TW201016600A - Production of carbonate-containing compositions from material comprising metal silicates - Google Patents

Production of carbonate-containing compositions from material comprising metal silicates Download PDF

Info

Publication number
TW201016600A
TW201016600A TW098123398A TW98123398A TW201016600A TW 201016600 A TW201016600 A TW 201016600A TW 098123398 A TW098123398 A TW 098123398A TW 98123398 A TW98123398 A TW 98123398A TW 201016600 A TW201016600 A TW 201016600A
Authority
TW
Taiwan
Prior art keywords
precipitate
metal
acid
carbonate
proton
Prior art date
Application number
TW098123398A
Other languages
Chinese (zh)
Inventor
Brent Constantz
Laurence Clodic
Cecily Ryan
Miguel Fernandez
Kasra Farsad
Sidney Omelon
Philip Tuet
Paulo Monteiro
Brown, Jr
Katharine Geramita
Original Assignee
Calera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/344,019 external-priority patent/US7887694B2/en
Priority claimed from US12/486,692 external-priority patent/US7754169B2/en
Application filed by Calera Corp filed Critical Calera Corp
Publication of TW201016600A publication Critical patent/TW201016600A/en

Links

Classifications

    • Y02E60/366
    • Y02E70/10
    • Y02E70/20

Landscapes

  • Gas Separation By Absorption (AREA)

Abstract

Provided are methods for producing carbonate-containing compositions comprising silicon-based material (e.g. pozzolanic material) from a source of carbon dioxide, a divalent cation-containing solution and a source of proton-removing agents. In such methods, divalent cations of the divalent cation-containing solution are provided by digestion of material comprising metal silicates. Also provided are methods for producing carbonate-containing compositions comprising little or no silicon-based material. In such methods, silicon-based material (e.g. silica, unreacted or undigested, silicates, aluminosilicates, etc) may be separated and processed separately from carbonate-containing compositions. Silicon-based material and carbonate-containing material may be blended at a later stage to produce a pozzolanic material, which may be further processed and blended with, for example, Porland cement.

Description

201016600 六、發明說明: 相關申請案之交互參照 本申請案主張2008年7月1〇曰申請之美國臨時專利 申請案第61/079,790號;2009年6月Π曰申請之美國 專利申請案第12/486,692號;及2008年12月24日申請 之美國專利申請案第12/344,019號的權利,將該等申請 案各以引用方式併入本文中。 【發明所屬之技術領域】 本發明提供製造含碳酸鹽組成物的方法,其中該等組 成物包含源自二氧化碳來源之矽基材料(如凝硬材^)、含 二價陽離子溶液及質子去除劑來源。在此等方法中,含 二價陽離子溶液之二價陽離子係由消化含金屬魏鹽二 料提供。亦提供製造含些微或㈣基㈣之含碳酸· 成物的錢。在此等紐巾,㈣材料(如^δ、未經反 應或未H赠鹽、_酸„)可與含魏鹽組成物 又離S、疑;^石夕基材料及含碳酸鹽可在稱後階段摻 t以=硬材料,其可經進-步處理並與(例如)波特蘭 水泥摻舍。 【先前技術】 201016600 混凝土係世界上最廣泛使用的工程材料。估計目前世 界混凝土的消耗量為每年11〇億公噸(c〇ncrete, Microstructure, Properties and Materials(2006, McGraw-Hill))。混凝土係—指其中喪有聚集體顆粒或碎 塊之黏結介質之複合材料的術語。在大部分目前所用建 造混凝土中,黏結介質係由水硬水泥與水之混合物所形 成。 ❿ 水硬水泥係與水組合後凝固及硬化之組成物。硬化 後,水硬水泥即使再水中亦保持強度及穩定性。此特徵之 主要要求係由水泥組分水合所形成之水合物本質上不溶 於水。可使用水泥本身或與粗及細之聚集體組合使用,在 該情況下組成物分別係指混凝土或灰泥。大部分目前所用 之水硬水泥係基於波特蘭水泥。波特蘭水泥主要係由石灰 石、特定黏土材料及石膏在一驅除二氧化碳(C〇2)並將主 要成分化學組合成新化合物之高溫程序中製得。 參 波特蘭水泥製造及其他工業程序如以化石燃料為主之 發電(如燃煤發電腐:)之二氧化碳排放促成地球暖化現 象。預期提高的二氧化碳及其他溫室氣體之大氣濃度將 促使熱大置儲存在大氣内而導致提馬表面溫度及快速氣 候變遷。另外,大氣中提尚之C〇2濃度預期將因二氧化 碳溶解並形成碳酸而進一步酸化世界海洋。氣候變遷及 海洋酸化之衝擊若無及時控制則將可能付出昂貴經濟代 價並危害環境。钳合及免除各種人為程序之二氧化碳提 201016600 供降低氣候變遷之危險的可能性。 本文所揭示之本發明經由自含金屬矽酸鹽材料製造含 碳酸鹽組成物之方法及系統提供二氧化碳之鉗合及免 除,其中該等組成物可用於混凝土中。 【發明内容】 摘述 提供一種包括以下步驟之方法:以一水溶液消化含金 屬石夕酸鹽材料以產生二價陽離子及含Si02材料;二價陽 離子與溶解二氧化碳反應以產生沈澱物;並乾燥該沈澱 物。在此等方法中,沈澱物可經乾燥而形成一具有一致 粒挫分布之細微粉末。該方法可另外包括在消化含金屬 石夕酸鹽材料之前先研磨含金屬矽酸鹽材料’其中含金屬 石夕酸鹽材料包含岩石或礦物且另外其中該礦物包括正石夕 酸鹽、鏈狀矽酸鹽、頁矽酸鹽及網狀矽酸鹽。正矽酸鹽 礦物包含撖欖石類礦物且網狀矽酸鹽礦物包含蛇紋石類 鑛物。在某些具體實施例中,消化含金屬發酸鹽材料包 括以酸消化而產生一含二價陽離子及含Si〇2材料之酸性 溶液。該酸可選自由证、11(:卜1^、111、112804、1^03、 H3P〇4、鉻酸、H2C〇3、乙酸、檸檬酸、曱酸、葡萄糖酸、 乳酸、草酸、酒石酸、抗壞血酸及米氏酸組成之群。在 某些具體實施例中,該酸為HC1。消化後,酸性溶液可 與質子去除劑接觸。在某些具體實施例中,該酸性溶液 係藉與質子去除劑接觸而成驗性溶液,其中質子去除劑 201016600 可為選自由NaOH、KOH、Ca(OH)2及Mg(OH)2組成之 群之氫氧化物。在某些具體實施例中,該氳氧化物為 Na〇H°在某些具體實施例中,消化含金屬矽酸鹽材料包 括以質子去除劑消化以產生一含二價陽離子及含Si〇2材 料之驗性溶液。在某些具體實施例中,消化提供包括鹼 土金屬陽離子之二價陽離子。在某些具體實施例中,鹼 土金屬陽離子包括Ca2+、Mg2+或其組合。該方法可另外 包括分離沈澱物。在某些具體實施例中,該沈澱物係以 液-固分離裝置與鹼性溶液分離,該裝置係以連續、半批 次或抵次程序進行操作。在某些具體實施例中,該沈澱 物之分離係一連續程序。在某些具體實施例中,亦可以 噴霧乾燥器乾燥該沈澱物以產生細微粉末。在某些具體 實施例中,至少7〇%細微粉末落在既定平均直徑之土5〇 微米内’其中既定平均粒徑係在5與500微米之間。在 某些具體實施例中,至少70%細微粉末落在既定平均直 從之±50微米内,其中既定平均粒徑係在5〇與250微米 之間。在某些具體實施例中,至少70%細微粉末落在既 定平均直徑之±50微米内,其中既定平均粒徑係在1〇〇 與200微米之間。該沈殿物在某些具體實施例中可包含 凝硬材料;然而在某些具體實施例中,該方法另外包括 由沈澱物製造凝硬材料。而且,在某些具體實施例中, 該方法另外包括摻合凝硬材料與水泥。 亦提供一種包括以下步驟之方法:以一水溶液消化含 金屬矽酸鹽材料以提供二價陽離子及含Si02材料;自水 7 201016600 /谷液中刀離出含Si〇2材料;以及二價陽離子與溶解二氧 化碳反應以產生沈澱物。該方法可另外包括在消化含金 屬矽酸鹽材料之前先研磨含金屬矽酸鹽材料,其中含金 屬矽酸鹽材料包含岩石或礦物立另外其中該礦物包括正 矽酸鹽、鏈狀矽酸鹽、頁矽酸鹽及網狀矽酸鹽。正矽酸 鹽礦物包含撖欖石類礦物且網狀矽酸鹽礦物包含蛇紋石 類礦物。在某些具體實施例中,消化含金屬矽酸鹽材料 包括以酸消化而產生一含二價陽離子及含Si〇2材料之酸 性溶液。該酸可選自由HF、HC卜HBr、HI、H2S04、 ηνο3、h3p〇4、鉻酸、H2c〇3、乙酸、檸檬酸、甲酸、 葡萄糖酸、乳酸、草酸、酒石酸、抗壞血酸及米氏酸組 成之群。在某些具體實施例中,該酸為HC1。消化後, 該酸性溶液與質子去除劑接觸。在某些具體實施例中, 該酸性溶液係藉與質子去除劑接觸而成鹼性溶液,該質 子去除劑可為選自由NaOH、KOH、Ca(OH)2及Mg(〇H)2 組成之群之氫氧化物。在某些具體實施例中,該氫氧化 物為NaOH。在某些具體實施例中,消化含金屬矽酸鹽 材料包括以質子去除劑消化以產生一含二價陽離子及含 Si〇2材料之鹼性溶液。在某些具體實施例中,消化提供 含驗土金屬陽離子之二價陽離子。在某些具體實施例 中’鹼土金屬陽離子包括Ca2+、Mg2+或其組合。分離含 Si〇2材料及水溶液可包括以第一液_固分離裝置進行分 離’其中以第一液-固分離裝置分離係一連續、半批次或 批次程序。該方法可另外包括二價陽離子與溶解二氧化 201016600 碳反應後分離沈殿物。在此等方法十,可以第二液_固分 離裝置自鹼性溶液分離出沈澱物,其中以第二液_固分離 裝置分離沈澱物係一連續、半批次或批次程序。在某些 具體實施例中,該沈澱物之分離係一連續程序。所分離 含Si〇2材料及所分離沈澱物可無乾燥地組合以產生凝硬 材料。亦可在組合形成凝硬材料之前先乾燥所分離含 Si〇2材料或所分離沈澱物中之一者。此外,可在組合形 成凝硬材料之前先各別乾燥所分離含Si〇2材料及所分離 沈澱物。照此’可以喷霧乾燥器乾燥沈澱物、含以〇2材 料或沈澱物與含Si〇2材料兩者以產生喷霧乾燥材料。在 某些具體實施例中,至少7〇Q/。喷霧乾燥材料落在既定平 均粒徑之±50微米内,其中既定平均粒徑係在5與5〇〇 微米之間。在某些具體實施例中,至少70%嘴霧乾燥材 料落在既定平均粒徑之±50微米内,其中既定平均粒徑 係在50與250微米之間。在某些具體實施例中,至少 70%喷霧乾燥材料落在既定平均粒徑之±5〇微米内,其中 既定平均粒徑係在100與200微米之間。該方法可另外 包括以火山灰、飛灰、矽灰、高反應性偏高嶺土或高爐 石粉(ground granulated blast furnace slag)強化該凝硬材 料。方法可另外包括摻合凝硬材料與水泥。 亦提供一種由任何上述方法所製成之組成物。亦提供 一種組成物,其包含合成碳酸鹽、矽基材料及合成鐵基 材料。該合成碳酸鹽可包含選自由水纖菱鎂礦、菱鎂礦、 水菱鎂礦、三水碳鎂石及五水碳鎂石組成之群之碳酸 201016600 鎂。在某些具體實施例中,該合成碳酸鹽包括三水碳鎂 石。該組成物可包含高達35°/❶矽基材料,其中該矽基材 料包括矽石如非晶質矽石。鐵基材料可包括氯化鐵或碳 酸鐵。該合成碳酸鹽可另外包含選自由方解石、霰石及 六方方解石組成之群之碳酸辦。在某些具體實施例中, 該組成物另外包含水泥’其中不超過80%組成物包含水 泥,且其中不超過55%組成物包含矽基材料。部分組成 物包含建造材料,而部分係適合用於建造材料中。此類 建造材料包括(但不限於)水泥、聚集體、膠結材料或補充 膠結材料》 亦提供一種系統’其包括處理含金屬矽酸鹽材料之處 理器;沈澱沈澱物之沈澱反應器;及自沈澱反應混合物 中分離沈澱物之液-固分離器’其中沈澱反應器係與處理 器及液-固分離器兩者連接操作。在此類系統中’處理器 包括研磨含金屬矽酸鹽材料之尺寸縮減單元,其中該尺 寸縮減單元包括球磨機或喷射磨機。該處理器可另外包 含消化含金屬矽酸鹽材料之消化器,其中該消化器係經 設計以接收含金屬矽酸鹽材料,其中該材料具有縮減之 尺寸。該消化器可另外設計成接收酸來源之酸、質子去 除劑來源之質子去除劑或其組合。此類系統之沈澱反應 器可經設計以接收已消化含金屬矽酸鹽材料。此外,沈 殿反應器可另外設計成接收二氧化碳工業來源之二氧化 碳。此類系統之液-固分離器可經設計以接收沈;殿反應器 之沈澱反應混合物。該液•固分離器可另外設計成自沈殿 201016600 反應混合物中分離出沈澱物。該系統可另外包括製造乾 沈澱物之乾燥器,該乾燥器可為經設計以接收液-固分離 器之含沈澱物漿料的喷霧乾燥器。在某些具體實施例 中’該喷霧乾燥器係經設計以產生乾沈澱物,其中至少 70%乾沈澱物落在既定平均粒徑之土50微米内,其中既定 平均粒徑係在5與500微米之間。在某些具體實施例中, 該喷霧乾燥器係經設計以產生乾沈澱物,其中至少70% 乾沈澱物落在既定平均粒徑之±50微米内,其中既定平 均粒徑係在50與250微米之間。在某些具體實施例中, 該喷霧乾燥器係經設計以產生乾沈澱物,其中至少70% 乾沈殿物落在既定平均粒徑之±50微米内,其中既定平 均粒徑係在100與200微米之間。該喷霧乾燥器亦可另 外設計成利用二氧化碳工業來源之廢熱,其中二氧化碳 工業來源包括燃煤發電廠之煙道氣。該喷霧乾燥器亦可 另外設計成提供熱耗乏之二氧化碳工業來源給沈殿反應 器中。 此外,提供製造凝硬材料之系統及方法。本發明態樣 包括自含二價陽離子溶液沈殿含Si〇2之含碳酸鹽沈澱物 並由所得沈澱物產生凝硬材料。鎮鐵礦物(如撤欖石)可與 含二價陽離子溶液(如海水)接觸’藉將質子去除劑加入含 二價陽離子溶液中可產生含碳酸鹽沈澱物並由所得含 Si〇2之含碳酸鹽沈殿物製造凝硬材料。Si〇2可為至少部 分非晶質並在多個具體實施例中亦可包含凝膠。在某些 具體實施例中’可在鎂鐵礦物與含二價陽離子溶液接觸 11 201016600 之刖或同呀(例如)籍由含co,盖_ 子溶液酸化含二價陽離子溶液。吹過含二,陽離 道氣。在某些具體實施例中,廢^机可包含廢氣如煙 陽離子溶液之前為噴霧乾燥器所:可f用於酸化含二價 用於乾燥含碳酸鹽沈㈣目时霧乾燥器可201016600 VI. INSTRUCTIONS: RELATED APPLICATIONS RELATED APPLICATIONS This application claims the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the benefit of the disclosure of And U.S. Patent Application Serial No. 12/344, 019, filed on Jan. 24, 2008, the disclosure of which is incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION The present invention provides a method of producing a carbonate-containing composition, wherein the composition comprises a ruthenium-based material derived from a carbon dioxide source (such as a condensed hard material), a solution containing a divalent cation, and a proton-removing agent. source. In such processes, the divalent cation containing the divalent cation solution is provided by digesting the metal containing Wei salt. It also provides money for the manufacture of carbonated products containing some micro or (four) groups (iv). In such a towel, (4) materials (such as ^ δ, unreacted or not H salt, _ acid „) can be separated from the composition containing Wei salt, S; suspect; ^ Shi Xiji materials and carbonates can be Weigh the t in the latter stage to = hard material, which can be processed in advance and blended with, for example, Portland cement. [Prior Art] 201016600 Concrete is the most widely used engineering material in the world. It is estimated that the current world concrete The consumption is 1.1 billion metric tons per year (c〇ncrete, Microstructure, Properties and Materials (2006, McGraw-Hill)). Concrete system - refers to the terminology of composite materials in which there are aggregated particles or fragments of bonding media. In most of the concrete currently used for construction, the bonding medium is formed by a mixture of hydraulic cement and water. ❿ The composition of the hydraulic cement and the solidified and hardened combination of water. After hardening, the hydraulic cement maintains strength even in the water. And stability. The main requirement of this feature is that the hydrate formed by the hydration of the cement component is essentially insoluble in water. The cement itself can be used or combined with coarse and fine aggregates, in which case the composition is separately Refers to concrete or plaster. Most of the hydraulic cements currently used are based on Portland cement. Portland cement is mainly composed of limestone, specific clay materials and gypsum to remove carbon dioxide (C〇2) and chemically combine the main components. It is made in the high temperature process of new compounds. The carbon dioxide emissions from Portland cement manufacturing and other industrial processes such as fossil fuel-based power generation (such as coal-fired power generation rot:) contribute to global warming. The atmospheric concentrations of other greenhouse gases will cause the heat to be stored in the atmosphere and cause the surface temperature and rapid climate change of the Tamar. In addition, the concentration of C〇2 in the atmosphere is expected to further acidify the world's oceans due to the dissolution of carbon dioxide and the formation of carbonic acid. Climate change and the impact of ocean acidification, if not controlled in time, can be costly and costly. It can clamp and eliminate the carbon dioxide of various human processes. 201016600 offers the possibility of reducing the risk of climate change. The invention disclosed herein Method for producing carbonate-containing composition from metal-containing silicate material And the system provides the clamping and exemption of carbon dioxide, wherein the composition can be used in concrete. SUMMARY OF THE INVENTION The present invention provides a method comprising the steps of digesting a metal-containing acid salt material with an aqueous solution to produce a divalent cation And a SiO2-containing material; the divalent cation reacts with the dissolved carbon dioxide to produce a precipitate; and the precipitate is dried. In these methods, the precipitate may be dried to form a fine powder having a uniform grain-reducing distribution. Including grinding a metal-containing silicate material prior to digesting the metal-containing silicate material, wherein the metal-containing silicate material comprises rock or mineral and additionally the mineral comprises Orthodox salt, chain citrate, Page citrate and retinoic acid citrate. The orthosilicate mineral contains sapphire minerals and the reticular strontium minerals contain serpentine minerals. In some embodiments, digesting the metal-containing acid salt material comprises acid digesting to produce an acidic solution comprising a divalent cation and a Si2 containing material. The acid can be selected as a free certificate, 11 (: Bu 1 ^, 111, 112804, 1 ^ 03, H3P 〇 4, chromic acid, H 2 C 〇 3, acetic acid, citric acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid, A group of ascorbic acid and a composition of Michaelic acid. In some embodiments, the acid is HCl. After digestion, the acidic solution can be contacted with a proton-removing agent. In some embodiments, the acidic solution is removed by protons. The agent contacts the test solution, wherein the proton remover 201016600 can be a hydroxide selected from the group consisting of NaOH, KOH, Ca(OH)2, and Mg(OH)2. In some embodiments, the ruthenium The oxide is Na〇H°. In certain embodiments, digesting the metal-containing tantalate material comprises digesting with a proton-removing agent to produce an assay solution comprising a divalent cation and a Si〇2-containing material. In an embodiment, the digestion provides a divalent cation comprising an alkaline earth metal cation. In certain embodiments, the alkaline earth metal cation comprises Ca2+, Mg2+, or a combination thereof. The method can additionally include separating the precipitate. In certain embodiments The precipitate is liquid-solid The separation device is separated from the alkaline solution, which is operated in a continuous, semi-batch or sub-program. In some embodiments, the separation of the precipitate is a continuous process. In some embodiments, The precipitate may also be dried by a spray dryer to produce a fine powder. In some embodiments, at least 7% by weight of the fine powder falls within 5 microns of the soil of a given average diameter, wherein the predetermined average particle size is between 5 and 500. Between the micrometers. In some embodiments, at least 70% of the fine powder falls within a predetermined average of from within ±50 microns, wherein the predetermined average particle size is between 5 and 250 microns. In certain embodiments Wherein at least 70% of the fine powder falls within ±50 microns of a predetermined average diameter, wherein the predetermined average particle size is between 1 and 200 microns. The sink may comprise a pozzolanic material in some embodiments; In some embodiments, however, the method additionally includes making the pozzolanic material from the precipitate. Moreover, in certain embodiments, the method additionally includes blending the pozzolanic material with the cement. The method of the next step: digesting the metal phthalate-containing material with an aqueous solution to provide a divalent cation and a SiO 2 -containing material; removing the Si 〇 2 -containing material from the water 7 201016600 / gluten solution; and reacting the divalent cation with the dissolved carbon dioxide To produce a precipitate. The method may additionally comprise grinding the metal-containing tantalate material prior to digesting the metal-containing tantalate material, wherein the metal-containing tantalate material comprises rock or mineral, and wherein the mineral comprises orthosilicate, Chain citrate, citrate and retinoic acid. The orthosilicate mineral comprises a sapphire mineral and the reticular citrate mineral comprises a serpentine mineral. In some embodiments, digestion Metal-containing phthalate materials include acid-digested to produce an acidic solution containing divalent cations and Si含2 containing materials. The acid may be selected from the group consisting of HF, HC, HBr, HI, H2S04, ηνο3, h3p〇4, chromic acid, H2c〇3, acetic acid, citric acid, formic acid, gluconic acid, lactic acid, oxalic acid, tartaric acid, ascorbic acid and rice acid. Group. In certain embodiments, the acid is HC1. After digestion, the acidic solution is contacted with a proton-removing agent. In some embodiments, the acidic solution is contacted with a proton-removing agent to form an alkaline solution, and the proton-removing agent may be selected from the group consisting of NaOH, KOH, Ca(OH)2, and Mg(〇H)2. Group of hydroxides. In some embodiments, the hydroxide is NaOH. In some embodiments, digesting the metal-containing silicate material comprises digesting with a proton-removing agent to produce an alkaline solution comprising a divalent cation and a Si-containing material. In some embodiments, digestion provides a divalent cation comprising a soil metal cation. In some embodiments, the alkaline earth metal cation comprises Ca2+, Mg2+, or a combination thereof. Separating the Si(R) containing material and the aqueous solution may comprise separating by a first liquid-solid separation apparatus wherein the first liquid-solid separation apparatus is separated by a continuous, semi-batch or batch procedure. The method may additionally comprise separating the divalent cations from the dissolved carbon dioxide 201016600 carbon. In these methods, the second liquid-solid separation device can separate the precipitate from the alkaline solution, wherein the second liquid-solid separation device separates the precipitate into a continuous, semi-batch or batch procedure. In some embodiments, the separation of the precipitate is a continuous procedure. The separated Si〇2-containing material and the separated precipitate can be combined without drying to produce a pozzolanic material. It is also possible to dry one of the separated Si 2 -containing material or the separated precipitate before combining to form a pozzolanic material. Further, the separated Si〇2-containing material and the separated precipitate may be separately dried before being combined to form a pozzolanic material. As such, the precipitate can be dried by a spray dryer, containing either a ruthenium 2 material or a precipitate and a Si 〇 2 containing material to produce a spray dried material. In some embodiments, at least 7 〇 Q /. The spray dried material falls within ± 50 microns of the intended average particle size, wherein the predetermined average particle size is between 5 and 5 microns. In some embodiments, at least 70% of the mist-dried material falls within ± 50 microns of a given average particle size, wherein the predetermined average particle size is between 50 and 250 microns. In some embodiments, at least 70% of the spray dried material falls within ± 5 microns of a given average particle size, wherein the predetermined average particle size is between 100 and 200 microns. The method may additionally include strengthening the hardenable material with volcanic ash, fly ash, ash, highly reactive metakaolin or granulated blast furnace slag. The method can additionally include blending a pozzolanic material with cement. A composition made by any of the above methods is also provided. A composition is also provided which comprises a synthetic carbonate, a ruthenium based material and a synthetic iron based material. The synthetic carbonate may comprise carbonic acid 201016600 selected from the group consisting of water-fibre magnesite, magnesite, hydromagnesite, hydrated magnesite and pentahydrate. In some embodiments, the synthetic carbonate comprises attapulgite. The composition may comprise up to 35 / ❶矽 based material, wherein the ruthenium substrate comprises vermiculite such as amorphous vermiculite. The iron-based material may include ferric chloride or iron carbonate. The synthetic carbonate may additionally comprise a carbonate plant selected from the group consisting of calcite, vermiculite and hexagonal calcite. In some embodiments, the composition additionally comprises cement' wherein no more than 80% of the composition comprises cement, and wherein no more than 55% of the composition comprises a cerium-based material. Some of the components contain construction materials and some are suitable for use in the construction materials. Such construction materials include, but are not limited to, cement, aggregates, cementitious materials or supplementary cementing materials. A system is also provided which includes a processor for treating metal-containing silicate materials; a precipitation reactor for precipitating precipitates; A liquid-solid separator for separating a precipitate in a precipitation reaction mixture, wherein the precipitation reactor is operated in connection with both the processor and the liquid-solid separator. In such systems the processor includes a size reduction unit that grinds a metal phthalate containing material, wherein the size reduction unit comprises a ball mill or a jet mill. The processor can additionally comprise a digester for digesting the metal-containing silicate material, wherein the digester is designed to receive a metal phthalate-containing material, wherein the material has a reduced size. The digester can be additionally designed to receive an acid sourced acid, a proton-removing agent source proton-removing agent, or a combination thereof. Precipitation reactors of such systems can be designed to receive digested metal containing phthalate materials. In addition, the chamber reactor can be additionally designed to receive carbon dioxide from an industrial source of carbon dioxide. The liquid-solid separator of such a system can be designed to receive a precipitation reaction mixture of a sink reactor. The liquid-solid separator can be additionally designed to separate the precipitate from the Shendian 201016600 reaction mixture. The system may additionally include a dryer for making a dry precipitate, which may be a spray dryer designed to receive a sediment-containing slurry of a liquid-solid separator. In some embodiments, the spray dryer is designed to produce a dry precipitate wherein at least 70% of the dry precipitate falls within 50 microns of the soil of a given average particle size, wherein the predetermined average particle size is between 5 and Between 500 microns. In some embodiments, the spray dryer is designed to produce a dry precipitate wherein at least 70% of the dry precipitate falls within ± 50 microns of a given average particle size, wherein the predetermined average particle size is between 50 and Between 250 microns. In some embodiments, the spray dryer is designed to produce a dry precipitate wherein at least 70% of the dry matter falls within ±50 microns of a given average particle size, wherein the predetermined average particle size is between 100 and Between 200 microns. The spray dryer can also be designed to utilize waste heat from industrial sources of carbon dioxide, which includes flue gas from coal fired power plants. The spray dryer can also be additionally designed to provide a source of heat depleted carbon dioxide to the sink reactor. In addition, systems and methods for making pozzolanic materials are provided. Aspects of the invention include a carbonate-containing precipitate containing Si 2 from a solution containing a divalent cation solution and producing a pozzolanic material from the resulting precipitate. The ferrous minerals (such as the sapphire) can be contacted with a solution containing a divalent cation such as seawater. By adding a proton-removing agent to the solution containing divalent cations, a carbonate-containing precipitate can be produced and the resulting Si-containing yttrium-containing The carbonated sediment is used to make a hardened material. Si〇2 can be at least partially amorphous and can also comprise a gel in various embodiments. In some embodiments, the solution containing the divalent cation can be acidified by, for example, contacting the ferro-magnesium mineral with the divalent cation-containing solution at 11 201016600, for example, by a co-containing solution. Blowing through two, yang away from the gas. In some embodiments, the waste machine may comprise an exhaust gas such as a smoke cation solution prior to being a spray dryer: f may be used to acidify the bivalent content for drying the carbonate-containing sink (four) mesh mist dryer

法另外包括添力:碳酸鹽促進劑(:過具度 ==產生含碳酸鹽沈澱物。含=澱 物可包含&_、魏鎂、俩魄或魏合物。製造 凝硬材料可包減料魏μ卿之沈錄混合物。 亦七供用於製造凝硬材料之系統,該系統可包括經設 計以接收含二價陽離子驗進人其底部之含麵礦物直 立塔;經設計錢收質子去除劑祕之質子去除劑及直 立塔頂部之含二價陽離子溶液之第-反應容器;經設計 以接收第一反應容器之第一沈澱物之第一液-固分離器The method additionally includes the addition of: a carbonate accelerator (: degree of presence == produces a carbonate-containing precipitate. The content of the inclusion = the precipitate may comprise & _, Wei magnesium, two bismuth or a wei compound. Reduction of the mixture of Wei Weiqing. Also for the system for the manufacture of condensable materials, the system may include a vertical column of surface minerals designed to receive the bottom of the test containing divalent cations; designed to collect protons a proton-removing agent and a first reaction vessel containing a divalent cation solution at the top of the vertical column; a first liquid-solid separator designed to receive the first precipitate of the first reaction vessel

及,^以接收第—液·固分離器之第_沈澱物之喷霧 乾燥器。反應容n在某些具體實施射可另外設計成接 收?酸f促進劑。噴霧乾燥器亦可設計成接收廢氣且直 立塔可糾成缺讀乾㈣之廢氣 。在某些具體實施 例中’ 分離器係在直立塔頂部與第—反應容器 間流體交流。在某些具體實施例m統可另外包括 經設計以接收第二液_固分離器之第二沈澱物之沈殿物 清洗器。該系統可另外包括經設計以接收第一液_固分離 器之含一 _離子溶液之第二反應容n且在部分此等具 體實施例中可另外包括經設計以接收第二反應容器之第 12 201016600 器 二沈澱物之苐二液-固分離 【實施方式】 詳述 述本發明之前,應_本發料限於所述 任二僅t例,照此當然可改變。亦應瞭解本文所用術 π干係僅料贿敎㈣實施狀 圖接因批為一本發明範嘴將僅受所附申請專利範圍限制。 久入於值範圍時’應瞭解在該範圍之上限與下限間 =:間之值(除非内文中另外清楚指示,否則至下限 之一)及所述範圍中任何其他所述或介於其間 在本發明内。此等較小範圍之上限及下限可獨 二f該較小範圍内並亦可涵蓋在本發明内,遵從所 ^ 任何特別排除之限值。所述包含該等限值之 中排除彼等所含限值中之-或兩者的範圍亦包 φ #,,t文Λ以經術語”約”置於前之數值呈現特定範圍。術 提供其後精確數字以及接近或近似 计§°後數代數字文字上的支持。在蚊-數字是否接 ,或枷狀數字時’該魏紐似未描述之數 ί:實二其在所呈現之内文中提供該特別描述之數 盘=另外定義’本文所用之所有技術及科學術語具有 /、氪"9本發明所屬技術者普遍瞭解之相同意義。雖然任何 13 201016600 類似或同等於彼等本文所述者之方法及材料亦可用於本 發明之實施或測試中,但現將描述代表性說明方法及材 料。 ;本專利書巾所_之所有發表讀、專利及專利 申請案係賴似個別發表文.獻、專利或專利申請案經特別 且個別指示以引用方式併入之同樣程度的引用方式併入 本文中。此外,各引用之發表文獻、專利及專利申請案係 、引用方式併人本文巾以揭示並描述與所引用之該等發 表文獻有關的主題。任何發表文獻之引用為其申請日前之 =内容且不應轉為承認本文舰本發明無權早於此 發表文獻因辑發明而轉糊。此外,所提供之公告日And, to receive the spray dryer of the first precipitate of the first liquid-solid separator. The reaction capacity can be additionally designed to be received in some specific implementations. Acid f accelerator. The spray dryer can also be designed to receive exhaust gases and the vertical tower can be corrected for exhaust gases that are missing (4). In some embodiments, the separator is in fluid communication with the first reaction vessel at the top of the vertical column. In some embodiments, a sink cleaner designed to receive a second precipitate of the second liquid-solid separator may be additionally included. The system can additionally include a second reaction volume n that is designed to receive a first liquid-solid separator containing an ionic solution and, in some embodiments, can additionally include a second design reactor to receive the second reaction vessel 12 201016600 Two-liquid-solid separation of the second precipitate [Embodiment] Before the present invention is described in detail, the present invention is limited to the above-mentioned two examples, and may of course be changed. It should also be understood that the technique used in this article is only for bribery. (IV) Implementation of the diagram The approval of the invention is limited to the scope of the appended patent. When entering the range of values for a long time, 'the value between the upper and lower limits of the range should be understood (unless otherwise clearly indicated in the text, to one of the lower limits) and any other or Within the invention. The upper and lower limits of such smaller ranges may be exclusive and may be encompassed within the scope of the invention, in accordance with any particular exclusion. The inclusion of such limits, excluding the ranges of - or both of the limits contained therein also includes φ #,, and the text is presented in a particular range by the value preceded by the term "about." Provides accurate numbers afterwards and support for several generations of digital text near or near §°. In the case of mosquitoes - whether the numbers are connected, or the number of figures - 'Wei Nuo does not describe the number ί: Real 2 provides the special description of the number in the text presented = additional definitions 'All the techniques and sciences used in this article The term has the same meaning as /, 氪 " 9 is generally understood by those skilled in the art. Although any of the methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, representative methods and materials will now be described. All publications, patents, and patent applications of the present patent application are hereby incorporated by reference in their entireties. in. In addition, the various cited publications, patents, and patent applications are hereby incorporated by reference in their entirety to the extent of the disclosure of the disclosure. Any reference to published literature is the content of the application before the date of the application and should not be transferred to acknowledge that the invention is not entitled to the invention. In addition, the announcement date provided

期可能不同於實際公告日期,職實際公告 別確認。 M j月b·禺1U 〇 應’主思如本文及所附巾請專利範圍巾 一”及”該”包括複數參考物,除非内文中另外清=干。 另外應注意可_ ”專概_排除任何可昭 此,此陳述意_作描述申請專利制各項元件時使用此、 祕”唯一”、’,僅,,及類似詞或使用,,負,,限制的先 述及說社_具體實_各具林同 射 容易地與其他若干緒實施财任—者 了 之結合而無悖離本發明範痛 73或與 訪株鼓纽及猜神。任何所財法可依所 =二者讀此揭示内容後將清楚瞭解本文所 述事件順序或絲何其他_上可狀順序進行 201016600 用於製造本發明組成物之材料先描述於 =二價陽離子及質子去除劑(及進行質子去除之方法〇)2 '早即中。本發明可用含金切酸雜料及/或相關材料之 ❹ η供於材料之章節t。接著描述可將材料(例如 co2 ’二&陽離子等)摻人本發明組成物中之方法。隨後, 描述本發明系統後,接著描述本發明組成物、含彼等組成 物之產物及其崎。標的係經麵以讀讀者且不以任何 方式限制本發明範_。例如,含金財酸鹽之特定材料應 揭示於或描述於不同於含金財酸鹽材料之章節的章節 (如方法之章|卩)巾,應瞭解含金屬_酸鹽之特定材料為含 金屬械鹽材料揭示内容之—部分。持續進行相同實例, 應暸解含金屬㈣师料之章料科盡且含金屬石夕酸 鹽之額外材料可祕本發明巾而無,轉本發明精神及範 鳴0 材料 如進一步詳述於下,本發明利用co2來源、質子去除 劑來源(及/或進行許去除之方法)及二價陽離子來源以 製造沈澱物。含金屬矽酸鹽材料(如撖欖石、蛇紋石及另 外描述於下之材料)及/或相關材料可提供全部或部分二價 陽離子來源。照此,含金屬矽酸鹽材料可為製造本文所述 組成物之二價金屬陽離子的唯一來源。金屬矽酸鹽及/或相 關材料亦可與製造本文所述組成物之二價陽離子之補充 來源組合使用。含金屬矽酸鹽材料(如撖欖石、蛇紋石及 15 201016600 另外描述於下之材料)及/或相關材料亦可提供全部或部分 質子去除劑來源。照此,含金屬矽酸鹽材料可為製造本文 所述組成物之質子去除劑的唯一來源^金屬石夕酸鹽及/或相 關材料亦可與製造本文所述組成物之質子去除劑之補充 來源組合使用。在某些具體實施例中,金屬矽酸鹽不是質 子去除劑來源。在此類具體實施例中,本文所述之質子去 除劑或彼等質子去除劑之組合係製造本文所述組成物之 質子去除劑來源。將先描述可提供質子去除劑以作為補充 來源之二氧化碳來源、補充二價陽離子來源及質子去除來 源(及進行質子去除之方法)以提供含金屬矽酸鹽材料作為 二價陽離子來源之背景。然後,描述含金屬矽酸鹽材料(如 撖欖石、蛇紋石等),接著描述將該含金屬矽酸鹽材料用 於製造含碳酸鹽組成物、含矽石組成物或其組合之方法。 一氧化碳 本發明方法包括令一定體積之二價陽離子水溶液與 c〇2來源接觸,然後使所得溶液處於沈澱條件下。本發明 方法另外包括令一定體積之二價陽離子水溶液與co2來 ^接觸並同時使所得溶液處於沈澱條件下。含二價陽離子 =液中存在足夠二氧化碳以錢_著量之含碳酸鹽沈 ,物(如由海水);然而一般使用額外二氧化碳。c〇2來源 可為任何慣用co2來源。該c〇2來源可為氣體、液體、固 體(如乾冰)、超6¾界流體或溶於液體之C〇2。在某些具體 實施例中’ C02來源係氣態c〇2來源。該氣流可為實質純 201016600 〇)2或包含分’其包括〇)2及—或多種額外氣體及 /或其他物質如灰分和其他錄。在某些類實施例中,氣 態co2來源為廢氣流(即工廠之活動程序的副產物)如工礙 之廢氣。工廠本質可不同,該等工廠包括(但不限於)發電 廠、化學處理廠、麟處理廠、㈣廄、水泥廠、鋼鐵廠 及其他產生〇)2之_轉或另—處理步驟(如水泥廠之 鍛燒)之副產物的工廠。The period may be different from the actual announcement date, and the actual announcement is not confirmed. M j月b·禺1U 〇应's thoughts such as this article and the attached towel, please cover the patent area towel "and" and "this" include plural reference materials, unless otherwise stated in the text = dry. Also note that _ _ _ _ Exclusion of any such statement, this statement is intended to describe the use of this, secret "unique", "only," and similar words or uses, negative, and restrictive statements and statements. Really _ each forest with the same shot easily with a number of other implementation of financial affairs - the combination of the innocent from the invention of the pain of 73 or with the visit to the drums and guess God. Any of the financial methods may be read as follows. After reading this disclosure, it will be clear that the sequence of events described herein or the other order of the process can be performed. 201016600 The material used to make the composition of the present invention is first described in = divalent cation. And proton remover (and method of proton removal) 2 'early and medium. The present invention can be applied to the section t of the material using 含 η containing gold cut acid and/or related materials. Next, a method of incorporating a material (e.g., co2 'di & cation, etc.) into the composition of the present invention will be described. Subsequently, after describing the system of the present invention, the compositions of the present invention, products containing the same, and their sins are described. The subject matter is to be read by the reader and is not intended to limit the invention in any way. For example, the specific material containing the gold acid salt should be disclosed or described in a section other than the chapter containing the gold acid salt material (such as the chapter of the method | 卩) towel, it should be understood that the specific material containing metal _ acid salt is included The metal-and-salt material reveals part of the content. Continue to carry out the same example, it should be understood that the material containing metal (4) and the additional materials containing metal silicate can be secreted without the invention, and the spirit of the invention and the material of Fanming 0 are further described below. The present invention utilizes a source of co2, a source of proton-removing agent (and/or a method of removal), and a source of divalent cations to produce a precipitate. Metal-containing silicate materials (e.g., sapphire, serpentine, and materials described elsewhere) and/or related materials may provide all or part of the source of divalent cations. As such, the metal-containing silicate material can be the sole source of the divalent metal cations used to make the compositions described herein. The metal citrate and/or related materials can also be used in combination with a supplemental source of divalent cations for making the compositions described herein. Metal-containing phthalate materials (such as sapphire, serpentine, and 15 201016600, further described) and/or related materials may also provide all or part of the source of proton-removing agents. As such, the metal-containing phthalate material can be the sole source of proton-removing agents for the manufacture of the compositions described herein. The metallosilicate and/or related materials can also be supplemented with proton-removing agents for making the compositions described herein. The source is used in combination. In some embodiments, the metal citrate is not a source of proton remover. In such embodiments, the proton-removing agents described herein or a combination of their proton-removing agents are sources of proton-removing agents for making the compositions described herein. A source of carbon dioxide that can provide a proton-removing agent as a supplemental source, a source of divalent cations, and a source of proton removal (and a method of proton removal) will be described first to provide a background of a metal-containing silicate material as a source of divalent cations. Next, a metal-containing silicate material (e.g., sapphire, serpentine, etc.) will be described, followed by a method of using the metal silicate-containing material for producing a carbonate-containing composition, a strontium-containing composition, or a combination thereof. Carbon monoxide The process of the invention comprises contacting a volume of an aqueous solution of divalent cations with a source of c〇2 and then subjecting the resulting solution to precipitation conditions. The process of the invention additionally comprises contacting a volume of aqueous divalent cation solution with co2 while allowing the resulting solution to be subjected to precipitation conditions. Containing divalent cations = There is enough carbon dioxide in the liquid to measure the carbonate-containing sediment (such as from seawater); however, extra carbon dioxide is generally used. The source of c〇2 can be any conventional source of co2. The c〇2 source may be a gas, a liquid, a solid (such as dry ice), a super 63⁄4 boundary fluid, or a C溶于2 dissolved in a liquid. In some embodiments, the 'C02 source is a gaseous c〇2 source. The gas stream may be substantially pure 201016600 〇) 2 or contain fractions including 〇 2 and/or a variety of additional gases and/or other materials such as ash and others. In some embodiments, the gaseous co2 source is the exhaust stream (i.e., a by-product of the plant's active program), such as exhaust gases. The nature of the plant may vary, including but not limited to power plants, chemical processing plants, lining plants, (d) 水泥, cement plants, steel plants and other processes that produce 〇) or other processes (such as cement) The factory of the by-product of the factory's calcination.

