TW201026834A - Thermally conductive gel packs - Google Patents

Thermally conductive gel packs Download PDF

Info

Publication number
TW201026834A
TW201026834A TW098132540A TW98132540A TW201026834A TW 201026834 A TW201026834 A TW 201026834A TW 098132540 A TW098132540 A TW 098132540A TW 98132540 A TW98132540 A TW 98132540A TW 201026834 A TW201026834 A TW 201026834A
Authority
TW
Taiwan
Prior art keywords
assembly
heat
heat transfer
package
gel
Prior art date
Application number
TW098132540A
Other languages
Chinese (zh)
Other versions
TWI457425B (en
Inventor
Michael H Bunyan
Philip Blazdell
Eoin O'riordan
Harish Rutti
Gary Wood
Original Assignee
Parker Hannifin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Parker Hannifin Corp filed Critical Parker Hannifin Corp
Publication of TW201026834A publication Critical patent/TW201026834A/en
Application granted granted Critical
Publication of TWI457425B publication Critical patent/TWI457425B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • H05K7/20454Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff with a conformable or flexible structure compensating for irregularities, e.g. cushion bags, thermal paste
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

A conformable, thermally-conductive gel pack is provided having a thermal gel encapsulated by a compliant packaging material formed from a dielectric polymer. The gel pack is adapted for emplacement between opposed heat transfer surfaces in an electronic device. One heat transfer surface can be part of a heat-generating component of the device, while the other heat transfer surface can be part of a heat sink or a circuit board.

Description

201026834 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種新穎的熱產品或形成要素,其集一可 充分施配材料之熱性能及機械性能與傳統的間隙填充物墊 之易用性於一身。特別而言,本發明係關於一種熱凝膠材 ' 料,其被囊封於順應性聚合物介電質包裝中,使其可方便 地在要求熱管理之電子應用中使用。 本申請案主張於2008年9月26曰申請的美國臨時申請案 • 第61/100,297之權利,該申請案之揭示内容係以引用之方 式併入本文中。 【先前技術】 對於諸如電視、收音機、電腦、醫學器材、商務器械、 通信設備及類似物之現代電子裝置之電路設計日益複雜。 例如’積體電路已被製造用於此等及其他包含成千上百個 電晶體之等效物之裝置。儘管該等設計之複雜性增加,隨 著製造較小電子組件並將更多的此等組件包裝於一愈發小 之區域中的能力之改良,該等裝置之尺寸持續減小。 近年來,電子裝置已變得更小且包裝得更加緊密。設計 者及製造者現面臨的挑戰是使用各種熱管理系統來消散此 等裝置中所産生之熱。熱管理已演變成解決此等電子裝置 中由於該等裝置之處理速度及動力增加而造成的升高之溫 度(之問題)。新一代的電子組件將更多的動力壓入更小之 空間中’·且因此該整個產品設計中之熱管理之相對重要性 不斷增加。 143499.doc 201026834 而選=τ可分割的部分在於針對特定的產品應用 割=1 材料(「讀」)。現已針對熱管理規 設計,以幫助使熱量自電子裝置消散以便進 步加強裝置之性能。其他熱管理技術採用諸如「冷板 之概或其他易於安裝於該等電子組件附近之㈣片以 :進仃散熱。該散熱片可為專用導熱金屬板或簡單地為該 裝置之底盤或電路板。 為了提高經由該介面之熱傳遞效率,在該散熱片與電子201026834 VI. Description of the Invention: [Technical Field] The present invention relates to a novel thermal product or forming element which is capable of fully utilizing the thermal and mechanical properties of a material and the ease of use of a conventional gap filler pad. Sexuality. In particular, the present invention relates to a thermogel material that is encapsulated in a compliant polymer dielectric package that is conveniently used in electronic applications requiring thermal management. The present application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the disclosure. [Prior Art] Circuit designs for modern electronic devices such as televisions, radios, computers, medical devices, business devices, communication devices, and the like are increasingly complicated. For example, an integrated circuit has been fabricated for use with such devices and other equivalents comprising hundreds or thousands of transistors. Despite the increased complexity of such designs, the size of such devices continues to decrease as the ability to fabricate smaller electronic components and package more of these components in a smaller area is improved. In recent years, electronic devices have become smaller and packed more closely. The challenge for designers and manufacturers is to use a variety of thermal management systems to dissipate the heat generated in such devices. Thermal management has evolved to address the elevated temperatures (the problem) in these electronic devices due to the increased processing speed and power of such devices. A new generation of electronic components pushes more power into smaller spaces' and the relative importance of thermal management in the design of the entire product is increasing. 143499.doc 201026834 The part that can be divided by =τ is to apply the cut=1 material ("read") for a specific product. Designed for thermal management regulations to help dissipate heat from the electronics to further enhance the performance of the unit. Other thermal management techniques use such things as "cold plate or other (4) sheets that are easily mounted near the electronic components to: heat sink. The heat sink can be a dedicated thermally conductive metal plate or simply the chassis or board of the device. In order to improve the heat transfer efficiency through the interface, the heat sink and the electron

