TW201016599A - Methods and systems for utilizing waste sources of metal oxides - Google Patents

Methods and systems for utilizing waste sources of metal oxides Download PDF

Info

Publication number
TW201016599A
TW201016599A TW098120288A TW98120288A TW201016599A TW 201016599 A TW201016599 A TW 201016599A TW 098120288 A TW098120288 A TW 098120288A TW 98120288 A TW98120288 A TW 98120288A TW 201016599 A TW201016599 A TW 201016599A
Authority
TW
Taiwan
Prior art keywords
source
precipitate
metal oxide
aqueous solution
proton
Prior art date
Application number
TW098120288A
Other languages
Chinese (zh)
Inventor
Brent Constantz
Paulo Monteiro
Sidney Omelon
Miguel Fernandez
Kasra Farsad
Katharine Geramita
Karin Yaccato
Original Assignee
Calera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/344,019 external-priority patent/US7887694B2/en
Application filed by Calera Corp filed Critical Calera Corp
Publication of TW201016599A publication Critical patent/TW201016599A/en

Links

Classifications

    • Y02E60/366
    • Y02E70/10
    • Y02E70/20

Abstract

Methods are provided for producing a composition comprising carbonates, wherein the methods comprise utilizing waster sources of metal oxides. An aqueous solution of divalent cations, some or all of which are derived from a waste source of metal oxides, may be contacted with CO2 and subjected to precipitation conditions to provide compositions comprising carbonates. In some embodiments, a combustion ash is the waste source of metal oxides for the aqueous solution containing divalent cations. In some embodiments, a combustion ash is used to provide a source of proton-removing agents, divalent cations, silica, metal oxides, or other desired constituents or a combination thereof.

Description

201016599 六、發明說明: 交互參照 本申請案主張2008年6月17日申請之美國臨時申請 案弟61/073,319號、2008年7月1〇日申請之第61/〇79,790 號以及2008年12月24曰申請之美國專利申請案第 12/344019號的權利,將該等申請案全部以引用方式併入 本文中。 【發明所屬之技術領域】 本發明提供製造含碳酸鹽組成物的方法,其中該等方 法包括利用金屬氧化物廢棄物來源。部份或全部衍生自 金屬氧化物廢物來源之一價陽離子水溶液可與C〇2接觸 並令其處於沈澱條件下以提供含碳酸鹽組成物。在某些 具體實施例中,燃燒灰分係含二價陽離子水溶液之金屬 氧化物廢棄物來源。在某些具體實施例中,燃燒灰分係 G 用於提供質子去除劑、二價陽離子、石夕石、金屬氧化物 或其他所欲成分或其組合之來源。 【先前技術】 背景 二氧化碳(C〇2)排放已被識別為地球暖化現象之主要 促成物。C〇2係燃燒副產物且其產生操作、經濟和環境 5 201016599 問題。預期較高c〇2及其他溫室氣體之大氣濃度將促使 熱大量儲存在大氣内而導致提高表面溫度及快速氣候變 遷。另外,大氣中提高之c〇2濃度亦預期將因c〇2溶解 並形成碳酸而酸化世界海洋。氣候變遷及海洋酸化之衝 擊若無及時控制則將可能付出學貴經濟代價並危害環 境。降低氣候變遷之潛在危險將需要鉗合及避免各種人 為程序之co2。 【發明内容】 ® 摘述 提供製造含碳酸鹽組成物的方法,其中該等方法包括 利用金屬氧化物廢棄物來源。部份或全部衍生自金屬氧 化物廢物來源之二價陽離子水溶液可與C02接觸並令其 處於沈;殿條件下以提供含碳酸鹽組成物。在某些具體實 施例中,燃燒灰分係含二價陽離子水雜之金屬氧化物 廢棄物來源。在某些具體實施例_ ’燃燒灰分係用於提 供質子去除劑、二價陽離子、♦石、金屬氧化物或其他❿ 所欲成分或其組合之來源。 & Λϋ纟 19描述本發明之前’應了解本發财限於所述 二;二施例,照此當然可變化。亦應了解本文所用術 °。學僅用於描述特定具體實施例之目的並且無限制音 圖’因為本發·翁僅受所附申請專利範隨制。〜 扣供數值範圍時,應了解在該範圍之上限與下限間各 201016599 )丨於其間之值(除_文中科清楚指*,㈣至下限單 =十分之-)及所述翻巾任何其他所述或介於其間之 ^涵蓋在本發_。此等較小_之上限及下限可獨立 I 3在該較小範圍内並亦可涵蓋在本發明内 ,遵從所述 ,圍内任何特別排除之限值。所述範圍包含該等限值之一 ,兩者時,排除彼等所含限值巾之—或兩者的制亦包含 在本發明中。201016599 VI. INSTRUCTIONS: Cross-Reference This application claims US Provisional Application No. 61/073,319, filed on June 17, 2008, and No. 61/〇79,790, and July 2008, July 1, 2008 The rights of U.S. Patent Application Serial No. 12/344,019, the entire disclosure of which is incorporated herein by reference. TECHNICAL FIELD OF THE INVENTION The present invention provides a method of making a carbonate-containing composition, wherein the methods include utilizing a source of metal oxide waste. Part or all of the aqueous solution of one of the cations derived from the metal oxide waste source can be contacted with C〇2 and placed under precipitation conditions to provide a carbonate-containing composition. In some embodiments, the combustion ash is a source of metal oxide waste containing an aqueous solution of divalent cations. In some embodiments, the combustion ash system G is used to provide a source of a proton-removing agent, a divalent cation, a stone, a metal oxide, or other desired component or a combination thereof. [Prior Art] Background Carbon dioxide (C〇2) emissions have been identified as the main contributors to the global warming phenomenon. C〇2 is a by-product of combustion and it produces operations, economy and environment 5 201016599 Question. It is expected that higher c〇2 and other atmospheric concentrations of greenhouse gases will cause large amounts of heat to be stored in the atmosphere, resulting in increased surface temperatures and rapid climate change. In addition, the increased concentration of c〇2 in the atmosphere is also expected to acidify the world's oceans by dissolving c〇2 and forming carbonic acid. If climate change and ocean acidification are not controlled in time, it will cost economically and harm the environment. Reducing the potential dangers of climate change will require coupling and avoiding co2 for various human processes. SUMMARY OF THE INVENTION ® Description A method of making a carbonate-containing composition is provided, wherein the methods include utilizing a source of metal oxide waste. Some or all of the divalent cation aqueous solution derived from the source of the metal oxide waste can be contacted with CO 2 and allowed to sink; to provide a carbonate-containing composition. In some embodiments, the combustion ash is a source of metal oxide waste containing divalent cations. In some embodiments, the combustion ash is used to provide a source of proton-removing agents, divalent cations, ♦ stone, metal oxides or other bismuth components or combinations thereof. & Λϋ纟 19 Before describing the present invention, it should be understood that the present invention is limited to the above two; the second embodiment may be changed as such. You should also understand the technique used in this article. The teachings are only used to describe the purpose of the specific embodiments and the unrestricted sounds 'because the present invention is only subject to the attached patent application. ~ When deducting the value range, it should be understood that the value between the upper and lower limits of the range is 201016599) (except for _ text in the section clearly refers to *, (four) to the lower limit single = tenths) and any other The above or in between is covered by the present invention. The upper and lower limits of such smaller values may be independent of I 3 within this smaller range and may also be encompassed by the present invention, subject to any specifically excluded limits within the scope. The range includes one of the limits, and the exclusion of the limits contained therein, or both, is also encompassed by the present invention.

t本文係賴術語,,約,,胁前之數值呈現特定範圍。術 =約”在本文制於提供其後精確數料及接近或近似 該術語後數字之數社字上的支持。在決定-數字是否接 ^近似-特職狀鮮時,該驗或近似未描述之數 :可為-數字,其在所呈現之蚊巾提供-_描述之數 予的實質等效值。 除非另外疋義,本文所用之所有技術及科學術語具有 與熟諳本發明所;|技術者普遍了解相.意義。雖然任何 類似或同等於彼等本文所述者之綠及㈣亦可用於本 發明之實施制試巾,但現將贿代表性㈣方法 料。 本說明書中所引用之所有發表文獻、專利及專利申請 案係以猶似_發表讀、專利或專射赫經特別且個 別指不以引用方式併入之相同程度之引用方式併入本文 中此外,各引用之發表文獻、專利及專利申請案係以引 用方式併入本文令以揭示並描述與所引用之該等發表文 獻有關的題材。任何發表文獻之引用為其申請曰前之揭示 7 201016599 内容且不應解釋為承認本文所述本發明無權早於此發表 文獻因先前發明而取得權利。此外,所提供之公告日期可 能不同於實際公告日期’而該實際公告日期可^個別確 認。 應注意如本文及所附申請專利範圍所用之單數型”一” 及”該”包括複數參考物,除非内文中另外清楚指示。另外 應注意可草擬申請專利範圍以排除任何可選元件。照此, 此陳述意圖用作使用此與申請專利範圍各項元件之描述 有關的排除術語如,,唯一”、,,僅,,及類似詞或使用,,負,,二^ @ 的先行基礎。 如熟諳此技者在閱讀此揭示内容後將清楚瞭解本文所 述及說明之個別具體實施例各具有不同組分及特徵,其可 容易地與其他若干具體實施例中任一者之特徵分離或與 之結合而無悖離本發明範疇及精神。任何所述方法可依^斤 述事件順序或依任何其他邏輯上可行之順序進行。t This article relies on the terms, the terms, and the values before the threat to present a specific range. The term "about" is used in this document to provide support for the precise number and the number of words that are close to or approximate to the term. The decision or approximation is not described in the decision-number. Number: may be a number, which provides a substantial equivalent of the number described in the presented mosquito towel. Unless otherwise defined, all technical and scientific terms used herein are familiar with the invention; The general understanding of the meaning of the phase. Although any similar or equivalent to the green and (4) of the articles described herein can also be used in the implementation of the test towel of the present invention, it will now be representative of the method of the bribe (four) method. All published literature, patents, and patent applications are incorporated herein by reference to the extent to which the disclosures, the patents, The patents and patent applications are hereby incorporated by reference in their entirety to disclose and describe the subject matter of the disclosure of the publications. It is not to be construed as an admission that the invention described herein is not entitled to the invention as claimed in the prior invention. In addition, the date of the disclosure may be different from the actual date of the publication, and the actual date of the announcement may be individually confirmed. It is to be understood that the singular forms " and" and "the" are used in the <Desc/Clms Page number> This statement is intended to be used as antecedent basis for the exclusion of terms such as ",", ",", ", ", ", ", ", ", ", ", " It will be apparent to those skilled in the art, after reading this disclosure, that the particular embodiments described and illustrated herein have various components and features that can be readily separated from the features of any of the other embodiments. It is combined with the scope and spirit of the invention. Any of the methods described may be performed in the order of events or in any other logically feasible order.

材料 Q 如進一步詳述於下’本發明利用c〇2來源、質子去除 劑來源(及/或進行質子去除之方法)及二價陽離子來源。金 屬氧化物廢棄物來源(如燃燒灰分如飛灰、底灰、鍋爐潰; 水泥窯灰;及礦渣如鐵礦渣、含填礦渣)可提供全部或部 分質子去除劑來源及/或二價陽離子來源。照此,金屬氧化 物廢棄物來源如燃燒灰分(如飛灰、底灰、鍋爐渣)、水泥 窯灰及礦渣(如鐵礦渣、含磷礦渔)可為製造本文所述組成 201016599 物之二價金屬陽離子及質子去除劑的唯一來源。廢棄物來 源如灰分、水泥窯灰、礦渣(如鐵礦渣、含磷礦渣)亦可與 -價陽離子或質子絲劑之補充來雜合使用。首先描述 二氧化碳來源、補充二價陽離子來源及補充質子去除來源 (及進行質子去除之方法)以提供金屬氧化物廢棄物來源作 為了價陽離子及質子去除劑之來源的背景。然後,描述金 屬氧化物廢棄物來源,例如燃燒灰分、水泥窯灰、礦渣(如 ❿賴逢、含碟礦逢)’接著描述此等金屬氧化物廢棄物來 源用於製造含碳酸鹽組成物之方法。 &quot;氧化碳 本發明方法包括令二價陽離子水溶液之體積與c〇2來 源接觸,然後使所得溶液處於沈澱條件下。含二價陽離子 溶液中存在足夠二氧化碳以沈澱出顯著量之含碳酸趟沈 殿物(如由海水):然而-般使_外二氧化碳。c〇2來源 可為任何慣用c〇2來源。該c〇2來源可為氣體、液體、固 體(如乾冰)、超臨界流體或溶於液體之Co”在某些具體 實施例中,co2來源係氣態c〇2來源n為^質 C〇2或⑽錄組分,包括c〇2及― 或其他物質如灰分和其他微粒。在某些具體實施例中,氣 態C〇2來源為廢棄物進料(即工廠之活動程序的副產如 源自工廠之廢氣。工廠本質可不同,感興趣之工廠勺 不限於)發電薇、化學處理廠、機械處理薇、精煉廠 泥廠、鋼鐵廠及其他以燃料燃燒或另一處理牛驟(如尺、尸 201016599 廠之緞燒)之副產物形式產生co2之工廠。 含C〇2之廢氣流包含還原(如合成氣、轉移合成氣、天 然氣、氫及類似物)及氧化條件流(如燃燒之煙道氣)。本發 明慣用之特定廢氣流包括含氧之燃燒工廠煙道氣(源自煤 或另一以碳基礎之燃料且該煙道氣經些微或無預處理)、 渦輪增壓式鍋爐產出氣體、煤氣化產出氣體、轉移煤氣化 產出氣體、厭氧消化槽產出氣體、井口天然氣流、重組天 然氣或曱烷水合物及類似物。任何慣用來源之燃燒氣皆可 用於本發明方法及系統中。在某些具體實施例中,可使用❹ 工廠如發電廠、水泥廠及煤處理廠之燃燒後排放煙囱中 燃燒氣。 因此,該等廢棄物流可由多種不同類型之工廠產生。 適,本發明之廢棄物流包括燃燒化石燃料(如煤、油、天 然氣)之工廠所產生之廢棄物流及自然發生之有機燃料沈 積物(如焦油砂、重油、油頁岩等)之人為崎產物。在某 ❹ ,體實_巾,適合驗本發明系統及方法之廢棄物流 係源自燃煤發電廠’如粉煤發電廠、超臨界煤發電廠、混 3煤發電薇、趙化床煤發電廠;在某些具體實施例中, 該,棄物流侧自缝或_峨及蒸汽顺發電薇、辦 2燃油鍋爐簡單循環氣、;發電廠或燃氣或燃油锅爐 環氣雜發電廠。在某些频實施财,使用燃燒 即藉由氣化有機物(例如煤、生質等)所產生之氣體) 2廠所製造的廢棄物流。在具體實施例中,使用 &quot; 合氣化複合循環(IGCC)廒之廢棄物流。在某些具體 201016599 實施例中,藉由熱回收鍋爐(Heat Recovery Steam Generator ’ HRS G)廠所產生之廢棄物流係根據本發明系統 及方法用於製造聚集體。 水泥廠所產生的廢棄物流亦適合用於本發明系統及方 法中。水泥廠廢棄物流包含源自濕法及乾法工廠之廢棄物 流,該等工廠可使用豎窯或旋轉窯並可包含預煅燒爐。此 等工廠各可燃燒單一燃料或可依序或同時燃燒兩或多種 ❹鋪。 工業廢氣流可包含·一氧化碳作為主要非空氣衍生組分 或特別係在燃煤發電廠的情況下可包含額外組分如氮氧 化物(NOx)、硫氧化物(SOx)及一或多種額外氣體。額外氣 體及其他組分可包括CO、采及其他重金屬和粉塵微粒(如 源自锻燒及燃燒程序)。氣流中之額外組分亦可包括鹵化 物如氯化氫及氟化氫;微粒物質如飛灰、粉塵及金屬,包 括石申、鈹、硼、鑛、鉻、鉻VI、钻、錯、猛、汞、鉬、 ©硒、锶、鉈及釩;及有機物如烴、戴奥辛及PAH化合物。 可經處理之適合廢氣流在某些具體實施例中具有以 200ppm 至 l,000,000ppm,如 200,000ppm 至 lOOOppm,包 括 200,000ppm 至 2000ppm,例如 180,000ppm 至 2000ppm’ 或 180,000ppm 至 5000ppm,亦包括 180,000ppm 至10,000ppm之量存在之c〇2。該等廢棄物流,特別係各 種燃燒氣之廢棄物流可包含一或多種額外組分,例如水、 NOx(單氮氧化物:NO及N02)、SOx(單硫氧化物:SO、 S02及S03)、VOC(揮發性有機化合物)、重金屬如汞及微 11 201016599 粒物質(懸浮於氣體中之固體或液體微粒)。煙道氣溫度亦 可不同。在某些具體實施例中,煙道氣之溫度係從〇。(:至 2000°C,如從 6〇°c至 700°C,並包括 l〇〇°C至 400°C。 在多個具體實施例中,一或多種額外組分係沈澱於藉 使含此等額外組分之廢氣流與含二價陽離子(如鹼土金屬 離子如Ca2+及Mg2+)水溶液接觸所形成之沈澱物中。鈣及 鎮之硫酸鹽及/或亞硫酸鹽可沈澱於由含SOx(如S02)之廢 氣流所製得之沈澱物(另外包含鈣及/或鎂碳酸鹽)中。鎂及 的可反應形成CaS04、MgS04以及其他含鈣及含鎂化合物 ® (如亞硫酸鹽)’有效地由煙道氣流無脫硫步驟如煙道氣脫 流(“FGD”)地去除硫。此外,可無額外釋放c〇2地形成 CaCCb、MgC〇3及相關化合物在二價陽離子水溶液包含 咼濃度硫化合物(如硫酸鹽)的例子中,水溶液可富含妈及 鎂,因此鈣及鎂可在形成CaSOY、MgSOY及相關化合物 之後或除了形成其等物以外另外形成碳酸辦化合物。在某 些具體實施例中,脫硫步驟可配合含碳酸鹽沈澱物之沈澱 同時進行’或脫硫步驟可在沈殿之前分階段進行。在某咏❹ 具體實施例中,於不同階段集得多種反應產物(如含碳酸 鹽沈澱物、CaS〇4等),而在其他具體實施例中,集得單一 反應產物(如含碳酸鹽、硫酸鹽等之沈殿物)。與此等具體 實施例一致時,其他組分,如重金屬(如汞、汞鹽、含汞 化合物)可能陷入含碳酸鹽之沈澱物中或可個別沈澱。 一部分源自工廠之廢氣流(即非整個廢氣流)可用於製 造沈澱物。在此等具體實施例中,廢氣流中用於沈澱物之 12 201016599 沈澱的部分可佔廢氣流之75%或更少,如60%或更少,並 包括50%或更少。在另外其他具體實施例中,實質上(如 8 0 %或更多)工廠所產生之全部廢氣流係用於沈澱物之沈 殿。在此等具體實施例中,80%或更多,如90%或更多, 包括95%或更多’高達100%的該來源所產生之廢氣流(如 煙道氣)可用於沈澱物之沈澱中。 雖然工業廢氣提供相對濃的燃燒氣來源,本發明方法 Ο 及系統亦可應用於自包含濃度遠低於(例如)煙道氣之污染 物的較低濃度來源(如大氣空氣)中去除燃燒氣體組分。因 此’在某些具體實施例中,方法及系統涵蓋藉由產生一穩 定沈殿物而降低大氣空氣中污染物之濃度。在此等情況 下’在一部分大氣空氣中污染物如co2之濃度可降低10% 或更多’ 20%或更多,30%或更多,4〇%或更多,50%或更 多’ 60%或更多’ 70〇/〇或更多,8〇0/〇或更多,9〇0/。或更多, 95%或更多,99〇/。或更多,99.9〇/〇或更多,或99.99%。此 © 大氣污染物之降低可以本文所述之產率或以更高或較低 產率達成並可以一個沈澱步驟或以一系列沈澱步驟完成。 二價陽離子 如上所揭示,金屬氧化物廢棄物流如各極詳細地描述 ;下歹]各卽申之燃燒灰分(如飛灰、底灰、鋼爐渣)、水泥 窯灰及礦渣(如鐵礦渣、含磷礦渣)可為製造本文所述組成 $之二價金屬陽離子的唯—來源;然而,廢棄物來源如灰 刀、水泥窯灰、礦渣(如鐵礦渣、含磷礦渣)亦可與如此節 13 201016599 所述之二價陽離子補充來源組合使用。 本發明方法包括使二價陽離子水溶液之體積與叫 令所得溶液處於沈澱條件下。除了二價陽離 2棄物來源之外,視特定地點之可用性Μ,二價陽 離子可源自許多不同二價陽離子來源中之任—者。此類 工業廢棄物、海水、财、硬水、礦物及任何 其他適合來源。 供-中’源自各種工業程序之工業廢棄物流提 &quot; &lt;慣用來源(以及在某些情況下其他適用 :雜序之物,如金屬氧化物)。此類廢棄物流包括(但不 限於)私礦廢棄物;化石燃·燒灰分(如飛灰,如本文另 二卜詳述描述般);礦渣(如鐵礦渣、含磷矮渣);水泥窠廢棄 (如本文另外詳述描述般);煉油/石化精 物’由 田及甲層滷你煤層廢棄物(如錢滷水及(^由 :造:廢棄物;水軟化廢棄逾水(如離子交換= 石夕處理廢錄4祕棄物;金躲喊 $Material Q is as further detailed below. The present invention utilizes a c〇2 source, a proton-removing agent source (and/or a method of proton removal), and a source of divalent cations. Sources of metal oxide waste (such as fly ash such as fly ash, bottom ash, boiler collapse; cement kiln dust; and slag such as iron ore slag, containing slag) may provide all or part of proton-removing agent sources and/or divalent cations source. As such, sources of metal oxide waste such as combustion ash (eg, fly ash, bottom ash, boiler slag), cement kiln dust, and slag (eg, iron ore slag, phosphorus-bearing ore) may be used to make the composition of 201016599 as described herein. The only source of divalent metal cations and proton removers. Sources of waste such as ash, cement kiln dust, slag (such as iron ore slag, phosphorus slag) can also be used in combination with the addition of a valence cation or a proton filament. The source of carbon dioxide, the source of divalent cations, and the source of proton removal (and methods for proton removal) are first described to provide a source of metal oxide waste as a source of valence cations and proton-removing agents. Then, describe the source of metal oxide waste, such as burning ash, cement kiln ash, slag (such as ❿赖逢, containing disc mine), and then describe the source of such metal oxide waste for the manufacture of carbonate-containing constituents. method. &quot;Oxidized Carbon The process of the invention comprises contacting a volume of an aqueous divalent cation solution with a c〇2 source and then subjecting the resulting solution to precipitation conditions. Sufficient carbon dioxide is present in the divalent cation-containing solution to precipitate a significant amount of the strontium carbonate-containing sulphate (e.g., by seawater): however, the _ external carbon dioxide is used. The source of c〇2 can be any conventional c〇2 source. The c〇2 source may be a gas, a liquid, a solid (such as dry ice), a supercritical fluid, or a liquid-soluble Co. In some embodiments, the co2 source is gaseous c〇2 source n is a mass C〇2 Or (10) recording components, including c〇2 and/or other materials such as ash and other particulates. In some embodiments, the gaseous C〇2 source is a waste feed (ie, a by-product of the plant's activity program, such as a source) The waste gas from the factory. The nature of the factory can be different. The spoons of interest are not limited to) power generation Wei, chemical treatment plant, mechanical processing Wei, refinery mud factory, steel plant and other fuel burning or another processing of cattle (such as ruler) The by-product of the corpse 201016599 is produced by co2. The waste gas stream containing C〇2 contains reduction (such as syngas, transfer synthesis gas, natural gas, hydrogen and the like) and oxidative conditions (such as combustion). Flue gas). The specific exhaust stream conventionally used in the present invention includes an oxygen-containing combustion plant flue gas (from coal or another carbon-based fuel with little or no pretreatment of the flue gas), turbocharged Boiler production gas, coal gasification gas, transfer coal Gasification produced gas, anaerobic digestion tank produced gas, wellhead natural gas stream, recombined natural gas or decane hydrate, and the like. Any conventional source of combustion gas can be used in the method and system of the present invention. In the example, the combustion gases in the post-combustion stack of a kiln plant such as a power plant, a cement plant, and a coal processing plant may be used. Therefore, the waste streams may be produced by a plurality of different types of plants. Suitably, the waste stream of the present invention includes combustion. The waste stream generated by factories of fossil fuels (such as coal, oil, natural gas) and the naturally occurring organic fuel deposits (such as tar sands, heavy oil, oil shale, etc.) are products of human beings. The waste stream suitable for testing the system and method of the present invention is derived from a coal-fired power plant such as a pulverized coal power plant, a supercritical coal power plant, a mixed coal coal power generation Wei, and a Zhaohua bed coal power plant; in some embodiments , the abandoned logistics side from the seam or _ 峨 and steam 顺 薇 Wei, do 2 fuel boiler simple cycle gas; power plant or gas or oil boiler ring gas hybrid power plant. In some frequency implementation, The waste stream produced by the combustion of the organic matter (for example, coal, biomass, etc.) is used. In the specific embodiment, the waste stream of the combined gasification combined cycle (IGCC) is used. In certain specific 201016599 embodiments, the waste stream produced by the Heat Recovery Steam Generator 'HRS G plant is used to make aggregates according to the system and method of the present invention. Waste stream produced by the cement plant Also suitable for use in the systems and methods of the present invention. The cement plant waste stream comprises waste streams derived from wet and dry processes, which may use a shaft kiln or a rotary kiln and may include a pre-calciner. Burn a single fuel or burn two or more layers in sequence or simultaneously. The industrial waste gas stream may comprise carbon monoxide as the main non-air derived component or, in particular in the case of a coal fired power plant, may comprise additional components such as nitrogen oxides (NOx), sulfur oxides (SOx) and one or more additional gases. . Additional gases and other components may include CO, mining and other heavy metals and dust particles (eg from calcining and combustion processes). Additional components in the gas stream may also include halides such as hydrogen chloride and hydrogen fluoride; particulate materials such as fly ash, dust and metals, including schistosides, bismuth, boron, ores, chromium, chromium VI, drill, spur, sulphur, mercury, molybdenum , © selenium, tellurium, tellurium and vanadium; and organic compounds such as hydrocarbons, dioxin and PAH compounds. The suitable exhaust gas stream that can be treated has, in certain embodiments, from 200 ppm to 1,000,000 ppm, such as from 200,000 ppm to 1000 ppm, including from 200,000 ppm to 2000 ppm, such as from 180,000 ppm to 2000 ppm' or from 180,000 ppm to 5000 ppm, including 180,000. The amount of c〇2 exists in the amount of ppm to 10,000 ppm. Such waste streams, particularly waste streams of various combustion gases, may contain one or more additional components such as water, NOx (mononitrogen oxides: NO and N02), SOx (monosulfide oxides: SO, S02 and S03). , VOC (volatile organic compounds), heavy metals such as mercury and micro 11 201016599 granules (solid or liquid particles suspended in a gas). The flue gas temperature can also vary. In some embodiments, the temperature of the flue gas is from helium. (: to 2000 ° C, such as from 6 ° ° c to 700 ° C, and includes l ° ° C to 400 ° C. In various embodiments, one or more additional components are precipitated in the borrowing The waste stream of these additional components is formed in a precipitate formed by contact with an aqueous solution containing divalent cations such as alkaline earth metal ions such as Ca 2+ and Mg 2+ . Calcium and sulphate and/or sulfite may be precipitated in SOx-containing (such as S02) waste water produced by the precipitation (additional calcium and / or magnesium carbonate). Magnesium and can react to form CaS04, MgS04 and other calcium and magnesium containing compounds (such as sulfite) 'Efficiently removes sulfur from the flue gas stream without desulfurization steps such as flue gas de-flow ("FGD"). In addition, CaCCb, MgC〇3 and related compounds can be formed in the divalent cation aqueous solution without additional release of c〇2. In the case of a cerium-concentrated sulfur compound such as a sulphate, the aqueous solution may be enriched in mom and magnesium, so calcium and magnesium may additionally form a carbonated compound after or in addition to forming CaSOY, MgSOY and related compounds. In some embodiments, the desulfurization step can be combined with carbonation The simultaneous precipitation of the precipitates or the desulfurization step can be carried out in stages before the slab. In a specific embodiment, various reaction products (such as carbonate precipitates, CaS〇4, etc.) are collected at different stages. In other embodiments, a single reaction product (such as a carbonate, sulfate, etc.) is collected. In accordance with these specific examples, other components, such as heavy metals (such as mercury, mercury salts, Mercury compounds may be trapped in carbonate-containing precipitates or may be precipitated separately. A portion of the waste stream from the plant (ie, not the entire exhaust stream) may be used to make a precipitate. In these embodiments, the waste stream is used in the waste stream. Precipitate 12 201016599 The precipitated portion may comprise 75% or less of the exhaust stream, such as 60% or less, and include 50% or less. In still other embodiments, substantially (eg, 80% or More) all of the exhaust stream produced by the plant is used in the sedimentation of sediments. In these specific embodiments, 80% or more, such as 90% or more, including 95% or more 'up to 100% Exhaust gas stream from the source (eg flue Gas) can be used in the precipitation of precipitates. Although industrial waste gases provide a relatively rich source of combustion gases, the process and system of the present invention can also be applied to lower concentrations from contaminants that are much lower in concentration than, for example, flue gases. The combustion gas component is removed from a source (e.g., atmospheric air). Thus, in some embodiments, the method and system encompass reducing the concentration of contaminants in the atmospheric air by creating a stable sediment. In such cases, The concentration of contaminants such as co2 in a portion of atmospheric air can be reduced by 10% or more '20% or more, 30% or more, 4% or more, 50% or more '60% or more' 70〇/〇 or more, 8〇0/〇 or more, 9〇0/. Or more, 95% or more, 99〇/. Or more, 99.9〇/〇 or more, or 99.99%. This reduction in atmospheric contaminants can be achieved in the yields described herein or in higher or lower yields and can be accomplished in one precipitation step or in a series of precipitation steps. Divalent cations As disclosed above, the metal oxide waste stream is described in detail as follows; the lower 歹] each of the burning ash (such as fly ash, bottom ash, steel slag), cement kiln ash and slag (such as iron ore slag) , phosphorus-containing slag) can be the only source for the manufacture of the divalent metal cations of the composition described herein; however, sources of waste such as ash knives, cement kiln dust, slag (such as iron ore slag, phosphorus slag) can also be The divalent cation supplement source described in Section 13 201016599 is used in combination. The process of the invention comprises subjecting the volume of the aqueous solution of divalent cations to the conditions under which the resulting solution is subjected to precipitation. In addition to the source of divalent cations 2, depending on the availability of the particular site, the divalent cation can be derived from any of a number of different sources of divalent cations. Such industrial waste, sea water, wealth, hard water, minerals and any other suitable source. Supply-medium from industrial waste streams from various industrial processes &quot;&lt; customary sources (and in some cases other applications: miscellaneous materials such as metal oxides). Such waste streams include (but are not limited to) private ore waste; fossil fuel burned ash (such as fly ash, as described in detail elsewhere herein); slag (such as iron ore slag, phosphorus-containing dwarf slag);窠 abandonment (as described in additional detail in this article); refinery/petrochemical concentrates' from the field and layer A brines (such as money brines and (^: made: waste; water softened waste water (such as ion exchange) = Shi Xi treatment waste 4 secrets; gold dodge $