含C〇2之廢氣流包含還原(如合成氣、轉移合成氣、天 然氣、氫·似物)及氧化條賊(如燃燒之城氣)。本發 明慣用之蚊廢氣流包括含氧燃•廠料氣(例如源^ 煤或另-碳基㈣且魏道氣經錄或無職別、渦輪 增壓式銷爐產出氣體、煤氣化產出氣體、轉移煤氣化產出 亂體、厭氣消化槽產出氣體、井口天然氣流、重組天 或甲烧水合物及類似物。任何慣用來源之燃燒氣皆可用於 本發明方法及系統巾。在某些㈣實施财 廉 :電廢、水泥薇及煤處理廠之燃燒後排放煙自中= 因此’料廢棄滅可由多種不_ 適合本發明之廢棄物流包括燃燒化石燃料(如煤== fr)之工廠所產生之廢棄物流及自然發生之有機燃料、、尤 積物(如以砂、重油、㈣岩等)之人為燃 輩 些具體實施财,適合胁本伽純及方法 ^ 係源自燃煤發電廒,如_發電廠 廢棄物抓 燒煤發鶴、流體化床煤發電廠;在某些具體實=令- 17 201016600The exhaust gas stream containing C〇2 contains reduction (such as syngas, transfer syngas, natural gas, hydrogen, etc.) and oxide bar thieves (such as burning city gas). The conventional mosquito waste gas stream of the present invention includes an oxygen-containing combustion plant gas (for example, source coal or another carbon-based (four) and Weidao gas recorded or untitled, turbocharged pin furnace gas, coal gasification output Gas, transfer coal gasification to produce chaos, anaerobic digestion tank gas, wellhead natural gas stream, reconstituted days or toxin hydrate and the like. Any conventional source of combustion gas can be used in the method and system towel of the present invention. Some (4) implementation of financial integrity: electric waste, cement and coal processing plant after the combustion of smoke from the medium = therefore 'material waste can be a variety of not _ suitable for the waste stream of the invention including burning fossil fuels (such as coal == fr) The waste stream generated by the factory and the naturally occurring organic fuel, and the special accumulation (such as sand, heavy oil, (4) rock, etc.) are the specific implementation of the fuel, suitable for the threat of the gamma pure and the method ^ from the burning Coal-fired power generation, such as _ power plant waste grab coal-fired cranes, fluidized bed coal power plant; in some specific real = order - 17 201016600

源自整合氣化複合擴環(IGCC)廠之廢棄物流。 &例中,使用 。在某些具體 實施例中’藉由熱时_(HRSG)廠所產生之廢棄^流 係用於根據本發明系統及方法中。 水泥廠所產生的廢棄物流亦適合用於本發明系統及方❹ 法中。水泥廠廢棄物流包含源自濕法及乾法工廠之廢棄物 流,該等工薇可使用豎熏或旋轉窯並可包含預锻燒爐。此 等工廠各可燃燒單一燃料或可依序或同時燃燒兩或多種 燃料。其他工廠如及冶煉廠及精製廠亦為包含二氧化碳之 適用廢棄物流來源。 工業廢氣流可包含二氧化碳作為主要非空氣衍生組 分,或特別係在燃煤發電廠的情況下可包含額外組分如氮 氧化物(ΝΟχ)、硫氧化物(S〇x)及一或多種額外氣體。額外 〇 氣體及其他組分可包括CO、汞及其他重金屬和粉塵微粒 (如源自煅燒及燃燒程序)。氣流中之額外組分亦可包括鹵 化物如氣化鼠及乱化氣,微粒物質如飛灰、粉塵及金屬, 包括神、破、棚、録、鉻、鉻VI、姑、船、猛、汞、翻、 硒、勰、鉈及釩;及有機物如烴、戴奥辛及PAH化合物。 可經處理之適合廢氣流在某些具體實施例中具有以 200ppm 至 l,〇〇〇,〇〇〇ppm,如 200,000ppm 至 lOOOppm,包 201016600 括 200,000ppm 至 2000ppm,例如 180,000ppm 至 2000ppm’ 或 180,000ppm 至 5000ppm,亦包括 180,000ppm 至10,000ppm之量存在之C02。該等廢棄物流,特別係各 種燃燒氣之廢棄物流可包含一或多種額外組分,例如水、 NOx(—氮氧化物:NO及N02)、SOx(—硫氧化物:SO、 S〇2及SO3)、V0C(揮發性有機化合物)、重金屬如汞及微 粒物質(懸浮於氣體中之固體或液體微粒)。煙道氣溫度亦 可不同。在某些具體實施例中,煙道氣之溫度係從〇。〇至 2000°C,如從 60°C至 700。(:,並包括 10(TC至 400。(:。 在某些具體實施例中,一或多種額外組分係沈澱或陷 入藉使含此等額外組分之廢氣流與含二價陽離子(如鹼土 金屬離子如Ca2+及Mg2+)水溶液接觸所形成之沈澱物中。 鈣及鎂之硫酸鹽及/或亞硫酸鹽可沈澱或陷入由含S0X(如 S〇2)之廢氣流所產生之沈澱物(另外包含鈣及/或鎂碳酸鹽) 中。鎂及鈣可分別反應形成MgS04、CaS04以及其他含鎂 及含鈣化合物(如亞硫酸鹽),有效地由煙道氣流無脫硫步 驟如煙道氣脫流(“FGD”)地去除硫。此外,可無額外釋放 C〇2地形成CaC〇3、MgC03及相關化合物。在二價陽離子 水溶液包含南濃度硫化合物(如硫酸鹽)的例子中,水溶液 可富含鈣及鎂’因此鈣及鎂可在形成CaS04、MgS04及相 關化合物之後或除了形成該等物以外另外形成碳酸鹽化 合物。在某些具體實施例中,脫硫步驟可配合含碳酸鹽沈 澱物之沈澱同時進行,或脫硫步驟可在沈澱之前分階段進 行。在某些具體實施例中,於不同階段集得多種反應產物 19 201016600 (如MgC03、CaC03、CaS04、前述物之混合物及類似物), 而在其他具體實施例中,集得單一反應產物(如含碳酸 鹽、硫酸鹽等之沈澱物)。與此等具體實施例一致時,其 他組分,如重金屬(如汞、汞鹽、含汞化合物)可能陷入含 碳酸鹽之沈澱物中或可個別沈澱。 一部分源自工廠之廢氣流(即非整個廢氣流)可用於製 造沈澱物。在此等具體實施例中,廢氣流中用於沈澱物之 沈澱的部分可佔廢氣流之75%或更少,如60%或更少,並 包括50%或更少。在另外其他具體實施例中,實質上(如❹ 80%或更多)工廠所產生之全部廢氣流係用於沈澱物之沈 澱中。在此等具體實施例中,8〇〇/0或更多,如90%或更多, 包括95%或更多,高達100%該來源所產生之廢氣流(如煙 . 道氣)可用於沈殺物之沈澱中。 雖然工業廢氣提供相對濃的燃燒氣來源,本發明方法 及系統亦可應用於自包含濃度遠低於(例如)煙道氣之污染 物的較低濃度來源(如大氣空氣)去除燃燒氣體組分。因 此,在某些具體實施例中,方法及系統涵蓋藉由產生一穩〇 定沈澱物而降低大氣空氣中污染物之濃度。衣此等情況 下’在一部分大氣空氣中污染物如c〇2之濃度町降低10% 或更多,20%或更多,30%或更多,40。/〇或更多,50°/〇或更 多’ 60%或更多,70%或更多,80%或更多,90〇/°或更多, 95〇/〇或更多,99%或更多,99.9%或更多,或99.99%。此 大氣污染物之減量可以本文所述之產率或以更高或較低 產率達成並可以一沈澱步驟或以一系列沈澱步驟完成。 20 201016600 二價陽離子 如上所揭示,含金屬矽酸鹽材料(如橄欖石、蛇紋石) 如詳細描述於下列各章節中者可為製造本文所述組成物 之二價金屬陽離子的唯一來源;然而,含金屬^夕酸鹽材料 亦可與如此章節所述之二價陽離子之補充來源組合使用。 本發明方法包括令一定體積之二價陽離子水溶液與From the waste stream of the integrated gasification composite expansion ring (IGCC) plant. In the & example, use . In some embodiments, the waste stream produced by the Hot Time _ (HRSG) plant is used in the system and method according to the present invention. The waste stream produced by the cement plant is also suitable for use in the system and method of the present invention. The cement plant waste stream contains waste streams from wet and dry processes that can be used in vertical smoked or rotary kilns and can include pre-forged furnaces. Each of these plants can burn a single fuel or can burn two or more fuels sequentially or simultaneously. Other plants, such as smelters and refineries, are also sources of suitable waste streams containing carbon dioxide. The industrial waste gas stream may comprise carbon dioxide as the primary non-air derived component, or in particular in the case of a coal fired power plant, may comprise additional components such as nitrogen oxides (sulfurium oxides), sulfur oxides (S〇x) and one or more Extra gas. Additional 〇 gases and other components may include CO, mercury, and other heavy metals and dust particles (eg, from calcination and combustion procedures). Additional components in the gas stream may also include halides such as gasified mice and chaotic gas, particulate matter such as fly ash, dust and metals, including gods, broken, shed, recorded, chrome, chromium VI, abalone, ship, fierce, Mercury, turn, selenium, tellurium, tellurium and vanadium; and organic matter such as hydrocarbons, dioxin and PAH compounds. Suitable exhaust gas streams that can be treated have, in certain embodiments, from 200 ppm to 1, 〇〇〇, 〇〇〇 ppm, such as from 200,000 ppm to 1000 ppm, and packages 201016600 include from 200,000 ppm to 2000 ppm, such as from 180,000 ppm to 2000 ppm' or 180,000 ppm to 5000 ppm, also including C02 present in an amount of 180,000 ppm to 10,000 ppm. The waste streams, particularly the waste streams of various combustion gases, may comprise one or more additional components such as water, NOx (nitrogen oxides: NO and N02), SOx (sulfur oxides: SO, S〇2 and SO3), V0C (volatile organic compounds), heavy metals such as mercury and particulate matter (solid or liquid particles suspended in a gas). The flue gas temperature can also vary. In some embodiments, the temperature of the flue gas is from helium. 〇 to 2000 ° C, such as from 60 ° C to 700. (:, and includes 10 (TC to 400.): In some embodiments, one or more additional components are precipitated or trapped in an exhaust gas stream containing such additional components and containing divalent cations (eg, Alkaline earth metal ions such as Ca2+ and Mg2+) are contacted with the formed precipitate. Calcium and magnesium sulfates and/or sulfites may precipitate or sink into precipitates produced by the exhaust stream containing SOX (eg S〇2). (In addition to calcium and / or magnesium carbonate). Magnesium and calcium can be separately reacted to form MgS04, CaS04 and other magnesium-containing and calcium-containing compounds (such as sulfite), effectively from the flue gas stream without desulfurization steps such as smoke Sulfur removal ("FGD") to remove sulfur. In addition, CaC〇3, MgC03 and related compounds can be formed without additional release of C〇2. Examples of sulfur-containing compounds (such as sulfates) in the aqueous solution of divalent cations The aqueous solution may be enriched in calcium and magnesium 'so calcium and magnesium may additionally form a carbonate compound after or in addition to forming CaS04, MgS04 and related compounds. In some embodiments, the desulfurization step may be coordinated Subsidence of carbonate precipitate Simultaneously, or the desulfurization step can be carried out in stages prior to precipitation. In some embodiments, a plurality of reaction products 19 201016600 (such as MgC03, CaC03, CaS04, mixtures of the foregoing, and the like) are collected at different stages, In other embodiments, a single reaction product (eg, a precipitate containing carbonate, sulfate, etc.) is collected. Consistent with these specific examples, other components, such as heavy metals (eg, mercury, mercury salts, Mercury compounds may be trapped in carbonate-containing precipitates or may be precipitated separately. A portion of the waste stream from the plant (ie, not the entire exhaust stream) may be used to make a precipitate. In these embodiments, the waste stream is used in the waste stream. The precipitated portion of the precipitate may comprise 75% or less of the exhaust stream, such as 60% or less, and include 50% or less. In still other embodiments, substantially (e.g., 80% or more) The entire exhaust stream produced by the plant is used in the precipitation of precipitates. In these particular embodiments, 8 〇〇 / 0 or more, such as 90% or more, including 95% or more, up to 100 % of the waste gas stream produced by this source (eg Smoke. Gas can be used in the precipitation of sinkers. Although industrial waste gas provides a relatively rich source of combustion gas, the method and system of the present invention can also be applied to self-contained concentrations much lower than, for example, flue gas pollutants. The lower concentration source (e.g., atmospheric air) removes the combustion gas component. Thus, in certain embodiments, the methods and systems encompass reducing the concentration of contaminants in the atmospheric air by creating a stable precipitate. In other cases, 'the concentration of pollutants such as c〇2 in some atmospheric air is reduced by 10% or more, 20% or more, 30% or more, 40./〇 or more, 50°/〇 or More '60% or more, 70% or more, 80% or more, 90〇/° or more, 95〇/〇 or more, 99% or more, 99.9% or more, or 99.99%. This reduction in atmospheric contaminants can be achieved in the yields described herein or in higher or lower yields and can be accomplished in a precipitation step or in a series of precipitation steps. 20 201016600 Divalent cations As disclosed above, metal-containing silicate materials (such as olivine, serpentine) can be the sole source of the divalent metal cations of the compositions described herein, as described in detail in the following sections; The metal-containing material may also be used in combination with a supplemental source of divalent cations as described in this section. The method of the invention comprises reacting a volume of divalent cation aqueous solution with

Ο c〇2來源接觸並令所得溶液處於沈澱條件下。在某些具 體實施例中’令一定體積之二價陽離子水溶液與(:〇2來 源接觸並同時使所得溶液處於沈澱條件下。除了源自含 =屬=酸鹽材料之二價陽離子之外 ,視特定地點之可用 而疋,—價陽離子可源自許多不同二價陽離子來源中 . 土 - 水、礦 此類來源包括工業廢棄物、海水、滷水、硬 在某2如石灰、方鎮石)及任何其他適合來源。 供二價、陽也點中,源自各種工業程序之工業廢棄物流提 於該程序之’丨貝用來源(以及在某些情況下其他適用 不限於)採料,如金屬氧化物)。此類廢棄物流包括(但 灰、底灰、棄物;化石燃料燃燒灰分(燃燒灰分如飛 廢棄物;練油壤邊);礦逢(如鐵礦渣、含鱗礦淺);水泥黨 煤層廢棄物Γ如石=精製廢棄物(如油田及甲烷煤層滷水); 化磨棄水及_財);錢廢棄物;水軟 棄物;金屬表η子交換流出物);♦處理廢棄物;農業廢 科。另外棄物;高ΡΗ紡織廢棄物及苛性聚 於2009年6月17日申請之美國專利申請案 21 201016600 第12/486692號中(將其揭示内容全文以引用方式併入本 文中)之化石燃料燃燒灰分、水泥熏灰及礦渣,金屬氧化 物等共同廢棄物來源可與含金屬矽酸鹽材料組合使用以 提供(例如)本發明二價陽離子。 在某些地點中,用於本發明系統及方法之二價陽離子 慣用來源為水(如含有二價陽離子之水溶液如海水或表面 滷水),其可視欲實施本發明之特定地點而變。可使用之 適合二價陽離子水溶液包括含有一或多種二價陽離子,如 驗土金屬陽離子如Ca2+及Mg2+之溶液。在某些具體實施 ❹ 例中’二價陽離子水溶液包含鹼土金屬陽離子。在某些具 體實施例中,驗土金屬陽離子包括鈣、鎂或其混合物。在 某些具體實施例中,二價陽離子水溶液包含範圍從50至 50,000ppm、50 至 40,000ppm、50 至 20,000ppm、100 至 10,000ppm、200 至 5000ppm,或 400 至 lOOOppm 之量的 鈣。在某些具體實施例中,二價陽離子水溶液包含範圍從 50 至 40,000ppm、50 至 20,000ppm、100 至 l〇,〇〇〇ppm、 200 至 l〇,〇〇〇ppm、500 至 5000ppm,或 500 至 2500ppm Q 之量的鎂。在某些具體實施例中,Ca2+及Mg2+皆存在時, 二價陽離子水溶液中Ca2+對Mg2+之比例(即Ca2+: Mg2+) 為 1 : 1 至 1 : 2.5 ; 1 : 2.5 至 1 : 5 ; 1 : 5 至 1 : 10 ; 1 : 10 至 1 : 25 ; 1 : 25 至 1 : 50 ; 1 : 50 至 1 : 1〇〇 ; 1 : 1〇〇 至 1 : 150 ; 1 : 150 至 1 : 200 ; 1 : 200 至 1 : 250 ; 1 : 250 至 1 : 5〇〇 ;或1 : 500至1 : 1000。在某些具體實施例中,二價 陽離子水溶液中Mg2+對Ca2+之比例(即Mg2+ : Ca2+)為1 : 22 201016600 1 至 1 . 2.5,1 : 2.5 至 1 : 5 ; 25 ; 1 : 25 至 1 : 5〇 ; 1 : 50 至 1 : 150 至 1 : 2〇〇 ; 1 : 2〇〇 至 或 1 : 500 至 1 : 1〇〇〇 〇 • 5 至 1 : 10 ; 1 : 1〇 至 1 : • 100 ; 1 : 100 至 1 : 15〇 ; • 25〇 ; 1 : 250 至 1 : 500 ; 一價陽離子水溶液可包含衍生 滷水(如自然發生之滷水或人為滴水如地妖=水= 鹽度A於淡水之鹽水的二_離子,其 ❹The Ο c〇2 source is contacted and the resulting solution is subjected to precipitation conditions. In some embodiments, 'a volume of divalent cation aqueous solution is contacted with (: 〇 2 source and at the same time the resulting solution is subjected to precipitation conditions. In addition to the divalent cation derived from the genus containing acid salt material, Depending on the availability of a particular location, the valence cation can be derived from many different sources of divalent cations. Soil-water, minerals such sources include industrial waste, seawater, brine, hard in a certain 2 such as lime, square town stone) And any other suitable source. For the two-price, yang, the industrial waste streams from various industrial processes are mentioned in the program's source of mussels (and in some cases other applications are not limited to), such as metal oxides. Such waste streams include (but ash, bottom ash, waste; fossil fuel burning ash (burning ash such as flying waste; practicing oil); mines (such as iron ore slag, scaly ore); cement party coal seam Waste such as stone = refined waste (such as oil field and methane coal bed brine); chemical waste water and _ wealth); money waste; water soft waste; metal table η sub-exchange effluent); Agricultural waste. In addition, the waste material; the sorghum textile waste and the fossil fuel in the US Patent Application No. 21 201016600 No. 12/486,692 filed on Jun. 17, 2009, the entire disclosure of which is hereby incorporated by reference. Common waste sources such as combustion ash, cement fumigation and slag, metal oxides, etc. can be used in combination with metal phthalate containing materials to provide, for example, the divalent cations of the present invention. In some locations, the conventional source of divalent cations useful in the systems and methods of the present invention is water (e.g., aqueous solutions containing divalent cations such as seawater or surface brines) which may vary depending on the particular location in which the invention is to be practiced. Suitable divalent cation aqueous solutions which may be used include solutions containing one or more divalent cations such as soil metal cations such as Ca2+ and Mg2+. In some embodiments, the aqueous divalent cation solution comprises an alkaline earth metal cation. In certain embodiments, the soil metal cations include calcium, magnesium, or mixtures thereof. In certain embodiments, the aqueous divalent cation solution comprises calcium in an amount ranging from 50 to 50,000 ppm, 50 to 40,000 ppm, 50 to 20,000 ppm, 100 to 10,000 ppm, 200 to 5000 ppm, or 400 to 1000 ppm. In certain embodiments, the aqueous divalent cation solution comprises from 50 to 40,000 ppm, 50 to 20,000 ppm, 100 to 1 Torr, 〇〇〇 ppm, 200 to 1 〇, 〇〇〇 ppm, 500 to 5000 ppm, or Magnesium in an amount of 500 to 2500 ppm Q. In some embodiments, when both Ca2+ and Mg2+ are present, the ratio of Ca2+ to Mg2+ in the aqueous divalent cation solution (ie, Ca2+: Mg2+) is 1:1 to 1:2.5; 1:2.5 to 1:5; 5 to 1: 10 ; 1 : 10 to 1: 25 ; 1 : 25 to 1: 50 ; 1 : 50 to 1: 1 ; 1 : 1 to 1: 150 ; 1 : 150 to 1: 200 ; 1 : 200 to 1: 250 ; 1 : 250 to 1: 5; or 1: 500 to 1: 1000. In some embodiments, the ratio of Mg2+ to Ca2+ in the aqueous divalent cation solution (ie, Mg2+: Ca2+) is 1: 22 201016600 1 to 1. 2.5, 1: 2.5 to 1: 5; 25; 1 : 25 to 1 : 5〇; 1 : 50 to 1: 150 to 1: 2〇〇; 1 : 2〇〇 to or 1: 500 to 1: 1〇〇〇〇 • 5 to 1: 10; 1 : 1 to 1: • 100 ; 1 : 100 to 1: 15 〇 ; • 25 〇 ; 1 : 250 to 1: 500 ; The monovalent cation aqueous solution may contain derivatized brine (such as naturally occurring brine or artificial drip such as demon = water = salinity A Di-ion in salt water of fresh water

不^海JCH可:、自紐生或人為的,水係比淡水賦但 不右海水从之水。械水的鹽度範 =千t份數)。糊源自海、料餘何其他= 範圍為約35至約5_之鹽水體的水。滷水係經鹽飽和或 近飽和之水。滷水具有約5〇ppt歧大之财。在某些且 體實施例中’獲得二價陽離子之水_富含礦物(如富含 飼及/或富麵)之淡水來源。在某些㈣實施例中,獲得 二價陽離子之水源係選自海、海洋、湖、沼澤、河口、潟 湖、表面滷水、深滷水、鹼性湖、内海或類似來源之自然 發生的鹽水來源。在某些具體實施例中,獲得二價陽離子 之水源係選自地熱廠廢水或淡化廠廢水之人為滷水。 淡水經常係二價陽離子(如驗土金屬陽離子如Ca2+及 Mg2+)之慣用來源。可使用多種適合淡水來源中之任一 者,包括範圍從相對不含礦物之來源至相對富含確物之來 源的淡水來源。·§含礦物之淡水來源可為自然發生的,包 括多種硬水來源、湖或内海中之任一者。某些富含礦物之 淡水來源如驗性湖或内海(如土耳其之Lake Van)亦提供 23 201016600 之:;)=之淡水來源亦可為人為的》例 r如Ca'rt 可與1陽離子域土金屬陽離子 法及系統源接觸以產生—適合本文所述方 brotocoH田3確物之水。可利用任何慣用實驗程序 >驅物Οα/Μ體、懸浮液或溶賴^㈣離子或其 刖^物(如鹽、礦物)加从水(縣文所狀任何其他類型 之水)中。在某些具體實施例中,可將選自Ca2+及Mgh之 二價陽離子加/^树。在具體實施例中 ,可將選自 ❹ 之價陽離子加人淡水中。在某些具體實施例 中,含有Ca2之淡水係與燃燒灰分(如飛灰、底灰、鍋爐 渣)或其產物或處理形式物組合以產生包麵及歸離子 之溶液。 在某些具體實施例中,二價陽離子水溶液可由亦提供 燃燒氣流之工薇獲得。例如,在水冷卻工廠,如在海水冷 卻工廠中,已為工廠用於冷卻之水然後可用作製造沈澱物 之水。必要時,該水可在進入沈澱系統之前先經冷卻。此 類方法可為(例如)單程冷卻系統利用。例如,城市或農業❹ 供水可用作工廠之單程冷卻系統。然後可將源自工廠之水 用於製造沈澱物,其中出水具有降低的硬度及較高純度。 必要時’此類系統可經改良以包含安全措施(如以偵測破 壞如毒物之添加)並與政府機構(如國土安全或其他機構) 配合。某些具體實施例可使用其他破壞或攻擊之安全設 備0 24 201016600 質子去除劑及方法 如此章節所述般,含金屬矽酸鹽之材料可與其他質子 去除劑來源(及進行質子去除之方法)組合使用。 本發明方法包括使一定體積之二價陽離子水溶液與 C〇2來源接觸(以溶解co2)並令所得溶液處於沈澱條件 下。在某些具體實施例中,一定體積之二價陽離子水溶 液係與C〇2來源接觸(以溶解C〇2)並令該水溶液處於沈 • 澱條件下。C〇2溶入二價陽離子水溶液中產生碳酸,一 種與叙酸氫鹽及碳酸鹽平衡之物種。為製造含碳酸鹽沈 ;殿物,自含一價陽離子溶液中之多種物種(如碳酸、碳酸 氫鹽、鍟等)去除質子而使平衡移向碳酸鹽。去除質子 時,更多C〇2進入溶液中。在某些具體實施例中,使用 質子去除劑及/或方法並使含二價陽離子水溶液與C02接 ,以增加一沈澱反應相中c〇2之吸收(其中pH可保持固 2、增加或甚至降低),接著快速去除質子(如藉由鹼的添 ® 以使含碳酸鹽沈澱物快速沈澱。質子可由多種物種(如 二,碳酸氫鹽、叙等)藉由任一慣用方法,包括(但不限 用二吏用自然發生之質子去除劑、使用微生物及真菌、使 化學質子去除劑、回收人造廢棄物流及利用電 万法去除。 鹼性自月ΐ發^之質子去除劑涵蓋任何可見於可產生或具有 例接it /衷土兄之見廣環境中的質子去除劑。某些具體實施 生驗發生的質子去除劑,包括在添加至溶液中後產 衣兄之礦物。此類礦物包括(但不限於广石灰 25 201016600 (CaO”方鎂石(MgO);氫氧化鐵礦(如針鐵礦及褐鐵礦); 及火山灰。本文所提供此類礦物及含此類礦物之岩石之消 化方法。某些具體實施例提供利用自然驗性水體作為自然 發生之質子去除劑。自然驗性水體之實例包括(但不限於') 表面水來源(如鹼性湖如加州之Mon〇 Lake)及地下水來源 (如鹼性水層)。其他具體實施例提供乾鹼性水體之沈積 物,如沿著非洲Great Rift Vdley之Lake Natr〇n的硬層之 使用。某些具體實施例係使用在正常代謝中分泌鹼性分子 或溶液之生物作為質子去除劑。此類生物之實例為產生驗❹ 性蛋白酶之真菌(如具有9之最適pH的深海真菌焦曲霉 w对⑽)及產生鹼性分子之細菌(如青藍菌如見 於英國Columbia之Atlin濕地中的鞘絲藻办叹印), 其因光合作用之副產物而增加ρΗ)。在某些具體實施例 ::生物係用於產生pH去除劑,其中該生物(如巴氏芽孢 柃菌(5⑽//似;⑽ηζ·,其將尿素水解成氨)代謝污染物(如 尿=)以產生質子去除劑或含質子去除劑(如氨、氫氧化銨) 岭液。在某些具體實施例中,生物係與沈澱反應混合物❹ 分開培養,其中質子去除劑或含質子去除劑之溶液係用於 添加至沈澱反應混合物中。在某些具體實施例中,自然發 生或製造之酶係與質子去除劑組合使用以引起沈澱物之 沈;殿。碳酸軒酶係一由植物及動物所製造之酶,其可加速 水溶液中碳酸變換成碳酸氫鹽。照此,碳酸酐酶係用於加 速沈丨殿物之沈殿。 進行質子去除之化學試劑一般係指大量製造之市售合 26 201016600 成化學試劑。例如,去除質子之化學試劑包括(但不限於) 氫氧化物、有機鹼、超強鹼、氧化物、氨及碳酸鹽。氫氧 化物包括於溶液中提供氫氧化物陰離子之化學物種,包括 (例如)氫氧化鈉(NaOH)、氫氧化鉀(KOH)、氫氧化鈣No, the sea JCH can be: from New York or artificial, the water system is better than the fresh water but not the right sea water. The salinity of the mechanical water is ± thousand t parts). The paste originates from the sea, and the rest of the material = water in the range of about 35 to about 5 mm. The brine is saturated or nearly saturated with water. The brine has a profit of about 5 〇ppt. In some embodiments, the water of the divalent cation is obtained - a source of fresh water rich in minerals (e.g., rich in feed and/or rich). In some (iv) embodiments, the source of divalent cations is selected from naturally occurring brine sources of sea, ocean, lake, marsh, estuary, lagoon, surface brine, deep brine, alkaline lake, inland sea or similar sources. In some embodiments, the source of the divalent cation is selected from the group consisting of geothermal plant wastewater or an artificial brine of desalination plant wastewater. Fresh water is often a common source of divalent cations such as soil metal cations such as Ca2+ and Mg2+. A variety of suitable freshwater sources can be used, including freshwater sources ranging from relatively mineral-free sources to relatively abundant sources. • § Mineral-containing freshwater sources can occur naturally, including any of a variety of hard water sources, lakes or inland seas. Some mineral-rich freshwater sources such as Lakes in the Lake or the Inland Sea (such as Lake Van in Turkey) also provide 23 201016600 :;) = fresh water sources can also be artificial. Examples such as Ca'rt and 1 cation The terrestrial metal cation method and the system source are contacted to produce water suitable for the brotocoH field 3 described herein. Any conventional experimental procedure > driveant Οα/steroid, suspension or lysate (4) ion or its substance (such as salt, mineral) may be added to the water (any other type of water in the county). In some embodiments, a divalent cation selected from the group consisting of Ca2+ and Mgh can be added to the tree. In a particular embodiment, a cation selected from the group consisting of ruthenium may be added to fresh water. In some embodiments, the fresh water system containing Ca2 is combined with combustion ash (e.g., fly ash, bottom ash, boiler slag) or a product or treatment form thereof to produce a coating of the surface and the ions. In some embodiments, the aqueous divalent cation solution can be obtained from a virgin that also provides a combustion gas stream. For example, in a water-cooled plant, such as in a seawater cooling plant, water that has been used for cooling by the plant can then be used as water for making sediment. If necessary, the water can be cooled before entering the precipitation system. Such methods can be utilized, for example, in a single pass cooling system. For example, a city or agricultural water supply can be used as a one-way cooling system for a plant. The plant-derived water can then be used to make a precipitate, wherein the effluent has reduced hardness and higher purity. When necessary, such systems can be modified to include security measures (such as detecting damage, such as the addition of poisons) and cooperating with government agencies (such as homeland security or other agencies). Some specific embodiments may use other safety equipment that is damaged or attacked. 0 24 201016600 Proton Remover and Method As described in this section, metal citrate-containing materials may be combined with other proton-removing agent sources (and methods for proton removal). Used in combination. The process of the invention comprises contacting a volume of an aqueous solution of divalent cations with a source of C〇2 (to dissolve co2) and subjecting the resulting solution to precipitation conditions. In some embodiments, a volume of divalent cation aqueous solution is contacted with a C〇2 source (to dissolve C〇2) and the aqueous solution is subjected to precipitation conditions. C〇2 is dissolved in an aqueous solution of divalent cations to produce carbonic acid, a species that is in equilibrium with hydrogen sulphate and carbonate. In order to produce carbonate-containing sediments, the protons are removed from various species (such as carbonic acid, hydrogencarbonate, hydrazine, etc.) in a monovalent cation solution to shift the equilibrium to carbonate. When protons are removed, more C〇2 enters the solution. In certain embodiments, a proton-removing agent and/or method is used and an aqueous solution of divalent cations is coupled to CO 2 to increase the absorption of c〇2 in a precipitation reaction phase (where the pH can remain solid 2, increase, or even Lower), followed by rapid removal of protons (eg, by the addition of a base to rapidly precipitate the carbonate-containing precipitate. Protons can be used by a variety of species (eg, bicarbonate, naphthene, etc.) by any conventional method, including (but It is not limited to the use of naturally occurring proton-removing agents, the use of microorganisms and fungi, the removal of chemical protons, the recycling of artificial waste streams, and the use of electricity. The alkaline proton remover covers all visible in A proton-removing agent that can be produced or has a wide range of environments in which it is known to be in the environment. Some proton-removing agents that occur in a specific practice include the minerals of the fabricating brothers added to the solution. Such minerals include (but not limited to broad lime 25 201016600 (CaO) periclase (MgO); iron hydroxide ore (such as goethite and limonite); and volcanic ash. These minerals and rocks containing such minerals are provided herein. Digestive side Certain embodiments provide for the use of naturally occurring water bodies as naturally occurring proton-removing agents. Examples of natural water bodies include (but are not limited to) surface water sources (eg, alkaline lakes such as California's Mon〇 Lake) and groundwater. Source (e.g., alkaline aqueous layer). Other embodiments provide for the deposition of dry alkaline water, such as the hard layer along Lake Natr〇n of Great Rift Vdley, Africa. Some specific embodiments are used in normal metabolism. An organism that secretes a basic molecule or a solution as a proton-removing agent. Examples of such organisms are fungi that produce a proteolytic enzyme (such as a deep-sea fungus of the highest pH of 9 (A), and a bacteria that produces a basic molecule) (eg, blue-green bacteria such as the spirulina sinensis found in the Atlin wetland in Columbia, UK), which increases ρΗ due to by-products of photosynthesis. In some specific examples: the biological system is used to produce pH removal Agent, wherein the organism (such as Bacillus baumannii (5(10)//like; (10) ηζ·, which hydrolyzes urea to ammonia) metabolizes contaminants (such as urine =) to produce a proton-removing agent or a proton-removing agent (such as ammonia, Ammonium hydroxide) cation solution. In some embodiments, the biological system is separately cultured from the precipitation reaction mixture, wherein a proton-removing agent or a solution containing a proton-removing agent is added to the precipitation reaction mixture. In some embodiments, naturally occurring or The enzyme produced is used in combination with a proton-removing agent to cause precipitation of the precipitate; the enzyme is an enzyme produced by plants and animals, which accelerates the conversion of carbonic acid in the aqueous solution to hydrogencarbonate. Enzymes are used to accelerate the sinking of the temple. Prochemical removal of chemical reagents generally refers to the mass production of commercially available chemical reagents. For example, chemical reagents for removing protons include (but are not limited to) hydroxides, organic bases. , super alkali, oxide, ammonia and carbonate. Hydroxides include chemical species that provide hydroxide anions in solution, including, for example, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide.

