TW201017150A - Thin film optical inspection apparatus - Google Patents

Thin film optical inspection apparatus Download PDF

Info

Publication number
TW201017150A
TW201017150A TW97140979A TW97140979A TW201017150A TW 201017150 A TW201017150 A TW 201017150A TW 97140979 A TW97140979 A TW 97140979A TW 97140979 A TW97140979 A TW 97140979A TW 201017150 A TW201017150 A TW 201017150A
Authority
TW
Taiwan
Prior art keywords
module
beams
channel
polarization
thin film
Prior art date
Application number
TW97140979A
Other languages
Chinese (zh)
Other versions
TWI386638B (en
Inventor
Chun-I Wu
Hau-Wei Wang
Yi-Chen Hsieh
Kai-Ping Chuang
Fu-Shiang Yang
Original Assignee
Ind Tech Res Inst
Univ Mingchi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst, Univ Mingchi Technology filed Critical Ind Tech Res Inst
Priority to TW97140979A priority Critical patent/TWI386638B/en
Publication of TW201017150A publication Critical patent/TW201017150A/en
Application granted granted Critical
Publication of TWI386638B publication Critical patent/TWI386638B/en

Links

Abstract

A thin film optical inspection apparatus suitable for inspecting a thin film sample is provided, wherein the thin film optical inspection apparatus includes at least a multi-wavelength light source, a dispersion-collimation module, a multi-channel polarization rotation module, a multi-channel phase retardation module, a convergent-collimation module, a polarization module and an imaging spectrograph. The multi-wavelength light source provides a light beam with multiple wave bands to the dispersion-collimation module suitable for splitting the light beam to multiple sub light beams corresponding to the wave bands. The multi-channel polarization rotation module is suitable for modulating the polarized azimuth of the sub light beams respectively. The multi-channel phase retardation module is suitable for modulation the phase retardation or the phase retarded azimuth of the sub light beams respectively. The convergent-collimation module is suitable for integrating the sub light beams to an convergent beam which is incident to the thin film sample. The polarization module is suitable for modulating the transmission of the integrated beam with different polarized types, and the imaging spectrograph is suitable for receiving the convergent beam to form a multi-wavelength image.

Description

201017150 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種薄犋光學檢測裝置(thin film optical inspection apparatus) ° 【先前技術】 薄膜製程檢測在平面顯示H、半導體、印刷電路板及 ❿生物材料科學等主要科技產業上,扮演非常重要的角色。 隨著薄膜製程多層化、則圖案微小化,傳統利用白光反 射〜像方法作線上缺陷檢測漸漸遇到瓶頸。由於透明導電 ,及金屬電極(如IT〇、Cr)用白光照射檢測時,反射信號不 疋太弱就是過飽,’常使得檢、測對比度較難以有效提高。 々日本MiCronics公司在台灣申請之第1263〇41號專利便 揭露此,藝’而其是利用白光光源與半反射鏡取得反射影 像。儘官此装置架構簡單,但面對多層薄膜或是表面相似 ❹的相異材質便較難以提供高對比影像。 後來雖然有螢光影像或偏光影像等方法試圖改善檢測 對比’但對於多層透明薄膜、多層金屬薄膜及反射率相近 薄膜仍無法列別’不符合製稃線上多膜材分析、高影像對 • 比、快速檢剛之需要。 * 韓國LG公司在美國申請之第6940604專利便揭露此 技藝,而其是使用濾鏡及偏振片的旋轉,來得到不同波長 (兩個波長)下的偏光反射影像。相較於日本Micr〇nics公司 而言,韓國LG公司具有較多的可調參數,因而可 提同衫像對比度。但由於使用濾繞所調變的波長無法連 201017150 續’且對多層透明薄膜或多層金屬薄膜檢測的對比度仍 低’因而仍較難以對複雜膜層做連續多波長的影像對比檢 測。 不同於前述技藝’利用薄膜製品改變入射光偏極化程 度來檢測為一新的選擇,近年利用此原理所發展出來的影 像橢偏技術(imaging ellipsometry)即具備金屬反光去除、透 明薄膜高影像對比等優點,因此應用在薄膜蝕刻圖案 (patterned film)檢測上有相當大的潛力。 ❹ 圖1A〜1B為習知之利用影像橢偏技術之檢測裝置的 示意圖,而由以色列Orbotech公司於美國第5333052專利 中所揭露。請參考圖1A,檢測裝置100是用於檢測薄膜製 品50 ’其中薄膜製品50包括底材52與多層薄膜54(圖中 僅繪示單層示意)’而薄膜54具有特定的厚度與材質。檢 測裝置100包括光源110、起偏器(p〇larizer)12〇、相位延遲 器(Phase Retarder)130、檢偏器(Analyzer)140 以及感測器 (Sensor)150,其中光源11〇所發出的光束112會依序通過 β 起偏器120、相位延遲器130、薄臈製品50之薄膜54以及 檢偏器140,最終由感測器15〇來感測光束112強度,而 起偏器120與檢偏器140均為可調方位角度之偏振片。 • 承接上述,光束112在通過薄膜54時,會因為薄膜 • 54的材貝(折射率)與厚度而產生相位的變化。藉由固定相 位延遲器130之方位角C與相位延遲量&,並調整起偏器 12〇之方位角ρ與檢偏器之方位角A,便可改變光束 U2最終的強度。 在習知技藝中,光束112是透過多濾光片16〇而被過 201017150 一波段的光束。在任意的單-波段下,適當調 止击m 之方位角P與檢偏器140之方位角A,可使 先束二12的強度從最暗與最亮之間變化。 园考圖1B’圖1B中檢測裝置1〇〇的配置方式均與 目同’其差別僅在於薄膜製品5〇,之薄膜56的材質 二厚度與圖1A之薄膜54不同。在相同波段之光束"2、 下,同時調整起偏器12〇之方位角p與檢偏器14〇之 方位角A,以儘可能提高光束112、112,的強度差異,藉此 搴提升檢測的對比度。 當依序改變光束的波段,而在具有特定波段λ的光束 112、112’下調校參數而產生最大的對比時,則此波段χ、 起偏器120之方位角ρ以及檢偏器“ο之方位角a即為同 時檢測薄膜54、56的較佳參數。 以同時具有薄膜54、56之薄膜製品(未繪示)而言, 當欲檢測薄骐製品之薄膜54、56是否有瑕疵(包括缺陷 defect、成膜厚度過厚或過薄、膜層的折射率等等)時,便 ❹ 以前述之較佳參數對薄膜製品的每個區域進行光學掃描。 若感測器150所接收到的光強度為預定亮或是暗的程度 時’即表示此區域之薄膜54、56製作良好;反之,若某些 . 區域所反射的光強度不在預定免或是暗的程度時,則表示 這些區域便有製作上的瑕疵。 請再參考圖1A,以起偏器120-相位延遲器130-薄膜 製品50_檢偏器140之擴偏系構糸統而言,共有4個可調 參數可用於調整光束112強度。這些可調參數包括丨起偏 器120之方位角P、2.相位延遲器130之方位角c、3.相位 201017150 延遲器130之相位延遲量以及4.檢偏器140之方位角A。 在這4個可調參數中,可固定其中兩個可調參數,並 調整另外兩個可調參數便可將光束112的強度由全亮至全 暗之間變化。以習知技藝而言,由於起偏器120之方位角 P與檢偏器140之方位角A比較容易調整,因此大多均_ 整此兩個參數。 【發明内容】 ❹ 〇 依據本發明技術提出一實施範例之薄膜光學檢測裝 置’適於檢測薄膜製品,此薄膜光學檢測裝置包括多波長 光源(multi- wavelength light source)、分光準直模組 (dispersion-collimation module)、多通道極化旋轉模組 (multi-channel polarization rotation module)、多通道相位延 遲模組(multi-channel phase retardation module)、合光準直 模組(convergent-collimation module)、偏極化模組 (polarization module)以及影像光譜儀(^屻叩 spectrograph)。多波長光源適於提供光束至分光準直模組, 而光束具有多個波段。分光準直模組適於將光束分為多個 次光束,而這些次光束分別具有對應之波段。多通道極化 旋轉模組是對應調整這些次光束偏振之方位角,而多通道 相位延遲模組是對應調整這些次光束之相位延遲量或是相 =延遲的方位角。合光準直模組適於將這些次光束合為聚 。光束(integrated beam)後入射薄膜製品,而偏極化模组適 於檢偏限制聚合光束不同偏振態之穿透量, 光 適於接收聚合絲呈多波長影像。 ^光”曰儀 201017150 • 依據本發明技術提出另一實施範例之薄膜光學檢測裝 置’適於檢測一薄膜製品,此薄膜光學檢測裝置包括多波 長光源、偏極化模組、分光準直模組、多通道相位延遲模 組、多通道極化旋轉模組、合光準直模組以及影像光譜儀。 多波長光源遘於提供光束至偏極化模組後入射薄膜製品, ' 而分光準直模組適於將光束分為多個次光束,而這些次光 束分別具有對應之波段。多通道相位延遲模組是對應調整 這些次光束之相位延遲量或是相位延遲的方位角,而多通 ❺道極化旋轉模組是對應調整這些次光束偏振之方位角。合 光準直模組適於將這些次光束合為聚合光束後入射至影像 光譜儀成像。 為讓本發明之上述特徵和特點能更明顯易懂,下文特 舉諸實施例,並配合所附圖式,作詳細說明如下。 【實施方式】 圖_2A為依據本發明技術之一實施例之薄膜光學檢測 裝置的不意圖’而圖2B為圖2a之局部詳細示意圖。請參 f圖2A與2B,薄膜光學檢測裝置2〇〇是適於檢測薄膜製 时60,並用於決定出較佳的檢測參數,其中薄膜製品6〇 • 之底材62上沉積形成多個不同材質與厚度之薄膜(未標 •不)’而較佳的檢測參數將可使這些不同材質與厚度之薄膜 f擴,光束照射下能產生最大的對比度,以利確認出這些 薄膜疋否有製作上的瑕蘇。另,薄膜製品6()之底材62底 材亦可具不同材質跟透光度。 承接上述’薄膜光學檢測裝置200包括多波長光源 11 201017150 210、分光準直模組220、多通道極化旋轉模組23〇、多通 道相位延遲模級240、合光準直模組250、偏極化模紐^"26〇 以及影像光譜儀270。多波長光源210適於產生光束212, 而光束212乃是具有多個波段之光束,且這些波段特別是 位於可見光波段,如400nm〜750nm。在本實施例中,多 波長光源210可為多波長雷射,不過多波長光源21〇亦可 為寬帶鹵素燈光源、閃光燈光源、多波長氣體燈或是其他 合適之光源。 ❹ 此光束212會入射至分光準直模組220進行分光與準 直,而使光束212分為多道平行的次光束214 (如圖2B所 示)’其中這些次光束214是可分別具有單一波段,亦即這 些次光束214為不同波長光。在本實施例令,分光準直模 組220包括第一光柵222與第一準直鏡224,其中當光束 212入射至第一光栅222後,不同波長光便會以繞射的方 式分解為多個不同方向的次光束214而入射至第一準直鏡 224,且第一準直鏡224會重新準直這些次光束214的方向 Ο 而使其成為平行的狀態。 在本實施例中’第一光柵222可為繞射式分光光柵或 全像式分光光柵,而第一準直鏡224可為柱狀透鏡。當然, . 本發明技術之可能實施態樣並不限定第一光柵222與第一 準直鏡224之種類。更進一步而言,本實施例之第一光柵 222亦可替換為分光稜鏡(prism ),乃是利用折射率的差異 將光束212分為不同波段的次光束214。不過,以實驗結 果而言,光栅的分光效果會優於鏡片。 請再參考圖2A與2B,接著這些次光束214會通過多 12 201017150 通道極化旋轉 23G以分別決伙始錢的方位角p, 亦即多通道極化旋轉模組230是用於起偏的功用。多通道 極化旋轉模組230具有多個通道(圖示中以多個小方格示 思),而這些次光束214會分別通過這些通道以改變各自的 起偏狀態。在本實施例中,多通道極化旋轉模组23〇可為 多通道微機電偏極旋轉器(Multi_Channd mems201017150 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD The present invention relates to a thin film optical inspection apparatus. [Prior Art] Thin film process inspection in flat display H, semiconductor, printed circuit board and It plays a very important role in major science and technology industries such as biomaterials science. As the film process is multi-layered, the pattern is miniaturized, and the conventional use of white light reflection ~ image method for online defect detection gradually encounters a bottleneck. Due to the transparent conduction and the detection of metal electrodes (such as IT〇, Cr) by white light, the reflected signal is not too weak or too full, which often makes it difficult to effectively improve the contrast between detection and measurement. This is disclosed in Japanese Patent No. 1263〇41 by MiCronics, Inc. in Taiwan, which uses a white light source and a half mirror to obtain a reflected image. The device is simple in structure, but it is difficult to provide high-contrast images in the face of multi-layer films or different materials with similar surfaces. Later, although there were methods such as fluorescent images or polarized images, attempts were made to improve the detection contrast. However, for multilayer transparent films, multilayer metal films, and films with similar reflectance, it is still impossible to distinguish 'multi-film analysis, high image pair ratio. Quickly check the need. * This technique is disclosed in the US Patent No. 6940604 filed by LG Corporation of the United States, which uses the rotation of a filter and a polarizer to obtain a polarized reflection image at different wavelengths (two wavelengths). Compared with Japan's Micr〇nics, South Korea's LG has more adjustable parameters, so it can be compared with the shirt. However, since the wavelength modulated by the filter winding cannot be connected to 201017150 and the contrast of the multilayer transparent film or the multilayer metal film is still low, it is still difficult to perform continuous multi-wavelength image contrast detection on the complex film layer. Different from the above-mentioned technology, the use of thin film products to change the degree of polarization of incident light is a new choice. In recent years, the imaging ellipsometry developed by this principle has metal reflective removal and transparent film high image contrast. And so on, so the application has considerable potential in the detection of thin film patterned films. BRIEF DESCRIPTION OF THE DRAWINGS Figures 1A to 1B are schematic diagrams of conventional detection devices utilizing image ellipsometry techniques, and are disclosed in U.S. Patent No. 5,332,052, issued to the European Society of. Referring to Fig. 1A, the detecting device 100 is for detecting a film product 50' wherein the film product 50 includes a substrate 52 and a multilayer film 54 (only a single layer is illustrated) and the film 54 has a specific thickness and material. The detecting device 100 includes a light source 110, a polarizer 12 〇, a phase retarder 130, an analyzer 140, and a sensor 150, wherein the light source 11 发出The beam 112 passes through the beta polarizer 120, the phase retarder 130, the thin film 54 of the thin tantalum article 50, and the analyzer 140, and finally the intensity of the beam 112 is sensed by the sensor 15〇, and the polarizer 120 is The analyzers 140 are polarizing plates of adjustable azimuth angles. • In response to the above, when the light beam 112 passes through the film 54, the phase changes due to the material (refractive index) and thickness of the film 54. By fixing the azimuth angle C of the phase retarder 130 with the phase delay amount & and adjusting the azimuth angle ρ of the polarizer 12 and the azimuth angle A of the analyzer, the final intensity of the beam U2 can be changed. In the prior art, the beam 112 is transmitted through the multi-filter 16 被 through the 201017150 band of light. In any single-band, the azimuth angle P of the hit m and the azimuth angle A of the analyzer 140 can be appropriately adjusted to change the intensity of the first beam 12 from the darkest to the brightest. The arrangement of the detecting device 1A in Fig. 1B' Fig. 1B is the same as that of the film. The difference is only in the film product 5, and the thickness of the film 56 is different from that of the film 54 of Fig. 1A. In the same band of light beam "2, simultaneously adjust the azimuth angle p of the polarizer 12〇 and the azimuth angle A of the analyzer 14〇 to increase the intensity difference of the beams 112, 112 as much as possible, thereby The contrast detected. When the band of the beam is sequentially changed, and the parameters are adjusted under the beams 112, 112' having the specific band λ to produce the maximum contrast, then the band χ, the azimuth angle ρ of the polarizer 120, and the analyzer are “ο The azimuth angle a is a preferred parameter for simultaneously detecting the films 54, 56. In the case of a film product (not shown) having both films 54, 56, when the film 54, 56 of the thin film product is to be tested for flaws ( Including the defect defect, the film thickness is too thick or too thin, the refractive index of the film layer, etc., the optical scanning of each region of the film product is performed with the preferred parameters described above. If the sensor 150 receives When the light intensity is predetermined to be bright or dark, the film 54 and 56 of the region are formed well; otherwise, if the light intensity reflected by some regions is not predetermined or dark, There is a manufacturing flaw in the area. Referring again to Figure 1A, there are 4 adjustable parameters available for the polarizer 120-phase retarder 130-film product 50_ analyzer 140 Adjusting the intensity of the beam 112. These tunable parameters The azimuth angle P of the polarizer 120, the azimuth angle c of the phase retarder 130, the phase delay amount of the phase delay 2010 130, and the azimuth angle A of the analyzer 140. In the tuning parameters, two of the adjustable parameters can be fixed, and the other two adjustable parameters can be adjusted to change the intensity of the beam 112 from full to full dark. In the conventional art, due to the polarizer 120 The azimuth angle P is relatively easy to adjust with the azimuth angle A of the analyzer 140. Therefore, most of the two parameters are used. [Explanation] The thin film optical detecting device of the present embodiment is suitable for detecting according to the present technology. The film optical inspection device comprises a multi-wavelength light source, a dispersion-collimation module, a multi-channel polarization rotation module, and a multi-channel Multi-channel phase retardation module, convergent-collimation module, polarization module, and image spectrometer (^屻叩spe) The multi-wavelength light source is adapted to provide a beam to the split collimation module, and the beam has a plurality of wavelength bands. The spectroscopic collimation module is adapted to split the beam into a plurality of sub-beams, and the sub-beams respectively have corresponding bands. The multi-channel polarization rotation module adjusts the azimuth of the polarization of the sub-beams, and the multi-channel phase delay module adjusts the phase delay amount of the sub-beams or the azimuth of the phase=delay. The light combining collimation module is adapted to combine these sub-beams into a poly. The integrated beam is incident on the film product, and the polarization module is adapted to limit the penetration of different polarization states of the polymeric beam, and the light is suitable for receiving the multi-wavelength image of the polymeric filament. ^光"曰仪201017150: According to the present technology, a thin film optical detecting device of another embodiment is adapted to detect a film product, the film optical detecting device comprising a multi-wavelength light source, a polarization module, a beam splitting collimating module Multi-channel phase delay module, multi-channel polarization rotation module, combined light collimation module and image spectrometer. Multi-wavelength light source is suitable for incident film products after providing beam to polarized module, 'and split collimation mode The group is adapted to divide the beam into a plurality of sub-beams, and the sub-beams respectively have corresponding bands. The multi-channel phase delay module is corresponding to adjusting the phase delay amount of the sub-beams or the azimuth of the phase delay, and the multi-pass The channel polarization rotation module is adapted to adjust the azimuth of the polarization of the secondary beams. The light combining alignment module is adapted to combine the secondary beams into a combined beam and then incident on the image spectrometer for imaging. To enable the above features and features of the present invention It is to be understood that the embodiments are described in detail below with reference to the accompanying drawings. FIG. 2A is a technique according to the present invention. FIG. 2B is a partial detailed schematic view of FIG. 2a. Referring to FIGS. 2A and 2B, the thin film optical detecting device 2 is adapted to detect the film making time 60 and is used to determine The preferred detection parameters are that a film of a plurality of different materials and thicknesses is deposited on the substrate 62 of the film product (the standard is not marked), and the preferred detection parameters are such that the film of different materials and thicknesses can be obtained. f expansion, the beam can produce the maximum contrast, in order to confirm whether these films have the production of enamel. In addition, the substrate 62 of the film product 6 () can also have different materials and transmittance. The above-mentioned thin film optical detecting device 200 includes a multi-wavelength light source 11 201017150 210, a spectroscopic collimating module 220, a multi-channel polarization rotating module 23, a multi-channel phase delay mode 240, a combined light collimating module 250, and a partial The polarization mode ^2 and the image spectrometer 270. The multi-wavelength source 210 is adapted to generate a beam 212, and the beam 212 is a beam having a plurality of wavelength bands, and the bands are particularly in the visible light range, such as 400 nm to 750 n. In this embodiment, the multi-wavelength light source 210 can be a multi-wavelength laser, but the multi-wavelength light source 21 can also be a broadband halogen light source, a flash light source, a multi-wavelength gas lamp, or other suitable light source. 212 is incident on the spectroscopic collimation module 220 for splitting and collimating, and splits the beam 212 into a plurality of parallel sub-beams 214 (as shown in FIG. 2B), wherein the sub-beams 214 can each have a single band, That is, the sub-beams 214 are different wavelengths of light. In this embodiment, the spectroscopic collimating module 220 includes a first grating 222 and a first collimating mirror 224, wherein when the beam 212 is incident on the first grating 222, different wavelengths of light The sub-beams 214 in a plurality of different directions are decomposed into a plurality of different directions and incident on the first collimating mirror 224, and the first collimating mirror 224 re-aligns the directions of the sub-beams 214 to make them parallel. status. In the present embodiment, the first grating 222 may be a diffraction type spectroscopic grating or a holographic spectroscopic grating, and the first collimating mirror 224 may be a lenticular lens. Of course, possible implementations of the present technology do not limit the types of first grating 222 and first collimating mirror 224. Furthermore, the first grating 222 of this embodiment may also be replaced by a prism, which is a sub-beam 214 that splits the beam 212 into different bands by using the difference in refractive index. However, in terms of experimental results, the spectroscopic effect of the grating is superior to that of the lens. Referring to FIG. 2A and FIG. 2B again, these sub-beams 214 will be rotated by 23G through a multi-12 201017150 channel to respectively determine the azimuth angle p of the starting money, that is, the multi-channel polarization rotating module 230 is used for the polarizing. function. The multi-channel polarization rotation module 230 has a plurality of channels (shown in a plurality of small squares in the drawing), and the sub-beams 214 pass through the channels to change the respective polarization states. In this embodiment, the multi-channel polarization rotation module 23 can be a multi-channel microelectromechanical polarization rotator (Multi_Channd mems)

Potozaticm R0tat0r),其中每個通道内均設置有微形偏振 片,並利用微機電結構分別進行調整這些次光束214的方 ❿位角P。如此-來,這些次光束214便分別帶有不同起偏 之方位肖P身訊。當然,多通道極化旋轉模组23〇亦可為 數位微型反射鏡元件(DMD;)。 類似前述’接著這些次光束214 X會通過多通道相位 延遲模、组240时別決定各自的相位延遲量5c。以前述之 4個可調參數而言’本實施例是固定相位延遲器之方位角 C,並分別對應調整相位延遲器之相位延遲量&,因此多 通道相位延遲模組240可為多通道液晶相位可變延遲器。 ❿藉由分別以電壓調整每個通道内液晶分子的轉動角度,便 可適當對應延遲這些次光束之相位延遲量§c。如此一來, 這婆次光束214便帶有相同相位延遲的方位角c,並分別 . 帶有不同相位延遲之相位延遲量δο資訊。當然,本發明技 術之實施態樣並不限定多通道相位延遲模組24〇的種類, • 舉例而言,多通道相位延遲模組240亦可為多通道微機電 相位延遲器或其他合適的相位延遲器。 值得注意的是’在本實施例之多通道極化旋轉模組2 3 〇 與多通道相位延遲模組240中,其均有128個通道。換句 13 201017150 話說’便有128個次光束214分別對應通過這些通道。以 可見光400〜750nm之波段而言,每個次光束214波段的 帶寬約為2nm。 再來,這些次光束214便會透過合光準直模組250合 光以形成聚合光束216而入射至薄膜製品60。類似分光準 直模組220 ’合光準直模組250可包括第二光柵252與第 二準直鏡254 ’其中第二光栅252與第二準直鏡254之合 光功用恰相反於第一光栅222與第一準直鏡224之分光功 ❿ 用。因此,第二光柵252與第二準直鏡254之配置方式即 分別相對於第一光柵222與第一準直鏡224,其中第二準 直鏡254是次光束214聚集於第二光柵252上,而第二光 柵252是將次光束214合成為聚合光束216。承接上述, 第二光栅252與第二準直鏡254的種類可相同於前述之第 一光柵222與第一準直鏡224,於此便不再贅述。 圖3為依據本發明技術之一實施例聚合光束入射薄膜 製品的立體示意圖,其中聚合光束216之截面為長條狀。 ❹請參考圖3與圖2B,在本實施例中,第一準直鏡224與第 一準直鏡254可同時為柱狀準直鏡。如此一來,這些次光 束214在通過第一準直鏡224與第二準直鏡254便會改變 • 截面之形狀,接著在合光之後,便會產生截面為長條狀之 • 聚合光束216。當然,本發明技術之實施態樣並不限制聚 合光束216之形狀或是調整聚合光束216之方式。 此外’聚合光束216會照射至薄膜製品60之薄臈64、 66區域,其中薄臈64、66可具有不同的材質或是厚度, 而得以改變聚合光束216的偏振狀態。Potozaticm R0tat0r), in which a micro-polarizer is disposed in each channel, and the square angle P of the sub-beams 214 is separately adjusted by a microelectromechanical structure. In this way, the secondary beams 214 are respectively provided with different orientations. Of course, the multi-channel polarization rotation module 23 can also be a digital micro mirror element (DMD;). Similarly to the foregoing, then these sub-beams 214 X pass through the multi-channel phase delay mode, group 240, and the respective phase delay amounts 5c are determined. In the foregoing four adjustable parameters, the present embodiment is the azimuth angle C of the fixed phase retarder, and correspondingly adjusts the phase delay amount & of the phase retarder, respectively, so the multi-channel phase delay module 240 can be multi-channel Liquid crystal phase variable retarder. ❿ By adjusting the rotation angle of the liquid crystal molecules in each channel by voltage, respectively, the phase delay amount §c of these sub-beams can be appropriately delayed. In this way, the sub-beam 214 has the azimuth angle c of the same phase delay, and the phase delay amount δο information with different phase delays. Of course, the implementation of the present invention does not limit the type of the multi-channel phase delay module 24, and the multi-channel phase delay module 240 can also be a multi-channel MEMS phase retarder or other suitable phase. Delayer. It should be noted that in the multi-channel polarization rotation module 2 3 〇 and the multi-channel phase delay module 240 of the present embodiment, there are 128 channels. In other words, 13 201017150 says that there are 128 sub-beams 214 corresponding to each of these channels. In the visible light band of 400 to 750 nm, the bandwidth of each sub-beam 214 band is about 2 nm. In turn, the secondary beams 214 are combined by the combined light collimation module 250 to form a polymeric beam 216 for incident on the film article 60. The light split collimation module 220 may include a second grating 252 and a second collimating mirror 254 'where the combining function of the second grating 252 and the second collimating mirror 254 is opposite to the first The grating 222 and the first collimating mirror 224 are used for splitting power. Therefore, the second grating 252 and the second collimating mirror 254 are disposed relative to the first grating 222 and the first collimating mirror 224, respectively, wherein the second collimating mirror 254 is the sub-beam 214 concentrated on the second grating 252. The second grating 252 synthesizes the secondary beam 214 into a converged beam 216. In the above, the second grating 252 and the second collimating mirror 254 can be of the same type as the first grating 222 and the first collimating mirror 224, and will not be described again. 3 is a perspective view of a polymeric beam incident film article in accordance with an embodiment of the present invention, wherein the cross section of the polymeric beam 216 is elongated. Referring to FIG. 3 and FIG. 2B, in the embodiment, the first collimating mirror 224 and the first collimating mirror 254 can be cylindrical collimating mirrors at the same time. In this way, the sub-beams 214 change the shape of the cross-section through the first collimating mirror 224 and the second collimating mirror 254, and then, after the light is combined, a cross-section of the polymer beam 216 is generated. . Of course, embodiments of the present technology do not limit the shape of the focused beam 216 or the manner in which the polymeric beam 216 is adjusted. In addition, the polymeric beam 216 will illuminate the regions of the webs 64, 66 of the film article 60, wherein the webs 64, 66 can have different materials or thicknesses to alter the polarization state of the polymeric beam 216.

201017150 在本實施例中,聚合光束216在被薄膜製品60反射後 便會通過偏極化模組260 ’而偏極化模組260乃為檢偏之 用’以限制聚合光束216不同偏振態光之穿透量。此偏極 化模組260可為格蘭-湯普生偏振器(Glan-Thomson)、薄膜 偏振器或是其他合適的偏振元件。本發明技術之實施態樣 並不限定聚合光束216被薄膜製品60反射,而聚合光束 216亦可在其他實施例中穿過薄膜製品60,並將於此後的 實施例中詳述。此外,為求清楚表示,通過偏極化模纟且260 後之聚合光束216’另以不同標號示之。 至此,聚合光束216’之各個波段χ均帶有1不同起偏 之方位角Ρ、2.相同相位延遲之方位角c、3.不同之相仇延 遲量5c.、4.相同檢偏之方位角Α以及薄膜64、66之資訊, 以瓊斯矩陣表示如下:In this embodiment, the polymerized light beam 216 passes through the polarization module 260' after being reflected by the film product 60, and the polarization module 260 is used for detecting the polarization to limit the different polarization states of the polymer beam 216. The amount of penetration. The polarization module 260 can be a Glan-Thomson, a thin film polarizer or other suitable polarizing element. Embodiments of the present invention do not limit the polymeric beam 216 from being reflected by the film article 60, and the polymeric beam 216 may also pass through the film article 60 in other embodiments and will be described in detail below. Moreover, for clarity, the polymeric beam 216' passing through the polarization mode and after 260 is otherwise indicated by a different reference. So far, each band χ of the aggregated beam 216' has a different azimuth angle 起, 2. the same phase delay azimuth c, 3. different vengeance delay amount 5c., 4. the same direction of detection The information about the corners and the films 64, 66 is expressed as a Jones matrix as follows:

X— cos2 A cos/4 sin >4 >,〇' iSc e~ Λ」 cos 3 sin 沁 sin2 A L〇厂」 cos-+/sin-cos2C Isin^sm2C I sin—sin 2C 其中fe]X— cos2 A cos/4 sin >4 >,〇' iSc e~ Λ” cos 3 sin 沁 sin2 A L〇厂” cos-+/sin-cos2C Isin^sm2C I sin—sin 2C where fe]

c〇s ~-- /sin—cos 2CC〇s ~-- /sin-cos 2C

cosP smPcosP smP

[£,] ⑴ ^分別為光束212與聚合光束216,的電場狀 態’並可換算出聚合光束216,的光強度,[£,] (1) ^ is the electric field state of the beam 212 and the converged beam 216, respectively, and can convert the light intensity of the converging beam 216,

cosPcosP

sinPsinP

cos— + / sin—cos2C /sin—sin 1C 2 2 2 /sin—sin 2C cos— - i sin ~ cos 2CCos— + / sin—cos2C /sin—sin 1C 2 2 2 /sin—sin 2C cos— - i sin ~ cos 2C

cos2/i cos .4 sin/4 IcosAsmA sin2 A 1分別為起偏矩陣 相位延遲矩陣以及檢偏矩陣,而 66的反射係數矩陣。 rp 則表示薄膜64或薄模 在實施例中,可固定檢偏之方位角Α=π/4(即為” 與相位延遲之方位角〇0,並聰起偏之綠肖ρ :) 延遲量&,便可聽雜聚合光束216,之各做段的光強 度0 15 201017150 、,聚合光束216,會人㈣像光賴,呈多波長。 適當調整起偏之方位角p與相位延遲量δ c便可得到較佳 比的橢偏影像,並獲得較佳的檢測參數。 *作為樣板之薄膜製品6〇可具有多個不同材質或厚度 之薄膜(圖中僅;^示薄膜64、66),而聚合光束之照射 區域涵蓋部份薄膜。如此一來在影像光譜儀27〇所成之影 像乃以兩個維度延展,其中一個即為空間軸向即為聚合 光束照射不同薄膜區域的分布,另一個即為光譜轴向即 ❹不同薄膜區域反射光在各波長的光強分布。 圖4A為圖3之聚合光束216,入射影像光譜儀成像之 模擬圖,而為求圖示清楚,圖4A僅繪示對應薄膜64、66 部分之圖像,且圖4B繪示對應圖4A之光譜圖,其中橫軸 為波長的分布,而縱軸為聚合光束216,的光強度。請先參 考圖4A ’以對應薄膜64、66之列向影像區域而言,分別 調整每個波段對應之參數,使得薄膜64區域為消光區域, 亦即對應薄膜64之影像為全暗。在此參數下,對應薄膜 © 66之影像便會有漏光的現象,而使薄膜64、66的聚合光 束216’在電荷耦合元件(CCD)上具有不同強度產生對比 度。在本實施例中,薄膜64例如為厚度400nm之氮化矽 (Si3N4),而薄膜66更疊加厚度200nm之銦錫氧化物(ITO) • 之透明導電薄膜。 ' 請再參考圖4A〜4B,當薄膜64區域之光束呈消光狀 態時’對應薄膜66之光束的光強度在兩個波段分別具有局 部高點(以α、β之虛線示意),而此兩個波段之中心波長為 427nm與584nm。由於中心波長427nm所對應之薄膜66 201017150 之光束具有較大的光強度,與薄膜64的消光狀態產生最大 對比,因此此時對應之參數(p、C、δ c、A)可為較佳的檢測 參數。當欲檢測薄膜製品之薄膜64、66是否有瑕疵(包括 缺成獏厚度過厚或過薄、膜層的折射率變異等等)時, 便可採用前述之較佳檢測參數對薄膜製品的每個區域進行 光學掃描,此部分前文已有詳述,於此便不再贅述。仃 ❹ ❹ 如前所述’以本實施例之128通道而言,即為同時產 生128道不同波段並帶有不同偏振資訊之次光束,並於影 像光譜儀中成像。藉由對應調整每個波段所對應的參數= 找出特疋薄膜的較佳檢測參數。本發明技術可迅迷調敕屮 較佳的檢測參數,得到較佳對比影像。 正 此外,波段的帶寬可僅約2nm,可使薄膜消 非消光區域無因帶寬引起的額外漏光之情形,藉以:二 學的對比度與精雜。不過本發明㈣之實絲 ^ =道的數量,且通道數量愈多,更㈣於提升實驗的= 另外’本發明技術之實施態樣除了光譜軸向 外’更具有空間軸向的延展而得以一次照射多 广展 的薄膜(請參考圖3)。因此,本發明技術之實施離樣二區域 些薄膜中任選兩個薄膜,以前述之方法決定出對^於這 薄膜的較佳㈣參數,達馳佳影鑛比。〜>兩個 本發明可利用分光的方式將多波長光源分為多首· 不同偏振資訊的次光束而同時進行檢測,其 V有 =,並具有較高的精準度。又如前所述,在4影 C、Sc、Α)中賴兩個參數便可對應調整光強度至gP狀 201017150 態,因此在1.起偏狀態2.相位延遲狀態3.檢偏狀態中,可 僅有兩個裝置需要多通道的設置’而另外一個便不限定非 要多通道之設置。當然,本發明技術之實施態樣亦不限定 這三個裝置均為多通道的裝置。 承接上述而請再參考圖2Α與2Β,在其他以固定參數 Sc、Α而調整參數Ρ、C之實施例而言,多通道相位延遲模 組240便可為多通道微機電相位延遲器(Multi-Channel Micro-Device Phase Retarder),其中每個通道内均設置有可 β 調方位角C之%波板(對應不同波段之%波板亦不同),並以 微機電系統分別進行調整這些%波板之方位角C,而使這些 次光束214分別帶有不同相位延遲之方位角C資訊。 再以固定參數C、Α而調整參數Ρ、之實施例進行 說明,前述之多通道極化旋轉模組230乃為多通道微機電 偏極旋轉器。儘管微機電系統已經可微調偏極片的方位角 P,不過本發明技術之實施態樣之一更可藉由調整相位延遲 的方式而等效調整偏極片的方位角P。 ® 承接上述,以光學理論而言,藉由適當配置兩個1/4波 板並搭配可調相位延遲量之裝置,便可使特定之線偏振狀 態旋轉至任意方位角之線偏振狀態。圖2C為依據本發明技 .術之一實施例之局部詳細示意圖,而圖2C與圖2B之差異 僅在於多通道極化旋轉模組的組成構件不同。 請參考圖2C,本實施例之多通道極化旋轉模組230, 包括第一偏極片232,、第一%波板234,、多通道液晶相位 可變延遲器236,與第二%波板238,,本實施例中這些次光 束214是依序通過第一偏極片232,、第一 %波板234,、多 201017150 通道液晶相位可變延遲器236,與第二%波板238,,且第一 % 波板234與弟一1 乂波板238’乃是針對多波長均適用之%波 板。 • 第一偏極片232決定次光束214偏振的方位角,並藉 由調整多通道液晶相位可變延遲器236,之相位延遲量便得 以旋轉次光束214至任意起偏之方位角p。此外,多通道 液晶相位可變延遲器2 3 6,之形式可與多通道液晶相位延遲 模組240之多通道液晶相位可變延遲器242相同,或者, ®多通道液晶相位可變延遲器236,亦可以多通道微機電相位 延遲器取代。 附帶一提的是,為求量測精準,前述之第一 1/4波板234, 與第二%波板238,亦可改用多通道%波板,而多通道1/4波板 每個通道内的%波板均對應特定之波段。 在圖2C之實施例中,調整參數P、Sc的方式均是透過 改變液晶分子旋轉角度進而改變相位延遲量,藉此以調變 參數p、如。如此即可無需以機械結構進行偏振元件之空 間旋轉,藉此以進一步提高速度。請再參考圖2A,為求再 更進一步提昇對焦的準確度,本實施例之薄膜光學檢測裝 置200更可包括第一.聚焦鏡28〇與第二聚焦鏡290,其中 . 第一聚焦鏡2 8 〇與第二聚焦鏡290分別配置在聚合光束216 • 之光路上’而第一聚焦鏡280是配置於合光準直模組250 與薄膜製品60之間’且第二聚焦鏡29〇是配置於薄膜製品 60與偏極化模組260之間。 第一聚焦鏡280可將聚合光束216精準斜向入射至薄 膜製品60之特定區域上,而第二聚焦鏡290是將反射後的 201017150 聚合光束216聚集起來後入射至偏極化模組260。熟悉此 項技藝者當可輕易理解第一聚焦鏡280與第二聚焦鏡290 之作用,於此便不再贅述。僅管前述實施例之薄膜製品60 是以反射方式量測橢偏影像,不過本發明技術之實施態樣 之一亦可以穿透的方式量測橢偏影像,以下將再另舉實施 例並配合圖示說明。 圖5為依據本發明技術之另一實施例之薄膜光學檢測 裝置的示意圖。請參考圖5,本實施例之薄膜光學檢測裝 ❹ 置500與圖2A之薄膜光學檢測裝置200相似,其差別僅 在量測的方式不同。在本實施例中,聚合光束216是穿透 薄膜製品60,後入射偏極化模組260,而在前述之實施例 中,聚合光束216是被薄膜製品60反射後入射偏極化模組 260 6無論是以何種方式,聚合光束216均會被薄膜製品 60、60’改變偏振狀態,藉由適當調整參數(p、c、§c、A) 可求出較佳的檢測參數。附帶一提的是,本發明技術之實 施態樣並不限制可量測之薄膜製品的種類,舉例而言,本 © 發明可量測之薄膜製品可為液晶顯示器基板、電聚顯示器 基板、晶圓基板或其他適合量測之薄膜製品。 本發明可利用分光的方式將多波長光源分為多道帶有 . 不同偏振資訊的次光束而同時進行檢測,而在4個參數(Ρ、 C、Sc、A)調整兩個參數便可對應調整光強度至消光狀態, 因此在1.起偏狀態2.相位延遲狀態3.檢偏狀態中可僅有兩 個裝置需要多通道的設置,以下將再另舉實施例並配合圖 示說明。 圓6為依據本發明技術之另一實施例之薄膜光學檢測 20 201017150 裝置的示意圖。請參考圖6 ’本實施例之薄膜光學檢測裝 置600與圖2A之薄膜光學檢測裝置2〇〇相似其差別僅 是本實施例是調整起偏狀態與檢偏狀態。然而為避免混 餚,部分構件將從重新定義序數以及標號,不過序數僅是 用來方便解說,並不具有實質上的意義。 承接上述,薄膜光學檢測裝置000包括多波長光源 210第刀光準直模組620a、第一多通道極化旋轉模組 630、第一合光準直模組65〇a、相位延遲模組64〇、第二分 ❹光準直模組620b、第二多通道極化旋轉模組660、第二合 光準直模組650a以及影像光譜儀27〇,其中第一多通道二 化旋轉模組630與第二多通道極化旋轉模組66〇是分別 為起偏與檢偏之用。 請^照圖2A與前文所述’第—多通道極化旋轉模組 630與第二多通道極化旋轉模組66〇可對應前述之多通道 極化旋轉模組230,而第一分光準直模紐62〇a與第二分光 準直模組620b可對應前述之分光準直模組22〇,且第一合 ❹光準直模組65〇a與第二合光準直模組650a可對應前述: 第二合光準直模組250。熟悉此項技藝者當可輕易理解而 不至因為序數而混淆。 . 請再參考圖6,詳細而言,多波長光源21〇所發出之 光束212會被第一分光準直模組62〇a分為多道帶有不同波 • 段之第一次光束614,而這些第一次光束614在通過第一 多通道極化旋轉模組630之通道後,會分別帶有不同起偏 之方位角p資訊。接著,這些第一次光束614會經由第一 合光準直模組65〇a進行合光而形成第一聚合光束616。 201017150 相同:相延遲模組640後會帶有 入射薄腔制遲之方位角c與相位延遲量5c資訊,並接著 為波板相^60 °以本實施例而言,相位延遲模組640可 位延遲器、液晶相位延遲器或是祕祕soleil相 、t ’且相位延遲餘_並不具有多通道的結構。 明模組640附加具有多通道的結構,則本發 夕月技術之實施態樣之—可將相位延遲模組⑽配置於第一 ΟCos2/i cos .4 sin/4 IcosAsmA sin2 A 1 is a polarization matrix phase delay matrix and a deviation matrix, respectively, and a reflection coefficient matrix of 66. Rp means that the film 64 or the thin mode is fixed in the embodiment, the azimuth angle of the fixed detection Α = π / 4 (that is, the azimuth angle θ with the phase delay 并 0, and the deviation of the green ρ :) delay amount &, can listen to the hybrid beam 216, the light intensity of each segment is 0 15 201017150, the aggregate beam 216, the person (four) image light, showing multiple wavelengths. Appropriate adjustment of the azimuth p and phase delay δ c can obtain a better ratio of ellipsometric images and obtain better detection parameters. * As a sample of film products, 6 〇 can have a variety of films of different materials or thickness (only in the figure; ^ show film 64, 66 ), and the irradiated area of the polymeric beam covers a portion of the film. Thus, the image formed by the image spectrometer is extended in two dimensions, one of which is the spatial axial direction, that is, the distribution of the different light film regions irradiated by the polymeric beam. The other is the intensity distribution of the reflected light at different wavelengths in the spectral axis, that is, the different film regions. Figure 4A is a simulation of the image of the incident beam spectrometer of the aggregated beam 216 of Figure 3, and for clarity of illustration, Figure 4A is only An image showing portions of the corresponding film 64, 66, and 4B shows the spectrum corresponding to FIG. 4A, wherein the horizontal axis is the distribution of wavelengths, and the vertical axis is the light intensity of the converged light beam 216. Please refer to FIG. 4A 'for the corresponding image films 64, 66 to the image area, The parameters corresponding to each band are adjusted separately, so that the film 64 region is the extinction region, that is, the image corresponding to the film 64 is completely dark. Under this parameter, the image corresponding to the film © 66 will have light leakage, and the film 64 The converging beam 216' of 66 has a different intensity on the charge coupled device (CCD) to produce contrast. In this embodiment, the film 64 is, for example, tantalum nitride (Si3N4) having a thickness of 400 nm, and the film 66 is further laminated with indium having a thickness of 200 nm. Tin oxide (ITO) • Transparent conductive film. ' Referring again to Figures 4A to 4B, when the beam of the film 64 region is in an extinction state, the light intensity of the beam corresponding to the film 66 has a local high point in each of the two bands ( The center wavelengths of the two bands are 427 nm and 584 nm. The light beam of the film 66 201017150 corresponding to the center wavelength of 427 nm has a large light intensity, and the extinction state of the film 64. The maximum contrast is produced, so the corresponding parameters (p, C, δ c, A) at this time can be preferred detection parameters. When the film 64, 66 of the film product is to be tested for flaws (including insufficient thickness or When the film is too thin, the refractive index variation of the film layer, etc.), each of the regions of the film product can be optically scanned using the preferred detection parameters described above, which has been previously described in detail and will not be described again. ❹ ❹ As described above, in the case of 128 channels of this embodiment, it is a secondary beam that simultaneously generates 128 different bands with different polarization information, and images in an image spectrometer. The corresponding detection parameters of the special film are found by correspondingly adjusting the parameters corresponding to each band. The technique of the present invention can quickly adjust the better detection parameters and obtain a better contrast image. In addition, the bandwidth of the band can be only about 2 nm, so that the film can eliminate the unnecessary light leakage caused by the bandwidth in the extinction area, so that the contrast and fineness of the second school. However, the number of the solid wires of the invention (4) is the number of channels, and the number of channels is more, and (4) the experiment of the lifting test is further = the embodiment of the present invention has a spatial axial extension in addition to the spectral axis. Expose multiple films at once (refer to Figure 3). Therefore, in the practice of the present invention, two of the films of the two regions are separated, and the preferred (four) parameters for the film are determined by the foregoing method. ~> Two The present invention can use the spectroscopic method to divide the multi-wavelength light source into multiple sub-beams of different polarization information and simultaneously detect it, and the V has = and has high precision. As mentioned above, in the 4 shadows C, Sc, Α), the two parameters can be adjusted to adjust the light intensity to the gP-like 201017150 state, so in the 1. polarization state 2. phase delay state 3. in the detection state There are only two devices that require multiple channel settings' and the other does not limit the settings for multiple channels. Of course, the implementation of the present invention does not limit the three devices to be multi-channel devices. Referring to the above, please refer to FIGS. 2A and 2B. In other embodiments in which the parameters Ρ, C are adjusted by the fixed parameters Sc and ,, the multi-channel phase delay module 240 can be a multi-channel MEMS phase retarder (Multi). - Channel Micro-Device Phase Retarder), in which each channel is provided with a % wave plate of β azimuth angle C (the wave plate corresponding to different bands is also different), and these % waves are separately adjusted by the MEMS system The azimuth angle C of the plates causes the sub-beams 214 to have azimuth C information of different phase delays, respectively. The embodiment is further described with the fixed parameter C and the parameter Ρ, and the multi-channel polarization rotating module 230 is a multi-channel microelectromechanical polarization rotator. Although the microelectromechanical system can finely adjust the azimuth P of the polarizer, one of the embodiments of the present invention can adjust the azimuth P of the polarizer by adjusting the phase delay. ® In view of the above, in optical theory, a specific linear polarization state can be rotated to a linear polarization state of any azimuth by appropriately arranging two quarter-wave plates with an adjustable phase delay amount. 2C is a partial detailed schematic view of one embodiment of the present invention, and FIG. 2C differs from FIG. 2B only in that the components of the multi-channel polarization rotary module are different. Referring to FIG. 2C, the multi-channel polarization rotating module 230 of the embodiment includes a first polarizer 232, a first % wave plate 234, a multi-channel liquid crystal phase variable retarder 236, and a second % wave. The plate 238, in this embodiment, the sub-beams 214 are sequentially passed through the first polarizer 232, the first % wave plate 234, the multi-201017150 channel liquid crystal phase variable retarder 236, and the second % wave plate 238. And, the first % wave plate 234 and the first one chopper plate 238' are % wave plates suitable for multiple wavelengths. • The first polarizer 232 determines the azimuth of the polarization of the secondary beam 214, and by adjusting the multi-channel liquid crystal phase variable retarder 236, the phase delay amount is used to rotate the secondary beam 214 to an azimuth angle p of any deflection. In addition, the multi-channel liquid crystal phase variable retarder 263 can be in the same form as the multi-channel liquid crystal phase variable retarder 242 of the multi-channel liquid crystal phase delay module 240, or the multi-channel liquid crystal phase variable retarder 236 It can also be replaced by a multi-channel MEMS phase retarder. Incidentally, in order to accurately measure, the first quarter wave plate 234 and the second % wave plate 238 may be replaced with a multi-channel % wave plate, and the multi-channel quarter wave plate may be used. The % wave plates in each channel correspond to a specific band. In the embodiment of Fig. 2C, the parameters P, Sc are adjusted in such a manner that the phase delay amount is changed by changing the rotation angle of the liquid crystal molecules, thereby modulating the parameter p, for example. This eliminates the need for mechanical rotation of the polarizing element to further increase the speed. Referring to FIG. 2A again, in order to further improve the accuracy of the focus, the thin film optical detecting device 200 of the embodiment may further include a first focusing mirror 28 and a second focusing mirror 290, wherein the first focusing mirror 2 8〇 and the second focusing mirror 290 are respectively disposed on the optical path of the converged light beam 216. The first focusing mirror 280 is disposed between the combined light collimating module 250 and the film product 60' and the second focusing mirror 29 is It is disposed between the film product 60 and the polarization module 260. The first focusing mirror 280 can accurately converge the converging beam 216 onto a specific area of the film product 60, and the second focusing mirror 290 collects the reflected 201017150 polymer beam 216 and then enters the polarization module 260. The function of the first focusing mirror 280 and the second focusing mirror 290 can be easily understood by those skilled in the art, and will not be described again. The film product 60 of the foregoing embodiment measures the ellipsometric image in a reflective manner, but one of the embodiments of the present technology can also measure the ellipsometric image in a penetrating manner, and an embodiment will be further described below. Graphical description. Figure 5 is a schematic illustration of a thin film optical inspection apparatus in accordance with another embodiment of the present technology. Referring to Fig. 5, the thin film optical detecting device 500 of the present embodiment is similar to the thin film optical detecting device 200 of Fig. 2A, and the difference is only different in the manner of measurement. In the present embodiment, the polymeric beam 216 is through the film article 60 and the rear incident polarization module 260. In the foregoing embodiment, the polymeric beam 216 is reflected by the film product 60 and is incident on the polarization module 260. 6 In any way, the polymeric beam 216 will be polarized by the film products 60, 60', and the preferred detection parameters can be determined by appropriately adjusting the parameters (p, c, § c, A). It should be noted that the embodiment of the present invention does not limit the types of measurable film products. For example, the measurable film product of the present invention may be a liquid crystal display substrate, an electropolymer display substrate, or a crystal. Round substrate or other suitable film product for measurement. The invention can divide the multi-wavelength light source into multiple sub-beams with different polarization information and simultaneously detect them by means of splitting, and adjust two parameters in four parameters (Ρ, C, Sc, A). The light intensity is adjusted to the extinction state, so in 1. the biasing state 2. the phase delay state 3. In the detection state, only two devices may require multiple channels, and the following embodiments will be further illustrated. Circle 6 is a schematic illustration of a thin film optical inspection 20 201017150 apparatus in accordance with another embodiment of the present technology. Referring to Fig. 6, the thin film optical detecting device 600 of the present embodiment is similar to the thin film optical detecting device 2 of Fig. 2A except that the polarizing state and the detecting state are adjusted in this embodiment. However, in order to avoid mixing, some components will be redefined by ordinal and label, but the ordinal is only used for convenience and does not have substantial meaning. In the above, the thin film optical detecting device 000 includes a multi-wavelength light source 210, a first light collimating module 620a, a first multi-channel polarizing rotating module 630, a first combined light collimating module 65A, and a phase delay module 64. The second multi-channel polarization alignment module 620b, the second multi-channel polarization rotation module 660, the second light-collimation alignment module 650a, and the image spectrometer 27A, wherein the first multi-channel polarization rotation module 630 And the second multi-channel polarization rotating module 66 〇 is used for the deviation and the detection of the deviation. According to FIG. 2A and the foregoing, the 'multi-channel polarization rotation module 630 and the second multi-channel polarization rotation module 66 〇 can correspond to the multi-channel polarization rotation module 230, and the first spectroscopic standard The direct mode button 62a and the second beam split collimation module 620b can correspond to the aforementioned beam split collimation module 22, and the first merged light collimation module 65A and the second light collimation module 650a Corresponding to the foregoing: The second light combining collimating module 250. Those skilled in the art can easily understand and not be confused by the ordinal number. Referring to FIG. 6 again, in detail, the light beam 212 emitted by the multi-wavelength light source 21〇 is divided into a plurality of first light beams 614 with different wave segments by the first beam split collimation module 62〇a. The first light beams 614, after passing through the channels of the first multi-channel polarization rotating module 630, respectively have azimuth p information of different polarizations. Then, the first light beams 614 are combined by the first light combining collimation module 65A to form a first polymer beam 616. 201017150 is the same: the phase delay module 640 will have the incident azimuth angle c and the phase delay amount 5c information, and then the wave plate phase ^60 °. In this embodiment, the phase delay module 640 can The bit delay, liquid crystal phase retarder or secret Soleil phase, t 'and phase delay residual _ does not have a multi-channel structure. The module 640 is additionally provided with a multi-channel structure, and the embodiment of the present invention can be configured to configure the phase delay module (10) in the first frame.

=極化旋轉模組㈣與第—合光準直模組65Ga之間 (番亦極相位延遲模組_與第—合光準直模組⑽a 置),但也可不互換。 、…第一聚合光束616在被薄膜製品60反射後會被第二j 光準直模、组62Gb分為多道帶有不同波段之第二次光」 618 ’其中這些第二次光束618之波段會對應第一次光' 614的波段。第二次光束618在通過第二多通道極化旋4 模組_之通道後,會分別帶有不同檢偏之方位角A ^ 汛。接著,這些第二次光束618會經由第二合光準直模_ 650b進行合光而形成第二聚合光束619。 最後,第二聚合光束619會入射至影像光譜儀27〇呈 光譜影像,藉由調整第一多通道極化旋轉模組63〇與第二 多通道極化旋轉模組660每個通道内偏振的方位角(即調整 參數P、A) ’便可同步改變影像光譜儀27〇之光譜影像, 以使特定薄膜區域之光譜影像呈現消光狀態’特定薄膜區 域之光譜影像呈現非消光狀態,進而得到較佳的檢測來 數,測得較佳對比影像。類似的說明前文均已詳述,於此 便不再贅述。 ' 22 201017150 昧署依據本發明技術之另—實施例之薄膜光學檢測 m、圖。請參考圖7,本實施例之薄膜光學檢測裝 太眚〜、丨θ 6之薄獏光學檢測裝置_相似,其差别僅是 、:〔疋調整相位延遲狀態與檢偏狀態。然而為避免混 餚’。卩》構件將從重新定義序數以及標號。 承接上述,薄膜光學檢測裝置700包括多波長光源 210、偏極化模組73〇、第一分光準直模組6施、多通道相 位延遲模組240、第-合光準直模址65〇a、第二分光準直 ❹模組62沘、多通道極化旋轉模組76〇、第二合光準|模組 650a以及影像光譜儀27〇,其中偏極化模組73〇與爹通道 極化旋轉模組760是分別作為起偏與檢偏之用,/而偏極化 模組730可對應圖2A中之偏極化模組26〇,且多通道極化 旋轉模組760對應圖2A中之多通道極化旋轉模組230。 詳細而言,多波長光源:210所發出之光束212在通過 偏極化模組730後會帶有相同起偏之方位角p資訊,並接 著被第一分光準直模組620a分為多道帶有不同波段之第 ❹一次光束614,而這些第一次光束6丨4在通過多通道相位 延遲模組240之通遂後’會對應調整其相位延遲的資訊。 類似前述,若爹通道相位延遲模組240為多通道液晶 相位可變延遲器气是多通道微機電相位延遲器而言,則多 通道相位延遲模紐240夜是用於調整第一次光束614之相 位延遲量5c。接著,這竣第一次光束614會經由第一合光 準直模組650a進行合光而形成第一聚合光束616以入射薄 膜製品60。以本實施例而δ,第一聚合光束616在被薄膜 製品60反射後會被第 >分光準直模組620b分為多道帶有 23 .201017150 不同波#又之第二次光束,其中這些第二次光束之 波段會對應第一次光束614的波段。第二次光束618在通 過多通道極化旋轉模組76〇之通道後,會分別帶有不同檢 偏之方位角A資訊。接著,這些第二次光束618會經由第 二合光準直模組650b進行合光而形成第二聚合光束619。 最後,第二聚合光束619會入射至影像光譜儀270成 像’藉由調整多通道極化旋轉模組760與多通道相位延遲 模組240中每個通道的設定(即調整參數a以及參數§c或 ❿ C) ’便可同步改變影像光譜儀270之影像,以使特定薄膜 區域之光譜影像呈現消光狀態,進而得到較佳的檢測參 數。類似的說明前文均已詳述,於此便不再贅述。 以本實施例調整相位延遲狀態與檢偏狀態之設定而 e,為降低分光合光對位上的不便,本發明技術之實施態 樣之一可調整多通道相位延遲模組240的位置以省略一組 分光合光模組。以下將再另舉實施例並配合圖示說明。 圖8為依據本發明技術之另—實施例之薄膜光學檢測 β裝置的*意圖。請參考圖8 ’本實施例之薄膜光學檢測裝 置800與圖2之薄膜光學檢測裝置2〇〇相似,其差別僅是 本實施例是調整柑位延遲狀態與檢 ^質為圖 .變異排列。然而為避上,部;^將 從重新定義標號。 糊1 接上述,薄膜光學檢測裝置_包括多波長光源 二 化模組請、分光準直模組220、多通道相位延 遲杈、、且240、多通道極化旋轉模級86〇、合光準直輾組25〇 以及影像光譜儀270,其中偏極化模組8口3〇斑多通道極化 24 201017150 旋轉模組860是分別作為起偏與檢偏之用,並可分別對應 圖2A中之偏極化模組260與多通道極化旋轉模組230。 詳細而言,多波長光源210所發出之光束212在通過 偏極化模組830後會帶有相同起偏之方位角P資訊,並接 著入射薄膜製品60。以本實施例而言,被薄膜製品60反 射後之光束212會被分光準直模組220分為多道帶有不同 波段之次光束214,而這些次光束214在通過多通道相位 延遲模組240之通道後,會對應調整其相位延遲的資訊。 ❹ 類似前述,若多通道相位延遲模組240為多通道液晶 相位可變延遲器或是多通道微機電相位延遲器而言,則多 通道相位延遲模組240便是用於調整次光束214之相位延 遲量。次光束214在通過多通道極化旋轉模組860之通 道後,會分別帶有不同檢偏之方位角A資訊。接著,這些 次光束214會經由合光準直模組250進行合光而形成聚合 光束216而入射至影像光譜儀270呈光譜影像。藉由調整 多通道極化旋轉模組860與多通道相位延遲模組240中每 ❹ 個通道的設定(即調整參數A以及參數jc或C),便可同步 改變影像光谱儀270之影像’以使特定薄膜區域之光譜_影 像呈現消光狀態’進而得到較佳的檢測參數。 • 類似前述’本時實施例之架構可如以下之壤斯矩陣表 示: (2) X 'cos1 A cos/sinJ iA cos 辱 + i’sin.cos2C isin—sin2C z & 2 2 cos ^ sin ^ Sin2 A i sinsin 2C cos — - / sin—cos 2C L 1 2 2 叮cos尸 ^vjsinP 其中式(2)中相關的參數可對照式(1),而式(2)為對調式 [£,] (2) 25 201017150 cos — + i sin—cos 1C /sin—sin 2C /sin — sin 2C cos — — i sin —· c〇s2C 與 λ 0' L° rs] 兩個項次 ⑴中 附帶-提的是’以本實施例調整多通道相位 240之概念而言’圖6中之相位延遲模組_亦可 薄膜製品60與第二分光模組62%之間,或是第二分磁 組620b與第二多通道極化旋轉模組66〇之間。熟悉此、 藝者當可依此概念而調整前述構件的相對位置,惟其厪 本發明之範嘴内。綜上所述,依據本發明技術之薄膜= ®檢測裝置至少具有下列特點: 学 一、將光束利用光柵分光而分解成多個具有單一 的次光束’並使㈣次光束帶有不同的偏振與相位資訊^ 過薄膜’接著湘影像光譜儀直接讀取這些次光束經薄 製品反射或是通過薄膜製品的強度,便可得到多波長之橢 1¾ 彳象。 θ m ^二、藉由調整4個參數(P、c、5c、A)中的任兩個參 ,到特定薄膜區域呈現消光狀態之橢偏影像,便可決定出 可見光範圍的較佳檢測參數,使得薄膜消光區域與非消光 區域間之橢偏影像,形成最大影像對比度。 三、次光束之波段帶寬均非常狹小,藉此町避免消二 區域及非消光區域額外漏光之情形,以大幅提高實驗的. 準度。 雖然本發明技術已以諸實施例揭露如上,然其炎井= 以限定本發明’任何熟習此技藝者,在不脫離#明= 月 之精神和範圍内,當可作些許之更動與潤飾,因此木發 之保濩範圍當視後附之申請專利範圍所界定者為率。 26 201017150 【圖式簡單說明】 圖1A〜1B為習知之利用影像橢偏技術之檢測裝置的 示意圖。 圖2A為依據本發明技術之一實施例之薄膜光學檢測 裝置的示意圖。 圖2B為圖2A之局部詳細示意圖。 圖2C為依據本發明技術之另一實施例之局部詳細示 ❹意圖。 圖3為依據本發明技術之一實施例聚合光束入射薄膜 製品的立體示意圖。 圖4A為圖3之聚合光束入射影像光譜儀成像之模擬 圖。 圖4B繪示對應圖4A之光譜圖。 圖5〜8為依據本發明技術之不同態樣實施例之薄膜 光學檢測裝置的示意圖。 _ 【主要元件符號說明】 50、50’、60、60’ :薄膜製品 . 52、62 :底材 54、56、64、66 :薄膜 100:檢測裝置 110 :光源 112、112’ :光束 120 :起偏器 27 201017150 130 :相位延遲器 140 :檢偏器 150:感測器 160 :多濾光片 200、500、600、700、800 :薄膜光學檢測裝置 210 :多波長光源 212 :光束 214 :次光束 ❿ 216、216’ :聚合光束 220:分光準直模組 222 :第一光栅 224 :第一準直鏡 230、230’ :多通道極化旋轉模組 232’ :第一偏極片 234’:第一%波板 236’:多通道液晶相位可變延遲器 ❹ 238’:第二%波板 240 :多通道相位延遲模組 250:合光準直模組 252 :第二光柵 254 :第二準直鏡 ' 260:偏極化模組 270 :影像光譜儀 280 :第一聚焦鏡 290 :第二聚焦鏡 28 201017150 614 :第一次光束 616 :第一聚合光束 618 :第二次光束 619 :第二聚合光束 620a :第一分光準直模組 620b :第二分光準直模組 630:第一多通道極化旋轉模組 640 :相位延遲模組 ❹ 650a :第一合光準直模組 650b :第二合光準直模組 660:第二多通道極化旋轉模組 730、830 :偏極化模組 760、860 :多通道極化旋轉模組= between the polarization rotation module (4) and the first-combination light collimation module 65Ga (the Fan-Phase phase delay module _ and the first-light-collimation alignment module (10) a), but may not be interchanged. The first polymeric beam 616, after being reflected by the film product 60, is divided into a plurality of second light beams having different wavelength bands by a second j-light collimating mode, group 62Gb, wherein the second secondary light beams 618 The band will correspond to the band of the first light '614. The second beam 618 will have a different azimuth angle A ^ 不同 after passing through the second multi-channel polarization cyclone module. Then, the second sub-beams 618 are combined by the second combined collimation mode _ 650b to form a second converged beam 619. Finally, the second aggregated beam 619 is incident on the image spectrometer 27 to be a spectral image, by adjusting the orientation of the polarization in each channel of the first multi-channel polarization rotation module 63 and the second multi-channel polarization rotation module 660. The angle (that is, the adjustment parameter P, A) ' can synchronously change the spectral image of the image spectrometer 27 so that the spectral image of the specific film region exhibits the extinction state. The spectral image of the specific film region exhibits a non-dull state, thereby obtaining a better The number of measurements is measured and a better contrast image is measured. Similar explanations have been previously described and will not be repeated here. ' 22 201017150 A thin film optical inspection m, diagram according to another embodiment of the present technology. Referring to FIG. 7, the thin film optical detecting device of the present embodiment is similar to the thin optical detecting device of the 丨θ6, and the difference is only: [疋 adjust the phase delay state and the detection state. However, to avoid mixing. The 卩" component will redefine the ordinal and label. In the above, the thin film optical detecting device 700 includes a multi-wavelength light source 210, a polarization module 73, a first split collimation module 6, a multi-channel phase delay module 240, and a first-collimation collimation module. a, a second split collimation module 62沘, a multi-channel polarization rotation module 76〇, a second junction photo module 650a, and an image spectrometer 27〇, wherein the polarization module 73〇 and the channel channel The rotation module 760 is used for the polarization and the detection, respectively, and the polarization module 730 can correspond to the polarization module 26A in FIG. 2A, and the multi-channel polarization rotation module 760 corresponds to FIG. 2A. The multi-channel polarization rotation module 230. In detail, the light beam 212 emitted by the multi-wavelength light source: 210 will have the same azimuth angle p information after passing through the polarization module 730, and then divided into multiple channels by the first beam split collimation module 620a. The first primary beam 614 with different bands, and the first secondary beams 6丨4 will adjust the phase delay information after passing through the multi-channel phase delay module 240. Similarly, if the channel phase delay module 240 is a multi-channel liquid crystal phase variable retarder gas is a multi-channel MEMS phase retarder, the multi-channel phase delay module 240 night is used to adjust the first beam 614. The phase delay amount is 5c. Then, the first beam 614 is combined by the first combining collimation module 650a to form a first converging beam 616 to be incident on the film article 60. In the present embodiment, δ, after being reflected by the film product 60, the first polymerized light beam 616 is split into a plurality of second light beams with a different wavelength of 23.201017150 by the light splitting collimation module 620b. The bands of these second beams will correspond to the bands of the first beam 614. The second beam 618 will have azimuth A information for different detections after passing through the channels of the multi-channel polarization rotation module 76. Then, the second sub-beams 618 are combined by the second combining light collimating module 650b to form a second converging beam 619. Finally, the second aggregated beam 619 is incident on the image spectrometer 270 to image 'by adjusting the settings of each channel in the multi-channel polarization rotation module 760 and the multi-channel phase delay module 240 (ie, adjusting parameter a and parameter § c or ❿ C) 'The image of the image spectrometer 270 can be changed synchronously so that the spectral image of the specific film area is in an extinction state, thereby obtaining better detection parameters. Similar explanations have been previously described and will not be repeated here. In the embodiment, the phase delay state and the state of the detection state are adjusted, e, in order to reduce the inconvenience in the alignment of the splitting and combining light, one of the embodiments of the present technology can adjust the position of the multi-channel phase delay module 240 to omit A group of photosynthetic light modules. The embodiments will be further described below in conjunction with the drawings. Figure 8 is an illustration of a thin film optical detection beta device in accordance with another embodiment of the present technology. Referring to Fig. 8, the thin film optical detecting device 800 of the present embodiment is similar to the thin film optical detecting device 2 of Fig. 2, and the difference is only that the embodiment adjusts the delay state of the citrus position and the quality of the texture. However, to avoid, the section; ^ will redefine the label from. Paste 1 is connected to the above, the thin film optical detecting device _ includes a multi-wavelength light source secondary module, a split collimation module 220, a multi-channel phase delay 杈, and 240, a multi-channel polarization rotary mode 86 〇, a light level Direct 辗 group 25 〇 and image spectrometer 270, wherein the polarization module 8 port 3 freckle multi-channel polarization 24 201017150 rotation module 860 is used for polarization and detection, respectively, and can correspond to Figure 2A The polarization module 260 and the multi-channel polarization rotation module 230. In detail, the light beam 212 emitted by the multi-wavelength light source 210 will have the same azimuth angle P information after passing through the polarization module 830, and will be incident on the incident film product 60. In this embodiment, the light beam 212 reflected by the film product 60 is divided into a plurality of sub-beams 214 having different wavelength bands by the spectroscopic collimation module 220, and the sub-beams 214 are passing through the multi-channel phase delay module. After the 240 channel, it will adjust the information of its phase delay. ❹ Similarly, if the multi-channel phase delay module 240 is a multi-channel liquid crystal phase variable retarder or a multi-channel microelectromechanical phase retarder, the multi-channel phase delay module 240 is used to adjust the secondary beam 214. The amount of phase delay. After passing through the multi-channel polarization rotation module 860, the secondary beam 214 will have different azimuth A information for different detection. Then, the secondary beams 214 are combined by the combined light collimation module 250 to form a polymer beam 216 and incident on the image spectrometer 270 as a spectral image. By adjusting the settings of each of the multi-channel polarization rotation module 860 and the multi-channel phase delay module 240 (ie, adjusting the parameter A and the parameter jc or C), the image of the image spectrometer 270 can be synchronously changed. The spectral image of a particular film region is rendered in an extinction state to provide better detection parameters. • The structure similar to the previous 'present embodiment can be expressed as follows: (2) X 'cos1 A cos/sinJ iA cos humiliation + i'sin.cos2C isin-sin2C z & 2 2 cos ^ sin ^ Sin2 A i sinsin 2C cos — - / sin—cos 2C L 1 2 2 叮cos corpse ^vjsinP where the relevant parameters in equation (2) can be compared to equation (1), and equation (2) is the opposite formula [£,] (2) 25 201017150 cos — + i sin—cos 1C /sin—sin 2C /sin — sin 2C cos — — i sin —· c〇s2C and λ 0′ L° rs] Two items (1) In the concept of adjusting the multi-channel phase 240 in this embodiment, the phase delay module in FIG. 6 can also be between the film product 60 and the second beam splitting module 62%, or the second magnetic group 620b. Between the second multi-channel polarization rotating module 66〇. Familiar with this, the artist can adjust the relative position of the aforementioned members according to this concept, but it is within the scope of the present invention. In summary, the film=® detecting device according to the present invention has at least the following features: First, the light beam is split into a plurality of single sub-beams by means of grating splitting and the (four) sub-beams are polarized with different polarizations. The phase information ^ through the film 'following the image spectrometer directly read these sub-beams reflected by the thin product or through the strength of the film product, you can get the multi-wavelength ellipses. θ m ^ 2, by adjusting any two parameters of the four parameters (P, c, 5c, A), to the ellipsometric image of the extinction state in a specific film region, the better detection parameters in the visible range can be determined. The ellipsometric image between the extinction area of the film and the non-dull area forms a maximum image contrast. Third, the band width of the sub-beam is very narrow, so that the town can avoid the situation of additional light leakage in the second and non-extinction areas, so as to greatly improve the accuracy of the experiment. Although the technology of the present invention has been disclosed in the above embodiments, it is not limited to the invention, and any person skilled in the art can make some changes and refinements without departing from the spirit and scope of #明=月, Therefore, the scope of the protection of the wood is determined by the rate defined in the attached patent application. 26 201017150 [Simple Description of the Drawings] Figs. 1A to 1B are schematic views of a conventional detecting device using image ellipsometry. 2A is a schematic diagram of a thin film optical detecting apparatus according to an embodiment of the present technology. 2B is a partial detailed schematic view of FIG. 2A. Figure 2C is a partial detailed illustration of another embodiment of the present technology. 3 is a perspective view of a polymeric beam incident film article in accordance with an embodiment of the present technology. Figure 4A is a simulation of the imaging of the converged beam incident image spectrometer of Figure 3. FIG. 4B illustrates a spectrum corresponding to FIG. 4A. 5 to 8 are schematic views of a thin film optical detecting apparatus according to various aspects of the present technology. _ [Main component symbol description] 50, 50', 60, 60': film products. 52, 62: substrate 54, 56, 64, 66: film 100: detecting device 110: light source 112, 112': light beam 120: Polarizer 27 201017150 130 : Phase retarder 140 : analyzer 150 : sensor 160 : multi-filter 200 , 500 , 600 , 700 , 800 : thin film optical detecting device 210 : multi-wavelength light source 212 : light beam 214 : Secondary beam ❿ 216, 216': polymeric beam 220: split collimation module 222: first grating 224: first collimating mirror 230, 230': multi-channel polarization rotating module 232': first polarizing plate 234 ': first % wave plate 236': multi-channel liquid crystal phase variable retarder ❹ 238': second % wave plate 240: multi-channel phase delay module 250: combined light collimation module 252: second grating 254: Second collimating mirror '260: Polarization module 270: Image spectrometer 280: First focusing mirror 290: Second focusing mirror 28 201017150 614: First beam 616: First converging beam 618: Second beam 619 The second polymer beam 620a: the first beam split collimation module 620b: the second beam split collimation module 630: the first multi-channel pole Rotary module 640: phase delay module ❹ 650a: first combined light collimation module 650b: second combined light collimation module 660: second multi-channel polarization rotating module 730, 830: polarized module 760, 860: Multi-channel polarization rotation module

2929

Claims (1)

201017150 十、申請專利範圍: 1.一種薄膜光學檢測裝置,適於檢測一薄膜製品,該 薄膜光學檢測裝置包括: 一多波長光源’適於提供一光束,而該光束具有多個 波段; 一分光準直模組,適於將該光束分為多個次光束,而 該些次光束分別具有對應之波段; 一多通道極化旋轉模組,分別對應調整該些次光束偏 ❹振之方位角; 一多通道相位延遲模組,分別對應調整該些次光束之 相位延遲量或是相位延遲的方位角; 一合光準直模組,適於將該些次光束合為一聚合光束 後入射該薄膜製品; 一偏極化模組,適於檢偏限制該聚合光束穿透量;以 及 一影像光譜儀,適於接收該聚合光束呈光譜影像。 ❿ 2.如申請專利範圍第1項所述之薄膜光學檢測裝置, 其中該多通道相位延遲模組為多通道液晶相位可變延遲器 或多通道微機電相位延遲器。 _ 3.如申請專利範圍第1項所述之薄膜光學檢測裝置, 其中該多通道極化旋轉模組為多通道微機電偏極旋轉器。 * 4.如申請專利範圍第1項所述之薄膜光學檢測裝置, 其中該多通道極化旋轉模組包括: 一第一偏極片; 一第一 %波板; 30 201017150 一f通道液晶相位可變延遲器;以及 . - 板’㈣些:欠光束是 片、該第-¼波板、言亥多通道 目=通過該第一偏極 二】/4波板。 4目位可變延遲II與該第 5. 如申請專利範圍第丨項 其中該分光準直模組包括:、之溝犋光學檢測裝置, 參 ❹ -:-光栅’適於將該光束分為該些次光 一第一準直鏡,適於將該些次光束先束,及 極化旋轉模組。 束準直入射該多通道 6. 如申請專利範圍第5項所述 其'該:二柵或全像=置’ 其中該合鮮J:她包I 、姆㈣裝置, 一第二準直鏡,適於聚集該些次光束;以及 一第二光栅,適於將該些次光束合為該聚合 立中=申Ϊ專利範圍第7項所述之_光學檢測裝置, ,、中'"第—光柵為繞射式分光光栅或全像式分光光柵。 9·如申請專利範圍帛1項所述之薄膜光學檢測裝置, 其中該偏極化魅為_ _湯#生偏廳(Glan_Th_〇n)或 薄膜偏振器。 10.如申請專利範圍第1項所述之薄膜光學檢測裝置, 其中該多波長光源為寬帶齒素燈光源、閃光燈光源、多波 長雷射或多波長氣體燈。 n.如申請專利範圍第1項所述之薄膜光學檢測裝置, 其中該薄膜製品為液晶顯示器基板、電漿顯示器基板或是 31 201017150 晶圓基板。 12. 如申請專利範圍第1項所述之薄膜光學檢測裝置, 其中該分光準直模組包括: 一分光稜鏡’適於將該光束分為該些次光束;以及 第準直鏡’適於將該些次光束準直入射該多通道 極化旋轉模組。 13. —種薄膜光學檢測裝置,適於檢測一薄膜製品,該 薄膜光學檢測裝置包括: 夕波長光源’適於提供一光束,而該光束具有多個 波段; 一偏極化模組’適於起偏該光束偏振之方位角,而該 光束通過該偏極化模組後入射該薄膜製品; -分光準直模組,適於將誠束分為多個次光束,而 該些次先束分別具有對應之波段; ❹ 相位延二二,Γ延遲模組:分別對應調整該些次光束之 相位延遲篁或疋相位延遲的方位角; 振之=道極化旋轉模組’分別對應調整該些次光束偏 束·2光準直模組,適於將該些次光束合為—聚合光 -影像光譜儀,狀接㈣聚合以呈光譜。 14.一種薄膜光學檢測裝置,適於檢 腊 薄膜光學檢職置包括: '4_品’該 波段y多波長光源,適於提供一光束,而該光束具有多個 32 201017150 直Ϊ於起偏該光束偏振之方位角; 光束,而該些第一-欠朵&適於將該光束分為多個第一次 - η: 切分別具有對應之波段; 多通道相位延遲模組, 束之相位延遲量或是相位延遲該些第-次光 筮一喂:#2準直模組’適於將該些第-次光束合為-第一聚δ光束後入射該薄骐製品; ❹ 第-刀光準直模組,適於將該第一聚合光束分為多 個第二次光束’而該些第二次光束分別具有對應該些第一 次光束之波段; -多通道極化旋射歧,分別對應雜該些第二次光 束偏振之方位角; -第二合光準直模組’適於將該些第二次光束合為一 第二聚合光束;以及 一影像光谱儀,適於接收該第二聚合光束呈光譜影像。 15.—種薄膜光學檢測裝置,適於檢測一薄膜製品,該 ❹ 薄膜光學檢測裝置包括: 一多波長光源,適於提供一光束,而該光束具有多梱 波段; 一第一分光準直模組,適於將該光束分為多個第一次 光束,而該些第一次光束分別具有對應之波段; • 一第一多通道極化旋轉模組,分別對應調整該些第一 次光束偏振之方位角; 一第一合光準直模組,適於將該些第一次光束合為一 第一聚合光束; 33 201017150 一相位延遲模組,適於調整第一聚合光束之相位延遲 量或是相位延遲的方位角,而該第一聚合光束通過該相位 延遲模組後入射該薄膜製品; 一第二分光準直模組,適於將該第一聚合光束分為多 I ' 個第二次光束,而該些第二次光束分別具有對應該些第一 次光束之波段; 一第二多通道極化旋轉模組,分別對應調整該些第二 次光束偏振之方位角; ❹ 一第二合光準直模組,適於將該些第二次光束合為一 第二聚合光束;以及 一影像光譜儀,適於接收該第二聚合光束呈光譜影像。 16. 如申請專利範圍第1、13項所述之薄膜光學檢測裝 置,復包括一第一聚光焦鏡及一第二聚焦鏡配置在聚合光 束之光路上。 17. 如申請專利範圍第14、15項所述之薄膜光學檢測 裝置,復包括一笫一聚光焦鏡及一第二聚焦鏡配置在第一 ❹ 聚合光束之光路上。 34201017150 X. Patent application scope: 1. A thin film optical detecting device suitable for detecting a film product, the film optical detecting device comprising: a multi-wavelength light source 'suitable for providing a light beam, and the light beam has a plurality of wavelength bands; The collimating module is adapted to divide the beam into a plurality of sub-beams, and the sub-beams respectively have corresponding bands; a multi-channel polarization rotating module respectively adjusts azimuths of the sub-beams a multi-channel phase delay module respectively corresponding to adjusting a phase delay amount of the sub-beams or an azimuth of the phase delay; a combined light collimation module adapted to combine the sub-beams into a converged beam and then incident The film product; a polarization module adapted to detect the amount of penetration of the polymeric beam; and an image spectrometer adapted to receive the spectral image of the aggregated beam. 2. The thin film optical detecting device of claim 1, wherein the multi-channel phase delay module is a multi-channel liquid crystal phase variable retarder or a multi-channel microelectromechanical phase retarder. 3. The thin film optical detecting device according to claim 1, wherein the multi-channel polarization rotating module is a multi-channel microelectromechanical polarizing rotator. 4. The thin film optical detecting device according to claim 1, wherein the multi-channel polarization rotating module comprises: a first polarizing plate; a first % wave plate; 30 201017150 an f channel liquid crystal phase Variable retarder; and - plate '(d) some: the under-beam is the slice, the -1⁄4 wave plate, the multi-channel channel = through the first polarization 2) / 4 wave plate. 4 target variable delay II and the fifth. The scope of the invention is as follows: wherein the spectroscopic collimating module comprises: a gully optical detecting device, and the ❹-:-grating is adapted to divide the beam into The secondary light-first collimating mirrors are adapted to bundle the secondary beams and polarize the rotating module. The beam collimates directly into the multi-channel 6. As described in claim 5, the 'this: the second gate or the hologram=set', wherein the package J: her package I, the m (four) device, a second collimation mirror Suitable for aggregating the sub-beams; and a second grating adapted to combine the sub-beams into the polymerization center = the optical detection device described in claim 7 of the patent scope, , '" The first grating is a diffractive spectroscopic grating or a holographic spectroscopic grating. 9. The thin film optical detecting device according to claim 1, wherein the polarizing charm is a __ soup# Glan_Th_〇n or a film polarizer. 10. The thin film optical detecting device of claim 1, wherein the multi-wavelength light source is a broadband gull light source, a flash light source, a multi-wavelength laser or a multi-wavelength gas lamp. The thin film optical detecting device according to claim 1, wherein the film product is a liquid crystal display substrate, a plasma display substrate or a 31 201017150 wafer substrate. 12. The thin film optical detecting device of claim 1, wherein the split collimation module comprises: a splitter ' adapted to split the beam into the sub-beams; and a collimating mirror The sub-beams are collimated into the multi-channel polarization rotating module. 13. A thin film optical detecting device adapted to detect a film product, the thin film optical detecting device comprising: a solar wavelength source adapted to provide a light beam having a plurality of wavelength bands; a polarization module adapted to Deviating the azimuth of the polarization of the beam, and the beam passes through the polarization module and enters the film product; the beam split collimation module is adapted to divide the true beam into a plurality of sub-beams, and the second beam Each has a corresponding band; ❹ phase delay 22, Γ delay module: respectively adjust the azimuth of the phase delay 篁 or 疋 phase delay of the sub-beams; vibration = track polarization module 'respectively adjust The secondary beam splitting beam 2 light collimating module is adapted to combine the sub-beams into a convergent light-image spectrometer, which is connected (4) to form a spectrum. 14. A thin film optical detecting device, suitable for optical inspection of a thin film comprising: '4_品' the band y multi-wavelength light source, suitable for providing a light beam, and the light beam having a plurality of 32 201017150 straight to the polarizing The azimuth of the polarization of the beam; the beam, and the first - owing & is adapted to divide the beam into a plurality of first time - η: respectively having corresponding bands; multi-channel phase delay module, bundle The phase delay amount or the phase delay of the first-order pupil-feed: #2 collimation module is adapted to combine the first-order beams into a first poly-δ beam and then enter the thin tantalum product; a knife-light collimation module adapted to divide the first converged beam into a plurality of second-order beams' and the second-order beams respectively have bands corresponding to the first-order beams; - multi-channel polarization Shooting, respectively corresponding to the azimuth of the second beam polarization; - the second light collimating module 'suitable to combine the second beam into a second polymer beam; and an image spectrometer, Suitable for receiving the second aggregated beam as a spectral image. 15. A thin film optical detecting device adapted to detect a film product, the 薄膜 film optical detecting device comprising: a multi-wavelength light source adapted to provide a light beam having a multi-turn band; a first split collimating mode The group is adapted to divide the beam into a plurality of first-time beams, and the first beams respectively have corresponding bands; • a first multi-channel polarization rotation module, respectively adjusting the first beams Polarization azimuth; a first light combining collimating module adapted to combine the first beams into a first converging beam; 33 201017150 a phase delay module adapted to adjust a phase delay of the first converging beam a first or a plurality of I a second beam, wherein the second beams respectively have a band corresponding to the first beams; and a second multi-channel polarization rotation module respectively adjusts azimuths of the polarizations of the second beams A second engagement ❹ light collimating module, adapted to the plurality of second sub-beam into a second polymerization combined beam; and an imaging spectrometer, adapted to receive the second light beam as a polymerization spectral image. 16. The thin film optical inspection apparatus of claim 1, wherein the first focusing lens and the second focusing mirror are disposed on the optical path of the concentrated beam. 17. The thin film optical detecting device of claim 14, wherein the first optical focusing mirror and the second focusing mirror are disposed on the optical path of the first 聚合 polymeric beam. 34
TW97140979A 2008-10-24 2008-10-24 Thin film optical inspection apparatus TWI386638B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97140979A TWI386638B (en) 2008-10-24 2008-10-24 Thin film optical inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97140979A TWI386638B (en) 2008-10-24 2008-10-24 Thin film optical inspection apparatus

Publications (2)

Publication Number Publication Date
TW201017150A true TW201017150A (en) 2010-05-01
TWI386638B TWI386638B (en) 2013-02-21

Family

ID=44830706

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97140979A TWI386638B (en) 2008-10-24 2008-10-24 Thin film optical inspection apparatus

Country Status (1)

Country Link
TW (1) TWI386638B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360436B2 (en) 2012-12-18 2016-06-07 Industrial Technology Research Institute Inspection device and inspection method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7158231B1 (en) * 1995-09-20 2007-01-02 J.A. Woollam Co., Inc. Spectroscopic ellipsometer and polarimeter systems
US5877859A (en) * 1996-07-24 1999-03-02 Therma-Wave, Inc. Broadband spectroscopic rotating compensator ellipsometer
JP4712413B2 (en) * 2004-04-19 2011-06-29 シチズンホールディングス株式会社 Variable optical attenuator and optical filter having the same
TWI305832B (en) * 2006-12-13 2009-02-01 Ind Tech Res Inst Multi-channel imaging spectrometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9360436B2 (en) 2012-12-18 2016-06-07 Industrial Technology Research Institute Inspection device and inspection method

Also Published As

Publication number Publication date
TWI386638B (en) 2013-02-21

Similar Documents

Publication Publication Date Title
US8767209B2 (en) Broadband polarization spectrometer with inclined incidence and optical measurement system
JP4140737B2 (en) Broadband spectral rotation compensator ellipsometer
CN104568765B (en) Miniature spectroscopic ellipsometer device and measuring method
US20090122402A1 (en) Achromatic Converter Of A Spatial Distribution Of Polarization Of Light
KR102383467B1 (en) Snapshot ellipsometer
US6222627B1 (en) Wollaston prism and use of it in a fourier-transform spectrometer
JP2004271510A (en) Liquid crystal based polarimetric device, calibration method of the polarimetric device, and polarimetric measurement method
KR101798957B1 (en) Apparatus and method for snapshot interferometric spectro-polarimetry
US6181421B1 (en) Ellipsometer and polarimeter with zero-order plate compensator
TWI811832B (en) Optical metrology devices capable of determining a characteristic of a sample and methods of characterizing a sample using an optical metrology device
KR20180030297A (en) Characteristics measurement device of micro lens array and characteristics measurement method using the device
US7184145B2 (en) Achromatic spectroscopic ellipsometer with high spatial resolution
US8976360B2 (en) Surface plasmon sensor and method of measuring refractive index
US7221454B2 (en) Photopolarimeters and spectrophotopolarimaters with multiple diffraction gratings
Kenaz et al. Mapping spectroscopic micro-ellipsometry with sub-5 microns lateral resolution and simultaneous broadband acquisition at multiple angles
Arteaga et al. Snapshot circular dichroism measurements
CN102589692A (en) Vertical incidence broadband polarization spectrometer for splitting optical fiber bundle and optical measurement system
JP5041508B2 (en) Optical characteristic measuring apparatus and method
TW201017150A (en) Thin film optical inspection apparatus
KR102430925B1 (en) Thickness and property measurement system of thin film using spatial light modulator
CN216771491U (en) Polarization resolution second harmonic testing device
JPH02268234A (en) Multichannel fourier transformation spectroscope apparatus
JP2012122768A (en) Method for measuring thin film element using optical multi-wavelength interferometry
US11668645B2 (en) Spectroscopic ellipsometry system for thin film imaging
CN110763633A (en) Wide-range imaging type birefringence distribution measuring device and method