組件之間常常插人導熱且電絕緣材料之墊或其他層以填充 任何表面不規則部且消除氣袋。最早為此目的所採用的係 諸如填充有例如氧化紹之導熱填充物之聚石夕氧⑻ic_)潤 滑脂或壤的材料。此等材料在正常室溫下通常係半液態或 固態,但在高溫下可液化或軟化以流動並更好地順應該等 介面表面之不規則部。 上述類型之潤滑脂及蠟在室溫下一般無法自支撐或保持 形態女疋,且將其施用至該散熱片或電子組件之該介面表 面之舉被認為是相當棘手的。因此,此等材料一般係以易 1 於處理而被認爲較佳之薄膜、基板、網或其他載體之形式 來提供,其等可將另—介面層引入可能於其中形成額外的 氣袋之該等表面中或之間。此外,使用此等材料一般涉及 手工施用或藉由電子裝配器使該等材料成層,而這會增加 製造成本。 或者,另一方法是使用硬化的片狀材料來代替該聚矽氧 调β知或蝶。此等材料可包含一種或多種被分散於聚合物 143499.doc 201026834 黏合劑中之導熱性顆粒填充物,且可以硬化片、帶、墊或 薄膜之形式來提供。典型之黏合劑材料包含聚矽氧樹脂、 胺基甲酸酯、熱塑性橡膠及其他彈性體,而典型之填充物 包含氧化鋁、氧化鎂、氧化鋅、氮化硼及氮化鋁。 上述介面材料之實例係填充有礬土或氮化硼之聚矽氧樹 . 月旨或胺基甲酸醋彈性體。此外’美國專利第4,869,954號揭 示用以傳遞熱能之硬化、形態安定、片狀之導熱材料。該 材料係由胺基甲酸脂黏合劑、硬化劑及一或多種導熱填充 ^ ⑯所形成。該等填充物可包含氧化銘、氮化铭、氮化蝴' 氧化鎂、氧化鋅之粒子。 如美國專利第5,359,768號所更為詳盡描述的,上述類型 之片、墊及帶已獲得廣泛接受來作為用於諸如半導體晶片 之電子組件裝配件之傳導性冷卻中之介面材料。然而,在 某些應用中,需要諸如彈簧、夾具及類似物之緊固元件來 施加足夠的力以使此等材料順應該等介面表面,以獲得足 φ 夠的表面來進行有效的熱傳遞。這代表將此等材料用於實 際應用中存在明顯的缺點。 - 近來已引入相變材料,相變材料在室溫下可自支撐且形 態安定以便於處理,但其在電子組件之操作溫度範圍内之 /皿度下可液化或軟化以形成可更好地順應該等介面表面之 黏性、觸變性相。此等可提供作為自立式薄膜或被印刷於 基板表面上之受熱篩之相變材料有利地可極類似潤滑脂及 蠟般作用,其在相對低之夹持壓力下在該組件之操作溫度 内順應性地流動。美國專利第6,〇54,198號對此等材料做了 143499.doc 201026834 進一步之描述。 對於典型之商業應用’可以帶或片之形式來提供該熱介 面材料’該帶或片包含内部釋放襯墊及外部釋放襯墊及由 熱化合物形成之夾層。除非該熱化合物本身具黏性,該化 合物層之一側可塗布一薄層之壓敏黏著劑(PSA),以將該 化合物施加至散熱片之該熱傳遞表面。 為了促進自動化施配及應用,可對該帶或片之該外部釋 放襯墊及化合物夾層加以模切以形成一系列個別且大小預 疋之墊。因此’在習知之「剝去及黏附(peel and stick)」 馨 應用中,可將各個墊自該内部釋放襯墊移除且使用該黏性 層將之結合至該散熱片,這可由該散熱片製造者來執行。 美國專利第6,〇54,198號揭示用以冷卻生熱電子組件之導 熱介面’該導熱介面具有關聯之散熱構件,諸如散熱片。 該介面係形成為導熱材料之自支樓層,該導熱材料在第一 相中在正常室溫下係形態安定的,且在第二相中係實質上 順應於該電子組件與散熱構件之該等介面表面。該材料具 有自該第一相轉變至該第二相之轉變溫度,該轉變溫度在 ❹ 該電子組件之該操作溫度範圍内。 美國專利第7,208,192號揭示將導熱及/或導電化合物施 用以填充介於第一表面與第二表面之間的間隙。吾人提供 硬化聚合物凝膠組份與顆粒填充物組份之混合物作為易於 流動且形態安定之化合物之供應。該化合物係於所施加之 壓力下自噴嘴施配至與相對之表面接觸之該等表面中之一 者上’以填充介於該等表面之間的間隙。 143499.doc • 6 · 201026834 上文列舉之該等專利及專利申請案中的各者的個別揭示 之全部内容係以引用之方式併入本文中。 鑑於上文所例示之目前用於熱管理中之材料及應用之多 樣性’可以預期的是’熱管理材料及應用之不斷改良將受 到電子裝置製造者之大力歡迎。 據此’本發明之目的在於提供改良之熱管理材料,此等 熱管理材料具有高度的熱傳遞效率及散熱性,其完全順應 於特定之應用,且易於使用及製造。 ® 【發明内容】 本發明係一種熱凝膠材料’其被囊封於諸如聚醯亞胺、 聚醯胺或其他此類材料之介電聚合物中,以形成包裝、袋 子或類似之包封物,其之益處在於產生充分硬化且可施配 之間隙填充物材料’而無需使用或投資昂貴的施配設備。 這使得顧客能將極度順應性之材料應用於敏感應用中,而 同時維持拾放(pick-and-place)技術的簡易性及便利的產品 形成要素。 在具體實施例中’本發明係可依形(conformable)且導 .熱之介面,其適於被安置於兩個熱傳遞表面之間以於該等 ‘ 熱傳遞表面之間提供熱路徑,該介面包括導熱聚合物凝 膠,該聚合物凝膠被囊封於包括聚合物材料之順應性包裝 中°在一態樣中,該導熱聚合物凝膠包括聚矽氧聚合物, 該聚矽氧聚合物包含導熱顆粒填充物,諸如氮化硼之粒 子,且該聚合物包裝材料係介電聚合物,諸如聚醯亞胺或 聚醯胺。在另一態樣申,該包裝包括兩層囊封該導熱凝膠 143499.doc 201026834 之熱可密封聚合物材料,且其中一層可視需要地包括熱膠 帶層。 在另—具體實施例中,透過將導熱聚合物凝膠施配於第 層之介電聚合物或熱膠帶上來製備可依形且導熱之介面 材料。第二層之介電聚合物層被放置於該第一層上方,且 被熱密封(或利用黏著劑密封)至該第一層以囊封該導熱凝 膠。該等所形成之膠包裝可被製造為若干分離物件或視需 要而使用自動化處理器械以將該膠包裝施配於裝配線上之 滾輪中。根據顧客之要求該膠包裝中之聚合物凝膠之量係參 可變動且可滿足大範圍之厚度要求。另可截切或剪切該包 裝材料以允許於施壓下移置材料。 該膝包裝係可用於電子裝置中,在該電子裝置中,可將 該膠包裝設置於第一熱傳遞表面與第二熱傳遞表面之間。 該第一熱傳遞表面可為被設計用於吸收熱之組件的部分, :如散熱片或電路板。該第二熱傳遞表面可為生熱源之部 :’諸如電子組件。在使用中,該膠包裝被放置於該第一 面與該第二表面之間且在低偏移力下被移位進而允許_ 玄材料順應該等接合表面,從而僅使用低包封廢力便可提 冬良好之導熱性。 【實施方式j * 該等圖中對該等元件之繪示遵Pads or other layers of thermally conductive and electrically insulating material are often inserted between the components to fill any surface irregularities and eliminate air pockets. The earliest used for this purpose is a material such as polysulfide (8) ic_) grease or soil filled with a thermally conductive filler such as oxidized. These materials are typically semi-liquid or solid at normal room temperature, but can liquefy or soften at high temperatures to flow and better conform to irregularities in the interface surface. Greases and waxes of the above type are generally not self-supporting or retaining the form of virgin at room temperature, and application to the interface of the heat sink or electronic component is considered to be quite tricky. Accordingly, such materials are generally provided in the form of a film, substrate, mesh or other carrier which is considered to be preferred for processing, such that the additional interface layer may be incorporated into an air pocket in which additional air pockets may be formed. In or between surfaces. Moreover, the use of such materials generally involves manual application or layering of such materials by an electronic assembler, which increases manufacturing costs. Alternatively, another method is to use a hardened sheet material instead of the polyfluorene oxide or butterfly. Such materials may comprise one or more thermally conductive particulate fillers dispersed in a polymer 143499.doc 201026834 binder and may be provided in the form of a cured sheet, tape, mat or film. Typical binder materials include polyoxyxylene resins, urethanes, thermoplastic rubbers, and other elastomers, while typical fillers include alumina, magnesia, zinc oxide, boron nitride, and aluminum nitride. An example of the above interface material is a polyoxynium tree filled with alumina or boron nitride. Further, U.S. Patent No. 4,869,954 discloses a heat-transfer material for transferring heat, hardening, and sheet-like heat. The material is formed from a urethane binder, a hardener, and one or more thermally conductive fillers. The fillers may include particles of oxidized, nitriding, nitriding, magnesium oxide, and zinc oxide. Sheets, pads and tapes of the above type have been widely accepted as interface materials for use in conductive cooling of electronic component assemblies such as semiconductor wafers, as described in more detail in U.S. Patent No. 5,359,768. However, in some applications, fastening elements such as springs, clamps, and the like are required to apply sufficient force to conform these materials to the interface surface to achieve a sufficient surface for effective heat transfer. This represents a significant disadvantage in the use of such materials for practical applications. - Phase change materials have recently been introduced, which are self-supporting at room temperature and stable in morphology for processing, but which can be liquefied or softened at a temperature within the operating temperature range of the electronic component to form better It should conform to the viscous and thixotropic phases of the interface surface. Such phase change materials which may be provided as self-standing films or heated screens printed on the surface of the substrate may advantageously