(Ca(OH)2)或氫氧化鎂(Mg(〇H)2)。有機鹼係含碳分子,其 一般為含氮鹼,包括一級胺如甲基胺、二級胺如二異丙基 胺、二級胺如一異丙基乙基胺、芳族胺如苯胺、雜芳族如 吡啶、咪唑及苯并咪唑和其多種形式物。在某些具體實施 例中,選自吼咬、曱基胺、咪嗤、苯并咪嗤、組胺酸及鱗 腈驗(phophazene)之有機驗係用於自沈澱物沈殿用之多種 物種(如碳酸、碳酸氫鹽、鋥等)去除質子。在某些具體實 施例中,氨係用於提高pH至一足以自二價陽離子溶液及 工業廢棄物流沈澱沈澱物之程度。適合用作質子去除劑之 超強鹼包括:乙氧化鈉、醯胺化鈉(NaNH2)、氫化鈉(NaH)、 丁基鋰、二異丙基醯胺化鋰、二乙基醯胺化鋰及雙(三甲 梦)酿胺化鐘。氧化物’包括(例如)氧化妈(CaO)、氧化鎂 (Mg〇)、氧化鳃(Sr〇)、氧化鈹(Be〇)及氧化鋇(Ba〇)亦為可 使用之適合質子核劑。用於本發明之碳酸鹽包括(但不 限於)碳酸鈉。 除了包含感興趣之陽離子及其他適合金屬形式物之 外’源自各種工業程序之廢棄物流可提供質子去除劑。此 ,廢棄物流包括(但不限於)_廢棄物;化 ^如燃缺分如歧、絲、鋪扑龍(城礦 =灰 各麟礦旬;水職廢棄物;煉繞化精製廢棄物(如油田 27 201016600 及甲烷煤層滷水);煤層廢棄物(如產氣滷水及煤層滷水); 造紙廢棄物;水軟化廢棄滷水(如離子交換流出物);矽處 理廢棄物;農業廢棄物;金屬表面處理廢棄物;高pH紡 織廢棄物;及苛性漿料。採礦廢棄物包括任何由地面提取 金屬或另一珍貴或有用礦物之廢棄物。在某些具體實施例 中,利用採礦廢棄物以改良pH,其中該廢棄物係選自下 列各者:源自Bayer鋁提取程序之紅泥;源自海水提取鎂 之廢棄物(如Mg(OH)2 ’如加州MossLanding中所見者); 及源自採礦程序,包括瀝取之廢棄物。例如,紅泥可用於 〇 改良pH,如2009年3月18日所申請之美國臨時專利申 請案第61/161369號所述般,將該案全文係以引用方式併 入本文中。石化燃料燃燒灰分、水泥窯灰及礦渣(全體金 屬氧化物廢棄物來源)係另外描述於2009年6月17曰所 申請之美國專利申請案第12/486692號中,將該案揭示内 容全文係以引用方式併入本文中,其可單獨使用或與其他 質子去除繼組合使用以提供本發明之質子去除劑。經由動 物廢棄物或過度肥料使用之農業廢棄物可包含氫氧化鉀〇 (KOH)或氨_3)或兩者。照此,農業廢棄物在本發明某些 具體實施例中可用作質子去除劑。此農業廢棄物經常被收 集於池塘中,但其亦可向下滲入水層中並可由其存取及使 用。 電化學方法係另一種自溶液中多種物種去除質子的方 法’其係藉自溶質(如碳g曼或碳酸氫鹽之去 劑(如經或水之去質子化)去㈣子。例如,若自=溶解 28 201016600 iUr等同於或超過自溶質分子電化學去除之質子 物或該沈搬反應、2溶解於沈殿反應混合 陽離子之3)中Hi驅物溶液(即可或無包含二價 陽雛早> >、中在某二具體實施例中,溶於不含二價 石山酸溶液的c〇2係經低電壓電化學方法處理以自 ===鹽、經或任何溶解c〇2所形成之物種或其 ;電壓電化學方法係操作在2、Μ、1.8、 V或更低,如丨.5、1.4、1.3、1.2、1.1 V或更低, =更低’如0.9V或更低稽或更低、二 俏、0 9或更低、、㈣或更低、〇.4V或更低、〇.3V或更 ❹ 。你if4更低或G.1V ^更低之平均電壓下。無產生氯 電壓電化學方祕本發明纽及方法所慣用。無產 ^之去除質子的低電壓電化學方法亦為本發明系統 及方法所慣用。在某些具體實施例中,低電壓電化學方法 於^極產生氫氣並將其運送至陽極錄該處將氫氣轉化 成質子。無產生氫氣之電化學方法亦係慣用的。在某些情 況下去除質子之電化學方法不產生任何氣態副產物。進 行質子去除之電化學方法係另外描述於厕年12月Μ 日申請之美國專利申請案第12/344,G19號,· 2_年12 月23日申請之美國專利申請案帛12/375,632號;麵 年12月23日申請之國際專利申請案號 PCT/US08/088242;2009 ^ !月28日申請之國際專利申 請案號PCT/US09/32301 ;及20〇9年6月24日申請之國 29 201016600 將該等申請案之全文 際專利申請案號pCT/US〇9/48511, 各以引用方式併入本文中。(Ca(OH)2) or magnesium hydroxide (Mg(〇H)2). The organic base is a carbon-containing molecule, which is generally a nitrogen-containing base, and includes a primary amine such as methylamine, a secondary amine such as diisopropylamine, a secondary amine such as monoisopropylethylamine, an aromatic amine such as aniline, and a hetero Aromatic such as pyridine, imidazole and benzimidazole and various forms thereof. In certain embodiments, an organic test line selected from the group consisting of biting, mercaptoamine, imipenem, benzodiazepine, histidine, and phophazene is used for a variety of species from sedimentary sediments ( Protons are removed such as carbonic acid, bicarbonate, hydrazine, and the like. In certain embodiments, ammonia is used to increase the pH to a level sufficient to precipitate precipitates from divalent cation solutions and industrial waste streams. Superbases suitable for use as proton-removing agents include: sodium ethoxide, sodium amide (NaNH2), sodium hydride (NaH), butyl lithium, lithium diisopropyl guanide, lithium diethylamine amide And double (three dreams) brewed amination clock. The oxides 'including, for example, oxidized mother (CaO), magnesium oxide (Mg 〇), strontium oxide (Sr〇), bismuth oxide (Be〇), and cerium oxide (Ba〇) are also suitable proton nucleating agents which can be used. The carbonates useful in the present invention include, but are not limited to, sodium carbonate. In addition to containing cations of interest and other suitable metal forms, a waste stream derived from various industrial processes can provide a proton-removing agent. Therefore, the waste stream includes (but is not limited to) _ waste; chemical ^ such as burning deficiency such as Qi, silk, paving dragons (City mine = ash each Lin mining; water work waste; refining refined waste ( Such as oilfield 27 201016600 and methane coal bed brine); coal seam waste (such as gas-producing brine and coal bed brine); papermaking waste; water softening waste brine (such as ion exchange effluent); 矽 treatment waste; agricultural waste; metal surface Disposal of waste; high pH textile waste; and caustic slurry. Mining waste includes any waste that extracts metal or another precious or useful mineral from the ground. In some embodiments, the use of mining waste to improve pH , wherein the waste is selected from the group consisting of: red mud derived from the Bayer aluminum extraction process; waste derived from seawater extracting magnesium (such as Mg(OH)2' as seen in Moss Landing, Calif.); Procedures, including leaching waste. For example, red mud can be used to improve pH, as described in U.S. Provisional Patent Application Serial No. 61/161,369, filed on Mar. Way to incorporate this The fossil fuel burning ash, cement kiln ash and slag (source of all metal oxide waste) are additionally described in U.S. Patent Application Serial No. 12/486,692, filed on Jun. The full text is incorporated herein by reference, which may be used alone or in combination with other proton removal to provide the proton-removing agent of the present invention. Agricultural waste used via animal waste or over-fertilizer may comprise potassium hydroxide strontium ( KOH) or ammonia _3) or both. As such, agricultural waste can be used as a proton-removing agent in certain embodiments of the invention. This agricultural waste is often collected in ponds, but it can also penetrate down into the water layer and be accessed and used by it. Electrochemical methods are another method for removing protons from a variety of species in solution. They are derived from solute (such as carbon gman or bicarbonate deionization (such as deprotonation by water or water) to (four). For example, if From = dissolution 28 201016600 iUr is equivalent to or exceeds the protons that are electrochemically removed from the solute molecules or the sinking reaction, 2 dissolved in the mixed reaction cations of the pedestal reaction, 3) Hi-drive solution (may or no containment of divalent yang In the second embodiment, in a specific embodiment, the c〇2 dissolved in the bivalent-free acid solution is treated by a low-voltage electrochemical method to form a salt, a salt, or any dissolved c〇2. The formed species or its; voltage electrochemical method operates at 2, Μ, 1.8, V or lower, such as 5.5, 1.4, 1.3, 1.2, 1.1 V or lower, = lower 'such as 0.9V or Lower or lower, two pretty, 0 9 or lower, (four) or lower, 〇.4V or lower, 〇.3V or more. Your if4 is lower or G.1V ^ lower average voltage The invention is not used to generate chlorine voltage. The low voltage electrochemical method for removing protons is also the system and method of the present invention. Conventionally, in some embodiments, a low voltage electrochemical method generates hydrogen gas and transports it to the anode where it is converted to protons. Electrochemical methods that do not produce hydrogen are also conventional. In some cases, the electrochemical method of removing protons does not produce any gaseous by-products. The electrochemical method for proton removal is additionally described in U.S. Patent Application Serial No. 12/344, No. G19, filed on December 22, 2011. U.S. Patent Application No. 12/375,632, filed on Dec. 23, the International Patent Application No. PCT/US08/088242, filed on Dec. 23, 2009; /US09/32301; and the application dated June 24, 1989, the entire disclosure of which is hereby incorporated by reference.

或者,電化學方法可經由(例如)氣_驗方法或其改良法 用於製造苛性分子(如氫氧⑽)。電極(㈣極及陽極)可 存在於包含含二㈣離子水轉或裝人廢氣流(如裝入 co2)之洛液的裝置巾,且選擇性障壁,如賊可分開該等 電極。去除質子之電化㈣統及方法可產生可經收集並用 於其他目的之副產物(如氳)。可用於本發明系統及方法中 之額外電化學方法包括(但不限於)彼等US 61/〇81,299及 US 61/091,729中所述者;將其揭示内容以引用方式併入 本文中。 含金屬梦酸鹽之材料 如上所揭示般且於下列其他細節中,本發明利用C〇2 來源、質子去除劑來源(及/或進行質子去除之方法)及二價Alternatively, the electrochemical process can be used to produce caustic molecules such as oxyhydrogen (10) via, for example, a gas-test method or a modification thereof. The electrodes ((four) poles and anodes) may be present in a device comprising a liquid containing di(tetra) ion water or a stream of exhaust gas (e.g., loaded into co2), and a selective barrier such as a thief may separate the electrodes. The removal of protons (4) and methods can produce by-products (such as hydrazine) that can be collected and used for other purposes. Additional electrochemical methods that can be used in the systems and methods of the present invention include, but are not limited to, those described in US 61/81, 299, and US 61/091,729; in. Materials Containing Metallic Acidate As disclosed above and in the following additional details, the present invention utilizes a C〇2 source, a proton-removing agent source (and/or a method of proton removal), and a bivalent

陽離子來源。含金屬矽酸鹽材料(如金屬矽酸鹽如蛇紋石 及撖欖石;含金屬矽酸鹽岩石)可提供二價陽離子(如Source of cations. Metal-containing phthalate materials (such as metal silicates such as serpentine and sapphire; metal citrate rocks) provide divalent cations (eg

Ca2+、Mg2+)來源、質子去除劑來源(如金屬氧化物如Ca〇 及MgO ;金屬氫氧化物如ca(〇H)2及Mg(OH)2)或兩者。 此外’含金屬矽酸鹽材料可為本發明組成物提供矽石含 量。在某些具體實施例中,含金屬矽酸鹽材料提供製造本 文所述組成物之二價陽離子的唯一來源。在某些具體實施 例中,含金屬矽酸鹽材料係與二價陽離子之補充來源組合 使用。同樣地,在某些具體實施例中,含金屬矽酸鹽材料 30 201016600Sources of Ca2+, Mg2+), sources of proton-removing agents (such as metal oxides such as Ca〇 and MgO; metal hydroxides such as ca(〇H)2 and Mg(OH)2) or both. Further, the metal-containing phthalate material can provide a vermiculite content to the composition of the present invention. In certain embodiments, the metal-containing silicate material provides the sole source of divalent cations for making the compositions described herein. In some embodiments, the metal-containing silicate material is used in combination with a supplemental source of divalent cations. Likewise, in certain embodiments, the metal-containing silicate material 30 201016600

提供製造本文所述組成物之質子去除劑的唯一來原 些具體實施例中,含金屬械鹽材料係與質子去除劑= 充來源組合制。在某些频實_巾,含金屬錢 料提供製造本文所述組成物之二價陽離子及質子去ς 的唯-來源。例如,在某些具體實施例中,蛇紋物」 貴橄禮石可為氫氧化物之來源。在此類具體實施例中,含 金屬鹽材料(如蛇紋石)可_化或溶於水中。為進^ 最佳消化或轉,含金屬雜歸料可於溶液中經研磨= /或超音餘碎。含金財龍材财可僅置於溶液中 時間量(如數天、數月、數年)。在某些具體實施例中,^ 金屬石夕酸㈣料係與二㈣離子之補充來源及質子去除 劑之補充來源組合使用。在某些㈣實施财,本發明租 成物中所存在之%石係由含金切酸鹽 酸鹽材料財石之補充來源(如飛灰、錢妓及/或^ 人為來源)之組合提供。單獨或與二價陽離子及質子去除 劑之其他來源組合使用含金屬矽酸鹽材料之方法係另 描述於下。 岩石(含礦物及/或_物之自然發生㈣態聚集體)係 適合本發㈣經常為其所慣用,_係在處理(如尺寸縮 減4化)後可提供二價陽離子如Mg2+及/或Ca2+之含鎂及 /或鈣之岩石(如撖欖岩、玄武岩、輝長岩、輝綠岩等)。岩 石亦可為本發日脸成物提卿^含量。具有特徵組成及高 度規則之原子結構和不同物理性質之雜—般更適合用 於本發明中。正如岩石,含鎮及/或妈之礦物可在加工後提 31 201016600 供本發明二價陽離子如Mg2+及/或Ca2+。含镁及/或轉之礦 物亦可提供矽酸鹽(如金屬矽酸鹽,其包含至少一個金屬 以及矽如鈣矽酸鹽、鎂矽酸鹽、鋁矽酸鹽、含鐵矽酸鹽及 其混合物)’該等矽酸鹽在處理後提供矽石給本發明組成 物’其中該等組成物呈現凝硬性質。在某些具體實施例 中,礦物可僅為其提供石夕石含量而經處理;換言之,在某 些具體實施例中,含金屬矽酸鹽及低或可忽略量之鈣及'/ 或鎂之材料(其產生二價陽離子如Ca2+及/或Mg2+)可為提 供矽石含量而經處理。當岩石可用於本發明中時,應瞭解❹ 純或不純礦物皆適合用於本發明。 許多不同含金屬矽酸鹽材料係適合用於本發明中,包 括^然發生的含金屬石夕酸鹽材料如彼等存在於岩石、礦物 及富含礦物之黏土者。可用於本發明之金屬矽酸鹽包括 (但不限於)正矽酸鹽、鏈狀矽酸鹽、頁矽酸鹽及網狀矽酸 鹽。正矽酸鹽包括(例如)撖欖石類礦物((Mg,Fe)2Si〇4), 其中一般較偏好富含鎂之橄欖石礦(即相對於鐵撖欖石 (Fe2Sia^,較接近鎂撖欖石(MgjiO4))。鏈狀矽酸鹽(“鏈❹ 矽酸鹽”)包括(例如)單鏈鏈狀矽酸鹽如輝石類礦物 (xy(Si,ai)2〇6),其中χ代表鈣、鈉、鐵(如Fe2+)或鎂之 離子且=代表較小尺寸之離子,如鉻、IS、鐵(如Fe3+, 甚至Fe2+)、鎂、猛、銳、鈦及飢,且其中—般偏好富含 鎮之輝石軸物(朗於低舰輝;5 (Fe2Si2〇6),較接近頌 火輝石(Mg2Si2〇6))。單鏈鏈狀矽酸鹽亦包括(例如)準輝石 類礦物如接觸變質石灰石中常見㈣灰石(CaSi〇3)及針 32 201016600 鈉鈣石(NaCa2(Si3〇8)(OH)),其亦適合用於本發明中。雙 鏈鏈狀矽酸鹽包括(例如)閃石類礦物如直閃石 ((Mg,Fe)7Sis〇22(OH)2)。頁矽酸鹽(即板狀矽酸鹽)包括(例 如)蛇紋石類礦物(如葉蛇紋石、貴橄欖石及/或蛇紋石之 渐蛇紋石多晶型物((]\^,?6)38丨205(011)4))、頁碎酸鹽黏土 礦物(如矽灰石(Na,Ca)0.33(Al,Mg)2(Si4O1())(OH)2.nH2〇)及 滑石Mg3Si4〇1()(OH)2)及雲母類礦物(如黑雲母 K(Mg,Fe)3(AlSi3O10)(OH)2)。網狀矽酸鹽(即網絡矽酸鹽) 為銘矽酸鹽(除石英類礦物之外),其包括(例如)斜長石如 拉長石((Na,Ca)(Si,Al)408(Na:Ca 2:3))及鈣長石 (CaAl2Si2〇8) 〇 分別具有低於52%Si〇2及低於45%Si02之鎂鐵礦物 及超鎂鐵質礦物(即富含鎂及鐵之含矽酸鹽礦物有時稱 為鎂發酸鹽)係部分上述金屬矽酸鹽之子集。照此,鎮鐵 礦物及超鎂鐵質(即一般>18%MO,高Foe含量,低鉀含 量)確物及其產物或經處理形式物亦適合用於本發明 中。包含鎂鐵礦物及超鎂鐵質礦物之鎂鐵岩石及超鎮鐵 質岩石(一般>9〇〇/0鎂鐵礦物)亦適合用於本發明中。此類 石石包括(但不限於)輝石岩、橄長石、純撖欖岩、橄欖岩、 玄武岩、輝長岩、輝綠岩及皂石。常見成岩鎂鐵礦物包 =撖欖石、輝石、閃石、黑雲母。世界上存在極大量之 含撖欖石及含蛇紋石之岩石,特別係以超鎂鐵質錯合物 形式及以大蛇紋岩形式存在。蛇紋石係具有少量元素如 鉻、鏟、鈷及鎳之藏量豐富自然發生的礦物。照此,蛇 33 201016600 紋石係指屬於蛇紋石類之20+種中之任一者。橄欖石係 自然發生之鎂-鐵矽酸鹽((Mg,Fe)2Si〇4),其範圍係從鎂橄 欖石(Fo)(MgSi04)至鐵撖欖石㈣㈣⑽…照此,橄欖 石可為(例如^OwFa3。’其中下標係指鎂橄欖石(F〇)與鐵 橄欖石(Fe)之莫耳比例。通常,較佳係富含鎂橄欖石之橄 欖石。由於結構,撖欖石類亦包括矽灰石(CaMgSi〇4)及 鈣鐵橄欖石(CaFeSi〇4)。矽灰石係亦為本發明慣用之自然 發生的梦酸妈。The only particular embodiment of the proton-removing agent that provides the compositions described herein is a combination of a metal-containing salt material and a proton-removing agent. In some frequency, metal-containing materials provide a source-only source for the divalent cations and protons of the compositions described herein. For example, in some embodiments, the serpentine may be a source of hydroxide. In such embodiments, the metal-containing salt material (e.g., serpentine) can be made or dissolved in water. For optimum digestion or conversion, the metal-containing miscellaneous material can be ground in solution = / or supersonic. The gold-rich material can be placed in the solution only for the amount of time (such as days, months, years). In some embodiments, the metal oxalate (four) system is used in combination with a supplemental source of the di(tetra) ion and a supplemental source of the proton-removing agent. In some (4) implementations, the % stone present in the rented product of the present invention is provided by a combination of supplemental sources (such as fly ash, money, and/or human sources) containing gold cut acid salt material. . The method of using a metal phthalate-containing material alone or in combination with other sources of divalent cations and proton-removing agents is described below. Rocks (naturally occurring (tetra) aggregates containing minerals and/or substances) are suitable for this type of hair (4) and are often used as they are, and may provide divalent cations such as Mg2+ and/or after treatment (eg, size reduction). Ca2+-containing magnesium and/or calcium rocks (such as 撖岩岩, basalt, gabbro, diabase, etc.). Rocks can also be used to raise the content of the face. The atomic structure having characteristic composition and high degree of regularity and the heterogeneity of different physical properties are generally more suitable for use in the present invention. As with rocks, minerals containing towns and/or moms may be subjected to processing, after processing, for 2010-12600 for the divalent cations of the invention such as Mg2+ and/or Ca2+. Magnesium-containing and/or metathesized minerals may also provide bismuth citrates (eg, metal citrates comprising at least one metal and, for example, calcium citrate, magnesium silicate, aluminosilicate, iron citrate, and The mixture) 'the phthalates provide vermiculite to the compositions of the invention after treatment, wherein the compositions exhibit a pozzolanic nature. In some embodiments, the mineral may be treated only for providing the content of the stone; in other words, in certain embodiments, the metal citrate and the low or negligible amount of calcium and/or magnesium The material (which produces divalent cations such as Ca2+ and/or Mg2+) can be treated to provide vermiculite content. When rock is useful in the present invention, it will be appreciated that pure or impure minerals are suitable for use in the present invention. Many different metal-containing phthalate materials are suitable for use in the present invention, including the occurrence of metal-containing silicate materials such as those found in rocks, minerals, and mineral-rich clays. Metal citrates useful in the present invention include, but are not limited to, n-decanoate, stearate, decanoate and reticulated citrate. The orthosilicate includes, for example, a sapphire mineral ((Mg, Fe) 2Si〇4), which is generally preferred to a magnesium-rich olivine mine (ie, relative to iron sapphire (Fe2Sia^, closer to magnesium) Ji石石(MgjiO4)). The chain citrate ("chain 矽 矽") includes, for example, a single-chain decanoate such as a pyroxene mineral (xy(Si,ai)2〇6), χ represents calcium, sodium, iron (such as Fe2+) or magnesium ions and = represents smaller size ions, such as chromium, IS, iron (such as Fe3+, even Fe2+), magnesium, fierce, sharp, titanium and hunger, and The general preference is for the town's pyroxene axis (rough in low ship brilliance; 5 (Fe2Si2〇6), closer to 颂火石石(Mg2Si2〇6)). Single-chain chain citrate also includes, for example, quasi-fehoff Minerals such as contact metamorphic limestone are commonly found in (IV) limestone (CaSi〇3) and needle 32 201016600 sodaite (NaCa2(Si3〇8)(OH)), which are also suitable for use in the present invention. Double-stranded chain citrate Including, for example, amphibole-like minerals such as amphibole ((Mg,Fe)7Sis〇22(OH)2). Page citrate (ie platy citrate) includes, for example, serpentine minerals (eg, serpentine) Peridot and/or serpentine The serpentine polymorph ((]\^,?6) 38丨205(011)4)), sulphate clay minerals (such as asbestos (Na, Ca) 0.33 (Al, Mg) 2 (Si4O1())(OH)2.nH2〇) and talc Mg3Si4〇1()(OH)2) and mica minerals (such as biotite K(Mg,Fe)3(AlSi3O10)(OH)2). Reticulated citrate (ie, network citrate) is a mineral acid (except quartz minerals) including, for example, plagioclase such as labradorite ((Na,Ca)(Si,Al)408 (Na) :Ca 2:3)) and anorthite (CaAl2Si2〇8) yttrium having less than 52% Si〇2 and less than 45% SiO2 ferro-magnesium minerals and ultra-mafic minerals (ie rich in magnesium and iron) The phthalate-containing minerals are sometimes referred to as magnesium generators as part of a subset of the above metal silicates. As such, galvanic minerals and ultramafic (i.e., generally > 18% MO, high Foe content, low potassium content) and their products or treated forms are also suitable for use in the present invention. Magnesia iron rocks containing magnesia iron minerals and ultramafic minerals and super town iron rocks (generally > 9 〇〇 / 0 mafic iron minerals) are also suitable for use in the present invention. Such stones include, but are not limited to, pyroxenite, olivine, pure sapphire, peridotite, basalt, gabbro, diabase, and saponite. Common diagenetic magnesium iron minerals package = sapphire, pyroxene, amphibole, biotite. There are a large number of rocks containing sapphire and serpentine in the world, especially in the form of ultramafic complexes and in the form of large serpentinite. Serpentine is a naturally occurring mineral with a small amount of elements such as chromium, shovel, cobalt and nickel. As such, Snake 33 201016600 is a type of 20+ species belonging to the serpentine class. Olivine naturally occurring magnesium-ferric acid salt ((Mg,Fe)2Si〇4), ranging from forsterite (Fo) (MgSi04) to iron sapphire (four) (four) (10)... As such, olivine can be (eg ^OwFa3. 'The subscript refers to the molar ratio of forsterite (F〇) to fayalite (Fe). Usually, it is preferably a peridot-rich olivine. Due to the structure, sapphire The class also includes limestone (CaMgSi〇4) and calcium iron olivine (CaFeSi〇4). The limestone system is also a naturally occurring dreaming mom.

C 系統及方法 提供由二氧化碳來源、含二價陽離子溶液及質子去除 劑來源製造含有梦石之含碟酸鹽組成物之方法。亦提供製 k含有些微或無石夕石之含碳酸鹽組成物之方法。在此類方 法中,可在方法早期由含碳酸鹽組成物中分離出石夕基材料 (如矽石、未反應或未消化之矽酸鹽等)並個別處理之。矽 基材料及含碳酸鹽材料可在後面階段摻合以產生具特定 組分比例之組成物。含有石夕石之碳酸鹽組成物可經進一步❹ 處理並與(例如)波特蘭水泥摻合。 圖1說明可由含金屬石夕酸鹽材料(240)製成含碳酸鹽沈 澱物(690,255)之一般順序步驟,該等步驟係另外討論於 下列段落中。如在步驟610中先利用壓碎、研磨及過篩之 組合縮減含金屬石夕酸鹽之初始材料的粒徑(即研磨),可反 覆進行該程序以製造粒徑一致之含金屬矽酸鹽材料。然後 如在步驟620中令已研磨之含金屬矽酸鹽材料懸浮於水溶 34 201016600C System and Method A method for producing a dish containing a salt of a dream stone from a source of carbon dioxide, a solution containing a divalent cation, and a source of a proton-removing agent is provided. A method of producing a carbonate-containing composition containing little or no Shishi stone is also provided. In such a process, the Shiheji material (e.g., vermiculite, unreacted or undigested niobate, etc.) can be separated from the carbonate-containing composition early in the process and treated separately. The ruthenium-based material and the carbonate-containing material may be blended at a later stage to produce a composition having a specific composition ratio. The carbonate composition containing the Shishi stone can be further processed and blended with, for example, Portland cement. Figure 1 illustrates the general sequential steps for making a carbonate-containing precipitate (690, 255) from a metal-containing silicate material (240), which are discussed further in the following paragraphs. If the particle size (ie, grinding) of the starting material containing the metal oxalate is first reduced by a combination of crushing, grinding, and sieving in step 610, the procedure can be repeated to produce a metal citrate having a uniform particle size. material. Then, as in step 620, the ground metal-containing silicate material is suspended in water-soluble 34 201016600

φ 液中’該溶液一般包含一部分最後將存在於本發明沈澱物 中之二價陽離子。如下所述,懸浮液中已研磨之含金屬矽 酸鹽材料的濃度可在1與1280克/公升之間。令已研磨之 含金屬矽酸鹽材料懸淨後,如在步驟630中消化含金屬石夕 酸鹽材料。含金屬石夕酸鹽材料之消化包括(但不限於)溶解 含金屬石夕酸鹽材料,該消化可進行至任何所需程度。照 此,消化條件(如溫度、攪動模式(若有)、時間等)可如下 述般變化。消化(例如)可在週遭條件(即室溫及壓力)下進 行 消化含金屬矽酸鹽材料之後,可在過濾步驟(64〇)中視 情況過濾所得消化混合物以去除矽石及/或未消化矽基材 料。當消化之矽石及其他矽基產物的濃度以比二價陽離子 濃度更快之速度增加時,較佳係過渡發石及其他梦基產物 以最佳化二價陽離子之提取。然後可在沈澱步驟(65〇)中由 已消化之含金屬矽酸鹽材料或其水溶液製得沈澱物,其包 含一價陽離子並視過濾程度而包含矽石及/或其他矽基材 料。如本,另外詳細描述般,沈澱物之沈澱另外包括導入 C〇2及(右溶液未呈驗性卜或多種質子去除刪或進行質 子去除之方法)。沈殿物在形成後可在分離步驟(_)中與 沈澱反應混合物分離,該步驟可包含—如下另外詳細描述 之液-固》離11。分離後嗜清洗步驟(670)中視情況清洗 沈殿物以絲(例如)可溶氯化物、硫_、顧鹽及/或類 似物。無論新經分離步驟_分離或剛經清洗步驟670清 ί沈殿物。乾燥步驟働可包括重組沈澱物以便 將物裝料顧入喷霧乾燥器中並乾燥成-致尺寸而產 35 201016600 生乾沈澱物690,該沈澱物可為凝硬材料255。The solution in φ liquid typically contains a portion of the divalent cation that will eventually be present in the precipitate of the present invention. The concentration of the ground metal-containing phthalate material in the suspension can be between 1 and 1280 g/liter as described below. After the ground metal-containing phthalate material has been suspended, the metal-containing oxalate material is digested as in step 630. Digestion of the metal-containing metal silicate material includes, but is not limited to, dissolving the metal-containing silicate material, and the digestion can be carried out to any desired extent. As such, digestion conditions (e.g., temperature, agitation mode (if any), time, etc.) can vary as described below. Digestion, for example, after digesting the metal-containing citrate material under ambient conditions (ie, room temperature and pressure), the resulting digestion mixture can be optionally filtered in a filtration step (64 Torr) to remove vermiculite and/or undigested hydrazine. Base material. When the concentration of digested vermiculite and other sulfhydryl products increases at a faster rate than the concentration of divalent cations, transitional rocks and other dream base products are preferred to optimize the extraction of divalent cations. A precipitate can then be prepared from the digested metal-containing silicate material or its aqueous solution in a precipitation step (65 Torr) containing monovalent cations and including vermiculite and/or other ruthenium substrate depending on the degree of filtration. As described in detail herein, the precipitation of the precipitate additionally includes the introduction of C〇2 and (the right solution is not present or the proton removal or proton removal). The sulphate may be separated from the precipitation reaction mixture in the separation step (_) after formation, and this step may comprise - liquid-solid separation 11 as described in additional detail below. In the post-separation cleaning step (670), the shovel is washed as appropriate (e.g., soluble chloride, sulfur, salt, and/or the like). Regardless of the new separation step _ separation or just after the cleaning step 670 clear the sink. The drying step 働 can include reconstituting the precipitate to take the material into the spray dryer and drying to a size to produce 35 201016600 dry precipitate 690, which can be a hardened material 255.

一般而言,含金屬矽酸鹽材料(如含金屬矽酸鹽礦物之 岩石)具有寬範圍之初始粒徑。照此,希望研磨含金屬石夕 酸鹽之起始物,其中該研磨可以任何適合裝置或裝置組合 達成。含金屬矽酸鹽起始物之尺寸縮減可由壓碎開始。然 後藉由研磨將已壓碎之含金屬矽酸鹽材料縮減至更小粒 徑。研磨可包括研磨機如喷射磨機或球磨機之使用。然後 接著使已研磨之含金屬矽酸鹽材料過篩(如藉由筛或旋風 器等)以選擇特定尺寸分布範圍内之含金屬石夕酸鹽材料。 可將落在特定尺寸分布範圍外之已過篩含金屬矽酸鹽材 料送回研磨機並進一步研磨。落在特定尺寸分布範圍内之 已過筛含金屬矽酸鹽材料可直接使用(即提前進行矽酸鹽 材料之消化)或視情況在反覆程序中進行進一步處理。在 某些具體實施例中’含金屬矽酸鹽材料之粒徑可降低至小 於10,000、小於1000、小於750、小於500、小於4〇〇、 小於300、小於200、小於100、小於75、小於%、小於 25或小於H)微米之平均直徑。已_選之含金屬魏鹽 材料之進-步處理可包括磁性分離以分離磁性材料如磁 鐵礦(Fe304),接著視情況熱處理之。 , 利用任何慣用實驗程序可達到金屬魏鹽(如鎮鐵礦 物及超賴質礦物如撖欖石及蛇紋石;錢石)及/或相關 材料之消化’其中實驗程序提供二_離子、料材 (在某些具體實施例中)質子錢劑Μ於本發明;。含金 屬石夕酸鹽材料之消化可發生在_如水(如去離子水、蒸 36 201016600In general, metal phthalate containing materials (e.g., rocks containing metal silicate minerals) have a wide range of initial particle sizes. As such, it is desirable to mill the starting material containing the metal oxalate, wherein the milling can be accomplished in any suitable device or combination of devices. The reduction in size of the metal citrate starting material can be initiated by crushing. The crushed metal-containing silicate material is then reduced to a smaller particle size by grinding. Grinding can include the use of a grinder such as a jet mill or a ball mill. The ground metal-containing silicate material is then screened (e.g., by a screen or cyclone, etc.) to select a metal-containing material in a particular size distribution. The screened metal-containing silicate material falling outside the specified size distribution can be returned to the mill and further ground. The screened metal-containing silicate material falling within a specific size distribution can be used directly (i.e., digestion of the phthalate material in advance) or further processed in a repeat procedure as appropriate. In certain embodiments, the particle size of the 'metal-containing silicate material can be reduced to less than 10,000, less than 1000, less than 750, less than 500, less than 4 Å, less than 300, less than 200, less than 100, less than 75, less than %, less than 25 or less than H) the average diameter of the micron. The further step-by-step treatment of the metal-containing Wei salt material may include magnetic separation to separate a magnetic material such as magnetite (Fe304), followed by heat treatment as appropriate. The use of any conventional experimental procedure can achieve the distillation of metal salts (such as Zhentie minerals and ultra-lime minerals such as sapphire and serpentine; Qianshi) and/or related materials. The material (in some embodiments) is a protonic agent of the invention; Digestion of metal-containing materials can occur in water such as deionized water, steam 36 201016600

館水)或含二價_子水錢如淡水、财、海水 然發生之滷水或人為滷水)中。不論自然發生或源自人 來源之水溶液一般包含至少一部分為本發明所用之二價 陽離子。此外,該水驗可為酸性祕性,暴露於該錢 中可加速含金屬雜鹽材料之消化。消化亦可藉由辦加表 面積,如藉由粒徑縮減(上述)以及藉由(例如)超音^技術 (如内部空孔化)的使用而加速。含金屬⑪酸騎料可在多 種程序,包括批次、半批次及連續程序中與含二價陽離子 溶液接觸以產生-含有切㈣之_。例如,鎂鐵礦物 可在槽中與含二價陽離子溶液混合,該溶液可經攪拌或 經其他方式攪動。一段時間後,由該槽抽出漿料,再^ 新鮮的含金屬矽酸鹽材料及含二價陽離子溶液裝入該槽 中。在某些具體實施例中,反應可以連續流動程序 在一或多個連續攪拌槽反應器中。在某些具體實施例 中’含金屬矽酸鹽材料係在填充塔中進行處理且含二價 陽離子溶液係滲透過所處理之含金屬矽酸鹽材料。在某 些具體實施例中,自直立塔頂部連續抽出含有二價陽^ 子及含矽材料之漿料,其中該直立塔係填充有含金屬矽 酸鹽材料。 在某些具體實施例中,含金屬矽酸鹽材料提供全部戍 部分質子去除劑來源。照此,含金屬石夕酸鹽材料可為製 造本文所述組成物之質子去除劑的唯一來源。含金屬發酸 鹽材料亦可與用於製造本文所述組成物之質子去除劑之 補充來源組合使用。如上,含金屬矽酸鹽材料之消化可發 37 201016600 或水溶液如淡水、械水、海水或滷水中。 分Ϊ本i明所=自人f來源之水溶液**般包含至少部 粗一價陽離子並可為驗性。含金屬矽酸鹽 水1 容液中消化提供具有額外二價陽離子及/或質 子去除劑之水溶液。Water in the hall) or in the brine or artificial brine containing divalent _ sub-water money such as fresh water, wealth, and sea water. The aqueous solution, whether naturally occurring or derived from a human source, generally comprises at least a portion of the divalent cations used in the present invention. In addition, the water test can be acidic, and exposure to the money can accelerate the digestion of metal-containing hetero-salt materials. Digestion can also be accelerated by the use of additional surface areas, such as by particle size reduction (described above) and by the use of, for example, supersonic techniques (e.g., internal pores). The metal-containing acid pick-on can be contacted with a divalent cation-containing solution in a variety of procedures, including batch, semi-batch, and continuous procedures to produce - containing cuts (d). For example, the ferro-magnesium mineral can be mixed with the divalent cation-containing solution in a tank which can be agitated or otherwise agitated. After a period of time, the slurry is withdrawn from the tank, and the fresh metal-containing silicate material and the divalent cation-containing solution are charged into the tank. In some embodiments, the reaction can be continuously flowed in one or more continuous stirred tank reactors. In some embodiments, the metal-containing phthalate material is treated in a packed column and the divalent cation-containing solution is permeated through the treated metal-containing silicate material. In some embodiments, a slurry comprising divalent cations and a cerium-containing material is continuously withdrawn from the top of the tower, wherein the erecting tower is filled with a metal silicate-containing material. In some embodiments, the metal-containing silicate material provides a source of all 戍 partial proton-removing agents. As such, the metal-containing silicate material can be the sole source of proton-removing agents for making the compositions described herein. Metal-containing acid salt materials can also be used in combination with supplemental sources of proton-removing agents used to make the compositions described herein. As above, the digestion of the metal-containing silicate material can be carried out in a 37 201016600 or aqueous solution such as fresh water, mechanical water, sea water or brine. The aliquots of the present invention include at least some of the crude monovalent cations and can be tested. The metal-containing cerate is digested in water to provide an aqueous solution with additional divalent cations and/or proton-removing agents.

Γ具體實施例中’含金屬魏㈣料提供全部或 =刀本發賴硬材料切石來源。照此,含金屬石夕酸鹽 ^可為製造本文所述組成物之扣的唯—來源。含金屬 鹽材料亦可與料製造本文所述組成物之發石的補 源組口使用。含金屬破酸鹽材料一In the specific embodiment, the metal-containing Wei (four) material provides all or = the knife is derived from the source of the hard material. As such, the metal-containing oxalate can be the only source of the fasteners used to make the compositions described herein. Metal-containing salt materials can also be used in conjunction with the make-up of the make-up of the compositions described herein. Metal-containing acid salt material

如水或水溶液中’其後可去除未消化之含金屬ΐ酸 :材枓及/或不溶的♦基材料(如過切石)。舰可丢棄 化之含金屬矽酸鹽材料及/或不溶的矽基材料(如過 =夕石)’或在某些具體實施例中,令其與含碳酸鹽沈殿 組合,其中該含碳酸鹽沈澱物已為凝硬材料(假如消化 期,有足夠矽石溶解)。視含碳酸鹽沈澱物中非晶質矽石 之置而定,可摻入其他矽質產物,包括(但不限於)火山 灰、飛灰、矽灰、高反應性偏高嶺土及高爐石粉。 用於消化之含金屬矽酸鹽材料在水或水溶液(如淡 水、鹹水、海水或滷水)中的濃度可在〗與10克/公升之 間、10與20克/公升之間、2〇與3〇克/公升之間、3〇與 40克/公升之間、40與80克/公升之間、80與160克/公 升之間、160與320克/公升之間、320與640克/公升之 間或640與1280克/公升之間。溫度可經調整以最佳化 38 201016600 含金屬矽酸鹽材料之消化。在某些具體實施例中,含金 屬矽酸鹽材料係在室溫(約70°F)至220T間消化。在某些 具體實施例中,含金屬矽酸鹽材料係在一或多個選自 70-100°F、100-220°F、120-220°F、140_220°F、160-220T、 1〇0-200°卩或100-180卞、100-160卞及100-140卞之溫度範 圍内消化。假若需輔助熱以增加溫度,可使用源自(例如) 煙道氣之廢熱。亦可使用其他外來熱源(如熱水)。消化時 間亦可經調整以最佳化含金屬矽酸鹽材料之消化。在某 些具體實施例中’消化含金屬矽酸鹽材料介於1小時和 200小時之間。在某些具體實施例中,消化含金屬;5夕酸鹽 材料1小時至2小時、2小時至4小時、4小時至6小時、 6小時至8小時、8小時至10小時、1〇小時至20小時、 20小時至40小時、40小時至60小時、60小時至80小 時、80小時至1〇〇小時、1〇〇小時至15〇小時、15〇小 時至200小時或其重疊時間範圍。含金屬矽酸鹽材料之 消化可另外藉由包含加速消化動力學之钳合物最佳化。 可用於本發明之鉗合物實例包括(但不限於)酸如乙酸、抗 壞血酸、檸檬酸、二羧基甲基麵胺酸、蘋果酸、草酸、 磷酸及琥珀酸;胺基酸;含鐵細胞如含鐵色素、去鐵胺 B、去鐵胺E、鐮菌胺酸(fusarinine)C、歐尼菌素 (ornibactin)、腸桿菌素(enterbactin)、貝斯菌素 (bacillibactin)、弧菌載鐵素(vibriobactin)、固氮菌素 (azotobactin)、螢光鐵載體(pyoverdine)及耶爾辛菌素 (yersiniabactin) ; EDTA ; EGTA ; EDDS ;及 NTA。 39 201016600 在某些具體實施例中’質子去除劑如金屬氫氧化物(如 Mg(OH)2、Ca(OH)2)可藉以水性鹼金屬氫氧化物(如Na〇H) 或任何其他適合苛性物消化一或多種含金屬石夕酸鹽材料 (如橄欖石及蛇紋石)而可使用。任何適合濃度之水性鹼金 屬氫氧化物或其他苛性物可用於分解含金屬矽酸鹽材 料’包括高度濃縮及極稀溶液。溶液+驗金屬氮氧化物(如 NaOH)之濃度(以重量計)可為(例如)3〇%至8〇%及至 20/〇之水。在某些具體實施例中,含金屬矽酸鹽材料及/ 或其他岩石及礦物之消化係在一 pH範圍中達到,該pH 〇 範圍包括 pH 6.9 至 pH 7.5、PH 7.5 至 pH 8.0、pH 8.0 至 pH 8.5、pH 8.5 至 pH 9.0、pH 9.0 至 pH 9.5、pH 9.5 至 PH 10.0、PH 1〇·〇 至 pH 10.5、pH 10.5 至 pH n 〇、pH ^ 〇For example, in water or in an aqueous solution, the undigested metal-containing tannic acid can be removed: a material and/or an insoluble base material (such as a cut stone). The ship may discard the metal-containing silicate material and/or the insoluble bismuth-based material (eg, sulphide) or, in some embodiments, combine it with a carbonate-containing sulphide, wherein the carbonated The salt precipitate has been a hardened material (if there is enough vermiculite in the digestive period). Depending on the amorphous vermiculite in the carbonate-containing precipitate, other tannin products may be incorporated, including but not limited to volcanic ash, fly ash, ash, highly reactive metakaolin, and blast furnace powder. The concentration of the metal phthalate-containing material used for digestion in water or an aqueous solution (such as fresh water, salt water, sea water or brine) may be between 10 g/L, 10 and 20 g/L, 2 〇 Between 3 gram/liter, 3 〇 and 40 gram/liter, 40 and 80 gram/liter, 80 and 160 gram/liter, 160 and 320 gram/liter, 320 and 640 gram/ Between liters or between 640 and 1280 g / liter. Temperature can be adjusted to optimize 38 201016600 Digestion of metal-containing phthalate materials. In some embodiments, the metal-containing tellurite material is digested at room temperature (about 70 °F) to 220T. In some embodiments, the metal-containing phthalate material is selected from one or more selected from the group consisting of 70-100 °F, 100-220 °F, 120-220 °F, 140-220 °F, 160-220T, 1〇. Digestion in the temperature range of 0-200 ° 卩 or 100-180 卞, 100-160 卞 and 100-140 。. If auxiliary heat is required to increase the temperature, waste heat from, for example, flue gas can be used. Other external heat sources (such as hot water) can also be used. The digestion time can also be adjusted to optimize digestion of the metal-containing silicate material. In some embodiments, the <RTIgt;digested metal phthalate containing material is between 1 hour and 200 hours. In certain embodiments, the metal-containing material is digested; the material is 1 hour to 2 hours, 2 hours to 4 hours, 4 hours to 6 hours, 6 hours to 8 hours, 8 hours to 10 hours, 1 hour. Up to 20 hours, 20 hours to 40 hours, 40 hours to 60 hours, 60 hours to 80 hours, 80 hours to 1 hour, 1 hour to 15 hours, 15 hours to 200 hours, or an overlapping time range thereof . Digestion of the metal-containing silicate material can additionally be optimized by a tong containing an accelerated digestion kinetics. Examples of tongs useful in the present invention include, but are not limited to, acids such as acetic acid, ascorbic acid, citric acid, dicarboxymethyl face acid, malic acid, oxalic acid, phosphoric acid, and succinic acid; amino acids; iron-containing cells such as Iron-containing pigment, deferoxamine B, deferoxamine E, fusarinine C, ornibactin, enterbactin, bacillibactin, vibrio (vibriobactin), azotobactin, pyoverdine and yersiniabactin; EDTA; EGTA; EDDS; and NTA. 39 201016600 In certain embodiments, 'proton-removing agents such as metal hydroxides (eg, Mg(OH) 2, Ca(OH) 2) may be made by aqueous alkali metal hydroxides (eg, Na〇H) or any other suitable The caustic is useful for digesting one or more metal-containing materials such as olivine and serpentine. Any suitable concentration of aqueous alkali metal hydroxide or other caustic can be used to decompose the metal containing phthalate material' including highly concentrated and very dilute solutions. The concentration of the solution + metal oxynitride (e.g., NaOH) (by weight) may be, for example, from 3% to 8% by weight to 20% hydrazine. In certain embodiments, the digestive system containing metal citrate materials and/or other rocks and minerals is achieved in a pH range ranging from pH 6.9 to pH 7.5, pH 7.5 to pH 8.0, pH 8.0. To pH 8.5, pH 8.5 to pH 9.0, pH 9.0 to pH 9.5, pH 9.5 to pH 10.0, pH 1 〇·〇 to pH 10.5, pH 10.5 to pH n 〇, pH ^ 〇

至 PH 11.5、pH 11.5 至 pH 12.0、pH 12.0 至 pH 12.5、pH 12.5 至 pH 13.0、pH 13 〇 至 pH 13 5、pH 13 5 至 pH i4 例如,撖欖石可在具有_在阳7〇與阳9〇間之阳 子=除劑溶解所造成之pH)之水溶液中消化。因為石夕石 之溶解度在較高PH下增加,此金屬矽酸鹽消化所產生之〇 本發明凝硬材料可成比例地具有更多⑦基材料(如_ W 石)。而且,所得凝硬材料可因非晶質矽石之增加量而反 應性更高。較佳係經水性鹼金屬氫氧化物消化之含金 石夕酸鹽材料可直洲於製造舰物。 料及類f回收並再用於消化額外含金屬石夕酸鹽材 含金屬矽酸鹽材料(如鎂矽酸鹽如橄欖石)及/或含减 40 201016600 興趣金屬物種之其他岩石和礦物亦可在酸性水溶液(如 魯 Ηα(^、H2S〇4(a(〇 ’其各可視情況源自電化學程序)中消 化以產生(例如)一包含二價陽離子(如Mg2+、Ca2+)及矽基 材料(如矽石、未反應或未消化之矽酸鹽等)之漿料。含金 屬矽酸鹽材料(如橄欖石)及/或其他感興趣之岩石和礦物 之消化可藉與酸性溶液接觸以產生一含Si02漿料而達 到。二價陽離子水溶液如收到時可具足夠酸性;在某此 具體實施例中,可無進一步pH調整地使用該水溶液;= 而,在某些具體實施例中,二價陽離子水溶液如收到時可 為鹼性或無足夠酸性。在此類具體實施例中,含二價陽離 子水溶液或任何用於消化含金屬矽酸鹽材料之溶劑或溶 液可經酸化。酸化可藉與氣態、液態(包括水溶液)或固態 形式之弱酸或強酸接觸而達到,其中該等酸包括(但不限 於)HF、HC1、HBr、HI、h2S〇4、HN〇3、h3P〇4、鉻酸: H2co3、乙酸、檸檬酸、曱酸、葡萄糖酸、乳酸、草酸、 酒石酸、抗壞血酸及米氏酸(meldrumsacid)。例如,在某 些具體實施财’含金屬魏鹽材料係細水性腦^ 成酸性之酸性溶液中消化,其中該水性HC1 學程序。在此類具體實施例中,該電化學程序传' 所述之低電壓電化學程序。在某些具體實施例二: 屬石夕酸鹽材料及/或其他岩石和礦物係在一因C ^ (如源自燃燒化石燃料之燃燒氣如燃煤發電2 之其他組分的添加而呈雜之水溶液中消化。該=生容 液可為經酸化以加速消化含金屬石夕酸鹽材料之^ 其 41 201016600 中酸化係由co2氣流冒泡吹過海水而產生飽含碳酸之海 水的方式提供。在某些具體實施例中,含金屬矽酸鹽材 料及/或其他岩石及礦物之消化係在一 pH範圍中達到, 該 PH 範圍包括 pH 7.1 至 pH 6.5、pH 6.5 至 pH 6.0、pH 6.0 至 pH 5.5、pH 5.5 至 pH 5.0、pH 5.0 至 pH 4.5、pH 4.5 至 pH 4.0、pH 4.0 至 pH 3.5、pH 3.5 至 pH 3.0、pH 3.0 至 pH 2.5、pH 2.5 至 pH 2.0、pH 2.0 至 pH 1.5、pH 1.5 至 pH 1.0、pH 1.0 至 pH 0.5 及 pH 0.5 至 pH 0.0。例如, 撖欖石可在具有範圍在pH 4.8與pH 7.0間之pH(C02溶 ❹ 於水溶液中所造成之pH)之水溶液中消化。在一後續步 驟中將質子去除劑加入含Si02漿料或去除Si02(及其他 矽基材料)後所剩之所得溶液(如含Ca2+及Mg2+)中。質子 去除劑之添加若足夠可使含碳酸鹽(如CaC03、MgC03) 沈澱物沈澱。技術者將瞭解特定酸化方法如加入水性碳 酸或C〇2冒泡吹過含金屬矽酸鹽材料之懸浮液提供碳酸 根離子,其接著可以含碳酸鹽沈殿物形式沈殿。此外, 技術者將瞭解用於消化之適當酸選擇,接著用於中和所 ◎ 得酸性溶液之適當質子去除劑之選擇可導入有利於沈澱 物及最終產物之離子物種。適當酸及質子去除劑之選擇 亦可避免形成特定離子物種,否則必須利用其他方法(如 清洗以由沈澱物去除NaCl)控制該等離子物種。 含有二價陽離子(如鹼土金屬陽離子如ca2+及Mg2+)及 視情況選用Si〇2之水溶液可與c〇2來源在令該含二價陽 離子溶液處於沈澱條件(即基於(例如)pH容許一或多種物 42 201016600 質沈澱之條件)之前、期間或之後接觸。因此,在某些具 體實施例中,二價陽離子水溶液係在令該水溶液處於有利 於形成含碳酸鹽及視情況選用si〇2之沈澱物之沈澱條件 别與c〇2來源接觸。在某些具體實施例中,二價陽離子水 :谷液係與C〇2來源接觸並同時令該水溶液處於有利於形 成沈澱物之沈殿條件。在某些具體實施例中,二價陽離子 水溶液係在令該水溶液處於有利於形成沈澱物之沈澱條 件之前或同時與C〇2來源接觸。在某些具體實施例中,二 價陽離子水溶液係在令該水溶液處於有利於形成沈澱物 之沈殿條件之後與C〇2來源接觸。在某些具體實施例中, 一價陽離子水溶液係在令該水溶液處於有利於形成沈殿 物之前、同時及之後與C〇2來源接觸。在某些具體實施例 中,含二價陽離子水溶液可循環超過一次,其中第一個沈 澱循環主要去除碳酸鹽(如碳酸鈣、碳酸鎂)及矽基材料並 留下可加入額外一價陽離子之驗性溶液,其中額外二價陽 離子可由任何本文所揭示之二價陽離子來源,包括經由消 化額外含金屬矽酸鹽料之二價陽離子進行添加。當與含二 價陽離子之循環溶液接觸時,二氧化碳容許沈殺額外沈澱 物,其中該沈澱物包含碳酸鹽及視情況選用之Si〇2。應瞭 解在此等具體實施例中,水溶液可在第一個沈澱循環之後 與C〇2來源在加入二價陽離子之前、.期間及/或之後接觸。 在某些具體實施例中,不具二價陽離子或具有低濃度二價 陽離子的水溶液係與co2接觸。在此等具體實施例中,該 水溶液可經循環或新導入的。照此,添加C02及消化含金 43 201016600 屬矽酸鹽材料之順序可改變。例如,可將各可提供二價 陽離子、s〇2或兩者之含金屬石夕酸鹽材料如蛇纹石、撤 攬石或矽灰石加入(例如)滷水、海水或淡水中,接著加入 C〇2。在另一實例中,可將C〇2加入(例如)滴水、海水或 淡水中,接著加入含金屬矽酸鹽材料。 含二價陽離子水溶液(視情況包含Si〇2)可利用任何慣 用實驗程序與C〇2來源接觸。C〇2為氣體時,感興趣之接 觸實驗程序包括(但不限於):直接接觸實驗程序(如令C02 氣體冒泡吹過水溶液)、並行接觸方法(即單向流動之氣相 流與液相流間之接觸)、逆行方法(即反向流動之氣相流與 液相流間之接觸)及類似方式。照此,如方便使用,接觸 可經由浸出器、起泡器、射流Venturi反應器、嗔麗5|、 氣體過濾器、喷霧器、塔盤或填充塔反應器及類似物^使 用而完成。在某些具體實施例中,氣-液接觸係藉以扁平 喷嘴形成溶液液層的方式達到,其中C〇2氣體與液層沿逆 行、並行或橫流方向或以任何其他適合方式移動。參見, (例如)2009年3月1〇曰所申請之美國專利申請案第 61/158,992號及2009年3月14日所申請之美國專利申請 案第61/178,475號,將該等案之全文各以引用方式併入 本文中。在某些具體實施例中,氣_液接觸係藉由霧化前 驅物至沈澱反應混合物中而使沈澱反應混合物前驅物液 滴與C〇2來源間之接觸獲最佳化而達到。在某些具體實施 例中,氣-液接觸係藉由平均直徑為5〇〇微米或更小,如 1〇〇微米或更小之溶液液滴與c〇2氣體來源接觸而達到。 201016600 參見,例如2009年7月7曰所申請之美國專利申請案第 61/223,657號,將該案之全文以引用方式併入本文中。在 某些具體實施例中,觸煤係藉由加速反應朝向平衡而用於 加速二氧化碳溶入溶液中;該觸煤可為無機物質如二氯化 鋅或録或有機物質如酶(如碳酸酐酶)。 在本發明方法中,令上述製得之一定體積裝有c〇2之 溶液處於足以產生含碳酸鹽沈澱物及上澄液(即沈澱反應 藝混合物中沈澱物沈澱後所留下的部分)之碳酸鹽化合物沈 澱條件下。可使用任何慣用沈澱條件,該等條件可由裝有 c〇2之沈殿反應混合物巾產生含碳酸鹽沈雜(視情況含 Si〇2)。沈殿條件包括彼等調整裝有c〇2之沈殿反應混合 物的物理環境以產生所需沈殺物。例如,可將裝有c〇2 之沈殿反應混合物的溫度提高至—所需含碳酸鹽沈殿物 或其組分(如CaS〇4⑻’由(例如)燃燒氣體之含硫氣體所產 生之硫酸贱源自海水之械鹽)發生沈殿之點 。在此類 ;:體實施财,可將裝有C02之沈職應混合物的溫度提 回至。彳文,5 c至70C之值,如從20¾至5(TC並包括25°c 至=c。虽一既定組之沈澱條件可具有範圍從0°c至100。〇 之咖度時’在特定具體實施例中可利用由低或零二氧化碳 ,放來源(如太陽能來源、風力能來源、水電能來源、源 ^-氧化碳發射H之煙道氣的廢熱等)來提高沈澱反應混 =物的溫度。在某些具體實施财,沈敎應混合物的溫 ^利用煤或其他燃料燃燒之煙道氣的熱來提高。亦可改 U力。壓力(例如)可變化。在某些具體實施例中,一既 45 201016600 巴。在正常大氣壓力(約1巴)至約50 1-2.5巴、if實施财…既定組之沈崎件的壓力係 巴或 40-Sn 巴、M〇 巴、10-50 巴、2〇-50 巴、30-50 周遭條# °在具體實施例中’沈㈣之沈殺係在 ^之沈^1正常大氣溫度及壓力)下進行。亦可將裝有 避在此類具體實施例中,將裝有co2之沈 澱反應混。物的PH提高至一用於沈殺之驗性值,其 ❹ 好碳酸鹽優於碳酸氫鹽。可將pH提高至PH 9或更高,如 pH 10或更高,包括pHU或更高。例如,當質子去除劑 來源如飛灰係用於提高歧反應混合物或其前驅物之阳 時,該pH可為約pH12 5或更高。 ❹ 因此,一組由沈澱反應混合物製造所需沈澱物之沈殿 條件可包括如上之溫度及pH,在某些情況下以及添加劑 及離子物種在水巾之濃度。沈贿件亦可包括如混合速 率、攪動形式如超音波攪動及晶種、觸煤、薄膜或基質之 存在性等因素。在某些具體實施例中,沈澱條件包括過飽 和條件、溫度、pH及/或濃度梯度或循環或改變此等參數 中之任一者。用於製造根據本發明含碳酸鹽沈澱物之實驗 程序(由開始[如含金屬矽酸鹽材料之消化]至結束[如乾燥 沈澱物或使沈澱物形成凝硬材料])可為批次、半批次或連 續實驗程序。應瞭解以連續流動系統製造既定沈澱物的沈 澱條件可不同於半批次或批次系統。 自沈澱反應混合物產生後,含碳酸鹽沈澱物與反應混 46 201016600 合物分離以產生分離沈澱物(如濕餅)及上澄液。根據本發 明=物可包含Sl〇2;然而,若在消化含金屬賴鹽材料 ^刀離出石夕基材料’該沈殿可包含極少或不含⑽2。沈 沈I後及分離(如藉由乾燥)之前儲存於上澄液中一 又、。例” ’此搬物可在範圍從代至4。。。之溫度下, =20C至25C下儲存於上澄液中一段範圍從!至1〇〇〇天 ❿ 之時間’如1至1G天或更久。沈殿物與沈澱反應 H、之/刀離_用多種慣用方法,包括排水(如沈殿物 沈降後’接著排水)、傾析、财(如重力過滤、真空 广、彻強制空氣過濾)、離心、壓榨或其任何組合中 種達纟丨$||水與沈澱物之分離產生―沈澱物濕餅或 7沈;殿物。如4/16/2009所申請之Us 61/17〇〇86(將該案 乂引用方式併人本文中)中所述般,液_固分離器如 puramat # Extrem-Separator(“ExSep”)液-固分離器、 〇x PARC的螺旋濃縮機或邱咖咖的ExS叩或 ox PARC的螺旋濃縮機中任—者之改良的使用皆可 提供沈澱物與沈澱反應混合物之分離。 在某些㈣實施财,然後乾_得去水沈殿物以產 生產物(如水泥、凝硬水泥缝存穩定之0)2钳合產物)。 ^可藉由風乾麟物而達成。風乾沈職時,風乾可在 :圍^70(:至12(rc之溫度下進行。在敎具體實施例 =乾燥_由冷;東賴(即魏)達成,其中沈殿物係經 降簡關力並添加足夠触使沈賴巾之象結水 接昇華成氣體。在另-減實施例巾,沈麟係經噴霧 201016600 乾燥以乾燥沈殿物,其中含沈澱物之液體係藉將其饒過妖 氣(如發電狀廢氣流)而賴,且其愤由霧储將液i 進料抽入主乾燥室中並使熱氣以與霧化器方向並行或逆 行方式穿過。視該特定乾燥實驗程序而定,乾燥站(更詳 細描述於下)可經設計以容許使用過濾元件、冷凍乾燥結 構體、喷霧乾燥結構體等^在特定具體實施例中,適當時, 源自發電廠或類似操作之廢熱可用於完成乾燥步驟。例 如,在某些具體實施例中,藉由提高的溫度(如由發電廠 廢熱)、壓力或其組合的使用製造聚集體。 充 分離沈澱物與上澄液之後,必要時進一步處理該分離 沈澱物;然而,可簡單地將沈澱物運送至一地點以長期儲 存有效鉗合c〇2。例如,含碳酸鹽沈澱物可經運送並置 於長期儲存場所,例如地上(以儲存穩定之〇〇2鉗合物形 式)、地下、深海中等。 必要時亦可處理沈澱程序之所得上澄液或沈澱物漿 ^例如,可將上澄液或衆料送回至含二價陽離子水溶液 來源(如海洋)中或另一地點處。在某些具體實施例中,如❹ 上=般,上澄液可與C〇2來源接觸以鉗合額外CQy例如, 在7上/且液移至海洋之具體實施例中,上澄液可以足以增 ,上澄液中所存在碳酸根離子之濃度的方式與CO2之廢 =來源接觸。如上述般,接觸可利用任何慣用實驗程序進 二。在某些具體實施例中’上澄液具有驗性pH且與C〇2 來源接觸係以足以將pH降低至一介於pH 5與9之範圍, PH 6至8.5或PH 7.5至8.2的方式進行。 48 201016600 在某些具體實施例中,提供一種包括以一水溶液消化 含金屬石夕酸鹽材料以產生二價陽離子及含Si02材料並令 二價陽離子與溶解二氧化碳反應以產生沈澱物之方法。 在某些具體實施例中,該方法另外包括以液-固分離器分 離沈殿物與上澄液,乾燥沈澱物、處理沈澱物以產生建 造材料或其組合。照此,在某些具體實施例中,該方法 另外包括以液-固分離器分離沈澱物與上澄液。在此類具 魯 體實施例中,該液-固分離器係選自含有檔板之液-固分離 器如 Epuramat 的 Extrem-Separator(‘‘ExSep”)液-固分離器 或含有螺旋濃縮機之液-固分離器如Xerox PARC的螺旋 濃縮機。在某些具體實施例中,該方法另外包括乾燥沈 ;殿物。在此類具體實施例中,沈澱物可經乾燥以形成具 有一致粒徑之細微粉末(即沈澱物可具有相對窄之粒徑 分布)。如本文另外描述般,沈澱物可具有範圍從丨:1〇〇〇 至1000 : 1之Ca2+ : Mg2+。含MgC03沈澱物可包括菱鎂 ⑩ 礦、水碳鎂石、三水碳鎂石、五水菱鎂礦、非晶質碳酸鎂、 水纖菱鎂礦、水菱鎂礦或其組合。含caC〇3沈澱物可包 括方解石、霰石、六方方解石、六水碳鈣石、非晶質碳 酸鈣、一水方解石或其組合。在某些具體實施例中,該 方法另外包括處理沈澱物以產生建造材料。在此類具體 實施例中,該建造材料係聚集體、水泥、膠結材料、補 充膠結材料或火山灰。 圖2提供一用於製造含碳酸鹽及si〇2之沈澱物之方 法(100)的具體實施例,該材料可用作凝硬材料。該方法 49 201016600 (100)包括令顏雜魏性含二㈣離子溶液接觸之步 驟(110) ’然後,將f子去除劑加人用於與鎂鐵礦物接觸 之酸性含二償陽離子溶液中以形成含碳酸鹽及Si02之沈 澱物的步驟(丨20)。此外,方法1〇〇包括由含碳酸鹽及Si〇 之沈澱物製造凝硬材料的步驟(130)。 2 如上,含金屬石夕酸鹽材料(如含金屬石夕酸鹽礦物之岩 石)具有寬範圍之初始粒徑。照此,希望研磨含金屬矽酸 鹽之起始物,該起始物在此實例中為鎂鐵礦物0壓碎、 研磨及過篩鎂鐵礦物,接著視情況磁性分離已過篩之鎂 0 鐵材料及視情況熱處理(如源自煙道氣之廢熱)所分離之 鎂鐵礦物可在化學處理(如化學消化)之前用於縮減尺 寸。在某些具體實施例中’步驟110中所用之鎂鐵礦物 具有或經降低至小於500微米之粒徑以利用酸性含二價 陽離子溶液增加反應性。在步驟11〇中,藉使鎂鐵礦物 與酸性含二價陽離子溶液接觸而形成含Si〇2漿料。上述 鎂鐵礦物係含鎂及鐵之金屬矽酸鹽,該等礦物包括(但不 限於)橄欖石及蛇紋石。步驟11〇中所用之鎂鐵礦物可為❹ 此類鎂鐵礦物之混合物。步驟110中所用之鎂鐵礦物亦 可與(例如)鎂鐵岩石(如玄武岩)組合使用。此外,步驟11〇 中所用之鎂鐵礦物可如2009年6月17日所申請之美國專 利申請案第12/486692號(將該案之全文以引用方式併入 本文中)與工業程序之廢棄產物如燃燒灰分、水泥窯灰及 /或礦渣聯用。 在某些具體實施例中,鎂鐵礦物與含二價陽離子溶液 50 201016600To PH 11.5, pH 11.5 to pH 12.0, pH 12.0 to pH 12.5, pH 12.5 to pH 13.0, pH 13 pH to pH 13 5, pH 13 5 to pH i4 For example, sapphire can have _ in Yang 7〇 Digestion in an aqueous solution of Yang (the pH of the solution). Since the solubility of Shi Xishi is increased at a higher pH, the niobium digested by the metal niobate of the present invention can have a proportion of more than 7 base materials (e.g., _ W stone). Moreover, the resulting pozzolanic material can be more reactive due to the increased amount of amorphous vermiculite. Preferably, the gold-containing sulphate material digested by the aqueous alkali metal hydroxide can be used to manufacture the ship. Materials and classes f are recovered and reused to digest additional metal-containing silicate materials containing metal silicate materials (such as magnesium silicates such as olivine) and/or other rocks and minerals containing less than 40 201016600 metal species of interest Digestion in an acidic aqueous solution (eg, R2O, H2S〇4 (a (where each may be derived from an electrochemical procedure) to produce, for example, a divalent cation (eg, Mg2+, Ca2+) and a ruthenium-based material Slurry (such as vermiculite, unreacted or undigested tantalate, etc.). Digestion of metal-containing tellurite materials (such as olivine) and/or other rocks and minerals of interest may be contacted with an acidic solution. A solution comprising SiO 2 is produced. The aqueous solution of divalent cations may be sufficiently acidic if received; in certain embodiments, the aqueous solution may be used without further pH adjustment; = and, in certain embodiments, The aqueous solution of divalent cations may be basic or insufficiently acidic if received. In such embodiments, the aqueous solution containing divalent cations or any solvent or solution used to digest the metal phthalate containing material may be acidified. Acidification can be borrowed from gaseous It is achieved by contacting a liquid (including an aqueous solution) or a weak acid or a strong acid in a solid form, including but not limited to HF, HC1, HBr, HI, h2S〇4, HN〇3, h3P〇4, chromic acid: H2co3, acetic acid, citric acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid, ascorbic acid, and meldrums acid. For example, in some specific implementations, the metal-containing salt material is a fine water brain. Digestion in an acidic solution, wherein the aqueous HC1 procedure. In such embodiments, the electrochemical procedure is described as a low voltage electrochemical procedure. In certain embodiments 2: / or other rocks and minerals are digested in an aqueous solution that is heterogeneous due to the addition of C ^ (such as combustion gases from burning fossil fuels such as coal-fired power generation 2). In order to accelerate the digestion of the metal-containing silicate material, the acidification system is provided by the co2 gas bubbling through the seawater to produce saturated carbonated seawater. In some embodiments, the metal silicate-containing material is provided. And/or other rocks The digestion of minerals is achieved in a pH range including pH 7.1 to pH 6.5, pH 6.5 to pH 6.0, pH 6.0 to pH 5.5, pH 5.5 to pH 5.0, pH 5.0 to pH 4.5, pH 4.5 to pH 4.0. , pH 4.0 to pH 3.5, pH 3.5 to pH 3.0, pH 3.0 to pH 2.5, pH 2.5 to pH 2.0, pH 2.0 to pH 1.5, pH 1.5 to pH 1.0, pH 1.0 to pH 0.5, and pH 0.5 to pH 0.0. For example, sapphire can be digested in an aqueous solution having a pH ranging between pH 4.8 and pH 7.0 (the pH of C02 dissolved in an aqueous solution). The proton-removing agent is added to the resulting solution (e.g., containing Ca2+ and Mg2+) remaining in the SiO2-containing slurry or after removing SiO2 (and other ruthenium-based materials) in a subsequent step. The addition of the proton-removing agent is sufficient to precipitate a carbonate-containing (e.g., CaC03, MgC03) precipitate. The skilled artisan will be aware of specific acidification methods such as the addition of aqueous carbonic acid or C〇2 bubbling through a suspension of metal-containing silicate material to provide carbonate ions, which in turn may be in the form of a carbonate sediment. In addition, the skilled artisan will appreciate the appropriate acid selection for digestion, followed by the selection of a suitable proton-removing agent for neutralization of the acidic solution to introduce ionic species that favor the precipitate and the final product. The choice of a suitable acid and proton-removing agent can also avoid the formation of specific ionic species that would otherwise have to be controlled by other methods such as washing to remove NaCl from the precipitate. An aqueous solution containing divalent cations (such as alkaline earth metal cations such as ca 2+ and Mg 2+ ) and optionally Si 〇 2 may be derived from c 〇 2 in such a condition that the divalent cation-containing solution is subjected to precipitation conditions (ie, based on, for example, pH tolerance or Multiple substances 42 201016600 Conditions for precipitation) Contact before, during or after. Thus, in certain embodiments, the aqueous divalent cation solution is contacted with a source of c〇2 in a precipitation condition which facilitates the formation of a carbonate-containing salt and, optionally, a precipitate of si〇2. In some embodiments, the divalent cation water: gluten system is contacted with a C 〇 2 source and at the same time the aqueous solution is in a parenchy condition conducive to the formation of a precipitate. In some embodiments, the divalent cation aqueous solution is contacted with the C〇2 source prior to or simultaneously with the aqueous solution being in a condition that favors the formation of a precipitate. In some embodiments, the aqueous solution of divalent cations is contacted with a source of C?2 after the aqueous solution is in a condition that favors the formation of a precipitate. In some embodiments, the aqueous monovalent cation solution is contacted with the C〇2 source prior to, concurrently with, and after the aqueous solution is in a condition to facilitate formation of the sulphate. In certain embodiments, the aqueous solution containing divalent cations can be recycled more than once, wherein the first precipitation cycle primarily removes carbonates (such as calcium carbonate, magnesium carbonate) and sulfhydryl materials and leaves additional monovalent cations An assay solution wherein the additional divalent cation can be sourced from any of the divalent cation sources disclosed herein, including by digesting the divalent cation of the additional metal silicate-containing material. Carbon dioxide is allowed to kill additional precipitates when contacted with a circulating solution containing divalent cations, wherein the precipitate comprises carbonate and optionally Si2. It should be understood that in these particular embodiments, the aqueous solution may be contacted with the C〇2 source before, during, and/or after the first precipitation cycle, during and after the addition of the divalent cation. In certain embodiments, an aqueous solution that does not have divalent cations or has a low concentration of divalent cations is contacted with co2. In these particular embodiments, the aqueous solution can be recycled or newly introduced. As such, the addition of CO 2 and digestion of gold 43 201016600 The order of the phthalate materials can be changed. For example, each of the metal-containing silicate materials, such as serpentine, gangue or asbestos, which can provide divalent cations, s〇2 or both, can be added to, for example, brine, sea water or fresh water, followed by C〇2. In another example, C〇2 can be added to, for example, drip, seawater or fresh water, followed by the addition of a metal-containing silicate material. An aqueous solution containing divalent cations (including Si〇2 as appropriate) can be contacted with the C〇2 source using any conventional experimental procedure. When C〇2 is a gas, the contact test procedure of interest includes (but is not limited to): direct contact with the experimental procedure (such as bubbling CO 2 gas through an aqueous solution), parallel contact method (ie, one-way flow of gas phase flow and liquid) Contact between phase flows), retrograde method (ie, contact between gas phase flow and liquid phase flow in reverse flow) and the like. As such, for ease of use, the contacting can be accomplished via a leacher, bubbler, jet Venturi reactor, a gas filter, a nebulizer, a tray or a packed column reactor, and the like. In some embodiments, the gas-liquid contact is achieved by forming a solution liquid layer with a flat nozzle wherein the C 〇 2 gas and liquid layer move in a retrograde, parallel or cross flow direction or in any other suitable manner. See, for example, U.S. Patent Application Serial No. 61/158,992, filed on March 1, 2009, and U.S. Patent Application Serial No. 61/178,475, filed on March 14, 2009. Each is incorporated herein by reference. In some embodiments, the gas-liquid contact is achieved by atomizing the precursor to the precipitation reaction mixture to optimize contact between the precursor of the precipitation reaction mixture precursor and the source of C?2. In some embodiments, the gas-liquid contact is achieved by contacting a solution droplet having an average diameter of 5 Å or less, such as 1 〇〇 micron or less, with a c 〇 2 gas source. See, for example, U.S. Patent Application Serial No. 61/223,657, filed on Jun. In some embodiments, the coal touch is used to accelerate the dissolution of carbon dioxide into the solution by accelerating the reaction toward equilibrium; the coal may be an inorganic material such as zinc dichloride or an organic material such as an enzyme such as a carbonic anhydride. Enzyme). In the process of the present invention, the above-prepared volume of the solution containing c〇2 is sufficient to produce a carbonate-containing precipitate and a supernatant (i.e., a portion left after precipitation of the precipitate in the precipitation reaction mixture). The carbonate compound is precipitated under conditions. Any conventional precipitation conditions may be employed which may result in a carbonate-containing precipitate (including Si〇2 as appropriate) from a chamber reaction mixture containing c〇2. The conditions of the slab include the adjustment of the physical environment in which the mixture of chambers containing c〇2 is used to produce the desired sink. For example, the temperature of the reaction mixture containing c〇2 can be raised to - the desired barium sulfate-containing material or a component thereof (such as CaS〇4(8)' is produced by, for example, a sulfur-containing gas of a combustion gas. The salt from the seawater is the point of the temple. In this category; the body can be implemented, and the temperature of the CO2-containing mixture should be returned.彳文, the value of 5 c to 70C, such as from 203⁄4 to 5 (TC and includes 25 ° c to = c. Although a predetermined set of precipitation conditions can have a range from 0 ° c to 100. In a specific embodiment, a low or zero carbon dioxide source, such as a solar source, a wind energy source, a source of water and electricity, a waste heat of a flue gas emitted from a source of carbon monoxide, or the like, may be utilized to increase the precipitation reaction mixture. Temperature. In some implementations, the temperature of the mixture should be increased by the heat of the flue gas from the combustion of coal or other fuels. The U force can also be changed. The pressure can vary, for example. In some embodiments , a both 45 201016600 bar. Under normal atmospheric pressure (about 1 bar) to about 50 1-2.5 bar, if the implementation of the financial ... the set of the submarine pieces of the pressure system bar or 40-Sn Ba, M 〇, 10- 50 bar, 2 〇 -50 bar, 30-50 weeks of strip # ° In the specific example, the sinking of the sinking (four) is carried out under the normal atmospheric temperature and pressure of the liquid. It is also possible to incorporate a precipitation reaction containing co2 in such a specific embodiment. The pH of the substance is increased to a value for killing, and the carbonate is superior to bicarbonate. The pH can be raised to pH 9 or higher, such as pH 10 or higher, including pHU or higher. For example, when a proton-removing agent source such as a fly ash is used to increase the cation of the heterogeneous reaction mixture or its precursor, the pH can be about pH 12 5 or higher. ❹ Thus, a set of conditions for the formation of the desired precipitate from the precipitation reaction mixture can include the above temperatures and pH, and in some cases, the concentration of the additive and ionic species in the water towel. The bribery can also include factors such as mixing rate, agitation such as ultrasonic agitation and seed, coal, film or matrix presence. In certain embodiments, the precipitation conditions include any of saturating conditions, temperature, pH, and/or concentration gradients or cycles or changes in any of these parameters. An experimental procedure for the manufacture of a carbonate-containing precipitate according to the present invention (from the beginning [eg digestion of a metal-containing silicate material] to the end [such as drying a precipitate or forming a precipitate to form a sturdy material]) may be batch, Semi-batch or continuous experimental procedure. It will be appreciated that the precipitation conditions for making a given precipitate with a continuous flow system can vary from a semi-batch or batch system. After the precipitation reaction mixture is produced, the carbonate-containing precipitate is separated from the reaction mixture 46 201016600 to produce a separated precipitate (e.g., wet cake) and a supernatant. According to the invention, the substance may comprise Sl2; however, if the metal-containing lysate material is digested, the slab may contain little or no (10)2. After sinking I and separating (eg by drying) before storage in the supernatant, again. Example: 'This moving object can be stored in the upper liquid in a range from the generation to the temperature of 4 to 2C from a range of ~! to 1 day of the day', such as 1 to 1G days. Or longer. The reaction between Shen Dian and sedimentation H, / knife away _ with a variety of conventional methods, including drainage (such as sedimentation after the sinking of the 'then drainage), decantation, wealth (such as gravity filtration, vacuum wide, thorough forced air filtration ), centrifugation, pressing or any combination thereof; 纟丨$||Separation of water and sediment produces “precipitate wet cake or 7 sink; temple. For example, Us 61/17 as applied by 4/16/2009〇 As described in 〇86 (referred to in this article), liquid-solid separators such as puramat # Extrem-Separator ("ExSep") liquid-solid separator, 〇x PARC spiral concentrator or Qiu The improved use of any of the ExS叩 or ox PARC spiral concentrators of the café can provide separation of the precipitate from the precipitation reaction mixture. In some (4) implementations, then the water is used to produce the product. (such as cement, cemented cement, stable stability of 0) 2 clamped product). ^ can be achieved by air drying the lining. When the air drying can be carried out at: ^70 (: to 12 (rc temperature). In the concrete example = dry _ by cold; Dong Lai (ie Wei) reached, in which the Shen Dian system was reduced and added enough The image of the Shen Lai towel is taken up and the gas is raised into a gas. In the other embodiment, the Shen Lin system is sprayed with a spray of 201016600 to dry the sediment, and the liquid system containing the sediment is used to make it angry (such as power generation). Depending on the specific drying experiment procedure, drying Stations (described in more detail below) may be designed to permit the use of filter elements, freeze-dried structures, spray-dried structures, etc., in particular embodiments, where appropriate, waste heat from power plants or similar operations may be used The drying step is completed. For example, in some embodiments, the aggregate is produced by the use of elevated temperatures (such as waste heat from a power plant), pressure, or a combination thereof. After sufficient separation from the precipitate and the supernatant, further if necessary Processing the separated precipitate However, the sediment can simply be transported to a location for long-term storage to effectively clamp c〇2. For example, a carbonate-containing precipitate can be transported and placed in a long-term storage location, such as above ground (for storage stable 〇〇 2 tongs) In the form of a compound, underground, deep sea, etc. If necessary, the resulting supernatant or sediment slurry can also be treated. For example, the supernatant or mass can be returned to a source containing divalent cation aqueous solution (such as ocean). In some or other locations, in some embodiments, such as ❹上, the supernatant can be contacted with the C〇2 source to clamp the additional CQy, for example, at 7 and the liquid is moved to the ocean. In the case, the supernatant liquid can be sufficiently increased, and the concentration of carbonate ions present in the supernatant liquid is in contact with the waste source of CO2. As mentioned above, the contact can be performed using any conventional experimental procedure. In certain embodiments, the supernatant has an illustrative pH and is contacted with a C〇2 source in a manner sufficient to reduce the pH to a range of pH 5 and 9, pH 6 to 8.5 or pH 7.5 to 8.2. . 48 201016600 In certain embodiments, a method is provided comprising digesting a metal-containing alumite material with an aqueous solution to produce a divalent cation and a SiO2-containing material and reacting the divalent cation with dissolved carbon dioxide to produce a precipitate. In some embodiments, the method additionally comprises separating the sediment and the supernatant with a liquid-solid separator, drying the precipitate, treating the precipitate to produce a building material, or a combination thereof. As such, in some embodiments, the method additionally comprises separating the precipitate and the supernatant with a liquid-solid separator. In such a rigid embodiment, the liquid-solid separator is selected from a liquid-solid separator containing a baffle such as an Extrem-Separator (''ExSep") liquid-solid separator of Epuramat or a spiral concentrator. A liquid-solid separator such as a spiral concentrator of Xerox PARC. In some embodiments, the method additionally includes a drying sink; in such a specific embodiment, the precipitate can be dried to form a uniform grain Fine powder of the diameter (ie, the precipitate may have a relatively narrow particle size distribution). As described elsewhere herein, the precipitate may have a Ca2+: Mg2+ range from 丨:1〇〇〇 to 1000:1. The MgC03-containing precipitate may be Including magnesite 10 ore, hydrocarbite, trihydrate, magnesite, amorphous magnesium carbonate, hydromagnesite, hydromagnesite or combinations thereof. Containing caC〇3 precipitate These include calcite, vermiculite, hexagonal calcite, octahydrate, calcite, amorphous calcium carbonate, monohydrate calcite, or combinations thereof. In certain embodiments, the method additionally includes treating the precipitate to produce a building material. In a specific embodiment, the building material is condensed Collective, cement, cementitious materials, supplementary cementitious materials or pozzolans. Figure 2 provides a specific embodiment of a method (100) for making a carbonate-containing and si〇2 precipitate which can be used as a pozzolanic material. Method 49 201016600 (100) includes the step (110) of contacting the bismuth-containing bis(tetra) ionic solution. Then, the f-sub-deletant is added to the acidic two-compensated cation solution in contact with the ferro-magnesium mineral. A step of forming a precipitate containing carbonate and SiO 2 (丨20). Further, the method 1 includes a step (130) of producing a pozzolanic material from a precipitate containing carbonate and Si bis. The acid salt material (such as a rock containing a metal silicate mineral) has a wide range of initial particle sizes. As such, it is desirable to grind a metal citrate-containing starting material, which in this example is a mafic ore. The material 0 is crushed, ground and sieved with magnesium iron minerals, and then magnetically separated sifted magnesium 0 iron material and, as the case may be, heat treated (such as waste heat from flue gas) Chemical treatment (such as chemical digestion) used to reduce the rule In certain embodiments, the ferro-magnesium mineral used in step 110 has or is reduced to a particle size of less than 500 microns to increase reactivity with an acidic divalent cation-containing solution. In step 11 , by magnesium The iron mineral is contacted with an acidic divalent cation-containing solution to form a Si〇2-containing slurry. The above-described magnesium iron mineral is a metal strontium salt containing magnesium and iron, including but not limited to olivine and serpentine. The mafic mineral used in step 11 can be a mixture of such ferro-magnesium minerals. The mafic minerals used in step 110 can also be used in combination with, for example, mafic rocks such as basalt. The magnesium-iron minerals used in the step 11 can be as disclosed in U.S. Patent Application Serial No. 12/486,692, filed on Jun. 17, 2009, the entire contents of Such as burning ash, cement kiln ash and / or slag combination. In some embodiments, the magnesium iron mineral and the divalent cation-containing solution 50 201016600

❹ 接觸並酸化該溶液,雖然在其他情況下,在鎂鐵礦物與 含^價陽離子溶液接觸之刚酸化之。例如,填充有鎮鐵 礦物之塔可與含二價陽離子溶液接觸並將含c〇2之氣流 注入該塔與含二價陽離子溶液相同之端。同樣地,可將 酸性溶液(如Ηα(^)注入該塔中與含二價陽離子溶液(有 或無C〇2注入)相同之端。或者,含二價陽離子溶液可與 含c〇2氣流接觸,之後令含二價陽離子溶液與鎂鐵礦物 接觸。同樣地,呈固體形式或溶液形式之酸可與含二價 陽離子溶液混合,之後令鎂鐵礦物與含二價陽離子溶液 接觸。同樣地可在含二價陽離子溶液與鎂鐵礦物接觸之 則或期間完成含二價陽離子溶液之酸化,其中該接觸可 在一槽或其他反應容器内完成。 消化鎂鐵礦物所產生之矽石可以(例如)膠體懸浮液 (如漿料)或凝膠形式存在。該矽石可為部分非晶質或完全 非晶質。在某些具體實施例中’消化鎂鐵礦物所產生之 矽石可為部分非晶質。在某些具體實施例中,消化鎂鐵 礦物所產生之矽石可為完全非晶質。石夕石可以矽酸或其 ,、軛鹼形式存在,包括如偏矽酸(H2Si〇3)、正矽酸 (H4Si〇4)、二石夕酸田你〇5)及/或焦矽酸(H6Si2〇7)等物 $石夕物種如H3Si〇3、H2Si〇3、邮〇3及類似物亦可存 除了矽石之外,含二價陽離子溶液與鎂鐵礦物接觸 ,之㈣可富切酸鹽、碳酸鹽及原始鎂鐵礦物中 物:之各種陽離子如鎂、銘及鐵陽離子。原始鎂鐵礦 物之小顆粒關_物之多晶型物亦可存在。 51 201016600 在某些具體實施例中,步驟110 +藉由消化鎂鐵礦物 所產生之漿料係經處理以自含二價陽離子溶液分離出矽 基材料。在此類具體實施例中’可能希望分離矽基材料, 因為石夕石之最大濃度可在(例如)二價陽離子如鎂之最大 濃度之前達到。此分離可(例如)藉由絮凝及/或另使矽基 材料沈降在沈降槽中而達到。分離亦可藉由液-固分離技 術如離心,例如以水力旋風器達到。 沈澱物係在步驟120中藉由提高沈澱反應混合物(有 或無Si〇2)之pH至一足以沈殿含碳酸鹽(如MgC03、 ❹接触 Contact and acidify the solution, although in other cases, the ferro-magnesium mineral is just acidified in contact with the cation-containing cation solution. For example, a column filled with ferrous minerals may be contacted with a solution containing divalent cations and a gas stream containing c 〇 2 may be injected into the same end of the column as the solution containing divalent cations. Similarly, an acidic solution (such as Ηα(^) can be injected into the column at the same end as the divalent cation solution (with or without C〇2 injection). Alternatively, the divalent cation solution can be combined with the c〇2 containing gas stream. After contact, the divalent cation-containing solution is then contacted with the ferro-magnesium mineral. Similarly, the acid in solid form or in solution may be mixed with the divalent cation-containing solution, after which the ferro-magnesium mineral is contacted with the divalent cation-containing solution. Similarly, acidification of the divalent cation-containing solution can be accomplished during or with the contact of the divalent cation solution with the ferro-magnesium mineral, wherein the contacting can be accomplished in a tank or other reaction vessel. The vermiculite may be present, for example, as a colloidal suspension (e.g., a slurry) or as a gel. The vermiculite may be partially amorphous or completely amorphous. In certain embodiments, 'digested magnesium iron minerals are produced. The vermiculite may be partially amorphous. In some embodiments, the vermiculite produced by the digested magnesium iron mineral may be completely amorphous. The stone may be in the form of decanoic acid or its ketone base. Including, for example, heptanoic acid (H2Si〇3), Tannic acid (H4Si〇4), Ershiji acid field, you 5) and / or pyroic acid (H6Si2〇7), etc. Shishi species such as H3Si〇3, H2Si〇3, Mail 3 and similar In addition to vermiculite, the divalent cation solution is contacted with the ferro-magnesium mineral, and (iv) the chelate-rich, carbonate, and primary magnesium iron minerals: various cations such as magnesium, iron and cation. Small particles of the original mafic minerals may also be present. 51 201016600 In some embodiments, the step 110 + slurry produced by digesting the ferro-magnesium mineral is treated to separate the ruthenium-based material from the divalent cation-containing solution. In such embodiments, it may be desirable to separate the ruthenium-based material since the maximum concentration of shiishi may be reached prior to, for example, the maximum concentration of divalent cations such as magnesium. This separation can be achieved, for example, by flocculation and/or by otherwise allowing the cerium-based material to settle in the sinker. Separation can also be achieved by liquid-solid separation techniques such as centrifugation, for example with a hydrocyclone. The precipitate is in step 120 by increasing the pH of the precipitation reaction mixture (with or without Si 〇 2) to a sufficient amount to contain carbonates (eg, MgC03, hydrazine).

CaC03)之沈澱物的程度。在某些具體實施例中,沈澱反 應混合物仍包含碎基材料如Si02。照此,步驟120中所 形成之沈殿物包含碳酸鹽以及石夕基材料。在某些具體實 施例中,可在步驟110中消化鎂鐵礦物之後去除矽基材 料。在此類具體實施例中,步驟120中所形成之沈澱物 包含碳酸鹽與些微或無矽基材料。在任一情況下,將質 子去除劑加入含二價陽離子之酸性溶液中以增加pH至 —足以使沈澱物沈澱的程度。質子去除劑可為固體、存 〇 於溶液中之固體或液體。固態質子去除劑包括(例如)氫氧 化物如KOH或NaOH。此類氫氧化物亦可以溶液形式使 用(如KOH(aq)、NaOH(a(〇)。照此,質子去除劑可另外包 括鎂鐵礦料(如橄欖石、蛇紋石)、燃燒灰分(如飛灰、底 灰、鍋爐渣)或礦渣(如鐵礦渣、含磷礦渣),其中燃燒灰 分及礦渣係另外描述於2008年6月17日所申請之美國臨 時專利申請案第61/073,319號中,將該案之揭示内容全文 52 201016600 以引用方式併人本文中。在某些具體實施射,步驟ιι〇 中所用之鎂_物亦如㈣12G巾之許去除劑般加 入。可在步驟120中,將含二價陽離子溶液之pH提高至 阳7與阳12之間、阳7與阳1〇之間、阳7與阳9 之間、pH 7與pH 8之間。在某些具體實施财,將含二 價陽離子溶一液之pH提高至pH9或更高、pH1〇或更高、 pH 11或更高、PH 12或更高或pH 13或更高,如pHi4。 在某些具體實施例巾,將質子去_加人含二價陽離子 溶液中之步驟⑽)係利用不同於溶解鎮鐵礦物之步驟 (110)所用之反應容ϋ的反應容H進行。 例中,步驟110及120係依序利用相同反應i器進行。 或者,如本文另外描錢,質子_由電化學程序如低 電壓電化學程序去除。電解法亦可用於提高沈殿反應混 合物之PH至-足以沈澱沈殿物之程度。可使用不同電解The extent of the precipitate of CaC03). In some embodiments, the precipitation reaction mixture still contains a ground material such as SiO 2 . As such, the slab formed in step 120 contains carbonate and a stone base material. In some embodiments, the ruthenium substrate can be removed after the magnesium iron mineral is digested in step 110. In such embodiments, the precipitate formed in step 120 comprises a carbonate and a slight or no ruthenium-based material. In either case, the proton-removing agent is added to the acidic solution containing the divalent cation to increase the pH to a level sufficient to precipitate the precipitate. The proton-removing agent can be a solid, a solid or a liquid that is present in the solution. Solid proton-removing agents include, for example, hydroxides such as KOH or NaOH. Such hydroxides can also be used in the form of solutions (such as KOH (aq), NaOH (a (〇). As such, proton-removing agents can additionally include mafic ore (such as olivine, serpentine), burning ash (such as Fly ash, bottom ash, boiler slag) or slag (such as iron ore slag, phosphorus slag), in which ash and slag are additionally described in US Provisional Patent Application No. 61/073,319, filed on June 17, 2008. In this case, the disclosure of the case is in full text 52 201016600, which is incorporated herein by reference. In some specific implementations, the magnesium material used in the step ιι〇 is also added as in the (4) 12G towel removal agent. The pH of the divalent cation-containing solution is increased to between yang 7 and yang 12, between yang 7 and yang 1 , between yang 7 and yang 9, and between pH 7 and pH 8. In some embodiments To increase the pH of the divalent cation-containing solution to pH 9 or higher, pH 1 or higher, pH 11 or higher, pH 12 or higher, or pH 13 or higher, such as pHi4. In the embodiment, the step (10) of removing the proton from the divalent cation-containing solution is different from dissolving the iron-bearing mineral. The reaction volume of the reaction volume used in step (110) is carried out. In the example, steps 110 and 120 are sequentially carried out using the same reaction device. Alternatively, as described herein, protons are electrochemically programmed, such as low voltage. The program is removed. The electrolysis method can also be used to increase the pH of the reaction mixture of the chamber to a level sufficient to precipitate the sediment. Different electrolysis can be used.

G 法’包括Castner-Kellner法’隔膜電解槽法及薄膜電解槽 法。可收集水解產物之副產物(如%、納金屬)並將其用於 其他目的中。當㈣質子絲劑之組合時,可以任何順序 利用質子去除劑。例如’含二_離子溶液可在添加質子 去除劑之心呈驗性(如海水)或經由額外f子去除劑之添 加進-步驗化含質子去_之驗性溶I在任—此等具體 實施例中,如下另外詳細描述般,c〇2係在 前或之後加人。 _ 如下另外詳細描述般,沈搬物可包含若干礦物相,由 共沈澱程序所產生之不同礦物相係適合產生含(例如)碳酸 53 201016600 鈣以及碳酸鎂之沈澱物。沈澱程序亦適合產生含單一礦物 相之沈殺物,其中該礦物相包括(但不限於)碳酸鈣、碳酸 鎮、碳酸_鎮(如白雲石)或鐵_碳_紹石夕酸鹽。不同碳酸鹽 礦物可依序>纽。例如’含碳酸〶之沈殿物可在一反應器 中第一組沈澱條件下沈澱,且含碳酸鎂之沈澱物可在第二 反應器中第一組沈殿條件下沈殿。在另一非限定實例中, 含碳酸鎂之沈澱物可在含碳酸鈣之沈澱物沈澱之前沈 澱。在某些具體實施例中,沈澱係適合產生含一或多種 氫氧化物相(如Ca(OH)2、Mg(〇H)2)之沈澱物。沈澱可經❹ 設計以產生沈澱物,其中任何所存在之碳酸鹽及氫氧化 物相係全部或部分非晶質β 步驟120視情況包括將碳酸鹽促進劑加入沈澱反應 混合物中。碳酸鹽促進劑之實例包括低濃度之過渡金屬 如鐵、#、鎳、錳、鋅、鉻、銅、鋇、金、鉑或銀。在 沈澱反應混合物中加入足量之鐵(如氯化鐵)可將沈澱反 應混合物中鐵之濃度提高至約百萬分之〇 〇〇1(ppm)至約 5〇〇ppm之範圍内。例如,鐵係適用於促進形成碳酸鎂優 0 於形成氳氧化鎂。當本文使用術語”促進劑,,時,將瞭解 =可能無法增加碳酸鹽沈澱速率如抑制氫氧化物沈澱速 率般多。可在添加質子去除劑(或質子去除劑之組合)之前 或開始或完成沈澱之前任何時間點,將碳酸鹽促進劑加 入沈澱反應混合物中。 步驟120可視情況包括將額外反應物加入沈澱反應 混合物中。例如,可加入額外酸及質子去除劑以將1>]3穩 54 201016600 定在所需巾。適當酸及質子去除劑之轉可能導致 補充二價陽離子如Ca2+及Mg2+之添加。此外,適當酸及 質子去除劑之選擇可能導致補充陰離子如C〇32-之添 加,其可用於增加含碳酸鹽沈澱物之產量。在某些具體 實施例中’在_ UG巾加人過渡金屬觸如鎳以誘使 沈殿程序期間形成較大齡。在某些具體實施例中,交 替進行co2胃泡吹過沈澱反應混合物及加人質子去除劑 (如可溶氫氧化物如氫氧化鉀(KOH)或氫氧化鈉 (Na〇H)),使PH循環在pH 7與pH 10.5之間。 在某些具體實施例中,在一步驟中處理含有含碳酸鹽 沈澱物之沈澱反應混合物以自沈澱反應混合物中分離出 含碳酸鹽沈澱物而留下上澄液,該上澄液可包含未使用 之二價陽離子。此一液-固分離可(例如)藉由絮凝及/或令 沈澱物沈降在沈降槽中達到。液_固分離分離亦可藉由液 -固分離技術如離心達到。在未自含二價陽離子溶液分離 出源自含金屬矽酸鹽材料消化之矽基材料(即未進行步 驟140)的具體實施例中’沈殿物產生碎基材料與碳酸鹽 (如碳酸鎂、碳酸鈣)之混合物。步驟12〇亦可包括自沈澱 反應混合物分離出此沈殺混合物(即含石夕及碳酸鹽之沈 澱物)。 在步驟130中,凝硬材料係由根據圖2方法所製得之 材料製得。在某些具體實施例中,含Si〇2及碳酸鹽之沈 殿物一起乾燥形成凝硬材料。在某些具體實施例中,自 含二價陽離子溶液分離出矽基材料時(視情況選用步驟 55 201016600 14〇) ’各別乾燥矽基材料及含碳酸鹽沈澱物,然後令其 混合形成凝硬材料。在某些具體實施例中,矽基材料及 含碳酸鹽沈澱物係在任一材料或兩者皆潮濕時混合。在 此類具體實施例中’然後乾燥後續濕混合之材料以產生 凝硬材料。將瞭解視情況可在乾燥前以水清洗該等材料 (如石夕基材料、含碳酸鹽沈澱物、含矽及碳酸鹽沈澱物、 濕混合之凝硬材料)中任一者。 一種乾燥各種材料(如沈澱物、濕混合之凝硬材料)之 方法係喷霧乾燥。在某些具體實施例中,源自廢氣源(如 ❹ 燃煤發電廠之煙道氣)係用於喷霧乾燥沈澱物或矽基材 料°在某些具體實施例中,源自相同廢氣源之c〇2接著 係用於酸化含二價陽離子溶液(如在步驟11()中)。在噴霧 ,燥期間可有利地回收在提高溫度下進入沈澱系統之廢 氣的廢熱’(例如)如2008年5月29曰所申請之美國臨時 專利申睛案第61/057,173號,將該案揭示内容之全文以 =用方式併入本文中。噴霧乾燥材料可具有球形或低縱 横比之形狀且在某些具體實施例中經尺寸化之顆粒而使 〇 至少90%顆粒大於約ο』微米並小於約ι〇〇微米且表面 積在約〇.〇1平方米/克至約2〇平方米/克之間。在某些具 體實施例中,乾顆粒係經尺寸化而使至少75%係在1〇微 米與40微米之間或在20微米與30微米之間且具有約 0.5至5平方米/克,如〇 75至3 〇平方米/克或〇 9至2 〇 平方米/克之表面積。 在某些具體實施例中,凝硬材料係在後續使用前先經 56 201016600 精焱(即處理)。精製可包括多種不同精製實驗程序中任一 者。在某些具體實施例中,令凝硬材料接受機械精製(如 磨碎、研磨)以獲得具有所需物理性質(如粒徑、表面積等) 之產物。在某些具體實施例中,凝硬材料係與水硬水泥 (如作為補充膠結材料、砂、聚集體等)組合。在某些具體 實施例中,將一或多種組分加入凝硬材料中(如將凝硬材 料用作水泥時)以產生最終產物(如混凝土或灰泥),其中 該等組分包括(但不限於)砂、聚集體及補充膠結材料。 在某些具體實施例中’本文所揭示之方法所製成之凝 硬材料係用作建造材料。為用作建造材料,凝硬材料可 經處理以用作建造材料或經處理以用於建築物(如商 用、住宅)及/或基礎建設(如道路、橋樑、碼頭、水壩等) 之現有建造材料中。該等建造材料可為此類建築物及基 礎建設之結構或非結構性組件的組分。利用凝硬材料作 為建造材料或用於建造材料中之額外益處係可將該程序 中所用之co2(如獲自廢氣流之co2)有效地鉗合在建築 環境中。在某些具體實施例中,本發明沈澱系統可與建 築產物製造廠共置而使共置協助將凝硬材料處理成建造 材料。 在某些具體實施例中,凝硬材料係用於製造聚集體。 此類凝硬材料、其製造方法及聚集體之用途係描述於 2008年5月29曰共同申請之美國專利申請案第 12/475,378號,將該案揭示内容之全文以引用方式併入本 文中。 57 201016600 圖3說明用於進行上述各種方法之示範性系統 (700)。金屬矽酸鹽處理器710係接收未處理之含有金屬 石夕酸鹽材料(240) ’其包括縮減含金屬石夕酸鹽材料尺寸之 尺寸縮減單元及消化已壓碎之含金屬矽酸鹽材料之消化 器。尺寸縮減單元可包含多種不同壓碎、研磨設備(如球 磨機、噴射磨機等)中之任一者並選擇已研磨之含金屬矽 酸鹽材料(如藉由篩,藉由旋風器等)以進行後續消化。該 消化器係經設§十以接收已研磨之含金屬碎酸鹽材料以及 任何可能適用於消化含金屬矽酸鹽材料之其他材料,該等 〇 其他材料包括(但不限於)水及pH改良劑(如酸、質子去除 劑等)。該處理器另外包括一過濾器,其中該過濾器係經 设計以由已消化之含金屬石夕酸鹽材料中去除發石及/或石夕 基材料。與金屬矽酸鹽處理器(71〇)連接操作之沈澱反應 谷器(210)係經設計以接收已消化之含金屬石夕酸鹽材料或 其漿料或水溶液。此外,沈澱反應容器(21〇)係經設計以接 收C〇2(如源自含c〇2之工業廢棄物來源的熱或冷c〇2)及 任何其他試劑(如酸、質子去除劑、促進劑),其在製造沈❹ 贏物及本發明凝硬材料中係適用的。沈殿反應容器可另外 °又6十成調整並控制沈殿反應條件。例如,沈殿反應容器可 具有溫度探針及加熱元件’其兩者皆可用於控制沈澱反應 混合物之溫度。如圖3中所示之液-固分離器(215)係與沈 殿反應容器(210)連接操作並經設計以接收沈澱反應容器 之沈澱反應混合物。該液-固分離器可另外設計成將沈澱 反應混合物分離成兩支流,該等支流包含上澄液及沈殿 58 201016600 物。所得沈殿物可為比原始沈澱反應混合物富含更多沈殿 物之相對潮濕的固體或漿料,視情況可將其中任一者提供 給經没計用於接收濃縮沈澱物之乾燥器(72〇)。可接收源自 c〇2之工業廢棄物來源之廢熱的乾燥器(如喷霧乾燥器22〇) 產生乾沈澱物或凝硬材料。 圖4亦說明進行揭示於上之各種方法的示範性系統 (2〇〇)。系統200包括直立塔(2〇5)、反應容n(21〇)、液_ 固分離器(215)及喷霧乾燥器(220)。系統200亦包括廢氣 來源(225)、含二價陽離子溶液來源(23〇)及質子去除劑來 源(235) 〇 如所示,直立塔205可填充有含金屬矽酸鹽材料 (240)。在某些具體實施例中,含金屬矽酸鹽材料(24〇)具 有約500微米或更小之粒徑。在某些具體實施例中,含 金屬矽酸鹽材料(240)佔據近直立塔(2〇5)底部%。如所示 般,直立塔(205)於其底部包括一用於接收含二價陽離子 溶液之液體入口(245)及一用於接收直接源自廢氣來源 (225)或喷霧乾燥器(220)之廢氣之氣體入口(25〇)。雖然未 顯示於圖4中,將暸解直立塔205及入口 245和250可 包括監測及控制直立塔(205)操作所需之裝置如閥、流量 計、溫度探針及pH探針等。同樣地’直立塔205在某些 具體實施例中可視情況適合進行機械撲動。 直立塔底部可經設計(如所示)而使含二價陽離子溶 液及含C〇2廢氣進入直立塔205底部並於其中混合(以形 成碳酸並降低pH)。在某些具體實施例中,直立塔(2〇5) 59 201016600 ί單m Hr陽離子溶液及含c〇2廢氣之混 液遇到含金屬石夕酸鹽材料咖之__化 子溶液。該混合單元可與直立塔(205)底部整:在= 可與其分開。不官特定組態(即整 = ==作,使已酸化之含二價陽離;二 材料240並消化—部分含金屬石夕酸 5m 形成1基材料漿料(視情況包含較小及/ 或未反應之含金屬矽酸鹽材料)。直立挞2〇5 料以與原始含二價陽離子擔液相同動: 向向上〜過直立塔2G5。直立塔2G5 ^ 出並使聚料離開該塔頂部。 輯孔排 自直立塔205排出之廢氣已經消耗至少部分起初 f於接收^氣來源⑽之廢氣中的叫氣體。c〇2經 ,之廢氣可直接排人大氣中,經進—步處理以去除 他剩餘組分或㈣收以用於該程序另—部分。在某些且 f實施例中,自直立塔2〇5排出之廢氣係已經消耗^ 濃度以及重金屬、重金屬化合物、微粒物質、硫化合物(如 s〇x)、氮化合物(如N〇x)及類似物中之一或多者的濃度。 已消化足量之含金屬矽酸鹽材料(240)後,以新鮮含 金屬石夕酸鹽材料240更換直立塔2〇5中之剩餘含金屬石夕 酸鹽材料(24G)。除了提供待^化之含金屬石夕酸鹽材料 24(^之新鮮進料以更換含金屬矽酸鹽材料(240)以可自直 立塔⑽)去除*料染物。在某些具體實關巾,未去 201016600 得沈澱物中並最後以填料形式摻 入凝硬材枓或水泥中。此外,當消化含金屬錢 240並縮減粒㈣,清洗含二價陽離子溶 移 出直立塔⑽)之填充床部分。因此,在即將完J = 前更換含金射酸鹽材料(24G)亦可解決此問題。為 續操作系統(200),可並聯使用多個直立塔(2〇5),其中當 部分直立塔(2G5)停止操作以進行補充並將其他^立二The G method 'includes the Castner-Kellner method' diaphragm electrolytic cell method and the thin film electrolytic cell method. By-products of the hydrolysate (e.g., %, nano metal) can be collected and used for other purposes. When (iv) a combination of proton filaments, the proton-removing agent can be utilized in any order. For example, 'di-ion-containing solutions can be tested at the heart of the addition of proton-removing agents (such as seawater) or through the addition of additional f-sub-removal agents to further test the proton-containing solution. In the examples, as described in additional detail below, c〇2 is added before or after. As described in additional detail below, the sinker may contain several mineral phases, and the different mineral phases produced by the coprecipitation procedure are suitable for producing precipitates containing, for example, carbonic acid 53 201016600 calcium and magnesium carbonate. The precipitation procedure is also suitable for producing a sinker comprising a single mineral phase, including but not limited to calcium carbonate, carbonic acid towns, carbonic acid towns (e.g., dolomite) or iron-carbon_salt. Different carbonate minerals can be followed by > New Zealand. For example, a cesium carbonate containing precipitate can be precipitated in a first set of precipitation conditions in a reactor, and a precipitate containing magnesium carbonate can be settled in the first set of conditions in the second reactor. In another non-limiting example, the magnesium carbonate-containing precipitate can be precipitated prior to precipitation of the calcium carbonate-containing precipitate. In some embodiments, the precipitation is suitable for producing a precipitate comprising one or more hydroxide phases (e.g., Ca(OH)2, Mg(〇H)2). The precipitate can be designed to produce a precipitate by any of the carbonate and hydroxide phases present in all or part of the amorphous beta step 120, optionally including the addition of a carbonate promoter to the precipitation reaction mixture. Examples of carbonate promoters include low concentrations of transition metals such as iron, #, nickel, manganese, zinc, chromium, copper, ruthenium, gold, platinum or silver. The addition of a sufficient amount of iron (e.g., ferric chloride) to the precipitation reaction mixture increases the concentration of iron in the precipitation reaction mixture to a range of from about 1 part per million (ppm) to about 5 ppm. For example, iron is suitable for promoting the formation of magnesium carbonate to form magnesium oxyhydroxide. When the term "accelerator" is used herein, it will be understood that = the rate of carbonate precipitation may not increase as much as the rate of inhibition of hydroxide precipitation. It may be before or after the addition of a proton-removing agent (or combination of proton-removing agents) At any point prior to precipitation, a carbonate promoter is added to the precipitation reaction mixture. Step 120 may optionally include the addition of additional reactants to the precipitation reaction mixture. For example, additional acid and proton-removing agents may be added to stabilize 1> 201016600. The appropriate acid and proton-removing agent transfer may result in the addition of divalent cations such as Ca2+ and Mg2+. In addition, the choice of a suitable acid and proton-removing agent may result in the addition of a supplementary anion such as C〇32- It can be used to increase the yield of carbonate-containing precipitates. In some embodiments, the transition metal strikes, such as nickel, to form a larger age during the immersion procedure. In some embodiments, alternating Performing a co2 gastric bubble blowing through the precipitation reaction mixture and adding a proton-removing agent (such as a soluble hydroxide such as potassium hydroxide (KOH) or sodium hydroxide (Na) 〇H)), the pH is cycled between pH 7 and pH 10.5. In some embodiments, the precipitation reaction mixture containing the carbonate-containing precipitate is treated in a step to separate the carbonated product from the precipitation reaction mixture. The salt precipitate leaves a supernatant which may contain unused divalent cations. This liquid-solid separation may be achieved, for example, by flocculation and/or sedimentation of the precipitate in a settling tank. The solid separation separation can also be achieved by a liquid-solid separation technique such as centrifugation. The specific implementation of the ruthenium-based material derived from the distillation of the metal-containing silicate material is not separated from the divalent cation-containing solution (ie, step 140 is not performed). In the example, the "precipitate" produces a mixture of the ground material and the carbonate (such as magnesium carbonate, calcium carbonate). Step 12: may also include separating the killing mixture from the precipitation reaction mixture (ie, the precipitate containing the stone and carbonate) In step 130, the pozzolanic material is made from the material prepared according to the method of Figure 2. In some embodiments, the Si(R) 2 and carbonate containing temples are dried together to form a pozzolanic material. In some embodiments When the ruthenium-based material is separated from the divalent cation-containing solution (option 55, 201016600 14 〇 as appropriate) 'each dry bismuth-based material and carbonate-containing precipitate, and then mix them to form a condensed material. In some implementations In one embodiment, the bismuth-based material and the carbonate-containing precipitate are mixed when either or both of the materials are wet. In such embodiments, the subsequent wet-mixed material is then dried to produce a pozzolanic material. Washing any of these materials (such as Shishiji materials, carbonate-containing precipitates, cerium-containing and carbonate-containing precipitates, wet-mixed condensing materials) with water before drying. A drying of various materials (such as sediments) The method of wet mixing of the hardened material is spray drying. In some embodiments, the source of the exhaust gas (e.g., flue gas from a coal-fired power plant) is used to spray dry the precipitate or the base. Materials ° In certain embodiments, c〇2 derived from the same source of exhaust gas is then used to acidify the solution containing divalent cations (as in step 11()). The waste heat of the exhaust gas entering the sedimentation system at elevated temperatures can be advantageously recovered during spraying and drying, for example, as disclosed in U.S. Provisional Patent Application No. 61/057,173, filed on May 29, 2008. The full text of the content is incorporated herein by reference. The spray dried material can have a spherical or low aspect ratio shape and, in certain embodiments, the sized particles such that at least 90% of the particles are greater than about Å microns and less than about ι microns and have a surface area of about 〇. 〇 1 square meter / gram to about 2 square meters / gram. In some embodiments, the dry particles are sized such that at least 75% is between 1 and 10 microns or between 20 and 30 microns and has about 0.5 to 5 square meters per gram, such as 〇75 to 3 square meters / gram or 〇 9 to 2 square meters / gram of surface area. In some embodiments, the pozzolanic material is refined (i.e., treated) by 56 201016600 prior to subsequent use. Refining can include any of a variety of different refining experimental procedures. In some embodiments, the pozzolanic material is subjected to mechanical refining (e.g., grinding, grinding) to obtain a product having the desired physical properties (e.g., particle size, surface area, etc.). In some embodiments, the pozzolanic material is combined with a hydraulic cement (e.g., as a supplemental cementitious material, sand, aggregate, etc.). In some embodiments, one or more components are added to the pozzolanic material (eg, when the pozzolanic material is used as a cement) to produce a final product (such as concrete or plaster), wherein the components include (but Not limited to sand, aggregates and supplementary cementing materials. In certain embodiments, the curative materials produced by the methods disclosed herein are used as building materials. For use as a construction material, the pozzolanic material can be treated for use as a construction material or processed for existing construction of buildings (eg commercial, residential) and/or infrastructure (eg roads, bridges, wharves, dams, etc.) In the material. Such construction materials may be components of structural or non-structural components of such buildings and infrastructure. The additional benefit of using a pozzolanic material as a building material or in building materials is that the co2 used in the process (e.g., co2 from the exhaust stream) can be effectively clamped in the built environment. In some embodiments, the precipitation system of the present invention can be co-located with a building product manufacturer to co-locate the coagulating material into a building material. In some embodiments, the pozzolanic material is used to make aggregates. Such a sturdy material, its method of manufacture, and the use of the aggregates are described in US Patent Application Serial No. 12/475,378, the entire disclosure of which is hereby incorporated by reference. . 57 201016600 Figure 3 illustrates an exemplary system (700) for performing the various methods described above. The metal citrate processor 710 receives untreated metal-containing silicate material (240) 'which includes a size reduction unit for reducing the size of the metal-containing silicate material and digesting the crushed metal-containing silicate material Digester. The size reduction unit may comprise any of a variety of different crushing, grinding equipment (such as ball mills, jet mills, etc.) and select the ground metal containing tantalate material (eg, by means of a sieve, by a cyclone, etc.) Subsequent digestion. The digester is configured to receive the ground metal-containing crushed material and any other materials that may be suitable for digesting the metal-containing tantalate material, including but not limited to water and pH improvements. Agent (such as acid, proton remover, etc.). The processor additionally includes a filter, wherein the filter is designed to remove the stone and/or stone base material from the digested metal-containing material. Precipitation reaction with a metal citrate processor (71 〇) connection The granulator (210) is designed to receive the digested metal-containing sulphate material or a slurry or aqueous solution thereof. In addition, the precipitation reaction vessel (21〇) is designed to receive C〇2 (eg, hot or cold c〇2 derived from industrial waste sources containing c〇2) and any other reagents (eg, acid, proton-removing agents, Promoter), which is suitable for use in the manufacture of sinking confections and in the pozzolanic materials of the present invention. The Shen Dian reaction vessel can be adjusted and controlled by the other 60 °. For example, the chamber reaction vessel can have a temperature probe and a heating element' both of which can be used to control the temperature of the precipitation reaction mixture. The liquid-solid separator (215) as shown in Fig. 3 is connected to the reaction vessel (210) and is designed to receive the precipitation reaction mixture of the precipitation reaction vessel. The liquid-solid separator may be additionally designed to separate the precipitation reaction mixture into two streams comprising a supernatant and a sapphire 58 201016600. The resulting shovel may be a relatively moist solid or slurry richer than the original precipitation reaction mixture, and any one of them may be supplied to a dryer that is not used to receive the concentrated precipitate (72〇). ). A dryer (e.g., spray dryer 22) that can receive waste heat from an industrial waste source of c〇2 produces a dry precipitate or a hardened material. Figure 4 also illustrates an exemplary system (2A) for performing the various methods disclosed above. System 200 includes a vertical column (2〇5), a reaction volume n (21〇), a liquid-solid separator (215), and a spray dryer (220). System 200 also includes an exhaust gas source (225), a source of divalent cation solution (23 Å), and a source of proton-removing agent (235). As shown, vertical column 205 can be filled with a metal-containing silicate material (240). In some embodiments, the metal-containing silicate material (24 Å) has a particle size of about 500 microns or less. In some embodiments, the metal-containing silicate material (240) occupies the bottom portion of the near vertical tower (2〇5). As shown, the tower (205) includes at its bottom a liquid inlet (245) for receiving a solution containing divalent cations and a source for receiving directly from the source of exhaust gas (225) or spray dryer (220) The gas inlet of the exhaust gas (25 〇). Although not shown in Figure 4, it will be appreciated that the riser column 205 and inlets 245 and 250 can include devices such as valves, flow meters, temperature probes, pH probes, and the like that are required to monitor and control the operation of the upright column (205). Similarly, the 'upright tower 205' may be suitable for mechanical flapping in some embodiments. The bottom of the tower can be designed (as shown) to allow the divalent cation-containing solution and the C〇2-containing exhaust gas to enter and mix with the bottom of the vertical column 205 (to form carbonic acid and lower the pH). In some embodiments, the upright column (2〇5) 59 201016600 ί single m Hr cation solution and the mixture containing c 〇 2 exhaust gas encounter a solution containing a metal silicate material. The mixing unit can be integrated with the bottom of the tower (205): at = can be separated from it. Not specific configuration (ie, the whole = ==, so that the acidified contains divalent cation; the second material 240 and digested - part of the metal-containing oxalic acid 5m to form a 1 base material slurry (as appropriate, including smaller and / Or unreacted metal-containing silicate material). The erect 挞2〇5 material is the same as the original divalent cation-bearing liquid: upwards ~ over the vertical tower 2G5. The vertical tower 2G5 ^ out and the aggregate leaves the tower The exhaust gas discharged from the vertical column 205 has consumed at least a part of the gas originally received from the exhaust gas of the gas source (10). The exhaust gas can be directly discharged into the atmosphere and processed by the step-by-step process. In order to remove the remaining components or (4) for the other part of the procedure. In some and f embodiments, the exhaust gas discharged from the vertical tower 2〇5 has consumed a concentration and heavy metals, heavy metal compounds, particulate matter, Concentration of one or more of a sulfur compound (such as s〇x), a nitrogen compound (such as N〇x), and the like. After digesting a sufficient amount of the metal phthalate-containing material (240), the fresh metal-containing stone is used. The acid salt material 240 replaces the remaining metal-containing acid salt in the vertical tower 2〇5 Material (24G). In addition to providing the metal-containing silicate material 24 (the fresh feed to replace the metal ruthenium-containing material (240) to remove the * dye material from the vertical tower (10). Some specific solid towel, did not go to the 201016600 precipitate and finally into the solidified material or cement in the form of filler. In addition, when digesting the metal-containing money 240 and shrinking the particles (4), cleaning the divalent cations to remove the vertical tower (10)) The packed bed portion. Therefore, replacing the gold-containing acid salt material (24G) before J = is completed can also solve this problem. In order to continue the operating system (200), multiple vertical towers (2〇5) can be used in parallel, where part of the vertical tower (2G5) stops operating to supplement and the other two

❹ (205)移回線上時,含二_離子溶液及廢氣流係由一 ^ 立塔(205)切換至另一者。 如圖4中所說明般,接著將直立塔(2〇5)中所產生之 漿料移至反應容器210中。該漿料(例如)可藉由管線轉 換。將源自質子去除劑來源235之質子去除劑加入反應 谷器(210)之漿料中以提高漿料pH以產生含碳酸鹽(如碳 酸鈣、碳酸鎂)之沈澱物。在某些具體實施例中,沈澱物 將易隨矽基材料沈降在反應容器(210)底部。在某些具體 實施例中,質子去除劑存於溶液中時,質子去除劑溶液 可以泵浦送入反應容器(210)中。呈固體形式之質子去除 劑可藉由(例如)帶式輸送器加入。雖然未顯示於圖4中, 將瞭解反應容器(210)可包括監測及控制反應容器(210) 操作所需之裝置如閥、流量計、攪動器、混合器、溫度 探針及pH探針等。亦未顯示於圖4中者為一視情況選用 之酸來源’其(例如)可為一氣體(如二氧化碳,HC1)或存於 溶液之酸(如H2C03(aq)、HCl(aq))。該酸可用於平衡反應容 器(210)内之pH。 201016600 在某些具體實施例中,自反應容器(21〇)抽出含矽基 材料及碳酸鹽之沈澱物後,以液-固分離器(215)自沈澱反 應混合物中分離出沈澱物。示範性液-固分離器(215)包括 一水力旋風器。藉由液-固分離器(215)去除之液體(即上 /a液)可丟棄或用於其他工業程序中,包括作為逆滲透水 純化之輸入物。 如圖4中所說明般,喷霧乾燥器220接收源自煙道氣 來源(225)之熱廢氣且源自液_固分離器(215)之含矽基材 料及奴酸鹽(如碳酸舞、碳酸鎂)之沈殿物可在喷霧乾燥器 ❹ 220中乾燥以最佳化能量效率。在喷霧乾燥器22〇中經 源自煙道氣來源之廢熱乾燥之沈澱物形成具有受控粒 徑、縱橫比、岔度及表面積之細微粉末,該粉末可用作 凝硬粉末255。當廢氣之熱協助乾燥噴霧乾燥器22〇中 之沈澱物時,藉此亦可冷卻廢氣。較佳係可利用廢氣之 廢熱降低或甚至消除喷霧乾燥前對熱氣或某其他氣體之 需求。為可將已冷卻之廢氣導入直立塔(2〇5)中,可將喷 霧乾燥器220佈置在一密封室(未顯示)内以防離開喷霧u 乾燥器(220)之廢氣。 廢氣來源(225)在某些具體實施例中可為燃燒化石燃 料發電廠、精製廠或排放相較於大氣C〇2含量為較高c〇2 之廢氣的某其他工業程序’(例如)如2008年5月29曰申 請之美國臨時專利申請案第61/〇57,173號,將該案揭示内 各之全文以引用方式併入本文中。在某些具體實施例 中,此廢氣係藉由燃燒反應所產生並因此該廢氣攜帶燃 62 201016600 $反應之剩餘熱。若離廢氣來源(225)的距離廣闊,或廢 氣另外對嘴霧乾燥目的而言不夠熱,可將氣體加熱單元 (未顯不)置於廢氣來源(225)與喷霧乾燥器(220)之間以提 尚廢氣溫度。應瞭解除了藉由燃燒所產生之氧化廢氣 f ’可以還原氣體來源如合成氣、轉移合成氣、天然氣、 氯及類似物取代廢氣來源(225),只要該還原氣體包含 C〇2。其他適合之多組分氣流包括渦輪增壓式鍋爐產出氣 體、煤氣化產出氣體、轉移煤氣化產出氣體、厭氣消化槽 產出氣體、井口天然氣流、重組天然氣或甲烷水合物及類 似物。 在某些具體實施例中,含二價陽離子溶液來源(230) 可為可填充有海水、滷水或上述某其他含二價陽離子溶 液之貯留槽。該貯留槽容許如泥砂、砂、碎石及其他微 粒物質之污染物在將含二價陽離子溶液導入直立塔(205) 之刖沈降出含二價陽離子溶液。以可使用過濾器。 圖3顯示一可用於添加碳酸鹽促進劑至反應容器(21〇) 中之視情況選用的促進劑來源(31〇)。如上所討論般,示 範性碳酸鹽促進劑包括(但不限於)低濃度之過渡金屬如 鐵、銘、鎳、鐘、鋅、鉻、銅、鋇、金、鉑或銀。促進 劑來源(310)可包括一調節器(未顯示)以受控地釋放碳酸 鹽促進劑至反應容器(210)中。回饋系統(未顯示)可用於 測反應容器(210)中碳酸鹽促進劑的濃度並相應調整調 節器。 圖6顯示一佈置在直立塔(2〇5)與反應容器(21〇)間之 63 201016600 視情況選用的液-固分離器(410)。液-固分離器(410)接收 源自直立塔之漿料’自含二價陽離子溶液中分離出矽基 材料(如矽石、未反應或未消化之矽酸鹽等)並將含二價陽 離子溶液導入反應容器(210)中。有時將自液-固分離器 (410)移出之矽基材料稱為濕餅。亦顯示於圖6中者為用 於清洗矽基材料之清洗器420,該清洗器接收洗滌水及 源自液-固分離器(410)之矽基材料。清洗器(42〇)去除可 溶鹽以產生已經清洗之矽基材料及用過之洗滌水。然後 乾燥自清洗器(420)移出之矽基材料以產生一細微矽基粉 末。在某些具體實施例中’將液-固分離器(41〇)及清洗器 (420)組合成單一單元。將瞭解清洗器(42〇)亦可包含在系 統(200)中以在噴霧乾燥器(220)之前接收及清洗源自液· 固分離器(410)之含碳酸鹽及矽基材料之沈澱物。 圖7說明系統200,其中第二反應容器(510)接收液_ 固分離器(215)之上澄液及源自質子去除劑來源(235)之 額外質子去除劑。在此具體實施例中,反應容器(21〇)之 條件係受控制以產生第一含碳酸鹽沈澱物,該沈澱物係 在液-固分離器(215)中與沈澱反應混合物分離。(例如)藉 由源自質子去除劑來源(235)之額外質子去除劑的添加而 使液-固分離器(215)之上澄液變得更鹼以形成第二含碳 酸鹽沈澱物。然後在第二液-固分離器(52〇)中自沈澱反應 混合物分離出第二沈澱物。如圖6般,可分開清洗第一 及第二含碳酸鹽沈澱物,然後各別喷霧乾燥之以產生兩 種細微粉末。此等粉末然後與矽基材料粉末(圖6)混合以 201016600 產生凝硬材料。在某些具體實施例中,第一含碳酸鹽洗 澱物包含碳酸轉,第二含碳酸鹽沈澱物包含碳酸鎂,而 在其他具體實施例中’第-含碳酸鹽沈殿物包含 鎂’第二含碳酸鹽沈澱物包含碳酸舞。 將瞭解可將碳酸鹽促進劑加人圖5所說明之反 器(210、510)中任-者或兩者。當將碳酸鹽促進劑加 反應容器⑽、510)中時,可使用不同碳酸鹽促進劑或可 使用不同濃度之相同碳酸鹽促進劑。另外,雖然圖 ’示第二反應容即1G)接㈣於反絲^训之質子去除 劑來源(235)的質子去除劑,但在某些具體實施例中第 . 二反應容器⑽)接收源自第二質子去除劑來源之不同質 子去除劑。此外’在某些具體實施例中,使第二反應容 器(510)中所接收之上澄液更酸而非更驗以產生第二含碳 酸鹽沈澱物。如上,酸化可藉與含叫氣流接觸或藉由 酸性溶液或可溶固態酸之添加而達到。此外,除了或替 代地在反應容器⑽、510)中保持不同阳值及利用 ® 碳酸鹽促進劑,其他條件如溫度、壓力、特定晶種之存 在等皆可改變而使不同含碳酸鹽沈殿物形成於 器(210、510)中。 | 組成物及最終產物 ,發:月沈;殿物可包含由共沈澱所產生之若干碳酸鹽及 /或右干*酸鹽雜相’其中該沈雜可包含(例如)碳酸舞 (如方解石)以及奴酸鐵(如三水碳鎂石)。沈殿物亦可於包 65 201016600 含單-碳酸鹽於單一礦物相中,包括(但不限於)碳酸舞(如 方解石)、碳酸鎂(如三水碳鎂石)、碳酸賴(如白雲石)或 鐵-碳-鋁矽酸鹽。不同碳酸鹽依序沈澱時,視獲得沈澱物 之條件而定,該沈澱物可為相對富含(如9〇%至95%)或實 質上富含(如95%至99.9%)—碳酸鹽及/或一礦物相,或沈 澱物可包含一定量之其他碳酸鹽及/或其他一或多個礦物 相,其中所需礦物相係佔沈殿物之5〇_9〇()/。。將瞭解在某 些具體實施例中,沈澱物除了碳酸鹽之外可包含一或多種 氫氧化物(如Ca(0H)2、Mg(0H)2)。亦應瞭解沈澱物中所存❹ 在之任何碳酸鹽或氫氧化物可為完全或部分非晶質。在某 些具體實施例中,碳酸鹽及/或氫氧化物為完全非晶質。 由於起始物之變化性而可能有許多不同含碳鹽及化合 物時,含碳酸鎂、碳酸鈣或其組合之沈澱物係特別適用 的。在某些具體實施例中,沈殿物包含白雲石 (CaMg(C03)2)、原白雲石、碳鈣鎂礦(CaMg3(c〇3)4)及/ 或水碳鎂鈣石(Ca2Mgu(c〇3)irH2〇),其係含鈣及鎂之碳 酸鹽礦物。在某些具體實施例中,沈澱物包含碳酸鈣於一❹ 或多個選自方解石、霰石、六方方解石或其組合之相中。 在某些具體實施例中,沈澱物包含選自以下各者之碳酸鈣 水合形式物:六水碳鈣石(CaC〇3.6H2〇)、非晶質碳酸鈣 (CaCOrnH2〇)、一水方解石(CaC〇3.H2〇)或其組合。在某 些具體實施例中,沈澱物包含碳酸鎂,其中碳酸鎂不具水 合水。在某些具體實施例中,沈澱物包含碳酸鎂,其中碳 酸鎂可具有選自1、2、3、4或超過4個水合水之許多不 66 201016600 同水合水中任一者。在某些具體實施例中,沈澱物包含l、 2、3、4或超過4個之不同碳酸鎂相’其中該等碳酸鎂相 知不同處在於水合水的數目。例如,沈澱物可包含菱鎂礦 (MgC03)、水碳鎂石(MgC03.2H20)、三水碳鎂石 (MgC03.3H20)、五水菱鎂礦(MgC03.5H20)及非晶質碳酸 鎂。在某些具體實施例中,沈澱物包括含有氫氧化物及水❹ (205) When moving back to the line, the binary-containing solution and the exhaust gas stream are switched from one column (205) to the other. As illustrated in Figure 4, the slurry produced in the upright column (2〇5) is then transferred to the reaction vessel 210. The slurry, for example, can be converted by a pipeline. A proton-removing agent derived from proton-removing agent source 235 is added to the slurry of the reaction vessel (210) to raise the pH of the slurry to produce a precipitate containing carbonates such as calcium carbonate, magnesium carbonate. In some embodiments, the precipitate will readily settle with the base material at the bottom of the reaction vessel (210). In some embodiments, the proton-removing agent solution can be pumped into the reaction vessel (210) when the proton-removing agent is present in the solution. The proton-removing agent in solid form can be added by, for example, a belt conveyor. Although not shown in Figure 4, it will be appreciated that the reaction vessel (210) can include devices required to monitor and control the operation of the reaction vessel (210) such as valves, flow meters, agitators, mixers, temperature probes, pH probes, and the like. . Also not shown in Figure 4 is the source of acid selected as the case - which may, for example, be a gas (e.g., carbon dioxide, HCl) or an acid (e.g., H2C03 (aq), HCl (aq)). The acid can be used to balance the pH within the reaction vessel (210). 201016600 In some embodiments, the precipitate containing the sulfhydryl-based material and the carbonate is withdrawn from the reaction vessel (21 Torr) and the precipitate is separated from the precipitation reaction mixture by a liquid-solid separator (215). An exemplary liquid-solid separator (215) includes a hydrocyclone. The liquid removed by the liquid-solid separator (215) (i.e., the /a liquid) can be discarded or used in other industrial processes, including as an input to the reverse osmosis water purification. As illustrated in Figure 4, the spray dryer 220 receives the hot exhaust gas from the flue gas source (225) and the cerium-containing material derived from the liquid-solid separator (215) and the sulphonate (such as the carbonic acid dance). The magnesia of magnesium carbonate can be dried in a spray dryer crucible 220 to optimize energy efficiency. The waste heat-dried precipitate derived from the flue gas source in the spray dryer 22 is formed into a fine powder having a controlled particle diameter, aspect ratio, twist and surface area, and the powder can be used as the hardened powder 255. When the heat of the exhaust gas assists in drying the precipitate in the spray dryer 22, it is also possible to cool the exhaust gas. It is preferred to utilize the waste heat of the exhaust gas to reduce or even eliminate the need for hot gases or some other gas prior to spray drying. In order to introduce the cooled exhaust gas into the vertical column (2〇5), the spray dryer 220 can be placed in a sealed chamber (not shown) to prevent the exhaust gas leaving the spray u dryer (220). The source of exhaust gas (225) may, in certain embodiments, be a fossil fuel power plant, a refinery, or some other industrial process that emits exhaust gas having a higher C〇2 content than the atmospheric C〇2 (for example) U.S. Provisional Patent Application Serial No. 61/57,173, filed on May 29, 2008, the entire disclosure of which is incorporated herein by reference. In some embodiments, the exhaust gas is produced by a combustion reaction and thus the exhaust gas carries the remaining heat of the reaction. If the distance from the exhaust gas source (225) is wide, or the exhaust gas is not sufficiently hot for the purpose of mist drying, the gas heating unit (not shown) may be placed in the exhaust gas source (225) and the spray dryer (220). To increase the temperature of the exhaust gas. It should be understood that in addition to the oxidizing off-gas f' produced by combustion, a source of reducing gas such as syngas, shifted syngas, natural gas, chlorine, and the like may be substituted for the exhaust gas source (225) as long as the reducing gas contains C?2. Other suitable multi-component gas streams include turbocharged boiler produced gas, coal gasification produced gas, transferred coal gasification produced gas, anaerobic digestion tank produced gas, wellhead natural gas stream, recombined natural gas or methane hydrate, and the like Things. In some embodiments, the divalent cation-containing solution source (230) can be a storage tank that can be filled with seawater, brine, or some other divalent cation-containing solution as described above. The storage tank allows contaminants such as mud, sand, gravel and other particulate matter to settle out of the divalent cation solution after introducing the divalent cation solution into the vertical column (205). To use the filter. Figure 3 shows a source of promoter (31) which may optionally be used in the addition of a carbonate promoter to a reaction vessel (21 Torr). As discussed above, exemplary carbonate promoters include, but are not limited to, low concentrations of transition metals such as iron, indium, nickel, bell, zinc, chromium, copper, ruthenium, gold, platinum or silver. The promoter source (310) can include a regulator (not shown) to controllably release the carbonate promoter into the reaction vessel (210). A feedback system (not shown) can be used to measure the concentration of carbonate promoter in the reaction vessel (210) and adjust the regulator accordingly. Figure 6 shows a liquid-solid separator (410) optionally disposed between the vertical column (2〇5) and the reaction vessel (21〇). The liquid-solid separator (410) receives the slurry from the vertical column, and separates the ruthenium-based material (such as vermiculite, unreacted or undigested citrate, etc.) from the divalent cation-containing solution and contains divalent The cation solution is introduced into the reaction vessel (210). The base material from which the liquid-solid separator (410) is removed is sometimes referred to as a wet cake. Also shown in Figure 6 is a washer 420 for cleaning a ruthenium-based material that receives wash water and a ruthenium-based material derived from a liquid-solid separator (410). The cleaner (42 〇) removes the soluble salts to produce the ruthenium-based material that has been cleaned and the used wash water. The ruthenium-based material removed from the cleaner (420) is then dried to produce a fine ruthenium-based powder. In some embodiments, the liquid-solid separator (41〇) and the washer (420) are combined into a single unit. It will be appreciated that the scrubber (42〇) may also be included in the system (200) to receive and clean the precipitate of carbonate- and rhodium-based materials from the liquid-solid separator (410) prior to the spray dryer (220). . Figure 7 illustrates a system 200 in which a second reaction vessel (510) receives a liquid from a liquid-solid separator (215) and an additional proton-removing agent derived from a proton-removing agent source (235). In this embodiment, the conditions of the reaction vessel (21 Torr) are controlled to produce a first carbonate-containing precipitate which is separated from the precipitation reaction mixture in a liquid-solid separator (215). The clear liquid above the liquid-solid separator (215) is made more base, for example, by the addition of an additional proton-removing agent derived from the proton-removing agent source (235) to form a second carbonate-containing precipitate. The second precipitate was then separated from the precipitation reaction mixture in a second liquid-solid separator (52 Torr). As in Figure 6, the first and second carbonate-containing precipitates can be separately cleaned and then separately spray dried to produce two fine powders. These powders are then mixed with a cerium-based material powder (Fig. 6) to produce a pozzolanic material at 201016600. In some embodiments, the first carbonate-containing wash comprises carbonic acid, the second carbonate-containing precipitate comprises magnesium carbonate, and in other embodiments the 'carbonate-containing precipitate contains magnesium' The two carbonate-containing precipitates contain a carbonic acid dance. It will be appreciated that the carbonate promoter can be added to either or both of the reactors (210, 510) illustrated in Figure 5. When a carbonate promoter is added to the reaction vessel (10), 510), different carbonate promoters may be used or different concentrations of the same carbonate promoter may be used. In addition, although the figure 'shows that the second reaction capacity is 1G) (4) is the proton-removing agent of the proton-removing agent source (235) of the anti-wire, but in some embodiments the second reaction vessel (10) receives the source. Different proton-removing agents from the source of the second proton-removing agent. Further, in some embodiments, the supernatant received in the second reaction vessel (510) is made more acidic rather than more tested to produce a second carbonate precipitate. As above, the acidification can be achieved by contact with a gas stream or by addition of an acidic solution or a soluble solid acid. In addition, in addition to or instead of maintaining different positive values in the reaction vessels (10), 510) and utilizing the ® carbonate promoter, other conditions such as temperature, pressure, presence of specific seed crystals, etc. may be varied to allow for different carbonate-containing sediments. Formed in the device (210, 510). The composition and the final product, hair: monthly sink; the temple may contain several carbonates and/or right stems* acid phase produced by coprecipitation, wherein the impurities may include, for example, carbonaceous dances (such as calcite) ) and iron bismuth (such as trihydrate). Shen Dianwu can also be included in the package 65 201016600 containing mono-carbonate in a single mineral phase, including (but not limited to) carbonate dance (such as calcite), magnesium carbonate (such as trihydrate), carbonated (such as dolomite) Or iron-carbon-aluminum citrate. When different carbonates are precipitated in sequence, depending on the conditions for obtaining the precipitate, the precipitate may be relatively rich (e.g., 9% to 95%) or substantially rich (e.g., 95% to 99.9%) - carbonate And/or a mineral phase, or a precipitate may comprise a certain amount of other carbonates and/or one or more other mineral phases, wherein the desired mineral phase is 5 〇 〇 9 〇 () / of the sediment. . It will be appreciated that in certain embodiments, the precipitate may comprise one or more hydroxides (e.g., Ca(0H)2, Mg(0H)2) in addition to the carbonate. It should also be understood that any carbonate or hydroxide present in the precipitate may be completely or partially amorphous. In some embodiments, the carbonate and/or hydroxide are completely amorphous. Precipitates containing magnesium carbonate, calcium carbonate or combinations thereof are particularly useful when there are many different carbonaceous salts and compounds that may be present due to variability in the starting materials. In some embodiments, the shoal contains dolomite (CaMg(C03)2), primary dolomite, carbon calcium magnesium (CaMg3(c〇3)4), and/or hydrocalcium (Ca2Mgu(c) 〇3) irH2〇), which is a carbonate mineral containing calcium and magnesium. In certain embodiments, the precipitate comprises calcium carbonate in one or more phases selected from the group consisting of calcite, vermiculite, hexagonal calcite, or combinations thereof. In certain embodiments, the precipitate comprises a calcium carbonate hydrated form selected from the group consisting of: hydrated carbohydrate (CaC〇3.6H2〇), amorphous calcium carbonate (CaCOrnH2〇), and water-based calcite ( CaC〇3.H2〇) or a combination thereof. In some embodiments, the precipitate comprises magnesium carbonate, wherein the magnesium carbonate does not have hydrated water. In certain embodiments, the precipitate comprises magnesium carbonate, wherein the magnesium carbonate can have any of a number of non-66 201016600 hydration waters selected from 1, 2, 3, 4 or more than 4 hydrated waters. In some embodiments, the precipitate comprises 1, 2, 3, 4 or more than 4 different magnesium carbonate phases wherein the magnesium carbonates are known to differ in the number of water of hydration. For example, the precipitate may comprise magnesite (MgC03), hydrocarbite (MgC03.2H20), tripite (MgC03.3H20), pentahydrate magnesite (MgC03.5H20), and amorphous magnesium carbonate. . In some embodiments, the precipitate comprises hydroxide and water

合水之鎂碳酸鹽如水纖菱鎂礦(MgC03.Mg(OH)2.3H2〇)、 水菱鎂礦(Mg5(C〇3)4(OH)r3(H20)或其組合。照此,沈澱 物可包含所有或部分本文所列各種水合狀態之妈、鎂或其 組合的碳酸鹽。沈澱速率亦可影響沈澱物之本質,其中最 快速之沈澱速率係藉以所需相植晶溶液而達到。若無植 晶,快速沈澱可藉(例如)快速增加沈澱反應混合物之 而達到,其產生較非晶質之組成。此外,pH愈高,沈殿 愈快’沈澱則產生愈非晶質之沈澱物。 ’ 沈澱期間調整主要離子比例可影響沈澱物之本質。主 要離子比例對多晶型物的形成有顯著影響。例如,隨水 鎮:飼比狀增加’霞錢於傾謂^成為沈澱物 酸約之主要多晶型物。在低鎂:舰例下,低鎂方解 為主要多晶型物。在某些具體實施例+,Ca2+及 在時’沈殿物中Ca、Mg2+之比例(即⑽ 白子 1 至 1:⑻:2.5 至"515 至…〇;二 25,1.25至1:50;1:5〇至1:1〇〇;1:1〇〇至 1:15〇^1:200;1:2〇〇^1:25〇;1:25〇^1:5〇〇〇; 或1,_至1:1_。在某些具體實施例中,沈殿物中 67 201016600A magnesium carbonate such as hydrous magnesite (MgC03.Mg(OH)2.3H2〇), hydromagnesite (Mg5(C〇3)4(OH)r3(H20) or a combination thereof. As such, precipitation The carbonate may comprise all or part of the carbonates of the various hydrated states, magnesium or combinations thereof as listed herein. The rate of precipitation may also affect the nature of the precipitate, with the fastest rate of precipitation being achieved by the desired phase crystallization solution. If there is no phytocrystal, rapid precipitation can be achieved, for example, by rapidly increasing the precipitation reaction mixture, which produces a relatively amorphous composition. In addition, the higher the pH, the faster the sag is, and the precipitate forms a more amorphous precipitate. The adjustment of the main ion ratio during precipitation can affect the nature of the precipitate. The ratio of the main ions has a significant effect on the formation of polymorphs. For example, with the water town: the feed ratio increases, 'Xia Qian Yu is the first thing to become a precipitated acid. The main polymorphs. In the case of low magnesium: ship, the low magnesium solution is the main polymorph. In some specific examples +, Ca2+ and the ratio of Ca and Mg2+ in the 'sinking chamber' (ie (10) Whites 1 to 1: (8): 2.5 to "515 to...〇; two 25, 1.25 to 1:50; 1:5 〇 to 1:1〇〇; 1:1〇〇 to 1:15〇^1:200; 1:2〇〇^1:25〇; 1:25〇^1:5〇〇〇; or 1,_ To 1:1_. In some embodiments, the sink is 67 201016600

Mg2+對 Ca2+之比例(即 Mg2+ : Ca2+)為 1 : 1 至 i : 2 5 ; i : 2·5 至 1 : 5 ; 1 : 5 至 1 : 10 ; 1 : 10 至 1 : 25 ; 1 : 25 至 1 : 50 ; 1 : 50 至 i : loo ; 1 : loo 至 i : 150 ; 1 : 15〇 至 i : 200 ; 1 : 200 至 1 : 250 ; 1 : 250 至 1 : 500 ;或 1 : 5〇〇 至 1 ·· 1000 〇 包含—或多種衍生自工業C〇2之合成碳酸鹽之沈澱物 反映(由燃燒石化燃料)獲得工業c〇2之化石燃料(如煤、 油、天然氣或煙道氣)的相對碳同位素組成(&3C)。單位為 %〇(每千板呎(per mille))之相對碳同位素組成(5nc)值係兩 ❹ 穩定碳同位素,即12C和13C相對於石化箭石標準品(PDb 標準品)之濃度比的量度。 . δ C%〇=[(13c/12c 樣品-13C/12CPDB #準品)/13C/12CPDB 標準品]xio。 照此,含合成碳酸鹽沈澱物的S13C值係用作c〇2氣體 來源之指紋。δ130值可因來源(即化石燃料來源)不同而 變’但本發明組成物之513c值一般(但非必然)在_9%〇至 -35%。之範圍内。在某些具體實施例中,含合成碳酸鹽之 沈澱物的δ13(:值係在-1%。與-50%。之間、在-5%。與-40%。之 〇 間、在-590。與-3596。之間、在-7%。與-40%。之間、在-7%〇與 -3596。之間、在-9%。與-40%。之間或在-9%。與-35%。之間。在 某些具體實施例中,含合成碳酸鹽之沈澱物的δ13(:值係小 於(即更負於)-3%。、-596。、-6%〇、_7%〇、-8%〇、-9%。、-10%〇、 -11%〇、-12%〇、-13%〇、-14%〇、-15%〇、-16%〇、-17%〇、-18%〇、 -1996。、-2096ο、_21%。、-22%〇、-23%〇、-24%〇、-25%〇、-26%。、 -27%〇、-28%〇、-29%〇、-30%〇、-31%〇、_32%〇、-33%〇、-34%〇、 68 201016600 -3596〇、-3696〇、-37%〇、-38%〇、_39%〇、-40%〇、一41%〇、-42%〇、 -43%〇、-44%。或-45%〇,其中更負之δ13(:值,含合成碳酸鹽 組成物更富含12C。任何適合方法皆可用於測量s13C值, 該等方法包括(但不限於)質量光譜法或離軸積分腔輸出光 譜法(離軸ICOS)。 除了沈澱反應之含錢及含飼產物之外,含有石夕、鋁、 鐵及其他物之化合物及材料亦可以本發明方法及系統製 得並摻入沈澱物内。此類化合物沈澱於沈殿物中可能希望 改變含有該程序所產生之沈澱物之水泥的反應性或改變 由其所製成之固化水泥及混凝土的性質。將含金屬梦酸鹽 材料加入沈澱反應混合物中作為此等組分之一來源以產 生含碳酸鹽沈澱物,該沈澱物包含一或多種組分,如非晶 質矽石、非晶質鋁矽酸鹽、晶質矽石、鈣矽酸鹽、鈣鋁石夕 酸鹽等。在某些具體實施例中,沈澱物包含下列碳酸鹽: 矽石比例之碳酸鹽(如碳酸鈣、碳酸鎂)及矽石:1 : 1至i : 1.5 ; 1 : 1.5 至 1 : 2 ; 1 : 2 至 1 : 2.5 ; 1 : 2.5 至 1 : 3 ; 1 : 3 至 1 : 3.5 ; 1 : 3.5 至 1 : 4 ; 1 : 4 至 1 : 4.5 ; 1 : 4.5 至 1 : 5 ; 1 : 5 至 1 : 7.5 ; 1 : 7.5 至 1 : 10 ; 1 : 10 至 1 : 15 ; $ 1 : 15至1 : 20。在某些具體實施例中,沈殿物包含下列 矽石:碳酸鹽比例之矽石及碳酸鹽(如碳酸鈣、碳酸鎂):j : 1 至 1 : 1.5 ; 1 : 1.5 至 1 : 2 ; 1 : 2 至 1 : 2.5 ; 1 : 2.5 至1: 3 ; 1 : 3 至 1 : 3.5 ; 1 : 3.5 至 1 : 4 ; 1 : 4 至 1 : 4.5 ; 1 : 4.5 至 1 : 5 ; 1 : 5 至 1 : 7.5 ; 1 ·· 7.5 至 1 : 1〇 ; 1 : 1〇 j 1 : 15 ;或1 : 15至1 : 20。一般而言,藉由本發明方法所 69 201016600 製成之沈澱物包含石夕基材料及至少一個碳酸鹽相之混合 物。一般而言,反應速率愈快者,愈多石夕石摻入含碳酸鹽 沈澱物中,假若矽石係存在於沈澱反應混合物中(即假若 未在消化含金屬矽酸鹽材料之後去除矽石)。 沈澱物可呈儲存穩定形式(其可簡單地為乾沈殿物)並 可在暴露條件(即開放至大氣)下儲存於地上而無顯著(若 有)降解達-較長時間,如i年或更長、5年或更長、⑺ 年或更長、25年或更長、50年或更長、1〇〇年或更長、25〇 年或更長、顧年或更長、1G,_年或更長、1,_,_ ❹ 年或更長’或甚至1〇0,_,_年或更長。當儲存穩定形 式之沈澱物經過些微(若有)降解並在正常雨水下儲存 於地上時,(若有)如依據自產物所釋放之C〇2氣體所量得 之降解量每年將不超過5%,且在特定具體實施例中每年 將不超過1%。地上儲存穩定形式之沈澱物在多種不同環 境條件下’如範圍從-l〇(TC至6〇〇°c之溫度及範圍從〇至 100%之渥度下係穩定的,其中該等條件可為無風、多風 或暴風雨。多種適合方法中任一者皆可用於測試沈殿物之❹ 穩定性,包括物理測試方法及化學測試方法,其中噹等方 法係適合用於決定沈澱物中之化合物類似於或等^於已 知具有上列穩定性之自然發生的化合物(如石灰石)。、 如上述般’用於鉗合C〇2於一長時間穩定(地質年代表 之形式的含碳酸鹽沈澱物可長_存。若需達到—碳酸辦 對石夕石之特定比例’沈澱物亦可與石夕基材料(如源自含金 屬矽酸鹽材料消化後所分離之矽基材料;市售Si02等)混 201016600 e ❿ 合以形成凝硬材料。本發明凝硬材料切 料,其在與驗如氫氧简(Ca(0H)2)組合時藉由形成^酸 鹽及其他縣材_呈郷雜fSi()2材料如火山 灰、飛灰、魏、高反應性偏高獻及高爐石 物可用於純本發日錢硬㈣㈣實施例中, 本發明凝硬材料係經〇.5%至10%、10%至2 〇%、2收 至4.0%、4.0%至6.0%、6.0%至8.〇%、8〇0/〇至1〇〇%1〇^ 至 15.0〇/〇、15.0〇/〇至 20.0%、20.0%至 3〇 〇%、3〇〇%至 40.0%、4退至50.0%或其重疊範圍之含叫材料強化。 -般而言’凝硬材料具有較低雜之喷霧乾燥材料(如 沈澱物、祕㈣、凝硬㈣等),藉由㈣乾燥可 -致粒徑(㈣霧乾騎料可具有相對f之粒徑分布)。照 此’在某些具體實施例中,至少5G%、6g%、7()%、8〇%、、、 90%、95%、97%或99%之喷霧乾騎料係落在既定 粒徑之±10微米内、±20微米内、±3〇微米内、土4〇微米 内、±50微米内、±75微米内、±1〇〇微米内或士25〇微米 内。在某些具體實施例中’既定平均粒徑係在5盘5⑻ 微来之間。在S些具體實_中’既定平均粒徑係在5〇 與250微米之間。在某些具體實施例中,既定平均粒後 係在100與200微米之間。例如,在某些具體實施例中, 至少70%之喷霧乾燥材料係落在既定平均粒徑之士%微 米内,其中既定平均粒徑係在5與5〇〇微米之間,如在 50與250微米之間或在1〇〇與2〇〇微米之間。 相較於一般波特蘭水泥之性質,但在富含石灰之介質 201016600 像氫氧化鈣的存在下,其顯示較佳膠結性質而有助於後 來的強度(>28天)。凝硬反應可慢於水泥水合期間所發生 之剩餘反應’並因此包含本發明凝硬材料之混凝土之短期 強度可不如以純膠結材料製成之混凝土高。此顯示強度之The ratio of Mg2+ to Ca2+ (ie, Mg2+: Ca2+) is 1:1 to i: 2 5 ; i : 2·5 to 1: 5 ; 1 : 5 to 1: 10 ; 1 : 10 to 1: 25 ; 1 : 25 To 1: 50 ; 1 : 50 to i : loo ; 1 : loo to i : 150 ; 1 : 15 to i : 200 ; 1 : 200 to 1: 250 ; 1 : 250 to 1: 500 ; or 1: 5 〇〇 to 1 ·· 1000 〇 Contains – or a plurality of precipitates derived from synthetic carbonates of industrial C〇2 reflecting (by burning fossil fuels) obtaining industrial c〇2 fossil fuels (such as coal, oil, natural gas or flue) Relative carbon isotope composition of gas (&3C). The relative carbon isotope composition (5nc) value in units of %〇 (per mille) is two stable carbon isotope, ie the concentration ratio of 12C and 13C to the petrochemical stone standard (PDb standard). Measure. δ C%〇=[(13c/12c sample-13C/12CPDB #准品)/13C/12CPDB standard]xio. As such, the S13C value of the synthetic carbonate precipitate is used as the fingerprint of the c〇2 gas source. The value of δ 130 may vary depending on the source (i.e., fossil fuel source). However, the value of 513c of the composition of the present invention is generally (but not necessarily) from _9% to -35%. Within the scope. In certain embodiments, the δ13 of the precipitate containing the synthetic carbonate (the value is between -1% and -50%, between -5% and -40%. Between 590 and -596, between -7% and -40%, between -7% and -3,596, between -9% and -40%, or between -9 Between % and -35%. In some embodiments, the δ13 of the precipitate containing the synthetic carbonate (: value is less than (ie more negative) - 3%., -596., -6% 〇, _7% 〇, -8% 〇, -9%., -10% 〇, -11% 〇, -12% 〇, -13% 〇, -14% 〇, -15% 〇, -16% 〇 , -17% 〇, -18% 〇, -1996., -2096ο, _21%, -22% 〇, -23% 〇, -24% 〇, -25% 〇, -26%., -27% 〇, -28% 〇, -29% 〇, -30% 〇, -31% 〇, _32% 〇, -33% 〇, -34% 〇, 68 201016600 -3596〇, -3696〇, -37%〇 , -38% 〇, _39% 〇, -40% 〇, a 41% 〇, -42% 〇, -43% 〇, -44%, or -45% 〇, which is more negative δ13 (: value, including The synthetic carbonate composition is more enriched in 12 C. Any suitable method can be used to measure the s13C value, including but not limited to mass spectrometry or off-axis product. Sub-cavity output spectroscopy (off-axis ICOS). In addition to the cash and feed products of the precipitation reaction, compounds and materials containing Shixi, aluminum, iron and others can also be prepared and incorporated by the method and system of the present invention. Within the sediment. Precipitation of such compounds in the sink may wish to alter the reactivity of the cement containing the precipitate produced by the procedure or to alter the properties of the cured cement and concrete made therefrom. Adding to the precipitation reaction mixture as a source of one of these components to produce a carbonate-containing precipitate comprising one or more components, such as amorphous vermiculite, amorphous aluminosilicate, crystalline vermiculite Calcium silicate, mayenite, etc. In some embodiments, the precipitate comprises the following carbonates: a proportion of vermiculite carbonate (such as calcium carbonate, magnesium carbonate) and vermiculite: 1:1 To i : 1.5 ; 1 : 1.5 to 1: 2 ; 1 : 2 to 1: 2.5 ; 1 : 2.5 to 1: 3 ; 1 : 3 to 1: 3.5 ; 1 : 3.5 to 1: 4 ; 1 : 4 to 1 : 4.5 ; 1 : 4.5 to 1: 5 ; 1 : 5 to 1: 7.5 ; 1 : 7.5 to 1: 10 ; 1 : 10 to 1: 15 ; $ 1 : 15 to 1: 20. In some embodiments, the sediment comprises the following vermiculite: carbonate in proportion to carbonate and carbonate (such as calcium carbonate, magnesium carbonate): j: 1 to 1: 1.5; 1 : 1.5 To 1: 2 ; 1 : 2 to 1: 2.5 ; 1 : 2.5 to 1: 3 ; 1 : 3 to 1: 3.5 ; 1 : 3.5 to 1: 4 ; 1 : 4 to 1: 4.5 ; 1 : 4.5 to 1 : 5 ; 1 : 5 to 1: 7.5 ; 1 ·· 7.5 to 1: 1〇; 1 : 1〇j 1 : 15 ; or 1: 15 to 1: 20. In general, the precipitate made by the method of the present invention, 69 201016600, comprises a mixture of a stone base material and at least one carbonate phase. In general, the faster the reaction rate, the more the stone is incorporated into the carbonate-containing precipitate, if the vermiculite is present in the precipitation reaction mixture (ie, if the meteorite is not removed after digesting the metal-containing silicate material) ). The precipitate may be in a storage stable form (which may simply be a dry substrate) and may be stored on the ground under exposure conditions (ie open to the atmosphere) without significant (if any) degradation for a longer period of time, such as i years or Longer, 5 years or longer, (7) years or longer, 25 years or longer, 50 years or longer, 1 year or longer, 25 years or longer, year or longer, 1G, _year or longer, 1, _, _ ❹ year or longer' or even 1 〇 0, _, _ year or longer. When the stored stable form of the precipitate is slightly (if any) degraded and stored on the ground under normal rain, the amount of degradation, if any, based on the C〇2 gas released from the product will not exceed 5 per year. %, and in certain embodiments will not exceed 1% per year. The above-ground storage of stable forms of precipitates is stable under a variety of different environmental conditions, such as temperatures ranging from -1 〇 (TC to 6 ° C and temperatures ranging from 〇 to 100%, where such conditions may be It is windless, windy or stormy. Any suitable method can be used to test the stability of the sediment, including physical testing methods and chemical testing methods, among which the methods are suitable for determining the similar compounds in the precipitate. Or equivalent to a naturally occurring compound (such as limestone) known to have the stability listed above. As described above, 'clamping C〇2 for a long time to stabilize (carbonate precipitation in the form of geological years) The material can be long_stained. If it is necessary to reach - the specific ratio of carbonated water to Shi Xishi 'precipitate can also be combined with Shi Xiji material (such as the base material derived from the digestion of metal-containing tantalate material; commercially available) Si02, etc.) is mixed with 201016600 e to form a pozzolanic material. The crucible material of the present invention is formed by combining a salt and other materials according to the test, such as hydrogen hydroxide (Ca(0H)2). It is a noisy fSi()2 material such as volcanic ash, fly ash, Wei, The high reactivity and the blast furnace stone can be used for the pure day. (IV) (IV) In the embodiment, the pozzolanic material of the invention is 5% to 10%, 10% to 2%, 2 to 4.0%, 4.0% to 6.0%, 6.0% to 8.8%, 8〇0/〇 to 1〇〇%1〇^ to 15.0〇/〇, 15.0〇/〇 to 20.0%, 20.0% to 3〇〇%, 3 〇〇% to 40.0%, 4 retreat to 50.0% or its overlap range is called material strengthening. - Generally speaking, the condensed material has a lower miscellaneous spray-dried material (such as sediment, secret (4), hardening (4) Etc.), by (iv) drying the particle size ((4) the dry-drying material may have a particle size distribution relative to f. As such, in some embodiments, at least 5 G%, 6 g%, 7 (%) , 8〇%, , 90%, 95%, 97% or 99% of the spray dry rider falls within ±10 microns of the specified particle size, within ±20 microns, within ±3〇 microns, and soil 4〇 Within micrometers, within ±50 micrometers, within ±75 micrometers, within ±1 micrometers or within ±25 micrometers. In some embodiments, the 'defined average particle size is between 5 and 5 (8) micrometers. The specific average particle size is between 5 Å and 250 microns. In some embodiments The predetermined average particle size is between 100 and 200 microns. For example, in some embodiments, at least 70% of the spray dried material falls within a predetermined average particle size of the % micrometer, wherein the predetermined average particle size The diameter is between 5 and 5 microns, such as between 50 and 250 microns or between 1 and 2 microns. Compared to the nature of Portland cement, but rich in lime Medium 201016600, in the presence of calcium hydroxide, exhibits better cementation properties and contributes to later strength (>28 days). The pozzolanic reaction can be slower than the residual reaction that occurs during cement hydration' and thus encompasses the present invention The short-term strength of concrete with hardened materials is not as high as that of concrete made of pure cementitious materials. This display strength

機制係矽酸鹽與石灰反應以形成第二膠結相(具較低C/S 比例之矽酸鈣水合物),其通常在7天後呈現逐漸增強之 性質。強度發展程度最終係視凝硬材料之化學組成而定。 增加矽基材料之組成(視情況添增矽石及/或氧化鋁),特別 係非晶質矽基材料一般產生較佳凝硬反應及強度。高反應 ❹ 性火山灰,如矽灰及高反應性偏高嶺土可產生,,高早期強 度混凝土,其增加含本發明沈殿物之混凝土獲得強度之 速率。 ❹ 含有矽酸鹽及鋁矽酸鹽之沈澱物可藉由細微分立之 石夕質及/或財質材料(如♦紐料)的存在性而容易地用 於水泥及⑥凝土工業中作為凝硬材料。梦質及/或铭石夕質 沈澱物可錢特蘭水泥掺合或以直接雜摻缝的形式 加入混凝土混合物巾。在某些具體實施财,凝硬材料 以-最佳化㈣時間、硬化及所得水合麵(如混凝土)之 長期穩定性之比例(如上)包含㉟及鎮。沈澱物中碳酸踏之 f晶性、氯化物、硫酸鹽、鹼等之濃度可受控制以盥:特 =泥佳作用。在某些具體實施例中,沈殿物包括 60 W ΙΤ〇%' 2〇"3〇〇/〇' 3〇'4〇%' 4〇'5〇% ' 5〇-60^ ' 吵99 二i Γ%、8〇_9〇%、9〇_95%、95_98%、98·"%、 。石夕石具有小於45微米之粒徑(如在最長尺寸 72 201016600 上)。在某些具體實施例中,矽質沈澱物包含鋁矽石,其 中 10-20%、20-30%、30-40%、40-50%、50-60%、60-70%、 70-80%、80-90%、90-95%、95-98%、98-99%、99-99.9% 之铭石夕石具有小於45微米之粒彳t。在某些具體實施例 中,矽質沈澱物包含矽石及鋁矽石之混合物,其中 10-20%、20-30%、30-40%、40-50%、50-60%、60-70%、 70-80%、80-90%、90-95%、95-98%、98-99%、99-99.9% 之混合物具有小於45微米之粒徑(如在最長尺寸上)。 藉由本文所揭示方法所製成之凝硬材料可用作建造材 料,該材料可經處理以用作建造材料或經處理以用於建築 物(如商用、住宅)及/或基礎建設(如路面、道路、橋樑、 天橋、牆壁、碼頭、水壩等)之現有建造材料中。建造材 料可摻入任何結構物中,另外包括地基、停車結構物、房 子、辦公大樓、商用辦公室、政府大樓及支撐結構物(如 閘門、圍攔及柱子之基腳)之結構物係視為建築環境之一 部分。建造材料可為此類結構物之結構或非結構性組件 的組分。利用凝硬材料作為建造材料或用於建造材料中 之額外益處係可將該程序所用之c〇2(如獲自廢氣流之 C〇2)有效地钳合在建築環境中。 在某些具體實施例中,本發明凝硬材料係用作與水組 合後凝固及硬化之7jc硬7jC泥(如-般波特蘭水泥)的組 分。藉由沈澱物與水泥及水組合所產生之產物的凝固及硬 化係因產生水合物之故,其中該水合物係水泥與水反應後 所形成且其本質上不溶於水。此類水硬水泥、其製造方法 73 201016600 及用途係描述於2008年5月23日所申請之共同申請的美 國專利申請案第12/126,776號;將該申請案之揭示内容 以引用方式併入本文甲。在某些具體實施例中,與水泥 摻合之凝硬材料以重量計為〇 5%至1.〇%、1.0%至2.0%、 2.0〇/〇至 4.0〇/〇、4.0%至 6.0%、6.0%至 8.0%、8.0%至 10.0%、 10.0%至 15.0%、15.0%至 20.0%、20.0%至 30.0%、30.0% 至40.0%、40.0%至50.0%、50.0%至60.0%或其重疊範圍之 凝硬材料。 在某些具體實施例中,凝硬材料係與其他膠結材料摻 0 合或作為摻混物或聚集體混入水泥令。本發明灰泥發現 了起用於黏結建造彻塊(如磚)中並填補建造彻塊間之間 隙。在其他用途中,本發明灰泥亦可用於固定現存結構物 (如以取代原始灰泥已失密或經侵蝕之區段)。 在某些具體實施例中,凝硬材料可用於製造聚集體。 在某些具體實施例中,聚集體係由沈澱物經壓榨且接著 壓碎所製成。在某些具體實施例中,聚集體係由沈澱物 經擠壓及破壞所得擠壓材料所製成。此類聚集體、其製❹ 造方法及用途係描述於2009年5月29日所申請之共同申 請的美國專利申請案第12/475378號中,將該案揭示内容 之全文以引用方式併入本文中。 提出下列實例以便提供彼等熟諳此技者如何製造及使 用本發明之完整揭示内容及描述且不欲限制本發明範 疇。曾努力確保所用數字(如量、溫度等)之準確性,但必 須說明部分實驗誤差及偏差。除非另外指示,份數為重量 74 201016600 份數,分子量為重量平均分子量,溫度為攝氏溫度(。〇且 壓力為大氣壓或近大氣壓。 實例 實例1.分析儀器及方法 庫倫法:以2.0N過氣酸(HCl〇4)酸化液體及固體含碳 樣品以釋放二氧化碳氣體至載流氣流中並接著在以無機 碳庫倫計(UIC Inc,CM5051型)分析之前,以pH3 〇之3% 重量/體積硝酸銀洗滌之以去除任何所釋出之硫氣體。加入 過濾酸之後以加熱板加熱水泥、飛灰及海水之樣品以幫助 消化樣品。The mechanism is the reaction of citrate with lime to form a second cemented phase (calcium citrate hydrate with a lower C/S ratio) which typically exhibits progressively enhanced properties after 7 days. The degree of strength development ultimately depends on the chemical composition of the hardened material. Increasing the composition of the bismuth-based material (adding vermiculite and/or alumina as appropriate), especially amorphous bismuth-based materials generally produces better coagulation reactions and strength. Highly reactive bismuth volcanic ash, such as ash and highly reactive metakaolin, can be produced, high early strength concrete, which increases the rate at which the concrete containing the slab of the present invention is obtained.沉淀 Precipitates containing citrate and aluminosilicates can be easily used in cement and 6 concrete industries by the presence of finely divided stone and/or financial materials such as photographic materials. Hardened material. The quality of the dream and / or the stone of the Ming Dynasty can be blended with the Chantland cement or added to the concrete mixture towel in the form of a direct miscellaneous joint. In some implementations, the ratio of the hardened material to the optimum stability (four) time, hardening, and the long-term stability of the resulting hydrated surface (such as concrete) (as above) contains 35 and the town. The concentration of carbonic acid, chloride, sulfate, alkali, etc. in the precipitate can be controlled to: =: special = mud effect. In some embodiments, the sinker includes 60 W ΙΤ〇%' 2〇"3〇〇/〇' 3〇'4〇%' 4〇'5〇% '5〇-60^ ' noisy 99 two i Γ%, 8〇_9〇%, 9〇_95%, 95_98%, 98·"%, . Shi Xishi has a particle size of less than 45 microns (as in the longest dimension 72 201016600). In some embodiments, the enamel precipitate comprises an aluminite, wherein 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70- 80%, 80-90%, 90-95%, 95-98%, 98-99%, 99-99.9% of the Mingshi Xishi has a particle size less than 45 microns. In some embodiments, the tannin precipitate comprises a mixture of vermiculite and anodolite, wherein 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60- A mixture of 70%, 70-80%, 80-90%, 90-95%, 95-98%, 98-99%, 99-99.9% has a particle size of less than 45 microns (e.g., on the longest dimension). The pozzolanic material produced by the methods disclosed herein can be used as a building material that can be processed for use as a building material or processed for use in buildings (eg, commercial, residential) and/or infrastructure (eg, Among the existing construction materials for pavements, roads, bridges, overpasses, walls, wharves, dams, etc. Construction materials can be incorporated into any structure, and structures including foundations, parking structures, houses, office buildings, commercial offices, government buildings, and supporting structures such as gates, fences, and pillars are considered Part of the built environment. The build material can be a component of a structural or non-structural component of such a structure. The additional benefit of using a pozzolanic material as a building material or in building materials is that the c〇2 used in the procedure (e.g., C〇2 from the exhaust stream) can be effectively clamped in the built environment. In some embodiments, the pozzolanic material of the present invention is used as a component of 7jc hard 7jC mud (e.g., general Portland cement) which solidifies and hardens upon combination with water. The solidification and hardening of the product produced by the combination of the precipitate with cement and water is caused by the formation of a hydrate which is formed by reacting the cement with water and which is substantially insoluble in water. Such a hydraulic cement, its method of manufacture 73 201016600, and its use are described in commonly-owned U.S. Patent Application Serial No. 12/126,776, filed on May 23, 2008, the disclosure of This article A. In some embodiments, the cementitious material blended with the cement is 〇5% to 1.%, 1.0% to 2.0%, 2.0 〇/〇 to 4.0 〇/〇, 4.0% to 6.0% by weight. , 6.0% to 8.0%, 8.0% to 10.0%, 10.0% to 15.0%, 15.0% to 20.0%, 20.0% to 30.0%, 30.0% to 40.0%, 40.0% to 50.0%, 50.0% to 60.0% or Overlapped hardened material. In some embodiments, the pozzolanic material is blended with other cementitious materials or blended as a blend or aggregate into the cement. The plaster of the present invention has been found to be used in the construction of bonds (e.g., bricks) and to fill the gap between the blocks. In other applications, the plaster of the present invention may also be used to secure existing structures (e.g., to replace the portion of the original plaster that has been compromised or eroded). In certain embodiments, the pozzolanic material can be used to make aggregates. In some embodiments, the agglomeration system is made by pressing the precipitate and then crushing. In some embodiments, the agglomeration system is made by extruding and destroying the resulting extruded material. Such agglomerates, methods of making the same, and uses thereof are described in the co-pending U.S. Patent Application Serial No. 12/475,378, filed on May 29, 2009, the entire content of in. The following examples are presented to provide a complete disclosure and description of the invention, and are not intended to limit the scope of the invention. Efforts have been made to ensure the accuracy of the numbers used (eg, volume, temperature, etc.), but some experimental errors and deviations must be stated. Unless otherwise indicated, the parts are weights of 74 201016600 parts, the molecular weight is the weight average molecular weight, and the temperature is Celsius (the pressure is atmospheric or near atmospheric pressure. Example Example 1. Analytical Instrument and Method Coulomb Method: Excessively 2.0 N Acid (HCl 〇 4) acidified liquid and solid carbon-containing sample to release carbon dioxide gas into the carrier gas stream and then 3% weight/volume silver nitrate at pH 3 分析 before analysis by inorganic carbon coulomb (UIC Inc, model CM5051) It is washed to remove any released sulfur gas. After adding the filtered acid, a sample of cement, fly ash and sea water is heated by a heating plate to help digest the sample.

Bmnauer-Emmett-Teller(“BET,,)比表面積:比表面積 (SSA)測量係藉由Ns之表面吸附進行(bet方法)。乾樣品 之SSA係在以Fl〇Wrep™60樣品除氣系統製備樣品後利用 Micromeritics TriStar™ Π 3020比表面積及孔隙度分析儀 量得。簡言之,樣品製備包括令近〗.〇克之乾樣品在提高 溫度下除氣並暴露於N2氣體流中以去除樣品表面之殘留 水蒸汽及其他吸附劑。接著排空樣品架中之沖洗氣體並在 一系列漸增壓力(與吸附膜厚度有關)下暴露於N2氣體之 前先冷卻樣品。覆蓋該表面後,藉由系統性降低樣品架中 的壓力自微粒表面釋出&氣體。測量吸附氣體並將其轉 化成總表面積測量值^ ' 粒徑分析(“PSA”):粒徑分析及分布係利用靜態光散射 量得。乾微粒係懸浮於異丙醇中並利用雙重波長/雷射構型 75 201016600 之Horiba粒徑分布分析儀(LA-950V2型)進行分析。利用 米氏(Mie)散射理論計算從〇.1釐米至1000釐米隨粒度變 化之微粒量。 粉末 X-射線繞射(“XRD”):以 Rigaku MiniflexTM(Rigaku)進行粉末X-射線繞射以識別晶相並估 計不同可識別樣品相之質量分率。用手將乾固體樣品磨成 細微粉末並裝載於樣品架上。χ_射線來源係以3〇仟伏特 及15毫安培驅動之銅陽極(cu kot)。X-射線掃描係以每分 鐘2°2Θ的掃描速率及每步〇 〇1。20的步長在5_9〇。20内進 ® 行。X-射線繞射圖係藉由Rietveld精化利用射線繞射圖 案分析軟體 JadeTM(第 9 版,Material Data Inc· (MDI))分析。 傅立葉變換紅外(“FT-IR”)光譜法:FT-IR分析係在裝有Bmnauer-Emmett-Teller ("BET,") specific surface area: specific surface area (SSA) measurement is carried out by surface adsorption of Ns (bet method). SSA of dry sample is prepared by degassing system of Fl〇WrepTM60 sample The sample was then measured using a Micromeritics TriStarTM Π 3020 specific surface area and porosity analyzer. Briefly, sample preparation involves degassing the dried sample at elevated temperatures and exposing it to the N2 gas stream to remove the sample surface. Residual water vapor and other adsorbents. Then evacuate the flushing gas in the sample holder and cool the sample before exposure to N2 gas at a series of increasing pressures (related to the thickness of the adsorbed film). After covering the surface, by the system Suppresses the pressure in the sample holder to release & gas from the surface of the particle. Measure the adsorbed gas and convert it to a total surface area measurement ^ ' Particle size analysis ("PSA"): particle size analysis and distribution using static light scattering Dry microparticles were suspended in isopropanol and analyzed using a Horiba particle size distribution analyzer (LA-950V2) with dual wavelength/laser configuration 75 201016600. Using Mie scattering On the calculation of the amount of particles varying from 〇.1 cm to 1000 cm with particle size. Powder X-ray diffraction ("XRD"): powder X-ray diffraction with Rigaku MiniflexTM (Rigaku) to identify crystal phases and estimate different Identify the mass fraction of the sample phase. The dry solid sample is ground into a fine powder by hand and loaded onto the sample holder. The χ-ray source is a copper anode (cu kot) driven at 3 volts and 15 mA. X- The ray scan is performed at a scan rate of 2° 2 每 per minute and a step size of 1.20 per step at 5 〇 9 〇 20 in. The X-ray diffraction pattern is refined by Rietveld using a ray diffraction pattern. Analytical software JadeTM (9th Edition, Material Data Inc. (MDI)) analysis. Fourier transform infrared ("FT-IR") spectroscopy: FT-IR analysis is installed

Smart Diffuse Reflectance 模組之 Nic〇iet 380 上進行。稱量 所有樣品之重量至3.5±0·5毫克並與〇 5克KBr用手研磨 並接著壓減整平之,讀在5分鐘減吹拂T將其插入 FT-IR中。在範圍4〇〇_4〇〇〇厘米-1中紀錄光譜。 掃描電子顯微法(“8腿,,):8腿係以在3〇_65帕之工作〇 壓力下利用is仟伏特之固定加速電壓之mtaehiTM i_ 鶴絲台式顯微鏡及單—BSE半導體侧料行。利用碳 „劑將固體樣品固定在該台上;在分析前將濕樣品真 工乾燥至石墨台上。EDS分析係利用Oxford Instruments SwijtED TM彡纟_行,其錢^具有能I騎度為 之Na-92U的偵測範圍。 〜m & 1G()_2()()ppm增量所量得測試範圍在 76 201016600 300 6000亳克氯化物/公升溶液之chloride QuanTab®測試 條(產品編號2751340)測定氣化物濃度。 X-射線螢光(“XRF”)··固態粉末樣品之XRF分析係利 用裝有銀陽極X-射線來源及Peltier冷卻s i(Li)x_射線偵測 器之 Thermo Scientific ARL QUANT’X 能量分散式 XRF 光 譜儀進行。利用鋁樣品杯將樣品壓成31釐米薄片。對於 各樣品,收集三種不同光譜,各針對特定元素分析設計: 第一者係在4仟伏特下無使用χ_射線濾波器,第二者係 在18仟伏特下使用薄銀濾波器及第三者係在3〇仟伏特下 使用厚銀濾波器,其等皆處於真空條件下。利用winTraee 軟體利用由合格標準物校正所獲得之Fundamental Parameters分析方法分析光譜。 熱重量分析(“TGA”):以具同步TGA/DSC(示差掃描熱 量法)之TA Instruments SDT Q600進行固態粉末樣品之 TGA分析。將氧化鋁坩堝中之樣品放入熱爐中,以2〇tt/ 分鐘之固定升溫速率將其由室溫加熱至1〇〇〇。〇。利用 Universal Analysis軟體分析重量損失隨溫度變化圖。 實例2.橄欖石之消化 概述:以酸消化橄欖石 含金屬矽酸鹽材料:平均粒徑為54 3微米之撖欖石係 由Olivine C〇rp(Bellingham,WA)獲得。利用噴射磨機將 撖禮石部分降低至平均粒徑為5.82微米。 方法··橄欖石之消化係在室溫(20_23〇c)下藉將橄欖石 77 201016600 攪入10%HC1⑽(5.54克撖欖石(54.3微米)溶入419 37克 ιο〇/〇Ηα中)而達到。在藉由EDTA電位滴定測量水性鎂濃 度之前,先瀝取撖欖石4天。 結果及觀察··在實驗中藉以鈣離子選擇性電極進行 EDTA滴定而測得Mg2+之濃度。撖視石之實驗在遞取4天 後產生0.1564 Μ之Mg2+濃度。 實例3.蛇紋石之消化 概述:以酸消化蛇紋石 | 含金屬矽酸鹽材料:蛇紋石係由Kc Mining(King City ’ CA)獲得。 方法:蛇紋石之消化係在室溫(20_23。〇下藉將蛇紋石 授入10/^11(111^(5.03克蛇紋石溶入415.32克l〇%HCl中) 而達到。在藉由EDTA電位滴定測量水性鎂濃度之前,先 瀝取蛇紋石4天。 結果及觀察··在實驗中藉以鈣離子選擇性電極進行 EDTA滴定而測得Mg2—之濃度。蛇紋石之實驗在瀝取4天❹ 後產生0.1123 Μ之Mg2+濃度。 實例4·由撖欖石製造沈澱物 概述:利用撖欖石作為原料製備含碳酸鹽沈澱物。以 酸消化撖欖石。沈澱物之沈澱包括注入二氧化碳並將質子 去除劑加入含金屬矽酸鹽材料之瀝取液(如撖欖石瀝取液) 中由撖視石瀝取液製成之沈殺物的特徵化指示固體產物 78 201016600 主要為三水碳鎂石(77%)及未經識別之非晶質含矽化人 物。次要組成為岩鹽及未經識別之鐵鹽。 含金屬矽酸鹽材料:平均粒徑為54 3微米之撖欖石係 由Olivine C〇rp(Bellingham,WA)獲得。利用噴射磨機將 撖欖石部分降低至平均粒徑為5 82微米。 方法.在50C之溫度下藉將含金屬矽酸鹽材料攪入 ^^HCl^/lO.Ol克經噴射研磨之撖欖石溶入475 66克 ❹ L〇%HC1中)以消化橄欖石。週期性地取樣以側量水性鎮之 濃度。持續攪拌10小時,之後令混合物在室溫下另外靜 置9小時。趁熱真空過濾混合物並令所得濾液(4〇4 52克) 冷卻至室溫。 以1小時的時間中和濾液,之後將100%c〇2大量喷過 含鎂溶液。隨攪拌加入15·01克Na〇H⑻,接著額外加入 5.23克NaOH(aq}(5〇%重量/重量)以產生含碳酸鹽沈澱物。 沈澱反應混合物之最終pH係pH 8.9。真空過濾沈澱反應 % 混合物漿料並在烘箱中50〇C下乾燥所得濾餅17小時。The Smart Diffuse Reflectance module is implemented on the Nic〇iet 380. The weight of all samples was weighed to 3.5 ± 0.5 mg and rubbed with 〇 5 g of KBr by hand and then reduced by leveling, and read into the FT-IR after 5 minutes of reduction. The spectra were recorded in the range 4 〇〇 4 〇〇〇 cm -1 . Scanning electron microscopy ("8-legged,"): 8-legged mtaehiTM i_ crane table microscope and single-BSE semiconductor side material with a fixed accelerating voltage of is仟V at a working pressure of 3〇_65Pa The solid sample was fixed on the stage using a carbon agent; the wet sample was allowed to dry to the graphite stage before analysis. The EDS analysis utilizes Oxford Instruments SwijtEDTM®, which has a detection range of Na-92U with a rideability of I. The concentration of ~m & 1G()_2()() ppm was measured in 76 201016600 300 6000 亳g chloride/liter solution of the chloride QuanTab® test strip (product number 2751340) to determine the vapor concentration. X-ray fluorescence ("XRF") · XRF analysis of solid powder samples using Thermo Scientific ARL QUANT'X energy dispersion with silver anode X-ray source and Peltier cooled si (Li) x-ray detector XRF spectrometer. The sample was pressed into a 31 cm sheet using an aluminum sample cup. For each sample, three different spectra were collected, each designed for a specific element: the first was a 仟-ray filter at 4 volts, the second was a thin silver filter at 18 volts and the third The thick silver filter is used at 3 volts, and all of them are under vacuum. The spectra were analyzed using the WinTraee software using the Fundamental Parameters analysis method obtained by calibration of the qualified standards. Thermogravimetric Analysis ("TGA"): TGA analysis of solid powder samples was performed on a TA Instruments SDT Q600 with simultaneous TGA/DSC (differential scanning calorimetry). The sample in the alumina crucible was placed in a hot furnace and heated from room temperature to 1 Torr at a fixed heating rate of 2 〇 tt / min. Hey. The weight loss versus temperature plot is analyzed using the Universal Analysis software. Example 2. Digestion of olivine Overview: Digestion of olivine with acid Metal-containing phthalate material: sapphire with an average particle size of 54 3 microns was obtained from Olivine C〇rp (Bellingham, WA). The blasting stone portion was reduced to an average particle diameter of 5.82 μm using a jet mill. Method · · The olivine digestive system was stirred at room temperature (20_23〇c) with olivine 77 201016600 into 10% HC1 (10) (5.54 g of sapphire (54.3 microns) dissolved in 419 37 g ιο〇 / 〇Ηα) And reached. The sapphire stone was drained for 4 days before the aqueous magnesium concentration was measured by EDTA potentiometric titration. Results and Observations · The concentration of Mg2+ was measured by EDTA titration with a calcium ion selective electrode in the experiment. The experiment of squinting stone produced a Mg2+ concentration of 0.1564 Μ after 4 days of retraction. Example 3. Digestion of Serpentine Overview: Digesting Serpentine with Acid | Metal-containing Tellurite Material: Serpentine is obtained from Kc Mining (King City' CA). Method: The digestive system of serpentine was obtained at room temperature (20_23. by adding serpentine to 10/^11 (111^ (5.03 g of serpentine dissolved in 415.32 g of l〇% HCl)). Before the potentiometric titration was used to measure the aqueous magnesium concentration, the serpentine was drained for 4 days. Results and observations · In the experiment, the concentration of Mg2 was measured by EDTA titration with a calcium ion selective electrode. The serpentine experiment was leached for 4 days. After ❹, a Mg2+ concentration of 0.1123 Μ is produced. Example 4: Preparation of precipitates from sapphire. Overview: Preparation of carbonate-containing precipitates using sapphire as a raw material. Distillation of sapphire with acid. Precipitation of the precipitate includes injection of carbon dioxide and Characterization of a precipitate prepared from a leaching solution containing a metal phthalate material (such as sapphire leaching solution) by a proton-removing agent, indicating that the solid product 78 201016600 is mainly trihydrate Magnesite (77%) and unidentified amorphous bismuth-bearing characters. The secondary composition is rock salt and unidentified iron salt. Metal-containing phthalate material: 撖 石 stone with an average particle size of 54 3 microns Obtained by Olivine C〇rp (Bellingham, WA). The machine reduced the sapphire portion to an average particle size of 5 82 μm. Method. By stirring the metal phthalate material into the ^ HCl ^ / lO.Ol gram by jet blasting at a temperature of 50 ° Into 475 66 g ❹ L〇% HC1) to digest the olivine. Periodically sample to adjust the concentration of the water-based town. Stirring was continued for 10 hours, then the mixture was allowed to stand at room temperature for another 9 hours. The mixture was allowed to cool (4 〇 4 52 g) to room temperature. The filtrate was neutralized over a period of 1 hour, after which a large amount of 100% c 〇 2 was sprayed through the magnesium-containing solution. 15.1 g of Na〇H (8) was added with stirring. Then, 5.23 g of NaOH (aq} (5% by weight/weight) was additionally added to produce a carbonate-containing precipitate. The final pH of the precipitation reaction mixture was pH 8.9. The precipitation reaction mixture was vacuum filtered and the mixture slurry was 50 在 in an oven. The resulting filter cake was dried under C for 17 hours.

藉由XRD識別晶質相、SEM觀察形態、EDS及XRF 進行元素分析及碳庫倫法測定無機碳之百分比重量而特 徵化乾沈澱物。 ^結果及觀察:在瀝取實驗中藉以鈣離子選擇性電極進 行EDTA滴定以測定Mg2+之濃度。經喷霧研磨並經5〇。〇 隔仪渥取之撖欖石的瀝取液樣品具有〇·2491 Μ之Mg2+濃 度。 沈澱物產生19.26克具黃綠色調之粗淡灰色粉末,其 79 201016600 扣不鐵鹽之存在性。沈澱物相當容易壓碎。SEM(圖8)顯 不主要由薄晶質棒及非晶f㊉膠組成之混合物。EDS測量 指示Mg、Si、Fe、Na及C1之存在性。 XRD(圖9)指示沈澱物中所存在之晶質相係三水碳鎂 石(MgC0r3H20)及岩鹽(NaC1)。非晶質含量亦存在,暗 示除了二水碳鎮石及岩鹽外尚存在若干相,其與EDS分 析中其他元素之存在性一致。 石厌庫倫法指示產物係4.65%(±〇.〇6)無機碳,其經計算The dry precipitate was characterized by XRD identification of the crystalline phase, SEM observation morphology, EDS and XRF for elemental analysis and carbon coulometry to determine the percent weight of inorganic carbon. ^Results and observation: EDTA titration was performed by a calcium ion selective electrode in a leaching experiment to determine the concentration of Mg2+. It was spray milled and passed 5 times.沥 The leachate sample of the sapphire from the separator has a Mg2+ concentration of 249·2491Μ. The precipitate produced 19.26 grams of a light grayish gray powder with a yellow-green tint, which 79 201016600 deducted the presence of iron salts. The precipitate is quite easy to crush. The SEM (Fig. 8) showed a mixture mainly composed of a thin crystalline rod and an amorphous f-pene. The EDS measurement indicates the presence of Mg, Si, Fe, Na, and C1. XRD (Fig. 9) indicates the presence of the crystalline phase of hydrated magnesite (MgC0r3H20) and rock salt (NaCl). Amorphous content also exists, suggesting that there are several phases besides the dihydrate carbon stone and rock salt, which are consistent with the presence of other elements in the EDS analysis. The stone anodic coulomb method indicates that the product is 4.65% (±〇.〇6) inorganic carbon, which is calculated.

為17.0%C〇2。熱重量分析(TGA,圖1〇)在275°C與575°C 間測得17.1%重量損失,其係事先測得為c〇2自三水碳鎂 石逸出之範圍。鑒於XRD識別及TGA和庫倫法的結果彼 此相符(<1%差異性),算得產物係由76 6%三水碳鎮石所 構成。 沈澱物亦包含矽基材料,其顯然為非晶質石夕石(Si〇2), 即矽酸(H4Si04)之熱分解產物。 _Na20% MgO% AI2O3% 一 9.69 23.87 0.57 —Si〇2% P205 ppm SO3% _ 11.7 249 0.04 Cl% --――—-,, K2〇% CaO% 6.93 0.09 0.04 Ti〇2% MnO% Fe203% 0 0.043 3.1900 201016600It is 17.0% C〇2. Thermogravimetric analysis (TGA, Fig. 1A) measured a 17.1% weight loss between 275 ° C and 575 ° C, which was previously measured as the range in which c〇2 escaped from the gallstone. Since the results of XRD recognition and TGA and Coulomb method are consistent with each other (<1% difference), the calculated product consists of 76 6% trihydrate carbon stone. The precipitate also contains a ruthenium-based material which is apparently an amorphous shisha (Si〇2), a thermal decomposition product of citric acid (H4Si04). _Na20% MgO% AI2O3% A 9.69 23.87 0.57 —Si〇2% P205 ppm SO3% _ 11.7 249 0.04 Cl% -----,, K2〇% CaO% 6.93 0.09 0.04 Ti〇2% MnO% Fe203% 0 0.043 3.1900 201016600

