TW201024385A - Charge transporting material and charge transporting varnish - Google Patents

Charge transporting material and charge transporting varnish Download PDF

Info

Publication number
TW201024385A
TW201024385A TW098139313A TW98139313A TW201024385A TW 201024385 A TW201024385 A TW 201024385A TW 098139313 A TW098139313 A TW 098139313A TW 98139313 A TW98139313 A TW 98139313A TW 201024385 A TW201024385 A TW 201024385A
Authority
TW
Taiwan
Prior art keywords
group
charge transporting
film
organic
varnish
Prior art date
Application number
TW098139313A
Other languages
Chinese (zh)
Other versions
TWI492999B (en
Inventor
Takuji Yoshimoto
Tomohisa Yamada
Original Assignee
Nissan Chemical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Ind Ltd filed Critical Nissan Chemical Ind Ltd
Publication of TW201024385A publication Critical patent/TW201024385A/en
Application granted granted Critical
Publication of TWI492999B publication Critical patent/TWI492999B/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed are a charge transporting material that contains a charge transporting substance, e.g., an oligoaniline compound, etc., and a heteropoly acid compound, e.g., phosphomolybdic acid, etc., as an electron-accepting dopant, and a charge transporting varnish that contains this charge transporting material and an organic solvent, wherein the charge transporting material is dissolved in the organic solvent. It is thus possible to provide a charge transporting material, which contains an electron-accepting dopant with high solubility in organic solvents, high oxidizing ability toward electron transporting host substances in a hole injection layer, and oxidizing ability toward hole transporting materials, and a charge transporting varnish, which contains this charge transporting material.

Description

201024385 六、發明說明: 【發明所屬之技術領域】 本發明係關於電荷輸送性材料極電荷輸送性清漆,更 詳述之,係關於含有雜多酸化合物作爲電子受容性摻雜物 之電荷輸送性材料及電荷輸送性清漆。 【先前技術】 φ 過去,已報導有在低分子有機電致發光(以下簡稱爲 OLED )元件中藉由設置銅酞菁(CuPC )層作爲電洞注入 層,而實現驅動電壓下降或發光效率提高等之初期特性的 提高,進而實現壽命特性的提高(非專利文獻1:美國 Applied Physics Letters, 1996 年,69 卷,P.2 1 60-2 1 62 ) ° 又,已報導有藉由使金屬氧化物真空蒸鍍並形成薄膜 ,而使用作爲電洞注入層,可使驅動電壓降低(非專利文 獻 2 :英國 Journal of Physics D : Applied Physics, 1996 ❿ 年,29 卷,ρ·27 5 0-275 3 ) ° 另一方面,曾提出對使用高分子發光材料之有機電致 發光(以下簡稱爲PLED )元件,藉由使用由聚苯胺系材 料(專利文獻1 :特開平3 -273 087號公報,非專利文獻3 :英國 Nature,1992年,第357卷,p477-479)或聚噻吩 系材料(非專利文獻4 :美國 Applied Physics Letters, 1998年,72卷,p. 2660-2662)所構成之薄膜作爲電洞輸送 層,可獲得與0LED元件同樣之效果。 近年來,已發現利用高溶解性之低分子寡苯胺系材料 201024385 或寡噻吩系材料而可完全溶解於有機溶劑中之均勻系溶液 所構成之電荷輸送性清漆。因而,報導有藉由將由該清漆 獲得之電洞注入層插入有機電致發光(以下稱爲有機EL )元件中’可獲得底層基板之平坦化效果或優異之EL元 件特性(專利文獻2 :特開2002- 1 5 1 272號公報,專利文 獻3:國際公開第2005/0 43962號說明書)。 該低分子寡聚物由於其本身之黏度低,使用一般之有 機溶劑時,成膜操作中之製程範圍狹窄,在使用旋轉塗佈 φ 、噴墨塗佈、噴佈塗佈等各種塗佈方式,或各種燒成條件 之情況下,難以進行具有高均勻性之成膜。 就此點而言,藉由使用各種添加溶劑,可調整黏度或 沸點及蒸汽壓,使對應於各種塗佈方式獲得具有高均勻性 之成膜面成爲可能(專利文獻 4:國際公開第 2004/043 1 1 7號說明書,專利文獻 5 :國際公開第 2005/ 1 073 3 5 號說明書)。 然而,在正面臨有機EL裝置正式量產之現在,要求 @ 有元件驅動電壓之進一步降低。 另一方面近年重新檢視使用金屬氧化物之電洞注入層 ,而報導有藉由在形成電洞注入層之金屬氧化物與電洞輸 送層接觸之際使其界面氧化而在電洞輸送層上生成摻雜層 ,而使驅動電壓降低(非專利文獻 5:美國 Applied Physics Letters, 2007 年,91 卷,p.253504,非專利文獻 6 :美國 Applied Physics Letters, 2008 年,93 卷,p. 043308 ),但對於電洞輸送材料具有氧化性之塗佈型材料並沒有 _ 6 - 201024385 舉例,而要求新材料之開發。 [先前技術文獻] 專利文獻 專利文獻1 :特開平3-273087號公報 專利文獻2:特開200 2-151272號公報 專利文獻3:國際公開第2005/043962號說明書 ❹ 專利文獻4:國際公開第2004/043 1 1 7號說明書 專利文獻5:國際公開第2 005/107335號說明書 非專利文獻 非專利文獻 1 :美國 Applied Physics Letters, 1996 年 ,69 卷,p.2160-2162 非專利文獻 2 :英國 Journal of Physics D : Applied Physics,1996 年,29 卷,ρ·2750-2753201024385 VI. Description of the Invention: [Technical Field] The present invention relates to a charge transporting material, a charge transporting varnish, and more particularly to a charge transporting property of a heteropolyacid compound as an electron accepting dopant. Materials and charge transport varnishes. [Prior Art] φ In the past, it has been reported that a copper phthalocyanine (CuPC) layer is provided as a hole injection layer in a low molecular organic electroluminescence (hereinafter referred to as OLED) device, thereby achieving a driving voltage drop or an improvement in luminous efficiency. The improvement of the initial characteristics, and the improvement of the life characteristics (Non-Patent Document 1: Applied Physics Letters, 1996, 69, p. 2 1 60-2 1 62) ° Also, it has been reported that by making metals The oxide is vacuum-deposited and formed into a thin film, and the use as a hole injection layer can lower the driving voltage (Non-Patent Document 2: British Journal of Physics D: Applied Physics, 1996, vol. 29, p. 27 5 0- 275 3 ) ° On the other hand, an organic electroluminescence (hereinafter abbreviated as PLED) element using a polymer light-emitting material has been proposed by using a polyaniline-based material (Patent Document 1: Japanese Patent Publication No. Hei 3-273087) , Non-Patent Document 3: British Nature, 1992, Vol. 357, p477-479) or polythiophene-based materials (Non-Patent Document 4: US Applied Physics Letters, 1998, Vol. 72, p. 2660-2662) Film It is a hole transport layer, obtained with the same effect 0LED element. In recent years, it has been found that a highly transportable low molecular oligoaniline material 201024385 or an oligothiophene-based material can be used as a charge transport varnish which is completely soluble in a homogeneous solvent in an organic solvent. Therefore, it has been reported that by inserting a hole injection layer obtained from the varnish into an organic electroluminescence (hereinafter referred to as an organic EL) element, the planarization effect of the underlying substrate or the excellent EL element characteristics can be obtained (Patent Document 2: Japanese Patent Publication No. 2002-1551, No. 2, Patent Document 3: International Publication No. 2005/0 43962). Since the low molecular weight oligomer has a low viscosity and a general organic solvent, the process range in the film forming operation is narrow, and various coating methods such as spin coating φ, inkjet coating, and spray coating are used. In the case of various firing conditions, it is difficult to form a film having high uniformity. In this regard, it is possible to adjust the viscosity, the boiling point, and the vapor pressure by using various kinds of added solvents, and it is possible to obtain a film-forming surface having high uniformity in accordance with various coating methods (Patent Document 4: International Publication No. 2004/043) 1 1 No. 7 specification, Patent Document 5: International Publication No. 2005/1 073 3 5). However, in the face of the formal mass production of organic EL devices, it is required to further reduce the component drive voltage. On the other hand, in recent years, the hole injection layer using metal oxide has been re-examined, and it has been reported that the interface is oxidized on the hole transport layer by contacting the metal oxide forming the hole injection layer with the hole transport layer. A doping layer is formed to lower the driving voltage (Non-Patent Document 5: Applied Physics Letters, 2007, Vol. 91, p. 253504, Non-Patent Document 6: Applied Physics Letters, 2008, Vol. 93, p. 043308 ), but the coating material that is oxidizing for the hole transporting material does not have the example of _ 6 - 201024385, and requires the development of new materials. [PRIOR ART DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT PATENT DOCUMENT Patent Document 2: International Publication No. 2005-043962 2004/043 1 1 No. 7 Patent Document 5: International Publication No. 2 005/107335 Specification Non-Patent Document Non-Patent Document 1: American Applied Physics Letters, 1996, 69, p. 2160-2162 Non-Patent Document 2: British Journal of Physics D: Applied Physics, 1996, Vol. 29, ρ·2750-2753

非專利文獻3 :英國 Nature, 1 992年,第 3 5 7卷, P477-479 非專利文獻 4:美國 Applied Physics Letters, 1998 年 ,72 卷,p. 2660-2662 非專利文獻 5 :美國 Applied Physics Letters,2007 年 ,91 卷,p.2535 04 非專利文獻 6:美國 Applied Physics Letters, 2008 年 ,93 卷,043308 【發明內容】 201024385 [發明欲解決之課題] 本發明係有鑒於該等狀況而完成者,本發明之目的爲 提供一種包含兼具有對有機溶劑高的溶解性,對電洞注入 層中之電荷輸送性主體物質之高氧化性,進而對電洞輸送 材料具有氧化性之電子受容性摻雜物之電荷輸送性材料; 以及包含該電荷輸送性材料之電荷輸送性清漆。 [解決課題之手段] _ 本發明者等人爲達成上述目的而積極重複檢討之結果 ,發現磷鉬酸等雜多酸化合物兼具有對有機溶劑高的溶解 性,對電洞注入層中之電荷輸送性主體物質之高氧化性, 進而對電洞輸送材料具有氧化性,同時發現使用包含該雜 多酸化合物與電荷輸送物質之電荷輸送性薄膜作爲OLED 元件之電洞注入層時,可降低驅動電壓,且提高元件壽命 ,因而完成本發明。 再者,磷鉬酸等雜多酸化合物代表者爲以化1表示之 · Keggin型或以化2表示之Dawson型之化學構造’亦即具 有雜原子位在分子中心之構造。 [化1]Non-Patent Document 3: British Nature, 992, vol. 357, P477-479 Non-Patent Document 4: American Applied Physics Letters, 1998, Vol. 72, p. 2660-2662 Non-Patent Document 5: American Applied Physics Letters, 2007, Vol. 91, p. 2535 04 Non-Patent Document 6: Applied Physics Letters, 2008, Vol. 93, 043308 [Invention] The present invention is based on the above-mentioned problems. The object of the present invention is to provide an electron containing a high oxidizing property to a charge transporting host substance in a hole injection layer and having an oxidizing property to a hole transporting material. a charge transporting material of a capacitive dopant; and a charge transporting varnish comprising the charge transporting material. [Means for Solving the Problem] The present inventors have found that the heteropoly acid compound such as phosphomolybdic acid has high solubility in an organic solvent and is in the hole injection layer. The high oxidizability of the charge transporting host material is further oxidizing to the hole transporting material, and it is found that when the charge transporting film containing the heteropoly acid compound and the charge transporting substance is used as the hole injecting layer of the OLED element, it can be lowered. The voltage is driven and the life of the element is increased, thus completing the present invention. Further, a heteropoly acid compound such as phosphomolybdic acid is represented by a chemical group of Kggin type or Dawson type represented by Chemical Formula 2, that is, a structure having a hetero atom position at a molecular center. [Chemical 1]

-8 - 201024385 [化2]-8 - 201024385 [Chemical 2]

藉由該等特殊之化學構造,顯示與僅以金屬氧酸構成 之同多酸(isopolyacid)或單純的金屬氧化物於溶解特性 或氧化還原特性方面有明顯不同。該化合物已悉知作爲聚 φ 合觸媒或有機化合物之呈色試藥,但利用其本身作爲電荷 輸送性物質之例並不多。 本發明人等發現該雜多酸化合物在有機EL元件中以 極薄之薄膜形成層可發揮有效的電洞注入層功能。 亦即,本發明提供·· 1. 一種電荷輸送性材料,其特徵爲包含電荷輸送性 物質與作爲電子受容性摻雜物之雜多酸化合物。 2. 如第1項之電荷輸送性材料,其中前述雜多酸化 φ 合物爲磷鉬酸。 3. 如第1或2項之電荷輸送性材料,其中前述電荷 輸送性物質爲苯胺衍生物化合物。 4. 如第3項之電荷輸送性材料,其中前述電荷輸送 性物質爲以下式(1)表示之寡苯胺衍生物,或爲式(1) 之氧化體之醌二亞胺衍生物: [化3]By these special chemical structures, it is shown that there are significant differences in solubility characteristics or redox characteristics from isopolyacids or simple metal oxides composed only of oxyacids. This compound is known as a coloring reagent for a poly-φ catalyst or an organic compound, but there are not many examples of using it as a charge transporting substance. The present inventors have found that the heteropoly acid compound exhibits an effective hole injecting layer function as an extremely thin film forming layer in an organic EL device. That is, the present invention provides a charge transporting material characterized by comprising a charge transporting substance and a heteropoly acid compound as an electron accepting dopant. 2. The charge transporting material according to Item 1, wherein the heteropolyacidified φ compound is phosphomolybdic acid. 3. The charge transporting material according to Item 1 or 2, wherein the charge transporting substance is an aniline derivative compound. 4. The charge transporting material according to Item 3, wherein the charge transporting substance is an oligoaniline derivative represented by the following formula (1) or a quinone diimine derivative represented by the oxidized body of the formula (1): 3]

R1-A—NH -B- -R3 (1) -9 - 201024385 [式中,R1、R2及R3各獨立表示氫原子、鹵素原子、羥基 、胺基、砂院醇基、硫醇基 '竣基、碟酸基、碟酸酯基、 酯基、硫酯基、醯胺基、硝基、一價烴基、有機氧基、有 機胺基、有機矽烷基、有機硫基、醯基或磺基,A及B各 獨立表示以通式(2)或(3)表示之二價基, [化4]R1-A-NH-B--R3 (1) -9 - 201024385 [wherein, R1, R2 and R3 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an amine group, a triol group, a thiol group' Base, dish acid group, dish ester group, ester group, thioester group, decylamino group, nitro group, monovalent hydrocarbon group, organooxy group, organic amine group, organic alkyl group, organic thio group, sulfhydryl group or sulfo group , A and B each independently represent a divalent group represented by the formula (2) or (3), [Chemical 4]

參 基、矽烷醇基、硫醇基、羧基、磷酸基、磷酸酯基、酯基 、硫酯基、醯胺基、硝基、一價烴基、有機氧基、有機胺 基、有機矽烷基、有機硫基、醯基或磺基), m及η各獨立爲1以上之整數,且滿足m + nS2 0]。 5.如第4項之電荷輸送性材料,其中前述電荷輸送 性材料爲以式(4)表示之寡苯胺衍生物,或爲式(4)之 氧化體之醌二亞胺衍生物, [化5]Base, stanol, thiol, carboxyl, phosphate, phosphate, ester, thioester, guanamine, nitro, monovalent, organooxy, organic amine, organoalkyl, organic The thio group, the fluorenyl group or the sulfo group), m and η are each independently an integer of 1 or more, and satisfy m + nS2 0]. 5. The charge transporting material according to item 4, wherein the charge transporting material is an aniline derivative represented by the formula (4) or a quinone diimine derivative of the oxidized body of the formula (4). 5]

R3 ⑷ (式中,R1〜R7、m及η表示與前述相同之意義)。 6.如第4項之電荷輸送性材料,其中前述電荷輸送 -10- 201024385 性物質爲以式(5)表示之寡苯胺衍生物,或爲式(5) $ 氧化體之醌二亞胺衍生物, [化6] R^7 »17R3 (4) (wherein R1 to R7, m and η have the same meanings as described above). 6. The charge transporting material according to item 4, wherein the aforementioned charge transporting-10-201024385 is a aniline derivative represented by the formula (5), or is derived from the quinone diimide of the formula (5) Object, [Chem. 6] R^7 »17

(式中,R2、R4〜R7、n及m表示與前述相同之意義, R1 2〜R3 5各獨立表示氫原子、羥基 '矽烷醇基、硫醇基、 羧基、磷酸基、磷酸酯基、酯基、硫酯基、醯胺基、硝基 、經取代或未經取代之一價烴基、有機氧基、有機胺基、 有機矽烷基、有機硫基、醯基、磺基或鹵素原子)。 7. —種電荷輸送性清漆,其特徵爲包含第1至61胃 中任一項之電荷輸送性材料與有機溶劑,且前述電荷 # 性物質及雜多酸化合物係均勻溶解於前述有機溶劑中。 8 .如第7項之電荷輸送性清漆’其中BU述有機彳容@ 爲包含至少一種良溶劑之混合溶劑。 9. 如第7或8項之電荷輸送性清漆,其包含在25t 下之黏度爲10〜200mPa.s之溶劑。 10. 一種電荷輸送性薄膜,其特徵爲包含第1至 中任一項之電荷輸送性材料。 11. 一種電荷輸送性薄膜,其特徵爲由第7至9項巾 任一項之電荷輸送性清漆製作而成。 -11 - 201024385 12. —種有機電致發光元件,其特徵爲具備第10或 11項之電荷輸送性薄膜。 13. 如第12項之有機電致發光元件,其中前述電荷 輸送性薄膜係構成電洞注入層。 [發明效果] 本發明之電荷輸送性材料及清漆中所含之雜多酸化合 物對於一般之電荷輸送性清漆調製用之有機溶劑具有良好 _ 溶解性,尤其是一旦溶解於良溶劑中時,對於以高黏度溶 劑或低表面張力溶劑爲代表之各種有機溶劑亦顯示優異之 溶解性。據此,可一部份或者幾乎全部使用高黏度溶劑或 低表面張力溶劑而調製低極性有機溶劑系之電荷輸送性清 漆。 該等低極性有機溶劑系之電荷輸送性清漆不僅可以耐 溶劑性成爲問題之噴墨塗佈裝置塗佈,亦可使用於基板上 存在有絕緣膜或隔板等之耐溶劑性成爲問題之構造物之情 ¢) 況下,其結果,可毫無問題的製作具有高平坦性之非晶質 固體薄膜。 另外,所得之薄膜由於顯示高的電荷輸送性,因此使 用作爲電洞注入層或電洞輸送層時,可使有機EL元件之 驅動電壓下降且亦可實現元件之長壽命化。 因此,雜多酸化合物由於一般爲高折射率,因此亦可 期待藉由有效的光學設計提高光取出之效率。 又,該薄膜由於具有高的平坦性及高的電荷輸送性, -12- 201024385 因此利用該特性’亦可將該薄膜應用於太陽能電池之緩衝 層或電洞輸送層、燃料電池用電極、電容器之電極保護膜 、抗靜電膜。 【實施方式】 [用以實施發明之形態] 以下針對本發明加以詳細說明。 ❿ 本發明之電荷輸送性材料爲包含電荷輸送性物質與作 爲電子受容性摻雜物之雜多酸化合物。電荷輸送性物質與 電子受容性摻雜物倂用而使用時亦稱爲電荷輸送性主體物 質。 文中,所謂的電荷輸送性係與導電性同義,意指電洞 輸送性、電子輸送性、電洞及電子二電荷輸送性之任一種 。本發明之電荷輸送性材料可爲本身具有電荷輸送性者, 亦可爲由其獲得之固體膜中具有電荷輸送性者。 β 上述所謂的雜多酸化合物爲使釩(V )、鉬(Mo )、 鎢(W)等氧酸之同多酸,與異種元素之氧酸縮合而成之 多酸。 該情況下,作爲異種元素之氧酸主要舉例爲矽(Si ) 、磷(P )、砷(As )之氧酸。 雜多酸化合物之具體例舉例爲磷鉬酸、矽鉬酸、磷鎢 酸、磷鎢鉬酸、矽鎢酸等,但本發明中就對於有機溶劑之 高溶解性、對於電荷輸送性物質的高氧化性、以及於有機 EL元件中使用時降低驅動電壓及提高壽命之觀點而言, -13- 201024385 以磷鉬酸、磷鎢酸、磷鎢鉬酸較適宜,最好爲磷鉬酸。 又,該等雜多酸化合物可以市售品取得,例如磷鉬酸 (磷鉬酸水合物,或12鉬(VI )磷酸η-水合物,示性式 :Η3(ΡΜ〇1204〇) · ηΗ20 )可由關東化學(股)、和光純藥 (股)、日本Sigma-Aldrich (股)等購得。 本發明之電荷輸送性材料中可使用之電荷輸送性物質 只要是可溶於所用之有機溶劑中者即無特別限制,但用於 有機EL用途時,由於需要高度均勻地製作1 〇〇nm以下, 通常20~50nm左右之極薄薄膜,因此電荷輸送性物質較 好爲具有高溶解性,且由於抑制了雜質成份的混入而無分 子量分布者’尤其是以分子量爲200〜2000之低分子化合 物較佳。低分子化合物由於大多爲本身之黏性低而難以進 行高度均勻之塗佈成膜,因此期望倂用高黏度溶劑,由此 ’電荷輸送性物質以對高黏度溶劑具有溶解性者較適宜。 具體而言,可使用過去作爲高溶解性材料使用之低分 子寡苯胺化合物等之苯胺衍生物化合物、低分子寡噻吩化 合物等。 雜多酸化合物由於包含質子酸,且對於含有NH基之 電荷輸送性物質發揮作爲強的電子受容性物質之功能,因 此電荷輸送性物質較好爲苯胺衍生物化合物,再者若考慮 高的電荷輸送性之方面,則更好爲具有3個以上之苯胺單 位之寡苯胺衍生物化合物。 換言之’雜多酸化合物通常具有2個以上之質子性氫 且爲了形成同時含有複數個NH基之寡苯胺衍生物化合 201024385 物及離子性之擬高分子,故易抑制於驅動中之元件內之移 行性並提高壽命。進而如後述之雜多酸化合物由於對於含 有三苯基胺之化合物亦具有氧化性,因此將其用在電洞注 入層時,不僅可對電洞注入層內之電荷輸送性主體物質進 行氧化,亦可對於鄰接之電洞輸送層中所含材料進行氧化 〇 尤其,由於顯示高溶解性極高電荷輸送性之同時,亦 Ο 具有適當之離子化電位,因此可適當的使用以下式(1) 表示之寡苯胺衍生物或爲式(1)之氧化物之醌二亞胺衍 生物,進而,就溶解性、電荷輸送性、離子化電位(Ip) 及對於本發明之雜多酸化合物之被氧化性之觀點而言,最 適當爲以式(4)或(5)表示之寡苯胺衍生物或該等之氧 化體之醌二亞胺衍生物。 [化7] .r(wherein R2, R4 to R7, n and m have the same meanings as defined above, and R1 2 to R3 5 each independently represent a hydrogen atom, a hydroxy 'stanol group, a thiol group, a carboxyl group, a phosphate group, a phosphate group, Ester group, thioester group, decylamino group, nitro group, substituted or unsubstituted one-valent hydrocarbon group, organic oxy group, organic amine group, organic decyl group, organic thio group, thiol group, sulfo group or halogen atom) . 7. A charge transporting varnish characterized by comprising a charge transporting material according to any one of the first to 61th stomachs and an organic solvent, and wherein said charge substance and a heteropoly acid compound are uniformly dissolved in said organic solvent . 8. The charge transporting varnish of item 7, wherein the organic content of the BU is a mixed solvent containing at least one good solvent. 9. The charge transporting varnish according to item 7 or 8, which comprises a solvent having a viscosity of from 10 to 200 mPa.s at 25 t. A charge transporting film comprising the charge transporting material according to any one of the first to any one of the preceding claims. A charge transporting film characterized by being produced by a charge transporting varnish according to any one of items 7 to 9. -11 - 201024385 12. An organic electroluminescence device characterized by comprising the charge transporting film of item 10 or 11. 13. The organic electroluminescence device according to item 12, wherein the charge transporting film constitutes a hole injection layer. [Effect of the Invention] The heteropolyacid compound contained in the charge transporting material and the varnish of the present invention has good solubility in an organic solvent for preparing a general charge transporting varnish, especially when dissolved in a good solvent, Various organic solvents typified by high viscosity solvents or low surface tension solvents also exhibit excellent solubility. Accordingly, a low-polarity organic solvent-based charge transporting varnish can be prepared by partially or almost entirely using a high viscosity solvent or a low surface tension solvent. The low-polarity organic solvent-based charge-transporting varnish can be applied not only to an inkjet coating device which is problematic in solvent resistance but also to a structure in which an insulating film or a separator has a solvent resistance. Under the circumstance, as a result, an amorphous solid film having high flatness can be produced without any problem. Further, since the obtained film exhibits high charge transportability, when used as a hole injection layer or a hole transport layer, the driving voltage of the organic EL element can be lowered and the life of the element can be extended. Therefore, since the heteropoly acid compound generally has a high refractive index, it is expected that the efficiency of light extraction can be improved by an effective optical design. Moreover, since the film has high flatness and high charge transportability, -12-201024385 can utilize this property to apply the film to a buffer layer or a hole transport layer of a solar cell, an electrode for a fuel cell, and a capacitor. Electrode protective film, antistatic film. [Embodiment] [Mode for Carrying Out the Invention] Hereinafter, the present invention will be described in detail. The charge transporting material of the present invention is a heteropolyacid compound containing a charge transporting substance and an electron accepting dopant. The charge transporting substance and the electron-accepting dopant are also referred to as a charge transporting host substance when used. Herein, the charge transporting property is synonymous with conductivity, and means any one of hole transportability, electron transportability, hole, and electron two-charge transportability. The charge transporting material of the present invention may be one having charge transportability by itself, or may be one having a charge transport property in a solid film obtained therefrom. β The above-mentioned heteropoly acid compound is a polyacid obtained by condensing an isoxia of an oxo acid such as vanadium (V), molybdenum (Mo) or tungsten (W) with an oxyacid of a different element. In this case, as the oxyacid of the different element, oxo (Si), phosphorus (P), and arsenic (As) oxyacid are mainly exemplified. Specific examples of the heteropoly acid compound are, for example, phosphomolybdic acid, hydrazine molybdate, phosphotungstic acid, phosphotungstic acid, samarium tungstic acid, etc., but in the present invention, high solubility for an organic solvent and charge transporting substance From the viewpoint of high oxidizability and a reduction in driving voltage and life improvement when used in an organic EL device, -13-201024385 is preferably a phosphomolybdic acid, a phosphotungstic acid or a phosphotungstic acid, preferably a phosphomolybdic acid. Further, these heteropoly acid compounds are commercially available, for example, phosphomolybdic acid (phosphomolybdic acid hydrate, or 12 molybdenum(VI) phosphate η-hydrate, and the formula: Η3 (ΡΜ〇1204〇) · ηΗ20 ) It can be purchased from Kanto Chemical Co., Ltd., Wako Pure Chemical Co., Ltd., Japan Sigma-Aldrich Co., Ltd., etc. The charge transporting material which can be used in the charge transporting material of the present invention is not particularly limited as long as it is soluble in the organic solvent to be used. However, when it is used for organic EL applications, it is necessary to produce a highly uniform particle size of 1 〇〇 nm or less. Usually, an extremely thin film of about 20 to 50 nm, so that the charge transporting substance is preferably highly soluble, and the molecular weight distribution is not affected by the incorporation of the impurity component, especially the low molecular weight compound having a molecular weight of 200 to 2000. Preferably. Since the low molecular weight compound is often difficult to apply a highly uniform coating film because of its low viscosity, it is desirable to use a high viscosity solvent, and thus the 'charge transporting substance is preferably soluble in a high viscosity solvent. Specifically, an aniline derivative compound or a low molecular oligothiophene compound or the like which is a low molecular oligoaniline compound which has been used as a highly soluble material in the past can be used. Since the heteropoly acid compound contains a protonic acid and functions as a strong electron accepting substance for the charge transporting substance containing an NH group, the charge transporting substance is preferably an aniline derivative compound, and further considers a high electric charge. In terms of transportability, it is more preferably an aniline derivative compound having three or more aniline units. In other words, the heteropoly acid compound usually has two or more proton hydrogens and is formed into a pseudo-polymer of the oligoaniline derivative having a plurality of NH groups and an ionic pseudo-polymer, so that it is easily inhibited in the element in the driving. Transitional and life expectancy. Further, since the heteropoly acid compound described later is also oxidizing to the compound containing triphenylamine, when it is used in the hole injection layer, not only the charge transporting host substance in the hole injection layer can be oxidized. It is also possible to carry out cerium oxide on the material contained in the adjacent hole transport layer. In particular, since it exhibits high solubility and extremely high charge transportability, and also has an appropriate ionization potential, the following formula (1) can be suitably used. The oligoaniline derivative or the quinone diimine derivative of the oxide of the formula (1), and further, solubility, charge transportability, ionization potential (Ip), and the heteropoly acid compound of the present invention From the viewpoint of oxidizing properties, the aniline derivative represented by the formula (4) or (5) or the quinone diimine derivative of the oxidized body is most suitably used. [化7] .r

I 參 R1- Α—ΝΗ---Β—Ν— -R5 ⑴I 参 R1- Α—ΝΗ---Β—Ν—-R5 (1)

Jn I Jm [式中,R1、R2及R3各獨立表示氫原子、鹵素原子、羥基 、胺基 '矽烷醇基、硫醇基、羧基、磷酸基、磷酸酯基、 酯基、硫酯基、醯胺基、硝基、一價烴基、有機氧基、有 機胺基、有機矽烷基、有機硫基、醯基或磺基,A及B各 獨立表示以通式(2)或(3)表示之二價基, -15- 201024385 [化8]Jn I Jm [wherein R1, R2 and R3 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an amine group 'stanol group, a thiol group, a carboxyl group, a phosphate group, a phosphate group, an ester group, a thioester group, Amidino, nitro, monovalent hydrocarbon, organooxy, organic amine, organoalkyl, organothio, sulfhydryl or sulfo, each independently represented by formula (2) or (3) Divalent base, -15- 201024385 [Chem. 8]

(式中,R4〜R11各獨立表示氫原子、鹵素原子、羥基、胺 基、矽烷醇基、硫醇基、羧基、磷酸基、磷酸酯基、酯基 、硫酯基、醯胺基、硝基、一價烴基、有機氧基、有機胺 基、有機矽烷基、有機硫基、醯基或磺基), m及η各獨立爲1以上之整數,且滿足m + nS20]。 [化9](wherein R4 to R11 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an amine group, a stanol group, a thiol group, a carboxyl group, a phosphate group, a phosphate group, an ester group, a thioester group, a decylamino group, a nitrate A group, a monovalent hydrocarbon group, an organic oxy group, an organic amine group, an organic decyl group, an organic thio group, a fluorenyl group or a sulfo group), m and η are each independently an integer of 1 or more, and satisfy m + nS20]. [Chemistry 9]

(4) (式中,R1〜R7、m及η表示與前述相同之意義)。(4) (wherein R1 to R7, m and η have the same meanings as described above).

[化 10][化10]

(5) (式中,R2、R4〜R7、R12~R35、η及m表示與前述相同之 意義)。 再者,所謂的醌二亞胺體意指在其骨架中具有以下式 -16- 201024385 表示之部分構造之化合物。 [化 11](5) (wherein R2, R4 to R7, R12 to R35, η and m have the same meanings as described above). Further, the so-called quinone diimide means a compound having a partial structure represented by the following formula -16-201024385 in its skeleton. [化11]

(式中,R4〜R7係與上述相同)。 上述各式中’鹵素原子舉例爲氟、氯、溴、 ® —價烴基之具體例舉例爲甲基、乙基'正丙 基、正丁基、異丁基、第三丁基、正己基、正辛 基己基、癸基等烷基;環戊基、環己基等環烷基 基等雙環烷基;乙烯基、1-丙烯基、2-丙烯基、 、1-甲基-2-丙烯基、1或2或3 -丁烯基、己烯基 苯基、二甲苯基、甲苯基、聯苯基、萘基等芳基 苯基乙基、苯基環己基等芳烷基等,或該等一價 原子之一部分或全部經鹵素原子、羥基、烷氧基 ❿ 等取代者。 有機氧基之具體例舉例爲烷氧基、烯氧基、 ’該等之烷基、烯基、芳基舉例爲與先前例示之 基。 有機胺基之具體例舉例爲苯胺基、甲胺基、 丙胺基、丁胺基、戊胺基、己胺基、庚胺基、辛 胺基、癸胺基、十一烷胺基等烷胺基;二甲胺基 基、二丙胺基、二丁胺基、二戊胺基、二己胺基 基、二辛胺基、二壬胺基、二癸胺基等二烷胺基 碘原子。 基、異丙 基、2-乙 ;雙環己 異丙烯基 等烯基; ;苄基、 烴基之氫 、磺酸基 芳氧基等 基相同之 乙胺基、 胺基、壬 、二乙胺 、二庚胺 :環己胺 -17- 201024385 基、嗎啉基等。 有機矽烷基之具體例舉例爲三甲基矽烷基、三乙基矽 烷基、三丙基矽烷基、三丁基矽烷基、三戊基矽烷基、三 己基矽烷基、戊基二甲基矽烷基、己基二甲基矽烷基、辛 基二甲基矽烷基、癸基二甲基矽烷基等。 有機硫基之具體例舉例爲甲硫基、乙硫基、丙硫基、 丁硫基、戊硫基、己硫基、庚硫基、辛硫基、壬硫基、癸 硫基、十一烷硫基等烷硫基。 醯基之具體例舉例爲甲醯基、乙醯基、丙醯基、丁醯 基、異丁醯基、戊醯基、異戊醯基、苯甲醯基等。 磷酸酯基舉例爲-P(〇) ( OQ1 ) ( OQ2)。 酯基舉例爲-C(O) OQ1、-OC(O) Q1。 硫酯基舉例爲-C(S) OQ1、-OC(S) Q1。 醯胺基舉例爲-C ( Ο ) NHQ1、-NHC ( Ο ) Q1、-C ( 〇 )NQ'Q2、-NQk ( Ο ) Q2。 其中’上述Q1及Q2表示烷基、烯基或芳基,關於該 等基,舉例爲與上述一價烴基中所例示之基相同者。 上述一價烴基、有機氧基、有機胺基、有機矽烷基、 有機硫基、醯基、磷酸酯基、酯基、硫酯基及醯胺基等中 之碳數並無特別限制,但通常碳數爲1〜20,較好爲1〜8。 較佳之取代基舉例爲氟、磺基、有機氧基、烷基、有 機矽烷基等。 又’取代基中亦包含取代基彼此連結成爲環狀之部分 -18- 201024385 通式(1) 、(4)及(5)中,m + n,就發揮良好之 電荷輸送性之觀點而言以3以上較佳,就確保對於溶劑之 溶解性之觀點而言以16以下較佳。 另外’式(1 )及(4 )之寡苯胺衍生物,考慮到提高 溶解性同時使電荷輸送性均勻時,較好沒有分子量分布, 換言之,以分散度爲1之寡苯胺衍生物較佳^ 該分子量爲了抑制材料之揮發及展現.電荷輸送性,作 ® 爲下限通常爲200以上’較好爲3〇〇以上,又爲了提高溶 解性,作爲上限通常爲5000以下,較好爲2000以下。 該等電荷輸送性物質可僅使用一種,亦可組合兩種以 上之物質使用。 該等化合物之具體例舉例爲以下式(6 )表示之 N,N,N’,N’-四苯基-對-C-胺基五苯胺、以式(7 )表示之 N-苯基三苯胺、以式(8)表不之N -苯基四苯胺、四苯胺 (苯胺四聚物)、八苯胺(苯胺八聚物)等可溶於有機溶 ® 劑中之寡苯胺衍生物。 -19- (6)201024385 [化 12](wherein R4 to R7 are the same as described above). Specific examples of the halogen atom in the above formulae such as fluorine, chlorine, bromine, or carboxylic acid group are exemplified by methyl, ethyl 'n-propyl, n-butyl, isobutyl, tert-butyl, n-hexyl, An alkyl group such as n-octylhexyl or fluorenyl; a bicycloalkyl group such as a cycloalkyl group such as a cyclopentyl group or a cyclohexyl group; a vinyl group, a 1-propenyl group, a 2-propenyl group, and a 1-methyl-2-propenyl group; Or an arylalkyl group such as 1 or 2 or 3 -butenyl, hexenylphenyl, xylyl, tolyl, biphenyl or naphthyl, phenylcyclohexyl or the like, or the like Some or all of the monovalent atoms are replaced by a halogen atom, a hydroxyl group, an alkoxy group or the like. Specific examples of the organooxy group are alkoxy groups, alkenyloxy groups, and the alkyl groups, alkenyl groups, and aryl groups are exemplified by the groups exemplified above. Specific examples of the organic amine group are exemplified by an anilamine such as an anilino group, a methylamino group, an propylamino group, a butylamino group, a pentylamino group, a hexylamino group, a heptylamino group, an octylamino group, a decylamino group or an undecylamino group. a dialkylamino iodine atom such as a dimethylamino group, a dipropylamino group, a dibutylamino group, a diamylamino group, a dihexylamino group, a dioctylamino group, a dinonylamino group or a diammonium group. Alkenyl group such as isopropyl group, isopropyl group, 2-ethyl group; dicyclohexylisopropenyl group; benzyl group, hydrocarbyl group, sulfonic acid aryloxy group and the like ethylamine group, amine group, hydrazine, diethylamine, Diheptylamine: cyclohexylamine-17- 201024385, morpholinyl and the like. Specific examples of the organic decyl group are exemplified by trimethyl decyl group, triethyl decyl group, tripropyl decyl group, tributyl decyl group, tripentyl decyl group, trihexyl decyl group, pentyl dimethyl decyl group. And hexyl dimethyl decyl, octyl dimethyl decyl, decyl dimethyl decyl and the like. Specific examples of the organic sulfur group are methylthio, ethylthio, propylthio, butylthio, pentylthio, hexylthio, heptylthio, octylthio, sulfonylthio, sulfonylthio, and eleven An alkylthio group such as an alkylthio group. Specific examples of the mercapto group are a methyl group, an ethyl group, a propyl group, a butyl group, an isobutyl group, a pentamidine group, an isovaleryl group, a benzamidine group and the like. The phosphate group is exemplified by -P(〇) ( OQ1 ) ( OQ 2 ). The ester group is exemplified by -C(O)OQ1, -OC(O)Q1. The thioester group is exemplified by -C(S)OQ1, -OC(S) Q1. The guanamine group is exemplified by -C ( Ο ) NHQ1, -NHC ( Ο ) Q1, -C ( 〇 ) NQ'Q2, -NQk ( Ο ) Q2. Wherein Q1 and Q2 represent an alkyl group, an alkenyl group or an aryl group, and examples of the group are the same as those exemplified in the above monovalent hydrocarbon group. The number of carbon atoms in the above-mentioned monovalent hydrocarbon group, organic oxy group, organic amine group, organic decyl group, organic thio group, thiol group, phosphate group, ester group, thioester group, and decylamino group is not particularly limited, but usually The carbon number is from 1 to 20, preferably from 1 to 8. Preferred substituents are exemplified by fluorine, sulfo group, organooxy group, alkyl group, organic decyl group and the like. Further, the 'substituent group also includes a moiety in which the substituents are bonded to each other to form a cyclic group -18- 201024385 In the general formulae (1), (4) and (5), m + n is a viewpoint of exhibiting good charge transportability. It is preferably 3 or more, and it is preferably 16 or less from the viewpoint of ensuring solubility in a solvent. Further, in the case of the oligoaniline derivatives of the formulae (1) and (4), in view of improving the solubility and making the charge transport property uniform, it is preferred that the molecular weight distribution is not obtained. In other words, the aniline derivative having a degree of dispersion of 1 is preferable. In order to suppress volatilization and display of the material and charge transportability, the molecular weight is usually 200 or more, preferably 3 or more, and in order to improve solubility, the upper limit is usually 5,000 or less, preferably 2,000 or less. These charge transporting substances may be used singly or in combination of two or more kinds. Specific examples of the compounds are exemplified by N,N,N',N'-tetraphenyl-p-C-aminopentaphenylamine represented by the following formula (6), and N-phenyl trisole represented by the formula (7). An aniline derivative which is soluble in an organic solvent such as aniline, N-phenyltetraphenylamine represented by the formula (8), tetraphenylamine (aniline tetramer), or octaphenylamine (aniline octamer). -19- (6)201024385 [Chem. 12]

(7)

(8)(8)

又,該等電荷輸送性物質之合成法並無特別限制,但 可舉例爲國際公開第2008/ 1 29947號說明書中所述之方法 ,寡苯胺合成方法(參照 Bulletin of Chemical Society of Japan, 1994 年,第 67 卷,p.1 794-1752:美國 Synthetic Metals,1 997年,第84卷,ρ·1 19-120 ),或寡噻吩合成法 (參照例如雜環(Hetrocycles ),1987 年,第 26 卷,ρ.939-942;雜環(Heterocycles) , 1 987 年,第 26 卷,ρ.1 793-1 796 )等。 又,使寡苯胺衍生物化合物氧化成爲醌二亞胺化合物 之方法舉例爲國際公開第2008/01 047號說明書中所述之 方法等。 本發明之電荷輸送性清漆包含以含有上述電荷輸送性 物質與作爲電子受容性摻雜物之雜多酸化合物構成之電荷 輸送性材料與有機溶劑,且電荷輸送性物質及雜多酸化合 物係均勻溶解於有機溶劑中者。 -20- 201024385 調製電荷輸送性清漆時使用之有機溶劑可使用具有電 荷輸送性物質及雜多酸化合物之溶解能之良溶劑。 其中,良溶劑意指溶劑分子之極性高,且可良好地溶 解高極性化合物之溶劑。 該等良溶劑舉例爲例如N,N-二甲基甲醯胺、Ν,Ν-二 甲基乙醯胺、Ν-甲基吡咯啶酮、1,3-二甲基-2-咪唑啶酮、 二甲基亞楓、Ν-環己基-2-吡咯啶酮等。該等溶劑可單獨 Φ 使用一種,或兩種以上混合使用,其使用量可相對於清漆 中所使用之溶劑總量成爲5〜100質量%。 本發明中所用之雜多酸化合物由於對於有機溶劑之溶 解性優異,因此亦可與上述良溶劑同時使用高黏度溶劑及 /或低表面張力溶劑。良溶劑、高黏度溶劑及低表面張力 溶劑亦可兼具各別彼此之性質。 所謂的髙黏度溶劑意指賦與在各種塗佈裝置中適用於 噴霧或塗佈之黏性並形成均勻之濕膜,於燒成時一邊抑制 ® 濕膜之凝聚或凹凸發生一邊使溶劑揮發,而可形成具有高 度膜厚均勻性之薄膜之溶劑。 至於高黏度溶劑舉例爲在25°C下具有l〇~200mPa«s ,尤其是50~150mPa · s之黏度者。具體而言,以在常壓 下沸點爲50〜300°C,尤其是150〜250°C之高黏度溶劑之環 己醇、乙二醇、1,3-辛二醇、二乙二醇、二丙二醇、三乙 二醇、三丙二醇 ' 1,3-丁 二醇、2,3· 丁 二醇、1,4-丁二醇 、丙二醇、己二醇、鄰-甲酚、間-甲酚、對-甲酚等較佳 -21 - 201024385 使用該等高黏度溶劑時’其使用比例相對於清漆中之 溶劑總量以10~90質量%較佳,更好爲20~80質量%。 所謂低表面張力溶劑意指藉由降低表面張力、賦予揮 發性等提高對基板之潤濕性,或賦予在各種塗佈裝置中適 於噴霧或塗佈之物性,且可降低對塗佈裝置之腐蝕性之溶 劑。 該等低表面張力溶劑舉例爲例如苯、甲苯、乙基苯、Further, the synthesis method of the charge transporting substance is not particularly limited, but may be exemplified by the method described in the specification of International Publication No. 2008/1 29947, the oligoaniline synthesis method (refer to Bulletin of Chemical Society of Japan, 1994). , Vol. 67, p. 1 794-1752: Synthetic Metals, USA, 1977, Vol. 84, ρ·1 19-120), or oligothiophene synthesis (see eg Heterocycles, 1987, pp. 26, ρ.939-942; Heterocycles, 1 987, vol. 26, ρ.1 793-1 796). Further, a method of oxidizing the aniline derivative compound to a quinone diimine compound is exemplified by the method described in the specification of International Publication No. 2008/01 047. The charge transporting varnish of the present invention comprises a charge transporting material and an organic solvent comprising a heteropolyacid compound containing the above charge transporting substance and an electron accepting dopant, and the charge transporting substance and the heteropoly acid compound are uniform. Dissolved in organic solvents. -20- 201024385 The organic solvent used in the preparation of the charge transport varnish can be a good solvent having a charge transporting property and a solubility of a heteropoly acid compound. Among them, a good solvent means a solvent having a high polarity of a solvent molecule and a good solution of a highly polar compound. Examples of such good solvents are, for example, N,N-dimethylformamide, hydrazine, hydrazine-dimethylacetamide, hydrazine-methylpyrrolidone, 1,3-dimethyl-2-imidazolidone. , dimethyl sulfoxide, fluorene-cyclohexyl-2-pyrrolidone, and the like. These solvents may be used singly or in combination of two or more kinds, and the amount thereof may be 5 to 100% by mass based on the total amount of the solvent used in the varnish. Since the heteropoly acid compound used in the present invention is excellent in solubility in an organic solvent, it is also possible to use a high viscosity solvent and/or a low surface tension solvent together with the above good solvent. Good solvents, high viscosity solvents and low surface tension solvents can also have their own properties. The so-called 髙-viscosity solvent means a viscous film which is suitable for spraying or coating in various coating apparatuses and forms a uniform wet film, and suppresses the aggregation of the wet film or the occurrence of irregularities during firing to volatilize the solvent. A solvent having a film having a high film thickness uniformity can be formed. As for the high-viscosity solvent, it is exemplified by a viscosity of from 10 〇 to 200 mPa «s at 25 ° C, especially from 50 to 150 mPa · s. Specifically, cyclohexanol, ethylene glycol, 1,3-octanediol, diethylene glycol, a high viscosity solvent having a boiling point of 50 to 300 ° C, especially 150 to 250 ° C under normal pressure, Dipropylene glycol, triethylene glycol, tripropylene glycol '1,3-butanediol, 2,3·butanediol, 1,4-butanediol, propylene glycol, hexanediol, o-cresol, m-cresol Preferably, p-cresol or the like is used in the range of from 10 to 90% by mass, more preferably from 20 to 80% by mass, based on the total amount of the solvent in the varnish. The low surface tension solvent means improving the wettability to the substrate by lowering the surface tension, imparting volatility, etc., or imparting physical properties suitable for spraying or coating in various coating apparatuses, and reducing the coating apparatus. Corrosive solvent. Such low surface tension solvents are exemplified by, for example, benzene, toluene, ethylbenzene,

對-二甲苯、鄰-二甲苯、苯乙烯等芳香族烴類;正戊烷、 Q 正己烷、正庚烷、正辛烷、正壬烷、正癸烷等烴類;丙酮 、甲基乙基酮、甲基異丙基酮、二乙基酮、甲基異丁基酮 、甲基正丁基酮、環己酮、乙基正戊基酮等酮類;乙酸乙 酯、乙酸異丙酯、乙酸正丙酯、乙酸異丁酯、乙酸正丁酯 、乙酸正戊酯、乙酸正己酯、己酸甲酯、乙酸2-甲基戊 酯、乳酸正乙酯、乳酸正丁酯等酯類;乙二醇二甲醚、丙 二醇單甲醚、乙二醇單甲醚、乙二醇單丁醚、丙二醇單乙 醚、乙二醇單乙醚、乙二醇單異丙醚、乙二醇甲醚乙酸酯 © 、丙二醇單甲醚乙酸酯、乙二醇乙醚乙酸酯、二乙二醇二 甲醚、丙二醇單丁醚、二乙二醇二乙醚、二丙二醇單甲醚 、二乙二醇單甲醚 '二丙二醇單乙醚、二乙二醇單乙醚、 三乙二醇二甲醚、二乙二醇單乙醚乙酸酯' 二乙二醇等二 醇酯或二醇醚類;甲醇、乙醇、異丙醇、第三丁醇、烯丙 醇、正丙醇、2 -甲基-2-丁醇、異丁醇、正丁醇、2 -甲基-卜丁醇' 1-戊醇、2-甲基-1-戊醇、2-乙基己醇、1-辛醇、 1-甲氧基-2-丁醇、二丙酮醇、糠醇、四氫糠醇、苯甲醇 -22- 201024385 等醇類;二乙醚、二正丙醚、二異丙醚、異丙醚、1,4·二 噁烷、乙酸、r-丁內酯等醚或羧酸類等。 併用良溶劑與高黏度溶劑及/或低表面張力溶劑時, 其等之使用比例並無特別限制’但高黏度溶劑或低表面張 力溶劑之使用比例多時,如上述般,成爲可賦予提高黏度 、降低表面張力、賦予揮發性、提高對於基板表面之塗佈 性、提高塗佈、噴霧性等之新的較佳物性。又,所得清漆 e 之極性降低之結果,成爲可使用於耐溶劑性成爲問題之塗 佈裝置或基板等,因此其應用範圍變廣。 使用低表面張力溶劑時,具體而言,良溶劑與高黏度 溶劑及/或低表面張力溶劑之比率,以質量比計,較好爲9 :1~1: 9左右,更好爲1: 1 ~ 1 : 4左右。 又,混合兩種以上溶劑使用時,良溶劑之沸點較好與 其他溶劑相等,或者在其以上。 電荷輸送性清漆之調製法並無特別限制,可以任何順 ® 序混合各成分及溶劑並調製,但上述雜多酸化合物一旦溶 解於良溶劑中之後,由於具有即使添加極性更低的高黏度 溶劑及/或低表面張力溶劑亦不容易產生析出之性質’因 此相對於將電荷輸送物質及雜多酸化合物溶解於良溶劑中 而成之溶液,以添加高黏度溶劑及/或低表面張力溶劑而 調製較佳。 使用該等方法時,可增加電荷輸送性清漆中高黏度溶 劑或低表面張力溶劑之比例。 電荷輸送性清漆之固成分濃度並無特別限制,但通常 -23- 201024385 爲0.01〜50質量%左右,若考慮形成0.1〜200nm之薄膜, 較好爲0.1〜10質量%,更好爲0.5〜5質量%。 又,電荷輸送物質與雜多酸化合物之混合比例並無特 別限制,但考慮進一步提高所得薄膜之電荷輸送性時,以 質量比計’較好電荷輸送性物質:雜多酸化合物=1 : 0.01〜10.0,更好爲 1: 〇.〇5〜4.0。 電荷輸送性清漆之黏度並無特別限制,但考量到以旋 轉塗佈法、噴墨法或噴佈法,以高膜厚均勻性下製作 _ 0.1〜200nm之薄膜時,較好爲於 25°C下之黏度爲 1〜lOOmPa· s,更好爲3~30mPa· s,又更好爲5〜20mPa. S ° 本發明之電荷輸送性清漆亦可依據需要,以相對於電 荷輸送性物質爲0.1〜90質量%左右之添加量使用上述雜多 酸化合物以外之摻雜物質,以提高其電荷輸送性能等。 至於摻雜物質較好爲具有高電子受容性之電子受容性 摻雜物質。關於摻雜物質之溶解性,只要是可溶解於清漆 @ 所使用之至少一種溶劑者即無特別限制。 電子受容性摻雜物之具體例舉例爲氯化氫、硫酸、硝 酸、鄰酸等無機強酸;氯化鋁(III) ( A1C13 )、四氯化 鈦(IV ) ( TiCl4 )、三溴化硼(BBr3 )、三氟化硼醚錯 合物(BF3 · OEt2 )、氯化鐵(III ) ( FeCl3 )、氯化銅(Aromatic hydrocarbons such as p-xylene, o-xylene, styrene; hydrocarbons such as n-pentane, Q-hexane, n-heptane, n-octane, n-decane, n-decane; acetone, methyl b Ketones such as ketone, methyl isopropyl ketone, diethyl ketone, methyl isobutyl ketone, methyl n-butyl ketone, cyclohexanone, ethyl n-pentyl ketone; ethyl acetate, isopropyl acetate Ester, n-propyl acetate, isobutyl acetate, n-butyl acetate, n-amyl acetate, n-hexyl acetate, methyl hexanoate, 2-methylpentyl acetate, n-lactide, n-butyl lactate, etc. Ethylene glycol dimethyl ether, propylene glycol monomethyl ether, ethylene glycol monomethyl ether, ethylene glycol monobutyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monoisopropyl ether, ethylene glycol Ether acetate © , propylene glycol monomethyl ether acetate, ethylene glycol ethyl ether acetate, diethylene glycol dimethyl ether, propylene glycol monobutyl ether, diethylene glycol diethyl ether, dipropylene glycol monomethyl ether, diethyl Glycol monomethyl ether 'dipropylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol dimethyl ether, diethylene glycol monoethyl ether acetate 'diethylene glycol and other glycol esters or two Ethers; methanol, ethanol, isopropanol, tert-butanol, allyl alcohol, n-propanol, 2-methyl-2-butanol, isobutanol, n-butanol, 2-methyl-butanol ' 1-pentanol, 2-methyl-1-pentanol, 2-ethylhexanol, 1-octanol, 1-methoxy-2-butanol, diacetone alcohol, decyl alcohol, tetrahydrofurfuryl alcohol, benzene Alcohols such as methanol-22-201024385; ethers or carboxylic acids such as diethyl ether, di-n-propyl ether, diisopropyl ether, diisopropyl ether, 1,4-dioxane, acetic acid, and r-butyrolactone. When a good solvent and a high viscosity solvent and/or a low surface tension solvent are used, the ratio of use thereof is not particularly limited. However, when a high viscosity solvent or a low surface tension solvent is used in a large proportion, as described above, it is possible to impart an increased viscosity. The surface tension is lowered, the volatility is imparted, the coating property to the surface of the substrate is improved, and the new preferable physical properties such as coating, sprayability, and the like are improved. Further, as a result of the decrease in the polarity of the obtained varnish e, a coating apparatus or a substrate which can be used for solvent resistance is used, and the application range thereof is widened. When a low surface tension solvent is used, specifically, the ratio of the good solvent to the high viscosity solvent and/or the low surface tension solvent is preferably from about 9:1 to about 1:9, more preferably about 1:1 by mass ratio. ~ 1 : 4 or so. Further, when two or more solvents are used in combination, the boiling point of the good solvent is preferably equal to or higher than the other solvents. The preparation method of the charge transporting varnish is not particularly limited, and the components and the solvent may be mixed and prepared in any order, but once the above heteropoly acid compound is dissolved in a good solvent, it has a high viscosity solvent even if a lower polarity is added. And/or a low surface tension solvent is also less likely to cause precipitation properties. Therefore, it is added to a solution in which a charge transporting substance and a heteropoly acid compound are dissolved in a good solvent to add a high viscosity solvent and/or a low surface tension solvent. Modulation is preferred. When such methods are used, the ratio of high viscosity solvent or low surface tension solvent in the charge transport varnish can be increased. The solid concentration of the charge transporting varnish is not particularly limited, but is usually from about 0.01 to 50% by mass in the range of from -23 to 201024385, and preferably from 0.1 to 10% by mass, more preferably from 0.5 to 10% by weight. 5 mass%. Further, the mixing ratio of the charge transporting substance to the heteropolyacid compound is not particularly limited, but in consideration of further improving the charge transporting property of the obtained film, the mass-producing substance is preferably a charge-transporting substance: heteropoly acid compound = 1: 0.01. ~10.0, better for 1: 〇.〇5~4.0. The viscosity of the charge transporting varnish is not particularly limited, but it is preferably 25° when a film of _0.1 to 200 nm is formed by a spin coating method, an inkjet method or a spray method with high film thickness uniformity. The viscosity under C is 1 to 100 mPa·s, more preferably 3 to 30 mPa·s, and even more preferably 5 to 20 mPa. S ° The charge transporting varnish of the present invention may be used as opposed to the charge transporting substance as needed. The amount of addition of about 0.1 to 90% by mass is used to use a dopant other than the above heteropoly acid compound to improve the charge transport performance and the like. The dopant substance is preferably an electron-acceptable dopant having high electron acceptability. The solubility of the dopant substance is not particularly limited as long as it is at least one solvent which can be dissolved in the varnish @. Specific examples of the electron-accepting dopant are exemplified by inorganic strong acids such as hydrogen chloride, sulfuric acid, nitric acid, and ortho-acid; aluminum (III) chloride (A1C13), titanium (IV) chloride (TiCl4), and boron tribromide (BBr3). ), boron trifluoride ether complex (BF3 · OEt2), iron (III) chloride (FeCl3), copper chloride (

II ) ( CuCl2 )、五氯化銻(V ) ( SbCl5 )、五氟化砷(V )(AsF5 )、五氟化磷(PF5 )、參(4-溴苯基)鋁六氯 銻酸鹽(TBPHA)等路易斯酸;苯磺酸、甲苯磺酸、樟腦 -24- 201024385 磺酸、羥基苯磺酸、5-磺基水楊酸、十二烷基苯磺酸、聚 苯乙烯磺酸、國際公開第2005/000832號說明書中所述之 1,4-苯并二噁烷二磺酸衍生物、國際公開第2006/025342 號說明書中所述之芳基磺酸衍生物、特開第2005- 1 08 828 號公報中所述之二壬基萘磺酸衍生物等有機強酸; 7,7,8,8-四氰基醌二甲烷(TCNQ ) 、2,3 -二氯-5,6 -二氰基- 1,4-苯醌(DDQ )、碘等有機或無機氧化劑,但並不限於 φ 該等。 最佳之電子受容性摻雜物質舉例爲5-磺基水楊酸、 十二烷基苯磺酸、聚苯乙烯磺酸、國際公開第 2005/0008 3 2號說明書中所述之1,4-苯并二噁烷二磺酸衍 生物、特開第2 005 - 1 0882 8號公報中所述之二壬基萘磺酸 衍生物等有機強酸;國際公開第2006/02 5 3 42號說明書中 所述之萘二磺酸衍生物等有機強酸之電子受容性摻雜物質 〇 Φ 將以上說明之電荷輸送性清漆塗佈於基材上,且使溶 劑蒸發,可在基材上形成電荷輸送性薄膜。 清漆之塗佈方法並無特別限制,舉例爲浸漬法、旋轉 塗佈法、轉印印刷法、輥塗佈法、刷毛塗佈法、噴墨法、 噴霧法、狹縫塗佈法等。 溶劑之蒸發法並無特別限制’舉例爲例如使用加熱板 或烘箱’在適當之氛圍氣體下,亦即在大氣、氮氣等惰性 氣體、真空中等之下蒸發即可。據此,可獲得具有均勻成 膜面之薄膜。 -25- 201024385 燒成溫度只要可使溶劑蒸發則無特別限制,但以在 4 0〜2 50 °C下進行較佳。該情況下,爲了展現更高之均勻成 膜性,且在基材上進行反應爲目的,亦可進行兩階段以上 之溫度變化。 電荷輸送性薄膜之膜厚並無特別限制,但在有機EL 元件內作爲電荷注入層使用時,較好爲0.1〜200nm,更好 爲1〜100nm,又更好爲10〜50nm。使膜厚變化之方法有改 變清漆中之固成分濃度,改變塗佈時基板上之溶液量等方 法。 使用本發明之電荷輸送性清漆製作OLED元件時所使 用之材料或製作方法舉例如下,但並不限於此等。 使用之電極基板較好以洗劑、醇類、純水等預先進行 液體洗淨,例如,陽極基板較好在剛要使用之前進行臭氧 處理、氧-電漿處理等表面處理。但陽極材料以有機物作 爲主成分時,亦可未經表面處理。 OLED元件中使用電洞輸送性清漆時,可列舉下列方 法。 將該電洞輸送性清漆塗佈於陽極基板上,且利用上述 方法進行蒸發、燒成,且於電極上製作電洞輸送性薄膜而 成爲電洞注入層或電洞輸送層。將其導入真空蒸鍍裝置內 ,且依序蒸鍍電洞輸送層、發光層、電子輸送層、電子注 入層、陰極金屬而成爲OLED元件。其中,亦可依據需要 去除任一層或複數層製作元件。亦可在任意之層間設置載 體阻擋層以控制發光領域。 -26- 201024385 至於陽極材料舉例爲以銦錫氧化物(ITO )、姻鉛氧 化物(IZO)爲代表之透明電極,且較好進行平坦化處理 。亦可使用具有高電荷輸送性之聚噻吩衍生物或聚苯胺衍: 生物。 形成電洞輸送層之材料可列舉爲(三苯基胺)二聚物 衍生物(TPD ) 、(α-萘二苯基胺)二聚物(a -NPD ) 、[(三苯基胺)二聚物]螺二聚物(螺-TAD )等三芳基胺 參 類、4,4’,4”,-參[3-甲基苯基(苯基)胺基]三苯基胺(m_ MTDATA ) 、4,4’,4”,-參[1-萘基(苯基)胺基]三苯基胺 (1-TNATA)等之星狀胺(Starburst Amine)類、5,5,,_ 雙-{4-[雙(4-甲基苯基)胺基]苯基}_2,2,:5,,2,,_三聯噻吩 (Terthiophene ) ( BMA-3T )等寡噻吩類。 對於本發明中使用之雜多元酸化合物具有還原性之電 洞輸送材料就有機EL元件特性之驅動電壓降低之觀點而 言爲較佳。尤其是三苯基胺、三芳基胺類或星狀胺類由於 ® 容易藉由本發明中使用之雜多酸化合物而氧化,因此適合 使用含有該等化合物之層作爲與含有該雜多酸化合物之電 洞注入層鄰接之電洞注入層。 形成發光層之材料舉例爲三(8_羥基喹啉)鋁(111) (Alq3 )、雙(8_羥基喹啉)鋅(n ) ( Znq2 )、雙(2_ 甲基-8·經基喹啉)(對-苯基苯酚)鋁(ιπ) (8八1())及 4,4’-雙(2,2-二苯基乙烯基)聯苯(DPvBi)等,藉由共 同蒸鍍電子輸送材料或電洞輸送材料與發光性摻雜物,亦 可形成發光層。 -27- 201024385 至於電子輸送材料列舉爲Alq3、BAlq、DPBVi、(2· (4-聯苯)-5- ( 4·第三丁基苯基)·1,3,4·氧雜二唑)( PBD )、三唑衍生物(ΤΑΖ ) 、2,9-二甲基-4,7二苯基- 1,10-鄰二氮菲(Bathocuproin) ( BCP)、砂雜環戊二嫌 (silole)衍生物等。 發光性摻雜物舉例爲唾V淀酮(quinacridone)、紅 熒烯、香豆素540、4-(二氰基亞甲基)-2-甲基-6-(對· 二甲胺基苯乙烯基)-4H-耻喃(DCM)、參(2-苯基吡啶 _ )銥(III) ( Ir(ppy)3) 、( 1,1 0 -菲繞啉)-參(4,4,4 -三 氟-1- ( 2-噻吩基)-丁 -1,3-二酸)銪(III )( E u (T T A) 3 p h e η )等。 形成載體阻擋層之材料列舉爲PBD、ΤΑΖ、BCP等。 形成電子注入層之材料列舉爲氧化鋰(Li2Ο )、氧化 鎂(MgO )、氧化鋁(Al2〇3 )、氟化鋰(LiF )、氟化鎂 (MgF2 )、氟化緦(SrF2 ) 、Liq、Li ( acac )、乙酸鋰 、苯甲酸鋰等。 . 陰極材料列舉爲鋁 '鎂-銀合金、鋁·鋰合金、鋰、鈉 、鉀、鉋等。 又,於OLED元件中使用電子輸送性清漆時可列舉以 下之方法。 於陰極基板上塗佈該電子輸送性清漆,製作電子輸送 性薄膜’將其導入真空蒸鍍裝置內,使用與上述相同之材 料形成電子輸送層、發光層、電洞輸送層、電洞注入層後 ’利用濺鍍等方法使陽極材料成膜作成OLED元件。 -28- 201024385 使用本發明之電洞輸送性清漆製作PLED元件之方法 並無特別限制,但列舉有以下方法。 於上述OLED元件製造中,藉由形成發光性電荷輸送 性高分子層替代進行電洞輸送層、發光層、電子輸送層、 電子注入層之真空蒸鍍操作,可製作包含利用本發明之電 荷輸送性清漆形成之電荷輸送性薄膜之PLED元件。 具體而言,係在陽極基板上塗佈本發明之電荷輸送性 φ 清基(電洞輸送性清漆),並利用上述方法製作電洞輸送 性薄膜,且於其上部形成發光性電荷輸送性高分子層,再 蒸鍍陰極電極成爲PLED元件。爲了提高發光效率及元件 壽命,亦可在電洞輸送性薄膜與發光性高分子層之間設置 中間層。 至於所使用之陰極及陽極材料,可使用與上述OLED 元件製作時相同之物質作,可進行同樣之洗淨處理、表面 處理。 Φ 發光性電荷輸送性高分子層之形成方法列舉爲於發光 性電荷輸送性高分子材料中或於其中又添加發光性摻雜物 之材料中添加溶劑使之溶解,經均勻分散,且塗佈於形成 電洞注入層之電極基板上之後,藉由溶劑蒸發而成膜之方 法。 發光性電荷輸送性高分子材料列舉爲聚(9,9-二烷基 n ) ( PDAF )等聚蒹衍生物、聚(2-甲氧基-5- (2’·乙基 己氧基)·1,4-伸苯基亞乙烯基)(MEH-PPV)等聚伸苯 基亞乙烯基衍生物、聚(3-烷氧基噻吩)(PAT )等之聚 -29- 201024385 噻吩衍生物、聚乙烯基咔唑(PVCz )等。 至於溶劑可列舉爲甲苯、二甲苯、氯仿等,至於溶解 或均句分散法列舉爲攪拌、加熱攪拌、超音波分散等方法 〇 至於塗佈方法並無特別限制,舉例爲噴墨法、噴佈法 、浸漬法、旋轉塗佈法、狹縫塗佈法、轉印印刷法、輥塗 佈法、刷毛塗佈等。另外,塗佈較好在氮氣、氬氣等惰性 氣體下進行。 溶劑之蒸發法列舉爲在惰性氣體中或真空中,以烘箱 或加熱板加熱之方法。 實施例 以下列舉實施例及比較例更具體說明本發明,但本發 明並不受下述實施例之限制。再者由於使用之雜多酸化合 物中正確的水分量並不明確,因此以下記載的固成分濃度 係以秤量値未扣除偶有的水份量而計算出。秤量時亦未進 @ 行去除水分等前處理,而是直接使用購入之化合物。 Π]電荷輸送性清漆及電荷輸送性薄膜之製作 [實施例1] 在氮氣氛圍中,對270毫克之以上式(6)表示之 >!川,:^,,:^-四苯基-對-(:-胺基五苯胺(以下簡稱爲丁?人?八 )及540毫克之磷鉬酸(關東化學(股)製造’以下簡稱 爲PMA)之混合物添加11.47克良溶劑的DMI並予以溶 -30- 201024385 解。將5.73克丙二醇及17.20克已加熱至40 °C融解之環 己醇添加於該溶液中,且靜置冷卻至室溫,獲得綠黑色透 明溶液。 使用孔徑〇.2μιη之PTFE製的過濾器過濾所得溶液, 獲得綠黑色透明之電荷輸送性清漆(固成分濃度2.3質量 %,25t:下之黏度 1 ImPa · s )。 • 以旋轉塗佈法將所得清漆塗佈於經臭氧洗淨30分鐘 φ 之ITO基板上,且在加熱板上,於大氣中220°C下燒成30 分鐘,形成電荷輸送性薄膜。所得薄膜爲均勻之非晶質固 體。 另外,以式(6)表示之TPAPA係依循國際公開第 2008/129 94 7號說明書所述之方法合成 [實施例2] 在氮氣氛圍中,對270毫克之以上式(8)表示之N-Φ 苯基四苯胺(以下簡稱爲PTA)及540毫克之PMA之混 合物添加1 1.47克良溶劑的DMI並予以溶解。將5.73 g丙 二醇及17.20克已加熱至4(TC融解之環己醇添加於該溶液 中,且靜置冷卻至室溫,獲得綠黑色透明溶液。 使用孔徑〇.2μπι之PTFE製的過濾器過濾所得溶液, 獲得綠黑色透明之電荷輸送性清漆(25°C下之黏度llmPa • s ) ° 以旋轉塗佈法將所得清漆塗佈於經臭氧洗淨3 0分鐘 之ITO基板上,且在加熱板上,於大氣中22 0 °C下燒成30 -31 - 201024385 分鐘,形成電荷輸送性薄膜。所得薄膜爲均勻之非晶質固 另外,以式(8 )表示之PTA係依循Bulletin of Chemical Society of Japan, 1994 年,第 67 卷,p.1749-1752中所述之方法合成。 [實施例3] 在氮氣氛圍中,對270毫克之以下式(9)表示之 Ν,Ν,Ν’,Ν’-四苯基-對-C·胺基四苯胺(以下簡稱爲 ox-ΤΡΑΤΑ)及540毫克之ΡΜΑ之混合物添加1 1.47克良溶 劑的DMI並予以溶解。將5.73克丙二醇及17.20克已加 熱至40 °C融解之環己醇添加於該溶液中,且靜置冷卻至 室溫,獲得綠黑色透明溶液。 使用孔徑〇.2μιη之PTFE製的過濾器過濾所得溶液, 獲得綠黑色透明之電荷輸送性清漆(固成分濃度2.3質量 %,2 5 °C 下之黏度 1 1 mP a . s )。 以旋轉塗佈法將所得清漆塗佈於經臭氧洗淨3 0分鐘 之ITO基板上,且在加熱板上,於大氣中220°C下燒成30 分鐘,形成電荷輸送性薄膜。所得薄膜爲均勻之非晶質固 體。 另外,以式(9)表示之ox-TPATA係依循國際公開 第2008/1 29947號說明書及國際公開第2008/01 047號說 明書所述之方法合成。 -32- 201024385 [化 13]II) (CuCl2), antimony pentachloride (V) (SbCl5), arsenic pentafluoride (V) (AsF5), phosphorus pentafluoride (PF5), ginseng (4-bromophenyl) aluminum hexachloroantimonate Lewis acid such as (TBPHA); benzenesulfonic acid, toluenesulfonic acid, camphor-24- 201024385 sulfonic acid, hydroxybenzenesulfonic acid, 5-sulfosalicylic acid, dodecylbenzenesulfonic acid, polystyrenesulfonic acid, The 1,4-benzodioxane disulfonic acid derivative described in the specification of International Publication No. 2005/000832, the arylsulfonic acid derivative described in the specification of International Publication No. 2006/025342, JP-A-2005 - an organic strong acid such as a dinonylnaphthalenesulfonic acid derivative described in the publication No. 1 08 828; 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3-dichloro-5,6 An organic or inorganic oxidizing agent such as dicyano-1,4-benzoquinone (DDQ) or iodine, but is not limited to φ. The most preferred electron-accepting dopants are exemplified by 5-sulfosalicylic acid, dodecylbenzenesulfonic acid, polystyrenesulfonic acid, and 1,4 described in the specification of International Publication No. 2005/0008. a benzodioxane disulfonic acid derivative, an organic strong acid such as a dinonylnaphthalenesulfonic acid derivative described in JP-A No. 2 005 - 1 0882 8; International Publication No. 2006/02 5 3 42 The electron-acceptable dopant substance 〇Φ of an organic strong acid such as a naphthalene disulfonic acid derivative described above is applied to a substrate by applying the charge transporting varnish described above to a substrate, and evaporating the solvent to form a charge transport on the substrate Film. The coating method of the varnish is not particularly limited, and examples thereof include a dipping method, a spin coating method, a transfer printing method, a roll coating method, a brush coating method, an inkjet method, a spray method, and a slit coating method. The evaporation method of the solvent is not particularly limited, for example, by using a hot plate or an oven to evaporate under a suitable atmosphere, that is, under an inert gas such as air or nitrogen, or a vacuum. According to this, a film having a uniform film formation surface can be obtained. -25- 201024385 The firing temperature is not particularly limited as long as the solvent can be evaporated, but it is preferably carried out at 40 to 2 50 °C. In this case, in order to exhibit higher uniform film forming properties and to carry out a reaction on a substrate, temperature changes of two or more stages may be performed. The film thickness of the charge transporting film is not particularly limited. However, when it is used as a charge injection layer in the organic EL device, it is preferably from 0.1 to 200 nm, more preferably from 1 to 100 nm, still more preferably from 10 to 50 nm. The method of changing the film thickness has a method of changing the solid content concentration in the varnish, and changing the amount of the solution on the substrate during coating. The materials or production methods used in the production of the OLED device using the charge transporting varnish of the present invention are exemplified below, but are not limited thereto. The electrode substrate to be used is preferably liquid-washed in advance with a lotion, alcohol, pure water or the like. For example, the anode substrate is preferably subjected to surface treatment such as ozone treatment or oxygen-plasma treatment just before use. However, when the anode material is mainly composed of an organic substance, it may be left untreated. When a hole transporting varnish is used in the OLED element, the following methods can be mentioned. This hole-transporting varnish was applied onto an anode substrate, and was evaporated and fired by the above method, and a hole transporting film was formed on the electrode to form a hole injection layer or a hole transport layer. This was introduced into a vacuum vapor deposition apparatus, and the hole transport layer, the light-emitting layer, the electron transport layer, the electron injection layer, and the cathode metal were sequentially vapor-deposited to form an OLED element. Among them, it is also possible to remove any layer or a plurality of layers to fabricate components as needed. A carrier barrier layer may also be provided between any of the layers to control the field of illumination. -26- 201024385 The anode material is exemplified by a transparent electrode typified by indium tin oxide (ITO) or lanthanum lead oxide (IZO), and is preferably planarized. Polythiophene derivatives or polyaniline derivatives having high charge transportability can also be used. The material for forming the hole transport layer may be exemplified by (triphenylamine) dimer derivative (TPD), (α-naphthalene diphenylamine) dimer (a-NPD), [(triphenylamine). Dimer] snail dimer (spiro-TAD) and other triarylamine ginseng, 4,4',4",-gin[3-methylphenyl(phenyl)amino]triphenylamine (m_) MTDATA), 4,4',4",-[1-naphthyl(phenyl)amino]triphenylamine (1-TNATA), etc., Starburst Amine, 5,5, _ bis-{4-[bis(4-methylphenyl)amino]phenyl}_2,2,:5,,2,,_trithiophene (BMA-3T) and other oligothiophenes. The hole transporting material having a reducing property of the heteropoly acid compound used in the present invention is preferable from the viewpoint of lowering the driving voltage of the characteristics of the organic EL element. In particular, since triphenylamine, triarylamine or stellate amine is easily oxidized by the heteropoly acid compound used in the present invention, it is suitable to use a layer containing the compound as and containing the heteropoly acid compound. The hole injection layer is adjacent to the hole injection layer. The material for forming the light-emitting layer is exemplified by tris(8-hydroxyquinoline)aluminum (111) (Alq3), bis(8-hydroxyquinoline)zinc(n)(Znq2), bis(2-methyl-8·pyridinium Porphyrin) (p-phenylphenol) aluminum (ιπ) (8 八 ()) and 4,4'-bis(2,2-diphenylvinyl)biphenyl (DPvBi), etc., by co-evaporation The electron transporting material or the hole transporting material and the luminescent dopant may also form a light emitting layer. -27- 201024385 As for the electron transport materials listed as Alq3, BAlq, DPBVi, (2·(4-biphenyl)-5-(4·t-butylphenyl)·1,3,4·oxadiazole) ( PBD ), triazole derivative (ΤΑΖ), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), dihaloquinone (silole) ) derivatives and the like. Examples of luminescent dopants are quinacridone, rubrene, coumarin 540, 4-(dicyanomethylidene)-2-methyl-6-(p-dimethylaminobenzene) Vinyl)-4H- succinyl (DCM), ginseng (2-phenylpyridine _) ruthenium (III) ( Ir(ppy) 3), ( 1,1 0 -phenanthroline)-parameter (4,4, 4-Trifluoro-1-(2-thienyl)-butyl-1,3-diacid) ruthenium (III) (E u (TTA) 3 phe η ) and the like. The material forming the carrier barrier layer is exemplified by PBD, ruthenium, BCP, and the like. The material forming the electron injecting layer is exemplified by lithium oxide (Li 2 Ο ), magnesium oxide (MgO), aluminum oxide (Al 2 〇 3 ), lithium fluoride (LiF ), magnesium fluoride (MgF 2 ), strontium fluoride (SrF 2 ), Liq. , Li (acac), lithium acetate, lithium benzoate, and the like. The cathode material is exemplified by aluminum 'magnesium-silver alloy, aluminum lithium alloy, lithium, sodium, potassium, planer, and the like. Further, when an electron transporting varnish is used for the OLED element, the following methods can be mentioned. The electron transporting varnish is applied onto the cathode substrate to form an electron transporting film, which is introduced into a vacuum vapor deposition apparatus, and an electron transporting layer, a light emitting layer, a hole transporting layer, and a hole injection layer are formed using the same material as described above. After that, the anode material is formed into a OLED element by sputtering or the like. -28- 201024385 The method for producing a PLED element using the hole transporting varnish of the present invention is not particularly limited, but the following methods are listed. In the above OLED device manufacturing, by forming a luminescent charge transporting polymer layer instead of performing a vacuum vapor deposition operation on the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer, the charge transport using the present invention can be produced. A PLED element of a charge transporting film formed by a varnish. Specifically, the charge transporting φ clearing group (hole transporting varnish) of the present invention is applied onto an anode substrate, and a hole transporting film is produced by the above method, and a luminescent charge transport property is formed in the upper portion thereof. The molecular layer is re-evaporated to form a PLED element. In order to improve luminous efficiency and device life, an intermediate layer may be provided between the hole transporting film and the light emitting polymer layer. As the cathode and anode materials to be used, the same materials as those used in the production of the above OLED elements can be used, and the same washing treatment and surface treatment can be carried out. Φ The method of forming the luminescent charge transporting polymer layer is exemplified by adding a solvent to the luminescent charge transporting polymer material or a material in which the luminescent dopant is added thereto, dissolving it, uniformly dispersing, and coating. After forming the electrode substrate of the hole injection layer, the film is formed by evaporation of a solvent. The luminescent charge transporting polymer material is exemplified by a polyfluorene derivative such as poly(9,9-dialkyln) (PDAF) or poly(2-methoxy-5-(2'-ethylhexyloxy). · 1,4-phenylphenylene vinylene) (MEH-PPV), such as poly(phenylene vinylene) derivatives, poly(3-alkoxythiophene) (PAT), etc. Poly-29-201024385 Thiophene derivatives , polyvinyl carbazole (PVCz) and the like. The solvent may be exemplified by toluene, xylene, chloroform, etc., and the dissolution or the uniform dispersion method is exemplified by stirring, heating and stirring, ultrasonic dispersion, and the like. The coating method is not particularly limited, and examples thereof include an inkjet method and a spray coating. Method, dipping method, spin coating method, slit coating method, transfer printing method, roll coating method, brush coating, and the like. Further, the coating is preferably carried out under an inert gas such as nitrogen or argon. The solvent evaporation method is exemplified by heating in an inert gas or in a vacuum in an oven or a hot plate. EXAMPLES Hereinafter, the present invention will be specifically described by way of examples and comparative examples, but the present invention is not limited by the following examples. Further, since the correct amount of moisture in the heteropolyacid compound to be used is not clear, the concentration of the solid component described below is calculated by weighing the amount of water which is not deducted from the occasional amount. When the weighing is not carried out, the pretreatment such as removing moisture is used, and the purchased compound is directly used. Π] Preparation of charge transporting varnish and charge transporting film [Example 1] In a nitrogen atmosphere, 270 mg or more of the formula (6) is represented by >?chuan, :^,,:^-tetraphenyl- Adding 11.47 g of good solvent DMI to a mixture of -(:-aminopentaphenylamine (hereinafter referred to as Ding?man?8) and 540 mg of phosphomolybdic acid (hereinafter referred to as PMA) -30- 201024385 Solution: 5.73 g of propylene glycol and 17.20 g of cyclohexanol which had been heated to 40 ° C were added to the solution, and allowed to stand to cool to room temperature to obtain a transparent solution of greenish black. Using a pore size of 2.2μιη The resulting solution was filtered through a PTFE filter to obtain a green-black transparent charge transport varnish (solid content concentration: 2.3% by mass, viscosity at 25t: 1 ImPa · s). • The resulting varnish was applied to the warp by spin coating. Ozone was washed on an ITO substrate of 30 minutes φ, and baked on a hot plate at 220 ° C for 30 minutes in the air to form a charge transporting film. The obtained film was a uniform amorphous solid. 6) The TPAPA is in accordance with International Publication No. 2008/129 Synthesis of the method described in the specification No. 94 No. 7 [Example 2] A mixture of 270 mg or more of N-Φ phenyltetraphenylamine (hereinafter abbreviated as PTA) represented by the formula (8) and 540 mg of PMA in a nitrogen atmosphere 1 1.47 g of good solvent DMI was added and dissolved. 5.73 g of propylene glycol and 17.20 g of cyclohexanol which had been heated to 4 (TC melted) were added to the solution, and allowed to stand to cool to room temperature to obtain a green-black transparent solution. The resulting solution was filtered through a PTFE filter having a pore size of 2 μm to obtain a green-black transparent charge-transporting varnish (viscosity at 25 ° C llmPa • s ) ° The resulting varnish was applied to the ozone-washed by spin coating. On a 30-minute ITO substrate, and on a hot plate, it was baked at 30 ° C for 30 - 31 - 201024385 minutes in the atmosphere to form a charge transporting film. The obtained film was uniform and amorphous. (8) The PTA is synthesized according to the method described in Bulletin of Chemical Society of Japan, 1994, Vol. 67, p. 1749-1752. [Example 3] Under a nitrogen atmosphere, the following formula is 270 mg. (9) Representation, Ν, Ν', Ν'-four Add 1 1.47 g of good solvent DMI to the mixture of keto-p-C-aminotetraphenylamine (hereinafter referred to as ox-indole) and 540 mg of hydrazine. Dissolve 5.73 g of propylene glycol and 17.20 g of heat to 40 ° C. The cyclohexanol was added to the solution, and allowed to stand to cool to room temperature to obtain a green-black transparent solution. The obtained solution was filtered using a PTFE filter having a pore size of 22 μιη to obtain a green-black transparent charge transporting varnish (solid content concentration: 2.3% by mass, viscosity at 25 ° C, 1 1 mP a · s ). The obtained varnish was applied onto an ITO substrate which was washed with ozone for 30 minutes by a spin coating method, and baked on a hot plate at 220 ° C for 30 minutes in the air to form a charge transporting film. The resulting film was a homogeneous amorphous solid. Further, the ox-TPATA represented by the formula (9) is synthesized in accordance with the method described in the specification of International Publication No. 2008/1 29947 and International Publication No. 2008/01 047. -32- 201024385 [Chem. 13]

[實施例4] ❹ 在氮氣氛圍中,對204毫克NSO-2及204毫克PMA 之混合物添加13.30克良溶劑的DMI並予以溶解。將 6.65克丙二醇及19.95克已加熱至40°C融解之環己醇添 加於該溶液中,且靜置冷卻至室溫,獲得綠黑色透明溶液 使用孔徑〇.2μιη之PTFE製的過濾器過濾所得溶液, 獲得綠黑色透明之電荷輸送性清漆(25°C下之黏度llmPa • S ) ° 以旋轉塗佈法將所得清漆塗佈於經臭氧洗淨30分鐘 φ 之ITO基板上,且在加熱板上,於大氣中220°C下燒成30 分鐘,形成電荷輸送性薄膜。所得薄膜爲均勻之非晶質固 體。 另外,以下式表示之NSO-2係依循國際公開第 2006/025342號說明書合成。 [化 14][Example 4] 13 DMF of 13.30 g of a good solvent was added to a mixture of 204 mg of NSO-2 and 204 mg of PMA in a nitrogen atmosphere and dissolved. 6.65 g of propylene glycol and 19.95 g of cyclohexanol which had been heated to 40 ° C were added to the solution, and the mixture was allowed to cool to room temperature, and a green-black transparent solution was obtained by filtration using a PTFE filter having a pore size of 2 μm. Solution, obtaining a green-black transparent charge-transporting varnish (viscosity at 25 ° C llmPa • S ) ° The resulting varnish was applied by spin coating to an ITO substrate cleaned by ozone for 30 minutes φ, and on a hot plate The film was fired at 220 ° C for 30 minutes in the atmosphere to form a charge transporting film. The resulting film was a homogeneous amorphous solid. Further, the NSO-2 represented by the following formula is synthesized in accordance with the specification of International Publication No. 2006/025342. [Chem. 14]

-33- 201024385 [實施例5] 在氮氣氛圍中,對200毫克ΤΡΑΤΑ及400毫克PMA 之混合物添加13.79克良溶劑的DMI並予以溶解。將 19.70克2,3-丁二醇及5.91克乙酸正己酯添加於該溶液中 ,且在室溫下攪拌獲得綠黑色透明溶液。 使用孔徑〇.2μηι之PTFE製的過濾器過濾所得溶液, 獲得綠黑色透明之電荷輸送性清漆(25°C下之黏度8mPa • s )。 使用噴佈塗佈裝置(NVD200,藤森技術硏究所(股 )製造),以噴佈塗佈法將所得清漆塗佈於經臭氧洗淨 30分鐘之ITO基板上,且在加熱板上,於大氣中220 °C下 燒成30分鐘,形成電荷輸送性薄膜。所得薄膜爲均勻之 非晶質固體。 [比較例1] 在氮氣氛圍中,對50毫克PTA及102毫克NSO-2之 混合物添加1 1.68毫升DMI並予以溶解。將0.85毫升丙 二醇及2.78毫升已加熱至40°C融解之環己醇添加於該溶 液中,且靜置冷卻至室溫獲得綠色透明溶液。 使用孔徑〇.2μιη之PTFE製的過濾器過濾所得溶液, 獲得綠色透明之電荷輸送性清漆(25 °C下之黏度11 mPa· s ) 〇 以噴佈塗佈法將所得清漆塗佈於經臭氧洗淨30分鐘 之ITO基板上,且在加熱板上,於大氣中220°C下燒成30 -34- 201024385 分鐘,形成電荷輸送性薄膜。所得薄膜爲均勻之非晶質固 體。 [比較例2] 以旋轉塗佈法將PED〇T/PSS(H.C.Starck公司製造, 等級名CH8000 )塗佈於ITO基板上,且在加熱板上,於 大氣中100 °C下燒成60分鐘,形成電荷輸送性薄膜。所 G 得薄膜爲均勻之非晶質固體。 [比較例3 ] 使用PTA作爲電荷輸送性主體物質,且使用氧化鉬 (關東化學(股)製造,Mo03 )、鉬酸(關東化學(股 )製造,Η2Μο04 )、鉬酸銨(關東化學(股)製造, (ΝΗ4)6Μ〇7024 )、氧化鎢(關東化學(股)製造,W03 ) 、氧化釩(關東化學(股)製造,V205 )、氧化錳(關東 Φ 化學(股)製造,Μη02 )作爲電荷受容性摻雜物物質, 嘗試調製電荷輸送性清漆,但由於各成分對於上述良溶劑 之溶解性極低而無法獲得均勻溶液。 [比較例4] 在氮氣氛圍中,對於100毫克PTA及200毫克乙酸 錳(關東化學(股)製造,Mn(OCOCH3)3 )之混合物添加 5.70克DMI並予以溶解。發生PTA之氧化(脫氫)反應 的液體爲黑色化,析出黑色固體。使用PMA時由於未發 -35- 201024385 生PTA之脫氫反應而無固體析出,可了解乙酸錳 輸送性清漆之安定性方面較差。再者,於國際 2008/01047號說明書中所示可知,PTA之氧化體( 胺體)由於溶解性低,容易造成固體析出,因此電 性清漆之狀態及塗佈時期望不含氧化體。但’隨後 升電荷輸送性之觀點而言,期望在大氣中燒成且在 生成氧化體。N-苯基三苯胺及其類似體中由於即使 化(脫氫)亦難以產生固體析出而使其數量減少’ 了解乙酸錳之可適用主體物質之範圍狹小。 表1中顯示實施例1及比較例1、2之清漆 分濃度、薄膜之膜厚及離子化電位(Ip)。又,實 及2中獲得之薄膜之450nm及650nm之折射率一 表1。 又,離子化電位係使用理硏計器(股)製造之 分光裝置AC-2予以測定。膜厚係使用小坂硏究所 製造之表面粗糙度測定器Surfcorder ET-4000A測 射率係使用日本J.A. Woollam製造之M-2000測定 於電荷 公開第 醌二亞 荷輸送 ,就提 基板上 藉由氧 因此可 之固成 施例1 倂示於 光電子 (股) 定。折 201024385 [表l] 材料 膜厚 Γηιηΐ Ip[eV] 折射率 (450nm) 折射率 (650nm) 實施例1 TPAPA/PMA 30 5.4 1.86 1.74 實施例2 PTA/PMA 30 5.4 1.89 1.75 實施例3 οχ-ΤΡΑΤΑ/ΡΜΑ 30 5.4 • _ 實施例4 PTA/ ( NSO-2+PMA) 30 5.6 - 實施例5 TPATA/PMA (噴佈塗佈) 30 5.4 - 比較例1 PTA/NSO-2 30 5.6 - 比較例2 PEDOT/PSS 40 5.6 • [2] OLED元件之製作 [實施例6] 利用與實施例4相同之方法,在ITO基板上形成電洞 輸送性薄膜後,將該基板導入真空蒸鍍裝置內,依序蒸鍍 a -NPD、摻雜體積比7%之紅熒烯之 Alq3、Alq3、LiF、 A1,製作OLED元件(發光面積:4mm2 )。膜厚分別成 參爲 3 Onm ' 3 0 nm ' 30nm、0.8nm、1 5 Onm > 且分別自 2 x l(T4Pa以下之壓力進行蒸鍍操作。蒸鍍率於a -NPD及 Alq3 爲 0.1 〜〇.2nm/s,紅熒烯及 LiF 爲 0.01 〜0.02iim/s,A1 爲0.2〜0.4nrn/S。蒸鍍操作間之移動操作係在真空中進行 [比較例5 ] 利用與比較例1相同之方法,在ITO基板上形成電荷 輸送性薄膜後,以與實施例6相同之方法蒸鍍各膜,製作 -37- 201024385 OLED元件(發光面積:4mm2 )。 使用有機EL發光效率測定裝置(EL1003,PRECISE GAUGES (股)製造)測定實施例6與比較例5獲得之 0 LED元件之特性。測定結果示於表2。 m 2] 材料 膜厚 (nm) 電流密度 (mA/cm2) 電壓 (V) 亮度 (cd/cm2) 亮度減半時 間(hr) 實施例6 PTA/(NSO-2+PMA) 30 68 6.9 2000 2300 比較例5 PTA/NSO-2 30 61 6.6 2000 370-33-201024385 [Example 5] To a mixture of 200 mg of hydrazine and 400 mg of PMA, DMI of 13.79 g of a good solvent was added and dissolved in a nitrogen atmosphere. 19.70 g of 2,3-butanediol and 5.91 g of n-hexyl acetate were added to the solution, and stirred at room temperature to obtain a green-black transparent solution. The resulting solution was filtered using a PTFE filter having a pore size of 22 μηι to obtain a green-black transparent charge-transporting varnish (viscosity at 25 ° C of 8 mPa·s). The obtained varnish was applied onto an ITO substrate which was washed with ozone for 30 minutes by a spray coating method using a spray coating apparatus (NVD200, manufactured by Fujimori Technology Research Institute Co., Ltd.), and on a hot plate. The film was fired at 220 ° C for 30 minutes in the atmosphere to form a charge transporting film. The resulting film was a homogeneous amorphous solid. [Comparative Example 1] To a mixture of 50 mg of PTA and 102 mg of NSO-2, 1 1.68 ml of DMI was added and dissolved in a nitrogen atmosphere. 0.85 ml of propylene glycol and 2.78 ml of cyclohexanol which had been heated to 40 ° C were added to the solution, and allowed to stand to cool to room temperature to obtain a green transparent solution. The obtained solution was filtered using a PTFE filter having a pore size of 22 μιη to obtain a green transparent charge transporting varnish (viscosity at 25 ° C of 11 mPa·s). The resulting varnish was applied to ozone by spray coating. The film was washed for 30 minutes on an ITO substrate, and fired at 220 ° C in the air for 30 - 34 - 2010 24385 minutes on a hot plate to form a charge transporting film. The resulting film was a homogeneous amorphous solid. [Comparative Example 2] PED〇T/PSS (manufactured by HC Starck Co., Ltd., grade name CH8000) was applied onto an ITO substrate by a spin coating method, and baked on a hot plate at 100 ° C for 60 minutes in the air. Forming a charge transporting film. The film obtained by G is a uniform amorphous solid. [Comparative Example 3] PTA was used as a charge transporting host material, and molybdenum oxide (manufactured by Kanto Chemical Co., Ltd., Mo03), molybdic acid (manufactured by Kanto Chemical Co., Ltd., Η2Μο04), ammonium molybdate (Kanto Chemical Co., Ltd.) was used. ), (ΝΗ4)6Μ〇7024), tungsten oxide (manufactured by Kanto Chemical Co., Ltd., W03), vanadium oxide (manufactured by Kanto Chemical Co., Ltd., V205), manganese oxide (manufactured by Kanto Φ Chemical Co., Ltd., Μη02) As the charge-accepting dopant substance, attempts have been made to prepare a charge transporting varnish, but since the solubility of each component with respect to the above-mentioned good solvent is extremely low, a uniform solution cannot be obtained. [Comparative Example 4] 5.70 g of DMI was added and dissolved in a mixture of 100 mg of PTA and 200 mg of manganese acetate (manufactured by Kanto Chemical Co., Ltd., Mn(OCOCH3)3) in a nitrogen atmosphere. The liquid in which the oxidation (dehydrogenation) reaction of PTA occurs is blackened, and a black solid precipitates. When using PMA, since there is no solid precipitation in the dehydrogenation reaction of PTA-35-201024385, it can be understood that the stability of the manganese acetate transport varnish is poor. Further, as shown in the specification of International Publication No. 2008/01047, the oxidized body (amine) of PTA is likely to cause solid precipitation due to low solubility, and therefore it is desirable to contain no oxidized body in the state of the varnish and at the time of coating. However, from the viewpoint of subsequent charge transportability, it is desirable to be fired in the atmosphere and to form an oxidized body. In N-phenyltriphenylamine and the like, it is difficult to produce solid precipitation due to desulfurization (dehydrogenation), and the amount thereof is reduced. Table 1 shows the varnish concentration, the film thickness of the film, and the ionization potential (Ip) of Example 1 and Comparative Examples 1 and 2. Further, the refractive indices of 450 nm and 650 nm of the film obtained in 2 are shown in Table 1. Further, the ionization potential was measured using a spectroscopic device AC-2 manufactured by a sputum counter. The film thickness is measured by the surface roughness measuring device Surfcorder ET-4000A manufactured by Xiaoyan Research Institute. The M-2000 manufactured by JA Woollam, Japan, is used for the charge-distribution of the second Asian-original transport, and the substrate is coated with oxygen. Therefore, the solidification example 1 is shown in the photoelectron (unit). Folding 201024385 [Table 1] Material film thickness Γηιηΐ Ip[eV] Refractive index (450 nm) Refractive index (650 nm) Example 1 TPAPA/PMA 30 5.4 1.86 1.74 Example 2 PTA/PMA 30 5.4 1.89 1.75 Example 3 οχ-ΤΡΑΤΑ /ΡΜΑ 30 5.4 • _ Example 4 PTA/(NSO-2+PMA) 30 5.6 - Example 5 TPATA/PMA (spray coating) 30 5.4 - Comparative Example 1 PTA/NSO-2 30 5.6 - Comparative Example 2 PEDOT/PSS 40 5.6 • [2] OLED device fabrication [Example 6] After forming a hole transporting film on an ITO substrate in the same manner as in Example 4, the substrate was introduced into a vacuum vapor deposition apparatus. The OLED element (light-emitting area: 4 mm 2 ) was fabricated by vapor-depositing a-NPD, Alq3, Alq3, LiF, and A1 having a volume ratio of 7% of rubrene. The film thickness was determined to be 3 Onm ' 30 nm '30 nm, 0.8 nm, 15 5 nm> and the evaporation operation was performed from 2 x 1 (pressure below T4 Pa. The evaporation rate was 0.1 in a-NPD and Alq3). 2.2nm/s, rubrene and LiF are 0.01 to 0.02iim/s, and A1 is 0.2 to 0.4nrn/s. The moving operation between vapor deposition operations is performed in vacuum [Comparative Example 5] Utilization and Comparative Example 1 In the same manner, after forming a charge transporting film on the ITO substrate, each film was deposited in the same manner as in Example 6 to prepare an OLED element (light emitting area: 4 mm 2 ) of -37-201024385. Using an organic EL luminous efficiency measuring device ( EL1003, manufactured by PRECISE GAUGES (manufactured by GA). The characteristics of the 0 LED elements obtained in Example 6 and Comparative Example 5 were measured. The measurement results are shown in Table 2. m 2] Material film thickness (nm) Current density (mA/cm 2 ) Voltage ( V) Brightness (cd/cm2) Luminance halving time (hr) Example 6 PTA/(NSO-2+PMA) 30 68 6.9 2000 2300 Comparative Example 5 PTA/NSO-2 30 61 6.6 2000 370

如表2中所示,可了解實施例6獲得之OLED特性相 較於比較例5獲得者,其亮度減半時間顯著拉長,且壽命 特性良好。又,可了解關於電流密度、電壓幾乎相等。 [實施例7〜9] 利用與實施例1~3相同之方法,在ITO基板上分別 形成電洞輸送性薄膜後,將該基板分別導入真空蒸鍍裝置 內’依序蒸鍍a -NPD、Alq3、LiF、A1,製作 OLED元件 (發光面積:100mm2)。膜厚分別成爲 40nm' 60nm、 〇.8nm、150nm,且分別自2x 1 (T4Pa以下之壓力進行蒸鍍 操作。蒸鍍率對a -NPD及Alq3爲〇.l~〇.2nm/s,LiF爲 0.01〜0.02nm/s,A1爲0 · 2〜0.4nm/s。蒸鍍操作間之移動操 作係在真空中進行。 -38- 201024385 [比較例6 ] 除未設置電洞注入層’且使電洞輸送層之α -NPD之 膜厚成爲7〇nm以外,餘與實施例7相同’製作OLED元 件。 [比較例7 ] 以旋轉塗佈法將PED〇T/PSS(H. C. Starck公司製造 φ ,等級名AI408 3 )塗佈於ITO基板上,在加熱板上,於 大氣中l〇〇°C下燒成60分鐘,形成電荷輸送性薄膜。 除使用該基板以外,餘如實施例7般,製作電洞注入 層爲PEDOT/PSS薄膜之OLED元件。 測定實施例7〜9及比較例6 ' 7所得之OLED元件之 特性,結果示於表3。 [表3] 材料 膜厚 (nm) 電流密度 (mA/cm2) 電壓 (V) 亮度 (cd/cm2) 亮度減半 時間(hr) 實施例7 TPAPA/PMA 30 10 5.7 250 290 實施例8 PTA/PMA 30 10 5.0 300 180 實施例9 οχ-ΤΡΑΡΑ/ΡΜΑ 30 10 6.2 250 770 比較例6 無HII - 10 21.9 230 <1 比較例/2 PEDOT/PSS 40 10 4.8 270 150 *1 初期亮度 1 500cd/m2 *2 發光面4mm2 (其他爲100mm2) PEDOT/PSS :由於在100mm2之特性無法一定化,因此在 4mm2測定 -39- 201024385 由於膜厚亦無法爲4 Onm以上且同樣地特性 無法一定化,因此設爲40nm。 如表3中所示’實施例7〜9之元件中構成電洞注入層 之薄膜由於相較於PEDOT/PSS薄膜之平坦性極高,因此 即使在發光面積1 〇〇mm2之下亦不會有特性安定性之問題 。可瞭解儘管發光面積大但壽命仍爲同等以上,尤其藉由 與適宜的主體材料組合,可大幅改善壽命。 φ [3]導電率測定 [實施例10] 進行以下之測定以執行導電率測定。除將溶劑改變成 DM Ac以外,餘使用與實施例2相同之方法,調製含30 質量%PTA/PMA(質量比1/2)之DMAc溶液作爲電荷輸 送性清漆。又,導電率測定中樣品薄膜本身之電阻値有必 要充分高於測定元件之電阻,有必要形成厚膜。因此調製 高濃度清漆。 φ 以噴佈塗佈法將所得清漆塗佈於經臭氧洗淨30分鐘 之ITO基板上,在加熱板上,於大氣中220°c下燒成30 分鐘,形成膜厚3 60nm之電荷輸送性薄膜。所得薄膜爲 均勻之非晶質固體。 [比較例8] 以旋轉塗佈法將PEDOT/PSS ( H.C.Starck公司製造, 等級名CH8000 )塗佈於ITO基板上,在加熱板上,於大 -40- 201024385 氣中100°C下燒成60分鐘,形成電荷輸送性薄膜。所得 薄膜爲均勻之非晶質固體。 上述實施例10及比較例8獲得之薄膜之導電率示於 表4。 再者,導電率係將所得各基板導入真空蒸鍍裝置內, 使用以蒸鍍罩蒸鍍膜厚15 Onm之A1而成之三明治型元件 (ITO/樣品/A1 ( 150nm ))予以測定(電極面積〇.2mm2 〇 )、電流密度100mA/cm2時)。 [表4] 導電率 電壓 rS/cml m 實施例1 〇 PTA/PMA lxl〇·4 <0.1 比較例8 PEDOT/PSS 2x 1 0-7 4.1 如表4所示,實施例10中使用之PTA/PMA之導電率 ® 之電場依存性小,在微弱電壓下顯示良好之電荷輸送性, 且顯示作爲電洞注入層材料足夠高之導電率(一般需爲 10_7S/cm以上)。再者,來自電極之電場注入障壁小的材 料,期望其Ip値爲比接近電洞輸送材料之値更深値,亦 即比5.4eV左右更深之値,但Ip値係在適當範圍。 [4]對於含有三芳基胺材料之氧化性評價 [實施例1 1] 現在,於鄰接於電洞注入層而層合之電洞輸送層大多 -41 - 201024385 數使用以含三苯基胺之材料爲代表之含三芳基胺材料。爲 了評價本發明之雜多酸化合物對於含有三苯基胺化合物之 氧化性,進行以下實驗。 含有三苯基胺之化合物由於與作爲電洞輸送層材料使 甩之其他含三芳基胺之化合物之物性類似,因此可藉此對 該三芳基胺系電洞輸送層材料全面進行氧化性評價。所謂 對電洞輸送層材料具有氧化性意指可在電洞輸送層之一部 份上生成靜電載體’據此使降低有機EL元件中之驅動電 _ 壓成爲可能。 將7.05克DMI添加於0.15克下式所示之三苯基胺二 聚物及0.30克上述鄰鉬酸(以重量比計爲三苯基胺二聚 物之兩倍)中’且在60 °C下加熱攪拌並溶解’且冷卻至 室溫獲得均勻溶液。 使用孔徑〇.2μιη之PTFE製的過濾器過瀘所得溶液, 獲得淡褐色透明之電荷輸送性清漆(固成分濃度6.0質量 % )。 ❹ 以旋轉塗佈法將所得清漆塗佈於經臭氧洗淨30分鐘 之石英基板上,在加熱板上,於大氣中150°C下燒成30 分鐘,形成電荷輸送性薄膜。所得薄膜爲均勻之非晶質固 體。測定所得薄膜之UV-VIS光譜(測定裝置:UV-3100 ,島津製作所(股)製造)後,在5 5 0nm及73 0nm處出 現寬峰之吸收峰。 -42- 201024385 [化 15]As shown in Table 2, it was found that the OLED characteristics obtained in Example 6 were significantly longer than those obtained in Comparative Example 5, and the luminance halving time was remarkably elongated, and the life characteristics were good. Moreover, it can be understood that the current density and the voltage are almost equal. [Examples 7 to 9] In the same manner as in Examples 1 to 3, a hole transporting film was formed on each of the ITO substrates, and then the substrate was introduced into a vacuum vapor deposition apparatus to sequentially evaporate a-NPD. Alq3, LiF, and A1 were used to fabricate an OLED device (light-emitting area: 100 mm 2 ). The film thicknesses were 40 nm' 60 nm, 〇.8 nm, and 150 nm, respectively, and vapor deposition was performed from 2x 1 (T4Pa or less). The vapor deposition rate was 〇.l~〇.2nm/s for a-NPD and Alq3, LiF It is 0.01 to 0.02 nm/s, and A1 is 0 · 2 to 0.4 nm/s. The moving operation of the vapor deposition operation is performed in a vacuum. -38 - 201024385 [Comparative Example 6] Except that the hole injection layer is not provided' The OLED element was produced in the same manner as in Example 7 except that the thickness of the α-NPD of the hole transport layer was changed to 7 〇 nm. [Comparative Example 7] PED〇T/PSS (manufactured by HC Starck Co., Ltd.) by spin coating method φ , grade name AI408 3 ) was applied onto an ITO substrate, and baked on a hot plate at atmospheric temperature for 60 minutes to form a charge transporting film. Except that the substrate was used, Example 7 was used. In general, an OLED device in which a hole injection layer was a PEDOT/PSS film was produced. The characteristics of the OLED devices obtained in Examples 7 to 9 and Comparative Example 6 '7 were measured, and the results are shown in Table 3. [Table 3] Material film thickness (nm Current density (mA/cm2) Voltage (V) Brightness (cd/cm2) Luminance halving time (hr) Example 7 TPAPA/PMA 30 10 5.7 250 290 Example 8 PTA/PMA 30 10 5.0 300 180 Example 9 οχ-ΤΡΑΡΑ/ΡΜΑ 30 10 6.2 250 770 Comparative Example 6 No HII - 10 21.9 230 <1 Comparative Example/2 PEDOT/PSS 40 10 4.8 270 150 *1 Initial brightness 1 500 cd/m2 *2 4mm2 of light-emitting surface (others are 100mm2) PEDOT/PSS: Since the characteristics of 100mm2 cannot be determined, the measurement of 4mm2-39-201024385 cannot be 4 Onm or more because the film thickness is not uniform, so it is set to 40nm. As shown in Table 3, the films constituting the hole injection layer in the elements of Examples 7 to 9 are extremely flat compared to the PEDOT/PSS film, so even under the light-emitting area of 1 〇〇 mm 2 There is a problem of characteristic stability. It can be understood that although the light-emitting area is large, the lifetime is still equal or higher, and in particular, by combining with a suitable host material, the life can be greatly improved. φ [3] Conductivity measurement [Example 10] The measurement was performed to carry out the conductivity measurement. The DMAc solution containing 30% by mass of PTA/PMA (mass ratio 1/2) was prepared as a charge transport varnish in the same manner as in Example 2 except that the solvent was changed to DM Ac. . Further, in the measurement of the conductivity, the resistance of the sample film itself must be sufficiently higher than the resistance of the measuring element, and it is necessary to form a thick film. Therefore, a high concentration varnish is prepared. φ The obtained varnish was applied onto an ITO substrate which was washed with ozone for 30 minutes by a spray coating method, and baked on a hot plate at 220 ° C for 30 minutes in the air to form a charge transporting property of a film thickness of 3 60 nm. film. The resulting film was a homogeneous amorphous solid. [Comparative Example 8] PEDOT/PSS (manufactured by HC Starck Co., Ltd., grade name CH8000) was applied onto an ITO substrate by a spin coating method, and fired at 100 ° C in a large -40-201024385 gas on a hot plate. After 60 minutes, a charge transporting film was formed. The resulting film was a homogeneous amorphous solid. The conductivity of the film obtained in the above Example 10 and Comparative Example 8 is shown in Table 4. Further, in the conductivity, each of the obtained substrates was introduced into a vacuum vapor deposition apparatus, and the sandwich type element (ITO/sample/A1 (150 nm)) which was deposited by depositing A1 of a thickness of 15 Onm in a vapor deposition cover was used for measurement (electrode area). 〇.2mm2 〇), current density 100mA/cm2). [Table 4] Conductivity voltage rS/cml m Example 1 〇PTA/PMA lxl〇·4 <0.1 Comparative Example 8 PEDOT/PSS 2x 1 0-7 4.1 As shown in Table 4, the PTA used in Example 10 /PMA Conductivity® has a small electric field dependency, exhibits good charge transportability under a weak voltage, and exhibits a sufficiently high conductivity as a material for the hole injection layer (generally required to be 10_7 S/cm or more). Further, the electric field from the electrode is injected into the material having a small barrier, and it is desired that the Ip値 is deeper than the crucible of the material to be transported, that is, deeper than about 5.4 eV, but the Ip is in an appropriate range. [4] Evaluation of oxidizing property of a material containing a triarylamine [Example 1 1] Now, a hole transporting layer which is laminated adjacent to a hole injection layer is used in a large amount of -41 - 201024385 to contain triphenylamine. The material is a triarylamine-containing material. In order to evaluate the oxidizing property of the heteropoly acid compound of the present invention for the triphenylamine-containing compound, the following experiment was conducted. Since the triphenylamine-containing compound is similar in physical properties to the other triarylamine-containing compound as the material of the hole transporting layer, the triarylamine-based hole transporting layer material can be evaluated for overall oxidative properties. The fact that the material of the hole transport layer is oxidizable means that an electrostatic carrier can be formed on one of the portions of the hole transport layer, whereby it is possible to reduce the driving voltage in the organic EL element. 7.05 g of DMI was added to 0.15 g of the triphenylamine dimer represented by the formula and 0.30 g of the above-mentioned ortho-molybdic acid (twice the weight ratio of triphenylamine dimer) in and at 60 ° Stir and stir under C and cool to room temperature to obtain a homogeneous solution. The resulting solution was passed through a PTFE filter having a pore size of 22 μιη to obtain a light brown transparent charge transporting varnish (solid content concentration: 6.0% by mass).所得 The obtained varnish was applied onto a quartz substrate which was washed with ozone for 30 minutes by a spin coating method, and baked on a hot plate at 150 ° C for 30 minutes in the air to form a charge transporting film. The resulting film was a homogeneous amorphous solid. After measuring the UV-VIS spectrum of the obtained film (measurement apparatus: UV-3100, manufactured by Shimadzu Corporation), a broad peak absorption peak appeared at 550 nm and 73 0 nm. -42- 201024385 [Chem. 15]

ρ b 由於僅含三苯基胺二聚物之薄膜與僅含磷鉬酸之薄膜 並不存在該等吸收峰’因此該吸收峰被認爲係源自三苯基 胺二聚物之陽離子或二陽離子。又對三芳基胺系材料之陽 ® 離子生成使用α-NPD充分進行硏究,可暸解陽離子係在 490nm及1330nm處出現吸收峰,藉由使作用的氧化劑增 量,吸收峰移行到源自陽離子之610nm及810nm。 由以上之結果,可了解磷鉬酸對於三苯基胺二聚物具 有氧化性。因此,可瞭解含有磷鉬酸之電洞注入層對於由 含有三苯基胺或其類似骨架之電洞輸送材料所構成之電洞 輸送層,有於其接觸界面氧化並形成摻雜物層之可能性, 據此有助於有機EL元件之驅動電壓降低之可能性。 [比較例9] 除將實施例5中磷鉬酸(Aldrich製造)變更爲二壬 基萘二磺酸以外,同樣地形成電荷輸送性薄膜。測定所得 薄膜之UV-VIS光譜後,並未出現於個別單體膜所獲得之 吸收峰以外之新的吸收峰。確認5 -磺基水楊酸對於三苯 基胺二聚物並不具有氧化性。 -43-ρ b Since the film containing only the triphenylamine dimer and the film containing only the phosphomolybdic acid do not have such absorption peaks, the absorption peak is considered to be derived from the cation of the triphenylamine dimer or Dication. Further, the α-NPD of the triarylamine-based material was thoroughly studied using α-NPD, and it was found that the absorption peak of the cation system at 490 nm and 1330 nm, and the absorption peak was shifted to the cation derived by the action of the oxidizing agent. 610nm and 810nm. From the above results, it is understood that phosphomolybdic acid is oxidizing to triphenylamine dimer. Therefore, it is understood that the hole injection layer containing phosphomolybdic acid is oxidized at the contact interface and forms a dopant layer for a hole transport layer composed of a hole transport material containing triphenylamine or the like. The possibility, according to this, contributes to the possibility that the driving voltage of the organic EL element is lowered. [Comparative Example 9] A charge transporting film was formed in the same manner except that the phosphomolybdic acid (manufactured by Aldrich) of Example 5 was changed to dinonylnaphthalene disulfonic acid. After the UV-VIS spectrum of the obtained film was measured, a new absorption peak other than the absorption peak obtained by the individual monomer film did not appear. It was confirmed that 5-sulfosalicylic acid was not oxidizing to the triphenylamine dimer. -43-

Claims (1)

201024385 七、申請專利範圍: 1· 一種電荷輸送性材料,其特徵爲包含電荷輸送性物 質與作爲電子受容性摻雜物之雜多酸化合物。 2. 如申請專利範圍第1項之電荷輸送性材料,其中前 述雜多酸化合物爲磷鉬酸。 3. 如申請專利範圍第1或2項之電荷輸送性材料,其 中前述電荷輸送性物質爲苯胺衍生物化合物。 4. 如申請專利範圍第3項之電荷輸送性材料,其中前 述電荷輸送性物質爲以下式(1)表示之寡苯胺衍生物, 或爲式(1)之氧化體之_二亞胺衍生物: [化1] 「 Γ Rzn R1-A—NH---B-il—Rs (X) . Jn L 」m [式中’ R1' R2及R3各獨立表示氫原子、鹵素原子、羥基 、胺基、矽烷醇基、硫醇基、羧基、磷酸基、磷酸酯基、 酯基、硫酯基、醯胺基、硝基、一價烴基、有機氧基、有 機胺基、有機矽烷基、有機硫基、醯基或磺基,A及B各 獨立表示以通式(2)或(3)表示之二價基, [化2]201024385 VII. Patent Application Range: 1. A charge transporting material characterized by a charge transporting substance and a heteropoly acid compound as an electron accepting dopant. 2. The charge transporting material according to claim 1, wherein the heteropoly acid compound is phosphomolybdic acid. 3. The charge transporting material according to claim 1 or 2, wherein the charge transporting substance is an aniline derivative compound. 4. The charge transporting material according to claim 3, wherein the charge transporting substance is an aniline derivative represented by the following formula (1), or a bisdiimine derivative of the oxidized body of the formula (1) : [Chemical Formula 1] "Γ Rzn R1-A-NH---B-il-Rs (X) . Jn L "m [wherein R1' R2 and R3 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an amine Base, stanol, thiol, carboxyl, phosphate, phosphate, ester, thioester, decyl, nitro, monovalent, organooxy, organic amine, organoalkyl, organic a thio group, a thiol group or a sulfo group, and each of A and B independently represents a divalent group represented by the formula (2) or (3), [Chemical 2] (式中’ R4〜R1 1各獨立表示氫原子、鹵素原子、羥基、胺 201024385 基、矽烷醇基、硫醇基、羧基、磷酸基、磷酸酯基、酯基 、硫酯基、醯胺基、硝基、一價烴基、有機氧基' 有機胺 基、有機矽烷基、有機硫基、醯基或磺基), m及η各獨立爲1以上之整數,且滿足m + n$20]。 5.如申請專利範圍第4項之電荷輸送性材料,其中前 述電荷輸送性物質爲以式(4)表示之寡苯胺衍生物,或 爲式(4)之氧化體之醌二亞胺衍生物, 〇 [化 3](wherein R 4 to R 1 1 each independently represent a hydrogen atom, a halogen atom, a hydroxyl group, an amine 201024385 group, a stanol group, a thiol group, a carboxyl group, a phosphate group, a phosphate group, an ester group, a thioester group, a decyl group. , nitro, monovalent hydrocarbon group, organooxy 'organic amine group, organodecyl group, organothio group, fluorenyl group or sulfo group), m and η are each independently an integer of 1 or more, and satisfy m + n$20]. 5. The charge transporting material according to claim 4, wherein the charge transporting substance is an aniline derivative represented by the formula (4) or a quinone diimine derivative of the oxidized form of the formula (4) , 〇[化3] (式中,R1〜R7、m及η表示與前述相同之意義)。 6.如申請專利範圍第4項之電荷輸送性材料,其中前 述電荷輸送性物質爲以式(5)表示之寡苯胺衍生物’或 φ 爲式(5)之氧化體之醌二亞胺衍生物’ [化4](wherein R1 to R7, m and η have the same meanings as described above). 6. The charge transporting material according to item 4 of the patent application, wherein the charge transporting substance is derived from an oligoaniline derivative represented by the formula (5) or an oxidized body of the formula (5). Object '[4] (式中’ R2、R4~R7、η及m表示與前述相同之意義, R12~R35各獨立表示氫原子、羥基、矽烷醇基、硫醇基、 羧基、磷酸基、磷酸酯基、酯基、硫酯基、醯胺基、硝基 -45- 201024385 、經取代或未經取代之一價烴基、有機氧基、有機胺基、 有機矽烷基、有機硫基、醯基、磺基或鹵素原子)。 7. —種電荷輸送性清漆,其特徵爲包含申請專利範圍 第1至6項中任一項之電荷輸送性材料與有機溶劑,且 前述電荷輸送性物質及雜多酸化合物係均勻溶解於前 述有機溶劑中。 8. 如申請專利範圍第7項之電荷輸送性清漆,其中前 述有機溶劑爲包含至少一種良溶劑之混合溶劑。 _ 9·如申請專利範圍第7或8項之電荷輸送性清漆,其 包含在25°C下之黏度爲1〇〜200mPa.s之溶劑。 10.—種電荷輸送性薄膜,其特徵爲包含申請專利範 圍第1至6項任一項之電荷輸送性材料。 11·-種電荷輸送性薄膜,其特徵爲由申請專利範圍 第7至9項中任一項之電荷輸送性清漆製作而成。 12. —種有機電致發光元件’其特徵爲具備申請專利 範圍第10或11項之電荷輸送性薄膜。 @ 13. 如申請專利範圍第12項之有機電致發光元件,其 中前述電荷輸送性薄膜係構成電洞注入層。 -46 - 201024385 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無(wherein R 2 , R 4 to R 7 , η and m have the same meanings as defined above, and R 12 to R 35 each independently represent a hydrogen atom, a hydroxyl group, a stanol group, a thiol group, a carboxyl group, a phosphate group, a phosphate group, or an ester group. , thioester, guanamine, nitro-45- 201024385, substituted or unsubstituted one-valent hydrocarbon, organooxy, organic amine, organoalkyl, organothio, sulfhydryl, sulfo or halogen atom). 7. A charge transporting varnish comprising the charge transporting material according to any one of claims 1 to 6 and an organic solvent, wherein the charge transporting substance and the heteropolyacid compound are uniformly dissolved in the foregoing In organic solvents. 8. The charge transporting varnish of claim 7, wherein the organic solvent is a mixed solvent containing at least one good solvent. _ 9· A charge transporting varnish according to claim 7 or 8, which comprises a solvent having a viscosity of from 1 〇 to 200 mPa·s at 25 ° C. A charge transporting film characterized by comprising the charge transporting material according to any one of claims 1 to 6. A charge transporting film produced by the charge transporting varnish according to any one of claims 7 to 9. 12. An organic electroluminescence device characterized by having a charge transporting film of claim 10 or 11. The organic electroluminescence device of claim 12, wherein the charge transporting film constitutes a hole injection layer. -46 - 201024385 IV. Designation of Representative Representatives: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: none -3- 201024385 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:無-3- 201024385 V. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention: none
TW098139313A 2008-11-19 2009-11-19 Charge transport material and charge transport varnish TWI492999B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008295909 2008-11-19

Publications (2)

Publication Number Publication Date
TW201024385A true TW201024385A (en) 2010-07-01
TWI492999B TWI492999B (en) 2015-07-21

Family

ID=42198216

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098139313A TWI492999B (en) 2008-11-19 2009-11-19 Charge transport material and charge transport varnish

Country Status (3)

Country Link
JP (3) JP5488473B2 (en)
TW (1) TWI492999B (en)
WO (1) WO2010058777A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103975038A (en) * 2011-12-05 2014-08-06 日产化学工业株式会社 Composition for forming antistatic film and oligomer compound
CN105009318A (en) * 2013-02-28 2015-10-28 日产化学工业株式会社 Charge-transporting varnish
CN105074949A (en) * 2013-03-11 2015-11-18 日产化学工业株式会社 Charge-transporting varnish
CN105122493A (en) * 2013-04-16 2015-12-02 日产化学工业株式会社 Hole transporting varnish for metal positive electrodes and composite metal positive electrode
CN105210207A (en) * 2013-05-17 2015-12-30 日产化学工业株式会社 Charge-transporting varnish
CN105324360A (en) * 2013-06-21 2016-02-10 日产化学工业株式会社 Aniline derivative, charge-transporting varnish and organic electroluminescent device
CN106025098A (en) * 2011-09-21 2016-10-12 日产化学工业株式会社 Charge-transporting varnish
TWI613181B (en) * 2013-02-26 2018-02-01 Nissan Chemical Ind Ltd Charge transport coating
TWI614317B (en) * 2013-03-18 2018-02-11 Nissan Chemical Ind Ltd Charge transport varnish
TWI619696B (en) * 2013-10-09 2018-04-01 Nissan Chemical Ind Ltd Arylsulfonic acid compound and use thereof, and method for producing arylsulfonic acid compound
TWI635513B (en) * 2013-01-28 2018-09-11 日商日產化學工業股份有限公司 Charge transport varnish
TWI666278B (en) * 2014-03-27 2019-07-21 日商日產化學工業股份有限公司 Charge transport coating
CN110226239A (en) * 2017-01-18 2019-09-10 日产化学株式会社 Charge-transporting varnish and the charge-transporting film for using it
TWI680116B (en) * 2015-01-21 2019-12-21 日商日產化學工業股份有限公司 Charge-transporting coating, charge-transporting film, and organic electroluminescent device
TWI690532B (en) * 2015-03-13 2020-04-11 日商日產化學工業股份有限公司 Charge transport thin film forming composition for organic electroluminescence elements, charge transport thin film for organic electroluminescence elements, and organic electroluminescence elements

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010058777A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge transporting material and charge transporting varnish
JP6086131B2 (en) * 2009-06-19 2017-03-01 大日本印刷株式会社 Organic electronic device and manufacturing method thereof
JP5760334B2 (en) * 2009-06-19 2015-08-05 大日本印刷株式会社 Organic electronic device and manufacturing method thereof
GB201111742D0 (en) * 2011-07-08 2011-08-24 Cambridge Display Tech Ltd Solution
JP6106917B2 (en) * 2011-12-20 2017-04-05 セイコーエプソン株式会社 Film forming ink, film forming method, and light emitting element manufacturing method
JP6426468B2 (en) * 2012-03-02 2018-11-21 日産化学株式会社 Charge transporting varnish
WO2014119782A1 (en) * 2013-02-04 2014-08-07 日産化学工業株式会社 Buffer layer for organic thin film solar cells, and organic thin film solar cell
CN105392771B (en) 2013-05-20 2019-01-15 日产化学工业株式会社 Triphenylamine derivative and its utilization
WO2014203818A1 (en) 2013-06-18 2014-12-24 日産化学工業株式会社 Thiophene derivative, use thereof, and production method of thiophene derivative
EP3054497B1 (en) 2013-10-01 2018-08-15 Nissan Chemical Industries, Ltd. Charge-transporting varnish
JP6467842B2 (en) * 2013-10-04 2019-02-13 日産化学株式会社 Charge transporting varnish, charge transporting thin film, organic electroluminescence device, and method for producing charge transporting thin film
EP3053910B1 (en) 2013-10-04 2021-04-28 Nissan Chemical Corporation Aniline derivatives and uses thereof
KR102270642B1 (en) 2013-10-04 2021-06-30 닛산 가가쿠 가부시키가이샤 Charge-transporting varnish, charge-transporting thin film, and organic electroluminescent device
KR20150040217A (en) * 2013-10-04 2015-04-14 닛산 가가쿠 고교 가부시키 가이샤 Charge-transporting varnish, charge-transporting thin film, and organic electroluminescent device
JP6520718B2 (en) 2013-12-09 2019-05-29 日産化学株式会社 Composition for anode buffer layer of organic thin film solar cell and organic thin film solar cell
JP6433128B2 (en) * 2014-02-13 2018-12-05 国立大学法人山形大学 Organic electroluminescence device
CN116193960A (en) 2014-03-14 2023-05-30 日产化学工业株式会社 Aniline derivatives and use thereof
US10193075B2 (en) 2014-03-14 2019-01-29 Nissan Chemical Industries, Ltd. Aniline derivative and use thereof
KR102408597B1 (en) 2014-03-14 2022-06-14 닛산 가가쿠 가부시키가이샤 Aniline derivative and use thereof
CN106132917B (en) * 2014-03-27 2019-01-08 日产化学工业株式会社 Triarylamine derivatives and its utilization
WO2015146912A1 (en) * 2014-03-28 2015-10-01 日産化学工業株式会社 Fluorene derivative and use thereof
KR102483085B1 (en) 2014-05-30 2022-12-30 닛산 가가쿠 가부시키가이샤 Thin-film planarization method, planarized thin-film formation method, and thin-film formation varnish
WO2015186688A1 (en) 2014-06-05 2015-12-10 日産化学工業株式会社 Charge-transporting varnish
TWI718099B (en) 2014-07-11 2021-02-11 日商日產化學工業股份有限公司 Charge-transporting varnish and manufacturing method of charge-transporting film
WO2016013533A1 (en) * 2014-07-23 2016-01-28 日産化学工業株式会社 Charge transport material
JP6551411B2 (en) * 2014-07-24 2019-07-31 日産化学株式会社 Charge transportable material
CN106688120B (en) * 2014-09-10 2018-09-11 日产化学工业株式会社 Charge-transporting varnish
JP6607247B2 (en) * 2015-02-24 2019-11-20 日産化学株式会社 Charge transport varnish
WO2016148184A1 (en) 2015-03-17 2016-09-22 日産化学工業株式会社 Composition for forming hole collecting layer of photosensor element, and photosensor element
KR102355334B1 (en) 2015-04-22 2022-01-24 닛산 가가쿠 가부시키가이샤 Method for producing charge-transporting film, charge-transporting film, organic electroluminescence element, method for producing organic electroluminescence element, and method for improving charge transport properties of charge-transporting film
KR101954425B1 (en) 2015-05-27 2019-03-05 닛산 가가쿠 가부시키가이샤 Charge-transporting varnish, and organic electroluminescent element
US11046884B2 (en) * 2015-08-28 2021-06-29 Merck Patent Gmbh Formulation of an organic functional material comprising an epoxy group containing solvent
EP3404017B1 (en) 2016-01-14 2020-05-13 Nissan Chemical Industries, Ltd. Fluorine atom-containing compound and use thereof
CN108886099B (en) 2016-02-03 2022-05-10 日产化学株式会社 Charge-transporting varnish
JP6717372B2 (en) 2016-03-03 2020-07-01 日産化学株式会社 Charge transport varnish
JP6763425B2 (en) 2016-03-24 2020-09-30 日産化学株式会社 Arylamine derivatives and their uses
WO2018110317A1 (en) 2016-12-16 2018-06-21 日産化学工業株式会社 Composition for hole collecting layer of organic photoelectric conversion element
JP7266409B2 (en) 2017-02-07 2023-04-28 日産化学株式会社 charge transport varnish
CN109563243B (en) 2017-03-24 2022-07-08 日产化学株式会社 Fluorine atom-containing polymer and use thereof
US20200032140A1 (en) 2017-04-05 2020-01-30 Nissan Chemical Corporation Charge-transporting varnish
US20220278281A1 (en) 2017-05-25 2022-09-01 Nissan Chemical Corporation Method for producing charge transporting thin film
JP7072792B2 (en) * 2017-12-11 2022-05-23 国立大学法人神戸大学 Bispecific antibody
BR112020011922A2 (en) 2017-12-15 2020-11-24 Nissan Chemical Corporation orifice collection layer composition for organic photoelectric conversion element
EP3731290A4 (en) 2017-12-20 2021-09-29 Nissan Chemical Corporation Charge-transporting varnish
US20200411766A1 (en) 2018-03-15 2020-12-31 Nissan Chemical Corporation Charge-transporting composition
JP7290149B2 (en) 2018-03-16 2023-06-13 日産化学株式会社 Aniline derivative and its use
KR20210028667A (en) 2018-07-05 2021-03-12 닛산 가가쿠 가부시키가이샤 Composition for forming charge-transporting thin film
JP7435446B2 (en) 2018-07-24 2024-02-21 日産化学株式会社 Charge transporting composition
TW202033680A (en) * 2018-09-17 2020-09-16 天光材料科技股份有限公司 Polymer-polyoxometalate composite ink and application thereof
KR20230017812A (en) 2020-06-02 2023-02-06 닛산 가가쿠 가부시키가이샤 Composition for hole trapping layer of organic photoelectric conversion device
WO2023008176A1 (en) 2021-07-26 2023-02-02 日産化学株式会社 Fluorinated arylsulfonate polymer compound and use thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2625598B1 (en) * 1987-12-30 1990-05-04 Commissariat Energie Atomique ELECTRONIC CONDUCTIVE POLYMERS DOPED BY HETEROPOLYANIONS, PROCESS FOR THEIR PREPARATION AND THEIR USE IN CHEMICAL AND ELECTROCHEMICAL CATALYSIS
JP2001085713A (en) * 1999-09-14 2001-03-30 Fuji Photo Film Co Ltd Photoelectric transducer and solar battery
JP2001094130A (en) * 1999-09-21 2001-04-06 Fuji Photo Film Co Ltd Photoelectric conversion element, solar cell and novel oligopyrol compound
JP4565730B2 (en) * 2000-10-23 2010-10-20 日本カーリット株式会社 Solid capacitor and manufacturing method thereof
US9172048B2 (en) * 2002-11-07 2015-10-27 Nissan Chemical Industries, Ltd. Charge-transporting varnish
TW200502277A (en) * 2003-05-20 2005-01-16 Nissan Chemical Ind Ltd Charge-transporting varnish
JP4447358B2 (en) * 2004-03-31 2010-04-07 大日本印刷株式会社 Organic semiconductor device
JP2005353318A (en) * 2004-06-08 2005-12-22 Mitsubishi Electric Corp Dye sensitized solar battery
US20090128005A1 (en) * 2005-02-25 2009-05-21 Nissan Motor Co., Ltd. Organic Electroluminescent Element and Manufacturing Method Thereof
CN101273480B (en) * 2005-09-05 2010-09-15 奥斯兰姆奥普托半导体有限责任公司 Novel materials for improving the hole injection in organic electronic devices and use of the material
WO2007049631A1 (en) * 2005-10-28 2007-05-03 Nissan Chemical Industries, Ltd. Charge-transporting varnish for spray or inkjet application
JP2007250466A (en) * 2006-03-17 2007-09-27 Japan Carlit Co Ltd:The Conductive polymer coating material and metal coating method
US20070224244A1 (en) * 2006-03-22 2007-09-27 Jan Weber Corrosion resistant coatings for biodegradable metallic implants
US7842733B2 (en) * 2006-09-11 2010-11-30 Advent Technologies Sa Aromatic polyether copolymers and polymer blends and fuel cells comprising same
JP5262717B2 (en) * 2006-09-13 2013-08-14 日産化学工業株式会社 Charge transport varnish
US20080071340A1 (en) * 2006-09-15 2008-03-20 Boston Scientific Scimed, Inc. Implantable electrodes with polyoxometalates
JP2008108680A (en) * 2006-10-27 2008-05-08 Fuji Electric Holdings Co Ltd Manufacturing method of organic el element
US8298444B2 (en) * 2007-04-12 2012-10-30 Nissan Chemical Industries, Ltd. Oligoaniline compound
WO2010058776A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge-transporting material and charge-transporting varnish
WO2010058777A1 (en) * 2008-11-19 2010-05-27 日産化学工業株式会社 Charge transporting material and charge transporting varnish

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025098B (en) * 2011-09-21 2018-10-02 日产化学工业株式会社 Charge-transporting varnish
TWI596136B (en) * 2011-09-21 2017-08-21 Nissan Chemical Ind Ltd Charge-transporting varnish
CN106025098A (en) * 2011-09-21 2016-10-12 日产化学工业株式会社 Charge-transporting varnish
CN103975038B (en) * 2011-12-05 2016-09-21 日产化学工业株式会社 The manufacture method of oligomer of phenylamine compound
CN103975038A (en) * 2011-12-05 2014-08-06 日产化学工业株式会社 Composition for forming antistatic film and oligomer compound
TWI507380B (en) * 2011-12-05 2015-11-11 Nissan Chemical Ind Ltd Production method of aniline oligomer compound
CN104956511B (en) * 2013-01-28 2018-10-30 日产化学工业株式会社 Charge-transporting varnish
TWI635513B (en) * 2013-01-28 2018-09-11 日商日產化學工業股份有限公司 Charge transport varnish
TWI613181B (en) * 2013-02-26 2018-02-01 Nissan Chemical Ind Ltd Charge transport coating
CN105009317B (en) * 2013-02-26 2018-09-11 日产化学工业株式会社 Charge-transporting varnish
CN105009318A (en) * 2013-02-28 2015-10-28 日产化学工业株式会社 Charge-transporting varnish
CN105009318B (en) * 2013-02-28 2017-04-12 日产化学工业株式会社 Charge-transporting varnish
CN105074949A (en) * 2013-03-11 2015-11-18 日产化学工业株式会社 Charge-transporting varnish
CN105074949B (en) * 2013-03-11 2018-04-10 日产化学工业株式会社 Charge-transporting varnish
TWI620731B (en) * 2013-03-11 2018-04-11 Nissan Chemical Ind Ltd Charge transport varnish
TWI614317B (en) * 2013-03-18 2018-02-11 Nissan Chemical Ind Ltd Charge transport varnish
CN105122493A (en) * 2013-04-16 2015-12-02 日产化学工业株式会社 Hole transporting varnish for metal positive electrodes and composite metal positive electrode
TWI620732B (en) * 2013-04-16 2018-04-11 Nissan Chemical Ind Ltd Electrode transport varnish for metal anode and composite
TWI650385B (en) * 2013-05-17 2019-02-11 日商日產化學工業股份有限公司 Charge transport varnish
CN105210207A (en) * 2013-05-17 2015-12-30 日产化学工业株式会社 Charge-transporting varnish
CN105324360B (en) * 2013-06-21 2018-06-22 日产化学工业株式会社 Anil, charge-transporting varnish and organic electroluminescent device
CN105324360A (en) * 2013-06-21 2016-02-10 日产化学工业株式会社 Aniline derivative, charge-transporting varnish and organic electroluminescent device
TWI619696B (en) * 2013-10-09 2018-04-01 Nissan Chemical Ind Ltd Arylsulfonic acid compound and use thereof, and method for producing arylsulfonic acid compound
TWI666278B (en) * 2014-03-27 2019-07-21 日商日產化學工業股份有限公司 Charge transport coating
TWI680116B (en) * 2015-01-21 2019-12-21 日商日產化學工業股份有限公司 Charge-transporting coating, charge-transporting film, and organic electroluminescent device
TWI690532B (en) * 2015-03-13 2020-04-11 日商日產化學工業股份有限公司 Charge transport thin film forming composition for organic electroluminescence elements, charge transport thin film for organic electroluminescence elements, and organic electroluminescence elements
CN110226239A (en) * 2017-01-18 2019-09-10 日产化学株式会社 Charge-transporting varnish and the charge-transporting film for using it
CN110226239B (en) * 2017-01-18 2022-08-09 日产化学株式会社 Charge-transporting varnish and charge-transporting film using same
CN115011161A (en) * 2017-01-18 2022-09-06 日产化学株式会社 Charge-transporting film

Also Published As

Publication number Publication date
JP5729496B2 (en) 2015-06-03
JPWO2010058777A1 (en) 2012-04-19
WO2010058777A1 (en) 2010-05-27
JP2015146438A (en) 2015-08-13
JP5488473B2 (en) 2014-05-14
JP2014131057A (en) 2014-07-10
TWI492999B (en) 2015-07-21

Similar Documents

Publication Publication Date Title
TWI492999B (en) Charge transport material and charge transport varnish
TWI499649B (en) Charge transport material and charge transport varnish
JP4591681B2 (en) Charge transport varnish
TWI399415B (en) Contains good solvent and weak solvent varnish
TWI424982B (en) Low aniline compounds and their use
TWI447099B (en) Aryl sulfonic acid compounds and the use of electron acceptables
JP5196175B2 (en) Charge transport varnish
JP5024498B2 (en) Charge transporting varnish, charge transporting thin film, and organic electroluminescence device
TWI614320B (en) Charge transfer paint
KR101099020B1 (en) Charge-transporting varnish
JP2010123930A (en) Charge transporting material and charge transporting varnish