behave substantially like grease and wax, at relatively low clamping pressures within the operating temperature of the assembly. Flowing compliantly. U.S. Patent No. 6, 〇 54, 198, further describes 143499.doc 201026834 for these materials. For a typical commercial application, the thermal interface material can be provided in the form of a tape or sheet. The tape or sheet comprises an inner release liner and an outer release liner and an interlayer formed of a thermal compound. Unless the thermal compound itself is viscous, one side of the compound layer may be coated with a thin layer of pressure sensitive adhesive (PSA) to apply the compound to the heat transfer surface of the heat sink. To facilitate automated dispensing and application, the outer release liner and compound interlayer of the tape or sheet can be die cut to form a series of individual and sized pads. Therefore, in the conventional "peel and stick" application, each pad can be removed from the inner release liner and bonded to the heat sink using the adhesive layer, which can be dissipated by the heat dissipation. The film maker will perform it. U.S. Patent No. 6, 〇 54, 198 discloses a heat transfer interface for cooling a heat generating electronic component. The heat conducting interface has associated heat dissipating members, such as heat sinks. The interface is formed as a self-supporting floor of a thermally conductive material that is stable in normal phase at room temperature in the first phase and substantially conforms to the electronic component and the heat dissipating component in the second phase Interface surface. The material has a transition temperature from the first phase to the second phase, the transition temperature being within the operating temperature range of the electronic component. U.S. Patent No. 7,208,192 discloses the application of a thermally and/or electrically conductive compound to fill a gap between a first surface and a second surface. We provide a mixture of a hardened polymer gel component and a particulate filler component as a supply of readily flowable and morphologically stable compounds. The compound is applied from one of the nozzles to one of the surfaces in contact with the opposing surface under the applied pressure to fill the gap between the surfaces. 143499.doc • 6 · 201026834 The entire disclosures of each of the above-identified patents and patent applications are hereby incorporated by reference. In view of the diversity of materials and applications currently used in thermal management as exemplified above, it is expected that the continuous improvement of thermal management materials and applications will be greatly welcomed by electronic device manufacturers. Accordingly, it is an object of the present invention to provide improved thermal management materials which have a high degree of heat transfer efficiency and heat dissipation which are fully compliant with a particular application and which are easy to use and manufacture. ® SUMMARY OF THE INVENTION The present invention is a thermogel material that is encapsulated in a dielectric polymer such as polyimide, polyamide or other such materials to form a package, bag or similar encapsulation The benefit of this is that it produces a sufficiently hardened and configurable gap filler material' without the need to use or invest in expensive dispensing equipment. This allows customers to apply extremely compliant materials to sensitive applications while maintaining the simplicity of pick-and-place technology and convenient product formation. In a particular embodiment, the present invention is a conformable and thermally conductive interface adapted to be disposed between two heat transfer surfaces to provide a thermal path between the 'thermal transfer surfaces, The interface comprises a thermally conductive polymer gel encapsulated in a compliant package comprising a polymeric material, wherein the thermally conductive polymer gel comprises a polyoxyl polymer, the polyoxyl The polymer comprises a thermally conductive particle filler, such as particles of boron nitride, and the polymeric packaging material is a dielectric polymer such as polyimine or polyamine. In another aspect, the package comprises two layers of thermally sealable polymeric material encapsulating the thermally conductive gel 143499.doc 201026834, and one of the layers optionally includes a layer of thermal tape. In another embodiment, a conformable and thermally conductive interface material is prepared by applying a thermally conductive polymer gel to the first layer of dielectric polymer or thermal tape. A second layer of dielectric polymer layer is placed over the first layer and is heat sealed (or sealed with an adhesive) to the first layer to encapsulate the thermally conductive gel. The formed glue packages can be manufactured as a plurality of separate articles or, as needed, using automated processing equipment to dispense the glue packages into rollers on the assembly line. The amount of polymer gel in the adhesive package can vary according to customer requirements and can meet a wide range of thickness requirements. Alternatively, the packaging material can be cut or sheared to allow the material to be displaced under pressure. The knee package can be used in an electronic device in which the glue package can be placed between a first heat transfer surface and a second heat transfer surface. The first heat transfer surface can be part of a component designed to absorb heat, such as a heat sink or circuit board. The second heat transfer surface can be part of a heat generating source: 'such as an electronic component. In use, the glue package is placed between the first side and the second surface and is displaced under a low offset force to allow the material to conform to the joint surface, thereby using only low encapsulation waste. It can promote good thermal conductivity in winter. [Embodiment j * The drawing of these components in the figures

