TW201027018A - Alternative precooling arrangement - Google Patents

Alternative precooling arrangement Download PDF

Info

Publication number
TW201027018A
TW201027018A TW098141992A TW98141992A TW201027018A TW 201027018 A TW201027018 A TW 201027018A TW 098141992 A TW098141992 A TW 098141992A TW 98141992 A TW98141992 A TW 98141992A TW 201027018 A TW201027018 A TW 201027018A
Authority
TW
Taiwan
Prior art keywords
stream
refrigeration system
cooling
refrigerant
compressor
Prior art date
Application number
TW098141992A
Other languages
Chinese (zh)
Inventor
Mark Julian Roberts
Christopher Michael Ott
Original Assignee
Air Prod & Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Prod & Chem filed Critical Air Prod & Chem
Publication of TW201027018A publication Critical patent/TW201027018A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0082Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0085Ethane; Ethylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0087Propane; Propylene
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0095Oxides of carbon, e.g. CO2
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0217Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle
    • F25J1/0218Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as at least a three level refrigeration cascade with at least one MCR cycle with one or more SCR cycles, e.g. with a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • F25J1/0268Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer using a dedicated refrigeration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0281Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc. characterised by the type of prime driver, e.g. hot gas expander
    • F25J1/0283Gas turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0287Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings including an electrical motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/029Mechanically coupling of different refrigerant compressors in a cascade refrigeration system to a common driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0295Shifting of the compression load between different cooling stages within a refrigerant cycle or within a cascade refrigeration system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

A natural gas liquefaction system, the system comprising a first precooling refrigeration system that accepts at least a natural gas feed stream, a second precooling refrigeration system that accepts at least a first refrigerant stream; and a cryogenic heat exchanger fluidly connected to the first precooling refrigeration system and the second precooling refrigeration system that accepts the natural gas feed stream from the first precooling refrigeration system and the first refrigerant stream from the second precooling refrigeration system to liquefy the natural gas feed stream, where the second precooling refrigeration system accepts only stream(s) having a composition different from the stream(s) accepted by the first precooling refrigeration system.

Description

201027018 六、發明說明: 【發明所屬之技術領域】 本發明涉及一種用於氣體物流液化的系統和方法,更特 別地,涉及一種在大容量液化設備中用於天然氣物流液化 的系統和方法。 【先前技術】 ©在過去的若干年裏,液化天然氣(LNG )工業已經朝著 . 利用大容量液化設備的方向發展以便實現與大型設備相關 的有利的經濟性。然而,當製冷劑的質量和體積流量增大 時’規模擴大帶來的問題出現了。例如,壓縮設備特別是 與預冷卻相關的壓縮設備的設計成為問題所在,因為增加 的流率需要更大的壓縮機葉輪,具有更高的葉端速度、更 厚和更重的外殼以及更高的葉輪進口速度。當設備規模擴 大時,由於接近基礎空氣動力學的極限(fundamental 〇 aerodynamic limits) ’壓縮機的設計成為更大的問題,因 而,規模擴大可能受到這些考慮因素的限制。另外這些預 冷卻壓縮機是大的且通常包含多級。此外,在許多情況下 規模擴大需要大型而笨重的設備,其製造和/或安裝可能困 難並且成本高。 轉讓給本發明的受讓人的美國專利N〇. 6,962,060 (Petrowski等人)公開了一種可供選擇的為大型設備液化 而設計的系統,包含壓縮機系統,其包括具有第一級和第 二級的第一壓縮機,其中第一壓縮機的第一級適於壓縮第 201027018 一氣艘’第一壓縮機的第二級適於壓縮第四氣體與來自第 一壓縮機的第一級的中間壓縮氣體的混合物;具有第一級 和第二級的第二壓縮機,其中第二壓縮機的第一級適於壓 縮第二氣體’第二壓縮機的第二級適於壓縮第三氣體與來 自第二壓縮機的第一級的中間壓縮氣體的混合物。 在滿載(full rates)下和在調節(turnd〇wn)期間為較大容 量液化設備提供穩定運行的方法和系統是所需要的。 【發明内容】 本發明的實施方案通過下述方式滿足了本領域中的這 種需要:提供一種用於較大容量液化設備的液化天然氣的 液化系統和方法,.在滿載(full rates)下和在調節(turnd〇wn) 期間其是穩定的且可運行的。 在一個示範性實施方案中,公開了一種天然氣液化系 統,該系統包括:至少接收天然氣進料物流的第一預冷卻 製冷系統;至少接收第一製冷劑物流的第二預冷卻製冷系 統;以纟與第一預冷卻製冷系統和第二預冷卻t冷系統流 趙連接㈣冷熱交換器,其接收來自第—預冷卻製冷系統 的天然氣進料物流和來自第二預冷卻製冷系統的第一製冷 劑物流以液化天然氣進料物流,其中第二預冷卻製冷系 統/、接收與第一預冷卻製冷系統所接收的物流成分不同的 物流。 在另一個示範性實施方案中,公開了一種液化天然氣的 方法,該方法包括以下步驟:提供天然氣進料物流;提供 201027018 第一製冷劑物流;在第一預冷卻製冷系統中至少預冷卻天 然氣進料物流;在第二預冷卻製冷系統中至少預冷卻第— 製冷劑物流;以及在深冷熱交換器中蒸發已預冷卻的第一 製冷劑物流以通過間接熱交換來冷卻已預冷卻的天然氣進 料物流,其中第二預冷卻製冷系統只預冷卻與第一預冷卻 製冷系統所預冷卻的物流成分不同的物流。 在另外一個示範性實施方案中,公開了一種用於大容量 液化設備的天然氣液化系統,該系統包括:第一預冷卻製 ® 冷系統’其接收選自由以下組成的組中的一種物流:天然 氣進料物流’和至少一種製冷劑物流;第二預冷卻製冷系 統’其接收不被第一預冷卻製冷系統所接收的來自由以下 組成的組的任何其餘物流:天然氣進料物流,和至少一種 製冷劑物流;以及與第一預冷卻製冷系統和第二預冷卻製 冷系統流體連接的深冷熱交換器,其適於接收來自第一預 冷卻製冷系統和第二預冷卻製冷系統的天然氣進料物流和 Q 至少一種製冷劑物流’其中該至少一種製冷劑物流用於液 化天然氣進料物流,其中第二預冷卻製冷系統只接收與第 一預冷卻製冷系統所接收的物流成分不同的物流。 【實施方式】 圖1示出了本發明用於預冷卻的製冷劑系統和方法的 示範性實施方案。在該示範性系統100中,丙烷用於預冷 卻天然氣進料物流102和液化製冷劑物流1〇4。天然氣進 料物流1 02可進行例如預處理。液化製冷劑物流1 〇4可以 201027018 是例如純的或混合的製冷劑。應該注意到,雖然下文所述 的示範性實施方案可以涉及混合製冷劑物流形式的液化製 冷劍物流’但下文所述的液化製冷劑物流也可以是例如純 的製冷劑物流。根據局部區域中製冷劑的可得性和系統需 要(例如’調整混合製冷劑的成分以匹配最佳冷卻性能的 冷卻曲線)’液化製冷劑物流104可包括下列中的一種或多 種:例如氮氣、甲烷、乙烯、乙烷、丙烯、丙烷、異丁烷、 正丁烧和異戊烧。 由天然氣進料物流102的冷卻形成的蒸氣的壓縮可以 在一個壓縮機118中進行,而由液化製冷劑物流1〇4的冷 卻形成的丙烷蒸氣的壓縮可以在單獨的壓縮機126中進 行。 天然氣進料物流102和混合製冷劑物流104的預冷卻可 以通過在閉環預冷卻製冷系統中的四個不同壓力級下蒸發 預冷卻製冷劑如丙烷而完成。因設備所限和出於效率的目 的’可以對天然氣進料物流102進行預冷卻。應該注意到, 雖然可以使用丙烷作為在四個不同壓力級下蒸發所用的預 冷卻製冷劑(如示範性圖 圖1-7A中所示),但也可以使用例201027018 VI. Description of the Invention: [Technical Field] The present invention relates to a system and method for liquefaction of a gas stream, and more particularly to a system and method for liquefaction of natural gas streams in a large capacity liquefaction plant. [Prior Art] © In the past few years, the liquefied natural gas (LNG) industry has moved toward the development of large-capacity liquefaction equipment in order to achieve favorable economics associated with large equipment. However, when the mass and volume flow rate of the refrigerant increase, the problem caused by the scale expansion has arisen. For example, the design of compression equipment, particularly compression equipment associated with pre-cooling, is problematic because increased flow rates require larger compressor impellers, higher tip speeds, thicker and heavier enclosures, and higher Impeller inlet speed. As the scale of the equipment expands, the design of the compressor is becoming more of a problem due to the approach to the fundamental 〇 aerodynamic limits. Therefore, scale expansion may be limited by these considerations. In addition, these pre-cooling compressors are large and usually contain multiple stages. In addition, scaling up in many cases requires large and cumbersome equipment that can be difficult and costly to manufacture and/or install. U.S. Patent No. 6,962,060 (Petrowski et al.) assigned to the assignee of the present disclosure discloses an alternative system for liquefying large equipment, including a compressor system including a first stage and a second a first compressor of the first stage, wherein the first stage of the first compressor is adapted to compress the first stage of the first stage of the first compressor of the first compressor of the first compressor a mixture of compressed gases; a second compressor having a first stage and a second stage, wherein the first stage of the second compressor is adapted to compress the second gas 'the second stage of the second compressor is adapted to compress the third gas A mixture of intermediate compressed gases from the first stage of the second compressor. Methods and systems for providing stable operation of larger capacity liquefaction plants at full rates and during turn-up are desirable. SUMMARY OF THE INVENTION Embodiments of the present invention address this need in the art by providing a liquefaction system and method for liquefied natural gas for larger capacity liquefaction plants, at full rates and It is stable and operational during the adjustment (turnd〇wn). In an exemplary embodiment, a natural gas liquefaction system is disclosed, the system comprising: a first pre-cooling refrigeration system that receives at least a natural gas feed stream; a second pre-cooling refrigeration system that receives at least a first refrigerant stream; Connecting to the first pre-cooling refrigeration system and the second pre-cooling t-cooling system flow (four) cold heat exchanger, which receives the natural gas feed stream from the first pre-cooling refrigeration system and the first refrigerant from the second pre-cooling refrigeration system The stream is a liquefied natural gas feed stream, wherein the second pre-cooling refrigeration system/ receives a stream different from the logistics components received by the first pre-cooling refrigeration system. In another exemplary embodiment, a method of liquefying natural gas is disclosed, the method comprising the steps of: providing a natural gas feed stream; providing a 201027018 first refrigerant stream; and pre-cooling the natural gas in the first pre-cooling refrigeration system a feed stream; at least pre-cooling the first refrigerant stream in the second pre-cooling refrigeration system; and evaporating the pre-cooled first refrigerant stream in the cryogenic heat exchanger to cool the pre-cooled natural gas by indirect heat exchange A feed stream wherein the second pre-cooling refrigeration system only pre-cools a stream that is different from the pre-cooled stream composition of the first pre-cooling refrigeration system. In another exemplary embodiment, a natural gas liquefaction system for a high capacity liquefaction plant is disclosed, the system comprising: a first pre-cooling system® a cooling system that receives a stream selected from the group consisting of: natural gas a feed stream 'and at least one refrigerant stream; a second pre-cooling refrigeration system' that receives any remaining streams from the group consisting of: not received by the first pre-cooling refrigeration system: a natural gas feed stream, and at least one a refrigerant stream; and a cryogenic heat exchanger fluidly coupled to the first pre-cooling refrigeration system and the second pre-cooling refrigeration system, adapted to receive natural gas feed streams from the first pre-cooling refrigeration system and the second pre-cooling refrigeration system And Q at least one refrigerant stream 'where the at least one refrigerant stream is for a liquefied natural gas feed stream, wherein the second pre-cooling refrigeration system only receives a stream different from the stream composition received by the first pre-cooling refrigeration system. [Embodiment] Fig. 1 shows an exemplary embodiment of a refrigerant system and method for precooling of the present invention. In the exemplary system 100, propane is used to pre-cool the natural gas feed stream 102 and the liquefied refrigerant stream 1〇4. The natural gas feed stream 102 can be subjected to, for example, pretreatment. The liquefied refrigerant stream 1 〇 4 can be, for example, a pure or mixed refrigerant. It should be noted that although the exemplary embodiments described below may relate to a liquefied refrigeration sword stream in the form of a mixed refrigerant stream, the liquefied refrigerant stream described below may also be, for example, a pure refrigerant stream. The liquefied refrigerant stream 104 can include one or more of the following depending on the availability of refrigerant in the localized region and system requirements (eg, 'cooling the curve to adjust the composition of the mixed refrigerant to match the optimal cooling performance'): for example, nitrogen, Methane, ethylene, ethane, propylene, propane, isobutane, n-butylene and isopentyl. The compression of the vapor formed by the cooling of the natural gas feed stream 102 can be carried out in a compressor 118, while the compression of the propane vapor formed by the cooling of the liquefied refrigerant stream 1 〇 4 can be carried out in a separate compressor 126. Pre-cooling of natural gas feed stream 102 and mixed refrigerant stream 104 can be accomplished by evaporating a pre-cooled refrigerant such as propane at four different pressure stages in a closed-loop pre-cooling refrigeration system. The natural gas feed stream 102 can be pre-cooled due to equipment limitations and for efficiency purposes. It should be noted that although propane may be used as the pre-cooling refrigerant for evaporation at four different pressure levels (as shown in the exemplary Figures 1-7A), examples may be used.

