TW201026374A - Method and apparatus of low energy consumption for desorbtion - Google Patents

Method and apparatus of low energy consumption for desorbtion Download PDF

Info

Publication number
TW201026374A
TW201026374A TW98100903A TW98100903A TW201026374A TW 201026374 A TW201026374 A TW 201026374A TW 98100903 A TW98100903 A TW 98100903A TW 98100903 A TW98100903 A TW 98100903A TW 201026374 A TW201026374 A TW 201026374A
Authority
TW
Taiwan
Prior art keywords
adsorbent material
low energy
desorption
electrode
voltage
Prior art date
Application number
TW98100903A
Other languages
Chinese (zh)
Other versions
TWI361101B (en
Inventor
Ming-Shan Jeng
Ming-Shiann Shih
Jau-Chyn Huang
Yu-Li Lin
Ya-Wen Chou
Ting-Wei Huang
Yu-Ming Chang
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW98100903A priority Critical patent/TWI361101B/en
Priority to JP2009023733A priority patent/JP5722525B2/en
Priority to US12/404,548 priority patent/US8043414B2/en
Priority to JP2009115359A priority patent/JP2010158661A/en
Priority to US12/549,789 priority patent/US8187368B2/en
Publication of TW201026374A publication Critical patent/TW201026374A/en
Application granted granted Critical
Publication of TWI361101B publication Critical patent/TWI361101B/en

Links

Abstract

A method and apparatus of low energy consumption for desorption is provided in the present invention. A pair of electrodes, coupled to absorbing material, utilized to provide an electrical potential to the absorbing material. Then, an electrical current is conducted through the absorbing material directly so as to desorb the substances absorbed within the absorbing material whereby the absorbing capability is capable of being maintained for cycling the absorbing operation. By means of the method and apparatus of the present invention, it is able to enhance the desorbing efficiency and reducing the energy consumption during desorption.