熟悉此項技術者將理解, 循簡潔且清晰 該等圖令之一 以幫助提高對. 143499.doc -S - 201026834 用之某些術語録於便狀用而麵何料彳之 中ΠΓΓ熱膠包裝’其適於被安置於用於電子裝置 =種:件之兩個熱傳遞表面之間。較目前所使用之其 ==發明之該_具有已改良之熱傳遞及處理特 性以加強熱管理。 本文中所使用之術 … 」你指將電子裝置中之溫 度敏感元件保持於規定之操作溫度 及π以防止系統故障或發 生厫重的系統性能退化之能力。Those skilled in the art will understand that one of the commands is simple and clear to help improve the 143499.doc -S - 201026834. Some of the terms used in the notes are used in the case. The package 'is adapted to be placed between two heat transfer surfaces for an electronic device. It has improved heat transfer and processing characteristics to enhance thermal management compared to its current use == invention. As used herein, you refer to the ability to maintain temperature-sensitive components in an electronic device at a specified operating temperature and π to prevent system malfunction or degradation of system performance.

❹ 術語「ΕΜΙ屏蔽」包含電磁相容性(EMC)、電傳導或接 地、電暈屏蔽、射頻干擾(RFI)屏蔽及防止靜電(即靜電放 電(ESD)保護)且係可與其等互換。 「可依形」產品係顯示出充分的可撓性之產品,其能以 最小或低之力偏移特性來順應介面的輪廓。 如本文所述,本發明之該等導熱及/或導電膠包裝係主 要連同在熱管理裝配件内使用此等膠包裝以作為插入相鄰 熱傳遞表面之間的熱介面材料來描述。該等熱傳遞表面可 為諸如電子組件之生熱組件或諸如散熱片或電子電路板之 散熱組件之一部分。然而,熟悉此項技術者不難理解,本 膠包裝可具有其他用途,此等用途被完全包含於本發明之 範圍内。 因此’根據本發明,所提供之膠包裝包括可撓性且可依 形之塑膠包裝,例如袋子或其他容器,該塑膠包裝具有用 以容納導熱基板(諸如導熱聚合物凝膠)之内部隔間。較佳 的是’該塑料為可依形介電聚合物,例如聚醯胺或聚醯亞 143499.doc 201026834 胺。 例如,可透過將該凝膠施配於第一塑料層上且將第二 塑料層放置於該第-層上,從而將該凝膠囊封於兩層塑滕 之内’以此方式可便利地以兩層塑膠材料形成該包裝。然 後可將該等塑膠層於該等層重叠之該等外側邊緣處加以熱 密封或黏著以形成該膠包裝。該所得之朦 : 形的以徒夠填充電子裝置及電氣設備的該等了: 路板及殼體之相鄰表面之間或其他諸如於建築結構及此類 物中可發現之相鄰表面之間之間隙。 用來作為本發明之聚合物凝膠組件之凝膠包含以聚矽氧 樹脂為基之凝膠(即,㈣氧烧,諸如聚有财氧烧)及以 其他聚合物(可為熱塑性或熱固性,諸如聚胺酯、聚脲、 含氟聚合物、氣磺酸、聚丁二烯、丁基、氣丁二烯橡膠、 亞硝酸鹽、聚異戊二烯和丁腈橡膠)、共聚物(諸如乙烯-丙 烯(EPR)、苯乙烯-異戊二烯苯乙烯(仍)、苯乙烯丁二烯_ 苯乙烯(SBS)、乙烯-丙烯·二烯單體(EpDM)、腈基丁二烯 (NBR)、苯乙烯_乙烯-丁二烯(SEB)及苯乙烯丁二烯(sbr^ 及其等之混合物(諸如乙烯或丙烯_EpDM、EpR或NBR)為 基之凝膠。合適之熱凝膠包含THERMAGApTM凝膠產 的,該等產品係僅要求相對小之壓縮力之高度可依形預 硬化且單組份的化合物。 如本文所使用,術語「聚合物凝膠」(「p〇lymer gel」 或「polymeric gel」)一般具有其等習知之流體增充之聚合 物系統之意義,該系統可包含連續之聚合物相或網路,該 »43499.doc 201026834 聚合物相或網路可化學性(例如離子地或共價地)或物理性 地交聯’·及例如聚矽氧樹脂或其他油之油類;塑化劑;非 反應性單體或其他流體增充劑,該等流體增充劑可膨脹或 可以其他方式填充該等網路之間隙。可控制此網路之交聯 密度及該增充劑之比例以修改該凝膠之模數(即柔軟度)及 其他杜質。亦應將術語「聚合物凝膠」(「polymer gel」 或「polymeric gel」)理解為包含或可被寬泛地分類為假凝 膠或類凝膠之材料,該等材料具有類似凝膠之黏彈性性質 ® (例如其具有由相對長之交聯鏈所形成之「鬆他」交聯網 路)’但不具流體增充劑。 根據本發明之一態樣,透過賦予該凝膠填充物組份(可 包含一種或多種導熱顆粒填充物),從而使得該聚合物凝 膠組伤具導熱性。就此而言,該聚合物凝膠組份一般形成 種黏合劑,而該導熱填充物則被施配於該黏合劑中。該 填充物之包含比例係足夠用以提供預期應用所要求之導熱 _ & H將以㈣化合物總重量之約2G%至物%間之 量來裝填。對於本發明之該等目的,該填充物之尺寸及形 狀並不甚重要。就此而言,該填充物可為任何一般之形狀 (寬泛地被稱為「顆粒」)’包含實心或中空球形或微球形 薄片、小板片、不規則或纖維狀的,例如斬碎或礙磨之纖 維或鬚狀物,但較佳為粉末以確保均句的分散及均質的機 械及熱性質。該填充物之粒子大小或分佈—般將在約〇〇ι 别至約10 m_.25降㈣μιη)(其可為該粒子之直徑、估 算直徑、長度或其他尺寸)之間的範圍内,但可進一步根 143499.doc 201026834 據該有待填充之間隙之厚度而變動。若有需要,該填充物 可係非導電性,使得該化合物既可介電或電絕緣又可導 熱。或者,在不要求電隔離之應用中該填充物可具導電 性。 合適之導熱填充物一般包含氧化物、氮化物、碳化物、 二蝴化物、石墨、金屬粒子及其等之混合物,且更特定而 言係包含氮化硼、二硼化鈦、氮化鋁、碳化矽、石墨、金 屬(諸如銀、鋁及銅)、金屬氧化物(如氧化鋁、氧化鎂、 氧化鋅、氧化鈹及氧化銻)及其等之混合物。此等填充物 參 特徵性地顯示出至少約20 W/m-K之導熱性。鑑於經濟因 素’可使用氧化鋁(即礬土),而就導熱性改良而言,則氮 化蝴較佳。在裝填該導熱填充物後,該化合物一般可顯示 出依循ASTM D5470至少約〇.5 W/m-K之導熱性,該導熱性 可根據該化合物層之厚度而變動。 根據本發明之另一態樣,聚合物凝膠組份可藉由裝填導 電填充物而具導電性,該導電填充物可附加地與導熱填充 物一起提供(即混合物)或取代該導熱填充物。同時,根據馨 所選擇之填充物,此填充物可兼具導熱填充物及導電填充 物之作用。使用導電材料可賦予該凝膠EMI屏蔽之特性。 «適之導電填充物包含:貴重及非貴重金屬,例如鎳、 銅、錫、鋁'鎳;鍍有貴重金屬之貴重金屬或非貴重金 屬,諸如鍍銀銅、鍍銀鎳、鍍銀鋁、鍍銀錫或鍍銀金;鍍 有非貝重金屬之貴重及非貴重金屬,諸如鍍鎳銅或鍍鎳 銀,及鑛有貝重或非貴重金屬之非金屬,諸如锻銀或鑛鎳 143499.doc -12- 201026834 之石墓鍵銀或锻錄玻璃、錄銀或锻鎳陶竟、锻銀或锻錄 塑膠、鍍銀或鍍鎳彈性體或雲母;及其等之混合物。該填 充物在形式上再次被寬泛地歸類為「顆粒」(儘管此等形 式之特疋形狀被認為對本發明並非至關重要),且可包含 本文所涉及之該類型之導電材料之製造及形成中習知上所 涉及之任何形狀,包含中空或實心的微球體、彈性氣球狀 物、薄片、小板片、纖維、竿狀物、形狀不規則之粒子或 其等之混合物。同樣地,該填充物之粒子之尺寸並非被認 為至關重要,且可為狹窄或寬闊之分佈或範圍,但一般將 為自約0.250 μπι至約250 μιη。 該熱凝膠係藉由將該凝膠囊封於介電聚合物中而被包裝 於塑膠薄膜中。示例性介電聚合物包含各種熱塑性聚合 物,諸如聚醯亞胺(例如Kapton⑧)、聚醯胺及其等之共聚 物及混合物。可使此等熱塑性聚合物形成於薄膜中且於邊 緣部分加以熱密封,進而將該熱凝膠包封於密封袋或小袋 中。在實務中,該熱凝膠被沈積於第一聚合物薄膜層上, 且第二聚合物薄膜層被放置於該第一薄膜層之上方且被熱 密封至該第一薄膜層。在一具體實施例中,該第一層及該 第二層二者均為介電聚合物薄膜層,較佳係由相同的聚合 物來形成。在另一具體實施例十,該等層中之一者(一般 為该底層)為熱膠帶。合適之熱膠帶包含THERMATTACH⑧ 導熱附接膠帶,其等係以一聚醯亞胺載體為基且具有良好 的介電強度。 可在裝配線上於自動化裝配程序中有利且高效地製造多 143499.doc •13· 201026834 個谬包裝,進而可將該等包裝生產成卷且在使用之前進行 個別切割。 該等膠包裝適於與電子設備配合使用,透過將該等膠包 裝安放介於第-熱傳遞表面與第二熱傳遞表面之間來於該 等表面之間提供熱路徑。一個熱傳遞表面可為設計用以吸 熱之組件,諸如散熱片或電子電路板。另一(相對置的)熱 傳遞表面可為生熱源,諸如生熱電子組件。該等相對置之 熱傳遞表面較佳地具有小於約i t _in2/w(6t)c _cm2/w)之熱 阻。 本發明之範圍内之典型電子設備包含例如:自動化電子 組件及系統、電信基地台及消費電子產品,諸如電腦監視 器及電漿τν(電視)。 現參考圖示,圖1及圖2顯示根據本發明之熱凝膠包裝之 兩個具體實施例。在圖丨中,熱凝膠丨被顯示為由介電聚合 物薄膜所形成之上層2與下層3所囊封。該等上層薄膜及下 層薄膜之邊緣被熱密封以包封該凝膠。圖2類似圖丨,其顯 不由介電聚合物5形成之上薄膜層與熱膠帶6形成之下層所 囊封之熱凝膠4。本發明之該等熱膠包裝可個別地製備, 或可為於自動化製程中所製備之若干此等包裝之一部分。 可以預期,在不脫離本文所涉及之該等概念之範圍内, 可對本發明做出某些變化,包含於先前描述中之所有物質 應被解釋為說明之用而非限制意義。本文所引用之包括住 何優先權文件在内的參考文件的全部内容係明確地以引用 之方式併入本文中。 143499.doc -14- 201026834 【圖式簡單說明】 圖1係本發明之一具體實施例之橫截面圖’該視圖顯示 包括一種導熱凝膠之膠包裝,該導熱凝膠被夾於兩塑膠片 狀材料層之間且將該膠包裝之該等邊緣部分熱密封,以囊 封該凝膠。 圖2係本發明之另一具體實施例之橫截面圖,該視圖顯 示包括一種導熱凝膠之膠包裝,該導熱凝膠被夾於塑膠片 狀材料層與熱膠帶之間且將該膠包裝的該等邊緣部分熱密 Φ 封’以囊封該凝膠。 【主要元件符號說明】 1 熱凝膠 2 上層 3 下層 4 熱凝膠 5 介電聚合物 6 熱膠帶 143499.doc❹ The term “ΕΜΙ shield” includes electromagnetic compatibility (EMC), electrical conduction or grounding, corona shielding, radio frequency interference (RFI) shielding, and static electricity prevention (ie, electrostatic discharge (ESD) protection) and is interchangeable. The "conformable" product exhibits a flexible product that conforms to the contour of the interface with minimal or low force offset characteristics. As described herein, the thermally and/or electrically conductive adhesive packages of the present invention are primarily described in connection with the use of such adhesive packages in thermal management assemblies as thermal interface materials interposed between adjacent heat transfer surfaces. The heat transfer surfaces may be part of a heat generating component such as an electronic component or a heat sink component such as a heat sink or an electronic circuit board. However, it will be readily understood by those skilled in the art that the gum package can have other uses and such use is fully within the scope of the invention. Thus, in accordance with the present invention, a glue package is provided that includes a flexible and conformable plastic package, such as a bag or other container having an internal compartment for containing a thermally conductive substrate, such as a thermally conductive polymer gel. . Preferably, the plastic is a conformable dielectric polymer such as polyamine or polyamine 143499.doc 201026834 amine. For example, the gel can be applied to the first plastic layer and the second plastic layer can be placed on the first layer to encapsulate the gel within the two layers. The package is formed from two layers of plastic material. The plastic layers can then be heat sealed or adhered to the outer edges of the layers to form the glue package. The resulting enthalpy: the shape of the electronic device and the electrical equipment: the adjacent surfaces of the road and the casing or other adjacent surfaces such as the building structure and the like. The gap between the two. The gel used as the polymer gel component of the present invention comprises a gel based on polyoxyxylene resin (i.e., (iv) oxy-fired, such as polyoxygenated) and other polymers (which may be thermoplastic or thermoset) , such as polyurethane, polyurea, fluoropolymer, gas sulfonic acid, polybutadiene, butyl, gas butadiene rubber, nitrite, polyisoprene and nitrile rubber), copolymers (such as ethylene - propylene (EPR), styrene-isoprene styrene (still), styrene butadiene styrene (SBS), ethylene-propylene propylene monomer (EpDM), nitrile butadiene (NBR) a gel based on styrene-ethylene-butadiene (SEB) and styrene butadiene (a mixture of sbr^ and the like (such as ethylene or propylene_EpDM, EpR or NBR). Suitable thermogel Containing THERMAGApTM gels, which are highly pre-hardenable and one-component compounds that require relatively small compressive forces. As used herein, the term "polymer gel" ("p〇lymer gel" Or "polymeric gel" generally has the meaning of a known fluid-enriched polymer system, The system may comprise a continuous polymer phase or network, the <43499.doc 201026834 polymer phase or network may be chemically (e.g., ionically or covalently) or physically crosslinked' Or other oils of oil; plasticizers; non-reactive monomers or other fluid extenders that can swell or otherwise fill the gaps in such networks. The density of the bond and the ratio of the extender to modify the modulus (ie, softness) of the gel and other impurities. The term "polymer gel" or "polymeric gel" should also be understood as Materials that contain or can be broadly classified