TW201022104A - System and method for real-time monitoring heating value of LNG in storage tank - Google Patents

System and method for real-time monitoring heating value of LNG in storage tank Download PDF

Info

Publication number
TW201022104A
TW201022104A TW097151440A TW97151440A TW201022104A TW 201022104 A TW201022104 A TW 201022104A TW 097151440 A TW097151440 A TW 097151440A TW 97151440 A TW97151440 A TW 97151440A TW 201022104 A TW201022104 A TW 201022104A
Authority
TW
Taiwan
Prior art keywords
calorific value
natural gas
liquefied natural
density
unit
Prior art date
Application number
TW097151440A
Other languages
Chinese (zh)
Inventor
Young-Cheol Ha
Seong-Min Lee
Original Assignee
Korea Gas Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Korea Gas Corp filed Critical Korea Gas Corp
Publication of TW201022104A publication Critical patent/TW201022104A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • F17C13/026Special adaptations of indicating, measuring, or monitoring equipment having the temperature as the parameter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • F17C2250/034Control means using wireless transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0631Temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Disclosed are a system and a method for monitoring a heating value of liquefied natural gas (LNG) in a storage tank in real time. As a conventional LNG storage method separately storing the LNG according to heating values is changed to a combined storage method, it is required to calculate and monitor heating values of LNG in respective storage tanks. The real-time heating value monitoring system includes at least one LNG storage unit, a measuring unit provided to the LNG storage unit to measure density and temperature of the LNG, a calculation unit calculating the heating value using the density and temperature measured by the measurement unit, and a monitoring unit displaying the heating value calculated by the calculation unit.

Description

I 201022104 六、發明說明: 【發明所屬之技術領域】 本發明是有關於一種儲存槽液化天然氣之熱值即時監控系 統及其方法,且制是提供-雖存槽液化天然氣之熱值即時監 控系統及其方法,係可量測完整儲存於儲存槽之液化天然氣的熱 值’由於增加液化天然氣之熱值的範目,習用之根據熱值而各別 ❹儲存液化天減之方法改縣結合液化天然_存方法,以儲存 液化天織,讀液化天可提供符合供應商的理想熱值。 【先前技術】 一般而言,依據採用液化天然氣卬职纽以natuml gas, LNG) ’儲存_根據液化天織的高、中以及低熱值來分類。 如此’液化天然氣可以各別地儲存。然而,依據新的合約以及降 低現貨(spotcargo)液化天然氣的熱值,近年來液化天然氣的熱值 ❹範圍,由過去的9700千卡/標準一大氣屢下之立方公尺體積 (kcal/Nm3)至 10750kcal/Nm3,大大地增加到 1〇45〇kca]/Nm3 至 10750 kcal/Nm3。 當低熱值液化天然氣的比例相對低時,液化天然氣係根據 高、中以及低熱值,並且藉由分類液化天然氣儲存槽,以各別的 儲存。由於採用的低熱值液化天然氣已從西元2〇〇6年以來急遽 增加,然而,在液化天然氣儲存槽發生了一個問題,特別是在低 熱值液化天然氣’若是液化天然氣根據熱值而儲存時,液化天然 201022104 • 氣會缺乏。為此,為了解決此問題,液化天然氣儲存方法變成由 常見的分隔方法轉換到結合儲存方法。 當液化天然氣係根據高、中以及低熱值沒有區別而播雜的儲 存於液化天然氣儲存槽時’以一電流測量系統(current measurement system)判斷各別儲存槽的熱值會變成非常地困難。 因此,會導致主要的兩個問題。 第一,難以控制在儲存槽中之氣體的熱值。 參 第二’依液化石油氣(liquefledpetr〇leumgas,LpG)熱值控制 設備,根據合約或氣體的熱值低於一物體的熱值,其設備是為了 增加具有最小驗之氣體_值。姐祕㈣氣触控制設備 中,將液化石油氣的輪入量減至最小是困難的。 、综上所述,消費者所期望的液化天然氣是由熱值所提供的, 因此必須監控液化天然氣儲存槽的熱值,並且有效地管理。 φ 【發明内容】 因此,本發明鑒於上述之問題,且本發明之目的是使用一標 準溫度密度(level temperature density ’ LTD)所提供的儲存槽,用 以提供一種儲存槽液化天然氣之熱值即時監控系統及其方法。 本發明之另一目的為提供一種儲存槽液化天然氣之熱值即 時1^控系統及其方法,藉由一固定的熱值或是藉由供鋪提供理 想的熱值’例如常見的分隔液化天然氣之儲存方法改變為結合液 化天然氣之错存方法。 201022104 依據本發明,上述及其他目的藉由提供一種即時監控儲存槽 内液化天缝之触纽來實現。本發狀餘系統包括有至少: -液化天織儲存單元、-量醇元,提供液化城氣儲存單元 測量液化天減的密度與溫度、—計算單元,_量測單元所測 量之密度與溫度以計算出齡、以及—監控單元,顯示計算單元 計算所得的熱值。I 201022104 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to a thermal value real-time monitoring system for a storage tank liquefied natural gas and a method thereof, and the system provides an instant monitoring system for the calorific value of the storage tank liquefied natural gas And the method thereof, the calorific value of the liquefied natural gas stored in the storage tank can be measured. 'Because of increasing the calorific value of the liquefied natural gas, the conventional method of combining the liquefaction and the liquefaction according to the calorific value is combined with the liquefaction of the county. The natural _ storage method to store liquefied woven fabrics, liquefied days can provide the ideal calorific value according to the supplier. [Prior Art] Generally, according to the use of liquefied natural gas, the natuml gas, LNG) storage is classified according to the high, medium and low calorific value of the liquefied woven fabric. Thus, 'liquefied natural gas can be stored separately. However, according to the new contract and the calorific value of spotcargo liquefied natural gas, the calorific value of liquefied natural gas in recent years ranges from the previous 9700 kcal/standard to the atmospheric volume (kcal/Nm3). Up to 10750kcal/Nm3, greatly increased to 1〇45〇kca]/Nm3 to 10750 kcal/Nm3. When the proportion of low calorific value LNG is relatively low, LNG is based on high, medium and low calorific value and is stored separately by sorting LNG storage tanks. Since the low calorific value of liquefied natural gas has increased sharply since the second year of the second year of the year, however, there has been a problem in the liquefied natural gas storage tank, especially in the case of low calorific value liquefied natural gas, if the liquefied natural gas is stored according to the calorific value, liquefaction Natural 201022104 • Gas will be lacking. To this end, in order to solve this problem, the LNG storage method has changed from a common separation method to a combined storage method. When the liquefied natural gas is stored in a liquefied natural gas storage tank based on the difference in high, medium and low calorific value, it is extremely difficult to judge the calorific value of each storage tank by a current measurement system. Therefore, it will lead to two main problems. First, it is difficult to control the calorific value of the gas in the storage tank. The second liquefied petroleum gas (LpG) calorific value control device is designed to increase the gas value with the smallest test according to the heat value of the contract or gas below the heating value of an object. In the sister-in-law (4) gas-touch control equipment, it is difficult to minimize the amount of liquefied petroleum gas. In summary, the liquefied natural gas that consumers expect is provided by the calorific value, so the calorific value of the liquefied natural gas storage tank must be monitored and managed effectively. φ [ SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above problems, and an object of the present invention is to provide a storage tank of a liquefied natural gas (LNG) using a storage tank provided by a standard temperature density (LTD). Monitoring system and its method. Another object of the present invention is to provide a calorific value instant control system for a storage tank liquefied natural gas and a method thereof, which provide a desired calorific value by a fixed calorific value or by paving, for example, a common separation of liquefied natural gas. The storage method is changed to a method of combining the liquefied natural gas. 201022104 In accordance with the present invention, the above and other objects are achieved by providing a touch that instantly monitors a liquefied seam in a storage tank. The hair growth system comprises at least: - a liquefied woven storage unit, a quantity of alcohol elements, a liquefied city gas storage unit for measuring the density and temperature of the liquefaction reduction, a calculation unit, a density and a temperature measured by the measurement unit To calculate the age, and the - monitoring unit, the calculated calorific value is calculated.