Description

201026374 六、發明說明: 【發明所屬之技術領域】 、本發明係有關-種脫时法與裝置,尤其是指一種利 用通電的方式使材料導電*進行脫附的—種低耗能脫附方 法與裝置。 【先前技術】 常見的吸附材料有多孔性破材、彿石、珍膠等等,可 _以吸_氣中的有機揮發物(v〇latile organic compound V〇C)或水分’使用時常常是以多塔式構造或是轉輪構造來 實現連續的操作。例如某一塔進行吸附時,另一塔就進行 脫附再生’待吸附與脫附再生達到飽和時,就交換流道。 如果以轉輪式的構造,則會在轉輪的面積上區分出脫附再 生與吸附的不同區域,藉由轉輪的轉動,讓材料交替地通 過吸附與脫附再生區域,達釗連續運轉的目的。 再生脫附的方法不外辛通過溫度極高的熱風,藉由熱 ❹=加熱⑽材料與㈣附的分子,讓分子的熱運動足以破 壞吸附材料與被吸附分子間的鍵結力或吸引力,而達到脫 附的目的。此種脫附方法必須要先加熱空氣,再通過空氣 與,附材料間的熱傳來脫财,由空氣加熱器至吸附材料之 門谷易有…、損失,再力口上加舞器本身的加熱效率問題因 此,附所需的能源損耗極大。此外在一些要求輕薄短小的 f 中往在缺乏空間來安裝足夠面積的加熱器,因為熱 ΐ換::不足,因此力口熱空氣時加熱器本身的表面溫度極、 尚,也w成額外的輻射熱損失。 201026374 例如圖一係為使用除濕轉輪的家用滴水式除濕機能源 消耗分析,加熱器的表面溫度極高,因此大部分的加熱器 消耗的電能,是以輻射的方式散出。在圖一中的家用式除 濕機的耗能分析中,滴水量約為6. 6 1 iter/day (20C, 60%RH),加熱器耗電量約600瓦特,其中有479瓦特為輻 射熱,僅有121瓦特使用於加熱空氣。 習用轉輪式吸附除濕機,皆是以電熱器加熱再生側氣 流,提高再生空氣溫度,該技術的加熱脫附機制主要分為 φ 兩部份:(一)氣流熱交換汽化:以加熱循環氣流產生溫度 梯度,以熱交換所產生的熱量汽化除濕體内除濕結構中的 水份。由於需以高溫空氣才能進行水汽脫附,因此需要極 高的耗能量才可達到烘乾除濕的目標。(二)輻射熱汽化: 加熱器中電熱絲通過電流後產生高溫,此一熱量以輻射熱 的形式,使除濕體内之結構_的水分子可以直接吸收輻射 熱汽化脫附。由於輻射熱量與表面溫度成四次方正比,電 熱器表面皆高於400°C以上,輻射熱量極高,因此所產生 φ 的水汽脫附效應遠較前述(一)中之氣流熱交換汽化脫附更 為重要。 由上述兩項汽化機制分析,習用之加熱式再生脫附方 式,不論是加熱循壤氣流造成間接汽化脫附’或是輕射熱 被水分子吸收的同時,大部分輻射熱量也被除濕體所吸 收,因此造成無可避免的耗能來源。另外,輻射熱量所造 成吸濕結構體表面溫度上升,也不利於水分子的吸附,大 幅降低除濕能力。因此加熱式再生脫附法,是造成轉輪式 除濕裝置耗能偏高,除濕效率降低的主因。 201026374 為了克服上述之問題,如圖二所示’其係為日本公 開專利特開2001-179037揭露了 一種利用電漿的方式^ 取代習用以加熱脫附除濕體水分之方式示意圖。在該技 術中,利用設置於除濕單元1〇兩側的電極U與12產生 電漿使除濕單元1 〇所吸附之水分脫離。不過在該技術 中,電極11與12並未直接與除濕單元10接觸,係利用 尖端放電產生電漿的方式來脫附除濕單元10。 ❿ 【發明内容】 本發明提供一種低耗能脫附方法,其係藉由對吸附材 料直接通電使電流通過該吸附材料,以脫附被該吸附材料 所及附之物質,以降低脫附所需要之能源,並且可显 脫附效率。 <本發明提供一磕低耗能脫附裝置,其係在吸附材料兩 置有電極’藉由對該電極通電使得電流得以通過該吸 ,材料,進而脫附被該吸附材料所吸附之物質。另外,更 可从於對應電極之區域設置導引氣流之通道,使 以通過料之吸晴料,以增加麵之速度。乱祷 在一實施例中,本發明提供一種低耗能脫附方法,勺 接!;提供用-吸附材料;於該吸附材料之兩;: 附材料導電壓於該兩側之導電電極使該吸 置,f另一實施例中,本發明更提供一種低耗能脫附裝 物質匕括有下列步驟:—吸附材料,其係提供吸附至少一 ’對電極結構,其係與該吸附材料之兩侧相偶接; 201026374 以及-tm係與輯電極相偶接,該電壓源係提供 -電壓於減電極結構使該韻㈣導通電流進而脫附。 在另L中,本發明更提供—種低耗能脫附褒 . 置,包括有下列步驟:一吸附材料,其係提供吸附至少一 物質;-對電極結構,其係與該吸附材料之兩侧相偶接; -電顏’其雜騎電極相偶接,該電壓源係提供一電 壓於該對電極結構使該吸附材料導通電流進而脫附;以及 一氣流導引通道,其係設置於該對電極結構之一側。 ❹ 【實施方式】 為使貴審查委員能對本發明之特徵、目的及功能有 更進-步的認知與瞭解,下文特將本發明之裝置的相關細 部結構以及设计的理念原由進行說明,以使得審查委員可 以了解本發明之特點’詳細說明陳述如下·· - 請參閱圖二所示’該圖係為本發明之低耗能脫附方法 實施例流程示意圖。在本實施例t,該方法包括有下列步 鬱驟’首先以步驟20提供用-吸附材料。該吸附材料係用於 吸附有機揮發物、氮氣或者是水分,但不以此為限。一般 而言,比較常見的是該吸附材料係應用於家用除濕設備, 例如.除濕輪式除濕設備,但不以此為限。至於該吸附材 料之材質,係可為多孔性材質,例如:沸石、矽膠、活性 碳、奈米碳管、金屬有機架構複合物(metal 〇rganic framework)等。此外,該吸附材料亦可為除氫金屬之非多 孔性材質。 接著進打步驟21,於該吸附材料之兩側接上導電電201026374 VI. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a method for removing time and a device, and more particularly to a method for desorbing a material by means of energization to desorb a material* With the device. [Prior Art] Commonly used adsorbent materials are porous broken materials, buddha, precious rubber, etc., which can often be used when inhaling organic volatiles (v〇latile organic compound V〇C) or moisture. Continuous operation is achieved in a multi-tower configuration or a runner configuration. For example, when one column is adsorbed, the other column undergoes desorption regeneration. When the adsorption and desorption regeneration are saturated, the flow channel is exchanged. In the case of a rotary wheel type, different areas of desorption regeneration and adsorption are distinguished on the area of the runner. By rotating the wheel, the material is alternately passed through the adsorption and desorption regeneration zone to achieve continuous operation. the goal of. The method of regenerative desorption is not only through the extremely high temperature of hot air, but by the heat ❹ = heating (10) material and (4) attached molecules, the thermal motion of the molecule is sufficient to destroy the bonding force or attraction between the adsorbed material and the adsorbed molecules. And achieve the purpose of desorption. This kind of desorption method must first heat the air, and then pass the heat between the air and the attached materials to get rid of the wealth. From the air heater to the door of the adsorbent material, there is easy to lose, and the heat of the dance itself is added. The efficiency problem is therefore extremely high with the required energy loss. In addition, in some requirements of light and short f, there is a lack of space to install a heater of sufficient area, because the heat is changed:: insufficient, so the surface temperature of the heater itself is extremely hot when hot air is used, and it is also an additional Radiant heat loss. 201026374 For example, Figure 1 shows the energy consumption analysis of a household drip dehumidifier using a dehumidification wheel. The surface temperature of the heater is extremely high, so most of the energy consumed by the heater is radiated. In the energy consumption analysis of the household dehumidifier in Fig. 1, the dripping amount is about 6. 