as pseudogels or gel-like materials that have a gel-like viscoelastic property (eg, which has a "song" network formed by a relatively long cross-linking chain Road) 'but without a fluid extender. According to one aspect of the invention, by imparting a gel filler component (which may comprise one or more thermally conductive particle fillers), the polymer gel group is thermally conductive In this regard, the polymer The glue component generally forms a binder, and the thermally conductive filler is dispensed into the binder. The filler is included in a ratio sufficient to provide the thermal conductivity required for the intended application _ & H will be (4) total compound The weight is about 2G% to the amount of material to be filled. For the purposes of the present invention, the size and shape of the filler is not critical. In this regard, the filler can be of any general shape (broadly Known as "particles") 'contains solid or hollow spherical or microspherical flakes, small plates, irregular or fibrous, such as smashed or obstructed fibers or whiskers, but preferably powder to ensure The dispersion of the sentence and the homogenous mechanical and thermal properties. The particle size or distribution of the filler will generally decrease from about 〇〇ι to about 10 m_.25 (four) μιη) (which may be the diameter, estimated diameter, length of the particle) Within the range between or other dimensions, but the root 143499.doc 201026834 can be further varied depending on the thickness of the gap to be filled. If desired, the filler can be non-conductive such that the compound can be either dielectric or electrically insulating and can conduct heat. Alternatively, the filler may be electrically conductive in applications where electrical isolation is not required. Suitable thermally conductive fillers generally comprise a mixture of oxides, nitrides, carbides, bromide, graphite, metal particles, and the like, and more particularly boron nitride, titanium diboride, aluminum nitride, A mixture of tantalum carbide, graphite, metals such as silver, aluminum and copper, metal oxides such as alumina, magnesia, zinc oxide, cerium oxide and cerium oxide, and the like. These fillers characteristically exhibit a thermal conductivity of at least about 20 W/m-K. In view of the economic factor 'aluminum (i.e., alumina) can be used, and in terms of thermal conductivity improvement, the nitrogenation is preferred. After loading the thermally conductive filler, the compound generally exhibits a thermal conductivity of at least about 0.5 W/m-K in accordance with ASTM D5470, which may vary depending on the thickness of the compound layer. According to another aspect of the present invention, the polymer gel component can be electrically conductive by filling a conductive filler, which can additionally be provided (ie, a mixture) or replace the thermally conductive filler with the thermally conductive filler. . At the same time, according to the filler selected by Xin, the filler can function as both a heat conductive filler and a conductive filler. The use of a conductive material imparts the properties of the gel EMI shielding. « Suitable conductive fillers include: precious and non-precious metals such as nickel, copper, tin, aluminum 'nickel; precious metals coated with precious metals or non-precious metals such as silver plated copper, silver plated nickel, silver plated aluminum, Silver-plated tin or silver-plated gold; precious and non-precious metals plated with non-shelle metals, such as nickel-plated or nickel-plated silver, and non-metals with shellfish or non-precious metals, such as forged silver or nickel 143499. Doc -12- 201026834 Stone tomb key silver or forged glass, silver or wrought nickel ceramic, forged silver or forged plastic, silver or nickel-plated elastomer or mica; and mixtures thereof. The filler is again broadly categorized as "particles" in form (although the characteristic shapes of such forms are considered to be not critical to the invention) and may include the manufacture of conductive materials of the type referred to herein and Any shape referred to in conventional formation includes hollow or solid microspheres, elastic balloons, flakes, platelets, fibers, sputum, irregularly shaped particles or mixtures thereof. Likewise, the size of the particles of the filler is not considered critical and may be a narrow or broad distribution or range, but will generally range from about 0.250 μm to about 250 μm. The thermogel is packaged in a plastic film by encapsulating the gel in a dielectric polymer. Exemplary dielectric polymers include various thermoplastic polymers such as copolymers and mixtures of polyimine (e.g., Kapton 8), polyamidamine, and the like. These thermoplastic polymers can be formed in a film and heat sealed at the edge portions to encapsulate the thermogel in a sealed pouch or pouch. In practice, the thermal gel is deposited on the first polymeric film layer and a second polymeric film layer is placed over the first film layer and heat sealed to the first film layer. In one embodiment, both the first layer and the second layer are dielectric polymer film layers, preferably formed from the same polymer. In another embodiment, one of the layers (generally the bottom layer) is a thermal tape. A suitable thermal tape comprises THERMATTACH8 thermally conductive attachment tape, which is based on a polyamidimide support and has good dielectric strength. Multiple 143499.doc •13· 201026834 谬 packages can be manufactured advantageously and efficiently on the assembly line in an automated assembly process, which can be produced into rolls and individually cut before use. The glue packages are adapted for use with an electronic device to provide a thermal path between the surfaces by placing the glue between the first heat transfer surface and the second heat transfer surface. A heat transfer surface can be a component designed to absorb heat, such as a heat sink or an electronic circuit board. The other (opposing) heat transfer surface can be a heat generating source such as a heat generating electronic component. The opposing heat transfer surfaces preferably have a thermal resistance of less than about i t _in2/w(6t)c _cm2/w). Typical electronic devices within the scope of the present invention include, for example, automated electronic components and systems, telecommunications base stations, and consumer electronics such as computer monitors and plasma τν (television). Referring now to the drawings, Figures 1 and 2 show two specific embodiments of a thermal gel package in accordance with the present invention. In the figure, the thermal gel is shown to be encapsulated by the upper layer 2 and the lower layer 3 formed by the dielectric polymer film. The edges of the upper and lower films are heat sealed to encapsulate the gel. Fig. 2 is similar to Fig. 2, which is formed by the dielectric polymer 5 to form a thermal gel 4 which is formed by the upper film layer and the thermal tape 6 underlying layers. The hot glue packages of the present invention may be prepared individually or may be part of a number of such packages prepared in an automated process. It is contemplated that certain modifications may be made to the invention without departing from the spirit and scope of the invention. The entire contents of the references, including the priority documents, which are hereby incorporated by reference, are expressly incorporated by reference. 143499.doc -14- 201026834 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view of an embodiment of the present invention. The view shows a rubber package comprising a thermally conductive gel sandwiched between two plastic sheets. The edge portions of the material pack are heat sealed between the layers of the plastic package to encapsulate the gel. Figure 2 is a cross-sectional view of another embodiment of the present invention showing a gel pack comprising a thermally conductive gel sandwiched between a layer of plastic sheet material and a thermal tape and packaged in the package The edge portions are heat sealed to seal the gel. [Main component symbol description] 1 Thermal gel 2 Upper layer 3 Lower layer 4 Thermal gel 5 Dielectric polymer 6 Thermal tape 143499.doc