Zn ppm As ppm Br% 18 0.001 Rb ppm Sr ppm Y ppm 0 2 0 Zr ppm Nb ppm Ba ppm 0 0 0 <0.6%(以重量計) Hg ppm Pb ppm 鹼當量% 57 9.749 所用%LOI C03%diff 溫度 %LOI 950 43.79% 0.005 表1 :沈澱物之XRF數據 實例5.由橄欖石製造沈澱物 A.沈澱物之沈澱 概述 橄欖石係經消化並溶於碳酸溶液中。利用 KOH作為鹼及FeCl3作為觸媒,沈澱含有已 消化橄欖石之沈殿物。 材料 · 379公升UCSC海水,在8°C及pH=7.87 下 •罐裝co2氣體 • 1公升NaOH 2M溶液 81 201016600 • 1-5 克 FeCl3(4ppm) • 380.3克之280網目撖欖石 實驗程序 C02冒泡吹過海水直到pH達到5.5且之後 另外持續5分鐘。將撖欖石加入溶液中且 C02另外持續冒泡30分鐘。停止C02流並 將2ppm FeCl3加入溶液中。加入足量NaOH 以達到ρΗ8·0,然後額外加入2ppmFeCl3。 額外加入NaOH直到pH達到9.2。令懸浮 液隔夜沈降。離心濃縮沈澱物並在ll〇°C下 © 烘乾。產量:816.08克(2·15克/公升之海水) 分析 XRD分析指示霰石、鎂橄欖石及實質非晶 質相存在於沈澱物中。 Β.摻合水泥之製備 波特蘭水泥及此實驗所用沈澱物之BET比表面積 (“SSA”)係列於表2中。在2分鐘預超音波粉碎以分解結 塊顆粒後,測定粒徑分布。沈澱物具有遠高於與其混合之 ❹ 波特蘭水泥之SSA的SSA。 II/V型Hansen波特蘭水泥 沈澱物 1·1617±0·0066 平方米/克 10.4929±0·0230 平方米/克 表2.BET比表面積 混合灰泥前才用手摻合沈澱物(5%及20%,在兩種不同 摻合物中)及波特蘭水泥近2分鐘。對於5%遞補率(流量 =114%) ’水··水泥比例符合11〇%+/-5%的流量標準。對於 82 201016600 超過所容許之最大流量值之20%遞補率(replacement level)(流量=121%),將水:水泥比例調整至0.58。 變換ASTM C511儲存條件:立方體係經塑膠板覆蓋地 在濕毛巾下固化24小時(經估計相對溼度為98%)。 C.結果 壓縮強度發展係根據ASTM C109測得。2”侧之灰泥立 方體係用於進行壓縮測試。遞補率為5%及20%之沈澱物 係與普通波特蘭II/V型水泥灰泥及經20%飛灰F取代之 波特蘭II/V型水泥比敕〇 混^is述 混合物 BET(平 砂含 流量 miMPa) 名稱 方米/ W/C 0PC SEM FA 量 3天 7天 28 -¾ 天 C1157 無法取 0.485 100% 73% 無限 10.0 17.0 28.0 mm 得 制 界線:最小 C1157 20.0 30.0 mm 界線: 100%OPC C00092 1.16 051 100% 0% 0% 73% 112% V0 43.3 95%OPC-5%PPT C00095 10.49 052 95% 5% 0% 73% 114% 24.5 31.5 393 80%OPC-20°/〇PPT C00097 10.49 058 80% 20% 0P/〇 73% 121% 15.9 V? 27.9 表3.實例V之水泥的特徵化 83 201016600 實例6.測量沈澱物及起始物之以七值 在此實驗中,測量沈殿物及起始物之gl3C值。利用瓶 裝二氧=硫(s〇2)及瓶裝二氧化碳(c〇2)氣體之混合物及作 為-價陽離子及;^石之替絲源之飛灰製備含破酸鹽沈 殿物。該程序係在閉合容器中進行。 起始物係市售瓶裝S〇2及C〇2氣體(s〇2/c〇2氣體或,, 模擬煙道氣”)、去離子水及飛灰之混合物。 容器裝有去離子水》搖晃後,將飛灰加入去離子水中, 提供一適合沈澱含碳酸鹽沈澱物而無釋放c〇2至大氣中 © 之pH(鹼度)及二價陽離子濃度。以一適合由鹼性溶液沈澱 沈澱物之速率及時間喷灑S〇2/C02氣體。足夠時間容許反 應組分相互作用,之後由剩餘溶液(“沈澱反應混合物,,)中 分離出沈殿物,產生濕沈殿物及上澄液。 測量程序起始物、沈殿物及上澄液之ϋ值。所用分 析系統係由Los Gatos Research製造並利用直接吸收光譜 法提供範圍從2%至20% C02之乾氣體的&3C值及濃度數 據。該儀器係利用具有已知同位素組成之標準5%C02氣❹ 體校正且自經2M過氣酸消化之石灰華及IAEA大理石#20 樣品逸出之C〇2的測量產生在文獻中所見值之可接受測 置誤差内之值。利用注射針筒採取C02來源氣體之樣品。 令c〇2氣體通過氣體乾燥器(Perma pure MD氣體乾燥 器’ Nafl0n®聚合物製成之MD-110-48F-4型),然後進入 台式市售碳同位素分析系統中。以熱過氯酸(2m HC104) 先消化固體樣品。c〇2氣體自該閉合消化系統中逸出,然 84 201016600 後進入氣體乾燥11中。由該處收減體並將其注入分析系 ,中以產生δ c數據。同樣地,消化上澄譯以逸出co2 氣體’然後乾燥之並令其進人分析儀器巾以產生代數 據。 分析S〇2/C〇2氣體、金屬氧化物替代物(即飛灰)、含碳 酸鹽= 殿物及上澄液之測量侧於表4巾。舰物及上澄 液之δ €值分別為-15.88%。及-11.70%。。兩反應產物之513c 值反映S〇2/C〇2氣體(§13c=-12.45%。)及飛灰之摻入,其中 該飛灰包含某未完全燃燒成氣體之碳(513(>_17 46%。)。因 為本身為化石燃料燃燒產物之飛灰具有遠負於所用c〇2 之313C值,沈澱物之總^3C值反映遠負於c〇2本身之si3c 值。此實例說明δ13(:值可用於確認含碳酸鹽組成物材料中 碳之主要來源。 大氣 δ13(:值 (%〇) C02來 源 C〇2來 源 SI3C 值(%〇) 驗來源 驗 s13c 值(%0) 上澄液 溶液 δΙ3(:值 (%〇) 沈澱物 S13C 值 (%〇) -8 so2/co2 瓶裝氣 體混合 物 -12.45 飛灰 -17.46 -11.70 -15.88 表4 :實例5之起始物及產物之值(313C) 85 201016600 雖然上述本發明已藉由說明及實例方式以部分細 行描述以達清楚瞭解之目的’但根據本發明教導,彼等熟 諳此技者可容㈣瞭解可對其進行特定改變及改良而^ 悖離所附㈣專利範圍之精神及範鳴。因此,前面僅說^ 本發明原理。應瞭解熟諳此技者將可設計多種配置,雖然 未明確描述或顯示於本文中,但其具體化本發明 : 含在其精神及範_。此外,本文所描述之所有實例及^ 件性語言主要希望協助讀者瞭解本發明原理及發明者為 促進該技賴提供錢念並轉為稀於此制描叙 〇 實例及條件。此外,本文描述本發明原理、態樣及具體實 施例以及其狀實狀所有陳述鱗望料其結構及功 能等效物。此外,不考慮結構物,此類等效物希望包括目 前已知之等效物及未來所發展之等效物,即任何所發展以 完成相同功能之元件。因此’不欲將本發明範轉限制在本 文所示及描述之示範性具體實施例。下列申請專利範圍企 圖疋義本發明範_並藉以涵蓋此等申請專利範圍範嘴及 其等效物内之方法及結構物。 q 【圖式簡單說明】 本發明新穎特徵係特別陳述於所附申請專利範圍 中。藉由參考上列陳述利用本發明原理之說明性具體實 施例之細節描述及其所附圖式將可更清楚瞭解本^明特 徵及優點,其中所附圖式為: 圖1說明一由含金屬矽酸鹽材料製造沈澱物之方法。 86 201016600 圖2顯示根據本發明具體實施例一製造凝硬材科之 示範性方法的流程代表圖。 圖3說明一經設計以由含金屬石夕酸鹽材料製造沈澱 物之系統。 圖4顯示根據本發明具體實施例一製造凝硬材料之 示範性系統的概述代表圖。 圖5顯示根據本發明具體實施例,視情況添加至圖2 所示系統之概述代表圖。 圖6顯示根據本發明具體實施例,視情況添加至圖2 所示系統之概述代表圖。 圖7顯示根據本發明具體實施例,視情況添加至圖2 所示系統之概述代表圖。 圖8提供在放大2.5k(左)及4.0k下呈棒狀形態(三水 碳鎮石)及非晶質石夕膠之實例4沈澱物的SEM影像。 圖9提供實例4之沈澱物(頂部繞射圖形)、岩鹽(中間 繞射圖形)及三水碳鎂石(底部繞射圖形)的XRD繞射圖。 圖10提供實例4沈澱物之TGA熱分析圖。 圖11提供II/V型波特蘭水泥及摻合有實例5沈澱物 之波特蘭水泥的粒徑分布圖。 【主要元件符號說明】 100 方法 110 令金屬矽酸鹽材料與一酸性溶液接觸 120 藉由添加質子去除劑產生沈澱物 87 201016600 130 140 200 205 210 215 220 225 230 235 240 245 250 255 240 255 310 410 420 510 520 610 620 630 產生凝硬材料 去除Si基材料 系統 直立塔 沈澱反應容器 液-固分離器 喷霧乾燥器 廢氣來源(co2) 含二價陽離子溶液來源 質子去除劑來源 含金屬矽酸鹽材料 液體入口 氣體入口 含碳酸鹽沈澱物;凝硬材料 金屬矽酸鹽材料 沈澱物 促進劑來源 液-固分離器 清洗器 第二反應容器 第二液-固分離器 降低含金屬矽酸鹽材料尺寸之步驟 懸浮含金屬矽酸鹽材料之步驟 消化含金屬矽酸鹽材料之步驟 88 201016600 640 過濾步驟 650 沈澱步驟 ;沈澱沈澱物 660 分離步驟 ;分離沈澱物 670 清洗步驟 ;清洗沈殿物 680 乾燥步驟 ;乾燥沈殿物 690 沈殿物; 含碳酸鹽沈澱物 700 系統 710 金屬矽酸鹽處理器 720 乾燥器 ⑩ 89Zn ppm As ppm Br% 18 0.001 Rb ppm Sr ppm Y ppm 0 2 0 Zr ppm Nb ppm Ba ppm 0 0 0 <0.6% by weight Hg ppm Pb ppm Base equivalent % 57 9.749 %LOI used C03%diff Temperature % LOI 950 43.79% 0.005 Table 1: XRF data for precipitates Example 5. Precipitate made from olivine A. Precipitation of precipitates The olivine is digested and dissolved in a carbonic acid solution. Using KOH as a base and FeCl3 as a catalyst, precipitated sediments containing digested olivine. Materials · 379 liters of UCSC seawater at 8 ° C and pH = 7.87 • Canned co2 gas • 1 liter NaOH 2M solution 81 201016600 • 1-5 grams of FeCl3 (4ppm) • 380.3 grams of 280 mesh sapphire experimental procedure C02 The bubble was blown through seawater until the pH reached 5.5 and then continued for another 5 minutes. The sapphire stone was added to the solution and C02 was further bubbled for 30 minutes. The C02 stream was stopped and 2 ppm FeCl3 was added to the solution. A sufficient amount of NaOH was added to achieve ρ Η 8 · 0, followed by the addition of 2 ppm FeCl 3 . Additional NaOH was added until the pH reached 9.2. Allow the suspension to settle overnight. The precipitate was concentrated by centrifugation and dried at ll ° ° C. Yield: 816.08 g (2·15 g/L of seawater) Analysis XRD analysis indicated that vermiculite, forsterite and a substantial amorphous phase were present in the precipitate. Β. Preparation of Blended Cement The BET specific surface area ("SSA") series of Portland cement and the precipitate used in this experiment is shown in Table 2. After pre-ultrasonic pulverization for 2 minutes to decompose the agglomerated particles, the particle size distribution was measured. The precipitate has a SSA that is much higher than the SSA of the Portland cement with which it is mixed. II/V type Hansen Portland cement deposit 1.1617±0·0066 m2/g 10.4929±0·0230 m2/g Table 2. BET specific surface area before mixing the mortar before hand-mixing sediment (5 % and 20% in two different blends) and Portland cement for nearly 2 minutes. For a 5% replenishment rate (flow = 114%), the 'water·· cement ratio meets the flow rate of 11〇% +/- 5%. For the 82 201016600 exceeding the 20% of the maximum allowable flow rate (flow rate = 121%), adjust the water: cement ratio to 0.58. Conversion ASTM C511 storage conditions: The cubes were cured with a plastic plate for 24 hours under a wet towel (estimated relative humidity of 98%). C. Results Compressive strength development was measured according to ASTM C109. The 2" stucco cubes are used for compression testing. Precipitates with 5% and 20% replenishment are combined with ordinary Portland II/V cement stucco and Portland with 20% fly ash F. II/V type cement than 敕〇 mixed mixture BET (flat sand flow rate miMPa) Name square meter / W / C 0PC SEM FA amount 3 days 7 days 28 -3⁄4 days C1157 can not take 0.485 100% 73% unlimited 10.0 17.0 28.0 mm Demarcation line: minimum C1157 20.0 30.0 mm Boundary line: 100%OPC C00092 1.16 051 100% 0% 0% 73% 112% V0 43.3 95%OPC-5%PPT C00095 10.49 052 95% 5% 0% 73% 114 % 24.5 31.5 393 80%OPC-20°/〇PPT C00097 10.49 058 80% 20% 0P/〇73% 121% 15.9 V? 27.9 Table 3. Characterization of cement in Example V 83 201016600 Example 6. Measurement of sediment and Seven values of the starting material In this experiment, the gl3C value of the sediment and the starting material was measured. A mixture of a bottle of dioxin = sulfur (s〇2) and a bottled carbon dioxide (c〇2) gas and a valence cation were used. And; stone to the silk source of the fly ash preparation containing broken acid salt Shen Temple. In a closed container system. S〇2 initiator system and a commercially available bottled gas C〇2 (s〇2 / c〇2 simulated flue gas or gas ,, "), a mixture of deionized water and the fly ash. After the vessel is filled with deionized water, the fly ash is added to the deionized water to provide a pH (basicity) and divalent cation concentration suitable for precipitating the carbonate-containing precipitate without releasing c〇2 to the atmosphere. The S〇2/C02 gas is sprayed at a rate and for a time suitable for precipitating the precipitate from the alkaline solution. Sufficient time is allowed to allow the reaction components to interact, and then the sediments are separated from the remaining solution ("precipitation reaction mixture,") to produce a wet sediment and a supernatant. Measurement procedure starting material, sedimentation and sputum The analytical system used was manufactured by Los Gatos Research and used direct absorption spectroscopy to provide & 3C values and concentration data for dry gases ranging from 2% to 20% C02. The instrument utilizes a standard with known isotopic composition. The %C02 gas enthalpy corrected and measured from the 2M pervaporic acid travertine travertine and IAEA marble #20 sample C 〇 2 yields the value within the acceptable measurement error of the values seen in the literature. The cylinder takes a sample of the C02 source gas. Let the c〇2 gas pass through a gas dryer (Perma pure MD gas dryer 'Model No. MD-110-48F-4 made of Nafl0n® polymer), and then enter the benchtop commercially available carbon isotope analysis. In the system, the solid sample is first digested with hot perchloric acid (2m HC104). The c〇2 gas escapes from the closed digestive system, and after 84 201016600, it enters the gas drying 11. The body is collected and injected into it. analysis In order to generate δ c data. Similarly, digest the upper part to escape the co2 gas' and then dry it and let it enter the analytical instrument to produce generation data. Analysis of S〇2/C〇2 gas, metal oxide The alternatives (ie fly ash), carbonate-containing = temple and Shangcheng liquid are measured in Table 4. The δ € values of the ship and the supernatant are -15.88% and -11.70%, respectively. The 513c value of the product reflects the incorporation of S〇2/C〇2 gas (§13c=-12.45%.) and fly ash, which contains some carbon that is not completely burned into a gas (513 (>_17 46%) Because the fly ash, which is itself a fossil fuel combustion product, has a value far lower than the 313C value of c〇2 used, the total ^3C value of the precipitate reflects the value of si3c far from c〇2 itself. This example illustrates δ13(: The value can be used to confirm the main source of carbon in the carbonate-containing material. Atmospheric δ13 (: value (% 〇) C02 source C 〇 2 source SI3C value (% 〇) Source test s13c value (%0) Shangcheng solution δΙ3(:value (%〇) precipitate S13C value (%〇) -8 so2/co2 bottled gas mixture -12.45 fly ash-17.46 -11.70 -15.88 Table 4: Example 5 The value of the starting material and the product (313C) 85 201016600 The present invention has been described in some detail by way of illustration and example for the purpose of clarity of understanding, but according to the teachings of the present invention, those skilled in the art can understand (4) It is possible to make specific changes and improvements to it and to remove the spirit of the attached patent range and Fan Ming. Therefore, the foregoing only describes the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various configurations which, although not explicitly described or shown herein, are embodied in the present invention. In addition, all of the examples and language described herein are intended to assist the reader in understanding the principles of the present invention and the inventors' embodiments and conditions for facilitating the teaching of the technology. In addition, the principles, aspects, and specific embodiments of the invention, as well as the structural and functional equivalents thereof, are described herein. In addition, regardless of the structure, such equivalents are intended to include equivalents and equivalents that are developed in the future, that is, any component that is developed to perform the same function. Therefore, the invention is not intended to be limited to the exemplary embodiments shown and described herein. The scope of the following claims is intended to cover the invention and the methods and structures in the scope of the claims. q [Simplified description of the drawings] The novel features of the present invention are particularly set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS The features and advantages of the present invention will be more apparent from the detailed description of the embodiments illustrated herein A method of making a precipitate from a metal phthalate material. 86 201016600 Figure 2 shows a process representation of an exemplary method of making a condensate family in accordance with an embodiment of the present invention. Figure 3 illustrates a system designed to produce a precipitate from a metal-containing silicate material. Figure 4 shows an overview representation of an exemplary system for making a pozzolanic material in accordance with an embodiment of the present invention. Figure 5 shows an overview representation of the system shown in Figure 2, as appropriate, in accordance with an embodiment of the present invention. Figure 6 shows an overview representation of the system shown in Figure 2, as appropriate, in accordance with an embodiment of the present invention. Figure 7 shows an overview representation of the system shown in Figure 2, as appropriate, in accordance with an embodiment of the present invention. Figure 8 provides an SEM image of a precipitate of Example 4 in a rod-like form (three carbonaceous towns) and an amorphous stone gum at a magnification of 2.5 k (left) and 4.0 k. Figure 9 provides an XRD diffraction pattern of the precipitate of Example 4 (top diffraction pattern), rock salt (intermediate diffraction pattern), and cristobalite (bottom diffraction pattern). Figure 10 provides a TGA thermogram of the Example 4 precipitate. Figure 11 provides a particle size distribution map of Type II/V Portland cement and Portland cement blended with the Example 5 precipitate. [Description of main component symbols] 100 Method 110 Contacting a metal phthalate material with an acidic solution 120 Producing a precipitate by adding a proton-removing agent 87 201016600 130 140 200 205 210 215 220 225 230 235 240 245 250 255 240 255 310 410 420 510 520 610 620 630 Production of condensing material removal Si-based material system Upright column precipitation reaction vessel Liquid-solid separator Spray dryer Waste gas source (co2) Containing divalent cation solution Source proton remover source Containing metal phthalate material The liquid inlet gas inlet contains a carbonate precipitate; the condensate material metal citrate material precipitate promoter source liquid-solid separator cleaner second reaction vessel second liquid-solid separator reduces the size of the metal phthalate-containing material Step of suspending the metal phthalate-containing material step of digesting the metal ruthenium-containing material 88 201016600 640 Filtration step 650 precipitation step; precipitation precipitate 660 separation step; separation of precipitate 670 cleaning step; cleaning of slab 680 drying step; drying Shen Dianwu 690 Shen Dian; carbonate precipitate 700 system 710 metal tannic acid Salt Processor 720 Dryer 10 89

Claims (1)

201016600 七、申請專利範圍: 1. 一種方法,其包括: a) 以一水溶液消化含金屬矽酸鹽材料以產生二價陽離子 及含Si02材料; b) 令該等二價陽離子與溶解二氧化碳反應以產生一沈澱 物;並 c) 乾燥該沈澱物。 2. 如申請專利範圍第1項之方法,其中該沈澱物係經乾燥 以形成一具有一致粒徑分布之細微粉末。 3. 如申請專利範圍第2項之方法,其另外包括在消化該含 金屬矽酸鹽材料之前先研磨該含金屬矽酸鹽材料。 4. 如申請專利範圍第3項之方法,其中該含金屬矽酸鹽材 料包含岩石或礦物。 5. 如申請專利範圍第4項之方法,其中該含金屬矽酸鹽材 料包含一選自正矽酸鹽;鏈狀矽酸鹽;頁矽酸鹽;及網狀矽 酸鹽組成之群之礦物。 6. 如申請專利範圍第5項之方法,其中該正矽酸鹽礦物包 含一橄欖石類礦物。 201016600 7.如申請專利範圍第5項之方法, 包含一蛇紋石類礦物。 其中該網狀矽酸鹽礦物 8.如申請專利範圍第5項之方法,龙 材料包括以一酸消化以產生一含有談、中消化該金屬矽酸鹽 Si02材料之酸性溶液。 μ等二價陽離子及該含 9.如申請專利範圍第8項之方法, ® 腦、HBr、HI、H2S04、ΗΝ〇3、灿〇中該酸係選自由HF、 酸、檸檬酸、甲酸、葡萄糖酸、乳酸、^酸、H2C〇3、乙 ,血酸及米氏酸(meldrumacid)組成之^、。草酸、酒石酸、抗壞 10.如申請專利範圍第9項之方法 其中該酸係HC1。 11.如申請專利範圍第8項之方法, 化後與一質子去除劑接觸。 其中該酸性溶液係在消201016600 VII. Patent Application Range: 1. A method comprising: a) digesting a metal phthalate-containing material with an aqueous solution to produce a divalent cation and a SiO2-containing material; b) reacting the divalent cation with dissolved carbon dioxide Producing a precipitate; and c) drying the precipitate. 2. The method of claim 1, wherein the precipitate is dried to form a fine powder having a uniform particle size distribution. 3. The method of claim 2, further comprising grinding the metal-containing silicate material prior to digesting the metal phthalate-containing material. 4. The method of claim 3, wherein the metal phthalate-containing material comprises rock or mineral. 5. The method of claim 4, wherein the metal citrate material comprises a group selected from the group consisting of n-decanoate; chain citrate; decanoate; and retinoic acid. mineral. 6. The method of claim 5, wherein the orthosilicate mineral comprises an olivine mineral. 201016600 7. The method of claim 5, comprising a serpentine mineral. Wherein the reticulated citrate mineral 8. The method of claim 5, wherein the dragon material comprises digesting with an acid to produce an acidic solution containing the metal phthalate SiO 2 material. a divalent cation such as μ and the method of 9. In the method of the eighth aspect of the patent application, the brain is selected from the group consisting of HF, acid, citric acid, formic acid, brain, HBr, HI, H2S04, ΗΝ〇3, and 〇. Gluconic acid, lactic acid, acid, H2C〇3, B, blood acid and meldrum acid. Oxalic acid, tartaric acid, and resistance to damage 10. The method of claim 9 wherein the acid is HC1. 11. The method of claim 8 is followed by contact with a proton-removing agent. Where the acidic solution is in the consumer 12.如申專利範圍第u項之方法,其巾該酸性溶液係藉與 該質子去除劑接觸而成驗性溶液。 曰一 13.如申請專利範圍第12項之方法,其中該質子去除劑包含 一選自由NaOH、KOH、Ca(OH)2及Mg(OH)2組成之群之】 氧化物。 ^ 91 201016600 14.如申請專利範圍第13項之方法,其中該氫氧化物為 NaOH。 15. 如申請專利範圍第5項之方法,其中消化該含金屬矽酸 鹽材料包括以質子去除劑消化以產生一含該等二價陽離子 及含Si〇2材料之驗性溶液。 16. 如申請專利範圍第12或15項之方法,其中該等二價陽 離子包括鹼土金屬陽離子。 17. 如申請專利範圍第16項之方法,其中該等鹼土金屬陽離 子包括Ca2+、Mg2+或其組合。 18. 如申請專利範圍第17項之方法,其另外包括分離該沈澱 物。 19. 如申請專利範圍第18項之方法,其中該沈澱物係以一液 -固分離裝置與該鹼性溶液分離。 20. 如申請專利範圍第19項之方法,其中以該液-固分離裝置 分離該沈澱物係一連續、半批次或批次程序。 21. 如申請專利範圍第20項之方法,其中該沈澱物之分離係 一連續程序。 92 201016600 22. 如申請專利範圍第1項之方法,其中該沈澱物係經一喷 霧乾燥器乾燥。 23. 如申請專利範圍第2項之方法,其中至少70%細微粉末 落在既定平均直徑之±50微米内,其中該既定平均粒徑係在 5與500微米之間。 ® 24.如申請專利範圍第23項之方法,其中至少70%細微粉末 落在既定平均直徑之±50微米内,其中該既定平均粒徑係在 50與250微米之間。 25.如申請專利範圍第24項之方法,其中至少70%細微粉末 落在既定平均直徑之±50微米内,其中該既定平均粒徑係在 100與200微米之間。 ❿ 26.如申請專利範圍第23項之方法,其中該沈澱物包含一凝 硬材料。 27. 如申請專利範圍第23項之方法,其另外包括自該沈澱物 製造一凝硬材料。 28. 如申請專利範圍第26或27項之方法,其另外包括摻合 該凝硬材料與水泥。 93 201016600 29. —種方法,其包括: a) 以一水溶液消化一含金屬矽酸鹽材料以提供二價陽離 子及含Si02材料; b) 自該水溶液中分離出該含si〇2材料;益 〇令該二價陽料與轉二氧化碳反鮮產生沈澱物。12. The method of claim 5, wherein the acidic solution is contacted with the proton-removing agent to form an assay solution. The method of claim 12, wherein the proton-removing agent comprises an oxide selected from the group consisting of NaOH, KOH, Ca(OH)2, and Mg(OH)2. The method of claim 13, wherein the hydroxide is NaOH. 15. The method of claim 5, wherein digesting the metal citrate material comprises digesting with a proton-removing agent to produce an assay solution comprising the divalent cation and the Si-containing material. 16. The method of claim 12, wherein the divalent cation comprises an alkaline earth metal cation. 17. The method of claim 16, wherein the alkaline earth metal cations comprise Ca2+, Mg2+, or a combination thereof. 18. The method of claim 17, further comprising isolating the precipitate. 19. The method of claim 18, wherein the precipitate is separated from the alkaline solution by a liquid-solid separation device. 20. The method of claim 19, wherein the sediment is separated by a liquid-solid separation device in a continuous, semi-batch or batch procedure. 21. The method of claim 20, wherein the separation of the precipitate is a continuous procedure. The method of claim 1, wherein the precipitate is dried by a spray dryer. 23. The method of claim 2, wherein at least 70% of the fine powder falls within ± 50 microns of a predetermined average diameter, wherein the predetermined average particle size is between 5 and 500 microns. The method of claim 23, wherein at least 70% of the fine powder falls within ± 50 microns of a predetermined average diameter, wherein the predetermined average particle size is between 50 and 250 microns. 25. The method of claim 24, wherein at least 70% of the fine powder falls within ± 50 microns of a predetermined average diameter, wherein the predetermined average particle size is between 100 and 200 microns. The method of claim 23, wherein the precipitate comprises a condensed material. 27. The method of claim 23, further comprising producing a pozzolanic material from the precipitate. 28. The method of claim 26, wherein the method further comprises blending the pozzolanic material with cement. 93 201016600 29. A method comprising: a) digesting a metal phthalate-containing material with an aqueous solution to provide a divalent cation and a SiO2-containing material; b) separating the Si-containing material from the aqueous solution; The order of the divalent cation and the carbon dioxide reversed produces a precipitate. 29㈣法,其處、;肖化該含該金 材枓、先研磨該含金屬㈣鹽材料。 第3〇項之方法’—鹽材 =如::專利範圍第31項之方法,其中該含金屬石夕酸鹽材 酸鹽、:成5=鹽;物酸鹽;,酸鹽;及網狀碎 ❹ 33·如申請專利範圍第32項之方法,立中該正石夕酸鹽礦物包 含一撖欖石類礦物。 八 34.如申請專利範圍第32項之方法,其中該網狀矽酸鹽礦物 包含一蛇紋石類礦物。 35.如申請專利範圍第32項之方法,其中消化該含金屬矽酸 94 201016600 鹽材料包括以-酸消化以產生一含該等二價陽離子及該含 Si〇2材料之酸性溶液。 36. 如申明專利範圍第35項之方法,其中該酸係選自由hf、 HC1、HBr、HI、Hjn 、hno3、H3P04、鉻酸、H2C03、乙 ^檸檬馱、甲酸、葡萄糖酸、乳酸、草酸、酒石酸、抗壞 金酸及米氏酸組成之群。 37. 如申睛專利範圍第36項之方法,其中該酸係肥。 38. 如申印專利範圍第35項之方法,其中該酸性溶液係在消 - 化後與一質子去除劑接觸。 39. 如申請專利範圍第38項之方法,其中該酸性溶液係藉與 該貝子去除劑接觸而成驗性溶液。 ❹ 40·如申請專利範圍第39項之方法,其中該質子去除劑包含 一選自由NaOH、KOH、Ca(OH)2及Mg(OH)2組成之群之氣 氡化物。 41. 如申請專利範圍第4〇項之方法,其中該氫氧化物為 42. 如申請專利範圍第32項之方法,其中消化該含金屬石夕峻 95 201016600 鹽材料包括以一質子去除劑消化以產生一含該等二價陽離 子及該含Si02材料之鹼性溶液。 43. 如申請專利範圍第39或42項之方法,其中該等二價陽 離子包括鹼土金屬陽離子。 44. 如申請專利範圍第43項之方法,其中該等鹼土金屬陽離 子包括Ca2+、Mg2+或其組合。 45. 如申請專利範圍第44項之方法,其中自該水溶液分離出 該含Si02材料包括以第一液-固分離裝置分離。 46. 如申請專利範圍第45項之方法,其中以該第一液-固分離 裝置分離係一連續、半批次或批次程序。 47. 如申請專利範圍第46項之方法,其另外包括該二價陽離 子與溶解二氧化碳反應後分離出該沈澱物。 48. 如申請專利範圍第47項之方法,其中該沈澱物係以第二 液-固分離裝置自該鹼性溶液中分離出。 49. 如申請專利範圍第48項之方法,其中以該第二液-固分離 裝置分離該沈澱物係一連續、半批次或批次程序。 96 201016600 50. 如申請專利範圍帛49項之方法,其中該沈殿物之分離係 一連續程序。 51. 如申請專利範圍第5G項之方法’其中所分離含Si〇2材料 及所分離沈澱物可無乾燥地組合以產生一凝硬材料。 52. 如申請專利範圍第50項之方法,其中在組合以形成一凝 硬材料之前先乾燥所分離含Si〇2材料或所分離沈澱物中之 ® 一者。 53. 如申請專利範圍第50項之方法,其中在組合以形成一凝 - 硬材料之前先乾燥所分離含Si02材料及所分離沈澱物各者。 54. 如申請專利範圍第52或53項之方法’其中以一喷霧乾 燥器乾燥該沈澱物、該含8丨〇2材料或該沈澱物與該含Si02 材料兩者以產生一喷霧乾燥材料。 ❿ 55. 如申請專利範圍第54項之方法,其中至少70%噴霧乾燥 材料落在既定平均粒徑之±5〇微米内,其中該既定平均粒徑 係在5與500微米之間。 56. 如申請專利範圍第55項之方法,其中至少70%噴霧乾燥 材料落在既定平均粒徑之±50微米内,其中該既定平均粒徑 係在50與250微米之間。 97 201016600 57·如申請專利範圍第56項之方法,其中至少70%喷霧乾燥 材料落在既定平均粒徑之土5〇微米内,其中該既定平均粒徑 係在100與200微米之間。 58·如申請專利範圍第55項之方法,其另外包括以火山灰、 飛灰、石夕灰、咼反應性偏高嶺土或高爐石粉(ground granulated blast furnace slag)強化該凝硬材料。 59. 如申請專利範圍第51-53項之方法,其另外包括摻合該凝 硬材料與水泥。 60. —種組成物,其係藉由如申請專利範圍第i或29項之方 法所製成。 61. —種組成物,其包含合成碳酸鹽、矽基材料及合成鐵基 材料。 62. 如申請專利職第61項之組成物’其中該合成碳酸鹽包 含一f自由水纖菱鎂礦、菱鎂礦、水菱鎂礦、三水碳鎂石及 五水碳鎂石組成之群之碳酸鎮。 63. 如申請專利範圍第62項之組成物,其中該合成碳酸 括三水碳鎂石。 201016600 64. 如申請專利範圍第62項之組成物,其中該組成物包含高 達35%矽基材料 65. 如申請專利範圍第64項之組成物,其中該矽基材料包括 石夕石。 66. 如申請專利範圍第65項之組成物,其中該矽石包括非晶 ® 質矽石。 67. 如申請專利範圍第65項之組成物,其中該合成鐵基材料 包括氣化鐵或碳酸鐵。 68. 如申請專利範圍第62項之組成物,其中該合成碳酸鹽另 外包含一選自由方解石、霰石及六方方解石組成之群之碳酸 4弓。 ❿ 69. 如申請專利範圍第61項之組成物,其另外包含水泥。 70. 如申請專利範圍第69項之組成物,其中不超過80%之該 組成物包含水泥。 71. 如申請專利範圍第69項之組成物,其中不超過55%之該 組成物包含秒基材料。 99 201016600 72. 如申請專利範圍第61項之組成物,其中該組成物係適合 用於一建造材料中。 73. 如申請專利範圍第61項之組成物,其中該組成物包含一 建造材料。 74. 如申請專利範圍第72或73項之組成物,其中該建造材 料包括水泥、聚集體、膠結材料或補充膠結材料。 75. —種系統,其包含: a) —處理一含金屬矽酸鹽材料之處理器; b) —用於沈澱一沈澱物之沈澱反應器;及 c) 一自一沈澱反應混合物中分離該沈澱物之液-固分離 器, 其中該沈澱反應器係與該處理器及該液-固分離器兩者 連接操作。 76. 如申請專利範圍第75項之系統,其中該處理器包括一研 磨該含金屬石夕酸鹽材料之尺寸縮減單元。 77. 如申請專利範圍第75項之系統,其中該尺寸縮減單元包 括一球磨機或一喷射磨機。 100 201016600 78. 如申請專利範圍第76項之系統,其中該處理器另外包含 一消化該含金屬矽酸鹽材料之消化器。 79. 如申請專利範圍第78項之系統,其中該消化器係經設計 以接收該含金屬矽酸鹽材料,其中該材料具有一縮減之尺 寸。 80. 如申請專利範圍第79項之系統,其中該消化器可另外設 計成接收一酸來源之酸、質子去除劑來源之質子去除劑或其 組合。 81. 如申請專利範圍第80項之系統,其中該沈澱反應器係經 設計以接收已消化之含金屬矽酸鹽材料。 82. 如申請專利範圍第81項之系統,其中該沈澱反應器係另 外設計成接收二氧化碳工業來源之二氧化碳。 8 3.如申請專利範圍第8 2項之系統,其中該液-固分離器係經 設計以接收該沈澱反應器之沈澱反應混合物。 84. 如申請專利範圍第83項之系統,其中該液-固分離器係另 外設計成自該沈澱反應混合物中分離出該沈澱物。 85. 如申請專利範圍第75項之系統,其另外包括一製造乾沈 101 201016600 澱物之乾燥器。 86. 如申請專利範圍第85項之系統,其中該乾燥器包含一喷 霧乾燥器。 87. 如申請專利範圍第86項之系統,其中該喷霧乾燥器係經 設計以接收一自該液-固分離器之含沈澱物漿料。 88. 如申請專利範圍第87項之系統,其中該噴霧乾燥器係經 (、 設計以產生乾沈澱物,其中至少70%乾沈澱物落在既定平均 粒徑之±50微米内,其中該既定平均粒徑係在5與500微米 之間。 89. 如申請專利範圍第88項之系統,其中該喷霧乾燥器係經 設計以產生乾沈澱物,其中至少70%乾沈澱物落在既定平均 粒徑之±50微米内,其中該既定平均粒徑係在50與250微 米之間。 ❹ 90. 如申請專利範圍第89項之系統,其中該喷霧乾燥器係經 設計以產生乾沈澱物,其中至少70%乾沈澱物落在既定平均 粒徑之±50微米内,其中該既定平均粒徑係在100與200微 米之間。 91. 如申請專利範圍第87項之系統,其中該喷霧乾燥器係另 102 201016600 外設計成利用二氧化碳工業來源之廢熱。 92. 如申請專利範圍第91項之系統,其中該二氧化碳工業來 源包括燃煤發電廠之煙道氣。 93. 如申請專利範圍第86項之系統,其中該喷霧乾燥器係另 外設計成提供一熱耗乏之二氧化碳工業來源給該沈澱反應 器。 ❿ 103The method of 29 (4), where it is; and the material containing the metal material, the metal (4) salt material is first ground. The method of the third item--salt material=such as: the method of the third item of the patent scope, wherein the metal-containing acid salt, the salt 5; the salt; the acid salt; Shaped mash 33. As in the method of claim 32, the Orthodontic mineral contains one sapphire mineral. 8. The method of claim 32, wherein the reticulated niobate mineral comprises a serpentine mineral. 35. The method of claim 32, wherein the digesting the metal-containing citric acid 94 201016600 salt material comprises digesting with an acid to produce an acidic solution comprising the divalent cation and the Si 〇 2 containing material. 36. The method of claim 35, wherein the acid is selected from the group consisting of hf, HCl, HBr, HI, Hjn, hno3, H3P04, chromic acid, H2C03, sulphate, formic acid, gluconic acid, lactic acid, oxalic acid , a group of tartaric acid, ascorbic acid and Mic acid. 37. The method of claim 36, wherein the acid is a fertilizer. 38. The method of claim 35, wherein the acidic solution is contacted with a proton-removing agent after digestion. 39. The method of claim 38, wherein the acidic solution is contacted with the shellfish remover to form an assay solution. The method of claim 39, wherein the proton-removing agent comprises a gas halide selected from the group consisting of NaOH, KOH, Ca(OH)2, and Mg(OH)2. 41. The method of claim 4, wherein the hydroxide is 42. The method of claim 32, wherein digesting the metal-containing stone Xijun 95 201016600 salt material comprises digesting with a proton-removing agent To produce an alkaline solution containing the divalent cations and the SiO 2 -containing material. 43. The method of claim 39, wherein the divalent cation comprises an alkaline earth metal cation. 44. The method of claim 43, wherein the alkaline earth metal cations comprise Ca2+, Mg2+, or a combination thereof. 45. The method of claim 44, wherein separating the SiO2-containing material from the aqueous solution comprises separating by a first liquid-solid separation device. 46. The method of claim 45, wherein the first liquid-solid separation device is a continuous, semi-batch or batch process. 47. The method of claim 46, further comprising separating the precipitate after the divalent cation is reacted with dissolved carbon dioxide. 48. The method of claim 47, wherein the precipitate is separated from the alkaline solution by a second liquid-solid separation device. 49. The method of claim 48, wherein the second liquid-solid separation device separates the precipitate into a continuous, semi-batch or batch procedure. 96 201016600 50. The method of claim 49, wherein the separation of the sediment is a continuous procedure. 51. The method of claim 5, wherein the separated Si〇2 material and the separated precipitate may be combined without drying to produce a pozzolanic material. 52. The method of claim 50, wherein the separated Si 〇 2 material or the separated precipitate is dried prior to combining to form a condensed material. 53. The method of claim 50, wherein the separated SiO2-containing material and the separated precipitate are each dried prior to combining to form a condensed-hard material. 54. The method of claim 52, wherein the precipitate is dried by a spray dryer, the material containing 8 丨〇 2 or both the precipitate and the SiO 2 -containing material to produce a spray drying material. ❿ 55. The method of claim 54, wherein at least 70% of the spray dried material falls within ± 5 Å of a predetermined average particle size, wherein the predetermined average particle size is between 5 and 500 microns. 56. The method of claim 55, wherein at least 70% of the spray dried material falls within ± 50 microns of a predetermined average particle size, wherein the predetermined average particle size is between 50 and 250 microns. 97. The method of claim 56, wherein at least 70% of the spray dried material falls within 5 microns of a given average particle size, wherein the predetermined average particle size is between 100 and 200 microns. 58. The method of claim 55, further comprising reinforcing the pozzolanic material with volcanic ash, fly ash, shisha ash, kiln reactive metakaolin or granulated blast furnace slag. 59. The method of claim 51, wherein the method further comprises blending the curable material with cement. 60. A composition made by the method of claim i or 29 of the patent application. 61. A composition comprising a synthetic carbonate, a ruthenium-based material, and a synthetic iron-based material. 62. The composition of claim 61, wherein the synthetic carbonate comprises a f-free water-fibrous magnesite, magnesite, hydromagnesite, hydrated magnesite and pentahydrate The town of carbonated water. 63. The composition of claim 62, wherein the synthetic carbonic acid comprises a magnesite. 201016600 64. The composition of claim 62, wherein the composition comprises up to 35% ruthenium-based material. 65. The composition of claim 64, wherein the ruthenium-based material comprises Shi Xishi. 66. The composition of claim 65, wherein the vermiculite comprises amorphous ® vermiculite. 67. The composition of claim 65, wherein the synthetic iron-based material comprises gasified iron or iron carbonate. 68. The composition of claim 62, wherein the synthetic carbonate further comprises a carbonated carbonaceous member selected from the group consisting of calcite, vermiculite, and hexagonal calcite. ❿ 69. The composition of claim 61, which additionally contains cement. 70. The composition of claim 69, wherein no more than 80% of the composition comprises cement. 71. The composition of claim 69, wherein no more than 55% of the composition comprises a second based material. 99 201016600 72. The composition of claim 61, wherein the composition is suitable for use in a construction material. 73. The composition of claim 61, wherein the composition comprises a construction material. 74. The composition of claim 72, wherein the construction material comprises cement, aggregates, cementitious materials or supplementary cementitious materials. 75. A system comprising: a) a processor for treating a metal phthalate-containing material; b) a precipitation reactor for precipitating a precipitate; and c) separating the precipitate from the precipitation reaction mixture A liquid-solid separator for a sediment, wherein the precipitation reactor is operated in connection with both the processor and the liquid-solid separator. 76. The system of claim 75, wherein the processor comprises a size reduction unit for grinding the metal-containing material. 77. The system of claim 75, wherein the size reduction unit comprises a ball mill or a jet mill. The system of claim 76, wherein the processor additionally comprises a digester for digesting the metal silicate-containing material. 79. The system of claim 78, wherein the digester is designed to receive the metal-containing silicate material, wherein the material has a reduced size. 80. The system of claim 79, wherein the digester is additionally designed to receive an acid-derived acid, a proton-removing agent-derived proton-removing agent, or a combination thereof. 81. The system of claim 80, wherein the precipitation reactor is designed to receive the digested metal-containing silicate material. 82. The system of claim 81, wherein the precipitation reactor is additionally designed to receive carbon dioxide from a carbon dioxide industrial source. 8. The system of claim 8 wherein the liquid-solid separator is designed to receive a precipitation reaction mixture of the precipitation reactor. 84. The system of claim 83, wherein the liquid-solid separator is additionally designed to separate the precipitate from the precipitation reaction mixture. 85. The system of claim 75, further comprising a dryer for making a dry sink 101 201016600 deposit. 86. The system of claim 85, wherein the dryer comprises a spray dryer. 87. The system of claim 86, wherein the spray dryer is designed to receive a slurry containing precipitate from the liquid-solid separator. 88. The system of claim 87, wherein the spray dryer is designed to produce a dry precipitate wherein at least 70% of the dry precipitate falls within ± 50 microns of a predetermined average particle size, wherein the spray is predetermined The average particle size is between 5 and 500 microns. 89. The system of claim 88, wherein the spray dryer is designed to produce a dry precipitate wherein at least 70% of the dry precipitate falls on a predetermined average Within ±50 microns of the particle size, wherein the predetermined average particle size is between 50 and 250 microns. ❹ 90. The system of claim 89, wherein the spray dryer is designed to produce a dry precipitate , wherein at least 70% of the dry precipitate falls within ±50 microns of a predetermined average particle size, wherein the predetermined average particle size is between 100 and 200 microns. 91. The system of claim 87, wherein the spray The mist dryer is designed to utilize waste heat from the carbon dioxide industrial source. 92. The system of claim 91, wherein the carbon dioxide industrial source comprises flue gas from a coal-fired power plant. The system of clause 86, wherein the spray dryer is additionally designed to provide a source of heat-depleted carbon dioxide to the precipitation reactor.
TW098123398A 2008-07-10 2009-07-10 Production of carbonate-containing compositions from material comprising metal silicates TW201016600A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7979008P 2008-07-10 2008-07-10
US12/344,019 US7887694B2 (en) 2007-12-28 2008-12-24 Methods of sequestering CO2
US12/486,692 US7754169B2 (en) 2007-12-28 2009-06-17 Methods and systems for utilizing waste sources of metal oxides

Publications (1)

Publication Number Publication Date
TW201016600A true TW201016600A (en) 2010-05-01

Family

ID=44830523

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098123398A TW201016600A (en) 2008-07-10 2009-07-10 Production of carbonate-containing compositions from material comprising metal silicates

Country Status (1)

Country Link
TW (1) TW201016600A (en)

Similar Documents

Publication Publication Date Title
US11344861B2 (en) Continuous carbon sequestration material production methods and systems for practicing the same
Ruan et al. Production of reactive magnesia from desalination reject brine and its use as a binder
US9139472B2 (en) Methods and compositions using calcium carbonate and stabilizer
US7749476B2 (en) Production of carbonate-containing compositions from material comprising metal silicates
US9061940B2 (en) Concrete compositions and methods
CN104812466B (en) Carbon partition method and system and resulting composition
US9260314B2 (en) Methods and systems for utilizing waste sources of metal oxides
AU2009260036B2 (en) Methods and systems for utilizing waste sources of metal oxides
US7939336B2 (en) Compositions and methods using substances containing carbon
US20100313794A1 (en) Production of carbonate-containing compositions from material comprising metal silicates
US11712654B2 (en) Direct air capture (DAC) carbon dioxide (CO2) sequestration methods and systems
WO2010006242A1 (en) Production of carbonate-containing compositions from material comprising metal silicates
US20110091366A1 (en) Neutralization of acid and production of carbonate-containing compositions
US20100258035A1 (en) Compositions and methods using substances containing carbon
US20100000444A1 (en) Methods and systems for utilizing waste sources of metal oxides
TW200946210A (en) Methods of sequestering CO2
WO2011102868A1 (en) Neutralization of acid and production of carbonate-containing compositions
WO2010132863A1 (en) Systems and methods for processing co2
AU2009290159A1 (en) Compositions and methods using substances containing carbon
US20160355436A1 (en) Methods and compositions using water repellants
WO2013077892A2 (en) Concrete compositions and methods
Dong et al. Recovery of ultra-high purity reactive magnesia from reject brine and its comparison with commercial magnesia
TW201016599A (en) Methods and systems for utilizing waste sources of metal oxides
TW201016600A (en) Production of carbonate-containing compositions from material comprising metal silicates
WO2024074907A1 (en) Sand treatment method and system for concrete applications