6 1 iter/day (20C, 60% RH), and the heater consumes about 600 watts, of which 479 watts is radiant heat. Only 121 watts are used to heat the air. Conventional rotary-type adsorption dehumidifiers use an electric heater to heat the regeneration side airflow and increase the regeneration air temperature. The heating desorption mechanism of the technology is mainly divided into two parts: (1) airflow heat exchange vaporization: heating circulation airflow A temperature gradient is generated to vaporize the moisture in the dehumidification structure of the body by heat generated by heat exchange. Since high-temperature air is required for moisture desorption, it requires a very high energy consumption to achieve the goal of drying and dehumidification. (2) Radiant heat vaporization: The electric heating wire in the heater generates a high temperature after passing the electric current. This heat is in the form of radiant heat, so that the water molecules in the structure of the dehumidification body can directly absorb the radiant heat vaporization desorption. Since the radiant heat is proportional to the surface temperature in quadratic power, the surface of the electric heater is higher than 400 ° C, and the radiant heat is extremely high. Therefore, the water vapor desorption effect of φ is much lower than that of the air flow in the above (1). Attached is more important. Analysis of the above two vaporization mechanisms, the conventional heating-type regenerative desorption method, whether it is heated by the soil flow caused by indirect vaporization desorption 'or light heat is absorbed by water molecules, most of the radiant heat is also dehumidified Absorption, thus creating an inevitable source of energy. In addition, the radiant heat causes the surface temperature of the absorbent structure to rise, which is also detrimental to the adsorption of water molecules and greatly reduces the dehumidification capacity. Therefore, the heating type regenerative desorption method is the main cause of the high energy consumption of the rotary dehumidifier and the dehumidification efficiency. In order to overcome the above problems, as shown in Fig. 2, the method disclosed in Japanese Laid-Open Patent Publication No. 2001-179037 discloses a method of using plasma to replace the method for heating and desorbing moisture of the dehumidified body. In this technique, the electrodes U and 12 provided on both sides of the dehumidifying unit 1 are used to generate plasma to desorb the moisture adsorbed by the dehumidifying unit 1 . However, in this technique, the electrodes 11 and 12 are not directly in contact with the dehumidifying unit 10, and the dehumidifying unit 10 is desorbed by means of a tip discharge to generate plasma. ❿ SUMMARY OF THE INVENTION The present invention provides a low-energy desorption method in which a current is passed through the adsorbent material by direct energization of the adsorbent material to desorb the material attached to the adsorbent material to reduce the desorption chamber. The energy needed, and the efficiency can be removed. <The present invention provides a low energy consuming desorption device in which two electrodes are disposed on an adsorbent material. By energizing the electrode, current is passed through the material, and the material adsorbed by the adsorbent material is desorbed. . In addition, a channel for guiding the airflow can be provided from the area of the corresponding electrode to increase the speed of the surface by the material that absorbs the material. In one embodiment, the present invention provides a low-energy desorption method, a scooping; providing an adsorbent material; two of the adsorbent materials; and a conductive electrode having a conductive voltage on the two sides to make the In another embodiment, the present invention further provides a low-energy desorbable material comprising the following steps: an adsorbent material, which provides adsorption of at least one 'electrode structure, which is associated with the adsorbent material. The two sides are coupled to each other; 201026374 and -tm are coupled to the electrode, and the voltage source provides a voltage-to-deductor structure to cause the rhythm (four) to conduct current and then desorb. In another L, the present invention further provides a low-energy desorption apparatus, comprising the steps of: adsorbing a material, which provides adsorption of at least one substance; and a counter electrode structure, which is two of the adsorbent materials. The side phase is coupled; the electric surface is coupled to the electrode of the hybrid body, the voltage source is provided with a voltage in the pair of electrode structures to cause the adsorbent material to conduct current and then desorbed; and an air flow guiding channel is disposed on the One side of the pair of electrode structures. ❹ [Embodiment] In order to enable the reviewing committee to have a more advanced understanding and understanding of the features, objects and functions of the present invention, the detailed structure of the device of the present invention and the concept of the design are explained below. The reviewer can understand the characteristics of the present invention. The detailed description is as follows. - Please refer to FIG. 2, which is a schematic flow chart of an embodiment of the low energy desorption method of the present invention. In this embodiment t, the method includes the following steps: First, the use-adsorbing material is provided in step 20. The adsorbent material is used for adsorbing organic volatiles, nitrogen or water, but is not limited thereto. In general, it is common for the adsorbent material to be applied to household dehumidification equipment, such as dehumidification wheel dehumidification equipment, but not limited thereto. The material of the adsorbent material may be a porous material such as zeolite, silicone, activated carbon, carbon nanotube, metal 〇rganic framework or the like. In addition, the adsorbent material may also be a non-porous material of a hydrogen-removing metal. Then proceed to step 21, and connect conductive power to both sides of the adsorbent material.