Claims (1)

201026834 七、申請專利範園: 1· 依形導熱膠包裝,其適於被安μ第—熱傳遞表 置之第—熱傳遞表面之間以於該等表面之間提供 熱路役’該膠包裝包括導埶聚人 • 被*4·^“ 導*,,、1物凝膠,《合物凝膠 、:匕括聚合物材料層之順應性包裝中。 、 2.如請求項1之膠包裝,其中 —^ 再中6亥第一或第二熱傳遞表面中 之一者係位於生熱源上。 3·如請求項2之膠包裝,其中 • 該生熱源為電子組件;且 違第-或第二熱傳遞表面中之另—者係位於散熱構件 上0 其中該散熱構件為散熱片或電路 4.如請求項3之膠包裝 板0 5_如請求項1之膠包裝 6·如請求項1之膠包裝 物0 其中該凝膠包括聚矽氧聚合物。 其中該凝膠填充有導熱顆粒填充 f201026834 VII. Application for Patent Park: 1· Depending on the shape of the thermal conductive adhesive package, it is suitable for being placed between the heat transfer surfaces of the first heat transfer surface to provide thermal communication between the surfaces. The package includes the guide 埶 • • • * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Glue packaging, wherein - ^ one of the first or second heat transfer surfaces of the 6 hai is located on the heat source. 3. The glue package of claim 2, wherein the heat source is an electronic component; - or the other of the second heat transfer surfaces is located on the heat dissipating member 0, wherein the heat dissipating member is a heat sink or circuit 4. The glue wrapper of claim 3 0 5_ such as the glue package of claim 1 The glue package 0 of claim 1 wherein the gel comprises a polyoxyl polymer. wherein the gel is filled with thermally conductive particles. 如明求項6之膠包褒,其巾該顆粒填充物係選 蝴' K匕欽、氛化铭、碳化石夕、;5墨、金屬 化物及其等之混合物組成之群組中。 自由氮化 、金屬氧 8·如請求項6之膠包裝 80重量%之填充物。 9.如請求項6之膠包裝, K之導熱性。 1〇.如請求項6之膠包裝 其中該經填充之凝膠包括約2〇至 其中該填充物具有至少約20 W/m_ 其中該經填充之凝膠具有至少約 143499.doc 201026834 0,5 W/m-K:之導熱性。 11 12. 13. 14. 15. 16. 17. 18. 如請求項1之膠包奘, 哀其中該介面具有小於約1。(: -in2/W (6°C-cm2/W)之熱阻。 如凊求項1之膠包裝,其中形成該包裝層之聚合物材料 為介電材料。 如請求項】之谬包裝,其中形成該包裝層之聚合物材料 係選自由聚醯亞胺、聚酿胺及其等之共聚物及混合物所 組成之群組中。 一種熱管理裝配件,其包括: 第一熱傳遞表面; 與該第一熱傳遞表面對置之第二熱傳遞表面;及 被設置介於該第一熱傳遞表面與該第二熱傳遞表面之 間的可依形導熱膠包裝,以於該等表面之間提供導熱路 徑,該膠包裝包括導熱聚合物凝膠,該聚合物凝膠被囊 封於包括至少一聚合物材料層之順應性包裝中。 如請求項14之裝配件,其中該第一或第二熱傳遞表面中 之一者係位於生熱源上。 如請求項15之裝配件,其中: 該生熱源為電子組件;且 該第一或該第二熱傳遞表面中之另一者係位於散熱構 件上。 如請求項16之裝配件,其中該散熱構件為散熱片或電路 板。 如請求項14之裝配件,其中該凝膠包括聚矽氧聚合物。 143499.doc -2 - 201026834 19. 如凊求項14之裝配件,其中該凝膠係填充有導熱顆粒填 充物。 20. 如請求項19之裝配件,其中該顆粒填充物係選自由氮化 • 硼、二硼化鈦、氮化鋁、碳化矽、石墨、金屬、金屬氧 化物及其等之混合物組成之群組中。 21. 如凊求項19之裝配件,其中該經填充之凝膠包括約川重 量%至約80重量%之填充物。 22. 如請求項19之裝配件,其中該填充物具有至少約20 β W/m-K之導熱性。 23·如請求項19之裝配件,其中該經填充之凝膠具有至少約 0.5 W/m-K之導熱性。 24. 如請求項14之裝配件’其中該介面具有小於約1。匚-in2/wr (6°C-cm2/W)之熱阻。 25. 如請求項14之裝配件,其中形成該包裝層之聚合物材料 為介電材料。 • 26.如請求項U之裝配件,其中形成該包襄層之聚合物材料 係選自由聚醯亞胺、聚醯胺及其等之共聚物及混合物所 組成之群組中。 143499.docFor example, in the case of the adhesive bag of the item 6, the granule filling of the towel is selected from the group consisting of 'K匕钦, 静化铭, carbonized stone eve, 5 ink, metal compound and the like. Free nitriding, metal oxygen 8·Package of claim 6 80% by weight of filler. 9. The adhesive package of claim 6, the thermal conductivity of K. 1) The glue package of claim 6 wherein the filled gel comprises about 2 Torr to wherein the filler has at least about 20 W/m_ wherein the filled gel has at least about 143499.doc 201026834 0,5 W/mK: thermal conductivity. 11 12. 13. 14. 15. 16. 17. 18. As claimed in item 1, the interface has less than about 1. (: -in2/W (6 °C-cm2/W) thermal resistance. For the packaging of item 1, the polymer material forming the packaging layer is a dielectric material. The polymeric material from which the packaging layer is formed is selected from the group consisting of copolymers and mixtures of polyimine, polyamine, and the like. A thermal management assembly comprising: a first heat transfer surface; a second heat transfer surface opposite the first heat transfer surface; and a heat conductive adhesive package disposed between the first heat transfer surface and the second heat transfer surface for the surfaces Providing a thermally conductive path, the adhesive package comprising a thermally conductive polymer gel encapsulated in a compliant package comprising at least one layer of polymeric material. The assembly of claim 14 wherein the first or One of the second heat transfer surfaces is located on a heat generating source, such as the assembly of claim 15, wherein: the heat generating source is an electronic component; and the other of the first or second heat transfer surfaces is located On the heat dissipating member. As in the assembly of claim 16 Wherein the heat dissipating member is a heat sink or a circuit board. The assembly of claim 14, wherein the gel comprises a polyoxyl polymer. 143499.doc -2 - 201026834 19. The assembly of claim 14 wherein The gel is filled with a thermally conductive particle filler. 20. The assembly of claim 19, wherein the particulate filler is selected from the group consisting of boron nitride, titanium diboride, aluminum nitride, tantalum carbide, graphite, metal, 21. The assembly of metal oxides and mixtures thereof, etc. 21. The assembly of claim 19, wherein the filled gel comprises from about 5% by weight to about 80% by weight of the filler. The assembly of item 19, wherein the filler has a thermal conductivity of at least about 20 β W/mK.. The assembly of claim 19, wherein the filled gel has a thermal conductivity of at least about 0.5 W/mK. 24. The assembly of claim 14 wherein the interface has a thermal resistance of less than about 1. 匚-in2/wr (6 ° C-cm 2 /W). 25. The assembly of claim 14 wherein the package is formed The polymer material of the layer is a dielectric material. • 26. The assembly of claim U, The polymer material forming the coating layer is selected from the group consisting of copolymers and mixtures of polyimine, polyamide, and the like. 143499.doc
TW098132540A 2008-09-26 2009-09-25 Thermally conductive gel packs TWI457425B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10029708P 2008-09-26 2008-09-26