紡織廢棄物及苛性漿料。 斧奶,网pH 在某些地點中’用於本發明系統及方法之 慣用來源為水(如含有二價陽離子之水溶液如^ 滷水),其可視欲實施本發明之特定地點而變 ^面 適合二價陽離子水溶液包括含有—或多種 ^ 驗土金屬_子如⑸+及Mg2+之溶液。在某些^實^ 例中,-價陽離子水溶液包含驗土金屬陽離子 體實施例中,驗土金屬陽離子包_、鎂或其混合 201016599 某些具體實施例中,二價陽離子水溶液包含範圍從50至 50,000ppm、50 至 40,000ppm、50 至 20,000ppm、1〇〇 至 10,000ppm、200 至 5000ppm,或 400 至 lOOOppm 之量的 詞。在某些具體實施例中,二價陽離子水溶液包含範圍從 5〇 至 4〇,OOOppm、5〇 至 20,000ppm、100 至 l〇,〇〇〇ppm、 200 至 l〇,〇〇〇ppm、500 至 5000ppm,或 500 至 2500ppmTextile waste and caustic pulp. Axe Milk, Net pH In some locations, the conventional source for the systems and methods of the present invention is water (e.g., an aqueous solution containing divalent cations such as brine) which may be adapted to the particular location of the present invention. The divalent cation aqueous solution includes a solution containing - or a plurality of soil-measuring metals such as (5) + and Mg2+. In some embodiments, the aqueous solution of the valence cation comprises the soil metal cation embodiment, the soil metal cation package, the magnesium or the mixture thereof. 201016599 In some embodiments, the aqueous divalent cation solution comprises a range of 50 The words to 50,000 ppm, 50 to 40,000 ppm, 50 to 20,000 ppm, 1 to 10,000 ppm, 200 to 5000 ppm, or 400 to 1000 ppm. In certain embodiments, the divalent cation aqueous solution comprises from 5 〇 to 4 〇, OOO ppm, 5 〇 to 20,000 ppm, 100 to 1 〇, 〇〇〇 ppm, 200 to 1 〇, 〇〇〇 ppm, 500 To 5000ppm, or 500 to 2500ppm

❹ 之量的鎂。在某些具體實施例中,Ca2+及Mg2+皆存在時, 二價陽離子水溶液中Ca2+對Mg2+之比例(即Ca2+ : Mg2+) 為 1 ·· 1 至 1 : 2.5 ; 1 : 2·5 至 1 : 5 ; 5 至 1 : 1〇 ; i : 10 至 1 : 25 ; 1 : 25 至 1 : 50 ; 1 : 50 至 1 : 1〇〇 ; 1 : 100 至 i : 150 ; 1 : 150 至 1 : 200 ;丨:2〇〇 至】:25〇 ; 1 : 25〇 至工: 5〇〇 ;或1 : 500至1 : 1000。在某些具體實施例中,二價 陽離子水溶液中Mg2+對Ca2+之比例(即Mg2+ : Ca2巧為^ : 1 至 1 : 2.5 ; 1 : 2.5 至 1 : 5 ; 1 : 5 至 1 : 10 ; 1 ·· 1〇 至! ·· 25,1 . 25 至 1 : 50 ; 1 : 50 至 1 : 100 ; 1 : 100 至 1 : 150 ; 150 至 1 : 200 ; 1 : 200 至 1 : 250 ; 1: 250 至 1 : 500 ; 或 1 : 500 至! : 1〇〇〇。 、、二賈白陽離子水溶液可包含衍生自淡水、鹹水、海水或 廠廢水Uxt發生之滷水或人為滷水如地祕廢水、淡化 子,”他具有鹽度大於淡水之鹽水的二價陽離 械但不若人躺。料係比淡水 3_(千分之f ^ f。的鹽度範圍係從約〇.5至約 範圍為約% ㈣韻、料或任何其他鹽度 、’、ΡΡ之鹽水體的水。滷水係經鹽飽和或 15 201016599 近飽寿之水。屬水具有約5〇邮或更大之鹽度。在某些具 f實&amp;例中’獲得二價陽離子之鹽水來源係選自海、海 洋月沼澤’可口、渴湖、表面滷水、深滴水、驗性湖、 内=或類似來源之自然發生來源。在某些具體實施例中, 獲得-價陽離子之鹽水來源係選 自地熱廒廢水或淡化廠 廢水之人為滷水。 水經常係二價陽離子(如鹼土金屬陽離子如Ca2+及The amount of magnesium. In some embodiments, when both Ca2+ and Mg2+ are present, the ratio of Ca2+ to Mg2+ in the aqueous divalent cation solution (ie, Ca2+: Mg2+) is from 1··1 to 1:2.5; 1 : 2·5 to 1: 5 5 to 1: 1〇; i : 10 to 1: 25 ; 1 : 25 to 1: 50 ; 1 : 50 to 1: 1 ; 1 : 100 to i : 150 ; 1 : 150 to 1: 200 ;丨: 2〇〇 to: 25〇; 1: 25〇 to work: 5〇〇; or 1: 500 to 1: 1000. In some embodiments, the ratio of Mg2+ to Ca2+ in the aqueous solution of divalent cations (ie, Mg2+: Ca2 is ^: 1 to 1: 2.5; 1 : 2.5 to 1: 5; 1: 5 to 1: 10; ·· 1〇 to! ·· 25,1 . 25 to 1:50 ; 1 : 50 to 1: 100 ; 1 : 100 to 1: 150 ; 150 to 1: 200 ; 1 : 200 to 1: 250 ; 250 to 1: 500; or 1: 500 to! : 1〇〇〇., Erjibai cationic aqueous solution may contain brine or artificial brine derived from fresh water, salt water, sea water or plant wastewater Uxt, such as secret water, desalination Son," he has a bivalent yang with a salinity greater than that of fresh water, but he does not lie. The ratio of the salinity is 3 to (f, f ^ f of the range) from about 〇.5 to about Approximately (4) rhyme, material or any other salinity, ', ΡΡ ΡΡ salt water. The brine is saturated with salt or 15 201016599 near full life water. The water has a salinity of about 5 〇 or more. In some cases, the source of brine for obtaining divalent cations is selected from sea, ocean month marsh 'delicious, thirsty lake, surface brine, deep drip, lake, or == Like the natural source of the source occurs in certain embodiments, to obtain - Source brine monovalent cation of lines selected from the geothermal Ao wastewater or desalination artificial brine plant effluent water is often based divalent cations (e.g., alkaline earth metal cations such as Ca2 + and

Mg+)之慣用來源。可使用多種適合淡水來源中之任一 者’包括I巳圍從相對不含礦物之來源至相對富含礦物之來® 源的淡水來源。虽含礦物之淡水來源可為自然發生的,包 括多種硬水來源、湖或内海中之任一者。某些富含礦物之 淡水來源如鹼性湖或内海(如土耳其之Lake Van)亦提供- pH-改良劑來源。富含礦物之淡水來源亦可為人為的。例 如’缺2^礦物之(軟)水可與二價陽離子如鹼土金屬陽離子 (如Ca 、Mg2+等)來源接觸以產生一適合用於本文所述方 法及系統的富含礦物之水。可利用任何慣用實驗程序 (protocol)(如添加固體、懸浮液或溶液)將二價陽離子或其© 刖驅物(如鹽、礦物)加入淡水(或本文所述之任何其他類塑 之水)中。在某些具體實施例中,可將選自Ca2+及Mg2+之 二,陽離子加入淡水中。在某些具體實施例中,可將選自The usual source of Mg+). A variety of suitable freshwater sources can be used, including freshwater sources ranging from relatively mineral-free sources to relatively mineral-rich sources. Although freshwater sources containing minerals can occur naturally, including any of a variety of hard water sources, lakes or inland seas. Some mineral-rich sources of fresh water such as alkaline lakes or inland seas (such as Lake Van in Turkey) also provide a source of pH-modifier. Sources of mineral-rich fresh water can also be artificial. For example, 'soft 2' minerals may be contacted with divalent cations such as alkaline earth metal cations (e.g., Ca, Mg2+, etc.) to produce a mineral-rich water suitable for use in the methods and systems described herein. Divalent cations or their hydrazines (eg, salts, minerals) can be added to fresh water (or any other type of water described herein) using any conventional protocol (eg, addition of a solid, suspension, or solution). in. In some embodiments, a cation selected from the group consisting of Ca2+ and Mg2+ can be added to fresh water. In some embodiments, it may be selected from

Na及K之單價陽離子加入淡水中。在某些具體實施例 中’含有Ca2+之淡水係與鎂矽酸鹽(如撖欖石或蛇紋石)或 其產物或經處理形式物組合以產生包含I弓及鎂陽離子之 溶液。 ' 16 201016599 來提供二價陽料來敎科,紐礦物係驗 如橄槽^任何慣用實驗程序溶解鎂鐵f及超鎮鐵質礦 、蛇紋石及任何其他適合礦物。亦可使用其他礦 (例如。轉可藉由增加表面積,如藉由㈣方式或 (i如喷射研磨而研細及藉由(例如)超音波技術的使用 ❺ 2加速。另外’礦物溶解可藉由暴露於酸或驗而加速。金 if酸鹽(如財酸鹽)及其他含有感興趣陽離子之礦物可 讀(例如)於酸如HC1(視情況源自電化學程序)中以產生 (例如)鎂及其他用n殿物之金屬陽離子。在某些且體實 施例中,财㈣及其他礦物可_化或溶於二:溶液 中’其中該水毅目二氧化碳及其他廢氣(如燃燒氣)組分 之添加而變酸性。或者,藉由水性鹼金屬氫氧化物(如 NaOH)或任何其他適合苛性物轉—或多種金屬梦酸鹽 (如撖欖石及蛇紋石)而可使用其他金屬物種如金屬氮氧化 物(如Mg(OH)2、Ca(OH)2)。水性鹼金屬氫氧化物或其他苛 性物之任何適合濃度皆可用於分解金屬矽酸鹽,包括高度 濃縮及極稀之溶液。鹼金屬氫氧化物(alkali hydr〇xide)(如 NaOH)在溶液中之濃度(以重量計)可為(例如)從3〇%至 80%及從70%至20°/❶之水。較佳係經水性驗金屬氫氧化物 消化之金屬矽酸鹽及類似物可直接用於製造沈澱物。此 外,可恢復沈澱反應混合物之鹼值並重新用於消化額外金 屬矽酸鹽及類似物。 在某些具體實施例中,二價陽離子水溶液可由亦提供 燃燒氣流之工廠獲得。例如,在水冷卻工廠,如在海水冷 17 201016599 卻工廠中,已為工廠用於冷卻之水然後可用作製造沈澱物 之水。必要時,該水可在進入沈澱系統之前先經冷卻。此 類方法可為(例如)單程冷卻系統利用。例如,城市或農業 供水可用作工廠之單程冷卻系統。然後可將源自工廠之水 用於製造沈澱物,其中輸出水具有較低硬度及較高純度。 必要時’此類系統可經改良以包含安全措施(如以债測破 壞如毒物之添加)並與政府機構(如國土安全或其他機構) 配合。其他破壞或攻擊之安全設備可用於某些具體實施例 中。 ❹ 質子去除劑及方法 如上所揭讀’金屬氧化物廢棄物來源如各極詳細地 描述於下列各料之峨好(如飛灰、歧、鋪渣) 合使用。 水泥寞灰及(域碰、含_渣)可為製造本文所述 組成物之質子去除劑的唯—來源;然而,廢棄物來源如灰 分、水泥紋、礦潰(如鐵礦潰、含餐渣)亦可與如此節 所述之質子去_之補絲源(及進行質子去除之方法)址 本發明方法包括使二價陽離子水溶液之體積與 來源接觸(以溶解c〇2)並令所得溶液處於沈澱條件下。 r石水溶液產生碳酸,—種與碳酸氫鹽 文息千衡之物種。為製造含碳酸鹽沈㈣,自含二 ::::溶液中之多種物種(如碳酸、碳酸氫鹽、鍟等一) 去除質子而使平衡移向碳酸鹽。去除質子時,更多co 201016599 進入溶液中。在某些具體實施例中,使用質子去除劑及/ 或方法並使含二價陽離子水溶液與c〇2接觸以增加在一 個沈澱反應相中c〇2之吸收(pH可保持固定、增加或甚 至降低)’接著快速去除質子(如藉由鹼的添加)以使含碳 酸鹽沈澱物快速沈澱。質子可由多種物種(如碳酸、碳酸 氫鹽、銓等)藉由慣用方法,包括(但不限於)使用自然發 生之質子去除劑、使用微生物及真菌、使用合成化學質子 Φ 去除劑、回收人造廢棄物流及利用電化學方法去除。 自然發生之質子去除劑涵蓋任何可見於可產生或具有 鹼性局部環境之寬廣環境中的質子去除劑。某些具體實施 例提供自然發生的質子去除劑,包括在添加至溶液中(即 浴解)後產生驗性環境之礦物。此類礦物包括(但不限於)·· 石灰(CaO);方鎂石(Mg〇);火山灰;超鎂鐵質岩石及礦物 如蛇紋石;及氫氧化鐵礦(如針鐵礦及褐鐵礦)。此類岩石 及礦物之溶解方法為本文所提供者。某些具體實施例提供 利用自然驗性水體作為自然發生之質子去除劑。自然鹼性 水體之實例包括(但不限於)表面水來源(如鹼性湖如加州 之Mono Lake)及地下水來源(如鹼性水層)。其他具體實施 例提供乾驗性水體之沈積物,如沿著非洲GreatRift Valley 之Lake Najron的硬層(crust)之使用。某些具體實施例係使 用在正常代謝中分泌鹼性分子或溶液之生物作為質子去 除劑。此類生物之實例為產生鹼性蛋白酶之真菌(如具有9 之最適PH的深海真菌焦曲霉办&quot;⑽⑽加^)及產生驗 性分子之細菌(如見於英國Columbia之Atlin濕地中的青 201016599 藍菌(cynobacteria)如勒絲藻(/少叹咖2 5p_) ’其因光合作用之 副產物而增加pH)。在某些具體實施例中,生物係用於產 生pH去除劑,其中該生物(如巴氏芽孢桿菌⑺細以⑽ /7⑽,其將尿素水解成氨)代謝污染物(如尿素)以產生 質子去除劑或含質子去除劑(如氨、氫氧化銨)之溶液。在 某些具體實施例中’生物係與沈澱反應混合物分開培養, 其中質子去除劑或含質子去除劑之溶液係用於添加至沈 澱反應混合物中。在某些具體實施例中,碳酸酐酶係用作 自然發生之質子去除劑以去除質子而使沈澱物沈澱。碳酸❹ 酐酶係一由植物及動物所製造之酶,其可加速水溶液中碳 酸變換成碳酸氫鹽。 進行質子去除之化學試劑一般係指大量製造之市售合 成化學試劑。例如,去除質子之化學試劑包括(但不限於) 氳氧化物、有機驗、超強驗、氧化物、教及碳酸鹽。氫氧 化物包括於溶液中提供氫氧化物陰離子之化學物種,包括 (例如)氫氧化鈉(NaOH)、氫氧化鉀(K0H)、氫氧化鈣 (Ca(OH)2)或氫氧化鎮(Mg(OH)2) ^有機鹼係含碳分子,其❹ 一般為含氮鹼,包括一級胺如曱基胺、二級胺如二異丙^ 胺、二級胺如二異丙基乙基胺、芳族胺如苯胺、雜芳族如 吡啶、咪唑及苯并咪唑和其多種形式物。在某些具體實施 例中,選自吡啶、曱基胺、咪唑、苯并咪唑、組胺酸及磷 腈之有機鹼係用於自沈澱沈澱物用之多種物種(如碳酸、 碳酸氫鹽、銼等)去除質子。在某些具體實施例中,氨係 用於提馬pH至-足以自二價陽離子溶液及工業廢棄物流 20 201016599 沈澱沈澱物之程度。適合用作質子去除劑之超強驗包括: 乙醇鹽、醯胺化鈉(NaNKy、氫化鈉(NaH)、丁基鋰、二異 丙基醯胺化鋰、二乙基醯胺化鋰及雙(三曱矽)醯胺化鋰。 氧化物’包括(例如)氧化鈣(CaO)、氧化鎂(Mg〇)、氧化锶 (SrO)、氧化鈹(Be0)及氧化鋇(Ba〇)亦為可使用之適合質子 去除劑。用於本發明之碳酸鹽包括(但不限於)碳酸納。 除了包含感興趣陽離子及其他適合金屬形式物之外, ❹ 源自各種工業程序之廢棄物流可提供質子去除劑。此類廢 棄物流包括(但不限於)採礦廢棄物;化石燃料燃燒灰分(如 飛灰,如本文另外詳述描述般);礦渣(如鐵礦渣、含磷礦 渣)’水泥窯廢棄物;煉油/石化精煉製廢棄物(如油田及曱 烷煤層滷水),煤層廢棄物(如產氣滷水及煤層滷水);造紙 廢棄物,水軟化廢棄滷水(如離子交換流出物);矽處理廢 棄物,農業廢棄物;金屬表面處理廢棄物;高pH紡織廢 ^物,及苛性漿料。採礦廢棄物包括任何由地面提取金屬 〇 或另一珍責或有用礦物之廢棄物。在某些具體實施例中, 利用採礦廢棄物以改良pH,其巾該廢棄物係選自下列各 =·源自Bayer鋁提取程序之紅泥;源自海水提取鎂之廢 自、=(如Mg(〇H)2) ’如加州MossLanding中所見者;及源 f礦程序,包括瀝取之廢棄物。經由動物廢棄物或過度 =料使用之農業廢棄物可包含氫氧化_(K〇H)或氨 3者照此,農業廢棄物在本發明某些具體實施例中可 苴子去除劑。此農業廢棄物經常被收集於池塘中,但 八亦可向下滲入水層中,其中該廢棄物可經存取及使用。 201016599 法,其係另:種自溶液中多種物種去除質子的方 法其係藉自溶質(碳酸或碳酸氣 或水之切蝴絲許^ !ΓΓ戈超過自溶質分子電化學去除之二= :其改f 。ΐ者,電化學方法可經由(例如)氯_驗方法 ❹ 苛性分子(如氫氧化物)。電極(即陰極 H極)可存在於包含含二價_子水雜或裝人廢氣流 (如充入C02)之溶液的裝置中’且選擇性障壁,如隔膜可 分開該等電極。去除質子之電化學魏及方法可產生可收 集並用於其他目的之職物(域)。可驗本發明系統及 方法中之額外電化學方法包括(但不限於)彼等us 61/081,299及US 61/091,729中所述者;將其揭示内容以 引用方式併入本文中。 在某些具體實施例中,低電壓電化學方法係用於去除 質子,例如C 02溶解於沈澱反應混合物或該沈澱反應混合 物之前驅物溶液中時。該沈澱混合物之前驅物溶液(例如) 可或無包含二價陽離子。在某些具體實施例中,溶於不含❹ 二價陽離子之水溶液的C〇2係經低電壓電化學方法處理 以自碳酸、碳酸氫鹽、銼或任何溶解C〇2所形成之物種 或其組合去除質子。低電壓電化學方法係操作在2、1.9、 1.8、1.7 或 1·6 V 或更低’如 1.5、1.4、1.3、12、1 1 v 或更低’如IV或更低’如0.9V或更低、〇.8v或更低、 0.7V或更低、0.6V或更低、0.5V或更低、〇.4v或更低、 0.3V或更低、0.2V或更低或0.1V或更低之平均電壓下。 22 201016599 無產生氯氣之低電壓電化學方法係本發明系統及方法所 慣用。無產生氧氣之去除質子的低電壓電化學方法亦為本 發明系統及方法所慣用。在某些具體實施例中,低電壓電 化學方法於陰極產生氫氣並將其運送至陽極並於該處將 氩氣轉化成質子。無產生氫氣之電化學方法亦係慣用的。 在某些情況下,去除質子之電化學方法不產生任何氣態副 產物。參見,例如2008年12月24日申請之美國專利申 請案第12/344,019號、2008年12月23日申請之美國專 利申請案第12/375,632號、2008年12月23曰申請之PCT 申請案號PCT/US08/088242及2009年1月28日申請之 PCT申請案號PCT/US09/32301,將該等申請案全部以引 用方式併入本文中。 燃燒灰分、水泥窯灰及礦渣 金屬氧化物廢棄物來源(如燃燒灰分如飛灰、水泥窯 灰等)可為製造本文所述組成物之質子去除劑的唯一來 源。換言之,金屬氧化物廢棄物來源如燃燒灰分、水泥 窯灰或類似物可提供用於改良反應混合物之pH之質子去 除劑的唯一來源’其中本發明組成物係由該反應混合物製 得。照此’在某些具體實施例中,質子去除劑的唯一來源 係選自飛灰、底灰及鋼爐渣之燃燒灰分。在某些具體實施 例中’質子去除劑的唯一來源係水泥窯灰。在某些具體實 施例中’質子去除劑的唯一來源係礦渣(如鐵礦渣、含磷 礦〉查)。同樣地,金屬氧化物廢棄物來源(如燃燒灰分如飛 23 201016599 火欠泥窯灰等)可為製造本文所述組成物之二價金屬陽 離=的唯-來源。換言之’金屬氧化物廢棄物來源如燃燒 灰分、水泥寞灰或類似物可提供製造本發明組成物之二價 陽離子的唯-來源。照此,在某些具體實施例中,二價陽 離子之唯一來源係選自飛灰、底灰及鍋爐渣之燃燒灰分。 在某些具體實施例中,二價陽離子的唯—來源係水泥黨 灰。在某些具體實施例中,二價陽離子的唯-來源係礦渣 (如鐵礦盧、含磷礦渣)。金屬氧化物廢棄物來源(如燃燒 灰分如飛灰、水泥窯灰等)在某些具體實施例中提供用於❹ 沈澱根據本發明沈澱物之二價陽離子及質子去除劑的唯 一來源。例如,灰分可提供用於沈澱沈澱物之二價陽離子 及質子去除劑。另外,金屬氧化物廢棄物來源及二價陽離 子及/或質子去除劑之其他來源之組合係更詳細討論於本 文中。 以碳為基礎之燃料如煤發電燃燒灰分廢棄物產物如飛 灰、底灰及鍋爐渣經常被掩埋或用於低價應用中作為處理 方式。此等廢棄產物經常包含掩埋時可能污染地下水之可❹ 瀝取污染物。美國煤灰協會(American coal Ash Ass〇datic)n) 報導美國每年所生產之165,000,000噸的燃煤產物中超過 56%係以大量成本簡單運送至燃煤實體之掩埋場中。由燃 燒石化燃料(如燃煤發電場中之煤)所形成之燃燒灰分經常 富含CaO或其他產生鹼性環境並提供溶液中之二價陽離 子的金屬氧化物。煤、木材及其他來源之燃燒產物,包括 火山爆發所釋放之火山灰(其一般各被視為燃燒灰分)亦可 24 201016599 包含可提高特定化學反應及所得水泥之各種氧化物如矽 石(Si〇2)、氧化鋁(ai2〇3)及鈣、鎂、鐵及類似物之氧化物。 如本發明所用之煤灰(即燃煤所產生之燃燒灰分)係指發電 廠锅爐或燃煤爐(如鏈條鍋爐、乾底粉煤鍋爐、排渣爐 (slag-tap boiler)、旋風鍋爐及流體化床鍋爐)中由燃燒粉狀 無煙煤、褐煤、煙煤、次煙煤或棕煤所產生之灰分物。此 類煤灰包括由該爐藉由廢氣或煙道氣所攜帶之細微煤灰 ❿ 之飛灰’於爐底收集之黏聚物(agglomerate)(如在乾底鋼爐) 的底灰;及收集於濕底鍋爐之灰斗中之鍋爐渣。 藏量豐富且成本相對低於低硫煤之高硫煤一般需要 煙道氣脫硫(FGD)以由煙道氣排放物中去除硫氧化物 (“S〇x”)。此程序一般藉由利用石灰石作為反應物以產生The monovalent cations of Na and K are added to fresh water. In some embodiments, the fresh water system containing Ca2+ is combined with a magnesium silicate (e.g., sapphire or serpentine) or a product or treated form thereof to produce a solution comprising an I bow and a magnesium cation. ' 16 201016599 to provide divalent cations to the genus, New Zealand minerals such as olive trough ^ any conventional experimental procedures to dissolve magnesium iron f and super town iron ore, serpentine and any other suitable minerals. Other minerals may also be used (for example, by increasing the surface area, such as by (iv) or (i, by jet milling, and by, for example, the use of ultrasonic technology ❺ 2 acceleration. In addition, 'mineral dissolution can be borrowed Accelerated by exposure to acid or assay. Gold if acid salts (such as acid salts) and other minerals containing cations of interest can be read (for example) from acids such as HC1 (as appropriate from electrochemical procedures) to produce (eg Magnesium and other metal cations used in the n. In some embodiments, the financial (four) and other minerals can be _ or dissolved in two: solution in which the water and other gases (such as combustion gas) Acidic alkali metal hydroxide (such as NaOH) or any other suitable caustic converter - or a variety of metal dream acid salts (such as sapphire and serpentine) can be used Metal species such as metal oxynitrides (eg Mg(OH)2, Ca(OH)2). Any suitable concentration of aqueous alkali metal hydroxide or other caustic can be used to decompose metal citrate, including highly concentrated and extremely Dilute solution. alkali metal hydroxide (alkali hydr〇xide) (such as The concentration of NaOH) in the solution (by weight) may be, for example, from 3% to 80% and from 70% to 20°/❶. Preferably, the metal is digested with an aqueous metal hydroxide. The acid salts and analogs can be used directly to make precipitates. In addition, the base number of the precipitation reaction mixture can be recovered and reused to digest additional metal citrates and the like. In certain embodiments, the aqueous divalent cation solution can be It is also provided by the factory that supplies the combustion gas stream. For example, in a water-cooled plant, such as in seawater cooling 17 201016599, the plant has been used for cooling water and can then be used as water for making sediment. If necessary, the water can be Cooling prior to entering the precipitation system. Such methods can be utilized, for example, in a single pass cooling system. For example, a city or agricultural water supply can be used as a single pass cooling system for a plant. The water from the plant can then be used to make a sediment, The output water has a lower hardness and higher purity. If necessary, such systems can be modified to include safety measures (such as damage by debt testing such as the addition of poisons) and with government agencies (such as homeland security or Other institutions may be used in some specific embodiments. 质 Proton removers and methods are as described above. 'Metal oxide waste sources are as described in detail below. Good (such as fly ash, disambiguation, slag). Cement ash and (domain slag, _ slag) can be the only source of proton-removing agent for the manufacture of the composition described herein; however, the source of waste is ash , cement grain, ore collapse (such as iron ore collapse, containing meal residue) can also be used with the protons described in this section to the source of the silk (and the method of proton removal). The method of the invention comprises the aqueous solution of divalent cations. The volume is in contact with the source (to dissolve c〇2) and the resulting solution is subjected to precipitation conditions. The r-stone solution produces carbonic acid, a species that is inconsistent with bicarbonate. To produce a carbonate-containing precipitate (IV), the protons are removed from a variety of species (such as carbonic acid, bicarbonate, hydrazine, etc.) in a solution containing two :::: to shift the equilibrium to carbonate. When protons are removed, more co 201016599 enters the solution. In certain embodiments, a proton-removing agent and/or method is used and an aqueous solution containing divalent cations is contacted with c〇2 to increase absorption of c〇2 in a precipitation reaction phase (pH can remain fixed, increased, or even Lower) 'The protons are then removed quickly (eg by addition of a base) to allow rapid precipitation of the carbonate-containing precipitate. Protons can be used by a variety of species (such as carbonic acid, bicarbonate, hydrazine, etc.) by conventional methods including, but not limited to, the use of naturally occurring proton-removing agents, the use of microorganisms and fungi, the use of synthetic chemical proton Φ removers, and the recycling of artificial waste. Logistics and removal by electrochemical methods. Naturally occurring proton-removing agents encompass any proton-removing agent that can be found in a wide environment that can produce or have an alkaline local environment. Certain embodiments provide naturally occurring proton-removing agents, including minerals that create an environmentally acceptable environment upon addition to the solution (i.e., bathing). Such minerals include (but are not limited to) lime (CaO); periclase (Mg〇); volcanic ash; ultramafic rocks and minerals such as serpentine; and iron hydroxide (such as goethite and lignite) mine). Methods for dissolving such rocks and minerals are provided herein. Certain embodiments provide the use of naturally occurring water bodies as naturally occurring proton-removing agents. Examples of naturally alkaline water bodies include, but are not limited to, surface water sources (such as alkaline lakes such as Mono Lake in California) and groundwater sources (such as alkaline water layers). Other embodiments provide deposits for dry water bodies, such as the crust along Lake Najron in the GreatRift Valley, Africa. Some specific embodiments use organisms that secrete basic molecules or solutions in normal metabolism as proton-removing agents. Examples of such organisms are the fungi that produce alkaline proteases (such as the deep-sea fungus Jockeyella with a pH of 9) (10) (10) plus the bacteria that produce the test molecules (as seen in the Atlin wetlands in Columbia, UK). 201016599 Cyanobacteria such as Leyd algae (/ Lesser Coffee 2 5p_) 'It increases pH due to by-products of photosynthesis). In certain embodiments, the biological system is used to produce a pH remover, wherein the organism (eg, Bacillus bacillus (7) is finely divided (10) / 7 (10), which hydrolyzes urea to ammonia) to metabolize contaminants (such as urea) to produce protons A remover or a solution containing a proton-removing agent such as ammonia or ammonium hydroxide. In some embodiments, the &apos;biosystem is separately cultured from the precipitation reaction mixture, wherein a proton-removing agent or a solution containing a proton-removing agent is added to the precipitation reaction mixture. In certain embodiments, carbonic anhydrase is used as a naturally occurring proton-removing agent to remove protons to precipitate precipitates. A guanidinium carbonate enzyme is an enzyme produced by plants and animals which accelerates the conversion of carbonic acid in aqueous solution to bicarbonate. The chemical reagent for proton removal generally refers to a commercially available synthetic chemical reagent produced in large quantities. For example, chemical agents that remove protons include, but are not limited to, cerium oxides, organic chemistry, super sensitization, oxides, teaches, and carbonates. The hydroxide includes a chemical species that provides a hydroxide anion in solution, including, for example, sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca(OH)2), or hydroxide (Mg) (OH) 2) ^ an organic base-based carbon-containing molecule, the oxime is generally a nitrogen-containing base, and includes a primary amine such as a mercaptoamine, a secondary amine such as diisopropylamine, a secondary amine such as diisopropylethylamine. Aromatic amines such as aniline, heteroaromatics such as pyridine, imidazole and benzimidazole and various forms thereof. In certain embodiments, an organic base selected from the group consisting of pyridine, decylamine, imidazole, benzimidazole, histidine, and phosphazene is used in various species (eg, carbonic acid, bicarbonate,锉, etc.) remove protons. In some embodiments, the ammonia is used to raise the pH of the horse to a level sufficient to precipitate the precipitate from the divalent cation solution and the industrial waste stream 20 201016599. Excellent tests for proton-removing agents include: Ethyl ethoxide, sodium amide (NaNKy, sodium hydride (NaH), butyl lithium, lithium diisopropyl guanidinium, lithium diethyl guanidinate and double (three oxime) lithium amide. Oxides 'including, for example, calcium oxide (CaO), magnesium oxide (Mg 〇), strontium oxide (SrO), cerium oxide (Be0) and cerium oxide (Ba 〇) are also It can be used as a proton-removing agent. Carbonates for use in the present invention include, but are not limited to, sodium carbonate. In addition to containing cations of interest and other suitable metal forms, 废弃物 waste streams from various industrial processes can provide protons Remover. Such waste streams include, but are not limited to, mining waste; fossil fuel combustion ash (eg fly ash, as described in additional detail herein); slag (eg iron ore slag, phosphorus slag) 'cement kiln waste Refining/petrochemical refining waste (such as oilfield and decane coal bed brine), coal seam waste (such as gas-producing brine and coal bed brine); papermaking waste, water softening waste brine (such as ion exchange effluent); Disposal of waste, agricultural waste; metal surface treatment waste High pH textile waste, and caustic slurry. Mining waste includes any waste that extracts metal ruthenium or another valuable or useful mineral from the ground. In some embodiments, the use of mining waste to improve pH, the waste of the towel is selected from the following: red mud from the Bayer aluminum extraction program; waste from seawater extraction of magnesium, = (such as Mg (〇H) 2) 'as seen in California Moss Landing And source f mine procedures, including leaching waste. Agricultural waste used by animal waste or excessive = material may contain hydroxide _ (K 〇 H) or ammonia 3 as such, agricultural waste in the present invention In some embodiments, the decanter can be removed. The agricultural waste is often collected in a pond, but the eighth can also be infiltrated into the water layer, wherein the waste can be accessed and used. Another: the method of removing protons from various species in solution is based on the solute (carbonic acid or carbonic acid gas or water cut butterfly Xu ^! ΓΓ Ge more than the self-solute molecules electrochemical removal of the second =: it changed f. , electrochemical methods can be passed, for example, by chlorine-test methods Electrode (ie, hydroxide). The electrode (ie, the cathode H pole) may be present in a device containing a solution containing a divalent hydrazine or a charged exhaust gas stream (eg, charged to CO 2 ) and a selective barrier such as a separator. The electrodes can be separated. The electrochemical method of removing protons can produce a work (domain) that can be collected and used for other purposes. Additional electrochemical methods in the systems and methods of the present invention include, but are not limited to, US 61/081,299 and US 61/091,729, the disclosures of each of each of each of each of each Dissolved in the precipitation reaction mixture or in the precursor solution before the precipitation reaction mixture. The precipitating solution of the precipitation mixture, for example, may or may not contain divalent cations. In certain embodiments, C〇2 dissolved in an aqueous solution free of ruthenium divalent cations is treated by a low voltage electrochemical process from carbonic acid, bicarbonate, hydrazine or any species formed by dissolving C〇2 or The combination removes protons. The low voltage electrochemical method operates at 2, 1.9, 1.8, 1.7 or 1. 6 V or lower 'as 1.5, 1.4, 1.3, 12, 1 1 v or lower 'eg IV or lower' such as 0.9V or Lower, 〇.8v or lower, 0.7V or lower, 0.6V or lower, 0.5V or lower, 〇.4v or lower, 0.3V or lower, 0.2V or lower or 0.1V or Lower average voltage. 22 201016599 A low voltage electrochemical process without chlorine generation is conventional in the system and method of the present invention. Low voltage electrochemical methods that do not produce oxygen to remove protons are also conventionally employed in the systems and methods of the present invention. In some embodiments, a low voltage electrochemical method produces hydrogen at the cathode and transports it to the anode where it is converted to protons. Electrochemical methods that do not produce hydrogen are also conventional. In some cases, the electrochemical process of removing protons does not produce any gaseous by-products. See, for example, U.S. Patent Application Serial No. 12/344,019, filed on December 24, 2008, filed on Dec. 23, 2008, filed on PCT Application No. PCT/US09/32, 301, filed on Jan. 28, 2009, the disclosure of which is hereby incorporated by reference. Combustion ash, cement kiln dust and slag Sources of metal oxide waste (such as combustion ash such as fly ash, cement kiln dust, etc.) can be the sole source of proton-removing agents for the compositions described herein. In other words, a source of metal oxide waste such as combustion ash, cement kiln dust or the like can provide a sole source of proton-removing agent for improving the pH of the reaction mixture wherein the composition of the invention is made from the reaction mixture. As such, in some embodiments, the sole source of proton-removing agent is selected from the group consisting of fly ash, bottom ash, and combustion ash of steel slag. In some embodiments, the sole source of proton-removing agents is cement kiln dust. In some embodiments, the sole source of proton-removing agents is slag (e.g., iron ore slag, phosphorus-bearing ore). Similarly, sources of metal oxide waste (e.g., combustion ash such as fly ash 23 201016599 igniting mud ash, etc.) can be the only source for the manufacture of the divalent metal cations of the compositions described herein. In other words, a source of metal oxide waste such as burning ash, cement ash or the like can provide a sole source of divalent cations for making the compositions of the present invention. As such, in some embodiments, the sole source of divalent cations is selected from the group consisting of fly ash, bottom ash, and combustion ash of boiler slag. In some embodiments, the sole source of divalent cations is cement party ash. In some embodiments, the only source of divalent cations is slag (e.g., iron ore, phosphorus slag). Sources of metal oxide waste (e.g., combustion ash such as fly ash, cement kiln dust, etc.), in certain embodiments, provide a unique source for the precipitation of divalent cations and proton-removing agents from precipitates in accordance with the present invention. For example, ash can provide divalent cations and proton-removing agents for precipitating precipitates. In addition, combinations of sources of metal oxide waste and other sources of divalent cations and/or proton removers are discussed in more detail herein. Carbon-based fuels such as coal-fired combustion ash waste products such as fly ash, bottom ash and boiler slag are often buried or used in low-cost applications as a treatment. Such waste products often contain leachable contaminants that may contaminate groundwater when buried. The American Coal Ash Ass〇datic n reported that more than 56% of the 165,000,000 tons of coal produced annually in the United States were simply transported to the landfill of coal-fired entities at large cost. Combustion ash formed by burning fossil fuels, such as coal in coal-fired power plants, is often rich in CaO or other metal oxides that produce an alkaline environment and provide divalent cations in solution. Combustion products from coal, wood and other sources, including volcanic ash released from volcanic eruptions (which are generally considered to be ash), may also include various oxides such as vermiculite (Si〇) which enhance specific chemical reactions and the resulting cement. 2) Alumina (ai2〇3) and oxides of calcium, magnesium, iron and the like. The coal ash used in the present invention (ie, the combustion ash produced by burning coal) refers to a power plant boiler or a coal burning furnace (such as a chain boiler, a dry pulverized coal boiler, a slag-tap boiler, a cyclone boiler). And ash matter produced by burning powdered anthracite, lignite, bituminous coal, sub-bituminous coal or brown coal in a fluidized bed boiler). Such coal ash includes the bottom ash collected by the furnace from the fly ash of the fine coal ash carried by the exhaust gas or flue gas at the bottom of the furnace (eg in a dry bottom steel furnace); The boiler slag collected in the ash hopper of the wet bottom boiler. Flue gas desulfurization (FGD) is generally required to remove flue gas desulfurization (FGD) from flue gas emissions to remove sulfur oxides ("S〇x") from high sulfur coals that are abundant and relatively low in cost. This procedure is generally produced by using limestone as a reactant

CaS〇4(石膏)而另外釋放c〇2至大氣中。此程序因鈣由石 灰石釋放至程序中而產生高鈣飛灰,其中鈣係呈氧化鈣 (CaO)形式。一般發電廠或工業燃煤設備中大氣釋放之前 ❿ 煙道氣之預處理可包括如靜電沈澱(“ESP”)、濕式或乾式 洗滌及煙道氣脫硫(“FGD”)等方法。在許多FGD方法 中7煙道氣在經過ESP後進入FGD吸收槽中並於其中 與石灰石漿料反應以形成CaS〇4並自煙道氣中去除硫。 依此方式所形成之每個CaS〇4分子釋放出一 c〇2分子以 進一步加重C〇2之高釋放量與燃燒化石燃料如煤之關聯 性。 飛灰一般係高度不均勻並另外包括玻璃狀微粒與多 種可識別晶質相如石英、高鋁紅柱石、赤鐵礦、磁鐵礦 25 201016599 以及各種鐵氧化物之混合物。感興趣之飛灰包括F型及 C型飛灰。如上所指之f型及C型飛灰係由CSA標準 A23.5及ASTMC618定義。此等類型間之主要差異係灰 份中之鈣、矽石、氧化鋁及鐵含量。飛灰之化學性質係 受所燃煤(如無煙煤、煙煤、次煙煤、褐煤、棕煤)之化學 含量極大影響。飛灰之性質亦可視溫度變化過程、所用 燃燒器類型 '燃燒後處理、洗滌器效果及蓄水時間和條 件而定。感興趣之飛灰包括大量碎石(二氧化石夕,Si〇2)(非 晶質及晶質)和石灰(氧化妈CaO、氧化鎂MgO)。飛灰之❹ 外表面一般富含CaO及MgO且CaO與MgO之濃度由飛 灰之外表面朝中心降低。隨CaO與MgO之降低,其伴 隨Si〇2浪度之增加。在如下所述某些具體實施例中所用 之尚另切混合及濕研磨容許更大量地使用飛灰中所存在 之全部CaO及MgO存料。表1於下提供可用於本發明 具體實施例 中之各種類型之飛灰的化學組成 〇 組分 煙煤 次煙煤 褐煤 棕煤 Si02(%) 20-60 40-60 15-45 5-30 ai2〇3(%) 5-35 20-30 20-25 1-20 Fe2〇3(%) 10-40 4-10 4-15 5-50 CaO(%) 1-12 5-30 15-40 5-30 MgO(%) 1-5 1-10 1-10 5-30 表1 :煤類型及組成 較硬且較老無煙煤及煙煤之燃燒一般產生F型飛灰 型飛灰係硬凝(pozzolanic)本質並包含低於10%石灰 26 201016599 (CaO)。由燃燒較年輕之褐煤或次煙煤所產生之飛灰除了 具有硬凝性質外亦具有部分自膠結性質。在水的存在下, C型飛灰將硬化並隨時間獲得強度。^型飛灰一般包含超 過20%之石灰(ca〇)。C型飛灰之鹼金屬及硫酸鹽(s〇4)含 量一般較高。 飛灰物於懸浮於廢氣中時固化並可利用多種方法,例 如藉由靜電集塵器或過濾袋收集。因微粒在懸浮於廢氣中 時固化’飛灰微粒一般為球形且尺寸範圍係從〇.5微米至 100微米。感興趣之飛灰包括彼等至少約8〇重量%包含小 於45微米之微粒者。 在本發明特定具體實施例中亦感興趣者為高鹼性流體 化床燃燒器(FBC)飛灰之使用。 在本發明具體實施例中亦感興趣者為底灰之使用。底 灰係由燃燒煤於燃煤鍋爐中以黏聚物形式形成。該黏聚物 具有一尺寸’其中90%黏聚物落在0.1釐米至20釐米之 粒徑範圍内,且底灰黏聚物具有一在此範圍内之寬黏聚物 尺寸分布。燃燒鍋爐可為濕底鍋爐或乾底鍋爐。當於濕底 锅爐中製造時,以水驟冷底灰以產生鍋爐渣。底灰之主要 化學組分係;ς夕石及氧化銘和較少量之Fe、Ca、Mg、Mn、 Na及K的氧化物以及硫及碳。 在特定具體實施例中亦感興趣者為使用火山灰作為灰 分。火山灰係由直徑小於2釐米(0.079英吋)之小火山碎屑 (即火山爆發所產生之粉碎岩石和玻璃塊)構成。 水泥窯灰亦適用作金屬氧化物廢棄物來源,提供(例如) 27 201016599 可用作二^陽離子來源及質子去除劑來源之㈤及_。 水泥…灰係集塵系統(如旋風器、靜電 室等)中所捕集之水泥製造細小副產物,装、、心集塵 各適合用作本發明金屬氧化物廢麵麵巾之m員 類係基於_不同水泥窯程序及兩種不同集塵^ 程序(接收毁料形式之進料)纖 窟程序(接收乾、粉碎形式之進料)之水泥窯 發明中。在各類型之窯中,可以兩種方式八*一 並:其由最接近該窯之集塵系統(如旋二)送: 至,或回收或丟棄所製得之總粉塵量。由任一類型 之集塵系統所獲得之水减灰係適用於本發明中。 夕ΙΓί灰之t學及物理舰餘視錢製造設備所用 /、法而疋。水泥窯灰具有一類似慣用波特蘭 (portland)水泥之化學組成。水泥該之主要成分係石灰、 鐵、發石及氧化㈣等化合物。水泥歧巾轉石灰之濃 度^接近該窯所捕集之粗餘中者為最高。照此,具有 較局游離石錢度之粗微粒係特別適合本發明方法及系 統…、:而水泥熏灰中易呈現較高硫酸鹽及/或驗金屬濃度 之較細微粒亦包含(例如)cao之適用濃度時,該等較細微 ,亦適合本發明。在無法分㈣水泥熏灰之粗微粒並將其 ' 窯的系”先中,總粉塵量將南於游離石灰(因為其將 包含部分粗微粒)。此水泥窯灰亦可用作金屬氧化物廢棄 物來源以提供二價陽離子及質子絲劑。如由表2所證明 ^(Collins, R. J.^ J. j Emery&gt; Kiln Dust-Fly Ash Systems 28 201016599 for Highway Bases and Subbases. Federal HighwayCaS〇4 (gypsum) and additionally release c〇2 to the atmosphere. This procedure produces high calcium fly ash due to the release of calcium from the limestone into the program, where the calcium is in the form of calcium oxide (CaO). Pretreatment of the flue gas in general power plants or industrial coal-fired equipment may include methods such as electrostatic precipitation ("ESP"), wet or dry scrubbing, and flue gas desulfurization ("FGD"). In many FGD processes, the 7 flue gas enters the FGD absorption tank after passing through the ESP and reacts with the limestone slurry to form CaS〇4 and removes sulfur from the flue gas. Each CaS〇4 molecule formed in this manner releases a c〇2 molecule to further aggravate the high release of C〇2 from the association with burning fossil fuels such as coal. Fly ash is generally highly heterogeneous and additionally includes glassy particulates and a variety of identifiable crystalline phases such as quartz, mullite, hematite, magnetite 25 201016599 and mixtures of various iron oxides. Fly ash of interest includes F-type and C-type fly ash. The f-type and C-type fly ash referred to above are defined by CSA Standards A23.5 and ASTMC618. The main difference between these types is the amount of calcium, vermiculite, alumina and iron in the ash. The chemical properties of fly ash are greatly affected by the chemical content of coal (such as anthracite, bituminous coal, sub-bituminous coal, lignite, brown coal). The nature of the fly ash can also be determined by the temperature change process, the type of burner used, the post-combustion treatment, the scrubber effect, and the storage time and conditions. Fly ash of interest includes a large number of gravel (Cetaster dioxide, Si〇2) (non-crystalline and crystalline) and lime (oxidized mother CaO, magnesium oxide MgO). The outer surface of the fly ash is generally rich in CaO and MgO and the concentration of CaO and MgO decreases from the outer surface of the fly ash toward the center. With the decrease of CaO and MgO, it is accompanied by the increase of Si〇2 wave degree. The alternate mixing and wet milling used in some of the specific embodiments described below allows for greater use of all of the CaO and MgO stocks present in the fly ash. Table 1 below provides the chemical composition of various types of fly ash that can be used in the specific examples of the present invention. Component: bituminous sub-bituminous coal brown coal brown coal SiO 2 (%) 20-60 40-60 15-45 5-30 ai2〇3 (%) 5-35 20-30 20-25 1-20 Fe2〇3(%) 10-40 4-10 4-15 5-50 CaO(%) 1-12 5-30 15-40 5-30 MgO (%) 1-5 1-10 1-10 5-30 Table 1: The type and composition of coal is hard and the burning of old anthracite and bituminous coal generally produces the type of fly ash type fly ash (pozzolanic) and contains Less than 10% lime 26 201016599 (CaO). Fly ash produced by burning younger lignite or sub-bituminous coal has partial self-cementing properties in addition to hard coagulating properties. In the presence of water, Type C fly ash will harden and gain strength over time. The type fly ash generally contains more than 20% lime (ca〇). The alkali metal and sulfate (s〇4) content of type C fly ash is generally high. The fly ash solidifies upon suspension in the exhaust gas and can be collected by a variety of methods, such as by electrostatic precipitators or filter bags. The particles are solidified when the particles are suspended in the exhaust gas. The fly ash particles are generally spherical and range in size from 〇.5 μm to 100 μm. Fly ash of interest includes those having at least about 8% by weight of particles comprising less than 45 microns. Also of interest in certain embodiments of the invention is the use of a high alkaline fluidized bed combustor (FBC) fly ash. Also of interest in the specific embodiments of the invention is the use of bottom ash. The bottom ash is formed by burning coal in a coal-fired boiler in the form of a cohesive polymer. The binder has a size 'where 90% of the binder falls within a particle size range of 0.1 cm to 20 cm, and the bottom ash binder has a broad viscosity size distribution within this range. The combustion boiler can be a wet bottom boiler or a dry bottom boiler. When manufactured in a wet bottom boiler, the bottom ash is quenched with water to produce boiler slag. The main chemical components of the bottom ash; ς 石 stone and oxidized and a small amount of oxides of Fe, Ca, Mg, Mn, Na and K as well as sulfur and carbon. Also of interest in certain embodiments is the use of volcanic ash as ash. The volcanic ash system consists of small volcanic debris (ie, crushed rocks and glass blocks produced by volcanic eruptions) that are less than 2 cm (0.079 in.) in diameter. Cement kiln dust is also suitable as a source of metal oxide waste, providing (for example) 27 201016599 as a source of di-cations and a source of proton-removing agents (5) and _. Cement... The cement captured in the ash-based dust collection system (such as a cyclone, electrostatic chamber, etc.) produces fine by-products, and the dust collection of each of them is suitable for use as the m-class of the metal oxide waste facial towel of the present invention. It is based on the cement kiln invention of different cement kiln procedures and two different dust collection procedures (receiving the feed in the form of decontamination). In each type of kiln, it can be fed in two ways: it is sent from the dust collection system closest to the kiln (such as Rotary 2): to, or to recover or discard the total amount of dust produced. Water ash reduction obtained by any type of dust collection system is suitable for use in the present invention. Xi Xi Li ash t learning and physical ship Yu Yu money manufacturing equipment used /, and the law. Cement kiln ash has a chemical composition similar to that of conventional Portland cement. The main components of cement are compounds such as lime, iron, stone and oxidation (iv). The concentration of the cement disguise to the lime is the highest in the coarseness of the kiln. As such, the coarse particles having a relatively free amount of free stone are particularly suitable for the method and system of the present invention..., and the fine particles which are likely to exhibit higher sulfate and/or metal concentration in cement fume include (for example) The above-mentioned fineness of cao is also suitable for the present invention. In the inability to divide (4) the coarse particles of cement fumigation and the 'kiln system', the total amount of dust will be south to free lime (because it will contain some coarse particles). This cement kiln ash can also be used as a metal oxide. Source of waste to provide divalent cations and proton filaments. As evidenced by Table 2 (Collins, RJ^ J. j Emery&gt; Kiln Dust-Fly Ash Systems 28 201016599 for Highway Bases and Subbases. Federal Highway

Administration,報告編號 FHWA/RD-82/167, Washington, DC,1983年9月),其列出新鮮及儲存水泥熏灰之典型組 成,其中已經儲存及暴露於環境中較長時間之水泥窯灰中 極少(若有)游離石灰或游離氧化鎂含量存在。照此,新鮮 水泥窯灰係優於已經儲存於環境中任何顯著時間量之水 泥窯灰。Administration, Report No. FHWA/RD-82/167, Washington, DC, September 1983), which lists the typical composition of fresh and stored cement ash, which has been stored and exposed to the environment for a longer period of time. Very little, if any, free lime or free magnesium oxide is present. As such, the fresh cement kiln ash system is superior to any ash ash that has been stored in the environment for any significant amount of time.

化學物種 新鮮(%) —儲存(%) 樣品1 樣品2 CaO 40.5 31.4 44.2 游離石灰 4:4 0.0 0.0 Si02 14.5 11.7 11.9 AI2O3 4.10 3.18 3.24 Mg〇 1.55 0.97 1.73 Na20 0.44 0.13 0.27 4.66 1.65 2.92 ___Fe2〇3 2.00 2.16 1.45 S〇3 6.50 8.24 2.40 燃燒損失, 22.9 40.4 30.2 105°C 表2 :水泥窯灰之典型化學組成 礦逢亦可用作質子去除劑(以及二價陽離子來源)以增 加(例如)裴有C Ο2之沉澱反應混合物之pH。礦渣亦可用作 唯—質子去除劑或與一或多種額外質子去除劑(如其他金 29 201016599 屬氧化物廢棄物來源、上述補充質子去除劑等)組合使 用。同樣地,礦渣亦可用作二價陽離子之唯一來源或與一 或多種額外二價陽離子來源(如其他金屬氧化物廢棄物來 源、上述二價陽離子之補充來源等)組合使用。礦逢係由 處理金屬礦(如熔煉金屬礦以純化金屬)所產生並可包 及鎂氧化物以及鐵、矽及鋁化合物。在某些具體實施例 中。礦渣作為質子去除劑或二價陽離子來源之使用經由將 反應性矽及氧化鋁導入沉澱產物中而提供額外益處。可能 適合本發明之礦渣包括(但不限於)源自鐵熔煉之鼓風爐鑤 渣、源自電弧或鼓風爐處理鋼之礦渣、銅礦渣、鎳礦涪 含磷礦渣。 — 添加劑 可將異於質子去除劑之添加劑加入沉澱反應混合物中 以影響所製得沉澱物之性質。照此,在某些具體實施例 中,在令沉澱反應混合物處於沈澱條件下時之前或期間, 將添加劑供入沉澱反應混合物中。痕量之特定添加劑係偏⑬ 好特定碳酸飼多晶型物(polymorph)。例如,六方方解石(— CaC〇3之高度不穩定的多晶型物’其以多種不同形態沉殿 並快速轉化成方解石)可藉由包含痕量之鑭如(例如)氣化 鑭而以極高產率獲得。可加入其他過渡金屬及類似物以產 生碳酸鈣多晶型物。例如,已知亞鐵或鐵離子之添加有利 於形成無序白雲石(原白雲石)。 30 201016599 方法 本發明方法及系統提供含碳酸鹽組成物,其可如下更 詳細地描述般由-含溶解二氧化碳(如源自含⑺之工業 廢物流)、二償陽離子(如Ca2+、M 2+ 2 : 行質子去除之方法)之水溶液製得g )及質子去除劑(或進 墟^屬H物^棄物來源如燃燒灰分(如飛灰、底灰、鋼 ❹ ❹ 礦逢(如鐵礦邊、含磷礦逢)可為製造本 mtt 價金屬陽離子之唯—來源。照此,在某 f U施例中,二價金屬陽離子之唯—來源係選自飛 火、底灰、鋼爐逢之燃燒灰分。在某些具體實施例卜二 =金屬陽離子之唯一來源係水泥黨灰。在某些具體實施例 I’二價金屬陽離子之唯一來源係確淺(如鐵礦潰、含磷 /查)。金屬氧化物廢棄物來源如燃燒灰分(如飛灰、底 义、鋼爐渣)、水泥黧灰或礦渣(如鐵礦渣、含磷礦渣)亦可 2製造本文所述組成物之質子去除躺唯—來源。照此, 某些具體實關巾,f子去_之唯—來源係選自飛 义、底灰及鍋爐渣之燃燒灰分。在某些具體實施例中質 子去除劑之唯-來藝水泥妓。在某些具體實施例中, 質子去除劑之唯一來源係礦渣(如鐵礦渣、含磷礦渣)。在 某些具體實施例中’水中礦物含量係藉由添加金屬氧化物 廢棄物來源如燃燒灰分(如飛灰、底灰、鋼爐渣)、水泥窯 灰j礦盧(如鐵礦渣、含碌礦潰)至淡水或蒸館水中而使水 源富含二價陽離子的方式達到,其中該淡水或蒸顧水具有 低或無礦物含量。在此等具體實施例中,金屬氧化物廢棄 31 201016599 物來源不僅提供二價陽離子,亦提供質子去除劑來源。 在某些具體實施例中,金屬氧化物廢棄物來源提供— 部分質子去除劑,如10%或更少,20%或更少,40%或更 少,60°/。或更少,80%或更少’而質子去除劑之剩餘部分(戍 進行質子去除之方法)係如本文所述般提供。Chemical species fresh (%) - storage (%) Sample 1 Sample 2 CaO 40.5 31.4 44.2 Free lime 4:4 0.0 0.0 Si02 14.5 11.7 11.9 AI2O3 4.10 3.18 3.24 Mg〇1.55 0.97 1.73 Na20 0.44 0.13 0.27 4.66 1.65 2.92 ___Fe2〇3 2.00 2.16 1.45 S〇3 6.50 8.24 2.40 Combustion loss, 22.9 40.4 30.2 105°C Table 2: Typical chemical composition of cement kiln ash can also be used as a proton-removing agent (and source of divalent cations) to increase (for example) The pH of the precipitation reaction mixture of C Ο2. The slag can also be used as a proton-only remover or in combination with one or more additional proton-removing agents (such as other gold 29 201016599 oxide waste sources, supplemental proton-removing agents, etc.). Similarly, slag can also be used as the sole source of divalent cations or in combination with one or more additional divalent cation sources (e.g., other sources of metal oxide waste, supplemental sources of such divalent cations, etc.). Mines are produced by processing metal ores (such as smelting metal ores to purify metals) and can include magnesium oxides as well as iron, antimony and aluminum compounds. In some embodiments. The use of slag as a proton-removing agent or source of divalent cations provides an additional benefit by introducing reactive rhodium and alumina into the precipitated product. Slags that may be suitable for the present invention include, but are not limited to, blast furnace slag derived from iron smelting, slag derived from arc or blast furnace treated steel, copper slag, nickel ore slag containing phosphorus slag. — Additives Additives other than proton-removing agents can be added to the precipitation reaction mixture to affect the properties of the precipitate produced. As such, in some embodiments, the additive is supplied to the precipitation reaction mixture before or during the precipitation of the precipitation reaction mixture under precipitation conditions. The trace amount of the specific additive is a specific polycarbonate polymorph. For example, a hexagonal calcite (a highly unstable polymorph of CaC〇3) that sinks in a variety of different forms and rapidly converts to calcite can be obtained by including traces such as, for example, gasification Obtained in high yield. Other transition metals and the like may be added to produce calcium carbonate polymorphs. For example, it is known that the addition of ferrous or iron ions facilitates the formation of disordered dolomite (formerly dolomite). 30 201016599 Method The method and system of the present invention provides a carbonate-containing composition which can be described in more detail below - containing dissolved carbon dioxide (eg, from an industrial waste stream containing (7)), and a second cation (eg, Ca2+, M 2+ ) 2: The aqueous solution of the proton removal method) and the proton-removing agent (or the source of the product), such as fly ash, bottom ash, steel ❹ 矿 ore (such as iron ore) The edge and the phosphate-bearing ore can be the only source for the manufacture of the mtt valence metal cation. As such, in a certain f U embodiment, the only source of the divalent metal cation is selected from the group consisting of flying fire, bottom ash, and steel furnace. Burning ash. In some embodiments, the only source of metal cations is cement party ash. In some specific examples, the only source of divalent metal cations is shallow (eg iron ore, phosphorus/ Check). Sources of metal oxide waste such as combustion ash (such as fly ash, bottom slag, steel slag), cement ash or slag (such as iron ore slag, phosphorus slag) can also be used to make protons of the compositions described herein. Remove the lie-only source. As such, some specific real-cut towels, f children go _ The source is selected from the combustion ash of the fly ash, bottom ash and boiler slag. In some embodiments, the proton-removing agent is only 来 艺 妓. In some embodiments, the sole source of the proton-removing agent Slag (such as iron ore slag, phosphorus-containing slag). In some embodiments, 'the mineral content in the water is added by adding metal oxide waste sources such as burning ash (such as fly ash, bottom ash, steel slag), cement The kiln ash j mine (such as iron ore slag, containing slag mine collapse) to fresh water or steamed water, so that the water source is rich in divalent cations, wherein the fresh water or steamed water has low or no mineral content. In a specific embodiment, the metal oxide waste 31 201016599 source provides not only a divalent cation but also a proton-removing agent source. In some embodiments, the metal oxide waste source provides - a partial proton-removing agent, such as 10 % or less, 20% or less, 40% or less, 60°/. or less, 80% or less' and the remainder of the proton-removing agent (the method of proton removal) is as described herein Provided as described.

水可利用任何慣用實驗程序與金屬氧化物廢棄物來源 如燃燒灰分(如飛灰)或水泥窯灰接觸以達到所欲pH(藉由 質子去除劑添加之方式)或二價陽離子濃度。在某些具體 實施例中,源自燃煤發電廠之煙道氣係直接進入沉殿反應 © 器中而無事先去除飛灰以避免使用靜電集塵器及類似 物。在某些具體實施例中,直接由水泥窯將水泥熏灰供入 沉殿反應器中。在某些具體實施例中,可將事先集得之飛 灰置入含水之沉澱反應器中,其中飛灰的添加量足以將 pH提高至所欲值(如誘使含碳酸鹽沉殿物之沉澱)如pH 7-14、pH 8-14、pH 9-14、pH 10-14、pH 11-14、pH 12-14 或PH 13-14。飛灰-水混合物之PH(例如)可為約pH 12.2-12.4。水泥窯灰-水混合物之pH可為約pH 12。在某❹ 些具體實施例中,金屬氧化物廢棄物來源係固定化在一 管柱或床中。在此類具體實施例中,水穿過或流過一定量 足以將水之pH提高至所欲pH或至特定二價陽離子濃度 之灰分。經固定化之金屬氧化物廢棄物來源(如飛灰)係適 用於減輕飛灰之鈍化(如在沉殺條件下藉由(例如)CaC〇3 以CaC〇3形式囊封飛灰);然而,在某些具體實施例中, 希望鈍化飛灰(如下所述)。當水泥窯灰及燃燒灰分如飛灰 32 201016599 包含顯著驗值時,其被視為極具腐蚀性。可由廢棄物來源 -水混合物藉由去除該鹼及/或二價陽離子值而獲得額外鹼Water can be contacted with sources of metal oxide waste such as fly ash (e.g., fly ash) or cement kiln dust using any conventional experimental procedure to achieve the desired pH (by means of proton-removing agent addition) or divalent cation concentration. In some embodiments, the flue gas system from a coal fired power plant directly enters the sinking reactor without removing the fly ash in advance to avoid the use of electrostatic precipitators and the like. In some embodiments, the cement is ashed directly into the sink reactor by a cement kiln. In some embodiments, the previously collected fly ash can be placed in an aqueous precipitation reactor, wherein the fly ash is added in an amount sufficient to raise the pH to a desired value (eg, to induce carbonate-containing sediments) Precipitation) such as pH 7-14, pH 8-14, pH 9-14, pH 10-14, pH 11-14, pH 12-14 or pH 13-14. The pH of the fly ash-water mixture (for example) can be about pH 12.2-12.4. The pH of the cement kiln ash-water mixture can be about pH 12. In some embodiments, the metal oxide waste source is immobilized in a column or bed. In such embodiments, water passes or flows through an amount of ash sufficient to raise the pH of the water to a desired pH or to a particular divalent cation concentration. The immobilized source of metal oxide waste (such as fly ash) is suitable for mitigating the passivation of fly ash (eg, under immersion conditions, for example, CaC〇3 encapsulates fly ash in the form of CaC〇3); In some embodiments, it is desirable to passivate the fly ash (as described below). When cement kiln dust and combustion ash such as fly ash 32 201016599 contain significant values, they are considered to be extremely corrosive. Additional base can be obtained from the waste source-water mixture by removing the base and/or divalent cation value

及/或二價陽離子值。例如,廢棄物來源-水混合物可與co2 來源(其於溶液中形成碳酸)接觸而形成含碳酸#5之沉殿 物’其之形成容許CaO額外轉化成Ca(OH)2及其他二價陽 離子。同樣地,廢棄物來源-水混合物可與水性酸如(但不 限於)HNO3、HC1及HF接觸。以酸如HNO3及HC1酸消 化飛灰容許使用更多(70%或更多)飛灰中所存在之ca〇及 MgO。以水性HF酸消化容許經由與石夕石反應及溶解所得 物種而使用更多CaO及MgO。可改變反應時間及酸強度 以增加或降低由飛灰瀝取之CaO及/或MgO量。 在某些具體實施例中,金屬氧化物廢棄物來源如飛灰 或水泥窯灰亦可經熟化(即CaO轉化成Ca(OH)2、MgO轉 化成Mg(OH)2)。任何慣用系統或方法皆可用於進行燃燒 灰分(如飛灰、底灰)或水泥窠灰之熟化。熟化金屬氧化物 廢棄物來源可以(例如)一漿料滞留熟化器、聚糊熟化器、 球磨熟化器或其任何組合或變化例達到,熟化裝置之選 擇係視欲熟化之金屬氧化物廢棄物來源、水之可用性、 空間需求等而定。例如’若空間有限且熟化用之水係有 限,應,密㈣_化料本發日㈣統及方 使用球磨熟化器。視金屬氧化物廢 棄物來源^之献效衬Μ 烺燒之石灰石類型、特定β .用於 用燃燒器類型-燃燒後;;燒==變,、所 无私态效果、畜水時間及 33 201016599 條件)、熟化溫度、廢棄物來源對水之比率、熟化期間擾 拌程度、漿料黏度、熟化時間及水溫(在與金屬氧化物廢 棄物來源混合之前)。水之類型亦對熟化效率具有影響。 例如’ 一般二價陽離子濃度比海水低之淡水在自飛灰萃 取CaO及MgO時更有效率;然而,水之類型一般將視 ;儿溯:廢地點之可用性而定。照此,本發明方法包括改良 此等用於適時熟化之因素(即以容許有效進行工業程序 之時序表熟化)。熟化溫度(例如)可變化。在某些具體實 施例中,熟化溫度範圍係從室溫(約70T)至約220T。在❹ 某些具體實施例中,熟化溫度係70_100卞、1〇〇_22〇卞、 120_22(TF、140_220卞、160-220°F、160-200°F 或 160_185°F。應需輔助熱以增加熟化溫度(超出Ca〇放熱 轉化成Ca(OH)2所得者)時,可使用源自(例如)煙道氣之 廢熱。亦可使用其他外部熱源(如熱水)。熟化壓力(例如) 可變化。在某些具體實施例中,熟化壓力係正常大氣壓 力(約1巴)至約50巴。在某些具體實施例中,熟化壓力 係 1-2.5 巴、1-5 巴、ι_1〇 巴、1〇 5〇 巴、2〇 5〇 巴、3〇 5〇 ❹ 巴或40-50巴。在某些具體實施例中,熟化係在週遭條件 下(即正常大氣溫度及壓力)下進行。水對廢棄物來源之比 率可變化。在某些具體實施射,水對金屬氧化物廢棄 物來源之比率為1 : 1至L5 ;丨:L5至丨:2 ; 1 : 2 至 1 : 2.5 ; 1 : 2.5 至 1 : 3 ; 1 : 3 至 1 : 3.5 ; 1 : 3.5 至 1 : 4 ’ 1 · 4 至1 · 4.5 ; 1 : 4.5 至 1 : 5 ; 1 : 5 至 1 : 6 ; 1 : 6 至 1 · 8,1 · 8 至 1 : 1〇 ;丨:1〇 至丨:25 ;丨:25 至 1 : 34 201016599 50;或1 ·· 50至1 : 100。廢棄物來源對水之比率亦可變 化。在某些具體實施例中,金屬氧化物廢棄物來源對水 之比率為 1 : 1 至 1 : 1.5 ; 1 : 15 至 i : 2; i : 2至 1 : 2.5 ; 1 : 2.5 至 1 : 3 ; 1 : 3 至 1 : 3.5 ; 1 : 3.5 至 1 : 4 ; 1 : 4 至 1 : 4.5 ; 1 : 4.5 至 1 : 5 ; 1 : 5 至 1 : 6 ; 1 : 6 至 i : 8 ; 1: 8 至 1 : 1〇 ; 1 : 10 至 1 : 25 ; : 25 至丨:5〇 ;或 1 : 50至1 : 100。在某些具體實施例中,將金屬氧化物 ❾ 廢棄物來源如飛灰直接供入沉殺反應器中時,廢棄物來 源對水之比率可非常低。在此類具體實施例中,可將額外 廢棄物來源(如飛灰)加入沉澱反應器中以増加廢棄物來 源對水之比率或可以低廢棄物來源對水之比率完成熟 化。熟化時間亦可隨其對熟化效率的影響而變化。在某 些具體實施例中,完成水合(如由CaO形成Ca(OH)2)之所 欲熟化時間係在12與20小時之間、在20與30小時之 間、在30與40小時之間、在40與60小時之間、在6〇 ⑩ 與100小時之間、在100與160小時之間、在1〇〇與ι8〇 小時之間及在18〇與200小時之間。在某些具體實施例 中’完成水合之所欲熟化時間係少於12小時、在6與12 小時之間、在3與6小時之間、在1與3小時之間或少 於1小時。在某些具體實施例中,完成水合之所欲熟化時 間係在3〇分鐘與1小時之間。在某些具體實施例中,熟 化時間係在15分鐘與30分鐘之間、在15分鐘與25分 鐘之間及在15分鐘與20分鐘之間。在某些具體實施例 中’熟化時間係在5分鐘與30分鐘之間、在5分鐘與20 35 201016599 分鐘之間、在5分鐘與15分鐘之間及在5分鐘與l〇分 鐘之間。在某些具體實施例中’熟化時間係在1分鐘與5 分鐘之間、在1分鐘與3分鐘之間及在2分鐘與3分鐘 之間。亦可利用攪拌(例如)藉由消除熱及冷點影響熟化效 率。將承認改變任一所述熟化因素可改變其他熟化因素 而使各熟化程序視可用材料而不同。照此,根據本發明 熟化可使超過10%、超過20%、超過30%、超過40%、 超過50%、超過60%、超過70%、超過80%、超過90%、 超過95%、超過97%、超過98%、超過99%或超過99.9%❿ 廢棄物來源中所存在之CaO轉化成Ca(OH)2。同樣地, 根據本發明熟化可使超過10%、超過20%、超過3〇%、 超過40%、超過50%、超過60%、超過70°/。、超過80%、 超過90%、超過95%、超過97%、超過98°/。、超過99% 或超過99.9%廢棄物來源中所存在之Mg〇轉化成 Mg(OH)2。轉化率愈高,熟化程序之效率愈高。 金屬氧化物廢棄物來源如燃燒灰分、水泥窯灰或礦渣 (如鐵礦渣、含磷礦渣)亦可與二價陽離子之補充來源,包❹ 括燃燒灰为、水泥寞灰或礦潰(如鐵礦漁、含麟礦渣)之混 合物組合使用。照此,在某些具體實施例中,二價陽離子 來源係二價陽離子來源與選自飛灰、底灰及鍋爐渣之燃燒 灰分的組合。例如,二價陽離子來源可為飛灰與海水之組 合。使用一組合(如燃燒灰分與另一二價陽離子來源之組 合)時,可以任何順序使用燃燒灰分。例如,鹼性溶液可 在添加燃燒灰分之前已包含二價陽離子(如海水),或將二 36 201016599 知陽離子來源加入飛灰於水之漿料中。在任一此等具體實 施例中,如下另外詳細描述般,在燃燒灰分之前或之後加 入 co2。 廢棄物來源如燃燒灰分、水泥窯灰或礦渣(如鐵礦渣、 含鱗礦旬可與質子去除劑之補充㈣,包括燃燒灰分、 水泥窯灰或礦渣(如鐵礦渣、含磷礦渣)之混合物組合使 用。照此,在某些具體實施例中,質子去除劑來源係質子 ❹ ^除賴選自歧、底灰及輔紅燃燒灰分的組合。可 使用之質子去除劑實例包括氧化物(如Ca〇)、氫氧化物(如 KOH、NaOH、水鎂石⑽…叫等)、碳酸鹽(如他2(:〇3)、 蛇紋石及類似物。亦釋放矽石及鎂至反應混合物中之蛇紋 石最終產生含碳酸鹽及矽石(除了燃燒灰分中所見者之外) 之組成物。補充質子去除劑之使用量係視補充質子去除劑 之特疋性質及欲添加補充質子去除劑之水的體積而定。補 充質子去除劑之替代物係使用電化學方法如彼等上述用 φ 於進行質子去除者。亦可使用電解。可使用不同電解程 序,包括 Castner-Kellner 法,隔膜電解槽(diaphragm cdl) 法及薄膜電解槽(membrane cell)法。可收集水解產物之副 產物(如H2、鈉金屬)並將其用於其他目的中。當使用質子 去除劑之組合(如燃燒灰分與另一質子去除劑來源之組合) 時,可以任何順序利用燃燒灰分。例如,含二價陽離子溶 液可在添加燃燒灰分之前已呈驗性(如海水)或經由額外質 子去除劑之添加進一步鹼化飛灰於水之漿料。在任一此等 具體實施例中,如下另外詳細描述般,C〇2係在燃燒灰分 37 201016599 之前或之後加入。 如上述般,金屬氧化物廢棄物來源如燃燒灰分、水泥 窯灰及礦渣(如鐵礦渣、含磷礦渣)可用於多種有或無補充 質子去除狀組合巾。當使㈣充f子去義(及進行質 子去除之方法)時,補充質子去除劑亦可以任何適合組合 使用。本發明部分具體實施例提供包括使用下列各者之組 合:人為廢棄物(如源自銘樊土處理之紅泥或褐泥)與市售 驗(如NaOH)之組合;人為廢棄物與電化學方法(即碳酸、 ❹ 碳酸氣鹽、料之去許化)及自然發生之f子錄劑(如 蛇紋石礦)之組合;或人造廢棄物與市㈣及自然發生之 質子去除劑之組合,接著轉變成蛇紋石礦與電化學方法之 、、且口進行質子去除之各種方法的比例可根據條件及可用 性進行調整’例如’對於沈殿廠之使用期限的前五年 ,人造廢物财餘及自然發生之質子去除_組合,接 者轉換成敝㈣與絲f子之電化料法之組合, 等物變得更容易取得時。 田 ❹ 在部分具體實施例中,質子去除劑(及進行質 合衫_麵自飛灰、2_ I子去_侧自廢絲(如紅泥)、痛如⑽ : = 由電化學方法進行。例如 提供質子去除劑與電化學方法之組合而使 。質子去__自飛灰、6()%質子 ;!之廢棄物(如紅泥)及3崎子去除係藉由 進仃。部分具體實_提供Μ擔趣電化學方法之組 38 201016599 合而使10%質子去除劑係源自飛灰、60%質子去除劑係源 自自然發生之礦物來源(如溶解蛇紋石)及3〇%質子去除係 藉由電化學方法進行。部分具體實施例提供質子去除劑與 電化學方法之組合而使對於沈殿廢之使用期限的前五 年,30%質子去除劑係源自飛灰及7〇%質子去除劑係源自 採礦程序之廢棄物(如紅泥)且自第六年開始,而使1〇%質 子去除劑係源自飛灰、60%質子去除劑係自然發生之礦物 源(如蛇紋石)溶解的結果及30%質子去除係藉由電化學方 法進行。 含有二價陽離子(如鹼土金屬陽離子如Ca2+及Mg2+)之 水溶液可與C〇2來源在令該含二價陽離子溶液處於沈澱 條件(即基於(例如)pH容許一或多種物質沉澱之條件)之 月’J、期間或之後接觸。因此,在某些具體實施例中,二價 陽離子水溶液係與C〇2來源在令該水溶液處於有利於形 成碳酸鹽及/或碳酸氫鹽化合物之沈澱條件前接觸。在某些 具體實施例中,二價陽離子水溶液係與C〇2來源接觸並同 時令該水溶液處於有利於形成碳酸鹽及/或碳酸氫鹽化合 物之沈殿條件。在某些具體實施例中,二價陽離子水溶液 係與C〇2來源在令該水溶液處於有利於形成碳酸鹽及/或 石厌酸氫鹽化合物之沈澱條件之前或同時接觸。在某些具體 實施例中,二價陽離子水溶液係與c〇2來源在令該水溶液 處於有利於形成碳酸鹽及/或碳酸氫鹽化合物之沈澱條件 之後接觸。在某些具體實施例中,二價陽離子水溶液係與 CO2來源在令該水溶液處於有利於形成碳酸鹽及/或碳酸 39 201016599 氫鹽化合物之沈澱條件之前、同時及之後接觸。在某些具 體實施例中’含二價陽離子水溶液可循環超過一次,其中 第一個沈澱循環主要去除碳酸鈣及碳酸鎂礦物並留下可 加入額外二價陽離子之鹼性溶液。當與二價陽離子之循環 溶液接觸時,二氧化碳容許沈澱更多碳酸鹽及/或碳酸氫鹽 化合物。應瞭解在此等情況下,水溶液可在第一個沈澱循 環之後與c〇2來源在加入二價陽離子之前、期間及/或之 後接觸。在某些具體實施例中,不具二價陽離子或具有低 濃度二價陽離子的水溶液係與C02接觸。在此等具體實施❹ 例中,該水可經循環或新導入的。 含二價陽離子水溶液可利用任何慣用實驗程序與C〇2 來源接觸。C〇2為氣體時,感興趣之接觸實驗程序包括(但 不限於)·直接接觸實驗程序(如令co2氣體冒泡通過水溶 液)、並行接觸方法(即單向流動之氣相流與液相流間之接 觸)、逆行方法(即反向流動之氣相流與液相流間之接觸) 及類似方式。照此,如方便使用,接觸可經由浸出器、起 泡器、射流Venturi反應器、喷灑器、氣體過濾器、喷霧❹ 器、塔盤或填充管柱反應器及類似物的使用而完成。在某 些具體實施例中,氣-液接觸係藉以扁平喷嘴形成溶液液 層的方式達到,其中C〇2氣體與液層沿逆行、並行或橫流 方向或以任何其他適合方式移動。參見,(例如)2009年3 月10日所申請之美國專利申請案第61/158,992號將該 案之王文以引用方式併入本文中。在某些具體實施例 中,氣·液接觸係藉由平均直徑為500微米或更小,如1〇〇 201016599 微米或更小之溶液液滴與c〇2氣體來源接觸而達到。在某 些具體實施例中,觸煤係藉由加速反應朝向平衡而用於力^ 速二氧化碳溶入溶液中;該觸煤可為無機物質如二氯化辞 或锡或有機物質如酶(如碳酸酐酶)。 在本發明方法中,令如上述製得一定體装有c〇2之水 處於足以產生含碳酸鹽沉澱物及上澄液(即沉澱反應混合 物中沉澱物沉澱後所留下的部分)之碳酸鹽化合物沉澱^ ❹ 件下。可使用任何慣用沉澱條件,該等條件可由裝有c〇2 之沉澱反應混合物產生含碳酸鹽之沉澱物。沈澱條件包括 彼專調整裝有C〇2之沉澱反應混合物的物理環境以產生 所澱物。例如,可將裝有CO2之沉澱反應混合物的溫 度提高至一適合所欲含碳酸鹽沉澱物發生沈澱之量值。在 此類具體實施例中,可將裝有CO2之沉澱反應混合物的溫 度提高至一從5〇c至7(TC之值,如從2(TC至5(TC並包括 25C至45。(:。當一既定組之沉澱條件可具有範圍從〇。〇至 ❹ i〇oc之溫度時,在特定具體實施例中可提高溫度以產生 所欲&gt;儿澱物。在特定具體實施例中,沉澱反應混合物的溫 度係利用由低或零一氧化碳排放來源(如太陽能來源、風 力能來源、水電能來源、源自碳發射器之煙道氣的廢熱) 所產生之能量來提高。在某些具體實施例中 ,沉澱反應混 t物的溫度可利用煤或其他燃料燃燒之煙道氣的熱來提 间。亦可將裝有C〇2之沉澱反應混合物的pH提高至一適 合沉澱所欲含碳酸鹽沉澱物之量。在此類具體實施例中, 將裝有C〇2之沉澱反應混合物的pH提高至一用於沈澱之 201016599 鹼性值,其中碳酸鹽係優於碳酸氫鹽。可將pH提高至PH 9或更高,如pH 10或更高,包括pH 11或更高。例如, 當飛灰用於提高沉澱反應混合物或沉澱反應混合物之前 驅物的pH,該pH可為約pH 12.5或更高。 因此,一組由沉澱反應混合物製造所欲沉澱物之沉澱 條件可包括如上溫度及pH,以及某些情況下添加劑及離 子物種在水中之濃度。沉澱條件亦可包括如混合速率、授 拌形式如超音波及晶種、觸煤、薄膜或基質之存在性等因 素。在某些具體實施例中,沈殿條件包括過飽合條件、溫® 度、pH及/或濃度梯度或循環或改變此等參數中之任一 者。用於製造根據本發明含礙酸鹽沉澱物之實驗程序(由 開始[如飛灰熟化]至結束[如乾燥沉澱物或使沉澱物形成 聚集體])可為批次、半批次或連續實驗程序。應瞭解以連 續流動系統製造既定沉澱物的沈澱條件可不同於半批次 或批次系統。 如圖1所說明般,自沈澱反應混合物產生後,含碳酸 鹽沈殺物與反應混合物分離料生分離沈澱物(如濕餅)及 ^澄液。沈義可在崎後及分離(如藉由錢)之前儲存 ;^'丑液巾-段時間。例如,沈殿物可在範酿11:至4〇°C 下’如2〇&lt;::至坑下儲存於上澄液中一段範圍從1 in天或更久之_ ’如1至ig天或更久。沈澱物與 咖物之分離係彻多種慣用方法,包括排水 淹'直*、以料後,接著排水)、傾析、過濾(如重力過 真工诚、彻_空氣過濾、)、離心、、壓榨或其任 42 201016599 何組合中任一種達到。整體水與沉澱物之分離產生一沈澱 物濕餅或去水沈澱物。如4/16/2009所申請之US 61/170086(將該案以引用方式併入本文中)中所述般,液_ 固分離器如 Epuramat 的 Extrem-Separator(‘‘ExSep”)液-固 为離器、Xerox PARC 的螺旋選礦機(spiral concentrator) 或Epuramat的ExSep或Xerox PARC的螺旋選礦機中任 一者之改良皆適用於分離沉澱物與沉澱反應混合物。 ❿ ❹ 在某些具體實施例中’然後乾燥所得去水沈澱物以產 生產物(如水泥、火山灰、聚集體或非反應性儲存穩定之 C〇2鉗合產物)。乾燥可藉由風乾沈澱物而達成。風乾沈澱 物時,風乾可在範圍從-几它至12(rc之溫度下進行。在特 定具體實施例巾,乾縣藉由冷;東觀(即綠)達成,其 中冷束沈殿物,降低關壓力並添加足夠細使沈殺物; 之束結水直接㈣至氣體。在另—具體實施财沈殿物 係經噴乾以賴歧物,其巾纽澱物之㈣係藉將盆健 ==電廠之廢氣流)而乾燥’且其中經由霧化器將 μ進科錢人主乾燥室中並使減以與霧化器方向並 仃或逆㈣式穿過。視斜、統之蚊乾燥實驗程序 ㈣於下)可包括㈣元件、冷魏燥結構 喷霧乾燥結構料。在做㈣實關巾 自2廠或類似操作之廢熱可用於完成乾燥步二例 麻孰、r些具體實施例中,藉由提高的溫度(如由發電廠 苽熱)、壓力或其組合的使用製造聚集體。 廠 分離沉凝物與上澄液之後,必要時進一步處理該分離 43 201016599 P殺物’然而’可簡單地將沉澱物運送至-地點以長期儲 子有效鉗合c〇2。例如,含碳酸鹽沉厥物可經運送並置 ,長期儲存場所’例如地上(以儲存穩定之co2鉗合物形 式)、地下、深海中等。 必要時亦可處理沈殿程序之所得上澄液或沉澱物漿 二例如’可將上澄液或漿料送回至含二價陽離子水溶 ^源(如海洋)中或另一地點。在某些具體實施例中,如上 述般’上澄液可與co2來源接觸以甜合額外co2。例如, 在令上澄液關海洋之具體實施例中,上澄液可以足以增% ,上澄液中所存在碳酸鹽離子之濃度的方式與C02之ς ,來源接觸。如上述般,接觸可利用任何慣用實驗程序進 仃。在某些具體實施例中,上澄液具有鹼性ρΗ且與C〇2 來源接觸係以足以將pH降低至一介於pH 5與9之範圍, PH ό至8.5或pH 7.5至8.2的方式進行。 , 本發明方法可在陸地(如適合含二價陽離子來源存在 或容易且經濟上可運送之地點)、海、海洋令或另一自然 發生或人造之含二價陽離子液體中進行。在某些具體實^ Θ 例中,將一系統用於進行上述方法,其中此類系統包括彼 等如下更詳細描述者。 在本發明某些具體實施例中,飛灰係用作沉澱含碳酸 鹽沉澱物之二價陽離子及/或質子去除劑之唯一或主要來 源。在此類具體實施例中,灰分可經水(如淡水、海水、 滷水)熟化以產生熟飛灰混合物,其中熟飛灰混合物之卩只 可為 pH 7-14、pH 8-14、pH 9-14、pH 10-14、pH 11-U、 44 201016599 pH 12-14或pH 13-14。為最佳化ca〇至Ca(OH)2之萃取 及轉化,可利用高剪切混合及/或濕研磨(wet milling)打開 飛灰球以使用陷入CaO。高剪切混合及/或濕研磨除了提 供使用飛灰基材(如Si〇2基材)中所陷入之ca〇外,亦提 供更強水泥、火山灰及相關最終產物。高剪切混合及/或 濕研磨之後,熟飛灰混合物係與二氧化碳來源如燃煤發電 廠之煙道氣或水泥窯廢氣接觸。可利用上述多種氣_液接 0 觸實驗程序中任一者。持續進行氣_液接觸,直到沉澱反 應混合物之pH固定在約6.8為止,之後令沉澱反應混合 物隔夜攪拌。pH下降至6.8之速率可在氣_液接觸期間藉 由添加補充飛灰而控制。另外’可在喷灑後加入補充飛灰 以將pH提高回到沈殿一部分或全部沉殿物之驗度。在任 何情況下’沉澱物可在自沉澱反應混合物中之特定物種 (如竣酸、碳酸氫鹽、鍟)去除質子後形成。然後,分離含 碳酸鹽及含矽化合物之沉澱物並視情況進一步處理之。 如上,在本發明某些具體實施例中,飛灰係用作沉澱 ® 含碳酸鹽沉澱物之二價陽離子及/或質子去除劑之唯一或 主要來源。在此類具體實施例中,灰分可經水(如淡水、 海水、滷水)熟化以產生熟飛灰混合物,其甲熟飛灰混合 物之 pH 可為 pH 7-14、pH 8-14、pH 9-14、pH 10-14、pH 11-14、pH 12-14 或 pH 13-14。如上,CaO 至 Ca(OH)2之 萃取及轉化可以高剪切混合及/或濕研磨最佳化;然而, 在任一額外處理後,可自熟飛灰混合物中分離出飛灰以 產生飛灰渣及含用於沉澱製造含碳酸鹽沉澱物之二價陽 45 201016599 離子及/或質子去除劑之上澄液。然後,上澄液可與二氧化 碳來源如燃煤發電廠之煙道氣或水泥窯之廢氣接觸。持續 進行氣-液接觸,直到pH固定在約6.8為止,之後令沉澱 反應混合物隔夜攪拌。pH下降至6.8之速率可在氣_液接 觸期間藉由添加補充飛灰而獲控制。另外,可在氣_液接 觸後加入補充飛灰以將pH提高回到沈澱一部分或全部沉 澱物之鹼度。在任何情況下,沉澱物可在自沉澱反應混合 物中之特定物種(如碳酸、碳酸氫鹽、鋰)去除質子後形成。 然後,分離含碳酸鹽之沉澱物並視情況進一步處理之。例❹ 如,含有些微或無含矽物之含碳酸鹽沉澱物可經乾燥並用 於最終產物中。含碳酸鹽沉澱物可改為與所分離之飛灰渣 重新組合,其中沉澱物及飛灰渣係濕、乾或其組合方式混 合以產生含碳酸鹽之含矽物。此一物可具有凝硬性質。 在本發明某些具體實施例中,飛灰係與用於沉殺含碳 酸鹽沉澱物之二價陽離子及/或質子去除劑之其他來源組 合使用。在此類具體實施例中,灰分可經水(如淡水、海 水、滷水)熟化以產生熟飛灰混合物。然後將補充質子去❹ 除劑加入該熟飛灰混合物中以產生高pH熟飛灰混合物, 其中該高1^熟飛灰混合物之pH可為pH 7-14、pH 8-14、 pH 9-14、pH 10-14、pH 11-14、pH 12-14 或 pH 13-14 且 飛灰可完全溶解或某可變程度地溶解。例如,由於補充質 子去除劑之添加可溶解75%飛灰。為幫助任何未溶飛灰之 溶解,可利用高剪切混合及/或濕研磨打開飛灰球以提供 較小飛灰微粒。兩剪切混合及/或濕研磨之後,熟飛灰混 46 201016599 合物可與二氧化碳來源如燃煤發電廠之煙道氣或水泥窯And / or divalent cation values. For example, the waste source-water mixture can be contacted with a source of co2 (which forms carbonic acid in solution) to form a carbonated material containing a carbonated #5, which allows for the additional conversion of CaO to Ca(OH)2 and other divalent cations. . Likewise, the waste source-water mixture can be contacted with aqueous acids such as, but not limited to, HNO3, HC1 and HF. The use of acids such as HNO3 and HC1 acid to digest fly ash allows the use of more (70% or more) of the ca 〇 and MgO present in the fly ash. Digestion with aqueous HF acid allows more CaO and MgO to be used by reacting with the lithus and dissolving the resulting species. The reaction time and acid strength can be varied to increase or decrease the amount of CaO and/or MgO leached from the fly ash. In some embodiments, metal oxide waste sources such as fly ash or cement kiln dust may also be aged (i.e., CaO converted to Ca(OH)2, MgO converted to Mg(OH)2). Any conventional system or method can be used for the aging of combustion ash (such as fly ash, bottom ash) or cement ash. The source of the matured metal oxide waste can be achieved, for example, by a slurry retention cooker, a poly-boiler, a ball mill, or any combination or variation thereof. The selection of the curing device is the source of the metal oxide waste to be cooked. , water availability, space requirements, etc. For example, if the space is limited and the water system for curing is limited, it should be used. (4) _ The material is used on the day (4) and the ball mill is used. According to the source of metal oxide waste ^ Μ Μ 石灰 之 之 之 之 之 之 类型 类型 之 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Conditions), curing temperature, ratio of waste source to water, degree of turbulence during maturation, slurry viscosity, maturation time, and water temperature (before mixing with metal oxide waste sources). The type of water also has an effect on the ripening efficiency. For example, fresh water with a lower divalent cation concentration than seawater is more efficient at extracting CaO and MgO from fly ash; however, the type of water is generally considered; the traceability depends on the availability of the waste site. As such, the method of the present invention includes the improvement of such factors for timely ripening (i.e., to allow for the chronological ripening of industrial processes). The curing temperature (for example) can vary. In some embodiments, the curing temperature ranges from room temperature (about 70 T) to about 220 T. In some embodiments, the curing temperature is 70_100卞, 1〇〇_22〇卞, 120_22 (TF, 140_220卞, 160-220°F, 160-200°F or 160_185°F. Auxiliary heat is required When increasing the curing temperature (beyond the Ca〇 exothermic conversion to Ca(OH)2), waste heat from, for example, flue gas can be used. Other external heat sources (such as hot water) can also be used. In some embodiments, the curing pressure is from a normal atmospheric pressure (about 1 bar) to about 50 bar. In some embodiments, the curing pressure is 1-2.5 bar, 1-5 bar, ι_1 〇巴, 1〇5〇巴, 2〇5〇巴, 3〇5〇❹巴 or 40-50巴. In some embodiments, the curing system is under ambient conditions (ie normal atmospheric temperature and pressure) The ratio of water to waste source can vary. In some implementations, the ratio of water to metal oxide waste sources is 1:1 to L5; 丨: L5 to 丨: 2; 1 : 2 to 1: 2.5 ; 1 : 2.5 to 1: 3 ; 1 : 3 to 1: 3.5 ; 1 : 3.5 to 1: 4 ' 1 · 4 to 1 · 4.5 ; 1 : 4.5 to 1: 5 ; 1 : 5 to 1 : 6 ; 1 : 6 to 1 · 8,1 · 8 to 1: 1〇; 丨: 1〇 to 丨: 25; 丨: 25 to 1: 34 201016599 50; or 1 ·· 50 to 1: 100. Waste The ratio of source to water can also vary. In some embodiments, the ratio of metal oxide waste source to water is 1: 1 to 1: 1.5; 1 : 15 to i: 2; i: 2 to 1: 2.5 ; 1 : 2.5 to 1: 3 ; 1 : 3 to 1: 3.5 ; 1 : 3.5 to 1: 4 ; 1 : 4 to 1: 4.5 ; 1 : 4.5 to 1: 5 ; 1 : 5 to 1: 6 ; 1 : 6 to i : 8 ; 1: 8 to 1 : 1 〇 ; 1 : 10 to 1 : 25 ; : 25 to 丨 : 5 〇 ; or 1: 50 to 1 : 100 . In some embodiments, When the metal oxide 废弃物 waste source, such as fly ash, is fed directly into the immersion reactor, the ratio of waste source to water can be very low. In such embodiments, additional sources of waste (such as fly ash) can be used. The addition of the precipitation reactor to the ratio of the source of the waste to the water or the ratio of the source of the low source to the water can be ripened. The ripening time can also vary with the effect of the ripening efficiency. In some embodiments, the desired ripening time to complete hydration (eg, Ca(OH)2 from CaO) is between 12 and 20 hours, between 20 and 30 hours, between 30 and 40 hours. Between 40 and 60 hours, between 6 〇 10 and 100 hours, between 100 and 160 hours, between 1 〇〇 and ι 8 〇 hours and between 18 〇 and 200 hours. In some embodiments, the desired ripening time for completion of hydration is less than 12 hours, between 6 and 12 hours, between 3 and 6 hours, between 1 and 3 hours, or less than 1 hour. In some embodiments, the desired ripening time to complete the hydration is between 3 and 1 hour. In some embodiments, the curing time is between 15 minutes and 30 minutes, between 15 minutes and 25 minutes, and between 15 minutes and 20 minutes. In some embodiments, the curing time is between 5 minutes and 30 minutes, between 5 minutes and 20 35 201016599 minutes, between 5 minutes and 15 minutes, and between 5 minutes and 1 minute. In some embodiments, the curing time is between 1 minute and 5 minutes, between 1 minute and 3 minutes, and between 2 minutes and 3 minutes. Stirring efficiency can also be affected, for example, by eliminating heat and cold spots. It will be recognized that changing any of the ripening factors can alter other ripening factors such that each ripening procedure will vary depending on the materials available. As such, the ripening according to the present invention may exceed 10%, exceed 20%, exceed 30%, exceed 40%, exceed 50%, exceed 60%, exceed 70%, exceed 80%, exceed 90%, exceed 95%, exceed 97%, more than 98%, more than 99% or more than 99.9% Ca CaO present in the waste source is converted to Ca(OH)2. Likewise, the ripening according to the invention may be more than 10%, more than 20%, more than 3%, more than 40%, more than 50%, more than 60%, more than 70°/. , more than 80%, more than 90%, more than 95%, more than 97%, more than 98 ° /. More than 99% or more than 99.9% of the waste materials present in the waste source are converted to Mg(OH)2. The higher the conversion rate, the more efficient the curing process. Metal oxide waste sources such as combustion ash, cement kiln dust or slag (such as iron ore slag, phosphorus slag) can also be supplemented with divalent cations, including combustion ash, cement ash or mine collapse (eg A mixture of iron ore fishing and slag slag is used in combination. As such, in certain embodiments, the divalent cation source is a combination of a divalent cation source and a combustion ash selected from the group consisting of fly ash, bottom ash, and boiler slag. For example, the source of divalent cations can be a combination of fly ash and seawater. When a combination (such as a combination of combustion ash and another divalent cation source) is used, the combustion ash can be used in any order. For example, the alkaline solution may already contain divalent cations (e.g., seawater) prior to the addition of the combustion ash, or may be added to the slurry of fly ash in water prior to the addition of the cation source. In any of these specific embodiments, co2 is added before or after burning the ash, as described in additional detail below. Sources of waste such as burning ash, cement kiln dust or slag (such as iron ore slag, scaly ore and proton-removing agent supplement (4), including burning ash, cement kiln dust or slag (such as iron ore slag, phosphorus-containing slag) The mixture is used in combination. As such, in some embodiments, the proton-removing agent is derived from a combination of protons, deuteriums, and bottom red ash. Examples of proton-removing agents that may be used include oxides. (such as Ca〇), hydroxides (such as KOH, NaOH, brucite (10), etc.), carbonates (such as he 2 (: 〇 3), serpentine and the like. Also release vermiculite and magnesium to the reaction The serpentine in the mixture ultimately produces a composition containing carbonates and vermiculite (other than those found in the combustion ash). The amount of proton-removing agent added depends on the special properties of the proton-removing agent and the addition of proton-removing The volume of water to be added depends on the volume of the proton-removing agent. Electrochemical methods such as those used for proton removal are also used. Electrolysis can also be used. Different electrolysis procedures can be used, including the Castner-Kellner method. Electrolysis tank (diaphragm cdl) method and membrane cell method. Byproducts of hydrolysate (such as H2, sodium metal) can be collected and used for other purposes. When using a combination of proton removers (such as combustion) When the ash is combined with another proton-removing agent source, the combustion ash can be utilized in any order. For example, the divalent cation-containing solution can be tested prior to the addition of the combustion ash (eg seawater) or via additional proton-removing agents. Alkalinizing the slurry of fly ash in water. In any of these specific examples, as described in additional detail below, C〇2 is added before or after burning ash 37 201016599. As described above, the source of metal oxide waste is as Combustion ash, cement kiln dust and slag (such as iron ore slag, phosphorus slag) can be used in a variety of combinations with or without proton-removing combination. When (4) is used to de-sense (and the method of proton removal), supplement Proton-removing agents can also be used in any suitable combination. Some embodiments of the invention provide for the use of a combination of: artificial waste (eg, derived from Mingfan soil treatment). Red mud or brown mud) combined with commercially available tests (such as NaOH); artificial waste and electrochemical methods (ie, carbonic acid, cesium carbonate, salt), and naturally occurring sub-recording agents (such as serpentine) a combination of artificial ore; or a combination of artificial waste and municipal (4) and naturally occurring proton-removing agents, followed by conversion to serpentine ore and electrochemical methods, and the ratio of various methods of proton removal may be based on conditions and Usability adjustments 'for example' for the first five years of the use period of the Shendian factory, the waste of artificial waste and the naturally occurring proton removal _ combination, the combination of the conversion into the combination of 敝 (4) and the electro-chemical method of the silk f, etc. In the case of some of the specific examples, the proton remover (and the quality of the shirt _ face from the fly ash, 2 _ I go to the side from the waste silk (such as red mud), pain such as (10): = It is carried out by an electrochemical method. For example, a combination of a proton-removing agent and an electrochemical method is provided. Protons go __ from fly ash, 6 ()% protons;! waste (such as red mud) and 3 scorpion removal system by means of advancement. Partially specific _ provides a group of interesting electrochemical methods 38 201016599 In combination, the 10% proton-removing agent is derived from fly ash, 60% proton-removing agent is derived from naturally occurring mineral sources (such as dissolved serpentine) and 3 〇% proton removal is performed by electrochemical methods. Some embodiments provide a combination of a proton-removing agent and an electrochemical method such that for the first five years of use of the septic waste, 30% of the proton-removing agent is derived from fly ash and 7% of the proton-removing agent is derived from the mining program. Waste (such as red mud) and since the sixth year, 1%% proton remover is derived from fly ash, 60% proton remover is the result of the dissolution of naturally occurring mineral sources (such as serpentine) and 30% Proton removal is carried out by electrochemical methods. An aqueous solution containing a divalent cation (such as an alkaline earth metal cation such as Ca 2+ and Mg 2+ ) may be derived from C 〇 2 in such a condition that the divalent cation-containing solution is subjected to precipitation conditions (ie, based on, for example, pH permitting precipitation of one or more substances). Contact during the month 'J, during or after the month. Thus, in certain embodiments, the aqueous divalent cation solution is contacted with the C〇2 source prior to subjecting the aqueous solution to precipitation conditions that favor the formation of carbonate and/or bicarbonate compounds. In certain embodiments, the aqueous solution of divalent cations is contacted with a source of C?2 and at the same time the aqueous solution is in a parenchy condition conducive to the formation of a carbonate and/or bicarbonate compound. In certain embodiments, the aqueous divalent cation solution is contacted with C?2 before or at the same time as the aqueous solution is subjected to precipitation conditions that favor the formation of carbonate and/or hydrogen sulphate compounds. In certain embodiments, the aqueous divalent cation solution is contacted with the c〇2 source after the aqueous solution is in a precipitating condition that facilitates the formation of the carbonate and/or bicarbonate compound. In certain embodiments, the divalent cation aqueous solution is contacted with the CO2 source prior to, simultaneously with, and after the aqueous solution is subjected to precipitation conditions that favor the formation of carbonate and/or carbonic acid carbonate compounds. In certain embodiments, the aqueous solution containing divalent cations can be recycled more than once, wherein the first precipitation cycle primarily removes the calcium carbonate and magnesium carbonate minerals and leaves an alkaline solution to which additional divalent cations can be added. Carbon dioxide allows precipitation of more carbonate and/or bicarbonate compounds when contacted with a circulating solution of divalent cations. It should be understood that in such cases, the aqueous solution may be contacted with the c〇2 source before, during, and/or after the addition of the divalent cation after the first precipitation cycle. In certain embodiments, an aqueous solution that does not have divalent cations or has a low concentration of divalent cations is contacted with CO 2 . In these specific embodiments, the water can be recycled or newly introduced. The aqueous solution containing divalent cations can be contacted with the C〇2 source using any conventional experimental procedure. When C〇2 is a gas, the contact experimental procedure of interest includes (but is not limited to) direct contact with the experimental procedure (such as bubbling co2 gas through an aqueous solution), parallel contact method (ie, one-way flow of gas phase and liquid phase) Contact between streams), retrograde method (ie, contact between gas phase flow and liquid phase flow in reverse flow) and the like. As such, for ease of use, contact can be accomplished via the use of a leacher, bubbler, jet Venturi reactor, sprinkler, gas filter, spray sparge, tray or packed column reactor and the like. . In some embodiments, the gas-liquid contact is achieved by forming a solution liquid layer with a flat nozzle wherein the C〇2 gas and liquid layer move in a retrograde, parallel or cross-flow direction or in any other suitable manner. See, for example, U.S. Patent Application Serial No. 61/158,992, filed on Mar. In some embodiments, the gas-liquid contact is achieved by contacting a solution droplet having an average diameter of 500 microns or less, such as 1 〇〇 201016599 microns or less, with a c 〇 2 gas source. In some embodiments, the coal contact system is used to accelerate the reaction of the carbon dioxide into the solution by accelerating the reaction; the coal may be an inorganic substance such as dichlorinated or tin or an organic substance such as an enzyme (eg, Carbonic anhydrase). In the process of the present invention, the water having a certain volume of c〇2 prepared as described above is in a carbonic acid sufficient to produce a carbonate-containing precipitate and a supernatant (i.e., a portion left after precipitation of the precipitate in the precipitation reaction mixture). The salt compound is precipitated under the ❹. Any conventional precipitation conditions can be used which produce a carbonate-containing precipitate from the precipitation reaction mixture containing c〇2. The precipitation conditions include the physical environment in which the precipitation reaction mixture containing C〇2 is specifically adjusted to produce a precipitate. For example, the temperature of the precipitated reaction mixture containing CO2 can be increased to a level suitable for precipitation of the desired carbonate precipitate. In such embodiments, the temperature of the precipitation reaction mixture containing CO2 can be raised to a value from 5 〇c to 7 (TC, such as from 2 (TC to 5 (TC and includes 25 C to 45. (: When a predetermined set of precipitation conditions can have a temperature ranging from 〇.〇 to ❹ i〇oc, the temperature can be increased in a particular embodiment to produce the desired &gt; ing. In a particular embodiment, The temperature of the precipitation reaction mixture is increased by the energy produced by sources of low or zero carbon monoxide emissions (eg, solar energy sources, wind energy sources, hydroelectric sources, waste heat from carbon emitters). In an embodiment, the temperature of the precipitation reaction mixture may be extracted by the heat of the flue gas of coal or other fuel combustion. The pH of the precipitation reaction mixture containing C〇2 may also be raised to a suitable concentration for precipitation. The amount of carbonate precipitate. In such embodiments, the pH of the precipitation reaction mixture containing C 〇 2 is increased to a 201016599 basic value for precipitation, wherein the carbonate is superior to bicarbonate. Increase the pH to pH 9 or higher, such as pH 10 or Higher, including pH 11 or higher. For example, when fly ash is used to increase the pH of the precursor before the precipitation reaction mixture or precipitation reaction mixture, the pH may be about pH 12.5 or higher. The precipitation conditions for producing the desired precipitate may include the above temperature and pH, and in some cases, the concentration of the additive and the ionic species in water. The precipitation conditions may also include, for example, mixing rate, mixing forms such as ultrasonic and seed crystals, and coal contact. Factors such as the presence of a film or substrate. In some embodiments, the conditions of the sag include oversaturation conditions, temperature, pH, and/or concentration gradients or cycles or changes in any of these parameters. For the preparation of an experimental procedure for the inhibition of acid salt precipitates according to the invention (from the beginning [such as fly ash maturing] to the end [such as drying the precipitate or forming aggregates to form aggregates]) can be batch, semi-batch or continuous experiments Procedure. It should be understood that the precipitation conditions for the manufacture of a given sediment in a continuous flow system may differ from the semi-batch or batch system. As illustrated in Figure 1, the carbonated salt is killed after the precipitation of the reaction mixture. Separation of the precipitate from the reaction mixture (such as wet cake) and liquid separation. Shenyi can be stored before the separation and separation (such as by money); ^ ' ugly towel - period of time. For example, Shen Temple can In the range of 11: to 4 ° ° C 'such as 2 〇 &lt;:: to the pits stored in the upper liquid range from 1 in days or longer _ 'such as 1 to ig days or more. Sediment Separation from the coffee is a variety of conventional methods, including draining the water, draining the material, then draining it, decanting, filtering (such as gravity, _ air filtration,), centrifugation, or pressing It is achieved in any combination of 42 201016599. The separation of the whole water from the sediment produces a precipitate of wet cake or dewatered sediment. For example, US 61/170086, filed on 4/16/2009, As described in this article, liquid-solid separators such as Epuramat's Extrem-Separator (''ExSep") liquid-solid are separators, Xerox PARC's spiral concentrator or Epuramat's ExSep or Xerox Improvements in any of the PARC spiral concentrators are suitable for separating the precipitate from the precipitation reaction mixture. ❿ ❹ In some embodiments, the resulting dewatered precipitate is then dried to produce a product (e.g., cement, pozzolan, aggregate, or non-reactive storage-stable C〇2 clamped product). Drying can be achieved by air drying the precipitate. When the sediment is air-dried, air drying can be carried out in a range from a few to 12 (rc temperature). In a specific embodiment, the towel is made by cold; the east view (ie green) is reached, wherein the cold beam sinks the temple, lowers the Pressure and add enough fine to make the sinking; the bundle of water directly (four) to the gas. In another - the specific implementation of the financial system is sprayed dry to the disintegration, the towel of the new deposit (four) is the basin of health == The waste gas stream of the power plant is dried and 'wherein the μ is introduced into the main drying chamber via the atomizer and is passed through the enthalpy or the reverse (4) direction of the atomizer. The experimental procedure for the drying of the parasitic and genus mosquitoes (4) may include (4) components, cold-wet structure, spray-dried structural materials. In the case of (4) the actual waste towel from the 2 plant or similar operation waste heat can be used to complete the drying step two cases of paralysis, in some specific examples, by increasing the temperature (such as by the power plant heat), pressure or a combination thereof Use to make aggregates. After the separation of the condensate and the supernatant, the separation is further processed if necessary. 43 201016599 Picide 'However' simply transports the sediment to the site to effectively clamp c〇2 with the long-term reservoir. For example, carbonate-containing deposits can be transported juxtaposed, long-term storage locations such as above ground (in the form of a stable co2 clamp), underground, deep sea, etc. If necessary, the resulting supernatant or precipitate slurry can also be treated. For example, the supernatant or slurry can be returned to a source containing divalent cation water (such as the ocean) or another location. In some embodiments, the supernatant can be contacted with a source of co2 to sweeten additional co2 as described above. For example, in the specific embodiment of the upper liquid to the sea, the upper liquid can be increased in %, and the concentration of carbonate ions in the upper liquid is in contact with the source of C02. As described above, the contact can be performed using any conventional experimental procedure. In certain embodiments, the supernatant has a basic pH and is contacted with a C〇2 source in a manner sufficient to reduce the pH to a range between pH 5 and 9, pH 8.5 to 8.5 or pH 7.5 to 8.2. . The process of the invention can be carried out on land (e.g., where it is suitable for the presence of a source of divalent cations or where it is readily and economically transportable), sea, ocean or another naturally occurring or artificial divalent cation-containing liquid. In some specific embodiments, a system is used to perform the above methods, wherein such systems include those described in more detail below. In some embodiments of the invention, fly ash is used as the sole or primary source for the precipitation of divalent cations and/or proton-removing agents containing carbonate precipitates. In such embodiments, the ash may be aged by water (eg, fresh water, sea water, brine) to produce a mixture of cooked fly ash, wherein the mash of the cooked fly ash mixture may only be pH 7-14, pH 8-14, pH 9 -14, pH 10-14, pH 11-U, 44 201016599 pH 12-14 or pH 13-14. To optimize the extraction and conversion of ca(R) to Ca(OH)2, high shear mixing and/or wet milling can be used to open the fly ash balls for use in CaO. High shear mixing and/or wet milling provides stronger cement, pozzolan and related end products in addition to the ca〇 trapped in the fly ash substrate (e.g., Si〇2 substrate). After high shear mixing and/or wet milling, the cooked fly ash mixture is contacted with a source of carbon dioxide such as flue gas from a coal fired power plant or cement kiln exhaust. Any of the above various gas-liquid connection test procedures can be utilized. The gas-liquid contact was continued until the pH of the precipitation reaction mixture was fixed at about 6.8, after which the precipitation reaction mixture was stirred overnight. The rate at which the pH drops to 6.8 can be controlled by adding supplemental fly ash during gas-liquid contact. In addition, supplemental fly ash can be added after spraying to raise the pH back to the part of the temple or to the full extent of the sink. In any case, the precipitate may form after removal of protons from a particular species (e.g., citric acid, bicarbonate, hydrazine) in the precipitation reaction mixture. The precipitate containing the carbonate and the ruthenium containing compound is then separated and further processed as appropriate. As noted above, in certain embodiments of the invention, fly ash is used as the sole or primary source of precipitated divalent cations and/or proton-removing agents containing carbonate precipitates. In such embodiments, the ash may be aged by water (e.g., fresh water, seawater, brine) to produce a mixture of cooked fly ash, and the pH of the mixture of the fly ash mixture may be pH 7-14, pH 8-14, pH 9 -14, pH 10-14, pH 11-14, pH 12-14 or pH 13-14. As above, the extraction and conversion of CaO to Ca(OH)2 can be optimized for high shear mixing and/or wet milling; however, after any additional treatment, fly ash can be separated from the fly ash mixture to produce fly ash. The slag and the solution containing the divalent cation 45 201016599 ion and/or proton remover for the precipitation of the carbonate-containing precipitate. The supernatant can then be contacted with a source of carbon dioxide such as a flue gas from a coal fired power plant or an exhaust from a cement kiln. The gas-liquid contact was continued until the pH was fixed at about 6.8, after which the precipitation reaction mixture was stirred overnight. The rate at which the pH drops to 6.8 can be controlled by adding supplemental fly ash during gas-liquid contact. Alternatively, supplemental fly ash may be added after the gas-liquid contact to raise the pH back to the alkalinity of a portion or all of the precipitate. In any case, the precipitate may form after removal of protons from a particular species (e.g., carbonic acid, bicarbonate, lithium) in the precipitation reaction mixture. The carbonate-containing precipitate is then separated and further processed as appropriate. For example, a carbonate-containing precipitate containing little or no sputum may be dried and used in the final product. The carbonate-containing precipitate may instead be recombined with the separated fly ash, wherein the precipitate and the fly ash are wet, dry or a combination thereof to produce a carbonate-containing mash. This material may have a pozzolanic property. In some embodiments of the invention, the fly ash system is used in combination with other sources of divalent cations and/or proton-removing agents for killing carbonate-containing precipitates. In such embodiments, the ash can be aged via water (e.g., fresh water, sea water, brine) to produce a mixture of cooked fly ash. A proton-removing degreasing agent is then added to the cooked fly ash mixture to produce a high pH cooked fly ash mixture, wherein the pH of the high-yield fly ash mixture can be pH 7-14, pH 8-14, pH 9- 14. pH 10-14, pH 11-14, pH 12-14 or pH 13-14 and the fly ash can be completely dissolved or dissolved to a certain extent. For example, the addition of a proton-removing agent can dissolve 75% fly ash. To aid in the dissolution of any undissolved fly ash, fly ash balls can be opened using high shear mixing and/or wet milling to provide smaller fly ash particles. After two-shear mixing and/or wet-grinding, the cooked fly ash is mixed. 46 201016599 The compound can be combined with a carbon dioxide source such as a flue gas or cement kiln of a coal-fired power plant.

❹ 之廢氣接觸。可利用上述多種氣-液接觸實驗程序中任一 者。持續進行氣-液接觸,直到pH固定在約6 8為止,之 後令沉澱反應混合物隔夜攪拌下降至6 8之速率可在 氣-液接觸期間藉由添加補充飛灰或另一補充質子去除劑 控制。另外,可在氣-液接觸後加入補充飛灰以將提高 回到沈澱一部分或全部沉澱物之鹼度。在任何情況下,沉 澱物可在自沉澱反應混合物中之特定物種(如碳酸、碳酸 氫鹽、鋥)去除質子後形成。然後,分離含碳酸鹽及含矽 化合物之沉澱物並視情況進一步處理之。 本發明提供利用金屬氧化物廢棄物來源由c〇2製造含 碳酸鹽組成物之方法及系統,其中該eh可源自多種不同 來源(如工業廢棄副產物如燃燒碳基燃料期間由發電廠所 產生之廢氣流)。照此,本發明提供自c〇2廢氣來源去除 或分離c〇2並將c〇2固定成非氣態之儲存安定形式(如用 於建造結频如㈣物絲礎建狀⑽以結構體本 身)而使C〇2無法逸入大氣中。此外,本發明提供甜合⑺2 以及長期儲存該C〇2於可用產物中之有效方法。 呈儲存穩定形式之沉澱物(其可簡單地為乾沉殿物)月 儲存於地上暴露條件(即開放至大氣)下而在較長期間,女 1年或更長、5年或更長、10年或更長、25年或更長、5&lt; 年或更長、100年或更長、250年或更長、1〇〇〇年或更長 =〇〇年或更長、_〇,_年或更長,或甚至則麵⑽丨 年或更長無顯著(若有)降解。當沉溉物之儲存穩定形式慈 47 201016599 過些微(若有)降解並儲存於地上正常雨水pH下時,如依 據自產物釋放之c〇2氣體所量得(若有)之降解量每年將不 超過5%,且在特定具體實施例中將不超過1%/年。沉澱 物之地上儲存穩定形式在多種不同環境條件下,如範圍從 •100°C至600°C之溫度及範圍從〇至1〇0%之澄度下係穩定 的,其中該等條件可為無風、多風或暴風雨◎在某些具體 實施例中,本發明方法所產生之沉澱物係用作建築材料 (如某類型人造結構體如建築物、道路、橋標、水壤及類 似物之建構材料)而使c〇2有效地甜合於建築環境中。任Θ 何人造結構體,如地基、停車結構體、房子、辦公大樓、 商用辦公室、政府大樓、基礎建設(如路面;道路;橋樑; 天橋;牆壁;閘門、圍攔及柱子之基腳和類似物)係視為 建築環境之一部分。本發明灰泥發現可一起用於黏結建造 砌塊(如磚)中並填補建造砌塊間之間隙。在其他用途中, 灰泥亦可用於固定現存結構體(如以更換原有灰泥已失密 (compromised)或經侵餘之段)。 在特定具體實施例中,含碳酸鹽組成物係用作與水組© 合後凝固及硬化之水硬水泥的組分。藉由沉澱物與水泥及 水組合所產生之產物的凝固及硬化係因與水反應後由水 泥所形成水合物的產生之故,其中水合物本質上不溶於 水。此類碳酸鹽化合物水硬水泥、其製造方法及用途係描 述於2008年5月23日所申請標題為”Hydraulic Cements Comprising Carbonate Compounds Compositions”之美國專 利申請案第12/126,776號;將該申請案之揭示内容以引 48 201016599 用方式併入本文中。 沉殿期間調整主要離子比率可影響沉澱物本質。主要 離子比率對多晶型物之形成有顯著影響。例如,隨水中 鎮.#5比率之增加’霞石優於低鎂方解石變成沉澱物中碳 酸舞之主要多晶型物。在低鎂:槪率下,低鎂方解石變 成主要多晶型物。 沈澱速率亦對化合物相形成有極大影響,其中最快之 ❹ 心殿速率可藉以所欲相植晶溶液而達到。若無植晶,快速 沈殿可藉快速增加沉殿反應混合物之pH而達到,其產生 較非晶質之成分。反應速率愈快,更多石夕石與含碳酸約沈 版物合,則提條件係矽石係存在於該沉澱反應混合物 中。此外’pH愈高,沈澱愈快,產生愈非晶質之沉殿物。 除了沉澱反應之含鎂及含鈣產物之外,含矽、鋁鐵 及其他元素之化合物及㈣村由本發明方法及系統製 得。此類化合物之製備可能希望改變含有該程序所產生之 ❹ :ϋ/殿物之水泥反應性或改㈣其所製得之固化水泥及混 凝土性質。在本發明具體實施例中,將灰分(如下更詳細 描述般)加入反應中作為一此等額外反應物來源以製造碳 酸鹽化合物沉殿物’其包含一或多種組分如非晶質石夕石、 非曰曰貝紹-矽酸鹽、晶質矽石、舞石夕酸鹽、舞鋁石夕酸鹽等。 在某些具體實施例中’聚集體係由所得沉澱物製得。 在此類乾燥程序產生所欲尺寸微粒之具體實施例中,製造 該聚集體需要些微(若有)額外處理。在糾其他具體實施 例中’况殺物係進行進一步處理以產生所欲聚集體。例 49 201016599 如,沈澱物可與淡水以足以使沈澱物形成固體產物的方式 組合’其中存在於沈澱物中之介穩碳酸鹽化合物已轉化成 一淡水穩定之形式。藉由控制濕物之水含量,可控制最終 聚集體之孔隙度及最終強度及密度。一般’濕餅將含40_60 體積%之水。對於較密實之聚集體’濕餅將含&lt;50%之水, 對於較不密實之濾餅,濕餅將含&gt;50%之水。硬化後,所 得固體產物然後可經機械處理’如壓碎或者粉碎並經分類 以產生所欲特徵(如尺寸、特定形狀等)之聚集體。在此等 程序中,凝固及機械處理步驟可以實質連續方式或在不同❿ 時間進行。在特定具體實施例中,大體積之沈澱物可儲存 在開放環境中’其中沈澱物係暴露於大氣中。對於凝固步 驟,沈澱物可以慣用方式經淡水沖洗或自然淋於其上以產 生凝固產物。該凝固產物然後可如上述般進行機械處理。 製造沉澱物之後,處理沉澱物以產生所欲聚集體。在某些 具體實施例中,沉澱物可留在戶外,其中雨水可用作淡水 來源而使天水穩定化反應發生,硬化沉殿以形成聚集體。 、在本發明一個具體實施例之實例中,沈澱物係利用帶❹ 式輸送器及高速級配機(highway grader)以均勻方式機械 为散在一緊實地表上至一感興趣之深度,如高達12英叶, 如1至12英吋,包括6至12英吋。然後利用淡水以慣用 比率,如每立方英呎之沈澱物一/半加侖之水沖洗該分散 物。然後,利用鋼輥,如彼等用於緊實瀝青者擠壓數次以 緊實該物。以每週為基礎重複清洗該表面,直到該物呈現 所欲化學及機械性質為止,此時藉由壓碎將該物機械處理 50 201016599 成聚集體。 在本發明另一具體實施例實例中,一旦自沉澱反應混 合物分離出含碳酸鹽沉澱物,以淡水清洗之,然後將其置 入過滤壓榨機h產生具有3G_60%_之濾餅。然後在 模型t利用任何慣用構件,如液壓機在如範圍從5至 5000psi,如1000至5〇〇〇psi之適當壓力下 餅以產生-成型固體,如矩形碑。然後,如藉由置於外面 ❹ 存、騎其置於-令其處料濕度及高斜之腔室中 等固化此等所得固體。然後,將此等所得固化固體用作建 築材料本身或壓碎製造聚集體。製造此聚集體之方法係另 外描述於2_年5月29日所中請之美國專利申請案第 2/475,378號中’將該案之揭示内容以引用方式併入本文 中。 在包括使用溫度及壓力之程序中,一般先乾燥已去水 =沈殿物餅。然後令賴減於—觸絲及提高溫度和 ❹ ^之組合卜特定_ °加回之水量、溫度、壓力及暴 ,時間之組合以及該餅之厚度可依照起始物之組成及所 ”人、《果而變。本文描述多種不同暴露該物於溫度及壓力中 應瞭解可使用任何慣用方法。—示範性乾燥實驗 系暴露於贼下達队48小時,但為方便,可使用較 s、較小之溫度及時間,如如-恥它達3_%小時或甚至更 久。水係經加回至所欲百分率,如至1%_5〇%,如1%_1〇%, ^1&gt;2'3'4'5'6'7、8、9 或 10°/。重量 / 重量,如 5% 里/重量,或4-6%重量/重量,或3_7%重量/重量。在某 51 201016599 些情況下’如在儲存於戶外並暴露於天水沉澱之物中,水 加回之精確百分率不重要。必要時可調整該餅之厚度及尺 寸’該厚度在某些具體實施例中可從〇 〇5英吋變化至5 英叶’如0.1-2英吋或0.3-1英吋。在某些具體實施例中, 该餅可為0.5英吋至6英呎或甚至更厚。然後藉由任何慣 用方法,例如在壓板式壓榨機中利用熱壓板使該餅暴露於 較高溫度及/或壓力下一既定時間^用於提高如該等壓板之 溫度的熱可,如藉由工業廢氣流如煙道氣流之熱提供。溫 度可為任何適合溫度,—般而言,較厚濾餅需要較高溫Θ 度;溫度範圍之實例為40_15(rc,如6〇_12(rc,如 70-1HTC ’或80-1〇〇。(:。同樣地,壓力可為任何適合產生 所欲結果之壓力;示範性壓力包括1〇〇〇1〇〇 〇〇〇磅/平方 英吋(psi),包括 2〇〇〇-50,0〇〇 psi,或 2〇〇〇_25 〇〇〇 psi,或 2000-20,000 psi ’或3〇〇〇_5〇〇〇⑽。最後,壓搾滤餅之時 間可為任何適合時間,如1-100秒,或丨-丨⑻分鐘,或I % 分鐘’或2-25分鐘,或Mo,_天。然後,所得硬片可 視情況,如藉由置科面及贿、藉由置於—使其處於高❹ 濕度及高熱之腔室中等固化。然後將此等視情況經固化之 硬片用作建築材料本身或壓碎以製造聚集體。 一種提供溫度及壓力之方法係堆疊去水乾厚板。例 ^,在此-方法中,可如在如!英&lt;至1()英叹厚,或! 英尺至1G英尺厚之厚板中以煙道氣乾燥去水沉殿物 :堆叠放置厚板而提供壓力;更大壓力係由更厚的厚板 如10 1000英叹或甚至更大,如1〇〇 5〇〇〇英吸者達到。 52 201016599 視所欲結果而定,在適當時間(可為數天、數週或甚至數 年)如藉由採石由該等層之既定高度’如由底部去除石化 厚板且必要時處理之以產生聚集體或其他岩石材料。 另一種提供溫度及壓力之方法係使用壓榨機,如更完 整描述於2_年5月29日所中請之美國專财請案第 12/475,378號中。可使用適合麗梓機(p叫,如塵板式壓 榨機以在所欲溫度(利用如煙道氣或製造賴物之程序,废气 The exhaust gas is in contact. Any of the above various gas-liquid contact experimental procedures can be utilized. Continue gas-liquid contact until the pH is fixed at about 68, after which the precipitation reaction mixture is stirred overnight to a rate of 68. It can be controlled during gas-liquid contact by adding supplemental fly ash or another supplemental proton remover. . Alternatively, supplemental fly ash may be added after the gas-liquid contact to increase the alkalinity of a portion or all of the precipitate back to the precipitate. In any case, the precipitate may form after removal of protons from a particular species (e.g., carbonic acid, bicarbonate, hydrazine) in the precipitation reaction mixture. The carbonate-containing and cerium-containing compound precipitate is then separated and further processed as appropriate. The present invention provides a method and system for producing a carbonate-containing composition from c〇2 using a source of metal oxide waste, wherein the eh can be derived from a variety of different sources (eg, industrial waste by-products such as combustion of carbon-based fuels by a power plant) Generated exhaust gas flow). As such, the present invention provides for the removal or separation of c〇2 from the c〇2 source of exhaust gas and the fixation of c〇2 to a non-gaseous storage stable form (eg, for the construction of a junction frequency such as (4) a filament structure (10) to the structure itself ), so that C〇2 cannot escape into the atmosphere. Furthermore, the present invention provides an effective method for the sweet (7) 2 and long-term storage of the C 〇 2 in the usable product. Precipitates in a stable storage form (which may simply be dry sinks) are stored monthly under ground exposure conditions (ie open to the atmosphere) and for a longer period of time, women 1 year or longer, 5 years or longer, 10 years or longer, 25 years or longer, 5&lt;year or longer, 100 years or longer, 250 years or longer, 1 year or longer = leap years or longer, _〇, _ years or longer, or even even (10) years or longer without significant (if any) degradation. When the storage of the sinking material is stable, the type 47 201016599 is slightly degraded (if any) and stored at the normal rain water pH on the ground, such as the amount of degradation (if any) based on the c〇2 gas released from the product. Not more than 5%, and in certain embodiments will not exceed 1%/year. The stable form of the deposit on the ground is stable under a variety of different environmental conditions, such as temperatures ranging from •100 ° C to 600 ° C and ranging from 〇 to 1 〇 0%, wherein the conditions may be Windless, windy or stormy ◎ In some embodiments, the precipitate produced by the method of the invention is used as a building material (eg, a type of man-made structure such as a building, road, bridge, water, and the like) Constructing the material) so that c〇2 is effectively sweetened in the built environment. Ren 人造 artificial structures, such as foundations, parking structures, houses, office buildings, commercial offices, government buildings, infrastructure (such as roads; roads; bridges; bridges; walls; gates, fences and pillars and similar The matter is considered part of the built environment. The plasters of the present invention have been found to be used together in the construction of blocks (e.g., bricks) and to fill the gaps between the building blocks. In other applications, stucco can also be used to secure existing structures (eg, to replace the original plaster that has been compromised or invaded). In a particular embodiment, the carbonate-containing composition is used as a component of a hydraulic cement that solidifies and hardens upon combination with water. The solidification and hardening of the product produced by the combination of the precipitate with cement and water is due to the formation of a hydrate formed by the cement after the reaction with water, wherein the hydrate is substantially insoluble in water. Such a carbonate compound hydraulic cement, its method of manufacture, and its use are described in U.S. Patent Application Serial No. 12/126,776, entitled "Hydraulic Cements Comprising Carbonate Compounds Compositions", filed on May 23, 2008; The disclosure is incorporated herein by reference. Adjusting the main ion ratio during the sag can affect the nature of the sediment. The main ion ratio has a significant effect on the formation of polymorphs. For example, with the increase in the ratio of water in the town. #5, nepheline is superior to the low-magnesium calcite to become the main polymorph of the carbonic acid dance in the precipitate. At low magnesium: bismuth, low-magnesium calcite becomes the main polymorph. The rate of precipitation also has a great influence on the formation of the compound phase, the fastest of which can be achieved by the desired phase of the crystallization solution. If there is no phytocrystal, the rapid puddle can be achieved by rapidly increasing the pH of the sag reaction mixture, which produces a more amorphous component. The faster the reaction rate, the more the Shishi stone is combined with the carbonate-containing precipitate, the condition is that the vermiculite is present in the precipitation reaction mixture. In addition, the higher the pH, the faster the precipitation, resulting in a more amorphous sediment. In addition to the magnesium and calcium containing products of the precipitation reaction, compounds containing cerium, aluminum iron and other elements and (iv) villages are prepared by the process and system of the present invention. The preparation of such compounds may be desirable to modify the cement reactivity of the 含有:ϋ/殿物 produced by the procedure or to modify the properties of the cured cement and concrete prepared therefrom. In a particular embodiment of the invention, ash (as described in more detail below) is added to the reaction as a source of such additional reactants to produce a carbonate compound sink which contains one or more components such as amorphous rock eve Stone, non-曰曰 Besson-citrate, crystalline vermiculite, Wushixi acid, and dance alumite. In some embodiments the 'aggregation system is made from the resulting precipitate. In a specific embodiment where such a drying process produces particles of the desired size, the fabrication of the aggregate requires minor, if any, additional processing. In other specific embodiments, the conditions are further processed to produce the desired aggregates. Example 49 201016599 For example, the precipitate may be combined with fresh water in a manner sufficient to cause the precipitate to form a solid product. The metastable carbonate compound present in the precipitate has been converted to a fresh water stable form. By controlling the water content of the wet mass, the porosity and ultimate strength and density of the final aggregate can be controlled. Typically the 'wet cake will contain 40-60% by volume of water. For denser aggregates, the wet cake will contain &lt;50% water, and for the less dense filter cake, the wet cake will contain &gt; 50% water. After hardening, the resulting solid product can then be mechanically treated' such as crushed or comminuted and classified to produce aggregates of desired characteristics (e.g., size, specific shape, etc.). In such procedures, the solidification and mechanical processing steps can be carried out in a substantially continuous manner or at different times. In a particular embodiment, a large volume of precipitate can be stored in an open environment where the precipitate is exposed to the atmosphere. For the solidification step, the precipitate may be rinsed with fresh water or naturally deposited thereon in a conventional manner to produce a solidified product. The solidified product can then be mechanically treated as described above. After the precipitate is made, the precipitate is treated to produce the desired aggregate. In some embodiments, the precipitate may be left outdoors, wherein rainwater may be used as a source of fresh water to cause a stabilization reaction of the natural water to harden the sink to form aggregates. In an embodiment of a specific embodiment of the invention, the precipitate is mechanically dispersed in a uniform manner to a depth of interest, such as up to a depth, using a belt conveyor and a highway grader. 12 inches, such as 1 to 12 inches, including 6 to 12 inches. The dispersion is then rinsed with fresh water at a conventional ratio, such as one/half gallon of water per cubic inch of precipitate. Then, using steel rolls, such as those used for compacting asphalt, are squeezed several times to tighten the material. The surface is repeatedly washed on a weekly basis until the article exhibits the desired chemical and mechanical properties, at which point the article is mechanically treated by crushing into a polymer. In another embodiment of the invention, once the carbonate-containing precipitate is separated from the precipitation reaction mixture, it is washed with fresh water and then placed in a filter press h to produce a filter cake having 3G_60%. The cake is then produced in a model t using any conventional means, such as a hydraulic press, at a suitable pressure ranging from 5 to 5000 psi, such as 1000 to 5 psi, to produce a shaped solid, such as a rectangular monument. Then, the obtained solid is solidified by being placed outside, trapped in a chamber in which it is placed in a humidity and high inclination. Then, the obtained solidified solids are used as a building material itself or crushed to produce aggregates. The method of making such an aggregate is described in the U.S. Patent Application Serial No. 2/475,378, the entire disclosure of which is incorporated herein by reference. In the process including the use of temperature and pressure, it is generally dry before the water = Shen Temple cake. Then let Lai reduce - the combination of the touch and increase the temperature and ❹ ^ specific _ ° added water, temperature, pressure and storm, the combination of time and the thickness of the cake can be based on the composition of the starting material and the "people" "The fruit changes. This article describes a variety of different exposures of the temperature and pressure should be known to use any conventional method. - The demonstration of dry experiment is exposed to the thief for 48 hours, but for convenience, you can use the s, compare Small temperature and time, such as - shame it up to 3_% hours or even longer. The water system is added back to the desired percentage, such as to 1% _5〇%, such as 1%_1〇%, ^1&gt;2' 3'4'5'6'7, 8, 9 or 10°/. Weight/weight, such as 5% liters/weight, or 4-6% weight/weight, or 3_7% weight/weight. In some 51 201016599 In the case of 'the accuracy of the addition of water, as it is stored outdoors and exposed to the precipitation of the sky water, is not critical. The thickness and size of the cake may be adjusted if necessary. This thickness may be from 〇〇 in some embodiments. 5 inches change to 5 inches 'eg 0.1-2 inches or 0.3-1 inches. In some embodiments, the cake may be 0.5 inches to 6 inches or even thicker. The cake is then exposed to a higher temperature and/or pressure for a given period of time by any conventional means, such as in a plate press, using a hot platen. The heat of the temperature can be provided, for example, by the heat of an industrial exhaust stream such as a flue gas stream. The temperature can be any suitable temperature, in general, a thicker filter cake requires a higher temperature enthalpy; an example of a temperature range is 40_15 (rc) For example, 6〇_12(rc, such as 70-1HTC ' or 80-1〇〇. (:. Similarly, the pressure can be any pressure suitable to produce the desired result; exemplary pressure includes 1〇〇〇1〇〇 Pounds per square inch (psi), including 2 - 50, 0 psi, or 2 〇〇〇 _25 psi, or 2000-20,000 psi ' or 3 〇〇〇 _5 〇〇〇 (10) Finally, the time for pressing the filter cake can be any suitable time, such as 1-100 seconds, or 丨-丨 (8) minutes, or I % minutes ' or 2-25 minutes, or Mo, _ days. Then, The resulting hard piece may be cured, for example, by placing the face and bribe, by placing it in a chamber with high humidity and high heat. The cured hard sheet is used as the building material itself or crushed to make aggregates. One method of providing temperature and pressure is to stack the dried water thick plates. Example ^, in this method, as in [English] To 1 () sigh thick, or! ft to 1G ft thick thick plate with flue gas to dry water sinking: stacking thick plates to provide pressure; greater pressure is made by thicker thick plates such as 10 1000 sighs or even larger, such as 1 〇〇 5 〇〇〇 吸 。 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 The agglomerates or other rock materials are produced from the predetermined height of the layers as removed from the bottom by the bottom and processed as necessary. Another method of providing temperature and pressure is to use a press, as described in more detail in U.S. Patent No. 12/475,378, filed May 29, 2000. It can be used in a suitable machine (such as a dust-plate press to use the program at the desired temperature (using a process such as flue gas or manufacturing).

如電化學程序的其他步驟所供應之熱)下提供壓力一所欲 時間。可以類似方式使用一組輥。 &quot;裡I路孩斯於提較高溫度及壓力下之方式係藉E 擠壓器,如螺旋型擠壓器進行,其亦進一 年5月Μ日所申請之美國專利申請案第膽5,378 ^ 中。該擠壓n之桶可_裝料顺高溫度,如藉由力 套;=提高溫度可藉由如煙道氣或類似物供應。擠^可名 壓榨操作之前用翻加熱及乾縣料的方法。此壓梓可 由壓縮模具,經由輥、經由具有成型壓痕(其實際上可相 ㈣之雜)之輥、在行辦提供壓縮之成 帶之間或任何其他咖方法進行1者,可利壓 過鑄模’在強迫㈣通過鑄模時使絲露於壓竹 =予任何所欲形狀。在某些具體實施例中,碳酸鹽礦物 段^物^與淡水混合,然後置人旋轉之螺旋擠壓器的進剩 二螺旋_器及/或出口鑄模以進—步協助該輕 低時胁動可沿其長度輸送材料並在螺旋掠過深度降 ·、'、、之。擠壓器之螺旋及桶可另外包含通氣孔於該桶 53 201016599 中及螺旋中與該桶通氣孔開口一致的減壓區。特別係在熱 擠壓器之情況下’此等通氣孔區料蒸氣自輸關塊中釋 出以由該物去除水。 然後強迫螺旋輸送之材料通過鑄模段以進一步擠壓該 材料並使其成型。雖然最終聚集體所欲之任何形狀皆可藉 由調整開口形狀而製成,但戦中之典型開口可為圓形、 橢圓形、正方形、矩形、梯形^可藉由任何慣用方法, 如藉由飛刀將離開鑄模之材料切割成任何慣用長度。典型 長度可為ο·〇5英輕6糾’賴長度可能超出彼等範 圍。典型直徑可為0.05英吋至10英吋,雖然直徑可能超 出此等範圍。 熱鑄模段之使用可藉由加速碳酸鹽礦物轉變成硬穩定 形式而進-步幫助轉體之形成。鱗模亦可用於黏合劑 硬化或凝固該黏合劑之情況中。熱鑄模段通常使用1〇〇〇c 至600 c之溫度。熱鑄模之熱可完全或部分源自煙道氣或 其他製造沈澱物之程序所用的工業氣體,其中先將煙道氣 發送至鱗模以將熱由熱煙道氣轉移至鑄模。 在另外其他具體實施例中,可將沉殿物用於原位或祝 地形成之結構體製作中。例如,道路、已鋪路面區或其他 結構體可由沉澱物藉由塗布—層沉澱物(如上述般)於基 材’如地面、路床等_L ’ ^後如藉使其暴露於自然供應之 水,如以雨的形式或藉由沖洗而水合沉澱物的方式製得。 水合將&gt;儿殿物固化成所欲原位或就地形成之結構體,如道 路、已鋪路面區等。如希望獲得較厚原位形成結構體層 54 201016599 時,可重複該程序。 系統 本發明痣樣進一步包括實施上述方法之系統,如處理 廠或製造廠。本發明系統可具有任何可實施感興趣之特定 製造方法的構型。 在特定具體實施例中,該系統包括含二價陽離子水溶 ❹ 液來源’如具有水溶液輸入裝置之結構體。例如,該系統 可包含含一價陽離子水溶液之輸送管線或類似進料器。 另外,該系統將包括一令導入反應器中之水處於碳酸 鹽化合物沉殿條件(如上述般)並產生沉殿物及上澄液之 沉澱反應器。 沉殿反應器可包括多種不同元件中之任一者,如溫度 調節元件(如經設計以加熱水至所欲溫度)、化學添加元件 (如經設計以將二價陽離子、質子去除劑等導入沉澱反應 ❹ 混合物中)、電解元件(如陰極、陽極等)及類似物 該系統另外包括c〇2來源及金屬氧化物廢棄物來源以 及在沉澱反應器前某點或沉澱反應器中組合此等來源與 水(視情況選用之含二價陽離子水溶液如滷水或海水)之 組件。照此,沉澱系統可包括(例如)一獨立co2來源,其 中該系統係經設計用於二價陽離子水溶液及/或上澄液在 程序期間同時與二氧化碳來源接觸之具體實施例中。此 來源可為上述彼等物(如工業發電廠之廢棄物進料)中任一 者。 55 201016599 廢氣流可由工廠以任何將廢氣流由工廠輸送至沈殿廠 之慣用方式供至沈;殿場所。在某些具體實施例中,廢氣流 係以由工廠-場所(如工廠煙道)運行至沈殿場所之一或多 個地點之氣體輸送n(如導f)提供。廢纽來源相對於沈 ^場所可為-遠端地點錢廢氣絲源係—離沈殿地點1 英哩或更遠,如10英哩或更遠,包括1〇〇英哩或更遠之 地點。例如,廢氣流已可由遙遠工廠經由co2氣體輸送系 統(如管線)運送至沈澱場所。工廠產生之含C02氣體可在 抵達沈澱場所(即進行沈澱及/或製造聚集體之場所)之前Θ 已經或未經處理(如去除其他組分)。在另外其他情況下, 廢氣流來源係接近沈澱場所。例如,沈澱場所係與廢氣流 來源整合,如整合一沈澱反應器以沈澱可用於製造聚集體 之沈;殿物的發電廠。 如上所指示,廢氣流可為一由煙道或工廠之類似結構 體所獲得者。在此等具體實施例中,管線(如導管)係連接 至煙道而使氣體經由該管線離開煙道並輸送至沈澱系統 之適當地點。視使用廢氣流之地點的沈澱系統之特定構型〇 而定’獲得廢氣流之來源地點可不同(如以提供具有適當 或所欲溫度之廢棄物流)。照此,在特定具體實施例中, 希望廢氣流具有範圍從0〇C至1800〇C之溫度,如60°C至 700 C時,煙道氣可在锅爐或氣渦輪機之離開點、窯或發 電廠或煙_中提供所欲溫度之任一地點獲得。必要時,煙 道氣係保持在露點(如125。〇以上之溫度以避免冷凝及相 關複雜性。若無法將溫度保持在露點以上,可採取某些步 56 201016599 驟以降低冷凝之不利影響(如使用不銹鋼導管、氟碳化物 (如聚(四氟乙烯))管線、經水稀釋及pH控制等)而使導管 不會快速劣化。 藉由該系統處理以製造碳酸鹽化合物組成物之鹽水 來源為海水時’該輸入裝置係與海水來源流體交流,例 如’該輸入裝置可為一由海水至路基系統之管線或進料 器,或船體中之入口,如該系統為船之一部分,如在海 基系統中。 該系統另外包括一自製造含碳酸鹽沉澱物之反應混合 物中分離出該含碳酸鹽沉澱物之液-固分離器。如2009年 4月16曰所申請之美國臨時專利申請案61/170086(將該案 以引用方式併入本文中)中所述般,液-固分離器如 Epuramat 的 Extrem-Separator(“ExSep”)液-固分離器、 Xerox PARC的螺旋選礦機或Epuramat的ExSep或 Xerox PARC的螺旋選礦機中任一者之改良例係適用於 自沉澱反應混合物中分離出沉澱物。在特定具體實施例 中,該分離器係乾燥藉由碳酸鹽礦物沉澱站所製造之沉 澱碳酸鹽礦物組成物的乾燥站。如下更完整地描述般, 視系統之特定乾燥實驗程序而定,乾燥站可包括過濾元 件、冷凍乾燥結構體、喷霧乾燥結構體等。 在特定具體實施例中,該系統將另外包括一由沉澱物 製造建築材料,如水泥或聚集體之站。參見,如2008年 5 月 23 曰所申請標題為”Hydraulic Cements Comprising Carbonate Compounds Compositions”之美國專利申請案第 57 201016599 12/126,776號及;2008年5月23日所申請標題為”% q ering Aggregate, and Methods of Making and Using The Same之美國臨時專利申請案第61/〇56,972號,將該 申請案之揭示内容以引用方式併入本文中。 如上所指示般,該系統可存在於陸地或海上。例如, 該系統可為在沿海區域巾之祕祕,如接近海水來源, 或甚至在一水係由鹽水來源,如海以管送入系統中之内部 地點。或者,該系統可為水基系統,即存在於水上或水中 之系統。必要時’此-系統可存在於船、海基平台上。❹ 圖1描纟會燃煤及去除廢棄物如灰分及硫之典型發電 廠程序。煤500係在蒸汽鍋爐5〇1中燃燒,其產生蒸氣 以驅動渦輪發電機並產生電力。燃煤產生煙道氣5〇2以 及飛灰’其中該煙道氣5〇2包含C〇2、S〇x、Ν〇χ、Hg等。 燃煤亦產生底灰510,可將其送至掩埋場或用作低價聚 集體。煙道氣502係流過一分離裝置520(—般為靜電集 塵器)而自煙道氣502去除飛灰530。視燃燒方式及煤的 類型而定’飛灰530可在混凝土中發現有價值的用途,Θ 但更普遍地係掩埋。 風扇540將含硫煙道氣521引導至FGD槽550並藉 由暴露於由水551及锻燒石灰552所製得之石灰聚料553 中處理之。石灰煅燒釋放C〇2至大氣中,因此對於每莫 耳所用石灰’製造石灰時釋放出一莫耳C02。石灰552 與源自煙道氣521之S0X係在FGD槽550中組合以產生 石膏(CaS〇4)。因此,對於每分子自煙道氣移除之硫,已 58 201016599 由舞又燒石灰釋放出一分子C〇2至大氣中。 無硫煙道氣556係由FGD槽550經由管線送至煙固 560並於該處經進一步處理以在以氣體580形式釋放至 大氣之础先去除NOx、Hg等。注意:釋放至大氣之氣體 580仍包含大部分(若非全部)藉由燃煤50〇所產生之 co2。 煅燒石灰漿料553與含硫煙道氣521在FGD槽550 中反應而產生一石膏漿料554,藉由泵浦555將其移入 水力旋風器570中。水力旋風器570自漿料554去除水 571而產生更濃的石膏漿料579,將其送至過濾器58〇以 進一步去水。將水力旋風器570及過濾器580中所去除 之水送至回收水槽572中,過量固體於其中沈降出並將 其送至掩埋场511。排放廢水574並將部分回收水573 送回至FGD槽550。將自過滤器580去除之遽餅581送 至乾無器583中並去除水以產生乾石膏粉末590。可將 石膏粉末590送至掩埋場511或可用於製造建築材料如 牆板。 圖2代表一個本發明具體實施例之實例,其中c〇2、 飛灰、NOx、SOx、Hg及其他污染物係用作碳酸鹽化合 物沉殺程序之反應物以去除此等部分並將其钳入建築材 料中,如經由其在水硬水泥中之用途。在此實例中,飛 灰及底灰係用作反應物以降低pH並提供有利的共反應 陽離子,如碎及崔呂。 煤600係在蒸汽鍋爐6 01中燃燒,其產生蒸氣以驅動 59 201016599 渦輪發電機並產生電力。燃煤產生煙道氣602以及飛 灰,其中該煙道氣602包含C02、SOx、NOx、Hg等。 在此具體實施例中’所用煤係高硫次煙煤,其可便宜地 獲得,但其產生較大量之SOx及其他污染物。將煙道氣 602、底灰610、海水620及某些具體實施例中之額外驗 來源625裝入進行碳酸鹽礦物沉殿程序之反應器63〇中 以產生漿料631。 經由泵浦640將漿料631泵送至乾燥系統650中,其 中該系統650在某些具體實施例中包括一過濾步驟,接 @ 著進行喷霧乾燥。由乾燥系統650分離出之水651伴隨 可釋放至大氣中之乾淨氣體680排放。由乾燥系統650 所得固體或粉末660係用作水硬水泥以製造建築材料, 有效地將C〇2、SOx及某些具體實施例中之其他污染物如 汞及/或N〇x鉗入建築環境中。 提出下列實例以便提供彼等熟諳此技者如何製造及使 用本發明之完整揭示内容及描述且不欲限制本發明者認 為其發明之範且其亦不欲代表下列實驗為所有或唯一⑩ 所進行之實驗。曾努力確保所用數字(如量、溫度等)之準 减性,但必須說明某些實驗之誤差及偏差。除非另外指 示,份數為重量份數’分子量為重量平均分子量,溫度為 慶力為大氣壓或近大氣壓。 【實施方式】 實例 201016599 利用下列分析儀器及其使用方法特徵化下列實例之製 得物。 庫倫法:以2.0N過氯酸(HCIO4)酸化液體及固體含碳樣品 以釋放二氧化碳氣體至載流氣流中並接著在以無機碳庫 倫計(UIC Inc, CM5051型)分析之前,以pH3.〇之3%重量/ 體積硝酸銀洗滌之以去除任何所釋出之硫氣體。加入過渡 酸之後加熱水泥、飛灰及海水之樣品並以加熱塊幫助樣品 〇 之消化。The pressure is supplied at a desired time, such as the heat supplied by other steps of the electrochemical procedure. A set of rolls can be used in a similar manner. &quot;Li I Road is a higher temperature and pressure method by means of an E-extrusion device, such as a spiral extruder, which is also applied to the U.S. patent application filed on May 30 of the following year. ^ in. The barrel of the squeeze n can be charged at a high temperature, such as by a force sleeve; = the temperature can be increased by, for example, a flue gas or the like. Squeeze the name and name. Press the method of heating and drying the material before pressing. This pressure can be carried out by a compression mold, via a roller, via a roll having a shaped indentation (which can actually be miscellaneous), between the tapes providing compression, or any other coffee method. The over-molding mold 'make the silk to the pressed bamboo when forcing (4) through the mold to give any desired shape. In some embodiments, the carbonate minerals are mixed with fresh water, and then placed in a rotating spiral extruder with a surplus of two spirals and/or an outlet mold to assist in the light low temperature The material can be transported along its length and descended in the spiral to reduce the depth of the ', ', and. The screw and barrel of the extruder may additionally include a venting opening in the barrel 53 201016599 and a reduced pressure zone in the spiral that coincides with the opening of the barrel vent. In particular in the case of a hot extruder, the venting zone vapor is released from the input block to remove water from the material. The material of the spiral transport is then forced through the mold section to further extrude the material and shape it. Although any shape desired for the final aggregate can be made by adjusting the shape of the opening, a typical opening in the crucible can be circular, elliptical, square, rectangular, trapezoidal, by any conventional method, such as by flying. The knife cuts the material leaving the mold to any conventional length. Typical lengths can be ο·〇5英轻6correction </ </ RTI> </ RTI> may be beyond their range. Typical diameters can range from 0.05 inches to 10 inches, although the diameter may exceed these ranges. The use of a hot mold section can further aid in the formation of the rotor by accelerating the conversion of carbonate minerals into a hard stable form. The scale mold can also be used in the case where the binder hardens or solidifies the binder. The hot mold section typically uses temperatures from 1 〇〇〇c to 600 c. The heat of the hot mold may be derived entirely or in part from the flue gas or other industrial gases used in the process of making the deposit, wherein the flue gas is first sent to the scale to transfer heat from the hot flue gas to the mold. In still other embodiments, the sink can be used in the fabrication of structures formed in situ or in a wish. For example, a road, paved area or other structure may be exposed to a natural supply by a deposit by a coating-layer deposit (as described above) on a substrate such as a floor, a road bed, etc. The water is produced, for example, in the form of rain or by rinsing and hydrating the precipitate. The hydration will solidify the structure into a structure that is formed in situ or in situ, such as a road, a paved area, and the like. This procedure can be repeated if it is desired to obtain a thicker in-situ structured layer 54 201016599. System The present invention further includes a system for performing the above method, such as a processing plant or a manufacturing plant. The system of the present invention can have any configuration that can implement a particular manufacturing method of interest. In a particular embodiment, the system comprises a source comprising a divalent cation aqueous solution, such as a structure having an aqueous input device. For example, the system can include a transfer line containing a monovalent aqueous cation solution or a similar feeder. In addition, the system will include a precipitation reactor for introducing water into the reactor under the conditions of the carbonate compound (as described above) and producing a sink and a supernatant. The chamber reactor can include any of a variety of different components, such as temperature regulating elements (such as designed to heat water to a desired temperature), chemically added elements (such as designed to introduce divalent cations, proton removers, etc.) Precipitation reaction ❹ mixture), electrolytic components (such as cathode, anode, etc.) and the like. The system additionally includes c〇2 source and metal oxide waste source and combines at a point before the precipitation reactor or in the precipitation reactor. A component of source and water (optionally containing an aqueous solution of a divalent cation such as brine or seawater). As such, the precipitation system can include, for example, a separate source of co2, wherein the system is designed for use in a particular embodiment of an aqueous divalent cation solution and/or a supernatant which is simultaneously contacted with a source of carbon dioxide during the process. This source may be any of the above items, such as waste feedstock from an industrial power plant. 55 201016599 Exhaust gas flow can be supplied by the factory to any sinking method used to transport the exhaust gas from the factory to the Shendian Factory; In some embodiments, the exhaust stream is provided as a gas delivery n (e.g., guide f) that is operated from a plant-site (e.g., a factory flue) to one or more locations in the shoal. The source of the waste New Zealand can be - the remote location of the waste gas source system - 1 inch or more away from the sink site, such as 10 miles or more, including 1 inch or more. For example, the exhaust stream can be transported to a sedimentation site by a remote plant via a co2 gas delivery system (e.g., a pipeline). The CO2 containing gas produced by the plant may or may not have been treated (eg, other components removed) prior to reaching the sedimentation site (ie, where precipitation and/or aggregate formation). In still other cases, the source of the exhaust stream is near the deposition site. For example, the sedimentation site is integrated with the source of the exhaust stream, such as a power plant that integrates a precipitation reactor to precipitate a sink that can be used to make aggregates; As indicated above, the exhaust stream can be obtained from a similar structure of a flue or factory. In these particular embodiments, a line (e.g., a conduit) is connected to the flue to allow gas to exit the flue via the line and to a suitable location in the precipitation system. Depending on the particular configuration of the precipitation system at the point of use of the exhaust stream, the source of the source of the exhaust stream may be different (e.g., to provide a waste stream having an appropriate or desired temperature). As such, in certain embodiments, it is desirable that the exhaust stream have a temperature ranging from 0 〇C to 1800 〇C, such as from 60 ° C to 700 C, the flue gas may be at the exit point of the boiler or gas turbine, the kiln Or at any location in the power plant or in the smoke that provides the desired temperature. If necessary, the flue gas system is maintained at the dew point (eg, above 125 °C to avoid condensation and related complexity. If the temperature cannot be maintained above the dew point, some steps 56 201016599 can be taken to reduce the adverse effects of condensation ( If the stainless steel conduit, fluorocarbon (such as poly(tetrafluoroethylene)) pipeline, water dilution and pH control, etc. are used, the conduit will not deteriorate rapidly. The system is used to manufacture the brine source of the carbonate compound composition. In the case of seawater, the input device communicates with the seawater source fluid, for example, the input device may be a pipeline or feeder from seawater to a roadbed system, or an inlet in the hull, such as the system being part of a ship, such as In a sea-based system, the system additionally includes a liquid-solid separator for separating the carbonate-containing precipitate from a reaction mixture for producing a carbonate-containing precipitate, such as the US provisional patent filed on April 16, 2009. Liquid-solid separators such as Epuramat's Extrem-Separator ("ExSep") liquid-solid separator, Xerox PA, as described in the application 61/170086, which is incorporated herein by reference. A modified version of either the RC spiral concentrator or the Epuramat ExSep or Xerox PARC spiral concentrator is adapted to separate the precipitate from the precipitation reaction mixture. In a particular embodiment, the separator is dried by A drying station for the precipitated carbonate mineral composition produced by the carbonate mineral precipitation station. As described more fully below, depending on the particular drying protocol of the system, the drying station may include filter elements, freeze-dried structures, spray drying Structures, etc. In a particular embodiment, the system will additionally include a station for the manufacture of building materials, such as cement or aggregates, from sediments. See, for example, May 23, 2008, titled "Hydraulic Cements Comprising Carbonate" Compounds Compositions, U.S. Patent Application Serial No. 57, 2010, the entire disclosure of which is incorporated herein by reference. No. 56,972, the disclosure of which is hereby incorporated by reference herein in It may exist on land or at sea. For example, the system may be secrets in the coastal area, such as near seawater sources, or even in a water system from a brine source, such as a sea pipe into an internal location in the system. The system can be a water-based system, ie a system that exists on water or in water. If necessary, this system can exist on ships and sea-based platforms. Figure 1 depicts burning coal and removing waste such as ash and sulfur. Typical power plant program. The coal 500 is combusted in a steam boiler 5〇1, which produces steam to drive the turbine generator and generate electricity. Coal combustion produces flue gas 5 〇 2 and fly ash ' where the flue gas 5 〇 2 contains C 〇 2, S 〇 x, Ν〇χ, Hg, and the like. Coal combustion also produces bottom ash 510 which can be sent to a landfill or used as a low-cost aggregate. Flue gas 502 flows through a separation device 520 (typically an electrostatic precipitator) to remove fly ash 530 from the flue gas 502. Depending on the type of combustion and the type of coal, the fly ash 530 can find valuable uses in concrete, but is more commonly buried. Fan 540 directs sulfur-containing flue gas 521 to FGD tank 550 and is treated by exposure to lime aggregate 553 made from water 551 and calcined lime 552. Lime calcination releases C〇2 to the atmosphere, thus releasing one mole of CO 2 for the lime produced for each mole. The lime 552 is combined with the SOX system derived from the flue gas 521 in the FGD tank 550 to produce gypsum (CaS〇4). Therefore, for each molecule of sulfur removed from the flue gas, 58 201016599 released a molecule of C〇2 from the dance and burnt lime to the atmosphere. The sulfur-free flue gas 556 is sent from the FGD tank 550 via line to the smog 560 where it is further processed to remove NOx, Hg, etc. prior to release to the atmosphere as a gas 580. Note: The gas 580 released to the atmosphere still contains most, if not all, of the co2 produced by burning 50 〇. Calcined lime slurry 553 reacts with sulfur-containing flue gas 521 in FGD tank 550 to produce a gypsum slurry 554 which is pumped into hydrocyclones 570 by pump 555. The hydrocyclone 570 removes water 571 from the slurry 554 to produce a more concentrated gypsum slurry 579 which is sent to the filter 58 for further water removal. The water removed in the hydrocyclone 570 and the filter 580 is sent to the recovery tank 572 where excess solids settle and are sent to the landfill 511. The wastewater 574 is discharged and a portion of the recovered water 573 is returned to the FGD tank 550. The cake 581 removed from the filter 580 is sent to the dry 583 and the water is removed to produce a dry gypsum powder 590. Gypsum powder 590 can be sent to landfill 511 or can be used to make building materials such as wallboard. Figure 2 represents an example of a specific embodiment of the invention wherein c2, fly ash, NOx, SOx, Hg and other contaminants are used as reactants for the carbonate compound killing procedure to remove and clamp these parts Into building materials, such as through its use in hydraulic cement. In this example, fly ash and bottom ash are used as reactants to lower the pH and provide favorable co-reactive cations such as chopped and Cui Lu. Coal 600 is combusted in a steam boiler 610, which produces steam to drive a 59 201016599 turbine generator and generate electricity. Coal combustion produces flue gas 602 and fly ash, wherein the flue gas 602 comprises CO 2 , SO x , NOx, Hg, and the like. In this particular embodiment, the coal used is a high sulfur sub-bituminous coal which is available inexpensively, but which produces a relatively large amount of SOx and other contaminants. Flue gas 602, bottom ash 610, seawater 620, and additional test source 625 in some embodiments are loaded into a reactor 63 of a carbonate mineral sinking procedure to produce slurry 631. Slurry 631 is pumped via pump 640 to drying system 650, which in some embodiments includes a filtration step followed by spray drying. Water 651 separated by drying system 650 is discharged with clean gas 680 that can be released into the atmosphere. The solid or powder 660 obtained from the drying system 650 is used as a hydraulic cement to make building materials, effectively clamping C〇2, SOx, and other contaminants such as mercury and/or N〇x in certain embodiments into the building. Environment. The following examples are presented to provide a complete disclosure and description of the present invention, and are not intended to limit the scope of the invention, and are not intended to be representative of the invention. Experiment. Efforts have been made to ensure the quasi-reduction of the numbers used (eg, quantity, temperature, etc.), but the errors and deviations of certain experiments must be stated. Unless otherwise indicated, parts are parts by weight. The molecular weight is the weight average molecular weight, and the temperature is the atmospheric pressure or near atmospheric pressure. [Embodiment] Example 201016599 The following analytical examples and their methods of use were used to characterize the preparation of the following examples. Coulometric: acidified liquid and solid carbonaceous samples with 2.0 N perchloric acid (HCIO4) to release carbon dioxide gas into the carrier gas stream and then pH3 before analysis with inorganic carbon coulometer (UIC Inc, model CM5051). The 3% by weight/volume silver nitrate was washed to remove any released sulfur gas. After the addition of the transition acid, the samples of cement, fly ash and seawater are heated and the heating block is used to aid in the digestion of the sample.

Brunauer-Emmett-Teller(“BET”)比表面積:比表面積 (SSA)測量係藉由二氮之表面吸附進行(BET方法)。乾樣 品之SSA係在以FlowrepTM60樣品除氣系統製備樣品後利 用Micrometritics Tristar™ II 3020比表面積及孔隙度分析 儀量得。簡言之’樣品製備包括令近〗.〇克之乾樣品在提 高溫度下除氣並暴露於二氮氣體流中以去除樣品表面之 殘留水蒸汽及其他吸附劑。接著排空樣品架中的沖洗氣並 Q 在一系列漸增壓力(與吸附膜厚度有關)下暴露於二氮氣體 之前先冷卻樣品。覆蓋該表面後,藉由系統性降低樣品架 中的壓力自微粒表面釋出二氮氣體。測量脫附氣體 (desorbed gas)並轉化成總表面積測量值。 粒徑分析(“PSA”):粒徑分析及分布係利用靜態光散射 量得。乾微粒係懸浮於異丙醇中並利用雙重波長/雷射構型 之Horiba粒徑分布分析儀(LA_950V2型)進行分析。利用 米氏(Mie)散射理論計算隨〇1釐米至1〇〇〇釐米之粒級變 化的微粒量。 61 201016599 粉末X-射線繞射(“XRD”):以Rigaku Miniflex™(Rigaku)進行粉末χ_射線繞射以識別晶相並估 計不同可識別樣品相之質量分率。用手將乾固體樣品磨成 細微粉末並裝載於樣品架上。x_射線源係以3〇仟伏特及 15毫安培驅動之銅陽極(Cu ka)。χ_射線掃描係以每分鐘 2°2Θ的掃描速率及每步〇〇1。洸的步長在5_9〇。沈内進行。 X-射線繞射圖係藉由Rietveld精化利用χ_射線繞射圖案 分析軟體 Jade™(第 9 版,Material Data Inc. (MDI))分析。 傅立葉變換紅外(“FT-IR”)光譜法:FT-IR分析係在裝有❹Brunauer-Emmett-Teller ("BET") specific surface area: specific surface area (SSA) measurements were carried out by surface adsorption of dinitrogen (BET method). The dry sample SSA was prepared using a Micrometritics TristarTM II 3020 specific surface area and porosity analyzer after preparing samples using the FlowrepTM 60 sample degassing system. Briefly, 'sample preparation includes 〗 〖Study dry samples are degassed at elevated temperatures and exposed to a stream of dinitrogen gas to remove residual water vapor and other adsorbents from the sample surface. The flushing gas in the sample holder is then emptied and Q is cooled prior to exposure to the dinitrogen gas at a series of increasing pressures (related to the thickness of the adsorbent film). After covering the surface, the dinitrogen gas is released from the surface of the particle by systematically reducing the pressure in the sample holder. The desorbed gas is measured and converted to total surface area measurements. Particle Size Analysis ("PSA"): Particle size analysis and distribution are obtained by static light scattering. The dry microparticles were suspended in isopropanol and analyzed using a Horiba particle size distribution analyzer (LA_950V2 type) of dual wavelength/laser configuration. The Mie scattering theory is used to calculate the amount of particles that vary with the grain size of 1 cm to 1 cm. 61 201016599 Powder X-ray diffraction ("XRD"): Powder χ-ray diffraction with Rigaku MiniflexTM (Rigaku) to identify crystal phases and estimate the mass fraction of different identifiable sample phases. The dry solid sample was ground into a fine powder by hand and loaded on a sample holder. The x-ray source is a copper anode (Cu ka) driven at 3 volts and 15 milliamps. The χ-ray scanning system has a scanning rate of 2 ° 2 每 per minute and 〇〇 1 per step. The step size is 5_9. Sink inside. The X-ray diffraction pattern is analyzed by Rietveld using the χ-ray diffraction pattern analysis software JadeTM (9th Edition, Material Data Inc. (MDI)). Fourier transform infrared ("FT-IR") spectroscopy: FT-IR analysis is equipped with ❹

Smart Diffuse Reflectance 模組之 Nicolet 380 上進行。稱量 所有樣品之重量至3.5±0.5毫克並與0.5克KBr用手磨碎 並接著壓榨及整平之,之後在5分鐘氮氣吹拂下插入 FT-IR。在範圍4〇〇_4〇〇〇厘米-1中紀錄光譜。 掃播電子顯微法(“SEM”): SEM係利用Hitachi TM-1000 鎢絲台式顯微鏡在30-65帕之工作星力下μ仟伏特之固 定加速電壓及單一 BSE半導體偵測器進行。利用碳基黏 著劑將固體樣品固定在該台上;在分析前將濕樣品真空乾❿ 燥至石墨台。 氯化物濃度··以100-200ppm增量所量得測試範圍在 300-6000毫克氯化物/公升溶液之Chloride QuanTab®測試 條(產品編號2751340)測定氯化物濃度。 實例1·飛灰pH研究 A·實驗 62 201016599 在玻璃燒杯中利用磁石擾拌子持續授拌500毫升海水 (初始pH=8.01)。連續監測反應之pH及溫度。增量加入F 型飛灰(~10%CaO)之粉末’在添加之間令pH達平衡。 B. 結果及觀察: (所列飛灰量係累積總量’即實驗該點所加之總量) 添加5.00克飛灰之後,pH達到9.00。The Smart Diffuse Reflectance module was performed on the Nicolet 380. The weight of all samples was weighed to 3.5 ± 0.5 mg and ground with 0.5 g of KBr by hand and then pressed and leveled, after which FT-IR was inserted under a nitrogen purge for 5 minutes. The spectra were recorded in the range 4 〇〇 4 〇〇〇 cm -1 . Sweep Electron Microscopy ("SEM"): SEM was performed using a Hitachi TM-1000 tungsten wire bench microscope with a fixed acceleration voltage of μ仟V at 30-65 Pa working star force and a single BSE semiconductor detector. A solid sample was fixed on the stage using a carbon-based adhesive; the wet sample was vacuum dried to a graphite stage prior to analysis. Chloride concentration · Chloride concentration was determined in a Chloride QuanTab® test strip (product number 2751340) with a test range of 300-6000 mg chloride/liter in 100-200 ppm increments. Example 1·Fly Ash pH Study A·Experiment 62 201016599 In a glass beaker, a magnetic stirrer was used to continuously mix 500 ml of seawater (initial pH=8.01). The pH and temperature of the reaction were continuously monitored. Adding powder of type F fly ash (~10% CaO) incrementally balances the pH between additions. B. Results and observations: (The cumulative amount of fly ash listed is the total amount added to the experiment.) After adding 5.00 grams of fly ash, the pH reached 9.00.

飛灰(克) pH ❹ 5.00 9.00 34.14 9.50 168.89 9.76 219.47 10.94 254.13 11.20 300.87 11.28 提咼海水之pH需比蒸德水更多的飛灰。初始提高 pH(PH8至PH9)需要遠比後續提高同等量之pH低的飛 ❹ 灰°對於大部分反應而言,pH相當穩定地保持在約9.7。 PH增加速率在〜1〇後升高。亦值得注意:當加入飛灰時, PH開始下降。此pH下降係快速克服氫氧化鈣的作用。真 =乾燥反應漿料之SEM影像指示部分飛灰球可能已部分 溶解。剩餘球似乎亦埋入可能膠結物中。 C. 結論 在淡(蒸餾)水中,發現小量F型飛灰(&lt;1克/公升)立刻 f pH仗7(中性)提高至〜u。提高pH所欲小量很可能係 因蒸館水本質之未經緩衝性質之故。海水係經碳酸鹽系統 63 201016599 高度缓衝並因此其將pH提高至類似程度需要遠較多之飛 灰。 實例2.利用飛灰作為二價陽離子及質子去除劑來源之沉 澱物 實驗程序A.熟化 1. 將飛灰(322.04克之FAF11-001)稱重置 入500毫升塑膠反應容器中。 _ 2. 將去離子水(320.92克)加入反應容器 中以致飛灰對水為比率1 : 1 3. 攪拌所得混合物,直到獲得一均勻漿 料。 4. 關閉反應容器並以膠帶密封之。 5. 旋轉漿料24小時。 B.沉澱 1. 將去離子(680毫升,pH 7.13)加入2公 升裝有大攪拌子之塑膠反應容器中並 ® 以250rpm攪拌之。 2. 隨攪拌緩慢加入已熟化漿料,產生一 每公升約320克飛灰之反應混合物。 3. 持續攪拌直到達到一穩定pH值(pH 12.40)。 4. 利用置於反應混合物中儘可能低之處 的喷灑器(無妨礙攪拌子)加入15%於 64 201016599 壓縮空氣中之C02(C02 : 0.4 scfh ;壓 縮空氣:2.1 scfh ;總量:2.5 scfh) 5. 反應容器經加蓋並僅留下氣體配管及 pH探針之小開口 6. 監測並紀錄pH達5小時Fly ash (g) pH 5.00 5.00 9.00 34.14 9.50 168.89 9.76 219.47 10.94 254.13 11.20 300.87 11.28 The pH of the seawater is more ash than steamed water. The initial increase in pH (pH 8 to pH 9) requires much lower fly ash than the subsequent increase in the same amount of pH. For most reactions, the pH is fairly stable at about 9.7. The rate of increase in PH increases after ~1〇. It is also worth noting that when adding fly ash, the pH begins to drop. This pH drop quickly overcomes the effects of calcium hydroxide. True = SEM image of the dried reaction slurry indicates that some of the fly ash balls may have partially dissolved. The remaining balls also appear to be buried in the possible cement. C. Conclusions In light (distilled) water, a small amount of F-type fly ash (&lt;1 g/L) was found to increase f pH仗7 (neutral) to ~u. The small amount of pH required is likely to be due to the unbuffered nature of the water in the steaming hall. The seawater is carbonated system 63 201016599 Highly buffered and therefore requires a much higher fly ash to raise the pH to a similar level. Example 2. Sediment using fly ash as source of divalent cations and proton-removing agents Experimental procedure A. Curing 1. The fly ash (322.04 g of FAF11-001) was weighed into a 500 ml plastic reaction vessel. 2. Add deionized water (320.92 g) to the reaction vessel so that the ratio of fly ash to water is 1: 1 3. Stir the resulting mixture until a homogeneous slurry is obtained. 4. Close the reaction vessel and seal with tape. 5. Rotate the slurry for 24 hours. B. Precipitation 1. Deionized (680 ml, pH 7.13) was added to a 2 liter plastic reaction vessel equipped with a large stirrer and stirred at 250 rpm. 2. Slowly add the matured slurry with stirring to produce a reaction mixture of about 320 grams of fly ash per liter. 3. Continue stirring until a stable pH (pH 12.40) is reached. 4. Add 15% of the C02 in compressed air at 64 201016599 using a sprayer (without obstructing the stirrer) placed as low as possible in the reaction mixture (C02: 0.4 scfh; compressed air: 2.1 scfh; total: 2.5 Scfh) 5. The reaction vessel is capped and leaves only a small opening for the gas piping and pH probe. 6. Monitor and record the pH for 5 hours.

7. 加入適量C02至反應漿料(即如XRF 所量得以飛灰中之CaO/MgO計〜2x當 量)後,停止喷灑C02(藉由去除喷灑 器),密封反應容器並允許在250rpm 下隔夜攪拌沉澱反應混合物。 逐漸形成7. After adding an appropriate amount of CO 2 to the reaction slurry (ie, 2Ox equivalent of CaO/MgO in the fly ash by XRF), stop spraying CO 2 (by removing the sprayer), seal the reaction vessel and allow at 250 rpm. The reaction mixture was stirred overnight under stirring. Gradually formed

分析 1. 隔夜攪拌後量得沉澱反應混合物之pH 為 pH 8.37 2. 停止攪拌並過濾沉澱反應混合物 3. 在50°C下隔夜乾燥所得沉澱物 4. 收集所得上澄液 1. 藉由庫倫法、SEM、TGA、FTIR及 XRD分析沉殿物。 2. 利用鹼度及硬度分析上澄液。 時間(分鐘) pH 所傳送之 co2(莫耳) C〇2(開/關) 空氣(開/關) 0 7.13 0.000 關 關 0 12.39 0.000 關 關 0 12.40 0.000 關 關 65 201016599 1 12.37 0.008 開 開 2 12.33 0.015 開 開 4 12.27 0.030 開 開 5 12.22 0.038 開 開 7 12.10 0.053 開 開 9 11.98 0.068 開 開 16 11.51 0.122 開 開 42 10.55 0.319 開 開 51 9.93 0.387 開 開 55 9.77 0.418 開 開 115 8.66 0.873 開 開 180 8.14 1.367 關 關 230 7.60 1.747 關 關 285 7.13 2.165 關 關 345 7.31 2.620 關 關 表3 :實例2之反應概述 圖3提供實例2之沈澱物在放大1000、2500x及6000x 下之SEM影像。圖4提供實例2之沈澱物的XRD。圖5 提供實例2之沈澱物的TGA。庫倫法指示沉澱物為 1.795% 碳。 實例3.利用水泥窯灰作為二價陽離子及質子去除劑來源 之沉澱物 66 201016599 實驗程序Α·熟化 1. 將水泥窯灰(318.01克)稱重置入500毫 升塑膠反應容器中。 2. 將去離子水(319.21克)加入反應容器 中而使水泥窯灰對水為比率1 : 1 3. 攪拌所得混合物,直到獲得一均勻漿 料。 4. 關閉反應容器並以膠帶密封之。 5. 旋轉漿料18小時。 B.沉澱 1.去離子水(680毫升)與水泥窯灰之均勻 漿料在2公升裝有大攪拌子之塑膠反 應容器中組合,產生一每公升約318 克水泥窯灰之反應混合物。 2·以250rpm授拌反應混合物,直到達到 一穩定 pH 值(pH 12.41)。 3. 利用置於反應混合物中儘可能低之處 的喷灑器(無妨礙攪拌子)加入15%於 壓縮空氣中之C02(C02 : 0.4 scfh ;壓 縮空氣:2.1 scfh ;總量:2.5 scfh) 4. 反應容器經加蓋並僅留下氣體配管及 pH探針之小開口 5. 持續將15%於壓縮空氣中之C02隔夜 喷入反應混合物中。 67 201016599 6.停止喷灑C02(藉由去除喷灑器),密封 反應容器並令沉澱反應混合物在 250rpm下隔夜授拌。 逐漸形成 分析 4. 隔夜攪拌後量得沉澱反應混合物之pH 為 pH 6.88。 5. 停止攪拌並過濾沉澱反應混合物。 6. 在50°C下隔夜乾燥所得沉澱物。 7. 收集所得上澄液。 1. 藉由庫倫法、XRD、%CbSEM及TGA 響 分析沉澱物。 2. 利用鹼度及硬度分析上澄液。 時間(分鐘) pH 所傳送之 C〇2(莫耳) co2(開/關) 空氣(開/關) 0 12.41 0.000 關 關 1 12.41 0.008 開 開 2 12.37 0.015 開 開 5 12.32 0.038 開 開 65 12.32 0.494 開 開 137 12.19 1.041 開 開 177 11.30 1.344 開 開 247 10.13 1.876 開 開 298 9.25 2.264 開 開 320 8.04 2.431 開 開 68 201016599 356 6.93 2.704 開 開 404 6.70 3.069 開 開 539 6.71 4.094 開 開 479 6.73 5.689 開 開 1311 6.68 9.958 關 關 2749 6.88 9.958 關 關 表4:實例3之反應概述 圖6提供實例3之沈澱物在放大2,5〇〇χ下之SEM影 像。圖7提供實例3之沈澱物的XRD。圖8提供實例3 之沈澱物的TGA。庫倫法指示沉澱物為7.40%碳。沉澱 物中可溶氣化物(見上)係2.916%可溶氯化物。 實例4.利用水泥窯灰作為二價陽離子及質子去除劑來源 之沉殿物 實驗程序 L將水泥窯灰(80克)稱重置入1.5公升塑 膠反應容器中。 2. 將去離子水(1公升)加入反應容器中並 以25〇rpm攪拌所得混合物(pH 12.45)。 3. 藉由置於利用吸盤之反應容器底部的 喷麗器加入15%於壓縮空氣中之 C〇2(C〇2 . 〇.3 scfh ;壓縮空氣:2.0 scfh,總量:2.3 scfh) 4·反應容器經加蓋並僅留下氣體及pH探 69 201016599 針之小開口。 5.監測並紀錄pH約4小時。 6·加入適量c〇2至沉澱反應混合物中(即 如XRF所量得以水泥窯灰中之 CaO/MgO計〜2x當量)後。 樣品逐漸 1.隔夜攪拌後測量沉澱反應混合物之 形成 pH(見下)。 2. 停止攪拌並過濾沉澱反應混合物。 3. 在40°C下隔夜乾燥所得沉澱物。 4·收集所得上澄液。 分析 1.藉由庫倫法、SEM及FT-IR分析沉澱 物。 圖9提供實例4之烘乾沈澱物在放大2,500x下之SEM 影像。圖10提供實例4之烘乾沈澱物的FT-IR。庫倫法 指示烘乾沉澱物中7.75%碳。 實例5.測量沈澱物及起始物之δ13(:值 在此實驗中,用瓶裝二氧化硫(S〇2)及瓶裝二氡化碳 (c〇2)氣體之混合物及作為金屬氧化物廢棄物來源之飛灰 製備含碳酸鹽沉澱物。該程序係在密閉容器中進行。 起始物係市售瓶裝S〇2及C02氣體(S〇2/C02氣體或” 模擬煙道氣,,)、去離子水及作為金屬氧化物廢棄物來源之 飛灰之混合物。 201016599 容器裝有去離子水。在熟化後,將飛灰加入去離子水 中,提供一適合沉澱含碳酸鹽沉澱物而無釋放c〇2至大氣 中之pH(驗度)及二價陽離子濃度。以一適合由驗性溶液沉 澱沉澱物之速率及時間喷灑s〇2/co2氣體。足夠時間容許 反^組分之相互作用,之後由剩餘溶液(“沉澱反應混合物,,) 中分離出沉澱物,產生濕沉澱物及上澄液。 測量程序起始物、沉澱物及上澄液之δ130值。所用分 ❹ 析系統係由Los Gatos Research製造並利用直接吸附光譜 法提供範圍從2%至20%c〇2之乾氣體的snc及濃度數 據。利用具有已知同位素組成之標準5%C02氣體校正儀 器,且由經2M過氯酸消化之石灰華及IAEA大理石#2〇 樣品所釋放C〇2之測量產生文獻中所見值之可接受測量 誤差内之值。c〇2來源氣體係利用注射筒採樣。c〇2氣體 =過一氣體乾燥器(perma Pure MD氣體乾燥器,Nafi〇n⑧ 聚合物製得之MD-110-48F-4型),然後進入一工作台式市 Q 售碳同位素分析系統。固體樣品先經熱過氯酸(2MHC1〇4) ,化。C〇2氣體係自密閉消化系統逸出,然後進入氣體乾 燥器。由該處收集氣體並將其注入分析系統中,產生δΠ(: 數據。同樣地,消化上澄液以釋出c〇2氣體,然後乾燥之 並令其穿過分析儀器而產生S13C數據。 分析S〇2/C〇2氣體、金屬氧化物廢棄物來源(即飛灰)、 合碳酸鹽沉澱物及上澄液之測量值係列於表5中。沉澱物 上澄液之δ13(:值分別為-15.881及-11.701。兩反應產物之 δ13&lt;:值反映S〇2/C〇2氣體013C=-l2.45l)及飛灰之摻入,其 71 201016599 中該飛灰包含某些未完全燃燒成氣體之碳013C=-17.46 %。)。因為本身為化石燃料燃燒產物之飛灰具有遠負於所用 c〇2之δ13(:值,沉澱物之總^3C值反映遠負於c〇2本身之 δ C值。此實例說明&amp;3C值可用於確認含碳酸鹽組成物材 料中碳之主要來源。 大氣 δ13(:值 (%〇) C〇2來 源 C〇2來 源 s13c 值(%0) 驗源 驗 δ13。 值(%〇) 上澄液 溶液 δ13(:值 (%0) 沉澱物 513C 值 (%〇) -8 S02/C〇2 瓶裝氣 體混合 物 -12.45 飛灰 -17.46 -11.70 -15.88 表5 :實例5之起始物及產物之值(δ13(:) ❹ 實例6.水泥製造 Α.水泥#1 1 ·原料沉:殿 1000 毫升之海水(ρΗ=8·07,丁=20.3。〇係獲自 SantaAnalysis 1. The pH of the precipitation reaction mixture was adjusted to pH 8.37 after stirring overnight. 2. Stop stirring and filter the precipitation reaction mixture 3. Dry the resulting precipitate overnight at 50 ° C. 4. Collect the resulting supernatant 1. By Coulomb method , SEM, TGA, FTIR and XRD analysis of Shen Temple. 2. Analyze the supernatant using alkalinity and hardness. Time (minutes) pH transmitted by co2 (mole) C〇2 (on/off) air (on/off) 0 7.13 0.000 off off 0 12.39 0.000 off off 0 12.40 0.000 off off 65 201016599 1 12.37 0.008 open 2 12.33 0.015 Open 4 12.27 0.030 Open 5 12.22 0.038 Open 7 12.10 0.053 Open 9 11.98 0.068 Open 16 11.51 0.122 Open 42 10.55 0.319 Open 51 9.93 0.387 Open 55 9.77 0.418 Open 115 8.66 0.873 Open 180 8.14 1.367 Off 230 7.60 1.747 Off 285 7.13 2.165 Off 345 7.31 2.620 Off Table 3: Reaction of Example 2 Overview Figure 3 provides an SEM image of the precipitate of Example 2 at magnifications of 1000, 2500x and 6000x. Figure 4 provides the XRD of the precipitate of Example 2. Figure 5 provides the TGA of the precipitate of Example 2. The Coulomb method indicates that the precipitate is 1.795% carbon. Example 3. Precipitates using cement kiln ash as source of divalent cations and proton-removing agents 66 201016599 Experimental procedure Α·Curing 1. The cement kiln ash (318.01 g) was weighed into a 500 ml plastic reaction vessel. 2. Add deionized water (319.21 grams) to the reaction vessel to make the cement kiln ash to water ratio 1: 1 3. Stir the resulting mixture until a homogeneous slurry is obtained. 4. Close the reaction vessel and seal with tape. 5. Rotate the slurry for 18 hours. B. Precipitation 1. Deionized water (680 ml) and cement kiln ash were mixed in a 2 liter plastic reaction vessel equipped with a large stirrer to produce a reaction mixture of about 318 grams of cement kiln ash per liter. 2. The reaction mixture was stirred at 250 rpm until a stable pH (pH 12.41) was reached. 3. Add 15% of C02 in compressed air using a sprinkler (without obstructing the stirrer) placed as low as possible in the reaction mixture (C02: 0.4 scfh; compressed air: 2.1 scfh; total: 2.5 scfh) 4. The reaction vessel is capped and leaves only the small opening of the gas piping and pH probe. 5. Continuously spray 15% of the CO2 in compressed air into the reaction mixture overnight. 67 201016599 6. Stop spraying CO2 (by removing the sprinkler), seal the reaction vessel and allow the precipitation reaction mixture to be mixed overnight at 250 rpm. Gradual formation analysis 4. The pH of the precipitation reaction mixture was adjusted to pH 6.88 after stirring overnight. 5. Stop stirring and filter the precipitation reaction mixture. 6. Dry the resulting precipitate overnight at 50 °C. 7. Collect the resulting supernatant. 1. The precipitate was analyzed by Coulometric, XRD, %CbSEM and TGA. 2. Analyze the supernatant using alkalinity and hardness. Time (minutes) pH transmitted C〇2 (mole) co2 (on/off) air (on/off) 0 12.41 0.000 off 1 12.41 0.008 on 2 12.37 0.015 on 5 12.32 0.038 on 65 12.32 0.494 Open 137 12.19 1.041 Open 177 11.30 1.344 Open 247 10.13 1.876 Open 298 9.25 2.264 Open 320 8.04 2.431 Open 68 201016599 356 6.93 2.704 Open 404 6.70 3.069 Open 539 6.71 4.094 Open 479 6.73 5.689 Open 1311 6.68 9.958 Off 2749 6.88 9.958 Off Table 4: Reaction of Example 3 Overview Figure 6 provides an SEM image of the precipitate of Example 3 at 2,5 放大 magnification. Figure 7 provides the XRD of the precipitate of Example 3. Figure 8 provides the TGA of the precipitate of Example 3. The Coulomb method indicated that the precipitate was 7.40% carbon. The soluble gasification (see above) in the precipitate is 2.916% soluble chloride. Example 4. Using cement kiln ash as a source of divalent cations and proton-removing agents. Experimental procedure L The cement kiln ash (80 g) was weighed into a 1.5 liter plastic reaction vessel. 2. Deionized water (1 liter) was added to the reaction vessel and the resulting mixture (pH 12.45) was stirred at 25 rpm. 3. Add 15% of compressed air to C〇2 (C〇2. sc.3 scfh; compressed air: 2.0 scfh, total: 2.3 scfh) by placing the spray on the bottom of the reaction vessel using the suction cup. • The reaction vessel is capped and leaves only a small opening for gas and pH probes. 5. Monitor and record the pH for approximately 4 hours. 6. Add an appropriate amount of c〇2 to the precipitation reaction mixture (i.e., 2x equivalents of CaO/MgO in the cement kiln dust as measured by XRF). The sample was gradually 1. The pH of the precipitation reaction mixture was measured after stirring overnight (see below). 2. Stop stirring and filter the precipitation reaction mixture. 3. The resulting precipitate was dried overnight at 40 °C. 4. Collect the obtained supernatant. Analysis 1. The precipitate was analyzed by Coulometric method, SEM and FT-IR. Figure 9 provides an SEM image of the dried precipitate of Example 4 at 2,500x magnification. Figure 10 provides the FT-IR of the dried precipitate of Example 4. The Coulomb method instructs drying of 7.75% carbon in the precipitate. Example 5. Measurement of δ13 of precipitates and starting materials (values in this experiment, a mixture of bottled sulphur dioxide (S〇2) and bottled carbon dioxide (c〇2) gas and as a source of metal oxide waste The fly ash is used to prepare a carbonate-containing precipitate. The procedure is carried out in a closed container. The starting material is a commercially available bottled S〇2 and C02 gas (S〇2/C02 gas or "simulated flue gas,"), Ionized water and a mixture of fly ash as a source of metal oxide waste. 201016599 The vessel is filled with deionized water. After aging, the fly ash is added to deionized water to provide a suitable precipitate for precipitation of carbonate containing no release. 2 to the pH (test) and divalent cation concentration in the atmosphere. Spray s〇2/co2 gas at a rate and time suitable for precipitating the precipitate from the test solution. Allow sufficient time to allow the interaction of the anti-components, Thereafter, the precipitate is separated from the remaining solution ("precipitation reaction mixture,") to produce a wet precipitate and a supernatant. The δ130 value of the starting material, the precipitate and the supernatant is measured. The fractionation system used is Los Gatos Research manufactures and utilizes direct The spectroscopy method provides snc and concentration data for dry gases ranging from 2% to 20% c〇2. The instrument is calibrated using a standard 5% CO 2 gas with a known isotopic composition and is travertine and digested with 2M perchloric acid. The measurement of C〇2 released by the IAEA marble #2〇 sample yields the value within the acceptable measurement error for the values seen in the literature. The c〇2 source gas system is sampled using the syringe. c〇2 gas = one gas dryer (perma) Pure MD gas dryer, model MD-110-48F-4 made of Nafi〇n8 polymer, and then enter a working bench carbon sales isotope analysis system. The solid sample is first heated perchloric acid (2MHC1〇4) The C〇2 gas system escapes from the closed digestive system and then enters the gas dryer. The gas is collected there and injected into the analytical system to produce δΠ (: data. Similarly, digest the supernatant to release C〇2 gas, then dried and passed through the analytical instrument to produce S13C data. Analysis of S〇2/C〇2 gas, metal oxide waste source (ie fly ash), carbonate precipitate and Shangcheng The measured values of the liquid are shown in Table 5. Δ13(: values are -15.881 and -11.701 respectively. The δ13&lt;: value of the two reaction products reflects S掺2/C〇2 gas 013C=-l2.45l) and the incorporation of fly ash, which is the fly ash in 71 201016599 Contains some carbon that is not completely burned into a gas 013C = -17.46 %.) Because the fly ash itself is a fossil fuel combustion product with a δ13 (: value, the total ^ 3 C value of the precipitate is reflected by the use of c 〇 2 Far from the δ C value of c〇2 itself. This example demonstrates that the &amp; 3C value can be used to identify the primary source of carbon in the carbonate-containing composition material. Atmospheric δ13 (: value (%〇) C〇2 source C〇2 source s13c value (%0) Source test δ13. Value (%〇) Shangcheng solution δ13 (: value (%0) sediment 513C value ( %〇) -8 S02/C〇2 Bottled gas mixture-12.45 Fly ash-17.46 -11.70 -15.88 Table 5: Value of starting materials and products of Example 5 (δ13(:) 实例 Example 6. Cement manufacturing Α. Cement #1 1 · Raw material sink: 1000 ml of sea water (ρΗ=8·07, D = 20.3. The tether is obtained from Santa

Cruz Harbor。將1M NaOH逐滴加入海水中。開始約pH 1〇,如混濁反應混合物所證明般’形成沉澱物。儘管持續 添加NaOH,pH無提高至約pH 10.15以上。暫停添加驗 72 201016599 時’ pH下降至較低pfj值。隨驗的添加,該溶液逐漸變混 濁’指示逐步沉澱。約20分鐘之後,當暫停添加鹼時’ pH停止下降。接著經由watman 410 1微米過濾器過濾沉 澱反應混合物並冷凍乾燥濾液。 2.水泥 藉由逐滴添加新鮮蒸餾水水合正上方所製得之冷凍乾 燥粉末以形成水泥漿糊,在瑪瑙研缽及杵中混合之約30 秒’直到水泥漿糊具有牙膏之黏稠度。漿糊之pH係利用 pH紙量得並發現pH在pH 11與pH 12之間。使水泥漿糊 形成球形’留在研缽中並密封(與研缽)在可重複密封的塑 膠袋中一天。一天後’水泥球係硬的並因乾燥時崩塌而形 狀像雞蛋。 B.水泥#2 〇 由非晶質碳酸鎂鈣(AMCC)、矽灰、六方方解石及水鎂 石(氫氧化鎂)組成之水泥粉末係以下列質量比率進行調 配.3 AMCC : 5石夕灰:7六方方解石·· 〇.2水鎂石。 AMCC係在週遭溫度下自濃縮至46,_鹏鹽度之海 水淡化廠副產物沉殿。AMCC之職係藉由添加氫氧化納 至經濃縮之水性副產物以增加pH至i i以上,直到沉 始為止並添加氫氧化鈉以保持pH於pH u的方式 AMCC沉麟係㈣'麟續减聽冷魏燥^供儲y。 由市售來源獲得發灰。 73 201016599 六方方解;5係在約45C之溫度下自經2微莫耳/公斤 LaCl3穩定之海水沉澱。經淡化設備處理之海水已比新進 海水溫熱5-1G度^必要時’可在六方方解石沉殿之前, 藉使海水流過太陽能面板可達到額外加熱至衫^。 水鎂石亦可由市售來源獲得。 將水以0.4 : 1.0之水:水泥質量比率(L/s=〇4)加入上 述混合物中以形成具有鹼性pH之可用漿糊。漿糊在約一 小時後稠化並以2小時凝固成硬化水泥。水泥在接下來數 週中獲得其壓縮強度之90%以上。 ❹ C.水泥#3 由霰石、非晶質碳酸鎂鈣(AMCC)及飛灰組成之水泥粉 末係以下列質量比率進行調配:4霰石:3 AMCC: 3矽灰: 0.4水鎮石。 霰石係在60°C下自濃縮至46,000卯„1鹽度之海水淡化 廠副產物沉澱。經淡化設備處理之海水已比新進海水溫熱 5-10度。必要時,可在霰石沉澱之前,藉使該水流過太^ 能面板而完成額外加熱至6(TC。沉澱係藉由添加氫氧化鈉❹ 至水中以增加pH至9以上,直到沉澱開始並添加氫氧化 鈉以保持pH於PH 9的方式誘發。由系統持續過濾霰石沉 澱物並冷凍乾燥之以供儲存。 〜 AMCC係在週遭溫度下由濃縮至46,〇〇〇 ppm鹽度之海 水淡化廠副產物沉澱。沉澱係藉由添加氫氧化鈉^二中以 增加pH至11以上,直到沉澱開始並添加氫氧化納以保持 pH於pH 11的方式誘發。由系統持續過濾AMcc沉澱物 74 201016599 並冷凍乾燥之以供儲存。 飛灰係由燃煤發電場來源提供。 將水以0.25:1.0之水:水泥粉末之質量比例(l/s=〇 25) 加入上述混合物中以形成具有鹼性pH之可用漿糊。漿糊 在约一小時後變稠並以約2小時凝固成硬化水泥。水泥在 接下來數週中獲得其壓縮強度之約90%以上。 實例7.含有沉澱物之水硬水泥灰泥立方塊之壓縮強度 製備水硬水泥灰泥立方塊並根據ASTM C109測試其 壓縮強度。如下表6所指示般,水硬水泥灰泥立方塊係以 100%OPC、80%OPC4-1+20%飛灰、80% 〇PC4-1+20%PPT 卜 80% OPC4-1+20%PPT 2 及 50% OPC4-1+50%PPT 2 製 得,其中PPT1及PPT2係如實例2所製得之沉澱物。OPC 與沉殿物之摻合物係在與水組合(\v/c=0.50)之前乾混合。 100%OPC亦與水以0.50之水/水泥比率組合。 時 間 (天) 壓縮強度(psi) 100%OPC 80% OPC4-1+20% 材料 50% OPC+50%PPT 2 飛灰 PPT1 PPT2 1 1891 1470.7 N/A N/A N/A 3 2985.5 3128.8 2622.5 2790 1352.7 7 3959.8 3830.8 3674 3914.3 2458.3 28 5070.8 4752.5 5347.5 4148 4148 流 動 96% 99% 74% 86% 92% 75 201016599 性 &quot;—---- 表6 :含有沉澱物之水硬水泥灰泥之壓縮強度及流動 性 如表6所示數據所證明般,含有沉殿物之水硬水泥灰 泥之壓縮強度一般等於或優於單獨OPC之水硬水泥灰泥。 實例8.由沉澱物製造聚集體 清潔Wabash液壓機(型號:75-24-2TRM ;約1974)之 鋼模並預熱壓板而使壓板表面(包括模腔及衝頭)係在9〇。〇 ® 下至少1小時。 部分實例1之沉澱物濾餅係在烤盤中40°c下烘乾48 小時並接著在摻合機中壓碎並磨碎而使研磨物通過8號 篩。然後,研磨材料與水混合而產生一包含9〇_95%固體 及剩餘部分為所加水(5-10%)之混合物。 在該Wabash虔榨機中4,,x8”模具裏裝滿研磨沉澱物之 濕混合物並將04噸(4000pSi)之壓力施加至沉澱物約10 秒、。然後洩壓並再度打開模具。將黏在模具側之沉澱物刮 下並移至模具中心。然後再度關閉壓榨機並施加 64 β頓之 壓力共5分鐘。接著洩壓並再度打開模具,將壓榨沉殿物 (現,集體)自模具中移出並在週遭溫度下冷卻。視情況可 將聚集體由模具移至—11G〇c烘箱中賴架上並乾燥16 小時,之後在週遭條件下冷卻之。 _,然上述本發明已藉由說明及實例方式以部分細節進 行描述以達清楚瞭解之目的,但根據本發明教示,彼等熟 76 201016599 諳此技者可容易地瞭解可對其進行特定改變及改良而無 悖離所附申請專利範圍之精神及範疇。 因此,前面僅說明本發明原理。應瞭解熟諸此技者將 可設計多種配置,雖然未明確描述或顯示於本文中,但其 具體化本發明原理並包含在其精神及範疇内。此外,本文 所描述之所有㈣及條件㈣m要希雜助讀者瞭解 本發明原理及發明者為促進該技術所提供之觀錢解釋 ❹ 為不限於此特別描述之實例及條件。此外,本文描述本發 明原理三態樣及具體實施例以友其特定實例之所有陳述係 希望涵蓋其結構及功能等效物。此外,不考慮結構體,此 類等效物企圖包括目前已知之等效物及未來所發展之等 效物,即任何發展以完成相同功能之元件。因此,不欲將 本發明範疇限制在本文所示及描述之示範性具體實施 例。而本發明範疇及精神係以所附申請專利範圍具體化。 雖然本發明較佳具體實施例已顯示及描述於本文中, ❹為彼等熟諳此技者顯而易見的:此類具體實施例僅以實例 方式&amp;供。對熟諸此技者而言,許多變化、改變及取代現 將無悖離本發明地發生。應瞭解實施本發明時可使用本文 所述本發明具體實施例之各種替代例。下列申請專利範圍 企圖定義本發明範疇並藉以涵蓋此等申請專利範圍範疇 内之方法及結構體和其等效物。 ° 【圖式簡單說明】 本發明新穎特徵係特別陳述於所附申請專利範圍 77 201016599 中。藉由參考上列陳述利用本發明原理之說明性具體實 施例之細節描述及其所附圖式將可更清楚了解本發明特 徵及優點,其中所附圖式為: 圖1提供一利用ESP及FGD之發電廠煙道氣處理择 序實例之概述流程圖。 圖2提供一利用本發明具體實施例之發電廠煙道氟 處理程序實例之概述流程圖。 圖3提供實例2之沈澱物在放大1000、2500x及6000X ^ 下之SEM影像。 圖4提供實例2之沈澱物的XRD。 圖5提供實例2之沈澱物的TGA。 圖6提供實例3之沈澱物在放大2,500x下之SEM影 像。 圖7提供實例3之沈澱物的XRD。 圖8提供實例3之沈澱物的TGA。 圖9提供實例4之烘乾沈澱物在放大2,500x下之SEM 影像。 n 圖1〇提供實例4之烘乾沈澱物的FT-IR。 【主要元件符號說明】 5〇〇 501 502 51〇 煤 蒸氣锅爐 煙道氣 底灰/鍋爐渣 78 201016599Cruz Harbor. 1 M NaOH was added dropwise to the seawater. Starting at about pH 1 〇, a precipitate formed as evidenced by the turbid reaction mixture. Despite the continued addition of NaOH, the pH did not increase above about pH 10.15. When the test is suspended 72 201016599, the pH drops to a lower pfj value. Upon addition of the test, the solution gradually became cloudy, indicating a gradual precipitation. After about 20 minutes, the pH stopped falling when the base was added. The precipitated reaction mixture was then filtered through a watman 410 1 micron filter and the filtrate was lyophilized. 2. Cement The lyophilized powder prepared by immersing freshly distilled water directly above to form a cement paste was mixed in an agate mortar and pestle for about 30 seconds until the cement paste had the viscosity of the toothpaste. The pH of the paste was measured using pH paper and found to be between pH 11 and pH 12. The cement paste was formed into a spherical shape and left in the mortar and sealed (with a mortar) in a resealable plastic bag for one day. One day later, the cement ball was hard and shaped like an egg due to collapse during drying. B. Cement #2 水泥 A cement powder consisting of amorphous calcium magnesium carbonate (AMCC), ash ash, hexagonal calcite and brucite (magnesium hydroxide) is formulated in the following mass ratios. 3 AMCC : 5 Shi ash : 7 hexagonal calcite ·· 〇.2 brucite. The AMCC is self-concentrating at ambient temperature to 46, a by-product of the Haishui Desalination Plant. The AMCC grade is based on the addition of sodium hydroxide to the concentrated aqueous by-product to increase the pH to above ii until the start of the sedimentation and the addition of sodium hydroxide to maintain the pH at pH u. AMCC Shenlin (4) Listen to cold Wei dry ^ for storage y. Ash is obtained from commercially available sources. 73 201016599 The hexagonal solution; the 5 series precipitates from 2 micromoles/kg LaCl3 stable seawater at a temperature of about 45C. The seawater treated by the desalination equipment has been warmed to 5-1G degrees than the new seawater. ^When necessary, it can be heated to the shirt before the seawater flows through the solar panel before the hexagonal calcite sinks. Brucite is also available from commercial sources. Water was added to the above mixture in a water:0.4:1.0 mass ratio (L/s = 〇4) to form a usable paste having an alkaline pH. The paste thickened after about one hour and solidified into hardened cement in 2 hours. The cement obtained more than 90% of its compressive strength in the next few weeks. ❹ C. Cement #3 Cement powder consisting of vermiculite, amorphous calcium magnesium carbonate (AMCC) and fly ash is blended in the following mass ratios: 4 vermiculite: 3 AMCC: 3 ash: 0.4 water town stone. The vermiculite is self-concentrated at 60 ° C to a by-product precipitation of 46,000 卯 1 salinity desalination plant. The seawater treated by the desalination equipment has been warmed 5-10 degrees above the new seawater. If necessary, before the precipitation of the meteorite, Additional heating is achieved to 6 (TC) by passing the water through the panel. The precipitation is increased by adding sodium hydroxide to the water to increase the pH to above 9 until the precipitation begins and sodium hydroxide is added to maintain the pH at pH 9. Induced by the system, the vermiculite precipitate is continuously filtered by the system and lyophilized for storage. ~ AMCC is precipitated by the desalination of the desalination plant concentrated to 46, 〇〇〇ppm salinity at ambient temperature. Sodium hydroxide was added to increase the pH to above 11 until the start of precipitation and sodium hydroxide was added to maintain the pH at pH 11. The AMcc precipitate 74 201016599 was continuously filtered by the system and lyophilized for storage. It is supplied from a coal-fired power plant source. Water is added to the above mixture in a mass ratio of 0.25:1.0 water:cement powder (l/s=〇25) to form a usable paste having an alkaline pH. Change after an hour And solidified into hardened cement in about 2 hours. The cement obtained about 90% of its compressive strength in the next few weeks. Example 7. Compressive strength of hydraulic cement mortar cube containing precipitates Preparation of hydraulic cement plaster The cubes are tested for compressive strength according to ASTM C109. As indicated in Table 6 below, the hydraulic cement stucco cubes are 100% OPC, 80% OPC4-1 + 20% fly ash, 80% 〇 PC4-1+20 %PPT Bu 80% OPC4-1+20%PPT 2 and 50% OPC4-1+50%PPT 2 were prepared, of which PPT1 and PPT2 were precipitates prepared as in Example 2. Blending of OPC and Shen Temple The system was dry mixed before mixing with water (\v/c = 0.50). 100% OPC was also combined with water at a water/cement ratio of 0.50. Time (days) Compressive strength (psi) 100% OPC 80% OPC4-1 +20% Material 50% OPC+50%PPT 2 Fly Ash PPT1 PPT2 1 1891 1470.7 N/AN/AN/A 3 2985.5 3128.8 2622.5 2790 1352.7 7 3959.8 3830.8 3674 3914.3 2458.3 28 5070.8 4752.5 5347.5 4148 4148 Flow 96% 99% 74 % 86% 92% 75 201016599 Sex&quot;—---- Table 6: Compressive strength and fluidity of hydraulic cement mortar containing sediments as evidenced by the data in Table 6. Like, compressive strength cement mortar containing hard water was of the house sink ships of equal or superior to the individual OPC hydraulic cement plaster. Example 8. Manufacture of aggregates from precipitates The steel mold of the Wabash hydraulic press (Model: 75-24-2 TRM; 1974) was cleaned and the platen was preheated to tie the platen surface (including the cavity and punch) to 9 〇. 〇 ® for at least 1 hour. The precipitate cake of Part Example 1 was dried in a baking tray at 40 ° C for 48 hours and then crushed and ground in a blender to pass the mill through a No. 8 sieve. The abrasive material is then mixed with water to produce a mixture comprising 9 〇 95% solids and the remainder being added water (5-10%). In the Wabash press, the 4, x8" mold was filled with a wet mixture of ground precipitates and a pressure of 04 tons (4000 pSi) was applied to the precipitate for about 10 seconds. Then the pressure was released and the mold was opened again. The sediment on the mold side is scraped off and moved to the center of the mold. Then the press is closed again and a pressure of 64 β is applied for 5 minutes. Then the pressure is released and the mold is opened again, and the sinking (now, collective) is pressed from the mold. The medium is removed and cooled at ambient temperature. The aggregate can be moved from the mold to the -11G〇c oven and dried for 16 hours as appropriate, and then cooled under ambient conditions. _, the above invention has been The description and examples are described in some detail for clarity of understanding, but in accordance with the teachings of the present invention, those skilled in the art can readily understand that the subject matter can be modified and improved without departing from the scope of the application. The spirit and scope of the patented scope. Therefore, the foregoing is merely illustrative of the principles of the invention. It will be appreciated that those skilled in the art will be able to devise various configurations which, although not explicitly described or shown herein, The principles are included in their spirit and scope. In addition, all (4) and (4) m described in this article are intended to help the reader understand the principles of the present invention and the explanations provided by the inventors to promote the technology. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; It is intended that the present invention be construed as being limited to the invention The scope and spirit of the present invention is defined by the scope of the appended claims. While the preferred embodiments of the present invention have been shown and described herein, it will be apparent to those skilled in the art Example Modes &amp; For many skilled in the art, many variations, changes, and substitutions will now occur without departing from the invention. Various alternatives to the specific embodiments of the invention described herein may be used. The following claims are intended to define the scope of the invention and to cover the methods and structures and their equivalents within the scope of the claims. Brief Description of the Invention The novel features of the invention are set forth in the appended claims. Features and advantages of the present invention, wherein the accompanying drawings are: Figure 1 provides an overview flow diagram of an example of a power plant flue gas treatment using ESP and FGD. Figure 2 provides a power plant smoke utilizing a specific embodiment of the present invention. An overview flow chart of an example of a fluorochemical treatment procedure. Figure 3 provides an SEM image of the precipitate of Example 2 at magnifications of 1000, 2500x and 6000X^. Figure 4 provides the XRD of the precipitate of Example 2. Figure 5 provides the TGA of the precipitate of Example 2. Figure 6 provides an SEM image of the precipitate of Example 3 at 2,500x magnification. Figure 7 provides the XRD of the precipitate of Example 3. Figure 8 provides the TGA of the precipitate of Example 3. Figure 9 provides an SEM image of the dried precipitate of Example 4 at 2,500x magnification. n Figure 1A provides the FT-IR of the dried precipitate of Example 4. [Explanation of main components] 5〇〇 501 502 51〇 Coal Steam boiler Flue gas Bottom ash / boiler slag 78 201016599

511 掩埋場 520 靜電集塵器 521 含硫煙道氣 530 飛灰 540 風扇 550 FGD槽 551 水 552 烺燒石灰石 553 石灰漿料 554 石膏漿料 555 泵浦 556 脫硫煙道氣 560 煙囪 570 水力旋風器 571 旋風器水 572 回收水槽 573 回收水 574 廢水 575 尾砂 579 厚漿料 580 過滤器 580 含C02氣體 581 濾餅 582 清洗水 79 201016599 583 乾燥器 585 過濾水 590 石膏 600 煤 601 蒸氣锅爐 602 煙道氣 610 底灰/鍋爐渣 620 海水來源 625 額外驗來源(選用) 630 反應器 631 漿料 640 泵浦 650 乾燦 651 水排放 660 水硬水泥 670 煙囪 680 乾淨氣體511 Landfill 520 Electrostatic dust collector 521 Sulfur flue gas 530 Fly ash 540 Fan 550 FGD tank 551 Water 552 Burnt limestone 553 Lime slurry 554 Gypsum slurry 555 Pump 556 Desulfurization flue gas 560 Chimney 570 Hydraulic cyclone 571 Cyclone water 572 Recovery tank 573 Recovery water 574 Waste water 575 Tailings 579 Thick slurry 580 Filter 580 Contains CO 2 gas 581 Filter cake 582 Washing water 79 201016599 583 Dryer 585 Filtered water 590 Gypsum 600 Coal 601 Steam boiler 602 Flue gas 610 bottom ash / boiler slag 620 seawater source 625 additional source (optional) 630 reactor 631 slurry 640 pump 650 dry 651 water discharge 660 hydraulic cement 670 chimney 680 clean gas

Claims (1)

201016599 七、申請專利範圍: 1. 一種方法,其包括: a) 令一水溶液與源自工業程序之金屬氧化物來源接 觸; b) 將源自工業程序之二氧化碳來源之二氧化碳充入 該水溶液中;及 c) 令該水溶液在大氣壓力下處於沈澱條件以製造含 碳酸鹽沉澱物。 〇 2. 根據申請專利範圍第1項之方法,其中金屬氧化物來 源及二氧化碳來源係源自相同工業程序。 3. 根據申請專利範圍第2項之方法,其中令該水溶液與 金屬氧化物來源接觸係發生在將二氧化碳來源充入該水 溶液中之前。 ® 4.根據申請專利範圍第2項之方法,其中令該水溶液與 金屬氧化物來源接觸係與將二氧化碳來源充入該水溶液 中同時發生。 5.根據申請專利範圍第2項之方法,其中令該水溶液與 金屬氧化物來源接觸、將二氧化碳來源充入該水溶液中及 令該水溶液處於沈澱條件係同時發生。 201016599 6. 根據申請專利範圍第3-5項中任一項之方法,其中金 屬氧化物來源及二氧化碳來源係源自相同廢棄物流。 7. 根據申請專利範圍第6項之方法,其中該廢棄物流係 源自燃煤發電廠之煙道氣。 8. 根據申請專利範圍第6項之方法,其中該廢棄物流係 源自水泥廠之窯廢氣。 9. 根據申請專利範圍第7項之方法,其中該金屬氧化物 來源係飛灰。 10. 根據申請專利範圍第8項之方法,其中該金屬氧化物 來源係水泥窯灰。 11. 根據申請專利範圍第6項之方法,其中該廢棄物流另 外包含SOx、NOx、汞或其任何組合。 β 12. 根據申請專利範圍第2項之方法,其中金屬氧化物來 源另外提供製造沉澱物之二價陽離子。 13. 根據申請專利範圍第2項之方法,其中金屬氧化物來 源及水溶液皆包含製造沉澱物之二價陽離子。 82 201016599 14. 根據申請專利範圍第13項之方法,其中金屬氧化物來 源係飛灰或水泥窯灰。 15. 根據申請專利範圍第14項之方法,其中該水溶液包含 滷水、海水或淡水。 16. 根據申請專利範圍第15項之方法,其中二價陽離子包 含Ca2+、Mg2+或其組合。 17. 根據申請專利範圍第2項之方法,其中金屬氧化物來 源提供製造沉澱物之質子去除劑。 18. 根據申請專利範圍第17項之方法,其中金屬氧化物來 源在CaO、MgO或其組合在水溶液中水合後提供質子去 除劑。 19. 根據申請專利範圍第17項之方法,其中金屬氧化物來 源另外提供矽石。 20. 根據申請專利範圍第17項之方法,其中金屬氧化物來 源另外提供氧化鋁。 21. 根據申請專利範圍第17項之方法,其中金屬氧化物來 源另外提供氧化鐵。 83 201016599 22. 根據申請專利範圍第17項之方法,其中源自鋁樊土處 理之紅泥或褐泥亦提供質子去除劑。 23. 根據申請專利範圍第17項之方法,其中進行質子去除 之電化學方法亦提供以製造沉澱物。 24. 根據申請專利範圍第2項之方法,其另外包括自製造 沉澱物之水溶液中分離出沉澱物。 25. 根據申請專利範圍第24項之方法,其中該沉澱物包含 CaC03。 26. 根據申請專利範圍第25項之方法,其中CaC03包含 方解石、霰石、六方方解石或其組合。 27. 根據申請專利範圍第24項之方法,其另外包括處理沉 澱物以形成建築材料。 28. 根據申請專利範圍第27項之方法,其中建築材料係水 硬水泥。 29.根據申請專利範圍第27項之方法,其中建築材料係聚 集體。 84 201016599 30. —種方法,其包括: a) 令一水溶液與含有二氧化碳之廢棄物流及含有金 屬氧化物之來源接觸並 b) 令該水溶液處於沈澱條件下以製造含碳酸鹽沉澱 物。 31. 根據申請專利範圍第30項之方法,其中該廢棄物流係 源自燃煤發電腐:之煙道氣。 32. 根據申請專利範圍第31項之方法,其中該金屬氧化物 來源係飛灰。 33. 根據申請專利範圍第30項之方法,其中該廢棄物流係 源自水泥廠之窯廢氣。 34. 根據申請專利範圍第33項之方法,其中該金屬氧化物 來源係水泥窯灰。 35. 根據申請專利範圍第31或33項之方法,其中該廢棄 物流另外包含SOx、NOx、汞或其任何組合。 36. 根據申請專利範圍第35項之方法,其中製造沉澱物之 二價陽離子係由金屬氧化物來源、水溶液或其組合提供。 85 201016599 37. 根據申請專利範圍第36項之方法,其中該水溶液包含 滷水、海水或淡水。 38. 根據申請專利範圍第37項之方法,其中二價陽離子包 含Ca2+、Mg2+或其組合。 39. 根據申請專利範圍第36項之方法,其中金屬氧化物來 源另外提供製造沉澱物之質子去除劑。 40. 根據申請專利範圍第39項之方法,其中金屬氧化物來 源在CaO、MgO或其組合在水溶液中水合後提供質子去 除劑。 41. 根據申請專利範圍第30項之方法,其中金屬氧化物來 源另外提供矽石。 42. 根據申請專利範圍第30項之方法,其中金屬氧化物來 源另外提供氧化鋁。 43. 根據申請專利範圍第30項之方法,其中金屬氧化物來 源另外提供氧化鐵。 44. 根據申請專利範圍第39項之方法,其中源自鋁樊土處 86 201016599 理之紅泥或褐泥亦提供質子去除劑。 45. 根據申請專利範圍第39項之方法,其中進行質子去除 之電化學方法亦提供以製造沉澱物。 46. 根據申請專利範圍第30項之方法,其該沉澱物包含 CaC03。 47. 根據申請專利範圍第46項之方法,其中CaC03包含 方解石、霰石、六方方解石或其組合。 48. 根據申請專利範圍第30項之方法,其另外包括自製造 沉澱物之水溶液中分離出沉澱物。 49. 根據申請專利範圍第48項之方法,其另外包括處理沉 澱物以形成建築材料。 ❿ 50. 根據申請專利範圍第49項之方法,其中建築材料係水 硬水泥。 51. 根據申請專利範圍第49項之方法,其中建築材料係聚 集體。 52. —種含矽組成物,其包含合成碳酸鈣,其中碳酸鈣係 87 201016599 以兩或多種選自方解石、霰石及六方方解石之形式存在。 53. 根據申請專利範圍第52項之組成物,其十碳酸鈣之兩 或多種形式係方解石及霰石。 54. 根據申請專利範圍第53項之組成物,其中方解石及霰 石係以20 : 1之比例存在。 0 55. 根據申請專利範圍第54項之組成物,其中碳酸鈣及矽 石係以碳酸鹽對石夕石至少1 : 2之比例存在。 56. 根據申請專利範圍第54項之組成物,其中75%之石夕 石係粒徑小於45微米之非晶質矽石。 57. —種系統,其包括: a) 適合熟化金屬氧化物廢棄物來源之熟化器 ❹ b) 沉澱反應器;及 c) 液-固分離器,其中沉澱反應器在操作上係連接熟 化器及液-固分離器,且另外其中該系統係經設計以每天 製造含碳酸鹽沉澱物超過1噸。 58. 根據申請專利範圍第57項之系統,其中該系統係經設 計以每天製造含碳酸鹽沉澱物超過10噸。 88 201016599 59. 根據申請專利範圍第57項之系統,其中該系統係經設 計以每天製造含碳酸鹽沉澱物超過100噸。 60. 根據申請專利範圍第57項之糸統’其中該糸統係經設 計以每天製造含碳酸鹽沉澱物超過1000噸。 61. 根據申請專利範圍第57項之系統,其中該熟化器係選 自漿料滯留熟化器、漿糊熟化器及球磨熟化器。 62. 根據申請專利範圍第57-61項中任一項之系統,其另 外包含二氧化碳來源。 63. 根據申請專利範圍第62項之系統,其中二氧化碳來源 係源自燃煤發電廠或水泥廠。 64. 根據申請專利範圍第57-63項中任一項之系統,其另 外包含質子去除劑來源。 65. 根據申請專利範圍第57-64項中任一項之系統,其另 外包含二價陽離子來源。 66. 根據申請專利範圍第57-65項中任一項之系統,其另 外包含經設計以由液-固分離器之固體產物製造建築材料 之建築材料製造單元。 89201016599 VII. Scope of application for patents: 1. A method comprising: a) contacting an aqueous solution with a source of metal oxide derived from an industrial process; b) charging carbon dioxide derived from a source of carbon dioxide from an industrial process into the aqueous solution; And c) subjecting the aqueous solution to precipitation conditions at atmospheric pressure to produce a carbonate-containing precipitate. 〇 2. According to the method of claim 1, wherein the source of metal oxides and the source of carbon dioxide are derived from the same industrial process. 3. The method of claim 2, wherein contacting the aqueous solution with the metal oxide source occurs prior to charging the carbon dioxide source into the aqueous solution. ® 4. The method of claim 2, wherein contacting the aqueous solution with a source of metal oxide occurs simultaneously with charging a source of carbon dioxide into the aqueous solution. 5. The method of claim 2, wherein contacting the aqueous solution with a source of metal oxide, charging a source of carbon dioxide into the aqueous solution, and allowing the aqueous solution to be in a precipitation condition occurs simultaneously. The method of any one of claims 3-5, wherein the source of metal oxides and the source of carbon dioxide are derived from the same waste stream. 7. The method of claim 6, wherein the waste stream is derived from a flue gas of a coal fired power plant. 8. The method of claim 6, wherein the waste stream is derived from kiln exhaust from a cement plant. 9. The method of claim 7, wherein the source of the metal oxide is fly ash. 10. The method of claim 8, wherein the source of the metal oxide is cement kiln dust. 11. The method of claim 6, wherein the waste stream further comprises SOx, NOx, mercury, or any combination thereof. [beta] 12. The method of claim 2, wherein the metal oxide source additionally provides a divalent cation for making a precipitate. 13. The method of claim 2, wherein the metal oxide source and the aqueous solution comprise divalent cations for making a precipitate. 82 201016599 14. The method of claim 13, wherein the metal oxide source is fly ash or cement kiln dust. 15. The method of claim 14, wherein the aqueous solution comprises brine, sea water or fresh water. 16. The method of claim 15, wherein the divalent cation comprises Ca2+, Mg2+, or a combination thereof. 17. The method of claim 2, wherein the metal oxide source provides a proton-removing agent for making a precipitate. 18. The method of claim 17, wherein the metal oxide source provides a proton-removing agent after hydration of CaO, MgO, or a combination thereof in an aqueous solution. 19. The method of claim 17, wherein the metal oxide source additionally provides vermiculite. 20. The method of claim 17, wherein the metal oxide source additionally provides alumina. 21. The method of claim 17, wherein the metal oxide source additionally provides iron oxide. 83 201016599 22. According to the method of claim 17, wherein the red mud or brown mud from the aluminum soil treatment also provides a proton-removing agent. 23. The method of claim 17, wherein the electrochemical method of performing proton removal is also provided to produce a precipitate. 24. The method of claim 2, further comprising separating the precipitate from the aqueous solution from which the precipitate is made. 25. The method of claim 24, wherein the precipitate comprises CaC03. 26. The method of claim 25, wherein the CaC03 comprises calcite, vermiculite, hexagonal calcite or a combination thereof. 27. The method of claim 24, further comprising treating the precipitate to form a building material. 28. The method according to claim 27, wherein the building material is hydraulic cement. 29. The method of claim 27, wherein the building material is agglomerated. 84 201016599 30. A method comprising: a) contacting an aqueous solution with a waste stream comprising carbon dioxide and a source comprising a metal oxide and b) placing the aqueous solution under precipitation conditions to produce a carbonate-containing precipitate. 31. The method according to claim 30, wherein the waste stream is derived from a flue gas of coal-fired power generation rot: 32. The method of claim 31, wherein the source of the metal oxide is fly ash. 33. The method of claim 30, wherein the waste stream is derived from kiln exhaust from a cement plant. 34. The method of claim 33, wherein the source of the metal oxide is cement kiln dust. 35. The method of claim 31, wherein the waste stream additionally comprises SOx, NOx, mercury, or any combination thereof. 36. The method of claim 35, wherein the divalent cation in which the precipitate is made is provided from a source of metal oxide, an aqueous solution, or a combination thereof. 85. The method of claim 36, wherein the aqueous solution comprises brine, sea water or fresh water. 38. The method according to claim 37, wherein the divalent cation comprises Ca2+, Mg2+ or a combination thereof. 39. The method of claim 36, wherein the metal oxide source additionally provides a proton-removing agent for making a precipitate. 40. The method according to claim 39, wherein the metal oxide source provides a proton-removing agent after hydration of CaO, MgO or a combination thereof in an aqueous solution. 41. The method according to claim 30, wherein the metal oxide source additionally provides vermiculite. 42. The method of claim 30, wherein the metal oxide source additionally provides alumina. 43. The method of claim 30, wherein the metal oxide source additionally provides iron oxide. 44. According to the method of claim 39, the red mud or brown mud from the aluminum soil is also provided as a proton remover. 45. The method of claim 39, wherein the electrochemical method of performing proton removal is also provided to produce a precipitate. 46. The precipitate according to the method of claim 30, wherein the precipitate comprises CaC03. 47. The method according to claim 46, wherein CaC03 comprises calcite, vermiculite, hexagonal calcite or a combination thereof. 48. The method of claim 30, further comprising separating the precipitate from the aqueous solution from which the precipitate is made. 49. The method of claim 48, further comprising treating the precipitate to form a building material. ❿ 50. According to the method of claim 49, the building material is hydraulic cement. 51. According to the method of claim 49, wherein the building materials are grouped together. 52. A cerium-containing composition comprising synthetic calcium carbonate, wherein the calcium carbonate system 87 201016599 is present in the form of two or more selected from the group consisting of calcite, vermiculite and hexagonal calcite. 53. According to the composition of claim 52, two or more forms of calcium carbonate are calcite and vermiculite. 54. According to the composition of claim 53 of the scope of patent application, calcite and vermiculite are present in a ratio of 20:1. 0 55. The composition according to item 54 of the patent application, wherein the calcium carbonate and the vermiculite are present in a ratio of at least 1: 2 to the shixi stone. 56. According to the composition of claim 54 of the patent application, 75% of the stones are amorphous vermiculite having a particle size of less than 45 microns. 57. A system comprising: a) a ripener suitable for curing a source of metal oxide waste; b) a precipitation reactor; and c) a liquid-solid separator, wherein the precipitation reactor is operatively coupled to the ripener and A liquid-solid separator, and further wherein the system is designed to produce more than one ton of carbonate-containing precipitate per day. 58. The system of claim 57, wherein the system is designed to produce more than 10 tons of carbonate-containing precipitate per day. 88 201016599 59. The system according to claim 57, wherein the system is designed to produce more than 100 tons of carbonate-containing precipitate per day. 60. According to the 57th scope of the patent application, the system is designed to produce more than 1,000 tons of carbonate-containing sediment per day. 61. The system of claim 57, wherein the cooker is selected from the group consisting of a slurry retention cooker, a paste ripener, and a ball mill cooker. 62. The system according to any one of claims 57-61, which additionally comprises a source of carbon dioxide. 63. The system according to item 62 of the patent application, wherein the source of carbon dioxide is derived from a coal-fired power plant or a cement plant. The system of any one of claims 57-63, further comprising a proton-removing agent source. The system of any one of claims 57-64, further comprising a source of divalent cations. The system of any one of claims 57-65, further comprising a building material manufacturing unit designed to manufacture a building material from a solid product of a liquid-solid separator. 89
TW098120288A 2008-06-17 2009-06-17 Methods and systems for utilizing waste sources of metal oxides TW201016599A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US7331908P 2008-06-17 2008-06-17
US7979008P 2008-07-10 2008-07-10
US12/344,019 US7887694B2 (en) 2007-12-28 2008-12-24 Methods of sequestering CO2

Publications (1)

Publication Number Publication Date
TW201016599A true TW201016599A (en) 2010-05-01

Family

ID=44830522

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098120288A TW201016599A (en) 2008-06-17 2009-06-17 Methods and systems for utilizing waste sources of metal oxides

Country Status (1)

Country Link
TW (1) TW201016599A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614217B (en) * 2016-12-13 2018-02-11 行政院原子能委員會核能研究所 Method of Fabricating Magnesium-Iron Composite Oxide with Carbon Dioxide Separated and Purified
TWI631091B (en) * 2017-03-03 2018-08-01 蔣本基 A method of modifying alkaline solid wastes as green construction materials
TWI667084B (en) * 2018-07-11 2019-08-01 成亞資源科技股份有限公司 Waste copper dioxide regeneration method for waste packaging materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI614217B (en) * 2016-12-13 2018-02-11 行政院原子能委員會核能研究所 Method of Fabricating Magnesium-Iron Composite Oxide with Carbon Dioxide Separated and Purified
TWI631091B (en) * 2017-03-03 2018-08-01 蔣本基 A method of modifying alkaline solid wastes as green construction materials
TWI667084B (en) * 2018-07-11 2019-08-01 成亞資源科技股份有限公司 Waste copper dioxide regeneration method for waste packaging materials

Similar Documents

Publication Publication Date Title
US9260314B2 (en) Methods and systems for utilizing waste sources of metal oxides
AU2009260036B2 (en) Methods and systems for utilizing waste sources of metal oxides
US7754169B2 (en) Methods and systems for utilizing waste sources of metal oxides
US9061940B2 (en) Concrete compositions and methods
AU2008278301B2 (en) Methods of sequestering CO2
US20110277670A1 (en) Systems and methods for processing co2
TW201105406A (en) Systems and methods for processing CO2
JP2011527664A (en) Production of carbonate-containing compositions from metal-containing silicate materials
WO2010132863A1 (en) Systems and methods for processing co2
WO2018160888A1 (en) Direct air capture (dac) carbon dioxide (co2) sequestration methods and systems
US11946343B2 (en) Geomass mediated carbon sequestration material production methods and systems for practicing the same
WO2020154518A1 (en) Carbonate aggregate compositions and methods of making and using the same
TW201016599A (en) Methods and systems for utilizing waste sources of metal oxides
US20160355436A1 (en) Methods and compositions using water repellants
US20240117503A1 (en) Methods and Systems for Synthesizing H2 with a Very Low CO2 Footprint
US20240116767A1 (en) Methods and Systems for Synthesizing Ammonia
US20230285895A1 (en) Gaseous CO2 Capture Systems for Improving Capture Performance, and Methods of Use Thereof
WO2024081129A1 (en) Precipitated calcium carbonate (pcc) as feedstock in hydraulic cement production, and hydraulic cements produced therefrom
Constanz et al. Methods of sequestering CO2
TW201016600A (en) Production of carbonate-containing compositions from material comprising metal silicates
AU2010235912A1 (en) Compositions and methods of using substances containing carbon
TW201038477A (en) Processing CO2 utilizing a recirculating solution