the fiber with a grating excluding R is R21 (dB) and R22 (dB) respectively, the following Equation 2 and Equation 3 are satisfied,
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Furthermore, the inclination angle of the grating, the period, and the chirp amount so that the minimum value of the light transmission loss of the entire optical filter in the transmission blocking wavelength range is 40 dB or more and the light reflectance in all wavelength bands is -25 dB or less. The optical fiber length for stray light attenuation is adjusted,
    Optical transceiver module.
PCT/JP2009/050226 2009-01-09 2009-01-09 Optical transmission/reception module WO2010079611A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2009/050226 WO2010079611A1 (en) 2009-01-09 2009-01-09 Optical transmission/reception module
CN200980130330.XA CN102177455B (en) 2009-01-09 2009-01-09 Light transmitting receiving module
JP2010545670A JP5279847B2 (en) 2009-01-09 2009-01-09 Optical module
TW098107622A TWI402550B (en) 2009-01-09 2009-03-10 Optical transceiver module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050226 WO2010079611A1 (en) 2009-01-09 2009-01-09 Optical transmission/reception module

Publications (1)

Publication Number Publication Date
WO2010079611A1 true WO2010079611A1 (en) 2010-07-15

Family

ID=42316389

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050226 WO2010079611A1 (en) 2009-01-09 2009-01-09 Optical transmission/reception module

Country Status (4)

Country Link
JP (1) JP5279847B2 (en)
CN (1) CN102177455B (en)
TW (1) TWI402550B (en)
WO (1) WO2010079611A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104808299A (en) * 2015-05-08 2015-07-29 福州宏旭科技有限公司 Multi-wavelength component for fiber optic communication
CN107424246B (en) * 2017-04-11 2021-04-20 京东方科技集团股份有限公司 Visible light communication password unlocking device and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961678A (en) * 1995-08-28 1997-03-07 Sumitomo Electric Ind Ltd Semiconductor light receiving element
JP2003524789A (en) * 1998-04-30 2003-08-19 インフィネオン テクノロジース アクチエンゲゼルシャフト Bidirectional optical module for multi-channel applications
JP2004361502A (en) * 2003-06-02 2004-12-24 Sumitomo Electric Ind Ltd Optical transmission reception module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200290C (en) * 2003-05-30 2005-05-04 中国科学院上海光学精密机械研究所 Bandwidth-adjustable bevelled optical fiber raster and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961678A (en) * 1995-08-28 1997-03-07 Sumitomo Electric Ind Ltd Semiconductor light receiving element
JP2003524789A (en) * 1998-04-30 2003-08-19 インフィネオン テクノロジース アクチエンゲゼルシャフト Bidirectional optical module for multi-channel applications
JP2004361502A (en) * 2003-06-02 2004-12-24 Sumitomo Electric Ind Ltd Optical transmission reception module

Also Published As

Publication number Publication date
CN102177455A (en) 2011-09-07
TW201027154A (en) 2010-07-16
JPWO2010079611A1 (en) 2012-06-21
TWI402550B (en) 2013-07-21
CN102177455B (en) 2015-08-12
JP5279847B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
US5570440A (en) Optical waveguiding component comprising a band-pass filter
US6002822A (en) Article comprising an optional waveguide tap
US5764829A (en) Optical signal shaping device for complex spectral shaping applications
US20080069497A1 (en) Optical waveguide tap monitor
Grobnic et al. Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask
KR20050058381A (en) Quasi slanted fiber bragg grating, multiple series fiber bragg grating, optical fiber type coupler and optical connector
JP5688856B2 (en) Fiber optic filter device
US7835604B2 (en) Fiber Bragg grating element
WO2010079611A1 (en) Optical transmission/reception module
AU4802301A (en) Article comprising a bragg grating in a few-moded optical waveguide
EP1507153A1 (en) Signal cutout device, optical connector, and optical fiber coupler
US20050175284A1 (en) Optical filter
TW542923B (en) Light waveguide diffraction grating element, manufacturing method for the light waveguide diffraction grating element, division and multiplexing module, and light transmitting system
JP2003004957A (en) Optical waveguide and method for creating asymmetrical optical filter device
US20040258357A1 (en) Optical filter
WO2010050081A1 (en) Optical transceiver module
US6859317B1 (en) Diffraction grating for wavelength division multiplexing/demultiplexing devices
JP4429953B2 (en) Fiber Bragg grating element
WO2002025333A1 (en) Optical waveguide diffraction grating device, method for fabricating optical waveguide diffraction grating device, multiplexing/demultiplexing module, and optical transmission system
JP3729930B2 (en) Waveguide type optical filter
JP5263972B2 (en) Reflective optical filter device
CA2277665C (en) Optical waveguiding component comprising a band-pass filter
Qiao et al. Single-Mode Wavelength Division Demultiplexer for Bit-Parallel Fiber Optic Networks
Churin Analysis and design of concave grating-based devices for multi-wavelength optical networks
JP2002323622A (en) Optical waveguide type diffraction grating element, method for manufacturing optical waveguide type diffraction grating element, multiplexing and demultiplexing module, and light transmission system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980130330.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09837499

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010545670

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09837499

Country of ref document: EP

Kind code of ref document: A1