Publications (2)

Publication Number Publication Date
TW201026834A true TW201026834A (en) 2010-07-16
TWI457425B TWI457425B (en) 2014-10-21

Family

ID=41403006

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098132540A TWI457425B (en) 2008-09-26 2009-09-25 Thermally conductive gel packs

Country Status (7)

Country Link
US (1) US20110308781A1 (en)
EP (1) EP2329702A1 (en)
JP (1) JP2012503890A (en)
KR (1) KR20110076875A (en)
CN (1) CN102150484A (en)
TW (1) TWI457425B (en)
WO (1) WO2010036784A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9125324B2 (en) 2011-04-08 2015-09-01 Asustek Computer Inc. Motherboard

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9622907B2 (en) 2010-09-10 2017-04-18 Medivance Incorporated Cooling medical pad
WO2012034129A1 (en) 2010-09-10 2012-03-15 Medivance Incorporated Cooling medical pad
CN103188916A (en) * 2011-12-30 2013-07-03 鸿富锦精密工业(深圳)有限公司 Radiator and electronic device with same
WO2014120278A1 (en) * 2013-01-29 2014-08-07 Medivance Incorporated Hybrid medical cooling pad with increased water flow area
CN104640413A (en) * 2013-11-08 2015-05-20 极致科技有限公司 Soft heat transfer module
US9615486B2 (en) * 2014-03-26 2017-04-04 General Electric Company Thermal interface devices
US10111363B2 (en) * 2014-12-04 2018-10-23 Microsoft Technology Licensing, Llc System for effectively transfering heat from electronic devices and method for forming the same
CA2973748C (en) 2015-01-27 2020-04-14 Medivance Incorporated Improved medical pad and system for thermotherapy
JP2016219599A (en) * 2015-05-20 2016-12-22 株式会社リコー Electronic equipment and heat spreader
FR3042309B1 (en) * 2015-10-09 2017-12-15 Commissariat Energie Atomique IMPROVED DBC STRUCTURE WITH SUPPORT INTEGRATING PHASE CHANGE MATERIAL
US10791651B2 (en) 2016-05-31 2020-09-29 Carbice Corporation Carbon nanotube-based thermal interface materials and methods of making and using thereof
US10660208B2 (en) * 2016-07-13 2020-05-19 General Electric Company Embedded dry film battery module and method of manufacturing thereof
TWI755492B (en) 2017-03-06 2022-02-21 美商卡爾拜斯有限公司 Carbon nanotube-based thermal interface materials and methods of making and using thereof
US10714829B2 (en) * 2017-05-09 2020-07-14 Ball Aerospace & Technologies Corp. Planar phased array antenna
JP6886698B2 (en) * 2017-06-29 2021-06-16 北川工業株式会社 Heat conductive liquid pack
AT521329B1 (en) * 2018-06-12 2020-03-15 Miba Ag accumulator
CN108777927B (en) * 2018-06-26 2019-11-26 联想(北京)有限公司 A kind of radiator, method and electronic equipment
JP6825661B2 (en) * 2019-08-26 2021-02-03 株式会社リコー Electronics and heat diffusers
US10980152B1 (en) * 2019-11-11 2021-04-13 Seagate Technology Llc Thermal rectification with phase change materials
US12021305B1 (en) 2021-06-23 2024-06-25 Bae Systems Space & Mission Systems Inc. Conformal antenna system
CN114539782A (en) * 2022-01-18 2022-05-27 深圳先进电子材料国际创新研究院 Method for reducing contact thermal resistance heat-conducting gel and application thereof