依據本發明所揭露之儲存槽液化天然氣之熱值即時監控系 統更包括有-層產生觸單元,藉由量零元所測量之密声與田 度來判斷與指示-層是否產生於液化天絲儲存單元内广、/皿 依據本發_揭露之儲存魏化韻氣之熱值即時監控系 統更包括有-树/躲軌中繼單元,傳送由量測單元 生判斷單元錢計料觸產生之密度與溫度值。 依據本發明之另 目的,係提供一種監控方法,用以即時監 控儲存槽_液化天賊之触,本發狀監財法包括有以下 步驟:-量測步驟,測量儲存於至少—液化天然氣儲存單元之一 液化天然氣的密度與溫度、—計算步驟,利剩量所得之密度與 溫度數值計算出熱值、狀—監控步驟,赌液化天喊儲存單 凡之熱值,且熱值係於計算步驟中得到。 *依據本發明所揭露之儲存槽液化天然氣之熱值即時監控系 統及其方法更包括有―層產生觸步驟,姻·所得之密度與 溫度判斷與指示—層是否產生於液化天然氣儲存單元内。又、 6 201022104 依據本發贿祕之儲存槽液化天氧之熱值即時監控系 統及其方法更包括有-傳送步驟,於制步财透過有線/無線 通訊中繼單元,以傳送測量所得的密度與溫度。 熱值的計算係透過一相關方程式:The thermal value real-time monitoring system of the storage tank liquefied natural gas disclosed in the present invention further comprises a layer-generating contact unit, and the dense sound and the field measured by the quantity zero element are used to judge whether the indicator layer is generated in the liquefied Tencel. The storage unit is wide and / according to the storage _ disclosure of the storage of Wei Huayun's calorific value of the real-time monitoring system also includes a - tree / dorm relay unit, transmitted by the measurement unit to determine the density of the unit Temperature value. According to another aspect of the present invention, there is provided a monitoring method for instantly monitoring a storage tank _ liquefied thief touch, the hair styling method includes the following steps: - measuring step, measuring stored in at least - liquefied natural gas storage The density and temperature of one of the units, the calculation step, the density and temperature values obtained from the remaining amount, calculate the calorific value, the shape-monitoring step, and the calorific value of the stored liquid is stored, and the calorific value is calculated. Obtained in the steps. * The thermal value monitoring system and method thereof for storing liquefied natural gas in a storage tank according to the present invention further includes a layer-forming step, and the density and temperature judgment and indication obtained from the layer are generated in the liquefied natural gas storage unit. Also, 6 201022104 According to the present bribe secret storage tank, the liquefied natural gas instantaneous value monitoring system and the method thereof further include a transmission step for transmitting the measured density through the wired/wireless communication relay unit. With temperature. The calorific value is calculated by a correlation equation:

Hv = 8464.34 - 20.1413*LD + 〇.〇538661.LD2.134.488N2, 其中 ❷ HV :熱值(千卡/標準一大氣壓下之立方公尺體 積)_編)(_熱值參考溫度:15度,關於體積參考溫度:〇 度 1.01325 巴) LD :液化天然氣(公斤/立方公尺胸⑽)的密度在負⑽度 N2 .氮的含量(莫耳百分比)(m〇][%) 這時’氮的含量係不大於0.5百分比。 【實施方式】 ® 爾本㈣所聽之齡魏化天錢之鐘即時監控系 統及f方法將詳細描述如下,並請同時參酌圖示以利說明。 「第1 W」為根據本發明所猶之儲存槽齡液化天然氣之 熱值即時監控系統之示意圖’·「第2圖」為根據本發明的熱值即 時&控系統之監控f幕之示意圖;「第3圖」為根據本發明的液 化天然氣之熱值即時監㈣統之步職程圖;以及「第4圖」為 根據本發明的錯存槽液化天然氣之熱值即時監控方法之操料 驟流程圖。 201022104 在說明本發明之前,需注意的是,按照慣例,液化天然氣是 根據熱值而儲存。制的是,祕液化天錢是從具有幾乎相同 的熱值的相同原產地所引進,熱值經由原產地的檢查,並且根據 液化天然祕勒熱值各儲存在較^域儲存槽。也就是 說^分成為高、中、低熱值。近來,#5|進的液化域氣之熱值 的範圍增辦,祕天織齡_㈣會缺乏,於存 係藉由熱值_化天錢各別_存方法轉換為結合儲存方 法,忽略熱值而將所有液化天然氣儲存在一起。 一在過去,由於引進液化天然氣的熱值係為相對的常數,而有 一些天然液化氣具有特別高或低熱值,將各別的儲存,因此沒有 需要專⑽量天驗絲麵化天賊齡_的熱值。 ❿ 並且,當液化天然氣原產地的數量受到限制時,有時會在儲 存槽貼上原產地標籤,例如,”東京液化天然氣,日本,,,因此, =儲存槽之祕天然㈣熱值係不需要專門測量熱值即可辨別 出0 #然而’在近幾年,熱值的原產地與範圍已經急遽地增加, f見的為了根據熱值而各別儲存液化天_,因而導致液化天 _存槽雜量缺乏。因此,雜触為高、巾雜,液化天 Γ須全部—起儲存。另外,為了了解結合儲存液化天然氣的 值,並且從而提供理想驗化天減缝給料者,如此,有 要檢查熱值。 201022104 此外,於檢i之後,-液化天然氣儲存基礎控制室必須對各 別的液化天然氣儲存槽所檢查出的熱值資訊監栌。 為此,本發明是建議以上述的觀點為考量,並將詳細說明如 下。 首先’請參考「第丨圖」至「第3圖」,本發騎揭露之監 控系統’制以即時監控-儲存槽_液化天然氣的—熱值,包 ❹括有至少-液化天然氣儲存單元100、_密度與溫度量測單元 2〇〇,提供液化天然氣儲存單元1〇〇測量液化天然氣的密度與溫 度、一層產生判斷單元蕭’透過測量所得的鼓與溫度以判斷 -層是否形成於液化天然氣儲存單元内,並且指示結果、一計算 單元400,_ ―制單元測量所得之密度與溫度以計算出 液化天然氣之-熱值、以及-監控單元5⑽,顯示出由計算單元 400所計算出的熱值。 ❹ 此外,提供一有線/無線通訊中繼單元3〇〇,傳送由量測單元 至層產生判斷單元2〇〇,以及計算單元·所產生之密度與溫 度值。 為了計算於液化天然氣儲存單元100内之液化天然氣的熱 值,首先,必須要使用設置於液化天然氣儲存單元100的一標準 溫度密度㈣士咖卿咖比如以卜仃功’以測量儲存於液化天 然氣儲存單元100内之液化天然氣的密度與溫度。 實際上’提供標準溫度密度來檢查溫度與密度是根據儲存於 201022104 液化天然氣儲存單元100内之液化天然氣的高度,以及藉此判斷 是否任一層是產生於具有不同性質的液化天然氣之間。 標準溫度密度掃描一次液化天然氣儲存單元1〇〇的每高度的 Μ度與农度,平均需花費一個小時。一天執行兩次標準溫度密度 量測。設置於液化天然氣儲存單元100的一較低部位的預備模式 下,也就是說,當不掃描時,標準溫度密度測量密度與溫度是即 時的。 ❹ 曰 測量溫度與密度值係透過通訊中繼單元300傳送至層產生判 斷單元朋,以及計算單元400。計算料400透過溫度與密度的 傳达資訊,以計算液化天然氣的熱值。計算出的熱值係透過於液 化天然氣儲存基礎控制室的監控單元5〇〇而即時顯示。 此時’層產生判斷單S ,判斷與指*,層是否形成於液 化天然氣儲存單元内的儲存液化天然氣中。在此,標準溫度密度 ❹掃描·天然氣贿單元應在最高部輸最低部_溫度與密 度’以用來判斷層是否產生於不同的液化天然氣之間。當^出 有層時,由於此層會使液化天然氣的熱值測量中產生錯誤且會導 致翻轉,因此,必須移除掉此層。 耻’若是產生層,為了由·天絲的蚊與溫度中得到 在液化天然氣儲存單元100内的全部液化天然氣之代表性熱值, 必須移除層。 '' 更特別的是,在標準溫度密輯_量中,透過在最高部位 201022104 與最低部位之_溫度差異或密度差異,以判斷層產生於液化天 然氣儲存單元刚内的儲存液化天然氣中。當沒有層產生時,在 最高部位與最低部位之間的溫度或密度僅有較小的差異…般而 言,在最高與最低部位之間的溫度係不大於〇3度,以及密度差 異大約為0.3公斤/立方公尺化_3)。 當層產生時*另一方面,溫度差異變為攝氏i度或更高,密 度也會犬然地跟者層改變。利用如此的論述,可以判斷層是否產 生於液化天然氣儲存單元1〇〇内的液化天然氣中。 不論層是否產生在每個液化天然氣儲存單元1〇〇,都會透過 液化天然氣儲存基礎控制室的監視器監控或聲音來顯示。 關於層在液化天然氣的最高部位與最低部位之間的建議密 度差異值約為1 kg/m3。 ΟHv = 8464.34 - 20.1413*LD + 〇.〇538661.LD2.134.488N2, where ❷ HV : calorific value (kilometer/m3 of cubic meter volume)_编)(_heat value reference temperature: 15 degrees , about volume reference temperature: twist 1.01325 bar) LD: density of liquefied natural gas (kg / cubic meter chest (10)) at negative (10) degrees N2. nitrogen content (% of moles) (m〇] [%) then 'nitrogen The content is not more than 0.5%. [Embodiment] The current monitoring system and the f method of Weihua Tianqian Zhongzhi, which is the age of the listener, are described in detail below, and please refer to the diagram for explanation. "1st W" is a schematic diagram of a thermal value real-time monitoring system for storage tank ages according to the present invention. FIG. 2 is a schematic diagram of a monitoring screen of a calorific value instant & control system according to the present invention. "Fig. 3" is a step-by-step diagram of the thermal value of the liquefied natural gas according to the present invention; and "Fig. 4" is the operation of the instantaneous monitoring method of the calorific value of the liquefied natural gas in accordance with the present invention. Flow chart. 201022104 Before describing the invention, it should be noted that, by convention, liquefied natural gas is stored according to calorific value. The system is that the liquefied natural money is introduced from the same origin with almost the same calorific value, the calorific value is checked by the origin, and the liquefied natural secret heat value is stored in each of the storage tanks. That is to say, ^ points become high, medium and low calorific value. Recently, the range of the calorific value of the liquefied gas in #5| is increased, and the secluded age _(4) will be lacking. The storage system is converted into a combined storage method by the calorific value _ _ Tian Tian The calorific value stores all LNG together. In the past, because the calorific value of the introduction of LNG is a relative constant, and some natural liquefied gases have a particularly high or low calorific value, they will be stored separately, so there is no need for special (10) days of silk surface thief age. The calorific value of _. ❿ Also, when the quantity of LNG origin is limited, sometimes the label of origin is attached to the storage tank, for example, "Tokyo LNG, Japan, and, therefore, = the secret of the storage tank (4) calorific value is not It is necessary to measure the calorific value to identify 0#. However, in recent years, the origin and range of calorific value have been increased violently, and f is seen to store liquefied days according to calorific value, thus leading to liquefaction days _ There is a lack of storage tanks. Therefore, the miscellaneous touches are high, the towels are mixed, and the liquefied scorpions must be stored all together. In addition, in order to understand the value of the combined storage of liquefied natural gas, and thus provide the ideal tester, the feed reducer is provided. In addition, after the inspection, the liquefied natural gas storage basic control room must monitor the thermal value information detected by the respective LNG storage tanks. To this end, the present invention proposes the above. The point of view is considered and will be explained in detail as follows. First of all, please refer to the "Drawing Chart" to "3rd Map". The monitoring system of the riding and uncovering system is equipped with instant monitoring - storage tank _ liquefaction days The gas-heat value includes at least a liquefied natural gas storage unit 100, a density and temperature measuring unit 2, a liquefied natural gas storage unit 1 〇〇 measuring the density and temperature of the liquefied natural gas, and a layer generating unit 'Measure the drum and temperature to determine whether the layer is formed in the LNG storage unit, and indicate the result, the density and temperature measured by a calculation unit 400, _ unit to calculate the calorific value of the liquefied natural gas, And - the monitoring unit 5 (10), which displays the calorific value calculated by the computing unit 400. ❹ In addition, a wired/wireless communication relay unit 3 is provided to transmit the density and temperature values generated by the measurement unit to the layer generation determination unit 2〇〇 and the calculation unit. In order to calculate the calorific value of the liquefied natural gas in the liquefied natural gas storage unit 100, first, it is necessary to use a standard temperature density (4) set in the liquefied natural gas storage unit 100, such as 仃 仃 ' to measure storage in the liquefied natural gas storage unit. The density and temperature of LNG within 100. In fact, the standard temperature density is provided to check the temperature and density based on the height of the liquefied natural gas stored in the 201022104 liquefied natural gas storage unit 100, and thereby determine whether any layer is produced between liquefied natural gas having different properties. The standard temperature density scans the average of the height and the agronomy of each liquefied natural gas storage unit 1 hour, which takes an average of one hour. Standard temperature density measurements were performed twice a day. The standard temperature density is measured in a standby mode at a lower portion of the liquefied natural gas storage unit 100, that is, when not scanned, the standard temperature density is measured instantaneously. ❹ 曰 The measured temperature and density values are transmitted to the layer generation communication unit through the communication relay unit 300, and the calculation unit 400. The calculated material 400 transmits information on temperature and density to calculate the calorific value of the liquefied natural gas. The calculated calorific value is displayed immediately through the monitoring unit 5 of the liquefied natural gas storage basic control room. At this time, the layer produces a judgment sheet S, a judgment and a finger*, and whether the layer is formed in the stored liquefied natural gas in the liquefied natural gas storage unit. Here, the standard temperature density ❹ scan·natural gas bribe unit should be at the highest part of the highest part _temperature and density' to determine whether the layer is produced between different liquefied natural gas. When a layer is formed, this layer must be removed because it causes an error in the calorific value measurement of the LNG and causes an inversion. If the layer is produced, the layer must be removed in order to obtain a representative calorific value of all the liquefied natural gas in the liquefied natural gas storage unit 100 from the mosquitoes and temperatures of the Tencel. More specifically, in the standard temperature secret _ quantity, the temperature difference or density difference between the highest part 201022104 and the lowest part is used to determine that the layer is generated in the stored liquefied natural gas just inside the liquefied natural gas storage unit. When no layer is produced, there is only a small difference in temperature or density between the highest and lowest parts... In general, the temperature between the highest and lowest parts is no more than 〇3 degrees, and the difference in density is approximately 0.3 kg / cubic meter _3). When the layer is produced * On the other hand, the temperature difference becomes i degrees Celsius or higher, and the density also changes to the layer. Using such a discussion, it can be judged whether or not the layer is produced in the liquefied natural gas in the liquefied natural gas storage unit. Regardless of whether the layer is produced in each LNG storage unit, it is displayed by monitor monitoring or sound of the LNG storage basic control room. The recommended density difference between the highest and lowest parts of the LNG is about 1 kg/m3. Ο

"•Ο-Γοη IV -158.7^0 -158.6ec -158.5ec **158.5*C -158.S»C -158.1 ΛΓ -157.1 °C -1S7.1eC -1S7.1 *C -157.1 ·0"•Ο-Γοη IV -158.7^0 -158.6ec -158.5ec **158.5*C -158.S»C -158.1 ΛΓ -157.1 °C -1S7.1eC -1S7.1 *C -157.1 ·0

υ < <液化天然氣沒有層> <液化天然氣有層> 如上述解釋’當沒有層產生時’液化天然氣整個高度的溫度 11 201022104 •與密度係幾乎是不㈣。因此,在任何部位測量溫度與密度,皆 可正確地計算代表的熱層。 然而,在本實施例中,層形成於液化天然氣儲存單元100内, 而密度與溫度會根據高度變化。@此,在標準溫度密度掃描或預 備模式下即時得到的熱值,不能當作液化天然氣儲存單元励的 代表性熱值。為此’必須要檢查是否產生層,若是如此,為了正 確地計算熱值,需移除層。 t液化天賊儲存方法由f見的各職存方法轉換為結合 儲存方法’在液化天然氣的層的發生變得更高。因此,必須要使 用標準溫度密度來測量於液化天然氣儲存單元100内的密度與溫 度。 另外,為了熱值的計算,相關方程式是必要的。如一般所知 道的’天然氣的熱值沒有鈍氣(inertga柯以表示,僅有一個參考 ❹密度函數(或者,特殊的重力函數)。若是這樣的原則亦應胁液 化天_ ’各別的液化天然氣儲存單元⑽的熱值可以藉由標準 溫度密度測量溫度與密度來計算。 〃為了評估熱值’僅藉由標準溫度密度測量密度。首先,由於 每一液化天然氣儲存單元UK)的_2)含量是未知的,故液化天 然氣中氣體的含量應低於一預定層級。參考韓國氣體股份有限公 司負載和卸載液化天然氣的產品基本成分,液化天然氣平均包含 百分之〇·〇〇莫爾_%)的二氧化碳和百分之〇 2咖1%的氮氣。 12 201022104 雖然,根據原產地,實際上氮的含量可超過lmol%,這種案 例為極其少見的。由於大多的氮氣在航行中以揮發氣(boil-off gas BOG)的形式而蒸發,在液化天然氣接收端裝載與卸载時, 實際上氮的含量係維持在0.5 mol%以下。苦是液化天然氣是由 99mol/〇曱烷(CH4)以及im〇i〇/0氮所組成,在揮發氣中甲烷與氮的 比例大約為79比21 ’也就是說,氮的含量非常高。因此,在短 時間内,液化天然氣中氮的含量會減少。 參 rti 由上述可知,惰性氣體所導致的錯誤熱值估計最大約可為 〇.6%。假定在液化天然氣中氣含量為〇.15mol%,使用密度熱值 相關方程式可使估計出的錯誤大約減少0.4%。 在大部分的案例中*當氮的含量為0 l5m〇l%,熱值的錯誤 大約僅有0.2%。 以下是透過回歸分析(regression analysis)密度之間的關係以 ❿得到的相關方程式,由氮含量以及液化天然A的熱值所得到之數 據顯不在-表巾,將於之後介紹。於此所伽之統天然氣大部 分的數據是在韓國氣體股份有限公司裝載和卸載液化天然氣的 3量’除了阿拉斯加的液化天然氣以外。雖然不是由標準溫度密 度得到,此數據包含氮容量,由於使用適當氮容量的定值,氮容 量造成的錯誤可大量的減少。 請參考下述的表格,當氮含量數據是經過仔細考慮的,相關 方程式的曲線配合(C_ f論g)錯誤是不大於〇 〇6%。相反地, 13 201022104 當沒有考慮氮的含量時,錯誤可能會增加至0 29%。 一般而言,氮含量為〇至0.3%。為了減少熱值的錯誤而將 氮含量設定為0.15%時,會導致氮含量未知,這可以理解為,包 括一誤差的最大的誤差係藉由回歸分析可降低至〇 21%。 因此,熱值係利用測量密度值,並透過下列相關方程式而計 算出:υ <<Liquefied natural gas without layer><Liquefied natural gas has layer> As explained above 'When no layer is produced' The temperature of the entire height of the liquefied natural gas 11 201022104 • The density system is almost no (four). Therefore, by measuring the temperature and density at any location, the representative thermal layer can be correctly calculated. However, in the present embodiment, the layer is formed in the liquefied natural gas storage unit 100, and the density and temperature vary depending on the height. @本, The calorific value obtained in the standard temperature density scan or pre-prepared mode cannot be regarded as the representative calorific value of the LNG storage unit excitation. For this, it is necessary to check whether a layer is produced. If so, in order to correctly calculate the calorific value, the layer needs to be removed. The storage method of the liquefied thief is converted from the various methods of storage as seen in the combined storage method to the occurrence of the layer in the liquefied natural gas. Therefore, the standard temperature density must be used to measure the density and temperature within the LNG storage unit 100. In addition, correlation equations are necessary for the calculation of the calorific value. As is generally known, 'the calorific value of natural gas is not blunt (inertga Ke said that there is only one reference ❹ density function (or special gravity function). If this principle should also be liquefaction _ 'different liquefaction The calorific value of the natural gas storage unit (10) can be calculated by measuring the temperature and density by standard temperature density. 〃 In order to evaluate the calorific value, the density is measured only by the standard temperature density. First, because of each liquefied natural gas storage unit UK) _2) The content is unknown, so the gas content in the liquefied natural gas should be lower than a predetermined level. Referring to the basic composition of the products of Korea Gas Co., Ltd. for loading and unloading LNG, liquefied natural gas contains an average of 〇·〇〇莫尔_%) of carbon dioxide and 〇2% of coffee and 1% of nitrogen. 12 201022104 Although, depending on the country of origin, the nitrogen content can actually exceed 1 mol%, this case is extremely rare. Since most of the nitrogen vaporizes in the form of boil-off gas BOG during navigation, the nitrogen content is actually maintained below 0.5 mol% when loaded and unloaded at the receiving end of the LNG. The bitterness is that LNG is composed of 99 mol/decane (CH4) and im〇i〇/0 nitrogen. The ratio of methane to nitrogen in the volatile gas is about 79 to 21 ‘that is, the nitrogen content is very high. Therefore, the nitrogen content of the liquefied natural gas will decrease in a short period of time. From the above, it can be seen that the error calorific value caused by the inert gas is estimated to be about 6%.6%. Assuming a gas content of 〇15 mol% in liquefied natural gas, using the density heat value correlation equation can reduce the estimated error by approximately 0.4%. In most cases* when the nitrogen content is 0 l5m〇l%, the error in calorific value is only about 0.2%. The following is a correlation equation obtained by regression analysis of the relationship between density, and the data obtained from the nitrogen content and the calorific value of the liquefied natural A is not apparent - and will be described later. The data for most of the gas in this area is the amount of LNG loaded and unloaded by Korea Gas Co., Ltd. except for LNG in Alaska. Although not derived from standard temperature density, this data contains nitrogen capacity, which can be substantially reduced due to the use of a fixed nitrogen capacity. Please refer to the table below. When the nitrogen content data is carefully considered, the curve fit of the relevant equation (C_f on g) is not more than 〇 6%. Conversely, 13 201022104 When the nitrogen content is not considered, the error may increase to 0 29%. In general, the nitrogen content is from 〇 to 0.3%. Setting the nitrogen content to 0.15% in order to reduce the calorific value error results in an unknown nitrogen content, which is understood to mean that the largest error including an error can be reduced to 〇 21% by regression analysis. Therefore, the calorific value is calculated using the measured density value and is calculated by the following correlation equation:

Hv = 8464.34 - 20.1413‘LD + 0.0538661‘LD2 - 134 488N2, 其中Hv = 8464.34 - 20.1413 'LD + 0.0538661 'LD2 - 134 488N2, where

Hv :熱值(千卡/標準一大氣壓下之立方公尺體 積)(kCal/Nm3)(關於熱值參考溫度:15度,關於體積參考溫度:〇 度 1.01325 巴) LD .液化天然氣(公斤/立方公尺的密度在負}6〇度 N2 :氮的含量(莫耳百分比)(m〇1%) 〇 此時’氮含量是少於0·5%,更好地是0.15%。使用上述相關 方程式而計算出熱值,與密度以及液化天然氣之熱值有關的精確, 的方程式是不可缺少的。 來自七個地謂產地之密度以及液化天然氣的熱值進行分 析,以確認上述相關性是否是可行的。因此,證實密度與熱值係 高度互相相關的。例如回歸分析透過第二個方程式的結果,可證 明錯誤率大約為0.06%。 回歸分析液化天然氣密度與熱值之間的關係數據係有組織 201022104 的列在下列表格中。Hv: calorific value (kcal/m3 of kcal/standard atmospheric pressure) (kCal/Nm3) (for calorific value reference temperature: 15 degrees, for volume reference temperature: 1.01325 bar) LD. LNG (kg/ The density of cubic meters is minus 6 〇 N2 : nitrogen content (% of moles) (m 〇 1%) 〇 At this time, the 'nitrogen content is less than 0.5%, more preferably 0.15%. The calorific value is calculated from the correlation equation, and the exact equation related to the density and the calorific value of the liquefied natural gas is indispensable. The density from the seven places and the calorific value of the LNG are analyzed to confirm whether the above correlation is It is feasible. Therefore, it is confirmed that the density and calorific value are highly correlated. For example, the regression analysis shows that the error rate is about 0.06% through the result of the second equation. Regression analysis of the relationship between LNG density and calorific value The organization with 201022104 is listed in the table below.

Data of regression analysie of relations between density and heating value of LNGData of regression analysie of relations between density and heating value of LNG

Place of origin LNQ density @-160 (Kg/n^3) Nicontent (mol%) Heating value (kcaUNrrfZ) Hewing value obtained through regression analysis N2 contained error (%) N2 = 0% error (%) N2=0.1% error (%) Alaska 421098 0,13 951744 9517.12 0,00 9534.13 0.18 9521.00 0.04 Egypt 430.192 0.016 9767.9 9766.30 -0.02 9768.34 0.00 97K.21 -0.13 Yemen 442909 0.06 10096.37 10102.33 006 10110:54 0.14 10097.41 0,01 sp^s6l-i (sample from Pyeongtaek) 457.282 0.022 10520.7 1051490 -0,06 10517.92 -0.03 105W;79 -0.15 Average Contents of Kogas In ao〇4 459,215 0,19 10549.72 10548.80 -0.01 1057438 0.23 1056125 0,11 Oman 466.483 0.239 10759.26 10758.23 -0.01 10790.20 0.29 10777,07 0.17 Australia 468:404 0.07 10835.25 10839.01 0.03 10848; 17 0.12 10835.04 0.00 _ 液化天然氣的參考條件是必要構成液化天然氣的密度與熱 值之間的相關性’在這裡,參考溫度設定在負160度,由於幾乎 沒有影響到液化天然氣的密度,所面臨的壓力是沒有考慮到的。 藉由計算單元400計算的熱值,經由液化天然氣儲存基礎控 制室内電腦的顯示器顯示,如「第1圖」所示。「第2圖」是顯 示結果的例子。 同時,如「第1圖」、「第2圖」以及「第4圖」所示,即時 〇 監控在液化天然氣儲存單元100裡液化天然氣熱值的方法,包含 測里在液化天然氣儲存單元1〇〇裡的液化天然氣的密度和溫度之 步驟,使用測量的密度及溫度值(S300)決定及指示是否有層產 生於液化天然氣儲存單元1〇〇内,使用測量所得的密度及溫度 (S400)計算熱值,和監控於計算步驟(S5〇〇)計算所得之熱值。 此外,更可包含一傳送步驟(S2〇0),在傳送步驟(S2〇〇) 中,在量測步驟(S100)得到的密度及溫度值可透過有線/無線 通訊中繼單元300傳送。 15 201022104 另外’層產生判斷步驟(S300)會使用透過通訊中繼單元 300傳送的密度及溫度值’以判斷是否有層產生。假使有層產生, 層會被移除,之後在液化天然氣儲存單元⑽内的液化天然氣的 代表性熱值會經由計算步驟(s4〇〇)得到。 從液化天然氣儲存基礎控制室可以即時監控已計算出各別 的熱值。 舉例而言’在計算步驟⑽0)中,如上所述,得到密度值 及溫度值並且細在侧方程式,觀計算熱值錢過控制室的 電腦監控計算的熱值。 在此,決定層產生和得到熱值的相關方程式是預先設計好的 電腦程式且儲存在層產生判斷單元2〇〇,和計算單元4〇〇内。 上述即時監控在液化天然氣儲存單元内液化天然氣之熱值 的系統運作過程和方法,於「第i圖」至「第4圖」中予以描述。 〇 1)使用標準溫度密度即時量測每個液化天然氣儲存單元1〇〇 内液化天然氣的溫度和密度。 2)透過軌巾繼單兀3GG將量測所得的溫度和妓值傳送至 層產生判斷單元200,以及計算單元4〇〇。在此,當 掃猫時,若液化天然氣最高部分和最低部分之間為攝氏】度或更 高的溫差,或密度差為i kg/m3或更大,根據是否產生層來判斷 層產生以及透過警示音或聽通知液化天錢儲存基礎控制 室,或者透過電腦監控來識別顯示液化天然氣錯存單元綱。 201022104 3)在對應包含層的液化天然氣儲存單元1〇〇移除層。(移除 是專注的進行)。 4) 移除層之後會再次量測液化天然氣儲存單元1〇〇的溫度和 密度,確認層是否確實被移除。 5) 液化天然氣的熱值是透過計算單元4〇〇所計算而得。 6) 最後’各別液化天然氣餘存單元1〇〇的熱值會顯示於液化 天然亂儲存基礎控制室的監控器,並且是即時的監控。 綜上所述,依據本發明所揭露之實施例,供應商根據理想的 熱值提供液化天然氣,此紐是根_量液化天然氣儲存槽内的 液化天純密度和溫度的平均值所得,·可使關量的係數來 辨識液化天然氣的熱值。再者,因為各別儲存槽的熱值資訊可瘦 由控制室隨時的監視,使管理需求的人力降低,因此提昇工作效 益和達到經濟效益。 © 軸本發日肢前述之紐實施_露如上,然其並非用以限 定本發明,任何熟習相像技藝者★在不脫離本發曰月之精神和範圍 内,當可作些許之更動麵飾本發明之專利_範 本說明書_之申請專利範_界定者為準。 、 【圖式簡單說明】 儲存液化天然氣之熱值即時監控系統 第1圖為本發明的儲存槽 之結構示意圖; 第2圖為本發_熱值㈣監控祕之監㈣幕之示意圖; 17 201022104 第3圖為本發·液化天減之熱值即時監㈣統之步驟流程 圖;以及 第4圖為本發明的儲存槽液化天然氣 作步驟流程圖。 之熱值即時監控方法 之操 【主要元件符號說明】Place of origin LNQ density @-160 (Kg/n^3) Nicontent (mol%) Heating value (kcaUNrrfZ) Hewing value obtained through regression analysis N2 contained error (%) N2 = 0% error (%) N2=0.1% error (%) Alaska 421098 0,13 951744 9517.12 0,00 9534.13 0.18 9521.00 0.04 Egypt 430.192 0.016 9767.9 9766.30 -0.02 9768.34 0.00 97K.21 -0.13 Yemen 442909 0.06 10096.37 10102.33 006 10110:54 0.14 10097.41 0,01 sp^s6l-i (sample from Pyeongtaek) 457.282 0.022 10520.7 1051490 -0,06 10517.92 -0.03 105W;79 -0.15 Average Contents of Kogas In ao〇4 459,215 0,19 10549.72 10548.80 -0.01 1057438 0.23 1056125 0,11 Oman 466.483 0.239 10759.26 10758.23 -0.01 10790.20 0.29 10777,07 0.17 Australia 468:404 0.07 10835.25 10839.01 0.03 10848; 17 0.12 10835.04 0.00 _ The reference condition for liquefied natural gas is the correlation between the density and calorific value of the liquefied natural gas. 'Here, the reference temperature is set at minus At 160 degrees, the pressure faced is not considered because it has little effect on the density of LNG. The display of the display value of the indoor computer via the LNG storage base is displayed by the calculation of the calorific value calculated by the calculation unit 400, as shown in Fig. 1. "Figure 2" is an example of the results displayed. At the same time, as shown in Figure 1, Figure 2 and Figure 4, the method of monitoring the calorific value of liquefied natural gas in the LNG storage unit 100 is included, including the measurement of the LNG storage unit. The step of density and temperature of the LNG in the sputum, using the measured density and temperature values (S300) to determine and indicate whether a layer is produced in the liquefied natural gas storage unit, using the measured density and temperature (S400) The calorific value, and the calorific value calculated in the calculation step (S5〇〇). Further, a transmission step (S2 〇 0) may be included. In the transmission step (S2 〇〇), the density and temperature values obtained at the measurement step (S100) may be transmitted through the wired/wireless communication relay unit 300. 15 201022104 In addition, the layer generation determining step (S300) uses the density and temperature value transmitted through the communication relay unit 300 to determine whether or not a layer is generated. If a layer is produced, the layer is removed and the representative calorific value of the LNG in the LNG storage unit (10) is then obtained via the calculation step (s4〇〇). From the LNG storage basic control room, it is possible to instantly monitor the calculated individual calorific values. For example, in the calculation step (10) 0), as described above, the density value and the temperature value are obtained and fined in the side equation, and the calorific value calculated by the computer monitor of the control room is calculated. Here, the correlation equation for determining the layer generation and the calorific value is a pre-designed computer program and stored in the layer generation judging unit 2, and the calculation unit 4A. The above-mentioned system operation process and method for monitoring the calorific value of liquefied natural gas in a LNG storage unit are described in "i" to "4". 〇 1) Instantly measure the temperature and density of LNG in each LNG storage unit using standard temperature densities. 2) The measured temperature and enthalpy value are transmitted to the layer generation judging unit 200, and the calculation unit 4A, through the track towel following the single 兀3GG. Here, when sweeping the cat, if the temperature difference between Celsius or higher or the density difference is i kg/m3 or more between the highest part and the lowest part of the LNG, the layer is judged to be generated and transmitted according to whether or not the layer is generated. Warning sounds or listening to the notification of liquefied natural money storage basic control room, or through computer monitoring to identify the display of LNG memory unit. 201022104 3) Remove the layer in the corresponding LNG storage unit. (Remove is focused). 4) After removing the layer, the temperature and density of the LNG storage unit 1 再次 will be measured again to confirm whether the layer has been removed. 5) The calorific value of LNG is calculated by calculation unit 4〇〇. 6) The final calorific value of the individual LNG residual units will be displayed in the monitor of the liquefied natural storage base control room and is monitored on-the-fly. In summary, according to the disclosed embodiment of the present invention, the supplier provides the liquefied natural gas according to the ideal calorific value, which is obtained by averaging the liquefied natural density and temperature in the root liquefied natural gas storage tank. The coefficient of the amount of correlation is used to identify the calorific value of the liquefied natural gas. Furthermore, because the calorific value information of each storage tank can be monitored by the control room at any time, the manpower for management needs is reduced, thereby improving work efficiency and achieving economic benefits. © 轴本发发日前前本行实施_Exhibition as above, but it is not intended to limit the invention, any familiar artisan ★ can make some changes to the face without departing from the spirit and scope of this month The patent of the present invention is defined by the patent application specification. [Simplified description of the diagram] The instant monitoring system for storing the calorific value of liquefied natural gas is shown in Fig. 1 as a schematic diagram of the structure of the storage tank of the present invention; Fig. 2 is a schematic diagram of the screen of the monitoring (4) of the _Hot value (4) monitoring secret; 17 201022104 Fig. 3 is a flow chart showing the steps of the instant heat monitoring of the liquefaction and the reduction of the liquefaction time; and Fig. 4 is a flow chart showing the steps of the liquefied natural gas in the storage tank of the present invention. The operation of the thermal value monitoring method [Main component symbol description]

100 液化天然氣儲存單元 200 量測單元 200’ 層產生判斷單元 300 通訊中繼單元 400 計算單元 500 監控單元 S100 量測步驟 S200 傳送步驟 S300 判斷步驟 S400 計算步驟 S500 監控步驟100 LNG storage unit 200 Measurement unit 200' Layer generation judgment unit 300 Communication relay unit 400 Calculation unit 500 Monitoring unit S100 Measurement step S200 Transmission step S300 Judgment step S400 Calculation step S500 Monitoring step

Claims (1)

201022104 七、申請專利範圍: 1· 一種監控系統’用以即時監控一儲存槽内的一液化天然氣之 一熱值,該監控系統包括有: 至少一液化天然氣儲存單元; 一量測單元,提供該液化天然氣儲存單元測量該液化天 然氣的密度與溫度; -計料7Ό 該量測單元所測量之蚊與溫度以計 ® 算出該熱值;以及 I不碌汀异早70訐异所得之該熱值。 2. 如申請專利範圍第i項所述之監控系統,更包括有一層產生 判斷单凡,藉由該量測單元所測量之該密度與該溫度來判斷 與指示一層是否產生於該液化天然氣儲存單元内。 3. 如申請專利細第2項所述之監㈣統,更包括有—有線/無 參 線通訊^中繼單元,傳送由該量測單元至該層產生判斷單元以 及該计算單元所得到之該密度與該溫度值。 4. 如申請專利範圍第i項所述之監控系統,其中該熱值係透過 如下之一相關方程式計算出 Hv = 8464.34 - 20.1413*LD 134·488Ν2 ’其中 熱值(千卡/標準—大氣鮮之立方公尺體積㈣/ m於熱值參考溫度:15纟,關於體積參考溫度·· 〇度 〇.〇538661*LD2 19 201022104 1.01325 巴) LD.液化天然氣(公斤/立方公尺购㈣的密度在負⑽ 度 、 N2 :氮的含量(莫耳百分比)(mol%) 5·如申請專利範圍第4項所述之監控祕,其中該氮的含量不 大於百分之0.5(%)。 ❹6.-種監控方法’用以即時監控一儲存槽内的一液化天然氣之 一熱值,该監控方法之步驟包括有: 一置測步驟,测量儲存於至少一液化天然氣儲存單元内 之一液化天然氣的密度與溫度; 一計算步驟,利用測量所得之該密度與該溫度數值計算 出該熱值;以及 皿控步驛’ li控該液化天然氣儲存單元之該熱值,且 ❹ 該熱值係於該計算步驟中得到。 7. 如申請專利範圍第6項所述監控之方法,更包括有一層產生 判斷步驟,利用測量所得之該密度與該溫度判斷與指示一層 是否產生於該液化天然氣儲存單元内。 8. 如申請專利範圍第7項所述監控之方法,更包括有一傳送步 驟,於該量測步驟中透過一有線/無線通訊中繼單元傳送測量 所得的該密度與該溫度。 9. 如申請專利範圍第6項所述監控之方法’其中該熱值的計算 201022104 係透過一相關方程式而得·‘ 20.1413*LD + 0.0538661*LD2 - Hv = 8464.34 134.488Ν2,其中 HV •熱值(千卡/標$一大氣壓下之立方公尺體積(kcal/ Nm)(關於熱值參考溫度:u度,關於體積參考溫度:〇度 1.01325 巴) LD.液化天然氣(公斤/立方公尺)(kg/m3)的密度在負160 度 A :氮的含量(莫耳百分比)(m〇i%) 10.如申請專利範圍第9項所述監控之方法,其中該氮的含量 不大於0.5%。 21201022104 VII. Patent application scope: 1. A monitoring system for instantly monitoring the calorific value of a liquefied natural gas in a storage tank, the monitoring system comprising: at least one liquefied natural gas storage unit; a measuring unit providing the The liquefied natural gas storage unit measures the density and temperature of the liquefied natural gas; - the amount of the mosquito is measured by the measuring unit and the temperature is calculated by the measuring unit; and the calorific value obtained by the difference of 70 anglings . 2. The monitoring system as described in claim i of the patent scope further includes a layer generating judgment unit, and the density measured by the measuring unit and the temperature are used to determine whether the layer is generated in the liquefied natural gas storage. Within the unit. 3. If the supervision (4) system described in the second paragraph of the patent application includes a wired/non-infrared communication relay unit, the transmission is obtained by the measurement unit to the layer generation judgment unit and the calculation unit. This density is the same as this temperature value. 4. The monitoring system of claim i, wherein the calorific value is calculated by one of the following equations: Hv = 8464.34 - 20.1413*LD 134·488Ν2 'where the calorific value (kcal/standard-atmospheric fresh) Cubic meter volume (four) / m in calorific value reference temperature: 15 纟, on volume reference temperature · · 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 〇 液 液 液 液 密度 密度 密度 密度 密度In the negative (10) degree, N2: nitrogen content (% of moles) (mol%) 5. The monitoring secret described in item 4 of the patent application, wherein the nitrogen content is not more than 0.5% (%). - a monitoring method for instantly monitoring the calorific value of a liquefied natural gas in a storage tank, the steps of the monitoring method comprising: a measuring step of measuring one of the liquefied natural gas stored in at least one liquefied natural gas storage unit Density and temperature; a calculation step of calculating the calorific value using the measured density and the temperature value; and controlling the calorific value of the LNG storage unit, and the calorific value is The meter 7. The method of monitoring according to item 6 of the patent application, further comprising a layer generating determining step, using the measured density and the temperature to determine whether the layer is generated in the liquefied natural gas storage unit. 8. The method of monitoring according to claim 7 further comprising a transmitting step of transmitting the measured density and the temperature through a wired/wireless communication relay unit in the measuring step. The method of monitoring according to item 6 of the patent scope 'where the calculation of the calorific value 201022104 is obtained by a correlation equation · 20.1413*LD + 0.0538661*LD2 - Hv = 8464.34 134.488Ν2, where HV • calorific value (kcal/ Volume of cubic meters (kcal/Nm) at atmospheric pressure (for calorific value reference temperature: u degrees, volume reference temperature: 1.01325 bar) LD. liquefied natural gas (kg/m3) (kg/m3 The density of the product is minus 160 degrees A: the content of nitrogen (% by mole) (m〇i%) 10. The method of monitoring according to claim 9 wherein the nitrogen content is not more than 0.5%.
TW097151440A 2008-12-10 2008-12-30 System and method for real-time monitoring heating value of LNG in storage tank TW201022104A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080125296A KR20100066816A (en) 2008-12-10 2008-12-10 System and method for measuring live heating value of lng in the storage tank

Publications (1)

Publication Number Publication Date
TW201022104A true TW201022104A (en) 2010-06-16

Family

ID=42349347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097151440A TW201022104A (en) 2008-12-10 2008-12-30 System and method for real-time monitoring heating value of LNG in storage tank

Country Status (3)

Country Link
JP (1) JP5221326B2 (en)
KR (1) KR20100066816A (en)
TW (1) TW201022104A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104378446A (en) * 2014-12-02 2015-02-25 上海雷尼威尔技术有限公司 Vehicular LNG (liquefied natural gas) cylinder measurement information remote monitoring system and vehicular LNG cylinder measurement information remote monitoring method
FR3045775B1 (en) * 2015-12-18 2018-07-06 Engie METHOD AND SYSTEM FOR CALCULATING IN REAL-TIME THE PERIOD OF AUTONOMY OF AN UN-REFRIGERATED TANK CONTAINING LNG
FR3053432B1 (en) * 2016-06-30 2019-05-10 Engie METHOD AND SYSTEM FOR REAL-TIME CALCULATION OF THE QUANTITY OF ENERGY TRANSPORTED IN A LIQUEFIED AND UN-REFRIGERATED NATURAL GAS TANK.
CN106523908A (en) * 2016-11-16 2017-03-22 深圳市燃气集团股份有限公司 Leakage concentration diffusion analysis achieving method for LNG storage tank

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000009298A (en) * 1998-06-23 2000-01-11 Ishikawajima Harima Heavy Ind Co Ltd Inventory management method for liquefied natural gas storage facility
JP2002358439A (en) * 2001-05-31 2002-12-13 Nkk Corp Method and device for lng spot market dealing
JP2003270103A (en) * 2002-03-15 2003-09-25 Osaka Gas Co Ltd Method of sampling fluid in fluid supply facility
JP2007032770A (en) * 2005-07-28 2007-02-08 Tokyo Electric Power Co Inc:The Monitoring device for inside of liquified-gas storage tank

Also Published As

Publication number Publication date
JP2010139055A (en) 2010-06-24
KR20100066816A (en) 2010-06-18
JP5221326B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
Mitu et al. Propagation indices of methane-air explosions in closed vessels
TW201022104A (en) System and method for real-time monitoring heating value of LNG in storage tank
US11474092B2 (en) Method for determining properties of a hydrocarbon-containing gas mixture and device for the same
US20040261497A1 (en) Determination of effective composition of a mixture of hydrocarbon gases
JP5001908B2 (en) Mixed gas component measuring apparatus and component measuring method
GB2499842A (en) Temperature regulated multiple gas sensor
CN108377654A (en) The method and its device of property for determining gas containing hydrocarbon mixture
WO2016104270A1 (en) Method for calculating methane number and device for determining methane number
Farzaneh-Gord et al. A novel method for calculating natural gas density based on Joule Thomson coefficient
JP2006308384A (en) Method for calculating concentration of residual stored quantity of lng in lng storage tank
US11029270B2 (en) Apparatus and method for measuring calorific value
JP5591217B2 (en) Evaluation method for catalyst tubes for natural gas reformers
US20020124630A1 (en) Process for determining the gas composition of the fuel gas
JP5308842B2 (en) Calorimetry method and calorimeter
Blanco et al. Dew points of ternary methane+ ethane+ butane and quaternary methane+ ethane+ butane+ water mixtures: measurement and correlation
Lemmon et al. Standardized Equation for Hydrogen Gas Densities for Fuel Consumption Applications1
Pérez-Sanz et al. Heat capacities and acoustic virial coefficients for a synthetic coal mine methane mixture by speed of sound measurements at T=(273.16 and 250.00) K
US10190966B2 (en) Metal-pipe use support system
US7794140B2 (en) Method and system for monitoring gas mixture quality
Roh Characterization of the acoustic properties of random porous media: reticulated vitreous carbon and aluminum foam
Roy et al. Large dataset test of Birch's law for sound propagation at high pressure
de Souza Filho et al. Maximum permissible differences in LPG operations for custody transfer measurements
Härtig et al. Critical observations on rules for comparing measurement results for key comparisons
WO2019186794A1 (en) Gas detecting method and gas detecting device
Kessel et al. Uncertainty evaluation for quality tracking in natural gas grids