I 201026374 極。然後,進行步驟22,施加電壓於該兩侧之導電電極使 該吸附材料上之一物質脫離該吸附材料。在本實施例中, 施加之電壓係可為交流電壓或者是直流電壓。當電流通過 吸附材料會造成溫度上升,同時影響被吸附分子與吸附材 * 料間的鍵結力,因此造成脫附效果。電流導通的機制可以 是吸附材料中的離子躍遷,也可以是被吸附分子的解離所 造成的離子或質子傳導’也可以是二種作用的綜合结果。 如果吸附對象疋水分子的話’也可能由於水分子對吸附材 ❹料中的離子作用,增加導電度。無論如何,由於直接對材 料作用,不須先加熱空氣,因此效果直接,可減少熱損失, 降低脫附能耗。另外,在步驟22之中,更可以施加二氣流, 使該熱其流通過通電脫附的區域。藉由該熱氣流的流動, 更可以增加脫附速度,以提昇吸附材料脫附的效果。在一 實施例中’該氣流係為經過加溫的較高溫度的氣流,以增 加吸附材料脫附的效果。 請參閱圖四所示,該圖係為本發明之低耗能脫附裝置 _ 實施例示意圖。在本實施例中,該裝置3具有一吸附材料 30、一對電極結構31與32以及一電壓源33。該吸附材料 ,其係提供吸附至少一物質。該吸附材料30以及可以吸. 附之物質係如前所述,在此不做贅述。該對電極結構31與 32 ’其係與該吸附材料30之兩側相偶接。該電壓源33, 其係與該對電極結構31與32相偶接,該電壓源33係提供 一電壓於該對電極結構31與32。該電壓源33係可為直流 電或者是交流電。由於電極結構31與32施加在吸附材料 30之二端,當通電之後’吸附材料3〇通過電流即可造成 201026374 j . 脫附。 以除濕輪之除濕設備為例,為了讓在除濕輪旋轉時僅 於除濕輪之吸附材料之特定區域内產生脫附的反應,以及 讓吸附材料之其他區域維持吸附的效果’在電極上更具有 * 絕緣體來將電極分成複數個區域。每個區域之間因為有絕 • 緣體的存在之故,因此可以確保電極通電時僅有特定區域 有能導電,使得吸附材料上對應通電電極的區域可以產生 脫附效果,而其他未被通電的電極區域則可以維持吸附的 ❿ 能力。 請參閱圖五A所示,該圖係為本發明之電極結構正視 示意圖。在本實施例中,以電極結構31為例,該電極結構 31具有一網狀金屬電極310以及一絕緣框架311。該網狀 金屬電極310之材料並無一定限制,只要是可以導電的金 屬材料即可。在該網狀金屬電極310之外圍具有金屬框 312,一方面可以維持該網狀金屬電極310之平整,另一方 面可以做為旋轉時接觸電刷330的接觸點。而該絕緣框架 φ 311係設置於網狀金屬電極310之内部,以將該網狀金屬 . 電極310内被分成複數個脫附結構區域313。該絕緣框架 311除了可將該網狀金屬電極310分成複數個導電區域 外,更可以強化網狀金屬電極310之結構,並且維持網狀 金屬電極310之平整度。相鄰之脫附結構區域之間因為具 有絕緣框架311之故,因此可以相互絕緣,將來當電刷330 接觸到金屬框312時,也只有金屬框312連接到的脫附結 構區域會導電,而不會影像到相鄰的脫附結構區域。 請參閱圖五B所示,該圖係為本發明之電極結構與吸 201026374 附材料局部剖面示意圖。網狀金屬電極310與吸附材料30 之間塗上一導電層314,以降低接觸電阻,並促使電流均 勻分布。在本實施例中,該導電層314係為一銀漆或者是 其他導電性材料。請參閱圖六所示,該圖係為本發明之電 極結構作動示意圖。吸附材料30的兩側分別具有電極結構 31與32,當吸附材料30轉動時與電刷30接觸的金屬框 312會接觸到對應的脫.附結構區域,使得脫附結構區域導 電。由於本發明之電極結構31與32具有絕緣框架311與 φ 321的設計,所以當電刷330接觸到電極結構31與32的 金屬框312與322時,由於導電僅有對應到接觸位置的脫 附結構區域,因此可以確保僅有對應到脫附結構區域的吸 附材料300有電流通過而進行脫附。至於沒有對應到通電 的吸附材料30則可以繼續吸附動作,使得該吸附材料30 可以同時具有吸附與脫附的效果。請參閱圖七所示,在對 應電刷330所接觸到的脫附結構區域之兩側更可以設置一 氣流導引通道34。該氣流導引通道34可以將氣流90導入 φ 對應通電的脫附結構區域内,藉由氣流通過對應通電之脫 附結構區域之吸附材料,將被脫附的物質帶出,以增加脫 附速度。為了增加氣流帶出物質之效率,該氣流90可以是 經過加熱的較高溫度氣流,以輔助脫附再增加脫附速度。 上述脫附方法可以適用於任何具有電導通能力的吸附 材料與被吸附分子組合,實施時可以是應用在固定床或塔 式脫附,也可以應用在轉輪脫附。例如應用在家用轉輪式 滴水除濕機,圖八係為以除濕機中使用的除濕輪進行測試 之結果。原除濕機脫附水量約6. 6公升/天(20°C,60%RH), 201026374 脫附係採熱風加熱方式,所需的耗電量為_瓦特(如圖一 所示)’相當於每脫附ig水量,需要7854J的能量。而在 除渴輪不旋轉的實驗中’採用電極通電而非熱風脫附,耗 能僅為4200〜4蘭/g。W中的_是除濕輪重量的下降 程度,表示脫附的水量,橫軸則為時間。不同的曲線代表 多次的實驗’每次實驗時間長短不同。圖入標示的數字是 實際量測的耗電量除上脫附水量而得。由圖八可知,採用 電極通電的方可以省能45%以上(由7854J/g下降至 ⑩4200J/g)。圖八的數據雖然是在除濕輪不轉動的情形下進 行測試,但是相同的原理可以利用在各種情況,包括塔式 與轉動式的轉輪’差別僅在於電極接觸型式的改變。 惟以上所述者,僅為本發明之實施例,當不能以之限 制本發明範圍。即大凡依本發明申請專利範圍所做之均等 變化及修飾,仍將不失本發明之·要義所在,亦不脫離本發 明之精神和範圍,故都應視為本發明的進一步實施狀況。 綜合上述,本發明提供之低耗能脫附方法與裝置,由 β 於具有降低能源使用以及增加脫附效果之優點。因此已經 可以提高該產業之競爭力以及帶動週遭產業之發展,誠已 符合發明專利法所規定申請發明所需具備之要件,故爰依 法呈提發明專利之申請,謹請貴審查委員允撥時間惠予 審視,並賜准專利為禱。 ~ 201026374 【圖式簡單說明】 圖一係為使用除濕轉輪的家用滴水式除濕機能源消耗分析 示意圖。 圖二為日本公開專利特開2001-179037揭露了一種利用電 漿的方式來取代習用以加熱脫附除濕體水分之方式示意 圖。 圖三係為本發明之低耗能脫附方法實施例流程示意圖。 圖四係為本發明之低耗能脫附裝置實施例示意圖。 參 圖五A係為本發明之電極結構正視示意圖。 圖五B係為本發明之電極結構與吸附材料剖面示意圖。 圖六係為本發明之電極結構作動示意圖。 圖七係為本發明之電極結構連接有氣流導引通道示意圖。 圖八係為以除濕機中使用的除濕輪進行測試之結果。 【主要元件符號說明】 10-除濕單元 Ο 11-12電極 2- 低耗能脫附方法 20〜22_步驟 3- 脫附裝置 30、 300-吸附材料 31、 32-電極結構 310-網狀金屬電極 311、321-絕緣框架 12 201026374 312、322-金屬框 313- 脫附結構區域 314- 導電層 33- 電壓源 330-電刷 34- 氣流導引通道 90-氣流I 201026374 Extreme. Then, step 22 is performed to apply a voltage to the conductive electrodes on the two sides to disengage one of the substances on the adsorbent material from the adsorbent material. In this embodiment, the applied voltage may be an alternating voltage or a direct current voltage. When the current passes through the adsorbent material, the temperature rises and the bonding force between the adsorbed molecules and the adsorbent material is affected, thereby causing a desorption effect. The mechanism of current conduction can be an ion transition in the adsorbent material, or an ion or proton conduction caused by the dissociation of the adsorbed molecule, or a combined result of the two effects. If the water molecules are adsorbed, it is also possible to increase the conductivity due to the action of water molecules on the ions in the adsorbent material. In any case, since the material is directly applied, it is not necessary to heat the air first, so the effect is direct, the heat loss can be reduced, and the desorption energy consumption can be reduced. Additionally, in step 22, two more gas streams may be applied to cause the heat to flow through the region where the energization is desorbed. By the flow of the hot gas stream, the desorption speed can be increased to enhance the desorption of the adsorbent material. In one embodiment, the gas stream is a heated, higher temperature gas stream to increase the effect of adsorbent material desorption. Please refer to FIG. 4, which is a schematic diagram of a low energy dissipating device of the present invention. In the present embodiment, the apparatus 3 has an adsorbent material 30, a pair of electrode structures 31 and 32, and a voltage source 33. The adsorbent material provides adsorption of at least one substance. The adsorbent material 30 and the materials which can be adsorbed are as described above, and will not be described herein. The pair of electrode structures 31 and 32' are coupled to both sides of the adsorbent material 30. The voltage source 33 is coupled to the pair of electrode structures 31 and 32, and the voltage source 33 provides a voltage to the pair of electrode structures 31 and 32. The voltage source 33 can be either direct current or alternating current. Since the electrode structures 31 and 32 are applied to both ends of the adsorbent material 30, when the current is applied, the adsorbent material 3 〇 passes through the current to cause desorption of 201026374 j . Taking the dehumidification device of the dehumidification wheel as an example, in order to allow the desorption reaction to occur only in a specific region of the adsorbent material of the dehumidification wheel when the dehumidification wheel rotates, and to maintain the adsorption of other regions of the adsorbent material, the effect on the electrode is further * Insulator to divide the electrode into multiple areas. Because there is a permanent body between each area, it can be ensured that only a certain area of the electrode can be electrically conductive when the electrode is energized, so that the area corresponding to the energized electrode on the adsorbent material can produce a desorption effect, while the other is not energized. The electrode area maintains the enthalpy of adsorption. Please refer to FIG. 5A, which is a front view of the electrode structure of the present invention. In the present embodiment, the electrode structure 31 has a mesh metal electrode 310 and an insulating frame 311 as an example. The material of the mesh metal electrode 310 is not limited as long as it is a metal material which can conduct electricity. A metal frame 312 is provided on the periphery of the mesh metal electrode 310. On the one hand, the mesh metal electrode 310 can be maintained flat, and the other side can be used as a contact point for contacting the brush 330 during rotation. The insulating frame φ 311 is disposed inside the mesh metal electrode 310 to divide the mesh metal into a plurality of desorption structure regions 313. In addition to dividing the mesh metal electrode 310 into a plurality of conductive regions, the insulating frame 311 can strengthen the structure of the mesh metal electrode 310 and maintain the flatness of the mesh metal electrode 310. Because of the insulating frame 311 between the adjacent desorption structure regions, they can be insulated from each other. In the future, when the brush 330 contacts the metal frame 312, only the decoupling structure region to which the metal frame 312 is connected will conduct electricity. No image is applied to the adjacent desorption structure area. Please refer to FIG. 5B, which is a partial cross-sectional view of the electrode structure and the suction material of the present invention 201026374. A conductive layer 314 is applied between the mesh metal electrode 310 and the adsorbent material 30 to reduce the contact resistance and promote uniform current distribution. In this embodiment, the conductive layer 314 is a silver lacquer or other conductive material. Please refer to FIG. 6, which is a schematic diagram of the operation of the electrode structure of the present invention. The two sides of the adsorbent material 30 have electrode structures 31 and 32, respectively, and the metal frame 312 that is in contact with the brush 30 when the adsorbent material 30 rotates contacts the corresponding de-bonding structure region, so that the desorption structure region is electrically conducted. Since the electrode structures 31 and 32 of the present invention have the design of the insulating frame 311 and φ321, when the brush 330 contacts the metal frames 312 and 322 of the electrode structures 31 and 32, since the conduction only has a desorption corresponding to the contact position. The structural region can thus ensure that only the adsorbent material 300 corresponding to the desorbed structure region has current passing through it for desorption. As for the adsorbent material 30 which does not correspond to the energization, the adsorption operation can be continued, so that the adsorbent material 30 can simultaneously have the effects of adsorption and desorption. Referring to Figure 7, an air flow guiding channel 34 may be disposed on both sides of the desorption structure area to which the corresponding brush 330 is contacted. The airflow guiding channel 34 can introduce the airflow 90 into the decoupling structure region corresponding to the energization of the φ, and the desorbed material is taken out by the airflow through the adsorbing material corresponding to the energized desorption structure region to increase the desorption speed. . To increase the efficiency of the gas stream to carry out the material, the gas stream 90 can be a heated, higher temperature gas stream to aid in desorption and increase the rate of desorption. The above desorption method can be applied to any adsorbent material having electrical conductivity combined with the adsorbed molecules, and can be applied to fixed bed or tower desorption or to rotor desorption. For example, it is applied to a household rotary drip dehumidifier, and Fig. 8 is a result of testing with a dehumidification wheel used in a dehumidifier. The original dehumidifier desorption water volume is about 6. 6 liters / day (20 ° C, 60% RH), 201026374 desorption system heating hot air heating mode, the required power consumption is _ watt (as shown in Figure 1) 'equivalent For every ig water removed, 7854J of energy is required. In the experiment where the thirst wheel does not rotate, the electrode is energized instead of hot air desorption, and the energy consumption is only 4200~4 blue/g. The _ in W is the degree of decline in the weight of the dehumidification wheel, indicating the amount of water to be desorbed, and the horizontal axis is time. Different curves represent multiple experiments. The length of each experiment varies. The figure marked in the figure is the actual measured power consumption divided by the amount of desorbed water. As can be seen from Figure 8, the electrode can be energized to save more than 45% (from 7854J/g to 104200J/g). Although the data of Fig. 8 is tested without the dehumidification wheel rotating, the same principle can be utilized in various situations, including the difference between the tower type and the rotary type wheel only in the electrode contact pattern. However, the above is only an embodiment of the present invention, and the scope of the present invention is not limited thereto. It is to be understood that the scope of the present invention is not limited by the spirit and scope of the present invention. In summary, the present invention provides a low-energy desorption method and apparatus that has the advantage of reducing energy use and increasing desorption. Therefore, it has been possible to improve the competitiveness of the industry and promote the development of the surrounding industries. Cheng has already met the requirements for applying for inventions as stipulated in the invention patent law. Therefore, the application for invention patents is submitted according to law. I will review it and give the patent a prayer. ~ 201026374 [Simple description of the diagram] Figure 1 is a schematic diagram of energy consumption analysis of a household drip dehumidifier using a dehumidification runner. Fig. 2 is a schematic view showing a method of using a plasma to replace the heat used to heat the desorbed dehumidified body by the method of the Japanese Patent Laid-Open No. 2001-179037. FIG. 3 is a schematic flow chart of an embodiment of the low energy detachment method of the present invention. Figure 4 is a schematic diagram of an embodiment of the low energy consuming desorption apparatus of the present invention. Fig. 5A is a front view showing the electrode structure of the present invention. Figure 5B is a schematic cross-sectional view of the electrode structure and the adsorbent material of the present invention. Fig. 6 is a schematic view showing the operation of the electrode structure of the present invention. Figure 7 is a schematic view showing the flow guiding channel of the electrode structure of the present invention. Figure 8 shows the results of testing with a dehumidification wheel used in a dehumidifier. [Description of main component symbols] 10-Dehumidifying unit Ο 11-12 Electrode 2 - Low energy desorption method 20 to 22_Step 3 - Desorption device 30, 300 - Adsorption material 31, 32-electrode structure 310 - Reticulated metal Electrode 311, 321 - insulating frame 12 201026374 312, 322 - metal frame 313 - desorption structure region 314 - conductive layer 33 - voltage source 330 - brush 34 - air flow guiding channel 90 - air flow

1313

Claims (1)

201026374 七、申請專利範圍: 1. 一種低耗能脫附方法,包括有下列步驟: 提供用一吸附材料; 於該吸附材料之兩侧接上導電電極;以及 * 施加電壓於該兩侧之導電電極使該吸附材料導通電 . 流進而脫附。 2. 如申請專利範圍第1項所述之低耗能脫附方法,其中該 吸附材料係為用以除濕之吸附材料。 ^ 3.如申請專利範圍第1項所述之低耗能脫附方法,其中該 吸附材料所吸附之物質係為水。 4. 如申請專利範圍第1項所述之低耗能脫附方法,其中該 吸附材料所吸附之物質係為有機揮發物或氮氣。 5. 如申請專利範圍第1項所述之低耗能脫附方法,其係於 施加電壓之後更包括有提供一氣流通過該吸附材料將 脫離該吸附材料之物質帶出該吸附材料。 6. 如申請專利範圍第5項所述之低耗能脫附方法,其中該 氣流係為一經過加熱之氣流。 W 7.如申請專利範圍第1項所述之低耗能脫附方法,其中電 壓係為一交流電壓或者是直流電壓。 ' 8.如申請專利範圍第1項所述之低耗能脫附方法,其中該 吸附材料係為一多孔性材質。 9. 如申請專利範圍第1項所述之低耗能脫附方法,其中該 吸附材料係為非多孔性材質。 10. —種低耗能脫附裝置,包括有下列步驟: 一吸附材料,其係提供吸附至少一物質; 14 201026374 一對電極結構,其係與該吸附材料之兩側相偶接;以 及 一電壓源,其係與該對電極相偶接,該電壓源係提供 一電壓於該對電極結構,使該吸附材料導通電流進 而脫附。 11. 如申請專利範圍第10項所述之低耗能脫附裝置,其中 該吸附材料係為用以除濕之吸附材料。 12. 如申請專利範圍第10項所述之低耗能脫附裝置,其中 該吸附材料所吸附之物質係為水。 13. 如申請專利範圍第10項所述之低耗能脫附裝置,其中 該吸附材料所吸附之物質係為有機揮發物或氮氣。 14. 如申請專利範圍第10項所述之低耗能脫附裝置,其係 於施加電壓之後更包括有提供一氣流通過該吸附材料 將脫離該吸附材料之物質帶出該吸附材料。 15. 如申請專利範圍第14項所述之低耗能脫附裝置,其中 該氣流係為二經過加熱之氣流。 16. 如申請專利範圍第10項所述之低耗能脫附裝置,其中 電壓係為一交流電壓或者是直流電壓。 17. 如申請專利範圍第10項所述之低耗能脫附裝置,其中 該吸附材料係為一多孔性材質。 18. 如申請專利範圍第10項所述之低耗能脫附裝置,其中 該吸附材料係為一非多孔性材質。 19. 如申請專利範圍第10項所述之低耗能脫附裝置,其中 每一電極結構更具有: 一網狀金屬電極;以及 15 201026374 複數個絕緣框架,期係設置於該網狀電極上,以將該 網狀電極分成複數個相互絕緣之電極。 20. 如申請專利範圍第19項所述之低耗能脫附裝置,其中 該複數個相互絕緣之電極係為脫附結構。 21. 如申請專利範圍第10項所述之低耗能脫附裝置,其中 每一電極結構與該吸附材料之間更具有一導電層。 22. 如申請專利範圍第10項所述之低耗能脫附裝置,其中 該對金屬電極相互對應之位置上更具有一氣流導引通 • 道。 23. 如申請專利範圍第10項所述之低耗能脫附裝置,其係 進行一轉動運動。201026374 VII. Patent application scope: 1. A low-energy desorption method comprising the steps of: providing an adsorbent material; connecting a conductive electrode to both sides of the adsorbent material; and * applying a voltage to the two sides of the conductive layer The electrode conducts the adsorbent material. The flow is desorbed. 2. The low energy desorption method according to claim 1, wherein the adsorbent material is an adsorbent material for dehumidification. 3. The low-energy desorption method according to claim 1, wherein the substance adsorbed by the adsorbent material is water. 4. The low energy desorption method according to claim 1, wherein the adsorbed material is an organic volatile or nitrogen. 5. The low energy desorption method of claim 1, wherein after applying the voltage, the method further comprises: providing a gas stream through the adsorbent material to carry the material out of the adsorbent material out of the adsorbent material. 6. The low energy desorption method of claim 5, wherein the gas stream is a heated gas stream. W 7. The low energy desorption method according to claim 1, wherein the voltage is an alternating voltage or a direct current voltage. 8. The low energy desorption method according to claim 1, wherein the adsorbent material is a porous material. 9. The low energy desorption method according to claim 1, wherein the adsorbent material is a non-porous material. 10. A low energy dissociation device comprising the steps of: an adsorbent material providing adsorption of at least one substance; 14 201026374 a pair of electrode structures coupled to both sides of the adsorbent material; And a voltage source coupled to the pair of electrodes, the voltage source providing a voltage to the pair of electrode structures to cause the adsorbent material to conduct current and thereby desorb. 11. The low-energy desorption device according to claim 10, wherein the adsorbent material is an adsorbent material for dehumidification. 12. The low-energy desorption device according to claim 10, wherein the substance adsorbed by the adsorbent material is water. 13. The low-energy desorption device according to claim 10, wherein the adsorbed material is an organic volatile or nitrogen. 14. The low energy detachment device of claim 10, further comprising applying a voltage to provide a gas stream through the adsorbent material to carry the material out of the adsorbent material out of the adsorbent material. 15. The low energy detachment device of claim 14, wherein the gas stream is a heated gas stream. 16. The low energy detachment device of claim 10, wherein the voltage is an alternating voltage or a direct current voltage. 17. The low energy detachment device of claim 10, wherein the adsorbent material is a porous material. 18. The low energy detachment device of claim 10, wherein the adsorbent material is a non-porous material. 19. The low-energy desorption device according to claim 10, wherein each electrode structure further comprises: a mesh metal electrode; and 15 201026374 a plurality of insulating frames, the system is disposed on the mesh electrode And dividing the mesh electrode into a plurality of mutually insulated electrodes. 20. The low energy detachment device of claim 19, wherein the plurality of mutually insulated electrodes are desorbed structures. 21. The low energy dissociation device of claim 10, wherein each electrode structure and the adsorbent material further have a conductive layer. 22. The low energy detachment device of claim 10, wherein the pair of metal electrodes further have an air flow guiding passage at a position corresponding to each other. 23. The low energy detachment device of claim 10, wherein the rotational energy is performed.
TW98100903A 2008-03-17 2009-01-12 Method and apparatus of low energy consumption for desorbtion TWI361101B (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
TW98100903A TWI361101B (en) 2009-01-12 2009-01-12 Method and apparatus of low energy consumption for desorbtion
JP2009023733A JP5722525B2 (en) 2009-01-12 2009-02-04 Low energy consumption desorption method and equipment
US12/404,548 US8043414B2 (en) 2008-03-17 2009-03-16 Method and apparatus for desorption and dehumidifier using the same
JP2009115359A JP2010158661A (en) 2009-01-12 2009-05-12 Desorption device with low energy consumption and dehumidifying device thereof
US12/549,789 US8187368B2 (en) 2009-01-12 2009-08-28 Low power consuming desorption apparatus and dehumidifier using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98100903A TWI361101B (en) 2009-01-12 2009-01-12 Method and apparatus of low energy consumption for desorbtion

Publications (2)

Publication Number Publication Date
TW201026374A true TW201026374A (en) 2010-07-16
TWI361101B TWI361101B (en) 2012-04-01

Family

ID=42587921

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98100903A TWI361101B (en) 2008-03-17 2009-01-12 Method and apparatus of low energy consumption for desorbtion

Country Status (2)

Country Link
JP (1) JP5722525B2 (en)
TW (1) TWI361101B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747528B2 (en) 2011-09-09 2014-06-10 Industrial Technology Research Institute Adsorption unit, adsortion device, and method for regenerating thereof
TWI453364B (en) * 2011-11-04 2014-09-21 Ind Tech Res Inst Dehumidifier and electricity desertion apparatus thereof
US9242208B2 (en) 2013-11-20 2016-01-26 Industrial Technology Research Institute Regenerating-type compressed air drier and dehumidificating-and-regenerating unit
US9463414B2 (en) 2014-08-26 2016-10-11 Industrial Technology Research Institute Dehumidifying unit, layered temperature control dehumidifying element, drying device and method for temperature controlling the same
US9884284B2 (en) 2014-08-26 2018-02-06 Industrial Technology Research Institute Dehumidifying unit, layered temperature control dehumidifying element and drying device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5453490B2 (en) 2011-12-21 2014-03-26 財團法人工業技術研究院 Dehumidification and release device and system
JP7104339B2 (en) * 2020-03-31 2022-07-21 ダイキン工業株式会社 Air quality adjustment system
CN113117464B (en) * 2021-04-30 2022-12-09 西安科技大学 Metal organic framework loaded enthalpy-reducing solid adsorption and heat recovery combined device and application
CN114159930A (en) * 2021-11-26 2022-03-11 江苏大学 Device for purifying organic waste gas by using plasma reinforced zeolite rotating wheel and working method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168119A (en) * 1984-09-11 1986-04-08 Shinryo Air Conditioning Co Ltd Dehumidifier and dehumidifying method using said dehumidifier
JPS61185314A (en) * 1985-02-13 1986-08-19 Shinryo Air Conditioning Co Ltd Laminate type dehumidifier
JPS61187919A (en) * 1985-02-16 1986-08-21 Shinryo Air Conditioning Co Ltd Rotary type dehumidifier
JPS61209029A (en) * 1985-03-13 1986-09-17 Shinryo Air Conditioning Co Ltd Regeneration of moisture adsorbent
JPH0394810A (en) * 1989-09-05 1991-04-19 Kobe Steel Ltd Dry type dehumidifier
JPH0796182A (en) * 1993-09-28 1995-04-11 Sakai Chem Ind Co Ltd Self-regenerating dehumidifier
JP3370757B2 (en) * 1993-12-24 2003-01-27 松下精工株式会社 Dehumidifier
JPH1190154A (en) * 1997-09-25 1999-04-06 Nitto Denko Corp Gaseous mixture separator and method for regenerating the separator
JP3696435B2 (en) * 1999-05-20 2005-09-21 シャープ株式会社 Air conditioning equipment
JP3814180B2 (en) * 2001-10-15 2006-08-23 東邦化工建設株式会社 Activated carbon fiber element and manufacturing method thereof
JP3771481B2 (en) * 2001-10-31 2006-04-26 東邦化工建設株式会社 Activated carbon fiber element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747528B2 (en) 2011-09-09 2014-06-10 Industrial Technology Research Institute Adsorption unit, adsortion device, and method for regenerating thereof
TWI453364B (en) * 2011-11-04 2014-09-21 Ind Tech Res Inst Dehumidifier and electricity desertion apparatus thereof
US9180400B2 (en) 2011-11-04 2015-11-10 Industrial Technology Research Institute Electrified desorption device for dehumidification
US9242208B2 (en) 2013-11-20 2016-01-26 Industrial Technology Research Institute Regenerating-type compressed air drier and dehumidificating-and-regenerating unit
US9463414B2 (en) 2014-08-26 2016-10-11 Industrial Technology Research Institute Dehumidifying unit, layered temperature control dehumidifying element, drying device and method for temperature controlling the same
US9884284B2 (en) 2014-08-26 2018-02-06 Industrial Technology Research Institute Dehumidifying unit, layered temperature control dehumidifying element and drying device

Also Published As

Publication number Publication date
JP2010158656A (en) 2010-07-22
TWI361101B (en) 2012-04-01
JP5722525B2 (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP5564527B2 (en) Dehumidifying device and energizing / desorbing device thereof
TWI361101B (en) Method and apparatus of low energy consumption for desorbtion
US8043414B2 (en) Method and apparatus for desorption and dehumidifier using the same
US8187368B2 (en) Low power consuming desorption apparatus and dehumidifier using the same
US8747528B2 (en) Adsorption unit, adsortion device, and method for regenerating thereof
TW201037239A (en) Apparatus of low energy consumption for desorbtion and dehumidifier using the same
CN101785952B (en) Desorption method and device with low energy consumption
TWI359932B (en) Dehumidifier and a regenerator thereof
JP5453490B2 (en) Dehumidification and release device and system
EP2735356A1 (en) Dehumidification device and electrified desorption device thereof
JPH10216458A (en) Humidity controller
TWI443291B (en) Device for desorption and dehumidification and system using the same
JP5361461B2 (en) Dehumidification system
KR101464830B1 (en) Dehumidification device and electrified desorption device thereof
WO2023234218A1 (en) Voc removal method
CN105457456A (en) Split internal-heating type adsorption rotating plate and rotating wheel dehumidifier where adsorption rotating plate is applied
JP4341410B2 (en) Humidity control device
WO2014194714A1 (en) Adsorption-type dehumidifier
KR20040016050A (en) Rotary dehumidifier apparatus dehumidifying method
JP2001029732A (en) Humidstat
KR20050084736A (en) The dehumidification device using desiccant
CN105387537A (en) Split internal heating absorbing rotary plate and rotary wheel dehumidifier applying absorbing rotary plate

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees