201024838 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種彩色濾光片基板及其應用’且特 別是有關於可增加在後續組裝時框膠所照射到之光強度的 彩色濾光片基板及其在液晶顯示裝置上的應用。 【先前技術】 隨著資訊、通信產業不斷地推陳出新’帶動了液晶顯 示器(Liquid Crystal Display ; LCD)市場的蓬勃發展。液晶 顯示器具有高晝質、體積小、重量輕、低驅動電壓、與低 消耗功率等優點,因此被廣泛應用於個人數位助理 (Personal Digital Assistant; PDA)、行動電話、攝錄放影機、 筆記型電腦、桌上型顯示器、車用顯示器、及投影電視等 消費性通訊或電子產品。加上積體電路(Integrated Circuit ; 1C)產業與液晶顯示器製造技術的突飛猛進,這些消费性通 訊或電子產品亦朝向輕、薄、短、小的趨勢發展。尤其是 在電腦產品方面,除了高性能、高速度之桌上型電腦外’ 攜帶方便的筆記型電腦更是受到極大的注意與重視。 一般液晶顯示器之主體為液晶單元,主要是由兩片透 明基板以及被封於基板之間的液晶所構成。目前液晶顯示 器是以薄膜電晶艘(Thin Film Transistor ; TFT)液晶顯示器 為主,而一般薄膜電晶體液晶顯示器之製作可大致區分為 薄膜電晶體陣列(TFT Array)製程、彩色濾光片(Color Filter) 製程、液晶顯示單元組裝(LC Cell Assembly)製程、液晶顯 201024838 示模組(Liquid Crystal Module ; LCM)製程。 在製作薄膜電晶體液晶顯示器時,薄膜電晶體陣列製 程係用以製作薄膜電晶體基板,其上薄膜電晶體陣列與畫 素電極陣列,彼此呈相對應關係。而彩色濾光片製程是由 不同顏色的彩色濾光單元所組成之彩色濾光陣列與包圍於 其周圍之黑色矩陣(Black Matrix)所構成。黑色矩陣主要用 來遮擋薄膜電晶體、氧化銦錫(ITO)上的佈線以及顯示區域 靠近電極的部分。 液晶顯示單元的組裝製程,則是將薄膜電晶體基板與 彩色濾光片基板加以平行組裝,由二者間之間隙構成液晶 槽。再於液晶槽中注入液晶材料,並將液晶槽之注入口密 封’以完成液晶顯示單元之製作。 傳統液晶注入製程非常繁瑣,因此藉由滴下式注入 (One Drop Fill ; ODF)製程,可有效的簡化生產流程。當使 用ODF製程時,一般採用紫外線硬化型框膠,來確保製程 良率。然而’當實際生產時’若紫外線硬化型框膠照光不 足的情況下,液晶顯示面板的液晶常常受到框膠污染,反 而降低生產的良率以及造成生產的瓶頸。再者,當紫外光 (UV Light)由彩色濾光片基板來照射至框膠時,由於紫外光 需通過彩色濾光片基板上的ITO電極,方可照射至框膠, 因而紫外光的部分能量容易被ITO電極所吸收,導致框膠 被照射到的光強度減少15〜20%。 【發明内容】 因此本發明之一方面係在於提供一種彩色濾光片基板 201024838 及其應用,藉以當進行液晶顯示面板的組裝時,可增加框 膠所照射到的光強度,因而可減少光源所使用的照射強度 和照射時間。 本發明之又一方面係在於提供一種液晶顯示面板的組 裝方法,藉以減少彩色濾光片基板的透光導電層對於光線 的吸收,而增加框膠所照射到的光強度。 根據本發明之實施例,本發明之彩色濾光片基板至少 包含有透光基板、遮光層、彩色濾光層及透光導電層。遮 ❿ 光層係形成於透光基板上,並具有黑色矩陣(Black Matrix) 結構。彩色濾光層係形成於透光基板上,並設置於黑色矩 陣結構中。透光導電層係形成於遮光層和彩色濾光層上, 其中透光導電層具有圖案化開口,圖案化開口的形成位置 係對應於框膠。 又,根據本發明之實施例,本發明之液晶顯示面板至 ;包含有彩色濾光片基板、薄膜電晶體基板、液晶層及框 膠。彩色壚光片基板設有透光導電層,其中透光導電層具 ® 有圖案化開口,薄膜電晶體基板係相對於彩色濾光片基 板,液晶層係設置於彩色濾光片基板與薄膜電晶體基板之 間’框膠係設置於彩色濾光月基板與薄膜電晶體基板之 間’並形成於液晶層的外圍,其中透光導電層之圖案化開 口形成位置係對應於框膠。 又’根據本發明之實施例,上述液晶顯示面板可應用 於液晶顯示裝置中。 又,根據本發明之實施例’本發明之液晶顯示面板的 組裝方法至少包含··提供彩色濾光片基板,其中彩色遽光 7 201024838 片基板設有透光導電層,且透光導電層具有至少一圓案化 開口;提供薄膜電晶體基板;形成液晶層於彩色濾光片基 板和薄膜電晶體基板之間;藉由框膠來組合彩色渡光片基 板和薄膜電晶體基板,其中透光導電層之圖案化開口的形 成位置係對應於框膠;以及照射光線至框膠,以硬化框膠。 因此,本發明之彩色濾光片基板及其應用可增加框膝 所照射到的光強度,因而可延長照射光源的使用壽命,或 者可減少光源的設置數目。 【實施方式】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂’本說明書將特舉出一系列實施例來加以說 明。但值得注意的是’此些實施例只是用以說明本發明之 實施方式,而非用以限定本發明。 請參照第2圖至第3B圖,第2圖係繪示依照本發明之 第一實施例之液晶顯示裝置的刻面示意圖,第3A圖係繪示 〇 依照本發明之第一實施例之第一基板與電極結構的剖面示 意圖,第3B圖係繪示依照本發明之第一實施例之電極結構 的俯視示意圖。本實施例之液晶顯示裝置(Liquid Crystal Display ; LCD)至少包含有液晶顯示面板100和背光模組 200,液晶顯示面板100係設置於背光模組200的上方。液 晶顯示面板100至少包含有彩色濾光片基板110、薄膜電晶 體基板120、液晶層130、框膠140、第一偏光片150及第 二偏光片160。液晶層130係設置於彩色濾光片基板11〇 和薄膜電晶體基板120之間,框膠140係設置於彩色濾光 201024838 片基板110與薄膜電晶體基板120之間,並形成於液晶層 130的外圍’以組合彩色濾光片基板11〇、薄膜電晶體基板 120及液晶層130成一體。框膠140可採用任何具有光硬化 效果之黏著劑,例如是紫外光硬化膠、雷射光硬化膠或紅 外線硬化膠,亦可為可見光硬化膠(Visible Light Curing Glue),其均不脫離本發明之精神與範圍。第一偏光片i5〇 係設置彩色濾光片基板110的一側,並相對於液晶層13〇, 第二偏光片160係設置薄膜電晶體基板120的一側,並相 參 對於液晶層130。 本實施例的彩色濾光片基板110至少包含有透光基板 111、遮光層112、彩色濾光層113、保護層114、透光導電 層115、間隔單元(photo Spacer) 116及電性接點117»透光 基板111例如為:玻璃基板或可撓性透光基板。遮光層U2 係形成於透光基板111上,並可形成黑色矩陣(Black Matrix) 結構’用以分隔不同顏色的色光,以增加色彩的對比性, 遮光層112的材料例如為:金屬(例如鉻)、石墨或樹脂型材 ® 料。彩色濾光層113例如係以具有透光性的彩色光阻材料 所形成’其形成於遮光層112可形成黑色矩陣中,且彩色 漶光層113較佳具有紅色濾光層、綠色濾光層及藍色濾光 層’以任意組成不同的光色。保護層114係形成於遮光層 112和彩色濾光層113上,用以保護彩色濾光層113,並可 增加表面的平滑性,且可作為遮光層112與透光導電層U5 的絕緣材’以隔離液晶,並防止污染,其中保護層114的 材質例如為:環氧樹脂(Ep〇xy)系或壓克力樹脂(八^丫丨丨幻系 等高分子材料。透光導電層115係形成於保護層114上, 201024838 用以形成電場來控制液晶分子旋轉。值得注意的是,亦可 選擇未設置保護層114於遮光層112和彩色濾光層in上, 此時,透光導電層115可直接形成於遮光層112和彩色濾 光層113上❶間隔單元116係設置於透光導電層115上, 用以控制彩色濾光片基板110和薄膜電晶醴基板12〇之間 的間隙(Cell Gap) ’間隔單元116的材料例如為:矽或高分 子材料’其可例如呈球形(如第1圖所示)或柱形(如第2圖 所示)。電性接點117可藉由透光導電層115來形成,並設 ❹ 置於遮光層112和彩色濾光層in的外圍,用以供例如銀 膠170來電性連接至薄膜電晶體基板12〇,藉以使彩色遽光 片基板110和薄臈電晶體基板120之間可形成電性導通。 如第3B囷所示,本實施例之透光導電層115係以具有 導電性和透光性的材料所製成,例如:IT〇、IZ〇、AZ〇、 GZO、TCO或ZnO。透光導電層115具有圖案化開口 U5a, 其形成位置係對應於框膠140,藉以當硬化框膠14〇時,可 減少透光導電層115對於光線的吸收,並增加框膠14〇所 ^ 照射到的光強度。值得注意的是,圓案化開d 115a的開口 面積可實質大於、等於或小於框膝14〇在彩色遽光片基板 11〇上的形成面積’亦可全部或部分涵蓋框膠14〇的形成區 域’以減夕透光導電層115對於光線的吸收。在本實施例 中’透光導電層115可具有複數個圖案化開口 U5a,其對 應於設置框膝14G的形成區域,並避開遮光層ιΐ2、彩色據 光層113及電性接點117的形成區域,其中此些圓案化開 口 115a的圖案形狀例如& m 1 办狀例如為.矩形、圓形或任意形狀。透光 導電層U5的圏案化開口心可藉由一圖案化方法來形 201024838 成,例如:乾蝕刻、溼蝕刻’或者透過具有圖案的光罩來 進行沉積。 當組裝液晶顯示面板100時,首先,提供彩色濾光片 基板110和薄膜電晶體基板120,其中彩色濾光片基板110 的透光導電層115具有圖案化開口 U5a»接著,形成液晶 層130於彩色濾光片基板11 〇和薄膜電晶體基板120之間, 液晶層130可藉由滴下式注入(〇ne Drop Fill ; ODF)製程來 形成於彩色濾光片基板110和薄膜電晶體基板12〇之間。 ❹ 接著’藉由框膠140來組合彩色濾光片基板11〇和薄膜電 晶體基板120 ’其中透光導電層115之圖案化開口 U5a的 形成位置係對應於框膠140。當框膠140來進行組合時,框 膠140可預先地塗佈於彩色濾光片基板11()或薄膜電晶體 基板120上,再進行彩色濾光片基板11〇和薄膜電晶體基 板120的對位組立,因而可藉由框膠14〇來組合彩色濾光 片基板110和薄膜電晶體基板120成一體。然後,照射一 光線至框膠140,以硬化框膠140,因而完成液晶顯示面板 ® 100的組裝。其中框膠140可藉由特定的光線(例如:紫外 光、雷射光、紅外線或可見光)來形成固化,例如框膠140 可為紫外光硬化膠,此時,可藉由紫外光(UVLight)來硬化 框膠140 »由於透光導電層115具有圖案化開口 U5a,故 當光線由彩.色遽光片基板Π0來照射框膠140時,圖案化 開口 115a可減少透光導電層115對於光線的吸收,因而可 減少光強度的不必要耗損。 因此,當硬化框膠140時,可藉由圖案化開口 115&來 增加框膠140所照射到的光強度,因而可減少原本硬化框 201024838 膠140所需的照射強度和照射時間,進而延長照射光源(例 如UV燈管)的使用壽命’或者可減少照射光源的設置數 目,以降低光源的設置成本。 請參照第4圖’其繪示依照本發明之第二實施例之電 極結構的俯視示意圖。以下僅就本實施例與第一實施例之 相異處進行說明,關於相似處在此不再赘述。相較於第一 實施例,第二實施例之透光導電層115的圖案化開口 U5b 係形成於彩色遽光片基板110上的外側周圍,且'為彩色遽 參 光層113及電性接點117以外的區域,藉以增加框膠140 所照射到的光強度。因此,第二實施例之圓案化開口丨15b 可進一步減少原本硬化框膠140所需的照射強度和照射時 間》 請參照第5圖’其繪示依照本發明之第二實施例之電 極結構的俯視示意囷。以下僅就本實施例與第一實施例之 相異處進行說明,關於相似處在此不再赘述。相較於第一 實施例,第三實施例之透光導電層115’係形成於彩色濾光 © 片基板110的一側上,並相對於液晶層130。此時,液晶顯 示面板100可為水平電場驅動(In Plane Switching ; IPS) 型液晶顯示面板,而透光導電層115’可用以避免液晶顯示 面板1〇〇受到靜電影響或損壞。因此,透光導電層115,的 囷案化開口 115c可增加框膠140所照射到的光強度,以減 少照射光線的不必要耗損。 由上述本發明的實施例可知,本發明的彩色濾光片基 板及其應用可增加框膠所照射到的光強度,因而可減少光 源所使用的照射強度和照射時間,而延長照射光源的使用 12 201024838 壽命,或者可減少光源的設置數目,以降低光源的設置成 本。 雖然本發明已以實施例揭露如上,然其並非用以限定 本發明,任何熟習此技藝者,在不脫離本發明之精神和範 圍内,當可作各種之更動與潤佛,因此本發明之保護範圍 當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本發明之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖係繪示一種習知ITO電極在基板上的局部剖面 示意圖。 第2圖係繪示依照本發明之第一實施例之液晶顯示裝 置的剖面示意圖》 第3A圖係繪示依照本發明之第一實施例之第一基板 與電極結構的剖面示意圖。 Φ 第3B圖係繪示依照本發明之第一實施例之電極結構 的俯視示意圖。 第4圖係繪示依照本發明之第二實施例之電極結構的 俯視示意圓》 第5圖係緣示㈣本發明之第三實施例之局部電極結 構的俯視示意圖。 【主要元件符號說明】 100 :液晶顯示面板 110:彩色濾光片基板 13 201024838 111 :透光基板 112 : 遐无層 113 :彩色濾光層 114 : 保護層 115、115’ :透光導電層 115a、115b、115c :圖案化開口 116 :間隔單元 117 : 電性接點 120 :薄膜電晶體基板 130 : 液晶層 140 :框膠 150 : 第一偏光片 160 :第二偏光片 170 : 銀膠 200 :背光模組201024838 IX. Description of the Invention: [Technical Field] The present invention relates to a color filter substrate and its application, and in particular to a color filter that can increase the intensity of light that is irradiated by the sealant during subsequent assembly. Light sheet substrate and its application on a liquid crystal display device. [Prior Art] With the continuous development of the information and communication industry, the market for liquid crystal displays (LCD) has flourished. Liquid crystal displays are widely used in personal digital assistants (PDAs), mobile phones, video recorders, and notebooks because of their high quality, small size, light weight, low driving voltage, and low power consumption. Consumer communications or electronic products such as computers, desktop displays, automotive displays, and projection televisions. Coupled with the rapid advancement of the integrated circuit (1C) industry and liquid crystal display manufacturing technology, these consumer communications or electronic products are also moving toward light, thin, short and small trends. Especially in terms of computer products, in addition to high-performance, high-speed desktop computers, portable notebooks have received great attention and attention. Generally, the main body of the liquid crystal display is a liquid crystal cell, and is mainly composed of two transparent substrates and a liquid crystal sealed between the substrates. At present, the liquid crystal display is mainly a thin film transistor (TFT) liquid crystal display, and the general thin film transistor liquid crystal display can be roughly divided into a thin film transistor array (TFT Array) process, a color filter (Color) Filter) Process, liquid crystal display unit assembly (LC Cell Assembly) process, liquid crystal display 201024838 display module (Liquid Crystal Module; LCM) process. In the fabrication of a thin film transistor liquid crystal display, a thin film transistor array process is used to fabricate a thin film transistor substrate, on which a thin film transistor array and a pixel electrode array are associated with each other. The color filter process is composed of a color filter array composed of color filter units of different colors and a black matrix surrounded by the black matrix. The black matrix is mainly used to shield the thin film transistor, the wiring on the indium tin oxide (ITO), and the portion of the display region close to the electrode. In the assembly process of the liquid crystal display unit, the thin film transistor substrate and the color filter substrate are assembled in parallel, and a gap between them forms a liquid crystal cell. Further, a liquid crystal material is injected into the liquid crystal cell, and the injection port of the liquid crystal cell is sealed to complete the fabrication of the liquid crystal display unit. The traditional liquid crystal injection process is very cumbersome, so the production process can be simplified by the One Drop Fill (ODF) process. When using the ODF process, UV-curing frame seals are generally used to ensure process yield. However, in the case of actual production, if the ultraviolet curing type frame glue is insufficiently illuminated, the liquid crystal of the liquid crystal display panel is often contaminated by the frame glue, which in turn reduces the yield of production and causes a bottleneck in production. Furthermore, when the ultraviolet light is irradiated to the sealant by the color filter substrate, the ultraviolet light needs to pass through the ITO electrode on the color filter substrate to be irradiated to the sealant, so that the ultraviolet light portion The energy is easily absorbed by the ITO electrode, causing the light intensity of the sealant to be reduced by 15 to 20%. SUMMARY OF THE INVENTION Therefore, an aspect of the present invention is to provide a color filter substrate 201024838 and an application thereof, thereby increasing the intensity of light irradiated by the sealant when assembling the liquid crystal display panel, thereby reducing the light source. Irradiation intensity and irradiation time used. Another aspect of the present invention provides a method of assembling a liquid crystal display panel, whereby the light-transmitting conductive layer of the color filter substrate is reduced in light absorption, and the light intensity irradiated by the sealant is increased. According to an embodiment of the invention, the color filter substrate of the present invention comprises at least a light transmissive substrate, a light shielding layer, a color filter layer and a light transmissive conductive layer. The light-shielding layer is formed on the light-transmitting substrate and has a black matrix structure. The color filter layer is formed on the light-transmitting substrate and disposed in the black matrix structure. The light-transmissive conductive layer is formed on the light-shielding layer and the color filter layer, wherein the light-transmissive conductive layer has a patterned opening, and the patterned opening is formed at a position corresponding to the sealant. Further, according to an embodiment of the present invention, the liquid crystal display panel of the present invention includes a color filter substrate, a thin film transistor substrate, a liquid crystal layer, and a sealant. The color filter substrate is provided with a light-transmissive conductive layer, wherein the light-transmissive conductive layer has a patterned opening, the thin film transistor substrate is opposite to the color filter substrate, and the liquid crystal layer is disposed on the color filter substrate and the thin film The 'frame glue between the crystal substrates is disposed between the color filter moon substrate and the thin film transistor substrate' and formed on the periphery of the liquid crystal layer, wherein the patterned opening forming position of the light-transmitting conductive layer corresponds to the sealant. Further, according to the embodiment of the present invention, the above liquid crystal display panel can be applied to a liquid crystal display device. Further, according to an embodiment of the present invention, a method of assembling a liquid crystal display panel of the present invention includes at least a color filter substrate, wherein the color light 7 201024838 substrate is provided with a light-transmitting conductive layer, and the light-transmitting conductive layer has Forming at least one round opening; providing a thin film transistor substrate; forming a liquid crystal layer between the color filter substrate and the thin film transistor substrate; combining the color light-emitting substrate and the thin film transistor substrate by a frame glue, wherein the light-transmitting conductive The patterned opening of the layer is formed at a position corresponding to the sealant; and the light is irradiated to the sealant to harden the sealant. Therefore, the color filter substrate of the present invention and its application can increase the intensity of light irradiated by the frame knee, thereby prolonging the service life of the illumination source, or reducing the number of light sources. The above and other objects, features, advantages and embodiments of the present invention will become more <RTIgt; However, it is to be understood that the embodiments are merely illustrative of the embodiments of the invention and are not intended to limit the invention. Please refer to FIG. 2 to FIG. 3B. FIG. 2 is a schematic plan view showing a liquid crystal display device according to a first embodiment of the present invention, and FIG. 3A is a diagram showing a first embodiment of the present invention. FIG. 3B is a schematic plan view showing an electrode structure according to a first embodiment of the present invention. FIG. The liquid crystal display device (LCD) of the present embodiment includes at least a liquid crystal display panel 100 and a backlight module 200. The liquid crystal display panel 100 is disposed above the backlight module 200. The liquid crystal display panel 100 includes at least a color filter substrate 110, a thin film transistor substrate 120, a liquid crystal layer 130, a sealant 140, a first polarizer 150, and a second polarizer 160. The liquid crystal layer 130 is disposed between the color filter substrate 11A and the thin film transistor substrate 120. The sealant 140 is disposed between the color filter 201024838 and the thin film transistor substrate 120, and is formed on the liquid crystal layer 130. The outer periphery 'is integrated with the combined color filter substrate 11 薄膜, the thin film transistor substrate 120, and the liquid crystal layer 130. The frame glue 140 can adopt any adhesive having a photohardening effect, such as ultraviolet light hardening glue, laser light hardening glue or infrared hardening glue, or visible light hardening glue (Visible Light Curing Glue), which does not deviate from the invention. Spirit and scope. The first polarizer i5 is disposed on one side of the color filter substrate 110, and the second polarizer 160 is disposed on one side of the thin film transistor substrate 120 with respect to the liquid crystal layer 130, and is opposed to the liquid crystal layer 130. The color filter substrate 110 of the present embodiment includes at least a transparent substrate 111, a light shielding layer 112, a color filter layer 113, a protective layer 114, a light-transmitting conductive layer 115, a photo spacer 116, and an electrical contact. 117» The transparent substrate 111 is, for example, a glass substrate or a flexible light-transmitting substrate. The light shielding layer U2 is formed on the transparent substrate 111, and can form a black matrix structure to separate color lights of different colors to increase the contrast of the color. The material of the light shielding layer 112 is, for example, a metal (for example, chromium). ), graphite or resin profiles®. The color filter layer 113 is formed, for example, by a light-transmissive color photoresist material. The light-shielding layer 112 is formed in a black matrix, and the color light-emitting layer 113 preferably has a red filter layer and a green filter layer. And the blue filter layer 'is a different color of light. The protective layer 114 is formed on the light shielding layer 112 and the color filter layer 113 to protect the color filter layer 113, and can improve the smoothness of the surface, and can serve as an insulating material for the light shielding layer 112 and the light-transmitting conductive layer U5. The liquid crystal is isolated and prevented from being contaminated. The material of the protective layer 114 is, for example, an epoxy resin (Ep〇xy) system or an acrylic resin (a polymer material such as an octagonal ray system. Formed on the protective layer 114, 201024838 is used to form an electric field to control the rotation of the liquid crystal molecules. It is noted that the protective layer 114 may not be disposed on the light shielding layer 112 and the color filter layer in, at this time, the transparent conductive layer 115 can be directly formed on the light shielding layer 112 and the color filter layer 113. The spacer unit 116 is disposed on the transparent conductive layer 115 for controlling the gap between the color filter substrate 110 and the thin film transistor substrate 12 (Cell Gap) The material of the spacer unit 116 is, for example, a crucible or a polymer material, which may be, for example, spherical (as shown in FIG. 1) or cylindrical (as shown in FIG. 2). The electrical contact 117 may be Formed by the light-transmitting conductive layer 115, and placed on the ❹ The periphery of the light layer 112 and the color filter layer in is used to electrically connect, for example, the silver paste 170 to the thin film transistor substrate 12, so that electricity can be formed between the color light film substrate 110 and the thin germanium transistor substrate 120. As shown in FIG. 3B, the light-transmitting conductive layer 115 of the present embodiment is made of a material having electrical conductivity and light transmissivity, for example, IT〇, IZ〇, AZ〇, GZO, TCO or ZnO. The light-transmissive conductive layer 115 has a patterned opening U5a, which is formed at a position corresponding to the sealant 140, so that when the sealant 14 is cured, the light-transmitting conductive layer 115 can reduce the absorption of light, and the frame seal 14 can be increased. ^ The intensity of the light to be irradiated. It is worth noting that the opening area of the circle opening d 115a may be substantially greater than, equal to or less than the formation area of the frame knee 14 〇 on the color slab substrate 11 ' may also be wholly or partially The formation region of the frame seal 14 涵盖 covers the light absorption of the light-transmissive conductive layer 115. In the present embodiment, the light-transmitting conductive layer 115 may have a plurality of patterned openings U5a corresponding to the set frame knee 14G. Form the area and avoid the blackout layer ιΐ2, color The formation area of the light layer 113 and the electrical contact 117, wherein the pattern shape of the rounded openings 115a is, for example, a rectangle, a circle or an arbitrary shape. The pattern of the light-transmitting conductive layer U5 The opening can be formed by a patterning method, for example, dry etching, wet etching, or deposition through a patterned mask. When assembling the liquid crystal display panel 100, first, a color filter substrate is provided. 110 and a thin film transistor substrate 120, wherein the light-transmitting conductive layer 115 of the color filter substrate 110 has a patterned opening U5a», and a liquid crystal layer 130 is formed between the color filter substrate 11 and the thin film transistor substrate 120, The liquid crystal layer 130 can be formed between the color filter substrate 110 and the thin film transistor substrate 12 by a drop-in injection (ODF) process. ❹ Next, the color filter substrate 11A and the thin film transistor substrate 120' are combined by the sealant 140. The formation position of the patterned opening U5a of the light-transmitting conductive layer 115 corresponds to the sealant 140. When the sealant 140 is combined, the sealant 140 may be previously applied to the color filter substrate 11 (or the thin film transistor substrate 120), and then the color filter substrate 11 and the thin film transistor substrate 120. The alignment is assembled, so that the color filter substrate 110 and the thin film transistor substrate 120 can be combined by the sealant 14〇. Then, a light is irradiated to the sealant 140 to harden the sealant 140, thereby completing the assembly of the liquid crystal display panel ® 100. The sealant 140 can be cured by a specific light (for example, ultraviolet light, laser light, infrared light or visible light). For example, the sealant 140 can be an ultraviolet light hardening glue. In this case, ultraviolet light (UVLight) can be used. Hardened sealant 140 » Since the light-transmissive conductive layer 115 has the patterned opening U5a, the patterned opening 115a can reduce the light-transmissive conductive layer 115 for light when the light is irradiated by the color-coated phosphor substrate Π0. Absorption, thus reducing unnecessary wear of light intensity. Therefore, when the sealant 140 is hardened, the intensity of the light irradiated by the sealant 140 can be increased by patterning the openings 115 & thereby reducing the irradiation intensity and irradiation time required for the original hardened frame 201024838, thereby prolonging the illumination. The lifetime of the light source (such as a UV lamp) can reduce the number of settings of the illumination source to reduce the installation cost of the light source. Referring to Figure 4, there is shown a top plan view of an electrode structure in accordance with a second embodiment of the present invention. Only the differences between the embodiment and the first embodiment will be described below, and the details are not described herein again. Compared with the first embodiment, the patterned opening U5b of the transparent conductive layer 115 of the second embodiment is formed around the outer side of the color slab substrate 110, and is a color 遽 light layer 113 and an electrical connection. An area other than the point 117 is used to increase the intensity of the light irradiated by the sealant 140. Therefore, the rounded opening 15b of the second embodiment can further reduce the irradiation intensity and the irradiation time required for the original hardened frame glue 140. Referring to FIG. 5, the electrode structure according to the second embodiment of the present invention is illustrated. It looks like a bird's eye view. Only the differences between the embodiment and the first embodiment will be described below, and the details are not described herein again. Compared with the first embodiment, the light-transmitting conductive layer 115' of the third embodiment is formed on one side of the color filter © sheet substrate 110 with respect to the liquid crystal layer 130. At this time, the liquid crystal display panel 100 may be an In Plane Switching (IPS) type liquid crystal display panel, and the light-transmitting conductive layer 115' may be used to prevent the liquid crystal display panel 1 from being affected or damaged by static electricity. Therefore, the patterned opening 115c of the light-transmitting conductive layer 115 can increase the intensity of light irradiated by the sealant 140 to reduce unnecessary wear of the irradiated light. It can be seen from the above embodiments of the present invention that the color filter substrate of the present invention and the application thereof can increase the intensity of light irradiated by the sealant, thereby reducing the illumination intensity and illumination time used by the light source, and prolonging the use of the illumination source. 12 201024838 Life, or can reduce the number of light source settings to reduce the installation cost of the light source. Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and those skilled in the art can make various changes and invigorating the buddha without departing from the spirit and scope of the present invention. The scope of protection is subject to the definition of the scope of the patent application attached. BRIEF DESCRIPTION OF THE DRAWINGS In order to make the above and other objects, features, advantages and embodiments of the present invention more obvious, the detailed description of the drawings is as follows: Figure 1 shows a conventional ITO electrode on a substrate. A schematic view of a partial section above. 2 is a cross-sectional view showing a liquid crystal display device according to a first embodiment of the present invention. FIG. 3A is a cross-sectional view showing a first substrate and an electrode structure according to a first embodiment of the present invention. Φ Figure 3B is a top plan view showing the electrode structure in accordance with the first embodiment of the present invention. Fig. 4 is a plan view showing a schematic configuration of an electrode structure according to a second embodiment of the present invention. Fig. 5 is a plan view showing a partial electrode structure according to a third embodiment of the present invention. [Main component symbol description] 100: Liquid crystal display panel 110: Color filter substrate 13 201024838 111: Light-transmitting substrate 112: 遐 No layer 113: Color filter layer 114: Protective layer 115, 115': Light-transmitting conductive layer 115a 115b, 115c: patterned opening 116: spacer unit 117: electrical contact 120: thin film transistor substrate 130: liquid crystal layer 140: sealant 150: first polarizer 160: second polarizer 170: silver paste 200: Backlight module
1414