R507、R23或其組合。 天然氣進料物流102的冷卻發生在單元1〇6中。單元 106可以包括一系列熱交換器、閥和分離器,如圖所示 202 、 204 、 天然氣進料物流102通過在一系列丙燒蒸發器 201027018 206、208中與預冷卻製冷劑間接熱交換而冷卻,生成冷卻 的連續物流203、205、207和150,所述蒸發器可以在連 續降低的壓力下運行(例如202最高,208最低)。丙烷在 四個壓力下蒸發生成四股丙烷蒸氣物流110、112、114、 116 ’其然後在壓縮機118中壓縮。生成的壓縮的物流120 然後在丙烷冷凝器122中冷凝,生成的液體物流124再次 引入到一系列丙烷蒸發器202、204、206、208。用於這些 類型的方法和系統中的丙烷冷凝器可以包括例如丙烷過熱 .降溫器、冷凝器、集液器(accumulator)和丙.烧過冷器。應 該注意到’雖然如圖1、2A、2B、3、4、5、6和7A所示 的這種示範性實施方案使用四級預冷卻系統,但預冷卻系 統可包括例如單級、雙級、三級或多於四級的系統,其中 一系列丙烷蒸發器可以在連續降低的壓力下運行。 混合製冷劑物流104的冷卻發生在單元1〇8中。單元 108也可以包括一系列熱交換器、閥和分離器,如圖2B所 ❹ 示。混合製冷劑物流104也可以通過在一系列丙烷蒸發器 222、224、226、228中與預冷卻製冷劑間接熱交換而冷卻, 生成冷卻的連續物流223、225、227和138,所述蒸發器 可以在連續降低的壓力下運行(例如222最高,228最低)。 丙烷在四個壓力下蒸發生成四股丙烷蒸氣物流13〇、132、 134、136 ’其然後在壓縮機126中壓縮。生成的壓縮的物 流127然後在丙烷冷凝器128中冷凝,生成的液體物流129 再次引入到一系列丙烧蒸發器222、224、226、228。 冷卻的混合製冷劑物流138在相分離器14〇中分離成液 201027018 相混合製冷劑物流142和氣相混合製冷劑物流144。液相 混合製冷劑物流142在深冷熱交換器(MCHE) 146中過冷 卻生成物流147。然後物流147可以經等焓(isenthalpic)閥 148降壓生成物流149。然後物流149可以在MCHE 146的 殼側蒸發以冷卻管側物流142、144、150。 氣相混合製冷劑物流(steam) 144在MCHE 146中冷凝 和過冷卻以生成物流1 5 1。物流1 5 1然後可以經等焓 (isenthalpic)閥152降壓以生成物流153。物流153然後可 以在MCHE 146的般側蒸發以冷卻管側物流142、144、150。 冷卻的天然氣進料物流150可以進入MCHE 146,在其 中進一步冷卻生成產物物流166,其例如可以是液化天然 氣(LNG)» 從MCHE 146排出的低壓混合製冷劑物流145在低壓混 合製冷劑壓縮機154中壓縮以生成物流155。應該注意到, 所有示範性實施方案中的製冷劑壓縮機可以包括一個或多 個中間冷卻器和壓縮機殼體。例如,混合製冷劑壓縮機1 54 可以包括一個或多個中間冷卻器和至少一個壓縮機殼體。 中間冷卻器和後冷卻器利用環境熱阱(空氣或水)以向環 境排出壓縮熱。 物流155在中間冷卻器156中冷卻以生成物流157。物 流157在中壓混合製冷劑壓縮機丨58中進一步壓縮以生成 物流159。物流159在中間冷卻器160中冷卻以生成物流 161。物流161在高壓混合製冷劑壓縮機丨62中進一步壓縮 以生成物流163。物流163在後冷卻器164中冷卻以作為 201027018 初始混合製冷劑物流104循環返回。 如圖1所示的示範性實施方案示出了如何通過兩個大 小相等直接連接的燃氣輪機180、182提供向製冷壓縮機 118、126、154、158、162所供給的動力。例如,混合製冷 劑壓縮機154、158由燃氣輪機驅動器ι8〇驅動,而混合製 冷劑壓縮機162和丙烧壓縮機118、126由燃氣輪機驅動器 182媒動。在這種示範性實施方案中,可以選擇介於混合 製冷劑壓縮機158和162之間的設計壓力級,以使兩個燃 ® 氣輪機驅動器180、182所需功基本上相等。所有示範性實 施方案中的燃亂輪機躁動器可以是例如單抽燃氣輪機或多 軸燃氣輪機。 這種示範性實施方案獨立於用於向製冷壓縮機118、 126、154、158和162提供動力的方法。製冷壓縮機I”、 126、1 54、158和162和其他示範性實施方案的製冷壓縮 機可以由一個或多個燃氣輪機、電動機、蒸汽輪機或不同 ❿驅動器的 組合媒動。如圖1所示,燃氣輪機18〇、182可以 包括起動器/輔助器電動機184、186’分別協助燃氣輪機 180、182起動,和優選地,提供額外的動力來協助燃氣輪 機180、182,或當存在來自燃氣輪機的多餘動力時產生電 力以向電網輸出。另外,對於如圖1所示的示範性實施方 案,和所公開的所有其他示範性實施方案,壓縮機本體 (compressor body)和連接於每個驅動器的起動器/輔助器電 動機的順序(order)都不是固定的’並且可根據任何系統需 求、維護需求和/或設備設計需求來操作/變化。例如,圖】 201027018 中的起動器/辅助器電動機186可位於遠離驅動器182和不 與其相鄰的地方(即在驅動器行(driver string)的另一端 (opposite end))。壓縮機本體U8、ι26、162的位置也可以 交換》 圖3示出了另—個示範性實施方案3〇〇,其中丙烷壓縮 機318、326分別由不同的驅動器380、382提供動力。在 這個不範性實施方案中,來自等效燃氣輪機驅動器3 80、 382的動力需求可以通過調整低壓混合製冷劑壓縮機354 的排出壓力來平衡。 如圖3的示範性實施方案3〇〇中所示的,天然氣進料物 流302的冷卻發生在單元3〇6中。與圖i的單元1〇6類似, 單元306可以包括一系列熱交換器、閥和分離器,如圖2A 所示。天然氣進料物流302通過間接熱交換而冷卻,最終 生成冷卻的物流350。丙烷在四個壓力下蒸發生成四股丙 烷蒸氣物流310、312、314、316,其然後可以在壓縮機318 中壓縮。生成的壓縮的物流320然後可以在丙烷冷凝器322 中冷凝,生成的液體物流324再次引入如圖2A所示的一系 列丙烷蒸發器中。 混合製冷劑物流304的冷卻發生在單元308中。單元 308也可包括一系列熱交換器、閥和分離器,如囷2B所示。 混合製冷劑物流304也可通過間接熱交換而冷卻,最終生 成冷卻的物流338。丙烷在四個壓力下蒸發生成四股丙烷 蒸氣物流330、332、334、336,其然後可以在壓縮機326 中壓縮。生成的壓縮的物流327然後可以在丙烷冷凝器328 201027018 中冷凝,生成的液體物流329再次引入如圖2B所示的一系 列丙烷蒸發器中。 再次,冷卻的混合製冷劑物流338在相分離器340中分 離成液相混合製冷劑物流342和氣相混合製冷劑物流 344。液相混合製冷劑物流342在深冷熱交換器(MCHE) 346中過冷卻生成物流347。然後物流347可以經等焓 (isenth alp ic)閥348降壓生成物流349。然後物流349可以 在MCHE 346的殼侧蒸發以冷卻管侧物流342、344、350。 w 氣相混合製冷劑物流(steam)344在MCHE 346中冷凝和 過冷卻以生成物流35 1。然後物流35 1可以經等焓 (isenthalpic)閥3 52降壓以生成物流353。然後物流353可 以在MCHE 346的殼侧蒸發以冷卻管側物流342、344、350。 冷卻的天然氣進料物流350可以進入MCHE 346,在其 中進一步冷卻生成產物物流366,例如可以是液化天然氣 (LNG)〇 Q 從MCHE 346排出的低壓混合製冷劑物流345在低壓製 冷劑壓縮機354中壓縮以生成物流355。物流355在中間 冷卻器356中冷卻以生成物流357。物流357在高壓製冷 劑壓縮機362中進一步壓縮以生成物流363。物流363在 後冷卻器364中冷卻以作為初始混合製冷劑物流304循環 返回。 由兩個大小相等直接連接的燃氣輪機380、382向製冷 壓縮機318、326、3 54、362提供動力。如圖3所示,燃氣 輪機3 80、3 82可以包括起動器/輔助器電動機384、386, η 201027018 分別協助燃氣輪機380、382起動,優選地,提供額外的動 力來協助燃氣輪機380、382,或當存在來自燃氣輪機的多 餘動力時向電網輸出。 圖4不出了另一個示範性實施方案4〇〇,其中圖3的壓 縮機362、354的位置可以交換,使得一個驅動器向丙烷壓 縮機418和高壓製冷劑壓縮機462提供動力,而另一個驅 動器向丙烷壓縮機426和低壓製冷劑壓縮機454提供動力。 如圖4中的示範性實施方案4〇〇中所示的,天然氣進料 物流402的冷卻發生在單元406中。與圊1的單元1〇6類 似’單元406可以包括一系列熱交換器、閥和分離器,如 圖2A所示。天然氣進料物流402通過間接熱交換而冷卻, 最終生成冷卻的物流450。丙烷在四個壓力下蒸發生成四 股丙烷蒸氣物流410、412、414、416,其然後可以在壓縮 機418中壓縮。生成的壓縮的物流420然後可以在丙烷冷 凝器422中冷凝,生成的液體物流424再次引入如圖2A所 示的一系列丙烷蒸發器中。 混合製冷劑物流404的冷卻發生在單元408中。單元 408也可以包括一系列熱交換器、閥和分離器,如圖2B所 示。混合製冷劑物流404也可以通過間接熱交換而冷卻, 最終生成冷卻的物流438。丙烧在四個.壓力下蒸發生成四 股丙烷蒸氣物流430、432、434、436,其然後可以在壓縮 機426中壓縮《生成的壓縮的物流427然後可以在丙烷冷 凝器428中冷凝,生成的液體物流429再次引入如圖2B所 示的一系列丙烧蒸發器中。 201027018 再次,冷卻的混合製冷劑物流438在相分離器440中分 離成液相混合製冷劑物流442和氣相混合製冷劑物流 444。液相混合製冷劑物流442在深冷熱交換器(MCHE ) 446中過冷卻生成物流447。然後物流447可以經等焓 (isenthalpic)閥448降壓生成物流449。然後物流449可以 在MCHE 446的殼側蒸發以冷卻管側物流442、444、450。 氣相混合製冷劑物流(steam)444在MCHE 446中冷凝和 過冷卻以生成物流45 1。然後物流45 1可以經等焓 ® (isenthalpic)閥452降壓以生成物流453。然後物流453可 以在MCHE 446的殼侧蒸發以冷卻管侧物流442、444、450。 冷卻的天然氣進料物流450進入MCHE 446,在其中進 一步冷卻生成產物物流466,例如可以是液化天然氣_ (LNG)。 從MCHE 446排出的低壓混合製冷劑物流445在低壓製 冷劑壓縮機454中壓縮以生成物流455。物流455在中間 φ 冷卻器456中冷卻以生成物流457。物流457在高壓製冷 劑壓縮機462中進一步壓縮以生成物流463。物流463在 後冷卻器464中冷卻以作為初始混合製冷劑物流4〇4循環 返回〇 由兩個大小相等直接連接的燃氣輪機480、482向製冷 壓縮機418、426、454、462提供動力。如圖4所示,燃氣 輪機480、482可以包括起動器/辅助器電動機484、486 ’ 分別協助燃氣輪機480、482起動,優選地,提供額外的動 力來協助燃氣輪機480、482,或當存在來自燃氣輪機的多 13 201027018 餘動力時向電網輸出。 圖5不出了又一個示範性實施方案5〇〇,其用於三迴路 製冷系統。在這個示範性實施方案5〇〇中,除了天然氣進 料物流502,單元506還預冷卻第三製冷劑物流5〇3。與圖 1中的單元106類似,單元506可以包括一系列熱交換器、 閥和分離器,如圖2A所示。天然氣進料物流5〇2通過間接 熱交換而冷卻,最終生成冷卻的物流55〇。丙燒在四個壓 力下蒸發生成四股丙烧蒸氣物流510、512、514、516,其 然後可以在壓縮機5 1 8中壓縮。生成的壓縮的物流520然 後可以在丙烷冷凝器522中冷凝’生成的液體物流524再 次引入如圖2A所示的一系列丙燒蒸發器中。 混合製冷劑物流504的冷卻發生在單元508中。單元 508也可以包括一系列熱交換器、閥和分離器,如圖2B所 示。混合製冷劑物流504也可以通過間接熱交換而冷卻, 最終生成冷卻的物流538。丙烧在四個壓力下蒸發生成四 股丙烷蒸氣物流530、532、534、536,其然後可以在壓縮 機526中壓縮。生成的壓縮的物流527然後可以在丙烷冷 凝器528中冷凝,生成的液體物流529再次引入如圖2B所 示的一系列丙烷蒸發器中。 冷卻的混合製冷劑物流538在深冷熱交換器(MCHE) 546中過冷卻生成物流547,。然後物流547可以經等焓 (isenthalpic)閥548降壓生.成物流549。然後物流549可以 在MCHE 546的殼側蒸發以冷卻管側物流505、538和550° 冷卻的混合製冷劑物流505也可以在MCHE 546中過冷 14 201027018 卻和液化生成物流569,然後在交換器568中過冷卻生成 物流551。交換器568例如可以是盤管(w〇und_c〇il)型交 換器。然後生成的物流551可以經等焓(isenthalpic)閥552 降壓以生成物流553。然後物流553可以在交換器568中 蒸發以提供用於使進料氣體物流(作為物流567進入,作 為物流566排出)和第三製冷劑物流569過冷卻的製冷。 在蒸發和升溫後’第三製冷劑物流553作為物流593排出 交換器568 ’然後通過壓縮機594壓縮以生成物流595。然 ❹ 後物流595在混合製冷劑中間冷卻器596中冷卻以生成物 流597。物流597在壓縮機598中壓縮以生成物流599。然 後物流599在混合製冷劑後冷卻器501中冷卻以作為初始 物流503循環返回。 冷卻的天然氣進料物流550可以進入MCHE 546,在其 中進一步冷卻生成物流567。然後物流567可以在交換器 568中過冷卻以生成產物物流566,例如可以是液化天然氣 ❹(LNG)。 從MCHE 546排出的低壓混合製冷劑物流545在低壓製 冷劑壓縮機554中壓縮以生成物流555。物流555在中間 冷卻器556中冷卻以生成物流557。物流557在高壓製冷 劑壓縮機558中進一步壓縮以生成物流559。物流559在 後冷卻器564中冷卻以作為初始混合製冷劑物流504循環 返回〇 _ 由三個大小相等直接連接的燃氣輪機580、582、592向 製冷壓縮機518、526、554、558、594、598提供動力。如 15 201027018 、3和4所示,燃氣輪機可以包括起動器/輔助器電動 機(在該實施方案中未示出)以協助燃氣輪機起動,優選 地,提供額外的動力來協助燃氣輪機,或當存在來自燃氣 輪機的多餘動力時向電網輸出。 圖6不出了又一個示範性實施方案6〇〇,其用於另一個 二迴路製冷系統。在這個示範性實施方案600中,單元6〇6 只預冷卻天然氣進料物流602。與圖1中的單元106類似, 單元606可以包括一系列熱交換器、閥和分離器,如圖2A 所示。天然氣進料物流602通過間接熱交換而冷卻,最終 生成冷卻的物流650。丙烷在四個壓力下蒸發生成四股丙 院蒸氣物流610、612、614、616,其然後可以在壓縮機618 中壓縮。生成的壓縮的物流620然後可以在丙烧冷凝器622 中冷凝,生成的液趙物流6 24再次引入如圖2A所示的一系 列丙烷蒸發器中。 在這個示範性實施方案中,混合製冷劑物流603、604 都在單元608中冷卻。單元608也可以包括一系列熱交換 器、閥和分離器,如圖2B所示。混合製冷劑物流603、604 也可以通過間接熱交換而冷卻,最終生成冷卻的物流605、 63 8。丙烧在四個壓力下蒸發生成四股丙烧蒸氣物流630、 632、634、636,其然後可以在壓縮機626中壓縮。生成的 壓縮的物流627然後可以在丙烷冷凝器628中冷凝,生成 的液體物流629再次引入如圖2B所示的一系列丙烷蒸發器 f。 冷卻的混合製冷劑物流638在深冷熱交換器(MCHE) 16 201027018 646中過冷卻生成物流647。然後物流647可以經等焓 (isenthalpic)閥648降壓生成物流649。然後物流649可以 在MCHE 646的殼側蒸發以冷卻管側物流605、638和650。 冷卻的混合製冷劑物流605也可以在MCHE 646中過冷 卻和液化生成物流669,然後在交換器668中過冷卻生成 物流651。交換器668例如可以是盤管型交換器。然後生 成的物流651可以經等焓(isenthalpic)閥652降壓以生成物 流653。然後物流653可以在交換器668中蒸發以提供用 ® 於使進料氣體物流(作為物流667進入,作為物流666排 出)和第三製冷劑物流669過冷卻的製冷。在蒸發和升溫 後,第三製冷劑物流653作為物流693排出交換器668, 然後通過壓縮機694壓縮以生成物流695。然後物流695 在混合製冷劑中間冷卻器696中冷卻以生成物流697。物 流697在壓縮機698中壓縮以生成物流699。然後物流699 在混合製冷劑後冷卻器601中冷卻以作為初始物流603循 ❿環返回。 冷卻的天然氣進料物流650可以進入MCHE 646 ’在其 中進一步冷卻生成物流667。然後物流667可以在交換器 668中過冷卻以生成產物物流666,例如可以是液化天然氣 (LNG)。 從MCHE 646排出的低壓混合製冷劑物流645在低壓製 冷劑壓縮機654中壓縮以生成物流655。物流655在中間 冷卻器656中冷卻以生成物流657。物流657在高壓製冷 劑壓縮機658中進一步壓縮以生成物流659。物流659在 17 201027018 後冷卻器664中冷卻以作為初始混合製冷劑物流6〇4循環 返回。 由三個大小相等直接連接的燃氣輪機68〇、682、692向 製冷壓縮機618、626、654、658、694、698提供動力。如 圖1、3和4所示,燃氣輪機可以包括起動器/輔助器電動 機(在該實施方案中未示出)以協助燃氣輪機起動,優選 地,提供額外的動力來協助燃氣輪機,或當存在來自燃氣 輪機的多餘動力時向電網輸出。 圖7A示出了另一個示範性實施方案7〇〇A,其用於又一 個三迴路製冷系統《在這個示範性實施方案7〇〇a中,單元 706預冷卻天然氣進料物流702和混合製冷劑物流7〇4。與 圖1的單元106類似’單元706可以包括一系列熱交換器、 閥和分離器,如圖2A所示〜天然氣進料物流7〇2和混合製 冷劑物流704通過間接熱交換而冷卻,最終生成冷卻的物 流750、738。丙烷在四個壓力下蒸發生成四股丙烷蒸氣物 流710、712、714、716 ’其然後可以在壓縮機718中壓縮。 生成的壓縮的物流720然後可以在丙烷冷凝器722中冷 凝’生成的液體物流724再次引入如圖2A所示的一系列丙 烷蒸發器中。 在這個示範性實施方案中,只有混合製冷劑物流703在 單元708中冷卻。單元708也可以包括一系列熱交換器、 閥和分離器’如圖2B所示。混合製冷劑物流703通過間接 熱交換而冷卻,最終生成冷卻的物流7〇5。丙烷在四個壓 力下蒸發生成四股丙烷蒸氣物流730、732、734、736,其 18 201027018 然後可以在壓縮機726中壓縮。生成的壓縮的物流727然 後可以在丙烷冷凝器728中冷凝,生成的液體物流729再 次引入如圖2B所示的一系列丙烷蒸發器中。 冷卻的混合製冷劑物流738在深冷熱交換器(MCHE) 746中過冷卻生成物流747。然後物流747可以經等焓 (isenthalpic)閥748降壓生成物流749。然後物流749可以 在MCHE 746的殼側蒸發以冷卻管側物流705、738和750。 冷卻的混合製冷劑物流705也可以在MCHE 746中過冷 卻和液化生成物流769,然後在交換器768中過冷卻生成 物流75 1。交換器768例如可以是盤管型交換器。然後生 成的物流75 1可以經等给(isenthalpic)閥752降壓以生成物 流753。然後物流753可以在交換器768中蒸發以提供用 於使進料氣體物流(作為物流767進入,作為物流766排 出)和第三製冷劑物流769過冷卻的製冷。在蒸發和升溫 後,第三製冷劑物流753作為物流793排出交換器768, Q 然後通過壓縮機794壓縮以生成物流795。然後物流795 在混合製冷劑中間冷卻器796中冷卻以生成物流797。物 流797在壓縮機798中壓縮以生成物流799。然後物流799 在混合製冷劑後冷卻器701中冷卻以作為初始物流703循 環返回。 冷卻的天然氣進料物流750可以進入MCHE 746,在其 中進一步冷卻生成物流767。然後物流767可以在交換器 768中過冷卻以生成產物物流766,例如可以是液化天然氣 (LNG)。 19 201027018 從MCHE 746排出的低壓混合製冷劑物流745在低壓製 冷劑壓縮機754中壓縮以生成物流755。物流755在中間 冷卻器756中冷卻以生成物流757。物流757在高壓製冷 劑壓縮機758中進一步壓縮以生成物流759。物流759在 後冷卻器7 6 4中冷卻以作為初始混合製冷劑物流7 〇 4循環 返回。 由三個大小相等直接連接的燃氣輪機780、782、792向 製冷壓縮機718、726、754、758、794、798提供動力。如 圖1、3和4所示’燃氣輪機可以包括起動器/辅助器電動 機(在該實施方案中未示出)以協助燃氣輪機起動,優選 地,提供額外的動力來協助燃氣輪機,或當存在來自燃氣 輪機的多餘動力時向電網輸出。 圖7B示出了又一個類似於.700A的示範性實施方案 700B,然而在這個示範性實施方案700B中,單元706通 過使其在兩級混合製冷劑預冷卻系統中與混合製冷劑物流 間接熱交換來預冷卻天然氣進料物流702和混合製冷劑物 流704。雖然圖7B公開了使用兩級混合製冷劑預冷卻系 統,但也可以使用例如單級混合製冷劑預冷卻系統或多於 兩級的混合製冷劑預冷卻系統來進行預冷卻。另外,混合 製冷劑預冷卻系統可與在任一示範性實施方案中公開的丙 烷預冷卻系統互換。 圖8A和8B示出了如圖7B所示的示範性單元7〇6和 708。單元706可以包括兩個熱交換器81〇、812,其中物 流702、704,和物流724的至少一部分通過在熱交換器81〇 20 201027018 中與物流713間接熱交換而冷卻。物流724進入熱交換器 810,冷卻生成物流830»物流830分成兩股物流83卜832, 其中物流831在熱交換器812中進一步冷卻,而物流832 經等给(isenthalpic)閥 814 降.壓(let down in pressure)以生成 物流833。然後物流833進入熱交換器810以冷卻物流 702、 704、724,並作為物流713排出熱交換器810。 在物流831在熱交換器812中冷卻以生成物流834並且 經等焓(isenthalpic)閥816降壓後,生成的物流835引入熱 馨 交換器812以進一步冷卻生成的物流738、750、834。 單元708可以包括兩個熱交換器818、820,其中物流 703、 729通過在熱交換器818中與物流733間接熱交換而 冷卻。物流729進入熱交換器818,冷卻生成物流840。物 流840分成兩股物流841、842,其中物流841在熱交換器 820中進一步冷卻’而物流842經等焓(isenthalpic)閥822 降壓以生成物流843。然後物流843進入熱交換器818以 〇 冷卻物流703、729,並作為物流733排出熱交換器818。 物流841在熱交換器820中冷卻以生成物流844並且經 等捨(isenthalpic)閥824降壓後,生成的物流845引入熱交 換器820中以進一步冷卻生成的物流7〇5、844。 熱交換器810、812、818、820例如可以是盤管熱交換 器板翅式釺焊銘(芯)型(plate-and-fin brazed aluminum (core) type)熱交換器或殼管式熱交換器。熱交換器81〇、812 例如可結合成單個熱交換器。熱交換器8丨8、“ο例如也可 結合成單個熱交換器。最終,熱交換器81〇、812、818、 21 201027018 820例如可結合成單個熱交換器。熱交換器81〇、812、818、 820例如可接收兩股或更多股負載物流。 例如在單元106、108中的預冷卻可以向進料物流1〇2 和液化製冷劑物流104提供足夠的冷卻,以使在mCHE 146 中進一步冷卻之前物流150和13 8的溫度可以達到+6〇下到 低至-100°F。在圖3-7B中可實現相同的冷卻範圍。在一個 實施方案中’例如,丙烧可用作預冷卻製冷劑以達到+2〇 °F到-40°F的溫度範圍。 等焓(isenthalpic)閥148、152 (以及圖3-7B中相應的等 焓(isenthalpic)閥)可任選地由例如功提取液渦輪(w〇rk extracting liquid turbines)代替以提高效率。另外,丙烧冷 凝器122、128 (以及圖3-7A中相應的丙烷冷凝器)例如 可以是用於冷凝、過熱降溫和/或優選地過冷卻預冷卻製冷 劑的環境熱阱冷卻器。 實施例 下面的實施例基於圖1、2A和2B如用於丙烧預冷卻混 合製冷劑過程的電腦模擬。如圖1所示,天然氣進料物流 102經預處理後進入單元1〇6,所述預處理包括除去水分 (H20 )、二氧化碳(c〇2 )、二氧化硫(S02)、汞和其他重 組份,包括但不限於苯、乙苯和甲苯,如果它們以將導致 在MCHE 146中凍結的濃度存在於天然氣進料物流1〇2中 的話。預處理過的天然氣進料物流102為35°C和40 bar的 絕對Μ力並且具有12,260 kg-mol/hr的流速。天然氣進料物 22 201027018 流102通過在一系列丙烷蒸發器202、204、206、208中的 間接熱交換而冷卻(如圖2A所示),所述丙烷蒸發器在連 續降低的壓力7.16匕&1>、4.25匕&1:、2.54匕汪1>和1.476玨1'下 運行,其中丙烷蒸發器202處於最高的壓力下,而丙烷蒸 發器208處於最低的壓力下。丙烧在四個壓力下蒸發生成 四股丙烧蒸氣物流110、112、114、116,其然後在壓縮機 118中壓縮。然後生成的物流120 (處於16 2 bar和10 930 kgmol/hr)在使用環境熱阱(空氣或水)的丙烷冷凝器122 中冷凝,生成液體物流124 〇 天然氣進料物流102由丙烷預冷卻至-22.5°C。然後生 成的冷卻的物流150在MCHE 146中通過混合製冷劑的蒸 發而冷卻和液化,在-163.3°C生成液化天然氣(LNG)物流 166° 混合製冷劑物流104的摩爾組成如下:R507, R23 or a combination thereof. Cooling of the natural gas feed stream 102 occurs in unit 1〇6. Unit 106 may include a series of heat exchangers, valves, and separators, as shown 202, 204, natural gas feed stream 102 being indirectly heat exchanged with pre-cooled refrigerant in a series of prop-burn evaporators 201027018 206, 208 Cooling produces cooled continuous streams 203, 205, 207, and 150 that can operate at continuously reduced pressure (e.g., 202 is highest, 208 is lowest). The propane is vaporized under four pressures to form a four-part propane vapor stream 110, 112, 114, 116' which is then compressed in a compressor 118. The resulting compressed stream 120 is then condensed in a propane condenser 122 and the resulting liquid stream 124 is again introduced to a series of propane evaporators 202, 204, 206, 208. Propane condensers used in these types of processes and systems may include, for example, superheated propane, desuperheaters, condensers, accumulators, and C. subcoolers. It should be noted that although such exemplary embodiments as shown in Figures 1, 2A, 2B, 3, 4, 5, 6, and 7A use a four-stage pre-cooling system, the pre-cooling system may include, for example, single-stage, two-stage A system of three or more stages in which a series of propane evaporators can be operated at continuously reduced pressure. Cooling of the mixed refrigerant stream 104 occurs in unit 1A8. Unit 108 may also include a series of heat exchangers, valves, and separators, as illustrated in Figure 2B. The mixed refrigerant stream 104 can also be cooled by indirect heat exchange with pre-cooled refrigerant in a series of propane evaporators 222, 224, 226, 228 to produce cooled continuous streams 223, 225, 227 and 138, the evaporator It can be operated under continuously reduced pressure (eg 222 highest, 228 lowest). The propane is vaporized under four pressures to form four streams of propane vapor stream 13, 132, 134, 136' which are then compressed in compressor 126. The resulting compressed stream 127 is then condensed in a propane condenser 128 and the resulting liquid stream 129 is again introduced to a series of propane evaporators 222, 224, 226, 228. The cooled mixed refrigerant stream 138 is separated into a liquid in the phase separator 14(R) 201027018, a mixed refrigerant stream 142 and a gas phase mixed refrigerant stream 144. The liquid phase mixed refrigerant stream 142 is subcooled in a cryogenic heat exchanger (MCHE) 146 to form stream 147. Stream 147 can then be depressurized to generate stream 149 via isenthalpic valve 148. Stream 149 can then be vaporized on the shell side of MCHE 146 to cool tube side streams 142, 144, 150. The gas phase mixed refrigerant stream 144 is condensed and subcooled in MCHE 146 to produce stream 151. Stream 1 51 can then be depressurized via isenthalpic valve 152 to produce stream 153. Stream 153 can then be vaporized on the side of MCHE 146 to cool tube side streams 142, 144, 150. The cooled natural gas feed stream 150 can enter the MCHE 146 where it is further cooled to form a product stream 166, which can be, for example, a liquefied natural gas (LNG)» low pressure mixed refrigerant stream 145 exiting the MCHE 146 at a low pressure mixed refrigerant compressor 154 Medium compression to generate stream 155. It should be noted that the refrigerant compressors of all of the exemplary embodiments may include one or more intercoolers and compressor housings. For example, the mixed refrigerant compressor 1 54 can include one or more intercoolers and at least one compressor housing. The intercooler and aftercooler utilize an ambient heat trap (air or water) to vent heat of compression to the environment. Stream 155 is cooled in intercooler 156 to produce stream 157. Stream 157 is further compressed in a medium pressure mixed refrigerant compressor 58 to produce stream 159. Stream 159 is cooled in intercooler 160 to produce stream 161. Stream 161 is further compressed in high pressure mixed refrigerant compressor crucible 62 to produce stream 163. Stream 163 is cooled in aftercooler 164 to be recycled back as 201027018 initial mixed refrigerant stream 104. The exemplary embodiment as shown in Figure 1 shows how the power supplied to the refrigeration compressors 118, 126, 154, 158, 162 is provided by two directly connected gas turbines 180, 182. For example, the mixed refrigerant compressors 154, 158 are driven by the gas turbine drive ι8, while the hybrid refrigerant compressor 162 and the propylene compressors 118, 126 are driven by the gas turbine drive 182. In this exemplary embodiment, the design pressure level between the mixed refrigerant compressors 158 and 162 can be selected such that the required work of the two combustion gas turbine drives 180, 182 is substantially equal. The burner turbine actuator in all of the exemplary embodiments may be, for example, a single pump gas turbine or a multi-axis gas turbine. This exemplary embodiment is independent of the method used to power the refrigeration compressors 118, 126, 154, 158, and 162. The refrigeration compressors I", 126, 154, 158, and 162 and the refrigeration compressors of other exemplary embodiments may be mediated by a combination of one or more gas turbines, electric motors, steam turbines, or different ram drives. The gas turbines 18A, 182 may include starter/assistor motors 184, 186' to assist in starting the gas turbines 180, 182, respectively, and preferably provide additional power to assist the gas turbines 180, 182, or when there is excess power from the gas turbine Power is generated for output to the grid. Additionally, for the exemplary embodiment as shown in Figure 1, and all other exemplary embodiments disclosed, a compressor body and a starter/auxiliary coupled to each drive The order of the motors is not fixed and can be operated/changed according to any system requirements, maintenance requirements and/or equipment design requirements. For example, the starter/assistor motor 186 in 201027018 can be located remotely from the drive. 182 and not adjacent to it (that is, at the opposite end of the driver string) The positions of the compressor bodies U8, ι26, 162 can also be exchanged. Figure 3 shows another exemplary embodiment 3, wherein the propane compressors 318, 326 are powered by different drivers 380, 382, respectively. In this non-standard embodiment, the power demand from the equivalent gas turbine drives 380, 382 can be balanced by adjusting the discharge pressure of the low pressure mixed refrigerant compressor 354. As shown in the exemplary embodiment 3 of Figure 3 Cooling of the natural gas feed stream 302 occurs in unit 3〇 6. Similar to unit 1〇6 of Figure i, unit 306 can include a series of heat exchangers, valves, and separators, as shown in Figure 2A. Stream 302 is cooled by indirect heat exchange to ultimately produce a cooled stream 350. Propane is vaporized under four pressures to produce four streams of propane vapor stream 310, 312, 314, 316 which can then be compressed in compressor 318. Stream 320 can then be condensed in propane condenser 322 and the resulting liquid stream 324 can be reintroduced into a series of propane evaporators as shown in Figure 2A. Mixed refrigerant stream 304 This occurs in unit 308. Unit 308 may also include a series of heat exchangers, valves, and separators, as shown by 囷 2B. Mixed refrigerant stream 304 may also be cooled by indirect heat exchange to ultimately produce cooled stream 338. Propane is vaporized under four pressures to produce four streams of propane vapor stream 330, 332, 334, 336 which can then be compressed in compressor 326. The resulting compressed stream 327 can then be condensed in a propane condenser 328 201027018 to produce a liquid Stream 329 is again introduced into a series of propane evaporators as shown in Figure 2B. Again, the cooled mixed refrigerant stream 338 is separated in phase separator 340 into a liquid phase mixed refrigerant stream 342 and a gas phase mixed refrigerant stream 344. The liquid phase mixed refrigerant stream 342 is subcooled in a cryogenic heat exchanger (MCHE) 346 to form a stream 347. Stream 347 can then be depressurized to generate stream 349 via isenth alp ic valve 348. Stream 349 can then be vaporized on the shell side of MCHE 346 to cool tube side streams 342, 344, 350. w Gas phase mixed refrigerant stream 344 is condensed and subcooled in MCHE 346 to produce stream 35 1 . Stream 35 1 can then be depressurized via an isenthalpic valve 3 52 to generate stream 353. Stream 353 can then be vaporized on the shell side of MCHE 346 to cool tube side streams 342, 344, 350. The cooled natural gas feed stream 350 can enter MCHE 346 where it is further cooled to form a product stream 366, such as a low pressure mixed refrigerant stream 345 that can be liquefied natural gas (LNG) 〇Q discharged from MCHE 346 in a low pressure refrigerant compressor 354. Compressed to generate a stream 355. Stream 355 is cooled in intercooler 356 to produce stream 357. Stream 357 is further compressed in high pressure refrigerant compressor 362 to produce stream 363. Stream 363 is cooled in aftercooler 364 to cycle back as initial mixed refrigerant stream 304. The refrigeration compressors 318, 326, 3 54, 362 are powered by two gas turbines 380, 382 that are directly connected in equal size. As shown in FIG. 3, gas turbines 380, 382 may include starter/assistor motors 384, 386, η 201027018 assisting gas turbines 380, 382, respectively, preferably providing additional power to assist gas turbines 380, 382, or when It is output to the grid when there is excess power from the gas turbine. 4 shows another exemplary embodiment 4, wherein the positions of the compressors 362, 354 of FIG. 3 can be swapped such that one drive powers the propane compressor 418 and the high pressure refrigerant compressor 462, while the other The drive powers the propane compressor 426 and the low pressure refrigerant compressor 454. Cooling of natural gas feed stream 402 occurs in unit 406 as shown in the exemplary embodiment 4A of FIG. The unit 〇6 similar to 圊1 may comprise a series of heat exchangers, valves and separators, as shown in Figure 2A. The natural gas feed stream 402 is cooled by indirect heat exchange to ultimately produce a cooled stream 450. The propane is vaporized under four pressures to form four propane vapor streams 410, 412, 414, 416 which can then be compressed in a compressor 418. The resulting compressed stream 420 can then be condensed in a propane condenser 422 and the resulting liquid stream 424 can be reintroduced into a series of propane evaporators as shown in Figure 2A. Cooling of the mixed refrigerant stream 404 occurs in unit 408. Unit 408 can also include a series of heat exchangers, valves, and separators, as shown in Figure 2B. The mixed refrigerant stream 404 can also be cooled by indirect heat exchange to ultimately produce a cooled stream 438. The propylene is vaporized under four pressures to form a four-strand propane vapor stream 430, 432, 434, 436 which can then be compressed in compressor 426 to produce a compressed stream 427 which can then be condensed in a propane condenser 428. Liquid stream 429 is again introduced into a series of prop-firing evaporators as shown in Figure 2B. 201027018 Again, the cooled mixed refrigerant stream 438 is separated in phase separator 440 into a liquid phase mixed refrigerant stream 442 and a gas phase mixed refrigerant stream 444. The liquid phase mixed refrigerant stream 442 is subcooled in a cryogenic heat exchanger (MCHE) 446 to form a stream 447. Stream 447 can then be depressurized to generate stream 449 via isenthalpic valve 448. Stream 449 can then be vaporized on the shell side of MCHE 446 to cool tube side streams 442, 444, 450. The gas phase mixed refrigerant stream 444 is condensed and subcooled in MCHE 446 to form stream 45 1 . Stream 45 1 can then be depressurized via isenthalpic valve 452 to generate stream 453. Stream 453 can then be vaporized on the shell side of MCHE 446 to cool tube side streams 442, 444, 450. The cooled natural gas feed stream 450 enters the MCHE 446 where it is further cooled to form a product stream 466, which may be, for example, liquefied natural gas (LNG). The low pressure mixed refrigerant stream 445 exiting the MCHE 446 is compressed in a low pressure refrigerant compressor 454 to produce a stream 455. Stream 455 is cooled in intermediate φ cooler 456 to produce stream 457. Stream 457 is further compressed in high pressure refrigerant compressor 462 to produce stream 463. Stream 463 is cooled in aftercooler 464 to be recycled as the initial mixed refrigerant stream 4〇4. 〇 Power is supplied to the refrigeration compressors 418, 426, 454, 462 by two equally sized directly connected gas turbines 480, 482. As shown in FIG. 4, the gas turbines 480, 482 can include starter/assistor motors 484, 486' to assist in the startup of the gas turbines 480, 482, respectively, preferably to provide additional power to assist the gas turbines 480, 482, or when present from the gas turbine. More 13 201027018 When the power is released to the grid. Figure 5 shows yet another exemplary embodiment 5A for a three-loop refrigeration system. In this exemplary embodiment 5, unit 506 pre-cools third refrigerant stream 5〇3 in addition to natural gas feed stream 502. Similar to unit 106 in Figure 1, unit 506 can include a series of heat exchangers, valves, and separators, as shown in Figure 2A. The natural gas feed stream 5 〇 2 is cooled by indirect heat exchange to finally produce a cooled stream of 55 Torr. The propylene fire evaporates under four pressures to produce four propylene vapor streams 510, 512, 514, 516 which can then be compressed in compressor 518. The resulting compressed stream 520 can then be condensed in a propane condenser 522. The resulting liquid stream 524 is again introduced into a series of propane evaporators as shown in Figure 2A. Cooling of the mixed refrigerant stream 504 occurs in unit 508. Unit 508 can also include a series of heat exchangers, valves, and separators, as shown in Figure 2B. The mixed refrigerant stream 504 can also be cooled by indirect heat exchange to ultimately produce a cooled stream 538. The propane burned under four pressures to produce four propane vapor streams 530, 532, 534, 536 which may then be compressed in a compressor 526. The resulting compressed stream 527 can then be condensed in a propane condenser 528 and the resulting liquid stream 529 is again introduced into a series of propane evaporators as shown in Figure 2B. The cooled mixed refrigerant stream 538 is subcooled in a cryogenic heat exchanger (MCHE) 546 to form stream 547. Stream 547 can then be depressurized by isenthalpic valve 548 into stream 549. Stream 549 can then be vaporized on the shell side of MCHE 546 to cool tube side streams 505, 538 and 550 °. The cooled mixed refrigerant stream 505 can also be subcooled in MCHE 546 14 201027018 and liquefied to form stream 569, then in the exchanger Subcooling 568 produces a stream 551. The switch 568 can be, for example, a coil type switch. The resulting stream 551 can then be depressurized via an isenthalpic valve 552 to generate a stream 553. Stream 553 can then be vaporized in exchanger 568 to provide refrigeration for the feed gas stream (which enters stream 567 as stream 566) and the third refrigerant stream 569 to be subcooled. After evaporation and warming, the third refrigerant stream 553 exits the exchanger 568' as stream 593 and is then compressed by compressor 594 to produce stream 595. The post stream 595 is then cooled in a mixed refrigerant intercooler 596 to produce stream 597. Stream 597 is compressed in compressor 598 to produce stream 599. Stream 599 is then cooled in mixed refrigerant aftercooler 501 to be recycled back as initial stream 503. The cooled natural gas feed stream 550 can enter MCHE 546 where it is further cooled to form stream 567. Stream 567 can then be subcooled in exchanger 568 to produce product stream 566, which can be, for example, liquefied natural gas lanthanum (LNG). The low pressure mixed refrigerant stream 545 exiting the MCHE 546 is compressed in a low pressure refrigerant compressor 554 to produce a stream 555. Stream 555 is cooled in intercooler 556 to produce stream 557. Stream 557 is further compressed in high pressure refrigerant compressor 558 to produce stream 559. Stream 559 is cooled in aftercooler 564 to be recycled back as initial mixed refrigerant stream 504. _ from three equally sized directly connected gas turbines 580, 582, 592 to refrigeration compressors 518, 526, 554, 558, 594, 598 Provide power. As shown in 15 201027018, 3 and 4, the gas turbine may include a starter/assistor motor (not shown in this embodiment) to assist in gas turbine startup, preferably providing additional power to assist the gas turbine, or when present from the gas turbine The excess power is output to the grid. Figure 6 shows yet another exemplary embodiment 6〇〇 for another two-loop refrigeration system. In this exemplary embodiment 600, unit 6〇6 only pre-cools natural gas feed stream 602. Similar to unit 106 in Figure 1, unit 606 can include a series of heat exchangers, valves, and separators, as shown in Figure 2A. The natural gas feed stream 602 is cooled by indirect heat exchange to ultimately produce a cooled stream 650. Propane is vaporized under four pressures to produce four propylene vapor streams 610, 612, 614, 616 which can then be compressed in compressor 618. The resulting compressed stream 620 can then be condensed in a propylene condenser 622 and the resulting liquid stream 6 24 can be reintroduced into a series of propane evaporators as shown in Figure 2A. In this exemplary embodiment, the mixed refrigerant streams 603, 604 are all cooled in unit 608. Unit 608 can also include a series of heat exchangers, valves, and separators, as shown in Figure 2B. The mixed refrigerant streams 603, 604 can also be cooled by indirect heat exchange to ultimately produce cooled streams 605, 63 8 . The propylene fire evaporates under four pressures to produce four propylene vapor streams 630, 632, 634, 636 which can then be compressed in compressor 626. The resulting compressed stream 627 can then be condensed in a propane condenser 628 and the resulting liquid stream 629 is reintroduced into a series of propane evaporators f as shown in Figure 2B. The cooled mixed refrigerant stream 638 is subcooled in a cryogenic heat exchanger (MCHE) 16 201027018 646 to form a stream 647. Stream 647 can then be depressurized to generate stream 649 via isenthalpic valve 648. Stream 649 can then be vaporized on the shell side of MCHE 646 to cool tube side streams 605, 638 and 650. The cooled mixed refrigerant stream 605 can also be subcooled and liquefied in MCHE 646 to form stream 669, which is then subcooled in exchanger 668 to form stream 651. The exchanger 668 can be, for example, a coil type exchanger. The resulting stream 651 can then be depressurized via an isenthalpic valve 652 to produce a stream 653. Stream 653 can then be vaporized in exchanger 668 to provide refrigeration for subcooling the feed gas stream (inbound as stream 667, as stream 666) and third refrigerant stream 669. After evaporation and warming, third refrigerant stream 653 exits exchanger 668 as stream 693 and is then compressed by compressor 694 to produce stream 695. Stream 695 is then cooled in mixed refrigerant intercooler 696 to produce stream 697. Stream 697 is compressed in compressor 698 to generate stream 699. Stream 699 is then cooled in mixed refrigerant aftercooler 601 to return as an initial stream 603. The cooled natural gas feed stream 650 can enter MCHE 646' where it is further cooled to form stream 667. Stream 667 can then be subcooled in exchanger 668 to produce product stream 666, which can be, for example, liquefied natural gas (LNG). The low pressure mixed refrigerant stream 645 exiting MCHE 646 is compressed in a low pressure refrigerant compressor 654 to produce stream 655. Stream 655 is cooled in intercooler 656 to produce stream 657. Stream 657 is further compressed in high pressure refrigerant compressor 658 to produce stream 659. Stream 659 is cooled in 17 201027018 aftercooler 664 to be returned as an initial mixed refrigerant stream 6〇4. The refrigeration compressors 618, 626, 654, 658, 694, 698 are powered by three equally sized directly connected gas turbines 68, 682, 692. As shown in Figures 1, 3 and 4, the gas turbine may include a starter/assistor motor (not shown in this embodiment) to assist in gas turbine startup, preferably providing additional power to assist the gas turbine, or when present from the gas turbine The excess power is output to the grid. Figure 7A illustrates another exemplary embodiment 7A for use in yet another three-loop refrigeration system. In this exemplary embodiment 7a, unit 706 pre-cooled natural gas feed stream 702 and mixed refrigeration The agent stream is 7〇4. Similar to unit 106 of Figure 1, unit 706 can include a series of heat exchangers, valves, and separators, as shown in Figure 2A - natural gas feed stream 7〇2 and mixed refrigerant stream 704 cooled by indirect heat exchange, ultimately Cooled streams 750, 738 are generated. Propane is vaporized under four pressures to form four streams of propane vapor stream 710, 712, 714, 716' which can then be compressed in compressor 718. The resulting compressed stream 720 can then be re-condensed in a propane condenser 722 to produce a liquid stream 724 that is reintroduced into a series of propane evaporators as shown in Figure 2A. In this exemplary embodiment, only mixed refrigerant stream 703 is cooled in unit 708. Unit 708 can also include a series of heat exchangers, valves, and separators' as shown in Figure 2B. The mixed refrigerant stream 703 is cooled by indirect heat exchange to ultimately produce a cooled stream 7〇5. Propane is vaporized under four pressures to produce four streams of propane vapor stream 730, 732, 734, 736, which 18 201027018 can then be compressed in compressor 726. The resulting compressed stream 727 can then be condensed in a propane condenser 728 and the resulting liquid stream 729 is again introduced into a series of propane evaporators as shown in Figure 2B. The cooled mixed refrigerant stream 738 is subcooled in a cryogenic heat exchanger (MCHE) 746 to form a stream 747. Stream 747 can then be depressurized to generate stream 749 via isenthalpic valve 748. Stream 749 can then be vaporized on the shell side of MCHE 746 to cool tube side streams 705, 738 and 750. The cooled mixed refrigerant stream 705 can also be subcooled and liquefied in MCHE 746 to form stream 769, which is then subcooled in exchanger 768 to form stream 75 1 . The exchanger 768 can be, for example, a coil type exchanger. The resulting stream 75 1 can then be depressurized by isenthalpic valve 752 to produce stream 753. Stream 753 can then be vaporized in exchanger 768 to provide refrigeration for the feed gas stream (inbound as stream 767, as stream 766) and third refrigerant stream 769 to be subcooled. After evaporation and warming, third refrigerant stream 753 exits exchanger 768 as stream 793, which is then compressed by compressor 794 to produce stream 795. Stream 795 is then cooled in mixed refrigerant intercooler 796 to produce stream 797. Stream 797 is compressed in compressor 798 to produce stream 799. Stream 799 is then cooled in mixed refrigerant aftercooler 701 to be returned as initial stream 703. The cooled natural gas feed stream 750 can enter the MCHE 746 where it is further cooled to form a stream 767. Stream 767 can then be subcooled in exchanger 768 to produce product stream 766, which can be, for example, liquefied natural gas (LNG). 19 201027018 The low pressure mixed refrigerant stream 745 exiting the MCHE 746 is compressed in a low pressure refrigerant compressor 754 to produce a stream 755. Stream 755 is cooled in intercooler 756 to produce stream 757. Stream 757 is further compressed in high pressure refrigerant compressor 758 to produce stream 759. Stream 759 is cooled in aftercooler 742 to return as the initial mixed refrigerant stream 7 〇 4 cycle. The refrigeration compressors 718, 726, 754, 758, 794, 798 are powered by three equally sized directly connected gas turbines 780, 782, 792. As shown in Figures 1, 3 and 4, a gas turbine may include a starter/assistor motor (not shown in this embodiment) to assist in gas turbine startup, preferably providing additional power to assist the gas turbine, or when present from a gas turbine The excess power is output to the grid. Figure 7B shows yet another exemplary embodiment 700B similar to .700A, however in this exemplary embodiment 700B, unit 706 is indirectly thermally coupled to the mixed refrigerant stream in a two stage mixed refrigerant pre-cooling system. The pre-cooled natural gas feed stream 702 and mixed refrigerant stream 704 are exchanged. Although FIG. 7B discloses the use of a two-stage mixed refrigerant pre-cooling system, it is also possible to perform pre-cooling using, for example, a single-stage mixed refrigerant pre-cooling system or more than two stages of a mixed refrigerant pre-cooling system. Additionally, the mixed refrigerant pre-cooling system can be interchanged with the propane pre-cooling system disclosed in any of the exemplary embodiments. Figures 8A and 8B show exemplary units 7〇6 and 708 as shown in Figure 7B. Unit 706 can include two heat exchangers 81, 812, wherein at least a portion of streams 702, 704, and stream 724 are cooled by indirect heat exchange with stream 713 in heat exchangers 81 〇 20 201027018. Stream 724 enters heat exchanger 810, and cooling stream 830»stream 830 is split into two streams 83, 832, wherein stream 831 is further cooled in heat exchanger 812, and stream 832 is isenthalpic valve 814 down. Let down in pressure) to generate logistics 833. Stream 833 then enters heat exchanger 810 to cool streams 702, 704, 724 and exits heat exchanger 810 as stream 713. After stream 831 is cooled in heat exchanger 812 to produce stream 834 and is pressure reduced by isenthalpic valve 816, resulting stream 835 is introduced into hot exchanger 812 to further cool the resulting stream 738, 750, 834. Unit 708 can include two heat exchangers 818, 820 in which streams 703, 729 are cooled by indirect heat exchange with stream 733 in heat exchanger 818. Stream 729 enters heat exchanger 818 and cools to produce stream 840. Stream 840 is split into two streams 841, 842 where stream 841 is further cooled in heat exchanger 820 and stream 842 is depressurized via isenthalpic valve 822 to produce stream 843. Stream 843 then enters heat exchanger 818 to cool streams 703, 729 and exits heat exchanger 818 as stream 733. Stream 841 is cooled in heat exchanger 820 to produce stream 844 and is depressurized by isenthalpic valve 824, and stream 845 is introduced into heat exchanger 820 to further cool the resulting stream 7〇5,844. The heat exchangers 810, 812, 818, 820 may be, for example, a plate-and-fin brazed aluminum (core) type heat exchanger or a shell-and-tube type heat exchange. Device. The heat exchangers 81, 812 can be combined, for example, into a single heat exchanger. The heat exchangers 8丨8, “ can also be combined, for example, into a single heat exchanger. Finally, the heat exchangers 81〇, 812, 818, 21 201027018 820 can be combined, for example, into a single heat exchanger. Heat exchangers 81〇, 812 For example, 818, 820 may receive two or more strands of load stream. For example, pre-cooling in units 106, 108 may provide sufficient cooling to feed stream 1〇2 and liquefied refrigerant stream 104 to make at mCHE 146 The temperature of streams 150 and 13 8 can be as high as +6 〇 down to -100 °F before further cooling. The same cooling range can be achieved in Figures 3-7B. In one embodiment 'e. Pre-cooling the refrigerant to achieve a temperature range of +2 〇 ° F to -40 ° F. Isenthalpic valves 148, 152 (and corresponding isenthalpic valves in Figures 3-7B) may optionally The efficiency is increased by, for example, w〇rk extracting liquid turbines. In addition, the acrylic condensers 122, 128 (and the corresponding propane condensers in Figures 3-7A) can be used, for example, for condensation, superheating, and cooling. And/or preferably subcooling the environment of the pre-cooling refrigerant Trap cooler. EXAMPLES The following examples are based on computer simulations of the pre-cooled mixed refrigerant process for propane-burning based on Figures 1, 2A and 2B. As shown in Figure 1, the natural gas feed stream 102 is pretreated to enter unit 1 〇6, the pretreatment includes removal of moisture (H20), carbon dioxide (c〇2), sulfur dioxide (S02), mercury, and other recombination components including, but not limited to, benzene, ethylbenzene, and toluene, if they are to be caused in MCHE The frozen concentration in 146 is present in the natural gas feed stream 1 .2. The pretreated natural gas feed stream 102 is 35 ° C and 40 bar absolute and has a flow rate of 12,260 kg-mol/hr. Feed 22 201027018 Stream 102 is cooled by indirect heat exchange in a series of propane evaporators 202, 204, 206, 208 (as shown in Figure 2A) at a continuously reduced pressure of 7.16 匕 & 1 >;, 4.25 匕 & 1:, 2.54 匕 Wang 1 > and 1.476 玨 1 ', with propane evaporator 202 at the highest pressure and propane evaporator 208 at the lowest pressure. Evaporation to produce four C-steamed steam Gas stream 110, 112, 114, 116, which is then compressed in compressor 118. The resulting stream 120 (at 16 2 bar and 10 930 kgmol/hr) is used in a propane condenser using an ambient heat trap (air or water). Condensation in 122 produces a liquid stream 124. The natural gas feed stream 102 is pre-cooled from propane to -22.5 °C. The resulting cooled stream 150 is then cooled and liquefied in MCHE 146 by evaporation of the mixed refrigerant to produce a liquefied natural gas (LNG) stream at -163.3 ° C. The molar composition of the mixed refrigerant stream 104 is as follows:

表I 成分 摩爾組成(%) 氮氣 12 甲烷 38 乙烷 42 丙燒 8Table I Ingredients Molar composition (%) Nitrogen 12 Methane 38 Ethane 42 Propylene 8

混合製冷劑物流104為35°C、62 bar的絕對壓力並且具 有50,250 kg-mol/hr的流速。混合製冷劑物流1 通過在— 系列丙烷蒸發器222、224、226、228中的間接熱交換而冷 23 201027018 卻(如圖2B所示),所述丙烧蒸發器在連績降低的絕對展 力 7.16 bar、4.25 bar、2.54 bar 和 1.47 bar 下運行,其中 丙烷蒸發器222處於最高的壓力下,而丙烷蒸發器228處 於最低的壓力下。丙烧在四個壓力下蒸發生成四股丙烧蒸 氣物流130、132、134、138,其然後在壓縮機126中壓縮。 然後生成的物流127 ( 16.2 bar絕對壓力和31,600 kg mol/hr)在使用環境熱阱(空氣或水)的丙烧冷凝器128 中冷凝,生成液體物流129。 然後預冷卻的混合製冷劑物流13 8在相分離器14 〇中分 離成液相物流142和氣相物流144。然後液相物流142過 冷卻至-125°C,經閥148等焓驟沸(flashed isenthalpically),然後在交換器146的般側蒸發以冷卻管側 物流142、144、150。氣相物流144被液化、過冷卻至溫 度-163°C ’經閥152等焓驟沸’然後在交換器丨46的殼侧 蒸發和升溫以冷卻管側物流142、144、150。在蒸發和升 溫後,合併的混合製冷劑物流145在溫度-32.71和絕對壓 力4.14 bar下離開MCHE 146。然後合併的混合製冷劑物流 145在壓縮機154、158、162的三級壓縮中壓縮回到62bar 的絕對壓力,完成迴路。 與美國專利No· 6.962.060比和 使用美國專利No. 6,9 62,060的預冷卻配置,基於與丙烷 預冷卻混合製冷劑方法的模擬相同的基礎,進行圖丨所示 的示例性實施方案的電腦模擬。 模擬的結果在下文的表!!中歹ljitj。對於兩個模擬,假定 24 201027018 丙烷低壓吸入壓力相同’且需要兩個壓縮機殼體。對於兩 個模擬,進行初步的壓縮機尺寸計算。在圖1所示的示範 性實施方案的情況中,壓縮機殼體118和126直徑更小, 且具有更低的體積流率,這意味著更低的成本。另外,取 決於設備的賣家和規模,大直徑葉輪和殼體的建造可能不 夠靈活,因此,利用現有技術的方法可能在規模擴大的潛 力上受到更多限制。 如表Π所示,圖1的示範性實施方案,與美國專利No. 〇 6,962,061公開的系統相比,在使用相同數量的壓縮機外殼 和提供相同預冷卻效力的前提下,允許更優化且靈活的壓 縮機設計。這是通過將需要預冷卻製冷的熱負載分流到兩 個獨立的系統中而實現的。The mixed refrigerant stream 104 is 35 ° C, an absolute pressure of 62 bar and has a flow rate of 50,250 kg-mol/hr. The mixed refrigerant stream 1 is cooled by indirect heat exchange in the series of propane evaporators 222, 224, 226, 228. 23 201027018 (as shown in Fig. 2B), the absolute evolution of the propane evaporator is reduced. The forces operate at 7.16 bar, 4.25 bar, 2.54 bar and 1.47 bar with the propane evaporator 222 at the highest pressure and the propane evaporator 228 at the lowest pressure. The propane burned under four pressures to produce four propylene vapor streams 130, 132, 134, 138 which were then compressed in compressor 126. The resulting stream 127 (1.62 bar absolute and 31,600 kg mol/hr) is then condensed in a propylene condenser 128 using an ambient heat trap (air or water) to form a liquid stream 129. The pre-cooled mixed refrigerant stream 13 8 is then separated in a phase separator 14 成 into a liquid phase stream 142 and a gas phase stream 144. The liquid phase stream 142 is then subcooled to -125 ° C, flashed isenthalpically via valve 148, and then vaporized on the side of exchanger 146 to cool tube side streams 142, 144, 150. The gas phase stream 144 is liquefied, subcooled to a temperature of -163 ° C and thawed via valve 152, etc. and then evaporated and warmed on the shell side of exchanger crucible 46 to cool tube side streams 142, 144, 150. After evaporation and warming, the combined mixed refrigerant stream 145 exits MCHE 146 at a temperature of -32.71 and an absolute pressure of 4.14 bar. The combined mixed refrigerant stream 145 is then compressed back to an absolute pressure of 62 bar in a three stage compression of compressors 154, 158, 162 to complete the circuit. An exemplary implementation shown in FIG. 1 is based on the same basis as the simulation of the propane pre-cooled mixed refrigerant method, in comparison with the U.S. Patent No. 6,962.060 and the pre-cooling configuration using U.S. Patent No. 6,9,62,060. Computer simulation of the program. The results of the simulation are in the table below! ! Lieutenant ljitj. For both simulations, assume that 24 201027018 propane low pressure suction pressure is the same 'and requires two compressor housings. For the two simulations, a preliminary compressor size calculation was performed. In the case of the exemplary embodiment shown in Figure 1, compressor housings 118 and 126 are smaller in diameter and have a lower volumetric flow rate, which means lower cost. In addition, depending on the seller and size of the equipment, the construction of large diameter impellers and casings may not be flexible, and thus the use of prior art methods may be more limited in terms of scale. As shown in the accompanying drawings, the exemplary embodiment of FIG. 1 allows for more optimization and flexibility than using the same number of compressor casings and providing the same pre-cooling effectiveness as compared to the system disclosed in U.S. Patent No. 6,962,061. Compressor design. This is accomplished by splitting the thermal load that requires pre-cooling cooling into two separate systems.

表E 美國專利No. 6,962,060 圖1中的 示例性實施方案 預冷卻溫度(°c) -30.2 1 -30.2 液化天然氣產量(kg/h) 490,000 490,000 壓縮機1 識別字 壓縮機43 壓縮機126 最大葉輪直徑(英寸) 55 50 最大體積流速(m3/hr) 149,000 119,000 壓縮機2 識別字 壓縮機49 壓縮機118 最大葉輪直徑(英寸) 52 51 -—__ 最大體積流速(m3/hr) 78,000 57,000 雖然結合各附圖的優選實施方案描述了本發明的方 25 201027018 案,但應認識到,可以使用其他類似實施方案或者對已 描述的實施方案作修改和補充,在不偏離本發明的基礎上 實現與本發明相同的功能。因此,請求保護的本發明不應 當限於任何單獨的實施方案,而是應當按照附加的申請專 利範圍的寬度和範圍進行解釋。 【圖式簡單說明】 結合附®,更好地理解前述簡要介紹職後文對示範性 實施方案的詳細描述。》了說明本發明的實施方案,在圖 中示出了本發明的示範性眘 祀!貫施方案,然而,本發明並不限 於所公開的具體方法和手段。圖申: 圖1疋示出了一種包括太路 尽發明方案的不範性系統和方 法的流程圊; 案的示範性系統和方 圖2A是示出了一種包括本發明方 法的流程圖; 圖2B是不出了一種包括 法的流程圓; 纟發明方案的不H性系統和方 案的示範性系統和方 案的示範性系統和方 圖3是示出了—種包括本發明方 法的流程圓; 圖4是示出了一種包括本發明方 法的流程圖; 圖5疋示出了一種包括土总 ^括本發明方案的示 法的流程圊; 祀旺糸統和万 圖6是示出了 一種包括本發 明方案的示範性系統和方 26 201027018 法的流程圖; 囷7A是示出了一種包括本發明方案的示範性系統和方 法的流程圖; 圖7B是示出了一種包括本發明方案的示範性系統和方 .法的流程圖; 圖8A是示出了一種包括本發明方案的示範性系統和方 法的流程圖;以及 ❹ 圖8Β是示出了-種包括本發明方案的示範性系統和方 法的流程圖》 【主要元件符號說明】 100·.系統,102、302、402、502、602、702、750··天 然氣進料物流;104、142、144、304、342、344、345、404、 442、444、445、503、504、545、603、604、645、654、 704、738、753、745..製冷劑物流;1〇6、1〇8、306、308、 φ 406、408、506、508、606、706、708·.單元;110、112、 114、 116、 130、 132、 134、 136、 310、 312、 314、 316、 330 、 332 、 334 、 336 、 410 、 412 、 414 、 416 、 430 、 432 、 434 、 436 '510 、 512 、 514 、 516 、 530 、 532 、 534 、 536 、 610、 612、 614、 616、 630、 632、 634 、 636、 710、 712、 714、716、730、732、734、736·.丙烷蒸氣物流;118、126、 154 > 158 、 162 、 354 、 362 、 418 、 426 、 454 、 462 、 518 、 526 、 554 、 558 、 594 、 598 、 618 、 626 、 658 、 694 、 698 、 718、754、758、794、798..製冷劑壓縮機;120、127、520、 27 201027018 527、627..壓縮的物流;122、128、322、328、422、428、 522、528、622、628、722、728..丙烷冷凝器;124、129、 324、329、424、429、524、529、624、629、724、729.. 液體物流;138、150、203、205、207、223、225、227.· 連續物流;140、340、440·.相分離器;146、346、446、546、 646、746、810、812、818、820..深冷熱交換器;147、149、 151 、 153 ' 155 、 157 、 159 、 161 、 163 、 347 、 349 、 351 、 353 、 355 、 357 、 363 、 447 、 449 、 451 、 453 、 455 、 457 、Table E U.S. Patent No. 6,962,060 Example 1 Pre-Cooling Temperature (°c) -30.2 1 -30.2 LNG Production (kg/h) 490,000 490,000 Compressor 1 Identification Word Compressor 43 Compressor 126 Maximum Impeller Diameter (inch) 55 50 Maximum volume flow rate (m3/hr) 149,000 119,000 Compressor 2 Identification word compressor 49 Compressor 118 Maximum impeller diameter (inches) 52 51 -___ Maximum volume flow rate (m3/hr) 78,000 57,000 Although combined The preferred embodiment of the drawings describes a party 25 201027018 of the present invention, but it should be recognized that other similar embodiments may be used or modified and supplemented to the described embodiments, without departing from the invention. The same function of the invention. Therefore, the invention as claimed should not be limited to any individual embodiment, but should be construed in accordance with the breadth and scope of the appended claims. [Simple description of the diagram] A better understanding of the foregoing detailed description of the exemplary implementation of the exemplary implementation is provided in conjunction with the attached ®. Illustrating an embodiment of the present invention, an exemplary caution of the present invention is shown in the drawings! The present invention is not limited to the specific methods and means disclosed. Illustrated: FIG. 1A shows a flow diagram of an exemplary system and method including an inventive solution; an exemplary system and a diagram of FIG. 2A are diagrams showing a method including the method of the present invention; 2B is a flow circle that includes a method; an exemplary system and scheme of an exemplary system and scheme of a non-H-system and scheme of the inventive scheme is shown in a flow circle including the method of the present invention; 4 is a flow chart showing a method including the present invention; FIG. 5A shows a flow chart including a description of the solution of the present invention; FIG. An exemplary system comprising the inventive arrangements and a flowchart of the method of the party 26 201027018; 囷 7A is a flow chart showing an exemplary system and method comprising the inventive arrangement; FIG. 7B is a diagram showing a solution comprising the invention Flowchart of an exemplary system and method; Figure 8A is a flow chart showing an exemplary system and method including the solution of the present invention; and Figure 8A is a diagram showing an exemplary system including the solution of the present invention And party Flow chart of the law [Explanation of main component symbols] 100·. System, 102, 302, 402, 502, 602, 702, 750·· natural gas feed logistics; 104, 142, 144, 304, 342, 344, 345, 404, 442, 444, 445, 503, 504, 545, 603, 604, 645, 654, 704, 738, 753, 745.. refrigerant flow; 1〇6, 1〇8, 306, 308, φ 406, 408, 506, 508, 606, 706, 708·. units; 110, 112, 114, 116, 130, 132, 134, 136, 310, 312, 314, 316, 330, 332, 334, 336, 410, 412 , 414, 416, 430, 432, 434, 436 '510, 512, 514, 516, 530, 532, 534, 536, 610, 612, 614, 616, 630, 632, 634, 636, 710, 712, 714 716, 730, 732, 734, 736. , 618, 626, 658, 694, 698, 718, 754, 758, 794, 798.. refrigerant compressor; 120, 127, 520, 27 201027018 527, 627 .. compressed stream; 122, 128, 322, 328, 422, 428, 522, 528, 622, 628, 722, 728.. propane condenser; 124, 129, 324, 329, 424, 429, 524, 529 , 624, 629, 724, 729.. liquid logistics; 138, 150, 203, 205, 207, 223, 225, 227. · continuous logistics; 140, 340, 440 ·. phase separator; 146, 346, 446, 546, 646, 746, 810, 812, 818, 820.. cryogenic heat exchanger; 147, 149, 151, 153 '155, 157, 159, 161, 163, 347, 349, 351, 353, 355, 357, 363, 447, 449, 451, 453, 455, 457,

463 、 547 、 549 、 551 、 553 、 555 、 557 、 566 、 567 、 569 、 593 、 595 、 597 、 599 、 620 、 647 、 649 、 650 、 651 、 653 、 655 ' 657 、 659 ' 693 、 695 ' 697 、 699 ' 703 ' 705 ' 713 ' 733 、 747 、 749 、 751 、 755 、 757 、 759 、 766 、 767 、 769 、 793 、 795 、 797 、 799 、 830 、 831 、 832 、 833 ' 834 、 835 、463 , 547 , 549 , 551 , 553 , 555 , 557 , 566 , 567 , 569 , 593 , 595 , 597 , 599 , 620 , 647 , 649 , 650 , 651 , 653 , 655 ' 657 , 659 ' 693 , 695 ' 697, 699 ' 703 ' 705 ' 713 ' 733 , 747 , 749 , 751 , 755 , 757 , 759 , 766 , 767 , 769 , 793 , 795 , 797 , 799 , 830 , 831 , 832 , 833 ' 834 , 835 ,

840、84卜 842、843、844、845..生成物流;148、152、348、 352 、 448 、 452 、 548 、 552 、 648 、 652 、 748 、 752 、 814 、 815、816、822、824··閥;156、160、164、356、364、456、 464 、 501 、 556 、 564 、 596 、 601 、 656 、 664 、 696 、 701 、 75 6、764、796..冷卻器;166、366、466..產物物流;180、 182 ' 480、482、580、582、592、680、682、692、780、 782、792..燃氣輪機驅動器;184、186、384、386、484、 486..起動器/輔助器電動機;202、204、206、208、222、 224、226、228..丙烷蒸發器;300、400、500、600、700A、 700B·.實施方案;318、326、418、426、726..丙烷壓縮機; 320、327、420、427、720、727..壓縮的物流;338、350、 28 201027018 43 8、450、53 8、550、605、63 8·.冷卻的物流; 3 80、382.·驅動器;442、444、450、505..冷卻管侧物流; 568、668、768..交換器 ❹ ❿ 29840, 84 842, 843, 844, 845.. generate logistics; 148, 152, 348, 352, 448, 452, 548, 552, 648, 652, 748, 752, 814, 815, 816, 822, 824 Valves 156, 160, 164, 356, 364, 456, 464, 501, 556, 564, 596, 601, 656, 664, 696, 701, 75 6, 764, 796.. cooler; 166, 366, 466. Product logistics; 180, 182 '480, 482, 580, 582, 592, 680, 682, 692, 780, 782, 792.. gas turbine drive; 184, 186, 384, 386, 484, 486.. / assistor motor; 202, 204, 206, 208, 222, 224, 226, 228.. propane evaporator; 300, 400, 500, 600, 700A, 700B ·. Embodiment; 318, 326, 418, 426 , 726.. propane compressor; 320, 327, 420, 427, 720, 727.. compressed logistics; 338, 350, 28 201027018 43 8, 450, 53 8, 550, 605, 63 8 ·. ; 3 80, 382. · drive; 442, 444, 450, 505.. cooling tube side logistics; 568, 668, 768.. exchanger ❹ ❿ 29

Claims (1)

201027018 七、申請專利範圍: 1、 一種天然氣液化系統,該系統包括: 第-預冷卻製冷系統’其至少接收天然氣進料物流; 第二預冷卻製冷系統,其至少接收第一製冷劑物流; 以及 λ , 與第預冷卻製冷系統和第二預冷卻製冷系統流體連 接的深冷熱交換器,其接收來自第一預冷卻製冷系統的天 然、氣進料物流和來自第二預冷卻製冷系統的第—製冷劑物 流,以液化天然氣進料物流, 其中第二預冷卻製冷系統只接收與第一預冷卻製冷系 統所接收的物流成分不同的物流。 2、 如申請專利範圍第1項的系統,其中第一製冷劑物 流是混合製冷劑物流。 G 3、如申請專利範圍第1項的系統,其中第一製冷劑物 流包括氮氣、甲烷、乙烷和丙烷。 4、 如申請專利範圍第1項的系統,進一步地包括與深 冷熱交換器流體連接的過冷卻熱交換器,其中過冷卻熱交 換器接收來自深冷熱交換器的第二製冷劑物流,以通過間 接熱交換使天然氣進料物流過冷。 5、 如申請專利範圍第1項的系統,其中第一預冷卻製 201027018 冷系統和第二預冷卻製冷系統各自包括: 至少一個丙烧蒸發器;以及 與至少一個丙燒蒸發器流艎連接的丙烷壓縮機,適於 接收至少一股丙烧蒸氣物流。 6、 如申請專利範圍第1項的系統,其中第一預冷卻製 冷系統和第二預冷卻製冷系統是C〇2製冷系統。 7、 如申請專利範圍第1項的系統,其中第一預冷卻製 0 冷系統包括至少一個接收至少兩股負載物流的熱交換器。 8、 如申請專利範圍第5項的系統,進一步包括第一驅 動器和第二驅動器,其中第一驅動器驅動第一預冷卻製冷 系統的丙烧壓縮機、第二預冷卻製冷系統的丙烧壓縮機; 和第一咼壓製冷劑壓縮機,以及其中第二驅動器驅動第一 中壓製冷劑壓縮機和第一低壓製冷劑壓縮機。 Q 9、 如申請專利範圍第5項的系統,進一步包括第一驅 動器和第二驅動器’其中第一驅動器驅動第一預冷卻製冷 系統的丙烧壓縮機和第一低壓製冷劑壓縮機,以及其中第 二驅動器骚動第二預冷卻製冷系統的丙烷壓縮機和第一高 壓製冷劑壓縮機。 10、 如申請專利範圍第5項的系統,進一步包括第一 31 201027018 驅動器和第二驅動器,其中第一驅動器驅動第一預冷卻製 冷系統的丙烧壓縮機和第二預冷卻製冷系統的丙烧壓縮 機,以及第二驅動器驅動第一低壓製冷劑壓縮機和第一高 壓製冷劑壓縮機。 11、如申請專利範圍第1〇項的系統進一步包括第三 驅動器,其中第二驅動器媒動第二低壓製冷劑壓縮機和第 二高壓製冷劑壓縮機。 ❹ 12如申請專利範圍第8項的系統,其中第一驅動器 和第二驅動器是燃氣輪機。 13、如申請專利範圍第1項的系統,其中深冷熱交換 器是盤管熱交換器。 G 14、一種液化天然氣的方法,該方法包括以下步驟: 提供天然氣進料物流; 提供第一製冷劑物流; 在第一預冷卻製冷系統中至少預冷卻天然氣進料物 流, 在第二預冷卻製冷系統中至少預冷卻第一製冷劑物 流;以及 在深冷熱父換器中蒸發已預冷卻的第一製冷劑物流以 通過間接熱交換來冷卻已預冷卻的天然氣進料物流, 32 201027018 其中第二預冷卻製冷系統只預冷卻與第一預冷卻製冷 系統所預冷卻的物流成分不同的物流。 15、 如申請專利範圍帛14項的方法,其中天然氣進料 物流和第一製冷劑物流預冷卻到+6〇卞至_1〇〇卞。 16、 如申請專利範圍第14項的方法,進一步包括提供 第二製冷劑物流,其中第二製冷劑物流在第一預冷卻製冷 系統或第二預冷卻製冷系統中預冷卻,並蒸發以使天然氣 進料物流過冷。 17、 如申請專利範圍第14項的方法,其中第一製冷劑 物流是混合製冷劑物流。 18、 一種用於大容量液化設備的天然氣液化系統該 系統包括: 第一預冷卻製冷系統,其接收選自由以下組成的組中 的一種物流: 天然氣進料物流,和 至少一種製冷劑物流; 第二預冷卻製冷系統,其接收不被第一預冷卻製冷系 統所接收的來自由以下組成的組的任何其餘物流: 天然氣進料物流,和 至少一種製冷劑物流;以及 201027018 與第一預冷部製冷系統和第二預冷卻製冷系統流體連 接的深冷熱交換器,其適於接收來自第一預冷卻製冷系統 和第二預冷卻製冷系統的天然氣進料物流和至少一種製冷 劑物流’其中至少一種製冷劑物流用於液化天然氣進料物 流, 其中第二預冷卻製冷系統只接收與第一預冷卻製冷系 統所接收的物流成分不同的物流。 ' 19、如申請專利範圍第18項的系統,其中至少一 冷劑物流是現合製冷劑物流。 ' 20如申請專利範圍第18項的系統’其中至少一錄制 ^匕括第一製冷劑物流和第二製冷劑物流。 〇 34201027018 VII. Patent application scope: 1. A natural gas liquefaction system, the system comprising: a first pre-cooling refrigeration system 'which receives at least a natural gas feed stream; a second pre-cooling refrigeration system that receives at least a first refrigerant stream; λ , a cryogenic heat exchanger fluidly coupled to the first pre-cooling refrigeration system and the second pre-cooling refrigeration system, receiving the natural, gaseous feed stream from the first pre-cooling refrigeration system and the first from the second pre-cooling refrigeration system - The refrigerant stream is a liquefied natural gas feed stream, wherein the second pre-cooling refrigeration system receives only streams that are different from the logistics components received by the first pre-cooling refrigeration system. 2. The system of claim 1, wherein the first refrigerant stream is a mixed refrigerant stream. G. The system of claim 1, wherein the first refrigerant stream comprises nitrogen, methane, ethane, and propane. 4. The system of claim 1, further comprising a subcooling heat exchanger fluidly coupled to the cryogenic heat exchanger, wherein the supercooling heat exchanger receives a second refrigerant stream from the cryogenic heat exchanger for passage Indirect heat exchange overcools the natural gas feed stream. 5. The system of claim 1, wherein the first pre-cooling system 201027018 cooling system and the second pre-cooling refrigeration system each comprise: at least one propane evaporator; and a flow connection to the at least one propane evaporator A propane compressor adapted to receive at least one stream of a C-steam stream. 6. The system of claim 1, wherein the first pre-cooling refrigeration system and the second pre-cooling refrigeration system are C〇2 refrigeration systems. 7. The system of claim 1, wherein the first pre-cooling system comprises at least one heat exchanger that receives at least two load streams. 8. The system of claim 5, further comprising a first driver and a second driver, wherein the first driver drives the C-compressor of the first pre-cooling refrigeration system and the C-compressor of the second pre-cooling refrigeration system And a first rolling refrigerant compressor, and wherein the second driver drives the first intermediate pressure refrigerant compressor and the first low pressure refrigerant compressor. Q. The system of claim 5, further comprising a first driver and a second driver, wherein the first driver drives the C-compressor and the first low-pressure refrigerant compressor of the first pre-cooling refrigeration system, and wherein The second driver oscillates the propane compressor and the first high pressure refrigerant compressor of the second pre-cooling refrigeration system. 10. The system of claim 5, further comprising a first 31 201027018 driver and a second driver, wherein the first driver drives the C-compressor of the first pre-cooling refrigeration system and the C-figure of the second pre-cooling refrigeration system The compressor, and the second driver drive the first low pressure refrigerant compressor and the first high pressure refrigerant compressor. 11. The system of claim 1 further comprising a third actuator, wherein the second actuator mediates the second low pressure refrigerant compressor and the second high pressure refrigerant compressor. ❹ 12 The system of claim 8 wherein the first drive and the second drive are gas turbines. 13. The system of claim 1, wherein the cryogenic heat exchanger is a coil heat exchanger. G 14. A method of liquefying natural gas, the method comprising the steps of: providing a natural gas feed stream; providing a first refrigerant stream; pre-cooling the natural gas feed stream in the first pre-cooling refrigeration system, and second pre-cooling refrigeration At least pre-cooling the first refrigerant stream in the system; and evaporating the pre-cooled first refrigerant stream in the cryogenic hot parent to cool the pre-cooled natural gas feed stream by indirect heat exchange, 32 201027018 wherein The pre-cooling refrigeration system only pre-cools the stream that is different from the pre-cooled stream composition of the first pre-cooling refrigeration system. 15. The method of claim 14, wherein the natural gas feed stream and the first refrigerant stream are pre-cooled to +6 Torr to 〇〇卞1. 16. The method of claim 14, further comprising providing a second refrigerant stream, wherein the second refrigerant stream is pre-cooled in the first pre-cooling refrigeration system or the second pre-cooling refrigeration system and is vaporized to make natural gas The feed stream is too cold. 17. The method of claim 14, wherein the first refrigerant stream is a mixed refrigerant stream. 18. A natural gas liquefaction system for a large capacity liquefaction plant, the system comprising: a first pre-cooling refrigeration system that receives a stream selected from the group consisting of: a natural gas feed stream, and at least one refrigerant stream; a pre-cooling refrigeration system that receives any remaining streams from a group consisting of: a natural gas feed stream, and at least one refrigerant stream that are not received by the first pre-cooling refrigeration system; and 201027018 and the first pre-cooling unit a cryogenic heat exchanger fluidly coupled to the refrigeration system and the second pre-cooling refrigeration system, adapted to receive at least one of a natural gas feed stream from the first pre-cooling refrigeration system and the second pre-cooling refrigeration system and at least one refrigerant stream The refrigerant stream is for a liquefied natural gas feed stream, wherein the second pre-cooling refrigeration system only receives a stream that is different from the stream composition received by the first pre-cooling refrigeration system. 19. The system of claim 18, wherein at least one of the refrigerant streams is an existing refrigerant stream. '20, as in the system of claim 18, wherein at least one of the recordings includes the first refrigerant stream and the second refrigerant stream. 〇 34
TW098141992A 2008-12-12 2009-12-09 Alternative precooling arrangement TW201027018A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/333,500 US20100147024A1 (en) 2008-12-12 2008-12-12 Alternative pre-cooling arrangement

Publications (1)

Publication Number Publication Date
TW201027018A true TW201027018A (en) 2010-07-16

Family

ID=42062483

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098141992A TW201027018A (en) 2008-12-12 2009-12-09 Alternative precooling arrangement

Country Status (11)

Country Link
US (1) US20100147024A1 (en)
EP (1) EP2199716A3 (en)
JP (1) JP2010189622A (en)
KR (1) KR20100068194A (en)
CN (1) CN101845340A (en)
AU (1) AU2009245831A1 (en)
BR (1) BRPI0904895A2 (en)
CA (1) CA2687673A1 (en)
PE (1) PE20100569A1 (en)
RU (1) RU2009146074A (en)
TW (1) TW201027018A (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9441877B2 (en) 2010-03-17 2016-09-13 Chart Inc. Integrated pre-cooled mixed refrigerant system and method
KR101107437B1 (en) * 2010-03-25 2012-01-19 한국가스공사연구개발원 Natural gas liquefaction process
KR101037226B1 (en) * 2010-10-26 2011-05-25 한국가스공사연구개발원 Natural gas liquefaction process
US8721916B2 (en) 2011-05-12 2014-05-13 A.S. Trust & Holdings Inc. Refrigerant composition
CN102425899B (en) * 2011-11-03 2014-01-01 苏州市兴鲁空分设备科技发展有限公司 Using method of low temperature refrigerating machine in low temperature device
KR101378995B1 (en) 2012-03-22 2014-04-02 삼성중공업 주식회사 Carbon Dioxide Handling System And Method
US9863696B2 (en) * 2012-06-06 2018-01-09 Keppel Offshore & Marine Technology Centre Pte Ltd System and process for natural gas liquefaction
KR101341798B1 (en) * 2012-08-10 2013-12-17 한국과학기술원 Natural gas liquefaction system
AU2013203120B2 (en) * 2012-09-18 2014-09-04 Woodside Energy Technologies Pty Ltd Production of ethane for startup of an lng train
US11408673B2 (en) 2013-03-15 2022-08-09 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
CN105473967B (en) 2013-03-15 2018-06-26 查特能源化工公司 Mixed refrigerant systems and method
US11428463B2 (en) 2013-03-15 2022-08-30 Chart Energy & Chemicals, Inc. Mixed refrigerant system and method
ITFI20130076A1 (en) * 2013-04-04 2014-10-05 Nuovo Pignone Srl "INTEGRALLY-GEARED COMPRESSORS FOR PRECOOLING IN LNG APPLICATIONS"
US11874055B2 (en) * 2014-03-04 2024-01-16 Conocophillips Company Refrigerant supply to a cooling facility
US20160076808A1 (en) * 2014-09-15 2016-03-17 Propak Systems Ltd. Method and system for treating and liquefying natural gas
US10480852B2 (en) 2014-12-12 2019-11-19 Dresser-Rand Company System and method for liquefaction of natural gas
AR105277A1 (en) 2015-07-08 2017-09-20 Chart Energy & Chemicals Inc MIXED REFRIGERATION SYSTEM AND METHOD
CN105211267A (en) * 2015-09-17 2016-01-06 北京市农林科学院 Multistage pre-cooling machine
AU2016354095B2 (en) * 2015-11-09 2019-06-13 Bechtel Energy Technologies & Solutions, Inc. Systems and methods for multi-stage refrigeration
US10359228B2 (en) 2016-05-20 2019-07-23 Air Products And Chemicals, Inc. Liquefaction method and system
IT201600109378A1 (en) * 2016-10-28 2018-04-28 Nuovo Pignone Tecnologie Srl Natural gas liquefaction system including a turbocharger with integrated multiplier
US10544986B2 (en) * 2017-03-29 2020-01-28 Air Products And Chemicals, Inc. Parallel compression in LNG plants using a double flow compressor
MY195601A (en) 2017-05-16 2023-02-02 Exxonmobil Upstream Res Co Method and system for efficient nonsynchronous lng production using large scale multi-shaft gas tusbines
FR3068772B1 (en) 2017-07-05 2020-08-14 Engie DEVICE AND PROCEDURE FOR LIQUEFACTION OF NATURAL GAS OR BIOGAS
JP7229230B2 (en) * 2018-03-27 2023-02-27 大陽日酸株式会社 Natural gas liquefaction device and natural gas liquefaction method
GB2582763A (en) * 2019-04-01 2020-10-07 Linde Ag Method and device for the recovery of waste energy from refrigerant compression systems used in gas liquefaction processes
AU2021225308B2 (en) 2020-02-25 2023-11-30 Shell Internationale Research Maatschappij B.V. Method and system for production optimization
DE102020006396A1 (en) * 2020-10-17 2022-04-21 Linde Gmbh Process and plant for producing a liquified hydrocarbon product
EP4230937A1 (en) * 2022-02-21 2023-08-23 Linde GmbH Method and system for generating a liquefied hydrocarbon product

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3763658A (en) * 1970-01-12 1973-10-09 Air Prod & Chem Combined cascade and multicomponent refrigeration system and method
US4057972A (en) * 1973-09-14 1977-11-15 Exxon Research & Engineering Co. Fractional condensation of an NG feed with two independent refrigeration cycles
FR2280041A1 (en) * 1974-05-31 1976-02-20 Teal Technip Liquefaction Gaz METHOD AND INSTALLATION FOR COOLING A GAS MIXTURE
US4445916A (en) * 1982-08-30 1984-05-01 Newton Charles L Process for liquefying methane
US4525185A (en) * 1983-10-25 1985-06-25 Air Products And Chemicals, Inc. Dual mixed refrigerant natural gas liquefaction with staged compression
GB2149902B (en) * 1983-11-18 1987-09-03 Shell Int Research A method and a system for liquefying a gas in particular a natural gas
JPH06299174A (en) * 1992-07-24 1994-10-25 Chiyoda Corp Cooling system using propane coolant in natural gas liquefaction process
DE59510130D1 (en) * 1995-07-31 2002-05-02 Man Turbomasch Ag Ghh Borsig compression device
US5611216A (en) * 1995-12-20 1997-03-18 Low; William R. Method of load distribution in a cascaded refrigeration process
NO960911A (en) * 1996-03-06 1997-05-05 Linde Ag Installations for the production of liquefied natural gas
DE19722490C1 (en) * 1997-05-28 1998-07-02 Linde Ag Single flow liquefaction of hydrocarbon-rich stream especially natural gas with reduced energy consumption
US6347532B1 (en) * 1999-10-12 2002-02-19 Air Products And Chemicals, Inc. Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures
MY125082A (en) * 1999-12-15 2006-07-31 Shell Int Research Compression apparatus for gaseous refrigerant
GB0006265D0 (en) * 2000-03-15 2000-05-03 Statoil Natural gas liquefaction process
US6691531B1 (en) * 2002-10-07 2004-02-17 Conocophillips Company Driver and compressor system for natural gas liquefaction
US6742357B1 (en) * 2003-03-18 2004-06-01 Air Products And Chemicals, Inc. Integrated multiple-loop refrigeration process for gas liquefaction
EP1471319A1 (en) * 2003-04-25 2004-10-27 Totalfinaelf S.A. Plant and process for liquefying natural gas
US6962060B2 (en) * 2003-12-10 2005-11-08 Air Products And Chemicals, Inc. Refrigeration compression system with multiple inlet streams
WO2006087330A2 (en) * 2005-02-17 2006-08-24 Shell Internationale Research Maatschappij B.V. Plant and method for liquefying natural gas
EP1715267A1 (en) * 2005-04-22 2006-10-25 Air Products And Chemicals, Inc. Dual stage nitrogen rejection from liquefied natural gas
WO2008015224A2 (en) * 2006-08-02 2008-02-07 Shell Internationale Research Maatschappij B.V. Method and apparatus for liquefying a hydrocarbon stream

Also Published As

Publication number Publication date
EP2199716A3 (en) 2012-08-08
BRPI0904895A2 (en) 2011-03-15
CA2687673A1 (en) 2010-06-12
PE20100569A1 (en) 2010-08-20
EP2199716A2 (en) 2010-06-23
JP2010189622A (en) 2010-09-02
CN101845340A (en) 2010-09-29
US20100147024A1 (en) 2010-06-17
RU2009146074A (en) 2011-06-20
KR20100068194A (en) 2010-06-22
AU2009245831A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
TW201027018A (en) Alternative precooling arrangement
CA2740188C (en) Liquefaction method and system
JP4938452B2 (en) Hybrid gas liquefaction cycle with multiple expanders
US6446465B1 (en) Liquefaction process and apparatus
JP2002530616A (en) Natural gas liquefaction plant
AU2006222005B2 (en) Method for the liquefaction of a hydrocarbon-rich stream
JP6835902B2 (en) Improved methods and systems for cooling hydrocarbon streams using vapor phase refrigerants
JP6835903B2 (en) Improved methods and systems for cooling hydrocarbon streams using vapor phase refrigerants
AU752201B2 (en) Liquefaction process and apparatus
AU2013202933B2 (en) Liquefaction method and system