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4092697A (en) * 1976-12-06 1978-05-30 International Business Machines Corporation Heat transfer mechanism for integrated circuit package
WO1984002444A1 (en) 1982-12-16 1984-06-21 Hasler Ag Flat bag filled with heat-conducting liquid or paste
US4852646A (en) * 1987-06-16 1989-08-01 Raychem Corporation Thermally conductive gel materials
US4997032A (en) * 1987-09-25 1991-03-05 Minnesota Mining And Manufacturing Company Thermal transfer bag
US5000256A (en) * 1990-07-20 1991-03-19 Minnesota Mining And Manufacturing Company Heat transfer bag with thermal via
US5485671A (en) * 1993-09-10 1996-01-23 Aavid Laboratories, Inc. Method of making a two-phase thermal bag component cooler
US5640303A (en) * 1995-10-30 1997-06-17 Precision Connector Designs, Inc. Interconnection apparatus for semiconductor/integrated circuit devices
AU723258B2 (en) 1996-04-29 2000-08-24 Parker-Hannifin Corporation Conformal thermal interface material for electronic components
JPH11177264A (en) * 1997-12-16 1999-07-02 Pfu Ltd Accommodation case for portable electronic apparatus
US5966288A (en) * 1998-05-22 1999-10-12 Northern Telecom Limited Assemblies of electronic devices and flexible containers thereof
US20020086600A1 (en) * 2000-12-29 2002-07-04 Prosenjit Ghosh Thermal interface medium
JP3712943B2 (en) * 2001-02-08 2005-11-02 富士高分子工業株式会社 Thermal softening heat dissipation sheet and heat dissipation sheet using the same
JP3536824B2 (en) * 2001-03-30 2004-06-14 ミノルタ株式会社 Heat dissipation structure of substrate
JP3938681B2 (en) * 2001-11-21 2007-06-27 信越化学工業株式会社 Heat dissipation structure
US6597575B1 (en) * 2002-01-04 2003-07-22 Intel Corporation Electronic packages having good reliability comprising low modulus thermal interface materials
US7208192B2 (en) 2002-05-31 2007-04-24 Parker-Hannifin Corporation Thermally or electrically-conductive form-in-place gap filter
JP2004363568A (en) * 2003-05-09 2004-12-24 Matsushita Electric Ind Co Ltd Module with built-in circuit element
US7063127B2 (en) * 2003-09-18 2006-06-20 International Business Machines Corporation Method and apparatus for chip-cooling
JP2005273592A (en) * 2004-03-26 2005-10-06 Nippon Densan Corp Centrifugal fan
KR20060021707A (en) * 2004-09-03 2006-03-08 엘지전자 주식회사 Heat sink assembly of tcp for plasma display panel
US7280355B2 (en) * 2005-05-11 2007-10-09 Taylor Paul G Apparatus for use with laptop computer
US20070051773A1 (en) * 2005-09-02 2007-03-08 Ruchert Brian D Thermal interface materials, methods of preparation thereof and their applications
TWI270187B (en) * 2005-12-19 2007-01-01 Polytronics Technology Corp Thermal conductive apparatus and manufacturing method thereof
US7551439B2 (en) * 2006-03-28 2009-06-23 Delphi Technologies, Inc. Fluid cooled electronic assembly
JP5381102B2 (en) * 2006-11-01 2014-01-08 日立化成株式会社 HEAT CONDUCTIVE SHEET, ITS MANUFACTURING METHOD, AND HEAT DISCHARGE DEVICE USING HEAT CONDUCTIVE SHEET
JPWO2008075574A1 (en) * 2006-12-19 2010-04-08 日立化成工業株式会社 Heat dissipation material
US8448693B2 (en) * 2007-02-08 2013-05-28 Lundell Manufacturing Corporation Sealed thermal interface component

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9125324B2 (en) 2011-04-08 2015-09-01 Asustek Computer Inc. Motherboard

Also Published As

Publication number Publication date
JP2012503890A (en) 2012-02-09
TWI457425B (en) 2014-10-21
CN102150484A (en) 2011-08-10
KR20110076875A (en) 2011-07-06
EP2329702A1 (en) 2011-06-08
US20110308781A1 (en) 2011-12-22
WO2010036784A1 (en) 2010-04-01

Similar Documents

Publication Publication Date Title
TW201026834A (en) Thermally conductive gel packs
US10964617B2 (en) Methods for establishing thermal joints between heat spreaders or lids and heat sources
US20150334871A1 (en) Thermal interface materials with thin film sealants
US9795059B2 (en) Thermal interface materials with thin film or metallization
US8119191B2 (en) Dispensable cured resin
US20160315030A1 (en) Reusable thermoplastic thermal interface materials and methods for establishing thermal joints between heat sources and heat dissipating/removal structures
US20030222249A1 (en) Thermally or electrically-conductive form-in-place gap filter
US20140368992A1 (en) Methods For Establishing Thermal Joints Between Heat Spreaders and Heat Generating Components Using Thermoplastic and/or Self-Healing Thermal Interface Materials
KR101367040B1 (en) Dispensable cured resin
TW200303166A (en) Thermal management materials having a phase change dispersion
US20120133072A1 (en) Fully-cured thermally or electrically conductive form-in-place gap filler
WO2006110394A1 (en) Thermal interface material having spheroidal particulate filler
WO2002084735A1 (en) Radiating structural body of electronic part and radiating sheet used for the radiating structural body
JP2004518294A (en) Clean release, phase change terminal interface
CN213401173U (en) Thermal interface material piece and electronic device comprising same
CN108368418B (en) Two-dimensional heat conducting material and use thereof
JP2011508977A (en) Thermally conductive and conductive interconnect structure
JP3191158U (en) Thermally conductive gel pack
KR102683532B1 (en) Heat dissipation interface sheet material for inner, middle and outer parts of electronic components
TW202105643A (en) Thermal management of high heat flux multicomponent assembly
Chung Ball-grid-array package thermal management

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent