TW201014234A - Methods and systems for choosing cyclic delays in multiple antenna OFDM systems - Google Patents

Methods and systems for choosing cyclic delays in multiple antenna OFDM systems Download PDF

Info

Publication number
TW201014234A
TW201014234A TW098108098A TW98108098A TW201014234A TW 201014234 A TW201014234 A TW 201014234A TW 098108098 A TW098108098 A TW 098108098A TW 98108098 A TW98108098 A TW 98108098A TW 201014234 A TW201014234 A TW 201014234A
Authority
TW
Taiwan
Prior art keywords
pilot
pilot frequency
delay
generating
processing
Prior art date
Application number
TW098108098A
Other languages
Chinese (zh)
Other versions
TWI482445B (en
Inventor
Pranav Dayal
Ayman Fawzy Naguib
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/357,935 external-priority patent/US8570939B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of TW201014234A publication Critical patent/TW201014234A/en
Application granted granted Critical
Publication of TWI482445B publication Critical patent/TWI482445B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26134Pilot insertion in the transmitter chain, e.g. pilot overlapping with data, insertion in time or frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0256Channel estimation using minimum mean square error criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Transmitters (AREA)

Abstract

Certain embodiments of the present disclosure relate to a method to determine appropriate values of cyclic delays applied at a transmitter with multiple antennas in order to provide accurate estimation of channel gains in a multiple-input single-output (MISO) system or multiple-input multiple-output (MIMO) system.

Description

201014234 優先權要求 本案請求項享有題爲 「Method and apparatus for transmitting pilots from multiple antennas (用於從多個天線 -傳送引導頻的方法和裝置)」並於2008年3月14曰提交的 „ 美國臨時專利申請S/N. 61/036,895的優先權的權益,該申請 實質上通過援引完全納入於此。 六、發明說明: 【發明所屬之技術領域】 本公開的某些實施例一般涉及無線通訊,尤其涉及一種 爲多天線傳輸選取恰當的循環延遲值以便準確估計通道增 益的方法。 【先前技術】 先前技術中似仍存有缺失。 【發明内容】 某些實施例提供了 一種在無線通訊系統中傳送引導頻 (pilots)的方法。該方法一般包括基於第一循環延遲產生給第 一發射天線的第一引導頻,以及基於比第一循環延遲大至少 一循環字首長度的第二循環延遲產生給第二發射天線的第 二引導頻。 201014234201014234 PRIORITY CLAIM The request in this case is entitled "Method and apparatus for transmitting pilots from multiple antennas" and submitted by the US Temporary on March 14, 2008 The benefit of the priority of the patent application S/N. 61/036,895, the entire disclosure of which is hereby incorporated by reference in its entirety in its entirety in the the the the the the the the the the the More particularly, it relates to a method for selecting an appropriate cyclic delay value for multi-antenna transmission in order to accurately estimate the channel gain. [Prior Art] There is still a defect in the prior art. [Summary] Some embodiments provide a wireless communication system. A method of transmitting pilots. The method generally includes generating a first pilot frequency for a first transmit antenna based on a first cyclic delay, and generating a second cyclic delay based on at least one cyclic prefix length greater than a first cyclic delay. A second pilot frequency for the second transmit antenna. 201014234

某些實施例提供了一種在無線通訊系統中執行通道估計 的方法。該方法一般包括獲得包含第一和第二引導頻的第一 輸入樣本’其中第—引導頻是基於第一循環延遲產生並且自 第一發射天線發送的,第二引導頻是基於第二循環延遲產生 並且自第二發射天線發送的,第二循環延遲比第一循環延遲 大至少循環字首長度,且這些第一輸入樣本是來自第一接收 天線,以及處理這些第一輸入樣本以獲得對於第一發射天線 的第一通道估計和對於第二發射天線的第二通道估計。 某些實施例提供了一種用於在無線通訊系統中傳送引導 頻的裝置。該裝置一般包括用來基於第一循環延遲產生給第 一發射天線的第一引導頻的邏輯,以及用來基於比第一循環 延遲大至少循環字首長度的第二循環延遲產生給第二發射 天線的第二引導頻的邏輯。 某些實施例提供了一種用於在無線通訊系統中執行通道 估計的裝置。該裝置一般包括用於獲得包含第一和第二引導 頻的第-輸人樣本的邏輯,其中第—引導頻是錄第一循環 延遲產生並且自第一發射天線發送的,第二引導頻是基於第 -循環延遲產生並且自第二發射天線發送的,第二循環延遲 比Lf延遲大至少_字首長度’且這些卜輸入樣本 是來自第-接收天線;以及用於處理這些第一輸入樣本以獲 得對於第-發射天線的第-通道估計和對於第二發射天線 的第一通道估計的邏輯。 某些實施例提供了一種用於在無線通訊系統中傳送引導 頻的裝置。該裝置一般包括用於基於第一循環延遲產生給第 4 201014234 一發射天線的第一引導頻的裝置,w及用於基於比第一循環 延遲大至少*環字首長冑的第二循環延遲產纟、給第二發射 天線的第二引導頻的裝置。 " 某些實施例提供了一種用於在無線通訊系統中執行通道 '估計的裝置。該裝置一般包括用於獲得包含第一和第二引導 頻的第一輸入樣本的裝置,其中第一引導頻是基於第一循環 延遲產生並且自第一發射天線發送的,第二引導頻是基於第 冑環延遲產生並且自第二發射天線發送的,第二循環延遲 比第-循環延遲大至少循環字首長纟,且這些第一輸入樣本 是來自第一接收天線;以及用於處理這些第一輸入樣本以獲 得對於第一發射天線的第一通道估計和對於第二發射天線 的第二通道估計的裝置。 某些實施例提供一種用於在無線通訊系統中傳送引導頻 的電腦程式產品,包括其上儲存有指令的電腦可讀取媒髅, 這些指令可由一個或更多個處理器執行。這些指令一般包括 • 用來基於第一循環延遲產生給第一發射天線的第一引導頻 的如令,以及用來基於比第一循環延遲大至少循環字首長度 的第二循環延遲產生給第二發射天線的第二引導頻的指令。 某些實施例提供一種用於在無線通訊系統中執行通道 " 估计的電腦程式産品,包括其上儲存有指令的電腦可讀取 媒體,這些指令可由一個或更多個處理器執行。這些指令 一般包括用於獲得包含第一和第二引導頻的第一輸入樣 本的指令,其中第一引導頻是基於第一循環延遲產生並且 自第一發射天線發送的’第二引導頻是基於第二循環延遲 201014234 座玍亚且自第二發射天線發送的,第二循環延遲比第一循 環延遲大至少循環字首長度,且這些第一輸入樣本是來自 第一接收天線;以及用於處理這些第一輸入樣本以獲得對 於第-發射天線的第-通道估計和對於第二發射天線的 第二通道估計的指令。 【實施方式】 本文中使用措詞「示例性」來表示「起到示例、實例、 鲁或例示的作用」。本文中描述爲「示例性」的任何實施例不 必被解釋爲優於或勝過其他實施例。 、可以對多天線正交分頻多工(0FDM)傳輸應用循環延遲 刀集(CDD ) S案來提供更高的頻率分集以及改善差錯率性 能通過從多個天線傳送經循環延遲的資料便可產生多條人 爲的通道路徑。可以在接收機方使用已知引導頻或訓練序列 來執行對與這多個發射天線相關聯的通道增益的估計。然 而在某些情形中,若經循環延遲的諸引導頻序列匹配通道 透視(channel profile)中諸路徑延遲,則諸時域通道路徑在接 收機處不能被完全分離。 . 無绂通訊系啟 本文中所描述的技術可以用於各種頻寬頻無線通訊系 統,其中包括基於正交多工方案的通訊系統。此類通訊系統 的不例包括正交分頻多工存取(〇FDMA)系統、單載波分頻 多工存取(SC-FDMA )系統等。〇FDMA系統利用正交分頻 多工(OFDM),這是一種將整個系統頻寬劃分成多個正交副 6 201014234 載波的調制技術。這些副載波也可以被稱爲頻調、頻槽等。 有了 OFDM,每個副載波就可以用資料獨立調制。SC-FDMA 系統可以利用交錯式FDMA ( IFDMA )在跨系統頻寬分佈的 副截波上傳送,利用局部式FDMA ( LFDMA )在由毗鄰副載 波構成的塊上傳送,或者利用增強式FDMA ( EFDMA )在多 個由毗鄰副載波構成的塊上傳送。一般而言,調制符號在 OFDM下是在頻域中發送的,而在SC-FDMA下是在時域中 發送的。 基於正交多工方案的通訊系統的一個具體示例是 WiMAX系統。代表微波存取全球可互操作性的WiMAX是基 於標準的頻寬頻無線技術,它提供長距離上的高吞吐量頻寬 頻連接。當今有兩種主要的WiMAX應用:固定WiMAX和 移動WiMAX。固定WiMAX應用是點對多點的,其使得能夠 頻寬頻存取例如住戶和企業。移動WiMAX提供蜂巢網路在 頻寬頻速度的全移動性。 IEEE 802.16是爲固定和移動頻寬頻無線存取(BWA)系 統定義空中介面的新興的標準組織。這些標準定義了至少四 個不同的實體層(PHY)和一個媒體存取控制(MAC)層。 這四個實體層中的OFDM和OFDMA實體層分別是固定和移 動BWA領域中最受歡迎的》 圖1圖解可以在其中採用本公開的實施例的無線通訊系 統100的示例。無線通訊系統100可以是頻寬頻無線通訊系 統。無線通訊系統100可以爲各自由基地台104服務的數個 蜂巢細胞服務區102提供通訊。基地台104可以是與用戶終 201014234 端106通訊的固定站。基地台104也可以替換地用存取點、 B節點、或其他某個術語稱之。 圖1描緣了遍佈系統100的各種用戶終端106。用戶終端 ’ 106可以是固定(即,靜止)的或移動的。用戶終端1〇6可 .以替換地用遠端站、存取終端、終端、用戶單元、行動站、 台、用戶裝備、用戶站等稱之。用戶終端1〇6可以是諸如蜂 巢式電話、個人數位助理(PDA )、掌上型設備、無線數據機、 膝上型電腦、個人電腦等無線設備。Certain embodiments provide a method of performing channel estimation in a wireless communication system. The method generally includes obtaining a first input sample comprising first and second pilot frequencies, wherein a first pilot frequency is generated based on a first cyclic delay and transmitted from a first transmit antenna, and a second pilot frequency is based on a second cyclic delay Generating and transmitting from the second transmit antenna, the second cyclic delay is greater than the first cyclic delay by at least a cyclic prefix length, and the first input samples are from the first receive antenna, and the first input samples are processed to obtain A first channel estimate of a transmit antenna and a second channel estimate for a second transmit antenna. Some embodiments provide an apparatus for transmitting a pilot frequency in a wireless communication system. The apparatus generally includes logic for generating a first pilot frequency for the first transmit antenna based on the first cyclic delay, and for generating a second transmit delay based on a second cyclic delay greater than the first cyclic delay by at least a cyclic prefix length The logic of the second pilot frequency of the antenna. Certain embodiments provide an apparatus for performing channel estimation in a wireless communication system. The apparatus generally includes logic for obtaining a first-input sample comprising first and second pilot frequencies, wherein the first pilot frequency is generated by the first cyclic delay and transmitted from the first transmit antenna, the second pilot frequency being Based on the first-cycle delay and transmitted from the second transmit antenna, the second cyclic delay is greater than the Lf delay by at least a _ prefix length 'and these input samples are from the first receive antenna; and for processing the first input samples A logic is obtained for the first channel estimate of the first transmit antenna and the first channel estimate for the second transmit antenna. Some embodiments provide an apparatus for transmitting a pilot frequency in a wireless communication system. The apparatus generally includes means for generating a first pilot frequency for a transmit antenna of the 4th 201014234 based on a first cyclic delay, and for generating a second cyclic delay based on at least * ring prefix 胄 greater than the first cyclic delay纟, means for giving a second pilot frequency to the second transmit antenna. " Certain embodiments provide an apparatus for performing channel 'estimation in a wireless communication system. The apparatus generally includes means for obtaining a first input sample comprising first and second pilot frequencies, wherein the first pilot frequency is generated based on a first cyclic delay and transmitted from a first transmit antenna, the second pilot frequency being based on a first loop delay is generated and transmitted from the second transmit antenna, the second loop delay is greater than the first loop delay by at least a cyclic prefix length, and the first input samples are from the first receive antenna; and for processing the first The input samples are obtained to obtain a first channel estimate for the first transmit antenna and a second channel estimate for the second transmit antenna. Some embodiments provide a computer program product for transmitting a pilot frequency in a wireless communication system, including a computer readable medium having instructions stored thereon, the instructions being executable by one or more processors. The instructions generally include: a first pilot frequency for generating a first transmit antenna based on the first cyclic delay, and a second cyclic delay for generating at least a cyclic prefix length greater than the first cyclic delay The second pilot frequency of the second transmit antenna. Some embodiments provide a computer program product for performing channel " estimation in a wireless communication system, including computer readable media having instructions stored thereon, the instructions being executable by one or more processors. The instructions generally include instructions for obtaining a first input sample comprising first and second pilot frequencies, wherein the first pilot frequency is generated based on the first cyclic delay and the 'second pilot frequency transmitted from the first transmit antenna is based on a second cyclic delay 201014234 and transmitted from the second transmit antenna, the second cyclic delay being greater than the first cyclic delay by at least a cyclic prefix length, and the first input samples are from the first receive antenna; and for processing These first input samples obtain an instruction for a first channel estimate of the first transmit antenna and a second channel estimate for the second transmit antenna. [Embodiment] The word "exemplary" is used herein to mean "acting as an example, instance, or exemplification." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous. Cyclic Delayed Tool Set (CDD) S can be applied to multi-antenna orthogonal frequency division multiplexing (OFDM) transmission to provide higher frequency diversity and improve error rate performance by transmitting cyclically delayed data from multiple antennas. Generate multiple artificial channel paths. An estimate of the channel gain associated with the plurality of transmit antennas can be performed at the receiver side using a known pilot or training sequence. However, in some cases, if the cyclically delayed pilot sequences match the path delays in the channel profile, the time domain channel paths cannot be completely separated at the receiver. Innocent Communication System The techniques described in this paper can be applied to a variety of frequency-frequency wireless communication systems, including communication systems based on orthogonal multiplexing. Examples of such communication systems include Orthogonal Frequency Division Multiple Access (〇FDMA) systems, Single Carrier Frequency Division Multiple Access (SC-FDMA) systems, and the like. The 〇FDMA system utilizes Orthogonal Frequency Division Multiplexing (OFDM), a modulation technique that divides the overall system bandwidth into multiple orthogonal sub-6 201014234 carriers. These subcarriers may also be referred to as tones, bins, and the like. With OFDM, each subcarrier can be independently modulated with data. SC-FDMA systems can use interleaved FDMA (IFDMA) to transmit on sub-cuts across system bandwidth, use localized FDMA (LFDMA) on blocks consisting of adjacent subcarriers, or use enhanced FDMA (EFDMA) ) is transmitted on a plurality of blocks consisting of adjacent subcarriers. In general, modulation symbols are transmitted in the frequency domain under OFDM and in the time domain under SC-FDMA. A specific example of a communication system based on an orthogonal multiplexing scheme is a WiMAX system. WiMAX, which stands for Worldwide Interoperability for Microwave Access, is a standards-based frequency-bandwidth wireless technology that provides high-throughput frequency-bandwidth connections over long distances. There are two main WiMAX applications today: fixed WiMAX and mobile WiMAX. Fixed WiMAX applications are point-to-multipoint, enabling wideband access to, for example, households and businesses. Mobile WiMAX provides full mobility of the cellular network at bandwidth frequencies. IEEE 802.16 is an emerging standards organization that defines empty intermediaries for fixed and mobile broadband wireless access (BWA) systems. These standards define at least four different physical layers (PHYs) and one media access control (MAC) layer. The OFDM and OFDMA physical layers in these four physical layers are the most popular in the fixed and mobile BWA fields, respectively. Figure 1 illustrates an example of a wireless communication system 100 in which embodiments of the present disclosure may be employed. The wireless communication system 100 can be a broadband wireless communication system. The wireless communication system 100 can provide communication for a plurality of cellular cell service areas 102 served by each of the free radical stations 104. The base station 104 can be a fixed station that communicates with the user terminal 201014234. Base station 104 may alternatively be referred to by an access point, a Node B, or some other terminology. FIG. 1 depicts various user terminals 106 throughout system 100. User terminal '106' may be fixed (i.e., stationary) or mobile. The user terminal 〇6 can alternatively be referred to as a remote station, an access terminal, a terminal, a subscriber unit, a mobile station, a station, a user equipment, a subscriber station, and the like. The user terminal 1-6 may be a wireless device such as a cellular phone, a personal digital assistant (PDA), a palm-sized device, a wireless data modem, a laptop computer, a personal computer, or the like.

A 可以對無線通訊系統100中在基地台104與用戶終端106 之間的傳輸使用各種演算法和方法。例如,可以根據 OFDM/OFDMA技術在基地台1〇4與用戶終端1〇6之間發送 和接收信號。如果是這種情形,則無線通訊系統1〇〇可以被 稱爲OFDM/OFDMA系統。 幫助進行從基地台1〇4向用戶終端1〇6的傳輸的通訊鍵 路可以被稱爲下行鏈路(DL) 108,而幫助進行從用戶終端 φ 106向基地台1〇4的傳輸的通訊鏈路可以被稱爲上行鏈路 (UL) 11〇。替換地’下行鏈路丨〇8可以被稱爲前向鏈路或 前向通道,而上行鏈路110可以被稱爲反向鏈路或反向通道。 蜂巢細胞服務區102可以被劃分爲多個扇區112。扇區 112是蜂巢細胞服務區1〇2内的物理覆蓋區。無線通訊系統 100内的基地台104可以利用將功率流集中在蜂巢細胞服務 區102的特定扇區112内的天線。如此的天線可以被稱爲定 向天線。 圖2示出IEEE 802.16中用於分時雙工(TDD)模式的示 201014234 例訊框結構200。傳輪等時 每個訊框可橫跨預定歷時,例;成以訊框爲單位。 分割成下行鏈路子訊框和上行鍵路子=可= 鏈路和上杆铋玖工如> 吨峪于訊框。一般而5,下打 5 1可以覆蓋訊框的任何片斷。下行鏈路 睹:鏈路子訊框可以由發射傳輸間隙(TTG)和接收傳輸 間隙(RTG)分隔開β 、可以定義數個物理子通道。每個物理子通道可以包括可A may use various algorithms and methods for transmission between the base station 104 and the user terminal 106 in the wireless communication system 100. For example, signals can be transmitted and received between base station 1〇4 and user terminal 1〇6 according to OFDM/OFDMA techniques. If this is the case, the wireless communication system 1 can be referred to as an OFDM/OFDMA system. The communication key that facilitates the transmission from the base station 1〇4 to the user terminal 1〇6 may be referred to as the downlink (DL) 108, and facilitates communication for transmission from the user terminal φ 106 to the base station 1〇4. A link can be referred to as an uplink (UL) 11 〇. Alternatively, the downlink 丨〇8 may be referred to as a forward link or a forward channel, and the uplink 110 may be referred to as a reverse link or a reverse channel. The honeycomb cell service area 102 can be divided into a plurality of sectors 112. Sector 112 is the physical footprint within the cell service area 1〇2. The base station 104 within the wireless communication system 100 can utilize an antenna that concentrates power flow within a particular sector 112 of the cellular cell service area 102. Such an antenna may be referred to as a directional antenna. 2 shows a 201014234 example frame structure 200 for time division duplexing (TDD) mode in IEEE 802.16. When the wheel passes, each frame can span a predetermined duration, for example; in frames. Split into downlink sub-frames and uplink sub-keys = can = link and upper poles such as > ton on the frame. In general, 5 and 5 1 can cover any segment of the frame. Downlink 睹: The link subframe can be separated by a transmission transmission gap (TTG) and a reception transmission gap (RTG). Several physical subchannels can be defined. Each physical subchannel can include

乂峨連也可以跨系統頻寬分佈的副載波集。也可以定義數 個邏輯子通道並且 ΎΜ基於已知映射將其映射至物理子通 道。邏輯子通道可以簡化資源的分配。Qilian can also distribute subcarrier sets across system bandwidth. It is also possible to define several logical subchannels and map them to physical subchannels based on known mappings. Logical subchannels simplify the allocation of resources.

如圖2中所示,下行鏈路子訊框可以包括前序碼 (preamble)、訊框控制頭部(FCH )、下行鏈路映射 (DL-MAP )、上行鏈路映射(UL_MAp )、以及下行鏈路(dl ) 叢發。前序碼可以攜帶可以被用戶站用來作訊框檢測和同步 的已知傳輸。FCH可以攜帶用來接收DL-MAP、UL-MAP、 以及下行鏈路叢發的參數。DL-MAP可以攜帶DL-MAP消 息,該消息可以包括用於下行鏈路存取的各種類型的控制資 訊(例如’資源分配或指派)的資訊元素(IE) 。UL-MAP 可以攜帶UL-MAP消息,該消息可以包括用於上行鏈路存取 的各種類型的控制資訊的IE。下行鏈路叢發可以攜帶給正被 服務的用戶站的資料。上行鏈路子訊框可以包括上行鏈路叢 發,後者可以攜帶被排程進行上行鏈路傳輸的用戶站所傳送 的資料。 本文中所描述的引導頻傳輸技術既可以用於多輸入多輸 201014234 出乂 MIMo )傳輸也可以用於多輸入單輸出(MISO )傳輸。 這些技術還可以用於在下行鏈路以及上行鏈路上的引導頻 傳輪。爲了清楚起見,以下針對ΜΙΜΟ情形中下行鏈路上的 - 引導頻傳輸來描述這些技術的某些方面》 • 圖3示出作爲圖1中的基地台之一和用戶站之一的基地 台104和用戶站106的設計的方塊圖。基地台1〇4裝備有多 個(AM固)天線334a到334m »用戶站106裝備有多個(及 個)天線352a到352r » 豢 在基地台1〇4處’發射(TX)資料處理器32〇可以接收 來自資料源312的資料,基於一個或更多個調制和編碼方案 處理(例如,編碼和符號映射)該資料,並提供資料符號。 如在此所使用的,資料符號是對應於資料的符號,引導頻符 號是對應於引導頻的符號,而符號可以是實數或複數值的。 資料符號和引導頻符號可以是源于諸如PSK或QAM等調制 方案的調制符號。引導頻可以包括爲基地台和用戶站雙方先 ❹驗已知的資料。TXMIMO處理器330可以處理這些資料和引 導頻符號並將Μ個輸出符號流提供給从個調制器(m〇d ) 332a到332m。每個調制器332可以處理其輪出符號流(例 •如,用於實現〇FDM)以獲得輸出樣本流。每個調制器332 .可以進一步調理(例如’轉換爲類比、濾波、放大、以及升 頻轉換)其輸出樣本流並產生下行鏈路信號。來自調制器 332a到332111的Μ個下行鏈路信號可以分別經由天線33“ 到334m被發射》 在用戶站i06處,R個天、線352&到处可以接收來自基 201014234 地台104的這Μ個下行鏈路信號,且每個天線352可以將收 到的信號提供給相關聯的解調器(DEMOD) 354。每個解調 器354可以調理(例如,濾波、放大、降頻轉換、以及數位 .化)其收到的仏號以獲得輸入樣本並且可以進一步處理這些 . 輸入樣本(例如,用於實現OFDM )以獲得收到符號。每個 解調器354可以將收到資料符號提供給μίμο檢測器360並 將收到引導頻符號提供給通道處理器394。通道處理器394 可以基於收到引導頻符號估計從基地台104到用戶站120的 ΜΙΜΟ通道的回應並將ΜΙΜΟ通道估計提供給ΜΙΜ〇檢測器 360。ΜΙΜΟ檢測器360可以基於此ΜΙΜ〇通道估計執行對 收到符號的ΜΙΜΟ檢測並提供檢測出的符號,後者是對所傳 送的資料符號的估計。接收(Rx)資料處理器37〇可以處理 (例如,符號解映射和解碼)檢測出的符號並將解碼出的資 料提供給資料槽372。 用戶站106可以評價通道狀況並產生可以包括各種類型 φ 的資訊的反饋貝訊。反饋資訊和來自資料源378的資料可以 由TX資料處理器380處理(例如,編碼和符號映射)、由 τχΜΙΜΟ處理器382空間處理、並由調制器35乜到354r進 • 一步處理以產生尺個上行鏈路信號,這些信號可以經由天線 .352a到352r被發射。在基地台104處,來自用戶站106的 這R個上行鏈路信號可以被天線33乜到334m接收、由解調 器3323到332m處理、由MIM〇檢測器336空間處理、並由 Μ㈣處理器338進-步處理(例如’符號解映射和解碼) 以恢復出用戶站1〇6發送的反饋資訊和資料。控制器/處理器 201014234 340可以基於該反饋資訊來控制向用戶站ι〇6的資料傳輸。 控制器/處理器340和390可以分別指導基地台1〇4和用 戶站106處的操作》記憶體342和392可以分別儲存供基地 台104和用戶站106使用的資料和程式碼。排程器344可以 基於接收自所有用戶站的反饋資訊來排程用戶站i〇6及/或 其他用戶站進行下行鏈路及/或上行鏈路上的資料傳輸。 IEEE 802.16對下行鏈路和上行鏈路利用正交頻分多工 (OFDM)。OFDM將系統頻寬分割成多個(乂打個)正交副 載波,它們也可被稱爲頻調、頻槽等》每一副載波可以用資 料或引導頻調制。副載波的數目可以取決於系統頻寬以及抵 鄭副載波之間的頻率間隔。例如,可以等於128、256、 512、1024、或2048。這總共個副載波可能僅其子集可供 資料和引導頻傳輸使用,而其餘副載波可以用作允許系統滿 足頻譜框罩要求的保護副載波。在以下描述中’資料副載波 是用於資料的副載波,而引導頻副載波是用於引導頻的副載 波。OFDM符號可以在每個OFDM符號周期(或簡稱符號周 期)中傳送。每個OFDM符號可以包括用以發送資料的資料 副載波、用以發送引導頻的引導頻副載波、及/或未用於資料 或引導頻的保護副載波。 圖4示出可以被包括在圖3中的調制器332a到332m以 及調制器354a到354r之中的每一個裏的OFDM調制器4〇〇 的設計的方塊圖。在OFDM調制器400内,符號-副載波映 射器410接收輸出符號並將其映射到這總共1個副載波。 在每個OFDM符號周期中,單元412用^财點之離散傅立葉 12 201014234 逆變換(腑)將對應於這總共〜個副載波的I個輸出符 號變,到時域並提供包含K固時域樣本的有用部分。每個 樣本是要在一個碼片周期中傳送的複數值。並_申(μ)轉 換器414將該有用部分中的這個樣本串列化。循環字首 產生器416複製該有用部分的最後^>個樣本並將這^個樣 本附加至該有用部分的前面以形成包含個樣本的As shown in FIG. 2, the downlink subframe may include a preamble, a frame control header (FCH), a downlink map (DL-MAP), an uplink map (UL_MAp), and a downlink. Link (dl) bursts. The preamble can carry known transmissions that can be used by the subscriber station for frame detection and synchronization. The FCH may carry parameters for receiving DL-MAP, UL-MAP, and downlink bursts. The DL-MAP may carry DL-MAP messages, which may include information elements (IEs) for various types of control information (e.g., 'resource allocation or assignment) for downlink access. The UL-MAP may carry a UL-MAP message, which may include IEs for various types of control information for uplink access. The downlink burst can carry the data to the subscriber station being served. The uplink subframe can include an uplink burst that carries the data transmitted by the subscriber station scheduled for uplink transmission. The pilot-frequency transmission techniques described in this article can be used for both multi-input and multi-input 201014234 out-of-the-middle MIMo) transmissions as well as multi-input single-output (MISO) transmissions. These techniques can also be used for pilot transmissions on the downlink as well as on the uplink. For clarity, certain aspects of these techniques are described below for pilot-frequency transmissions on the downlink in the case of a scenario. Figure 3 shows a base station 104 as one of the base stations and one of the subscriber stations in Figure 1. And a block diagram of the design of the subscriber station 106. The base station 1〇4 is equipped with a plurality of (AM solid) antennas 334a to 334m. The subscriber station 106 is equipped with a plurality of (and) antennas 352a to 352r » ' at the base station 1〇4 'transmitting (TX) data processor 32〇 may receive data from data source 312, process (e.g., encode and symbol map) the data based on one or more modulation and coding schemes, and provide data symbols. As used herein, a data symbol is a symbol corresponding to a material, a pilot frequency symbol is a symbol corresponding to a pilot frequency, and a symbol can be a real or complex value. The data symbols and pilot symbols may be modulation symbols derived from a modulation scheme such as PSK or QAM. The pilot frequency may include first checking the known data for both the base station and the subscriber station. TX MIMO processor 330 can process these data and pilot symbols and provide a stream of output symbols to slave modulators (m〇d) 332a through 332m. Each modulator 332 can process its round-out symbol stream (e.g., for implementing 〇FDM) to obtain an output sample stream. Each modulator 332 can be further conditioned (e.g., converted to analog, filtered, amplified, and upconverted) to output its sample stream and produce a downlink signal. The two downlink signals from modulators 332a through 332111 may be transmitted via antennas 33" to 334m, respectively" at subscriber station i06, where R days, lines 352 & everywhere can receive the base station 104 from base 201014234 Downlink signals, and each antenna 352 can provide the received signals to an associated demodulator (DEMOD) 354. Each demodulator 354 can be conditioned (eg, filtered, amplified, down converted, and digitally) The nickname it receives is used to obtain input samples and these can be further processed. The input samples (eg, for implementing OFDM) are used to obtain received symbols. Each demodulator 354 can provide received data symbols to μίμο. Detector 360 provides the received pilot symbols to channel processor 394. Channel processor 394 can estimate the response from the base station 104 to the user station 120 based on the received pilot symbols and provide the channel estimates to ΜΙΜ. 〇 Detector 360. ΜΙΜΟ Detector 360 can perform ΜΙΜΟ detection of the received symbol based on the ΜΙΜ〇 channel estimate and provide the detected symbol, the latter being the opposite An estimate of the transmitted data symbols. The receive (Rx) data processor 37 can process (e.g., symbol demap and decode) the detected symbols and provide the decoded data to the data slot 372. The subscriber station 106 can evaluate the channel status. And generating feedback messages that can include information of various types of φ. Feedback information and data from data source 378 can be processed by TX data processor 380 (eg, encoding and symbol mapping), spatially processed by τχΜΙΜΟ processor 382, and The modulators 35 to 354r further process to generate scaled uplink signals which can be transmitted via antennas 352a through 352r. At the base station 104, the R uplink signals from the subscriber station 106 can Received by antennas 33 to 334m, processed by demodulators 3323 to 332m, spatially processed by MIM detector 336, and processed further by Μ(4) processor 338 (eg, 'symbol de-mapping and decoding) to recover the subscriber station The feedback information and data sent by the controller 6. The controller/processor 201014234 340 can control the data transmission to the user station 基于6 based on the feedback information. The processors/processors 340 and 390 can direct the operations at the base station 1〇4 and the subscriber station 106, respectively. The memories 342 and 392 can store the data and code used by the base station 104 and the subscriber station 106, respectively. 344 may schedule subscriber station i 〇 6 and/or other subscriber stations to perform data transmission on the downlink and/or uplink based on feedback information received from all subscriber stations. IEEE 802.16 for downlink and uplink utilization Orthogonal Frequency Division Multiplexing (OFDM). OFDM divides the system bandwidth into multiple (beating) orthogonal subcarriers, which can also be called frequency modulation, frequency slots, etc. Each subcarrier can be used as data or Pilot frequency modulation. The number of subcarriers may depend on the system bandwidth and the frequency spacing between the subcarriers. For example, it can be equal to 128, 256, 512, 1024, or 2048. This total of subcarriers may only be used by a subset of its available data and piloted transmissions, while the remaining subcarriers may be used as guard subcarriers that allow the system to meet the spectral mask requirements. In the following description, the data subcarrier is a subcarrier for data, and the pilot subcarrier is a subcarrier for pilot frequency. The OFDM symbols can be transmitted in each OFDM symbol period (or simply symbol period). Each OFDM symbol may include a data subcarrier to transmit data, a pilot frequency subcarrier to transmit a pilot frequency, and/or a guard subcarrier not used for data or pilot. Figure 4 shows a block diagram of a design of an OFDM modulator 4A that can be included in each of modulators 332a through 332m and modulators 354a through 354r in Figure 3. Within OFDM modulator 400, symbol-subcarrier mapper 410 receives the output symbols and maps them to a total of one subcarrier. In each OFDM symbol period, unit 412 inversely transforms (I) the I output symbols corresponding to the total of ~ subcarriers by discrete Fourier transform 12 201014234, to the time domain and provides a K-fixed time domain. A useful part of the sample. Each sample is a complex value to be transmitted in one chip period. The _ (μ) converter 414 serializes this sample in the useful portion. The loop prefix generator 416 copies the last ^> samples of the useful portion and appends the ^ samples to the front of the useful portion to form a sample containing

OFDM符號。每個〇FDM符號由此包含有乂^個樣本的有用 部分和有I個樣本的循環字首。循環字首被用於對抗由於無 線通道中的延遲張開所導致的符號間干擾(ISI)和载波間干 擾(ICI) 〇 回到圖3,在下行鏈路上,MIM〇通道是由基地台1〇4處 的這Μ個發射天線和用戶站1〇6處的這及個接收天線形成 的。該ΜΙΜΟ通道是由個單輸入單輸出(sis〇)通道或 即每一可能的發射和接收天線對一個SIS〇通道構成的。每 個SISO通道的通道回應可以由時域通道脈衝回應或對應的 φ 頻域通道頻率回應兩者之中的任意一者來表徵。通道頻率回 應是通道脈衝回應的離散傅立葉變換(DFT )。 每個SISO通道的通道脈衝回應可以由£個時域通道分接 • 頭(channel taPs)來表徵,其中Z典型情況下比小得多。 * 即,若在發射天線處施加脈衝,則在接收天線處關於該脈衝 激激勵所取到的在採樣率的L個時域樣本將足以表徵該 SISO通道的回應。通道脈衝回應所要求的通道分接頭數目 (L)取決於系統的延遲張開,後者是最早和最晚到達接收 天線處的具有充分能量的信號實例之間的時間差。 13 201014234 每個SISO通道在對應於該SIS〇通道的發射天線與接收 天線之間可能包括一條或更多條傳播路程,其中這些傳播路 徑是由無線環境所決定的。每條路徑可以與特定的複增益和 特定的延遲相關聯。對於每條SISO通道,這Z個通道分接 頭的複增益是由該SISO通道諸路控的複增益決定的。每條 SISO通道因此有具有路徑4到(的通道透視,其中每條路徑 4的複增益可以是零或非零值。 循環延遲分集(CDD )可以被用於在MIMO傳輸中以建 立頻率分集,這可以改善差錯率性能。有了循環延遲分集, 給每個發射天線的OFDM符號可以如下所描述地被循環延遲 不同的量個不同的經循環延遲的信號可以從這M個發射 天線被發射。然而’猶環延遲分集在一些情形中可能不利地 影響ΜΙΜΟ通道估計。特別是’如果經循環延遲的信號與在 通道透視中的路徑延遲相匹配,則也許不可能將諸路徑分離 ❿ 1例如,對於給定的接收天線或許不可能確定對應於2 遲的複增益是源於(i)來自沒有循環延遲的發射天 ^ 且經由有2樣本延遲的路徑接㈣的下行鏈路信號,還 ()來自有1樣本循環延遲的發射天線【且經由有㈠篥 =遲的路徑接收到的下行鍵路信號,収⑽來自有2 環延遲的發射天線2且經由沒有延遲的路徑接收到的 卜仃鏈路信號。 線的二道下透:具有路徑㈣且如果來自這从個發射天 對索二:信:具有'。到、的猶環延遲,則在 “索弓丨/和.的所有值各不相同的情況下,每個 201014234 SISO通道的Z個通道分接頭能被無歧義地確定,其中 / = 0”.”£_!,W = ,7;是有用部分的歷時且等於個樣 本’並且「mod」標示取模(modulo)運算。該條件對全頻率 • 重複使用也適用。 - 對於某些實施例,每個發射天線(具有0循環延遲的那 一個發射天線除外)的循環延遲~可以被選擇成等於或大於 該系統中的最大預計延遲張開。循環字首長度^^可以被選擇 成使其等於或大於該系統中的最大預計延遲張開.,從而使得 1。因此,對於某些實施例,用於每個發射天線的循環延 遲可以被如下選擇: m 9 m = — 1 /1 Λ i^O V ^ 其中义。之〇 ’且ν&1, 。 圖5示出式(1)在乂。=0且對於/ = 1,从一1有^=^時的一 個示例性情形下的循環延遲分集,其中M=4個發射天線。發 射天線〇具有爲0的循環延遲,且對於該發射天線,有用部 _分被循環移位〜延遲G個樣本。發射天^具有爲^的循 環延遲,且對於該發射天線,有用部分被循環移位元^^個樣 本。發射天線2具有爲2·ΛΤ„的循環延遲,且對於該發射天線, 有用部分被循環移位元%個樣本。發射天線3具有爲Μ 的循環延遲,且對於該發射天線,有用部分被循環移位元 個樣本。 按照式⑴’用於這Μ個發射天線的循環延遲可以OFDM symbol. Each 〇FDM symbol thus contains a useful portion of 样本^ samples and a cyclic prefix with 1 sample. The cyclic prefix is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) due to delay spread in the wireless channel. Back to Figure 3, on the downlink, the MIM〇 channel is used by the base station 1 The one of the transmitting antennas at the 〇4 and the receiving antennas at the subscriber station 1〇6 are formed. The chirp channel is formed by a single-input single-output (sis〇) channel or each possible transmit and receive antenna to an SIS〇 channel. The channel response for each SISO channel can be characterized by either a time domain channel impulse response or a corresponding φ frequency domain channel frequency response. The channel frequency response is the discrete Fourier transform (DFT) of the channel impulse response. The channel impulse response for each SISO channel can be characterized by £ time domain channel taps (channel taPs), where Z is typically much smaller. * That is, if a pulse is applied at the transmit antenna, the L time-domain samples at the sample rate at the receive antenna with respect to the impulse excitation will be sufficient to characterize the response of the SISO channel. The number of channel taps (L) required for channel impulse response depends on the delay spread of the system, which is the time difference between the earliest and latest signal instances with sufficient energy arriving at the receive antenna. 13 201014234 Each SISO channel may include one or more propagation paths between the transmit and receive antennas corresponding to the SIS channel, where these propagation paths are determined by the wireless environment. Each path can be associated with a particular complex gain and a specific delay. For each SISO channel, the complex gain of the Z channel taps is determined by the complex gain of the SISO channel gates. Each SISO channel therefore has a channel perspective with paths 4 to (where the complex gain of each path 4 can be zero or non-zero. Cyclic delay diversity (CDD) can be used to establish frequency diversity in MIMO transmission, This can improve error rate performance. With cyclic delay diversity, the OFDM symbols for each transmit antenna can be cyclically delayed as described below. Different amounts of different cyclically delayed signals can be transmitted from the M transmit antennas. However, 'Jutah delay diversity may adversely affect the ΜΙΜΟ channel estimation in some cases. In particular, 'if the cyclically delayed signal matches the path delay in the channel perspective, it may not be possible to separate the paths ❿ 1 eg, It may not be possible for a given receive antenna to determine that the complex gain corresponding to 2 delays is due to (i) a transmission signal from a transmission day without cyclic delay and via a path with 2 samples delay (four), and also () From a transmit antenna with a 1-sample cyclic delay [and via a downlink signal received with a (one) 篥 = late path, the (10) is derived from a 2-ring delay Passing the antenna 2 and receiving the dip link signal via the path without delay. The second pass of the line: has the path (4) and if it comes from this launch day, the second: the letter: has a delay of '. The Z channel taps of each 201014234 SISO channel can be determined unambiguously in the case where all values of the cable are different, where / = 0"." £_!, W = , 7; is the duration of the useful part and equals the sample 'and 'mod' indicates the modulo operation. This condition also applies to full frequency • reuse. - For some embodiments, each transmit antenna (with 0 The cyclic delay of the one of the transmit delays of the cyclic delay can be selected to be equal to or greater than the maximum expected delay spread in the system. The loop prefix length ^^ can be selected to be equal to or greater than the maximum in the system. It is expected that the delay will open. Thus, 1. Thus, for some embodiments, the cyclic delay for each transmit antenna can be selected as follows: m 9 m = - 1 /1 Λ i^OV ^ where meaning. 'And ν&1, . Figure 5 Shows that (1) is a cyclic delay diversity in an exemplary case where 乂. = 0 and for / = 1, from 1 to ^ = ^, where M = 4 transmit antennas. The transmit antenna 〇 has 0 Cyclic delay, and for the transmit antenna, the useful part_minute is cyclically shifted ~ delayed by G samples. The transmit day ^ has a cyclic delay of ^, and for the transmit antenna, the useful part is cyclically shifted by ^^ The transmitting antenna 2 has a cyclic delay of 2·ΛΤ, and for the transmitting antenna, the useful portion is cyclically shifted by one hundred samples. The transmitting antenna 3 has a cyclic delay of Μ, and for the transmitting antenna, a useful part The samples are cyclically shifted by the number of samples. The cyclic delay for the two transmit antennas according to equation (1)' can be

Ex , 15 201014234 tm+l _ 言m 之 Ncp ’ ^ ~ ..M ~ 2 , ( 2 ) 同時 k-l & NfPT - NCp。 式(2)中的這種設計蜂保4 對/和w的所有值各不相 同。由此對來自所有Μ個發射天線的所有/;條路徑的無歧義 的通道估計(其被稱爲完全通道估計)將變成可能。若用於 這Μ個發射天線的循環延遲被標準化或先驗已知,則無需顯 式地爲這些循環延遲發送訊令。 基地台104可以用幫助用戶站丨〇6進行完全通道估計的 ❿方式來從這从個發射天線傳送引導頻符號。引導頻符號可以 在5個副載波心到l上發送,其中一般。這$個引導 頻副載波可以如下所描述地確定。 可以定義有0 =丈iVC m個係數的集合如下: m-0 bq = e-JMd^i^Ts , (3) 其中 W = 〇”-.H,/ = 0,…為小且 ,《 = /.Af + m = O,"”0-l, 並且\是該集合中的第《個係數。由於,可能有少於^Ex , 15 201014234 tm+l _ 言 m Ncp ′ ^ ~ ..M ~ 2 , ( 2 ) Simultaneous k-l & NfPT - NCp. The design of this type of beekeeping in equation (2) is different for all values of 4 pairs and w. Thus an unambiguous channel estimate (which is referred to as full channel estimation) for all /; strip paths from all of the transmit antennas becomes possible. If the cyclic delays for the two transmit antennas are normalized or known a priori, there is no need to explicitly send a command for these cyclic delays. The base station 104 can transmit pilot symbols from the transmit antennas in a tricky manner that assists the subscriber station 6 in performing full channel estimation. The pilot frequency symbol can be transmitted on the 5 subcarrier cores to 1 , where in general. These $ pilot subcarriers can be determined as described below. You can define a set of 0 = iVC m coefficients as follows: m-0 bq = e-JMd^i^Ts , (3) where W = 〇"-.H, / = 0,... is small and, = /.Af + m = O,""0-l, and \ is the first coefficient in the set. Because, there may be less than ^

個通道分接頭。可以使用定臨界值之方式(thresholding)來將 不存在的通道分接頭消零(zero out)。 bf ··· ^Q-l Kk' Kk' b2k, … B = K; …bQ_'h h1^' b^' b2ks·' …办Q-l J 其中心=¾'是矩陣B的第z•行第分列中的元素,其中ί = 〇, 5 並且 ¢ = 0,.,.,04。 (4) 16 201014234 疋全通道估计的充分條件是矩陣B的秩等於厂从。這導出 要\各不相同的必要條件,這意味著w在對[取模的情況下 應各不相同。 該系統可以與全頻率重複使用一起操作,且每個蜂巢細 胞服務區可以在所有總共;^盯個副載波(保護副栽波除外) 上傳送。對於全頻率重複使用,引導頻符號可以在能用於傳 輸的每個副載波上發送,或即’且矩陣Β可以是具有 V :Channel taps. Thresholding can be used to zero out the non-existing channel taps. Bf ··· ^Ql Kk' Kk' b2k, ... B = K; ...bQ_'h h1^' b^' b2ks·'...Ql J whose center=3⁄4' is the z-th row of matrix B The element in , where ί = 〇, 5 and ¢ = 0,.,.,04. (4) 16 201014234 The sufficient condition for the full channel estimation is that the rank of matrix B is equal to the factory slave. This derives the necessary conditions for each, which means that w should be different for the case of [modulo. The system can operate with full frequency reuse, and each cellular service area can be transmitted on all of the totals; sub-carriers (except for protection subcarriers). For full frequency reuse, the pilot symbols can be transmitted on each subcarrier that can be used for transmission, or ie, and the matrix Β can have V:

以下形式的SxS范德蒙(Vandermonde)矩陣 - 1 1 1 …1 1The following form of SxS Vandermonde matrix - 1 1 1 ... 1 1

(5) 對於全頻率重複使用,要\各不相同這一必要條件足以允 許實現完全通道估計。即使一些副載波被保留用於保護,但 所有其他副載波都被使用且有多於2個這樣的副載波,由此 矩陣V將爲滿秩。 該系統可以與部分頻率重複使用一起操作,且每個蜂巢 細胞服務區可以在總共個副載波的子集上傳送。例如, 在部分頻率重複使用因數爲3的情況下,每個蜂巢細胞服務 區可以在總共個副載波的約三分之一上傳送。對於部分 頻率重複使用,引導頻符號可以在總共個副載波的子集 上發送,矩陣B可以是范德蒙矩陣的子矩陣,且要%各不相 同這一必要條件或許是不充分的。然而’這S個引導頻副載 波心到心_,可以被選擇成使得該必要條件對於實現全通道估計 是充分的。 17 201014234 對於某些實施例,這$個彳丨導頻副載波可以相隔p個副載 波其中p疋不能將%^除盡的質數。這些引導頻副載波可以 被選擇如下: - ,—▽,···,以—▲, / 其中〜是第Ζ個引導頻副載波的索引,5· = |_〜Λρ」並且「L」」 標不求基限(fl〇or)運子。 圖6示出對應於式(6)中所示的設計的用於一個符 號的不例引導頻副載波結構。牟該示例中,ρ = 3且各引導頻 i載波相隔—個剎載波。引導頻符號可以在副載波〇、3、6 發送T以對這从個發射天線之中的每一個使用相同的 引導頻田!载波集,如圖6中所示。具有這些引導頻副載波的 FDM符號可以用於圖2中所示的前序碼或其他某種沉⑽ 符號。 f於式(6)中所不的設計,矩陣b是與w范德蒙矩陣當 2歹由卜〇”.备!的兀素W構成、且第0列第$列的元 、都不同於延些以素之中每—個的任何元素構成的一 樣。由此完全通道估計在以下條件下變成可能: .的所有值應當是各不相同的, 並且 2.矩陣B中的行數u等於或大於 列 或即S 2 0。 如果P爲不能除盡心^的質 兩個條件,不管猶環字首長度 ^/州,就可滿足以上 最大值(D可能受到副載波總數⑷、發射天線數 18 201014234 目(对)、以及引導頻副載波間隔(/7)的限制如下:(5) For full-frequency reuse, the necessary conditions to be different are sufficient to allow full channel estimation. Even though some subcarriers are reserved for protection, all other subcarriers are used and there are more than 2 such subcarriers, whereby the matrix V will be full rank. The system can operate with partial frequency reuse and each honeycomb cell service area can be transmitted on a subset of a total number of subcarriers. For example, in the case of a partial frequency reuse factor of three, each cellular cell service area can be transmitted on about one third of a total of subcarriers. For partial frequency reuse, the pilot symbols can be transmitted on a subset of the total number of subcarriers, which can be a submatrix of the Vandermonde matrix, and the necessary conditions for % different are perhaps insufficient. However, the S pilot frequency subcarriers can be selected such that the necessary conditions are sufficient for achieving full channel estimation. 17 201014234 For some embodiments, the $ 彳丨 pilot subcarriers may be separated by p subcarriers, where p 疋 cannot divide the prime number by %^. These pilot frequency subcarriers can be selected as follows: -, -▽,···, with -▲, / where ~ is the index of the second pilot frequency subcarrier, 5· = |_~Λρ" and "L" The standard is not the limit (fl〇or). Fig. 6 shows an example pilot frequency subcarrier structure for one symbol corresponding to the design shown in equation (6). In this example, ρ = 3 and each pilot frequency i carrier is separated by a brake carrier. The pilot symbols can be transmitted on subcarriers 〇, 3, 6 to use the same pilot frequency! carrier set for each of the slave transmit antennas, as shown in FIG. The FDM symbols with these pilot frequency subcarriers can be used for the preamble shown in Figure 2 or some other sink (10) symbol. f is not in the design of equation (6), the matrix b is composed of the w van dermond matrix when the 兀 〇 . . . 备 备 备 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且 且It is composed of any element of each element. Thus the full channel estimation becomes possible under the following conditions: All values of . . . should be different, and 2. The number of rows u in matrix B is equal to or greater than Column or S 2 0. If P is a quality condition that cannot be divided by the heart ^, regardless of the length of the hexagram prefix ^ / state, the above maximum value can be satisfied (D may be subject to the total number of subcarriers (4), the number of transmitting antennas 18 201014234 The limits of the target (pair) and pilot frequency subcarrier spacing (/7) are as follows:

Ncp-max = ρ·Μ。 (7) 例如,對於=!〇24且P = 3的情形,=17〇。對於 該示例可以選擇循環字首長度爲128。作爲另一示例,對於 Μ 2 =1024、且Ρ = 3的情形,义〜* =85。對於該示例可以 選擇循環字首長度爲64。作爲又一示例’對於从=2、I· 且P 5的情形,^ _ =1〇2。對於該示例可以選擇循環字首長度 爲64。 又 引導頻副載A間隔可以基於I^個發射天線上應用的循 環延遲長度以及副載波總數來選擇如下: Ν—Ncp-max = ρ·Μ. (7) For example, for =!〇24 and P=3, =17〇. For this example, you can choose a loop prefix length of 128. As another example, for the case of Μ 2 = 1024 and Ρ = 3, the meaning is ~* = 85. For this example, you can choose a loop prefix length of 64. As a further example, for the case of =2, I· and P 5 , ^ _ =1 〇 2. For this example, you can choose a loop prefix length of 64. The pilot frequency subcarrier A interval can be selected based on the length of the cyclic delay applied on the I^ transmit antennas and the total number of subcarriers as follows:

W Μ-\ Σ^〇 ▲圖7示出圖3中基地台l〇4處調制器332&到332m的設 相方塊圖。爲了簡單起見,圈7僅示出爲這^發射天線 產生引導頻的處理。在用於發射天線G的調制器仙内,符 號-副载波映射器710a將引導頻符號映射至引導頻副载波 s(例如’如式(6)巾所示㈣衫的)並將轉號映射至其餘 載波。IDFT單% 712a對這L則導頻及零符號執行〜 點IDFT並提供4個時域樣本。p/s轉換器川a將這〜個 ^本串列I對於某些實施例’循環延遲單元716&將這^個 樣本爲發射天線〇循環移位元义。個樣本。循環字首產生器 718a附加循環字首並提供包括給發射天線㈣第—引導頻的 OFDM符號。 調制器332b可以類似地產生包括給發射天線^第二引 201014234 導頻的OFDM符號。然而, 本爲發射天線1循環移位元 循環延遲單元716b將這4個樣 &.°+吳個樣本。每個其餘的 調制器 332 可以類似地產生包括給其發射天線的引導頻的 OFD严符號’但是可以將這I個樣本爲發射 位元個樣本,其中w = 01 M_卜 天線/«循環移 圖8不出m爲Mls〇或MIM〇系統產㈣導頻的過 程議的設計。過程800可以由基地台ι〇4執行以用於下行 籲鏈路上的引導頻傳輸,由用戶@ 1〇6執行以用於上行鍵路上 的引導頻傳輸’或者由其他某個實體執行。 、在810’可以基於第—循環延遲——例如零個樣本的循環 延遲來產生給第-發射天線的第—引導頻。在㈣,可以基 於長度比第㈣)循環延遲長度大至少循環字首長度^的第 m循環延遲來產生給第m個發射天線的第瓜個引導頻序列, ,中一對於某些實施例’用於每個發射天線的循環延遲 疋如由式⑴所示地給出的,其中义。=0且對於m卜有 • 給更多發射天線的更多引導頻可以基於合適的循 環延遲來產生0 在_,可以產生包括第—引導頻的第一樣本序列並將其 =遲第-循環延遲。包括第一引導頻且具有第一循環延 的第-OFDM符號可以基於經循環延遲的第—樣本序列來 在820’可以產生包括第历引導頻的第所樣本序列並 將其循環地延遲第4環延遲,其中w>卜包括第历引導頻 且具有第4環延遲的第續符號可以基於經循環延遲 20 201014234 的第w樣本序列來產生,其中w>l。對於第一 〇fdM符號, 引導頻符號可以被映射至相隔户的副载波,其中p可以是不 能除盡的質數。對於第W OFDM符號,引導頻符號可以 • 被映射至相隔/7的副載波’其中讲>1。相同的引導頻副載波 • 集可以被用於所有的OFDM符號。引導頻副載波數目(s ) 可以等於或大於M.iVCP。引導頻副載波間隔(p )可以如式(8) 中所示地選擇。 用戶站106可以推導出對基地台1〇4與用戶站1〇6之間 馨 的ΜΙΜΟ通道中這ji/.及個SISO通道之中每一個的通道估 。對於每一接收天線,用戶站1〇6可以.獲得來自$個引導 頻4载波的s個收到引導頻符號’並且可以移除引導頻調制 以獲仔對這51個引導頻副載波的$個觀.測。每一接收天線y的 S個觀測可以被表達爲: yj =Bhy +n » ⑺ 其中y,是接收天線j上對這s個引導頻副載波的5χ1觀測向 ❹量,B是式(4)中所定義的仏ρ矩陣,h是關於這从個發射天 線的0X1通道增益,1量,並且n是雜訊向量。 向量h包括元素乂。到、。前…。%個元素、 •到心〜-1是關於發射天線0的通道増益,接下來义個元素 J^C.o ^ ^'^c.o+^c.i-! 是關於發射天線1的通道增益,依此類推,並 且最後個元素;到 '糾是關於發射天線从的通 道增益。H,的估計可以基於各種技術從〜獲得。在―個設計 中,的估計可以基於諸如最小均方誤差(MMSE)技術之 21 201014234 類從yy獲得,如下: hy=D[B^B + a^I] 'B#yy » (1〇) 其中 D = diagUBeB + <irBHBrl,且 的估計。 可以對每個接收天線執行相同處理以獲得對這Μ個發射 . 天線與該接收天線之間的Μ個SISO通道的艏個通道估計。 圖9示出通道估計器9〇〇的設計的方塊圓。在通道估計 器900内,及個單元91如到91〇r分別從及個接收天線〇到 π-1獲得對應於這5個引導頻副載波的5個收到引導頻符 號。每個單元910移除來自其接收天線的這S個收到?丨導頻 符號上的引導頻調制並提供個觀測。引導頻調制移除可以 通過將每個收到引導頻符號乘以所傳送的引導頻符號的複 共軛來達成。Λ個通道估計器912a到912r分別接收來自單 元910a到91〇r的$個觀測。每個通道估計器912例如像式 (1〇)中所示之類那樣推導出對關於其接收天線)的、的估 計,並提供t。/?個解多工器(Demux) 91钝到91扣分別從 ❹通道估计器912a到912r接收6/每個解多工器914解多工卜 中的通道増益並提供對於這M個發射天線的M個通道估計。 圖1〇示出了用於爲MISO或ΜΙΜΟ系統執行通道估計的 過程1〇〇〇的設計。過程1000可以由用戶站1〇6執行用於下 -行鏈路通道估計,由基地台104執行用於上行鏈路通道估 計,或者由其他某個實體執行。在1010, Μ個經循環延遲的 引導頻序列可以從似個發射天線被發射,其中第讲引導頻序 列是基於長度比第(H)循環延遲長度至少大循環字首長度 I的第w循環延遲(W = 1…,M)來循環延遲的。 22 201014234 在1020,可針對共及個接收天線來處理收到樣本,以獲 得對於Μ個被利用的發射天線的估計通道增益。一般而言, 收到樣本可以從任何數目的接收天線獲得並被處理來爲每 一接收天線獲得對於任何數目個發射天線的通道估計。在 1020,可以處理收到樣本來獲得對引導頻副載波的觀測,例 如通過(1)對收到樣本執行OFDMW調以獲得對應於這些 引導頻副载波的收到引導頻符號以及(ii)從這些收到引導 頻符號移除引導頻調制以獲得對這些引導頻副载波的觀測 來作此處理。可以處理這些觀測(例如,基於如式(丨0)中所 示的MMSE技術)來獲得對於所有被利用的發射天線的通道 估計。 上面描述的方法的各種操作可以由與附圖中所圖解的裝 置加功能框相對應的各種硬體及/或軟體元件及/或模組來執 行。例如,圖8中所圖解的框810_82〇對應於圖8A中所示 的裝置加功能框810A-820A。類似地,圖1〇中所圖解的框 1010-1020對應於囷l〇A中所圖解的裝置加功能框 1010A-1020A。更一般化地,在圖尹圖解的方法具有相應的 配對裝置加功能附圖的場合,操作框對應於具有相似編號的 裝置加功能框。 結合本公開描述的各種說明性邏輯區塊、模組、以及電 路可以用通用處理器、數位信號處理器(DSP )、專用積髏 電路(ASIC )、現場可程式閘陣列(fpga )或其他可程式 邏輯器件(PLD )、個別的門或電晶體邏輯、個別的硬體元 件、或其設計成執行本文中描述的功能的任何組合來實現或 23 201014234 執行。通用處理器可以是微處理器,但在#換方案中處理 器可以是任何市售的處理器、控制器、微控制器、或狀態機。 處理器還可以被實現爲計算設傷的組合,例如與微處理 - ㈣組合、多個微處理器、與DSP核心協作的一個或更多個 k 微處理器、或任何其他此類配置。 結合本公開描述的方法或演算法的步驟可以直接在硬體 中、在由處理器執行的軟體模组中”戈在這兩者的組合中實 施。軟體模組可以駐留在本領域所知的任何形式的儲存媒體 中。可以使用的儲存媒體的一些示例包括隨機存取記憶體 (RAM)、唯讀記憶體(R0M)、快閃記憶體、EPROM記 憶體、EEPR〇M記_、暫存器、硬碟、可移磁碟、CD-ROM 等。軟體模組可以包括單條指令、或許多條指令,且可以分 佈在若干不同的代碼段上、分佈在不同的程式之間、以及跨 多個儲存媒體分佈。儲存媒體可以耦合到處理器以使得該處 理器能從/向該儲存媒體讀和寫資訊。在替換方案中儲存媒 ❿.艘可以被整合到處理器。 、 本X中所公開的方法包括用於達成所描述的方法的一個 或更多個步驟或動作。這些方法步驟及/或動作可以彼此互換 -而不會脫離請求項的範圍。換言之,除非指定了步驟或動作 '的具體次序’否則具體步驟及/或動作的次序及/或使用可以 修改而不會脫離請求項的範圍。 所描述的功能可以在硬體、軟體、勃艘、或其任何板合 中實現。如果在軟體中實現,則各功能可时爲—條或更多 條指令儲存在電腦可讀取媒體上。儲存媒體可以是能被電腦 24 201014234 存取的任何可用媒體。作爲示例而非限定,這樣的電腦可讀 取媒體可以包括RAM、ROM、EEPR〇M、CD r〇m或其他光 碟儲存、磁片儲存或其他磁碟儲存裝置、或者能被用來攜帶 ' 或儲存指令或資料結構形式的合需程式碼且能被電腦存取 ‘ 的任何其他媒鱧。如本文中所使用的磁碟和光碟包括壓縮光 碟(CD)、雷射光碟、光碟、數位多功能光碟(dvd)、軟 碟、和藍光⑧光碟,其中磁碟常常用磁性的方式重製資料, 而光碟用鐳射以光學方式重製資料。 鬱 軟體或指令也可以在傳輸媒體上傳送。例如,如果軟體 是使用同軸電纜、光纖電纜、雙絞線、數位用戶線(DSL)、 或諸如紅外、無線電、以及微波之類的無線技術從评化網站、 伺服器、或其他遠端源傳送而來,則該同軸電纜、光纖電缆、 雙絞線、DSL、或諸如紅外、無線電、以及微波之類的無線 技術就被包括在傳輸媒體的定義之中。 此外,應領會,用於執行本文中所描述的方法和技術的 φ 模組及/或其他恰當裝置可以在適用情況下由用戶及/或基地 台下載及/或以其他方式獲取。例如,如此的設備可以被耦合 至伺服器來幫助轉送用於執行本文所描述的方法的裝置。替 換地,本文中所描述的各種方法可以經由儲存裝置(例如, 、RAM、ROM、諸如壓縮光碟(CD)或軟碟之類的物理儲存 媒體等)來提供,以使得一旦將該儲存裝置耦合到或提供給 用戶終端及/或基地台,該設備就能獲得各種方法。此外,可 以利用用於向設備提供本文中所描述的方法和技術的任何 其他合適的技術。 25 201014234 應該理解的是請求項並不被限定於以上所例示的精確配 置和元件。可以在上面所描述的方法及裝置的佈局、操作和 細節上作出各種修改、更換和變形而不會脫離請求項的範 圍。 【圖式簡單說明】 籲 爲了能詳細地理解本公開上面陳述的特徵所用的方式, 可以參照實施例來對以上簡要概述的進行更具體的描述,其 中一些實施例在附圖中圖解。然而應該注意,附圖僅圖解了 本公開的某些典型實施例,故不應被認爲限定其範圍,因爲 該描述可以准入其他同等有效的實施例。 圖1圖解根據本公開的某些實施例的示例無線通訊系統。 圖2圖解根據本公開的某些實施例的用於分時雙工 (TDD)的示例正交分頻多工/正交分頻多工存取 • ( OFDM/OFDMA)訊框。 圖3圖解根據本公開的某些實施例的可以在無線通訊系 統内使用的示例發射機和示例接收機。 圖4圓解根據本公開的某些實施例的OFDM調制器的設 計的方塊圖。 圖5圖解根據本公開的某些實施例的循環延遲分集的示 例。 圖6圖解根據本公開的某些實施例的用於-個OFDNl符 26 201014234 號的示例引導頻副載波結構。 圖7圖解根據本公開的某些實施例的在圖3中的基地台 處的調制器的設計的方塊圖。 -圖8圖解根據本公開的某些實施例的用於爲多輸入單輸 *丨(MIS〇)或多輸入多輸出(ΜΙΜΟ)系統產生引導頻的過 程。 圖8Α圖解有能力執行圖8中所圖解的操作的示例元件。 圖9圖解根據本公開的某些實施例的通道估計器的設計 響的方塊圖。 圖10圖解根據本相的㈣實關的用於在㈣〇或 ΜΙΜΟ系統中執行通道估計的過程。 圖10Α圖解有能力勃in + 執行圖10中所圖解的操作的示例元 件。 【主要元件符號說明】 100無線通訊系統 ♦ 1〇2蜂巢細胞服務區 104基地台 106用戶終端 108下行鏈路 110上行鏈路 112扇區 312資料源 320 TX資料處理器 27 201014234 330 ΤΧ ΜΙΜΟ處理器 340控制器/處理器 342記憶體 - 344排程器 , 339資料槽 338 RX資料處理器 336 ΜΙΜΟ檢測器 360 ΜΙΜΟ檢測器 籲 370 RX資料處理器 372資料槽 378資料源 380 ΤΧ資料處理器 382 ΤΧ ΜΙΜΟ處理器 390控制器/處理器 392記憶體 φ 394通道處理器 410符號-副載波映射器 412 NFFT-點之 IDFT • 414並-串(P/S)轉換器 - 416循環字首產生器 710a符號-副載波映射器 712a NFFT -點 IDFT 714a P/S轉換器 716a循環延遲Nc,〇個樣本 28 201014234 718a循環字首產生器 718a RF單元 710b符號-副載波映射器 714b NFFT -點 IDFT7 1 2b P/S 轉換器 . 716b循環延遲Nc.o+Nc,!個樣本W Μ-\ Σ^〇 ▲ Figure 7 shows a phased block diagram of the modulators 332 & 332m at the base station l〇4 of Figure 3. For the sake of simplicity, circle 7 is only shown as a process for generating a pilot frequency for this transmit antenna. In the modulator for the transmit antenna G, the symbol-subcarrier mapper 710a maps the pilot symbols to the pilot subcarriers s (eg, 'as shown in equation (6)) and maps the number of the signals. To the remaining carriers. The IDFT single % 712a performs ~point IDFT on the L pilot and zero symbols and provides four time domain samples. The p/s converter will use the ~input string I for some embodiments of the 'cyclic delay unit 716& and the ^ samples are the transmit antennas. Samples. The cyclic prefix generator 718a appends the cyclic prefix and provides an OFDM symbol including the first pilot to the transmit antenna (4). Modulator 332b may similarly generate an OFDM symbol comprising pilots for the transmit antenna. However, this is the transmit antenna 1 cyclic shift element cyclic delay unit 716b which will take these 4 samples & Each of the remaining modulators 332 can similarly generate an OFD strict symbol including the pilot frequency of its transmit antenna but can use the I samples as the transmit bit samples, where w = 01 M_b antenna / «loop shift Figure 8 shows the design of the process of m (M) 导 or MIM 〇 system production (four) pilot. Process 800 may be performed by base station ι 4 for piloted transmission on the downlink link, by user @1〇6 for piloted transmission on the uplink key' or by some other entity. The first pilot frequency to the first transmit antenna may be generated at 810' based on a first cyclic delay, such as a cyclic delay of zero samples. In (4), the first pilot frequency sequence for the mth transmit antenna may be generated based on the mth cyclic delay of the length of the cyclic delay length greater than the length (4)) of the cyclic prefix length ^, the first one for some embodiments' The cyclic delay for each of the transmitting antennas is as shown by equation (1), where meaning. =0 and for m Bu • More pilot frequencies for more transmit antennas can be generated based on the appropriate cyclic delay. At _, the first sample sequence including the first pilot frequency can be generated and = late-cycle delay. The first OFDM symbol including the first pilot frequency and having the first cyclic delay may be based on the cyclically delayed first-sample sequence to generate a first sample sequence including the first pilot frequency at 820' and cyclically delay the fourth A ring delay, where w> includes a first pilot frequency and a continuation symbol having a fourth ring delay may be generated based on a sequence of w samples through a cyclic delay 20 201014234, where w > For the first 〇fdM symbol, the pilot symbols can be mapped to the subcarriers of the neighboring cell, where p can be a prime number that cannot be divisible. For the Wth OFDM symbol, the pilot symbols can be mapped to the subcarriers separated by /7, which speaks >1. The same pilot frequency subcarriers • Sets can be used for all OFDM symbols. The number of pilot subcarriers (s) may be equal to or greater than M.iVCP. The pilot frequency subcarrier spacing (p) can be selected as shown in equation (8). The subscriber station 106 can derive a channel estimate for each of the ji/. and SISO channels in the ΜΙΜΟ channel between the base station 1〇4 and the subscriber station 1〇6. For each receive antenna, the subscriber station 1〇6 can obtain s received pilot symbols from the $ pilot 4 carriers and can remove the pilot modulation to obtain the $ pilot subcarriers for $ View. Test. The S observations of each receiving antenna y can be expressed as: yj = Bhy +n » (7) where y is the 5χ1 observation direction of the s pilot frequency subcarriers on the receiving antenna j, and B is the equation (4) The 仏ρ matrix defined in , h is the 0X1 channel gain of this slave transmit antenna, 1 quantity, and n is the noise vector. The vector h includes the element 乂. To,. before…. % elements, • to heart ~-1 is the channel benefit of transmitting antenna 0, then the next element J^Co ^ ^'^c.o+^ci-! is the channel gain of transmitting antenna 1, and so on And the last element; to 'correction' is about the channel gain from the transmit antenna. The estimation of H, can be obtained from ~ based on various techniques. In a design, the estimate can be obtained from yy based on the 21 201014234 class such as the Minimum Mean Square Error (MMSE) technique, as follows: hy=D[B^B + a^I] 'B#yy » (1〇) Where D = diagUBeB + <irBHBrl, and an estimate. The same process can be performed for each receive antenna to obtain one channel estimate for one of the SISO channels between the antenna and the receive antenna. Figure 9 shows the square circle of the design of the channel estimator 9A. In the channel estimator 900, the unit 91 obtains five received pilot symbols corresponding to the five pilot frequency subcarriers from the receiving antennas π to π-1, respectively, to 91 〇r. Each unit 910 removes the S receipts from its receiving antenna?引 pilot frequency modulation on the pilot symbol and provide an observation. The pilot frequency modulation removal can be achieved by multiplying each received pilot frequency symbol by the complex conjugate of the transmitted pilot frequency symbols. The channel estimators 912a through 912r receive $ observations from cells 910a through 91〇r, respectively. Each channel estimator 912 derives an estimate of the sum with respect to its receiving antenna, for example as shown in equation (1), and provides t. /? Decomplexer (Demux) 91 blunt to 91 deductions respectively receive from the channel estimators 912a to 912r 6 / each demultiplexer 914 solves the channel benefits in the multiplex and provides for these M transmissions M channel estimates for the antenna. Figure 1A shows a design of a process for performing channel estimation for a MISO or ΜΙΜΟ system. Process 1000 may be performed by subscriber station 1 〇 6 for downlink-to-link channel estimation, performed by base station 104 for uplink channel estimation, or by some other entity. At 1010, a cyclically delayed pilot frequency sequence may be transmitted from a similar transmit antenna, wherein the first pilot frequency sequence is based on a length wth (H)th cyclic delay length that is at least a large w th cycle delay of the cyclic prefix length I (W = 1..., M) to cycle delay. 22 201014234 At 1020, received samples can be processed for a common receive antenna to obtain an estimated channel gain for each of the utilized transmit antennas. In general, received samples can be obtained from any number of receive antennas and processed to obtain channel estimates for any number of transmit antennas for each receive antenna. At 1020, the received samples can be processed to obtain observations of the pilot frequency subcarriers, such as by (1) performing OFDMW tuning on the received samples to obtain received pilot symbols corresponding to the pilot frequency subcarriers and (ii) These receive pilot frequency symbols remove pilot frequency modulation to obtain observations of these pilot frequency subcarriers for this processing. These observations can be processed (e.g., based on the MMSE technique as shown in equation (丨0)) to obtain channel estimates for all utilized transmit antennas. The various operations of the above described methods can be performed by various hardware and/or software components and/or modules corresponding to the device plus functional blocks illustrated in the drawings. For example, block 810_82A illustrated in Figure 8 corresponds to device plus function blocks 810A-820A shown in Figure 8A. Similarly, blocks 1010-1020 illustrated in Figure 1A correspond to the device plus function blocks 1010A-1020A illustrated in Figure 1A. More generally, where the method of Figure Illustrated has corresponding counterparting means plus functional figures, the operational blocks correspond to means and functional blocks having similar numbers. The various illustrative logic blocks, modules, and circuits described in connection with the present disclosure may be implemented by general purpose processors, digital signal processors (DSPs), dedicated accumulation circuits (ASICs), field programmable gate arrays (fpga), or others. Program logic devices (PLDs), individual gate or transistor logic, individual hardware components, or any combination thereof designed to perform the functions described herein are implemented or 23 201014234. A general purpose processor may be a microprocessor, but in the alternative, the processor may be any commercially available processor, controller, microcontroller, or state machine. The processor may also be implemented as a combination of computational impairments, such as in combination with a microprocessor-(four), a plurality of microprocessors, one or more k-processors that cooperate with a DSP core, or any other such configuration. The steps of the method or algorithm described in connection with the present disclosure can be implemented directly in hardware, in a software module executed by a processor, in a combination of the two. The software module can reside in the art. Any form of storage medium. Some examples of storage media that can be used include random access memory (RAM), read only memory (ROM), flash memory, EPROM memory, EEPR〇M _, temporary storage , hard disk, removable disk, CD-ROM, etc. The software module can include a single instruction, or many instructions, and can be distributed over several different code segments, distributed between different programs, and across multiple A storage medium may be coupled to the processor to enable the processor to read and write information from/to the storage medium. In the alternative, the storage medium may be integrated into the processor. The disclosed methods include one or more steps or actions for achieving the described methods. The method steps and/or actions can be interchanged with one another without departing from the scope of the claims. In other words, unless The specific order of the steps or actions 'others' or the order and/or use of the specific steps and/or actions may be modified without departing from the scope of the claims. The functions described may be in hardware, software, ship, or any of them. Implemented in the board. If implemented in software, each function can be stored as a single or more instructions on the computer readable medium. The storage medium can be any available media that can be accessed by the computer 24 201014234. By way of example and not limitation, such computer-readable media may include RAM, ROM, EEPR〇M, CD r〇m or other optical disk storage, disk storage or other disk storage device, or can be used to carry 'or store Any other media in the form of a command or data structure that can be accessed by a computer. Disks and optical discs used in this document include compact discs (CDs), laser discs, compact discs, and digital versatile discs. (dvd), floppy disk, and Blu-ray 8 discs, in which disks are often magnetically reproduced, and optical discs are optically reproduced by laser. Yu software or commands can also be used. Transmitted on the media. For example, if the software is using coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and microwave, from the evaluation website, server, or Where other remote sources are transmitted, the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of the transmission medium. It will be appreciated that the φ modules and/or other appropriate means for performing the methods and techniques described herein may be downloaded and/or otherwise obtained by a user and/or a base station, where applicable. For example, such a device may Coupled to a server to facilitate forwarding of means for performing the methods described herein. Alternatively, the various methods described herein may be via a storage device (eg, RAM, ROM, such as a compact disc (CD) or floppy disk) a physical storage medium or the like, such as provided, such that once the storage device is coupled to or provided to the user terminal and/or the base station, the device can Get a variety of methods. Moreover, any other suitable technique for providing the methods and techniques described herein to a device can be utilized. 25 201014234 It should be understood that the claims are not limited to the precise configurations and components exemplified above. Various modifications, changes and variations can be made in the arrangement, operation and details of the methods and apparatus described above without departing from the scope of the claims. BRIEF DESCRIPTION OF THE DRAWINGS In the following, a more detailed description of the above brief summary may be made by way of example embodiments, in which FIG. It is to be understood, however, that the appended claims are in the FIG. 1 illustrates an example wireless communication system in accordance with certain embodiments of the present disclosure. 2 illustrates an example orthogonal frequency division multiplexing/orthogonal frequency division multiplexing access (OFDM/OFDMA) frame for time division duplexing (TDD), in accordance with certain embodiments of the present disclosure. FIG. 3 illustrates an example transmitter and an example receiver that may be used within a wireless communication system, in accordance with certain embodiments of the present disclosure. 4 illustrates a block diagram of a design of an OFDM modulator in accordance with certain embodiments of the present disclosure. FIG. 5 illustrates an example of cyclic delay diversity in accordance with certain embodiments of the present disclosure. FIG. 6 illustrates an example pilot frequency subcarrier structure for an OFDNl symbol 26 201014234, in accordance with certain embodiments of the present disclosure. Figure 7 illustrates a block diagram of a design of a modulator at the base station of Figure 3, in accordance with certain embodiments of the present disclosure. - Figure 8 illustrates a process for generating pilot frequencies for a multiple input single output (MIMO) or multiple input multiple output (MIMO) system, in accordance with certain embodiments of the present disclosure. FIG. 8A illustrates example elements that are capable of performing the operations illustrated in FIG. 9 illustrates a block diagram of a design of a channel estimator in accordance with certain embodiments of the present disclosure. Fig. 10 illustrates a process for performing channel estimation in a (d) 〇 or ΜΙΜΟ system according to (4) of the present phase. Figure 10A illustrates an example component that has the ability to perform the operations illustrated in Figure 10. [Main component symbol description] 100 wireless communication system ♦ 1 蜂 2 cellular cell service area 104 base station 106 user terminal 108 downlink 110 uplink 112 sector 312 data source 320 TX data processor 27 201014234 330 ΤΧ ΜΙΜΟ processor 340 controller / processor 342 memory - 344 scheduler, 339 data slot 338 RX data processor 336 ΜΙΜΟ detector 360 ΜΙΜΟ detector call 370 RX data processor 372 data slot 378 data source 380 ΤΧ data processor 382 ΤΧ ΜΙΜΟ processor 390 controller/processor 392 memory φ 394 channel processor 410 symbol-subcarrier mapper 412 NFFT-point IDFT • 414 parallel-serial (P/S) converter - 416 loop prefix generator 710a Symbol-subcarrier mapper 712a NFFT-point IDFT 714a P/S converter 716a cyclic delay Nc, one sample 28 201014234 718a cyclic prefix generator 718a RF unit 710b symbol-subcarrier mapper 714b NFFT - point IDFT7 1 2b P/S converter. 716b cyclic delay Nc.o+Nc,! Sample

718b循環字首產生器 718b RF單元 710m符號-副載波映射器 ❹ 712m NFFT -點 IDFT 714m P/S轉換器 71 6 m循環延遲^ 個樣本 m=0 718m循環字首產生器 718m RF單元 910a移除引導頻調制 912a通道估計器(例如,MMSE) ❹ 914a解多工器 910b移除引導頻調制 912b通道估計器(例如,MMSE ) 914b解多工器 ' 910r移除引導頻調制 912r通道估計器(例如,MMSE) 914r解多工器 29718b cyclic prefix generator 718b RF unit 710m symbol-subcarrier mapper 712 712m NFFT - point IDFT 714m P/S converter 71 6 m cyclic delay ^ samples m=0 718m cyclic prefix generator 718m RF unit 910a shift In addition to pilot frequency modulation 912a channel estimator (eg, MMSE) 914 914a demultiplexer 910b remove pilot frequency modulation 912b channel estimator (eg, MMSE) 914b demultiplexer '910r remove pilot frequency modulation 912r channel estimator (eg MMSE) 914r solution multiplexer 29

Claims (1)

201014234 七、申請專利範圍: 1. 一種在無線通訊系絲 基於一第一循瑷μ令傳送弓丨導頻的方法,包括: . 導頻;以及 產生給一第一發射天線的一第一引 , 基於比該第一循環延遲女ν 循環延遲,來產生給一第 1少—循環字首長度的第二 « ^發射天線的一第二引導頻。 2.如請求項1 基於比該第二猶環延了 •循環延遲,來產生从一第了至少該循環字首長度的第三 “請求項:方法:射天線"三引導頻。 ,於每一發射天線的猶環延遲是 /*0 其中义,。> 0,V/ 2 J,# 發射天線μ,並且λγ υ㈣環字首長度,"是 …^_卜 …於發射…的循環延遲, 4.如請求項1之方法, I二循環延遲等於或大於該循環:首:環度延遲爲零,並且該第 不藉5由=22方法’其中該等第一和第二猶環延遲並 產4 求項1之方法其中該產生第—引導頻包括: 膝访贫&該第一引導頻的第一樣本序列;以及 “一樣本序列猶環延遲該第一猶環 =:r導頻之步驟包括產生-包含該第二引導頻 的第一樣本序列並將該第二樣本序列循環延遲該第二循環 30 201014234 延遲。 7. 如請 JS 1 π 1之方法,其中該產生第一引導頻之步驟包 括產生一包含兮银 引導頻並且具有該第一循環延遲的第 一 OFDM符號,并Q 4 並且其中該產生第二引導頻之步驟包括產生 , 一第二OFDM您缺4 μ 付就之步驟,其中該第二〇FDM符號包含第二 引導頻並且具有蜂楚π 另该第一循環延遲。 8. 如請求 $ 6之方法,其中該產生第一 OFDM符號之步 驟包括將引導葙盔秘nJ> A φ 頸持號映射至相隔/7的副載波,其中户是不能 除盡Ym·的質數,祐B Ar β 並且^r是用於該第一 OFDM符號的一 FFT 大小。 9. 如請求項7之方法,其中該產生第二OFDM符號之步 驟包括將引導頻符號映射至相隔/?的副載波。 1〇.如請求項8之方法,其中對於該第一和第二OFDM 符號兩者而5 ’引導頻符號是被映射至相同的副載波集。 11. 叫如請求項7之方法,其中: /»〇 其中5疋具f引導頻符號的副載波的數目,Μ是發射天 .線的數目’並且是用於發射天線m的循環延遲的長度, w = 〇,...,Af —1。 12. 如凊求項7之方法,其中: Σ^〇 /-〇 其中Μ是發射天線㈣目,並且;^是用於發射天線w /=0 的循環延遲的長度,所巧...,#^。 31 201014234 13· —種在無線通訊系統中執行通道估計的方法,包括 以下步驟: 獲得包含第一和第二引導頻的第一輸入樣本,該第一引 導頻是基於第一循環延遲所產生並且自第一發射天線所發 • 送的’該第二引導頻是基於第二循環延遲所產生並且自第二 發射天線所發送的,該第二循環延遲比該第一循環延遲大了 至乂檐環予首長度,並且該等第一輸入樣本是來自一第一 接收天線;以及 籲 處理該等第一輸入樣本以獲得對於該第一發射天線的一 第一通道估計和對於該第二發射天線的一第二通道估計。 14.如請求項13之方法’進一步包括·· 獲得包含該等第一和第二引導頻的第二輸入樣本,該等 第二輸入樣本是來自一第二接收天線;以及 處理該等第二輸人樣本以獲得對於該第—發射天線的一 第三通道估計和對於該第二發射天線的一第四通道估計。 • 15·如請求項13之方法’該處理這些第-輪人樣本包括: 處理該等第-輸人樣本以獲得對引導頻副载波的觀測; 以及 處理該等觀測以獲得該等 16.如請求項15之方法, 以獲得觀測之步驟包括: 第一和第二通道估計。 其中該處理該等第一輪入樣本 對該這些I輪人樣本執行解H得對應於該 等引導頻繼的_丨_冑; 從該等收到引導頻符辨由μ k '移除引導頻調制以獲得該對該 32 201014234 等引導頻副栽波的觀測。 17.如請求項15之方法,其中該處 括基於最小均方誤差(MMSE)技術 ^觀測之步驟包 *該等第-和第二通道估計。 處理議等觀測以獲得 ' 18·如請求項15之方法,其中該 /7,其中IN導頻副載波相隔爲 P疋不能除盡^r的質數,並且且 號的FFT大小。 1 是用於OFDM符 19·如請求項14之方法, 饰 籲之步驟包括: 、βΛ 該等第二輸入樣本 處理該等第二輸入樣本 以及 獲侍對5丨導頻副載波的觀測; 處理該等觀測以獲得該等第三和第四通道估計。 以獲2=請求項19之方法,其中該處理該等第二輸入樣本 以獲得觀測之步驟包括: 引Jin第二輪入樣本執行0聰解調以獲得對應於該等 φ .引導頻副载波的收到引導頻符號;以及 等 #笼等收到引導頻符號中移除引導頻調制,以獲得該對 該等引導頻副载波的觀測。 .^ Jt 請求項19之方法,丨中該處理該等觀測之步驟包 、最!均方誤差(MMSE )技術來處理該等觀測,以獲 得該等第三和第四通道估計。 2.如請求項19之方法,其中該等引導頻副載波相隔爲 尸、中P是不迫除盡#阶的質數,並且是用於〇fdm符 號的FFT大小。 33 201014234 23. —種用於在無線通訊系統中傳送引導頰的裝置包 括: ° 用於基於一第一循環延遲而產生給一第一發射天線的一 . 第一引導頻的邏輯;以及 - 用於基於比該第一循環延遲大了至少一循環字首長度的 一第二循環延遲來產生給一第二發射天線的一第二引導頻 的邏輯。 纛 24.如請求項23之裝置,進一步包括: 用於基於比該第二循環延遲大至少該循環字首長度的一 第一循環延遲來產生給一第三發射天線的一第三引導頻的 邏輯。 5.如請求項23之裝置,其中用於每一發射天線的循環 延遲是 m 其中义,。>〇 ’對於,有^是該循環字首長度, ❿7^是發射天線索引,並且~是用於發射天線m的循環延遲, /w = 0,1,..., jj/ —1 〇 6.如請求項23之裝置,其申該第一循環延遲爲零,並 、第一循環延遲等於或大於該循環字首長度。 如咐求項23之裝置,其中該第一和第二循環延遲並 不藉由訊令來發送。 28·如請求項23之裝置 邏輯包括: 其中該用於產生第一引導頻的 34 201014234 用於產生一包括讀笛 栝該弟一弓丨導頻的第一樣本序列的邏輯; 以及 题科 用於將該第一樣太皮μ 像本序列循環延遲該第一循環延遲的邏 • 輯;並且 . 其中該用於產生篦-2丨檐Λ 弟—引導頻的邏輯包括: ^ 帛於產生一包括該第二引導頻的第二樣本序列的 邏輯和用於將該第二樣本序列循環延遲該第二循環延遲的 邏輯。 29.如請求項23之裝置,其中該用於產生第—引導頻的 邏輯包括用於產生一包含該第一引導頻並且具有該第一猶 環延遲的第—QFDM符號的邏輯,並且其中該用於產生第二 引導頻的邏輯包括用於產生一包含該第二引導頻並且具有 該第二循環延遲的第二〇FDM符號的邏輯。 3〇.如請求項28之裝置’其中該用於產生第一 OFDM符 號的邏輯包括用於將引導頻符號映射至相隔p的副載波的邏 • 輯’其中Ρ是不能除盡的質數,並且JVFiT是用於該第一 OFDM符號的j7FT大小。 31.如請求項29之裝置’其中該用於產生第二〇fdm符 號的邏輯包括用於將引導頻符號映射至相隔/7的副載波的邏 • 輯。 32·如請求項30之裝置,其中對於該等第一和第二 OFDM符號兩者而言,引導頻符號是被映射至相同的副載波 集。 33.如請求項29之裝置,其中·· 35 201014234 W—1 , /»〇 其中iS是具有引導頻符號的副載波的數目’从是發射天 線的數目,並且文是用於發射天線讲的循環延遲的長度, /»0 w = 〇,...,Af~i 〇 34.如請求項29之裝置:201014234 VII. Patent application scope: 1. A method for transmitting a bow pilot based on a first loop in a wireless communication system, comprising: a pilot; and a first lead generated to a first transmit antenna And generating a second pilot frequency for the second «^ transmit antenna of the first less-cyclic prefix length based on the female loop delay delayed by the first loop. 2. If the request item 1 is based on the second loop, the loop delay is generated, and the third "request item: method: the antenna antenna" is generated from at least the length of the loop prefix. The delay of the heave of each transmit antenna is /*0 where meaning, .> 0,V/ 2 J,# transmit antenna μ, and λγ υ(4) ring prefix length, "is...^_b...in transmitting... Cyclic delay, 4. As in the method of claim 1, the I second loop delay is equal to or greater than the loop: first: the ring delay is zero, and the first does not borrow 5 by = 22 method 'where the first and second jujube The method of claim 1 wherein the generating the first pilot frequency comprises: a knee-to-poor & first sequence of the first pilot frequency; and "the same sequence of delays delays the first quarantine = The step of :r pilot includes generating - a first sample sequence comprising the second pilot frequency and delaying the second sample sequence by the second cycle 30 201014234 delay. 7. The method of JS 1 π 1 wherein the step of generating a first pilot frequency comprises generating a first OFDM symbol comprising a neon silver pilot frequency and having the first cyclic delay, and Q 4 and wherein the generating second The step of piloting includes generating, for a second OFDM, a step of 4 μF, wherein the second 〇FDM symbol includes a second pilot frequency and has a first φ delay. 8. The method of claim 6, wherein the step of generating the first OFDM symbol comprises mapping the leading n 秘 nJ> A φ neck number to a subcarrier separated by /7, wherein the household is a prime number that cannot divide Ym· , B B β and ^ r are an FFT size for the first OFDM symbol. 9. The method of claim 7, wherein the step of generating the second OFDM symbol comprises mapping pilot symbols to subcarriers separated by /. The method of claim 8, wherein the 5' pilot symbols are mapped to the same set of subcarriers for both the first and second OFDM symbols. 11. The method of claim 7, wherein: /» 〇 wherein 5 is the number of subcarriers with f pilot symbols, Μ is the number of transmission days. The number is 'and the length of the cyclic delay for transmitting antenna m , w = 〇,...,Af —1. 12. The method of claim 7, wherein: Σ^〇/-〇 where Μ is the transmitting antenna (four), and ^ is the length of the cyclic delay for transmitting the antenna w / =0, by hand... #^. 31 201014234 13 - A method for performing channel estimation in a wireless communication system, comprising the steps of: obtaining a first input sample comprising first and second pilot frequencies, the first pilot frequency being generated based on a first cyclic delay and The second pilot frequency sent from the first transmit antenna is generated based on the second cyclic delay and transmitted from the second transmit antenna, the second cyclic delay being greater than the first cyclic delay. Looping a first length, and the first input samples are from a first receive antenna; and calling the first input samples to obtain a first channel estimate for the first transmit antenna and for the second transmit antenna A second channel estimate. 14. The method of claim 13 further comprising: obtaining a second input sample comprising the first and second pilot frequencies, the second input samples being from a second receive antenna; and processing the second The input sample is obtained to obtain a third channel estimate for the first transmit antenna and a fourth channel estimate for the second transmit antenna. • 15. The method of claim 13 'Processing the first-round samples includes: processing the first-input samples to obtain observations of the pilot frequency subcarriers; and processing the observations to obtain the 16. The method of claim 15, the step of obtaining an observation comprises: first and second channel estimation. The processing of the first round-in samples to perform the solution H on the I-round human samples corresponds to the _丨_胄 of the pilot-sequences; removing the boot from the received pilot symbols by μ k ' Frequency modulation to obtain the observation of the pilot frequency subcarriers such as 32 201014234. 17. The method of claim 15, wherein the step is based on a minimum mean square error (MMSE) technique ^ observation step package * the first and second channel estimates. Processing the arguments to obtain '18. The method of claim 15, wherein the /7, wherein the IN pilot subcarriers are separated by P疋 cannot divide the prime number of ^r, and the FFT size of the number. 1 is a method for OFDM 19 as claimed in claim 14, the steps of the method comprising: ???, the second input samples processing the second input samples and the observation of the 5 丨 pilot subcarriers; These observations obtain the third and fourth channel estimates. To obtain the method of 2=request item 19, wherein the step of processing the second input samples to obtain an observation comprises: introducing a second round-in sample to perform a chic demodulation to obtain corresponding to the φ. pilot frequency subcarriers Receiving the pilot frequency symbols; and removing the pilot frequency modulation from the received pilot symbols, such as the #cage, to obtain the observation of the pilot frequency subcarriers. . Jt. The method of claim 19, wherein the step of processing the observations, the Mean Square Error (MMSE) technique is used to process the observations to obtain the third and fourth channel estimates. 2. The method of claim 19, wherein the pilot subcarriers are separated by a corpse, wherein P is a prime number that does not divide by #, and is an FFT size for the 〇fdm symbol. 33 201014234 23. Apparatus for transmitting a guiding cheek in a wireless communication system comprising: - a logic for generating a first pilot frequency based on a first cyclic delay to a first transmit antenna; and - using A logic for generating a second pilot frequency for a second transmit antenna is generated based on a second cyclic delay that is greater than the first cyclic delay by at least one cyclic prefix length. The device of claim 23, further comprising: ???said for generating a third pilot frequency for a third transmit antenna based on a first cyclic delay that is greater than the second cyclic delay by at least the length of the cyclic prefix logic. 5. The apparatus of claim 23, wherein the cyclic delay for each transmit antenna is m. >〇' For, there is ^ is the length of the loop prefix, ❿7^ is the transmit antenna index, and ~ is the cyclic delay for the transmit antenna m, /w = 0,1,..., jj/ -1 〇 6. The apparatus of claim 23, wherein the first loop delay is zero and the first loop delay is equal to or greater than the loop prefix length. The apparatus of claim 23, wherein the first and second cyclic delays are not transmitted by the command. 28. The apparatus logic of claim 23, comprising: wherein the data for generating the first pilot frequency 34 201014234 is used to generate a logic comprising a first sample sequence of the tuner-inducing pilot; and a logic for delaying the first cycle of the sequence to delay the first cycle; and wherein the logic for generating the 篦-2丨檐Λ-guide frequency includes: ^ 帛 产生A logic comprising a second sequence of samples of the second pilot frequency and logic for delaying the second sequence of samples by the second cyclic delay. 29. The apparatus of claim 23, wherein the logic for generating the first pilot frequency comprises logic for generating a first QFDM symbol comprising the first pilot frequency and having the first hypochronous delay, and wherein The logic for generating the second pilot frequency includes logic for generating a second 〇FDM symbol including the second pilot frequency and having the second cyclic delay. 3. The apparatus of claim 28, wherein the logic for generating the first OFDM symbol comprises a logic for mapping pilot symbols to subcarriers separated by p, wherein Ρ is a prime number that cannot be divisible, and JVFiT is the j7FT size for the first OFDM symbol. 31. The apparatus of claim 29 wherein the logic for generating the second 〇fdm symbol comprises a logic for mapping pilot symbols to subcarriers spaced apart by 7. 32. The apparatus of claim 30, wherein for both the first and second OFDM symbols, the pilot symbols are mapped to the same set of subcarriers. 33. The apparatus of claim 29, wherein: 35 201014234 W-1, /» wherein iS is the number of subcarriers having pilot symbols 'from the number of transmit antennas, and the text is for transmitting antennas The length of the cyclic delay, /»0 w = 〇,...,Af~i 〇34. The device of claim 29: 其中舨是發射天線的數目,並且是用於發射天線m 的循環延遲的長度,/w = 0,...,M-l。 35· 一種用於在無線通訊系統中執行通道估計的裝置, 包括: 用於獲得包含第一和第二引導頻的第一輸入樣本的邏 輯’該第一引導頻是基於一第一循環延遲所產生並且自一第 一發射天線所發送的,該第二引導頻是基於一第二循環延遲 所產生並且自一第二發射天線所發送的,該第二循環延遲比 粵該第-循環延遲大了至少—循環字首長度,並且該等第一輸 入樣本是來自一第一接收天線;以及 ‘ 用於處理該等第一輸入樣本以獲得對於該第一發射 的笛 一通道估計和對於該第二發射天線的一第二通道估 • 計的邏輯。 36.如請求項35之裝置,進一步包括: 用於獲得包含該等第―和第二引導頻的第二輸入樣本 邏輯,該笼楚-AA 寻第一輸入樣本是來自一第二接收天線;以及 ;處理該等第二輸入樣本以獲得對於肖第一發射天線 36 201014234 的-第三通道佑計和對於該第二發射天線的一第四通道推 計的邏輯》 如凊求項35之裝置,其中該用於處理該等第〆輸入 樣本的邏輯包括: ‘ 用於處理該等第一輸入樣本以獲得對引導頻副載波的觀 測的邏輯;以及 用於處理該等觀測以獲得該第一和第二通道估計的邊 輯。 _ 38.如請求項37之裝置,其中該用於處理該等第一輸入 樣本以獲得觀測的邏輯包括: 用於對該等第一輸入樣本執行OFDM解調以獲得對應於 該等引導頻副載波的收到引導頻符號的邏輯;以及 用於從該等收到引導頻符號移除引導頻調制以獲得該對 該等引導頻副載波的觀測的邏輯。 39. 如清求項37之裝置,其中該用於處理該等觀測的邏 耱輯包括用於基於最小均方誤差(MMs幻技術來處理該等觀 測以獲得該第一和第二通道估計的邏輯。 40. 如請求項37之裝置,其中該等引導頻副載波相隔爲 •尸,其中夕是不能除盡心汗的質數,並且是用於〇FDM符 . 號的FFT大小。 41. 如請求項36之裝置,其中該用於處理該等第二輸入 樣本的邏輯包括: 用於處理該等第二輸入樣本以獲得對引導頻副載波的觀 測的邏輯;以及 37 201014234 用於處理該等觀測以獲得該等第三和第四通道估計 輯。 42·如請求項41之裝置,其中該用於處理該等第二輪入 樣本以獲得觀測的邏輯包括: 用於對該等第:輸人樣本執行卿M解調以獲得對應於 該等引導頻副载波的收到引導頻符號的邏輯;以及 、 用於從該等收到引導頻符號中移除引導頻調制以獲得該 對該等引導頻昌彳載波的觀測的邏輯丨 43. 如請求項41之裝置,其中該用於處理該等觀測的邏 輯包括用於基於最小均方誤差(MMSE)技術來處理該等觀 測以獲得該等第三和第四通道估計的邏輯。 44. 如”月求項41之裝置該等引導頻副載波相隔爲夕, 其中P是不能除盡〜的質數,並且是用於〇FDM符號的 FFT大小。 45. 種用於在無線通訊系統中傳送引導頻的裝置,包 括: 用於基於—第—揭環延遲而產生給-第-發射天線的-第一引導頻的裝置;以及 用於基於比該第1環延遲大了至少—循環字首長度的 -第一循#延遲來產I給一第二發射天線的一第二引導頻 的裝置。 46. 如請求項45之裝置,進—步包括: 用於基於比該第二#環延遲大至少該循環字首長度的一 第二循環延遲來產生給一第三發射天線的一第三引導頻的 38 201014234 裝置。 Ο·如請求項判之裝置,其中用於每— 延遲是 别'天線的循環 m 其中’重子於v/y ,有,‘是該循環字、, 讲是發射天線索弓卜 G是用於發百 '度’ -0,1… 的循環延遲, 4:.如請求項45之裝置,其中該第一循環延遲爲零,並 且該第二循環延遲等於或大於該循環字首長度。 w 49.如請求項45裝置,其中該等第一 罘一循核延遲 並不猎由訊令來發送。 5〇.如請求項45之裝置,其中該兩於產生該第—引 的裝査'包括: 用於產生包含該第一引導頻的一第一樣本序列的裝置; 以及 、, 用於將該第一樣本序列循環延遲該第一循環延遲的裝 置;並且 /中§亥用於產生苐二引導頻的裝置包括用於產生包含該 一引V頻的第二樣本序列的裝置和用於將該第二樣本序 列循環延遲該第二循環_的裝置。 51.如請求項45之裝置,其中該用於產生第一引導頻的 :置包括用於產生—包含該第〆引導頻並且具有該第一循 ^遲的第- OFDM符號的装置,並且其中該用於產生第二 39 201014234 引導頻的農置包括用於產生一包含該第二弓丨導頻並且具有 該第二循環延遲的第二OFDM符號的歡翼'。 52. 如請求項50之裝置,其中該用於產生第一 OFDM符 •號的裝置包括用於將引導頻符號映射至相隔p的副載波的裝 ' 置,其中P是不能除盡的質數,並且是用於該第一 OFDM符號的FFT大小。 53. 如請求項51之裝置,其甲該用於產生第二OFDM符 號的裝置包括用於將引導頻符號映射至相隔户的副載波的裝 攀置。 54. 如請求項S2之裝置,其中對於該等第一和第二 OFDM符號兩者而言,引導頻符號是被映射至相同的副載波 集。 55. 如請求項51之裝置,其中·· , ι=0 其中$是具有引導頻符號的副載波的數目,Λ/是發射天 參線的數目’並且|〜是用於發射天線w的循環延遲的長度, τπ = 0,··”Μ—1 0 56. 如請求項η之裝置,其中: ' ρ< νιετ-, y - A/-i Σ〜 其中从是發射天線的數目,並且用於發射天線w 的循環延遲的長度,W = 0,...,M-1。 57. -種用於在無線通訊系統中執行通道估計的裝置, 包括: 201014234 用於獲得包含第-和第二5ί導頻的第一輸入樣本的裝 置’該第-引導頻是基於第_循環延遲所產生並且自第一發 射天線所發送的,該第_ — α導頻是基於第二循環延遲所產生 並且自第二發射天線所發读沾 八咏汧赞送的,該第二循環延遲比該第一循 環延遲大了至少一循環字营且# 从 倨衣子首長度,並且該等第一輸入樣本係 來自第一接收天線;以及 用於處理該等第—齡入接丄 ^ 乐輸入樣本以獲得對於該第一發射天線 的一第一通道估計和對於呤釐 耵於該第二發射天線的一第二通道估 計的裝置。 58.如請求項57之裝置,進一步包括·· 用於獲得包含該等第一_ 驻番外电墙 矛第一引導頻的第二輸入樣本的 鞒入樣本疋來自一第二接收天線;以及 用於處理該等第-給 弟一輸入樣本以獲得對於該第一 的一第三通道估計和對於 乐發射天線 計的裝置。 X —發射天線的一第四通道估 59.如請求項57 褒置該用於處理該等第—铨A接| 的裝置包括: ^輸入樣本 用於處理該等第一齡 測的裝置;以* 4策本以獲得對引導頻副載波的觀 用於處理該等觀測以獲得 I。 矛一逋道估計的襞 6〇.如請求項59之萝窨 丨、;從β, 教置’該用於處理該等第一蚣λ祕丄 以獲得觀測的裝置包括· 輸入樣本 用於對該等第一私 輪入樣本執行OFDM解調以獲得對應於 41 201014234 該等引導頻副栽波的收到引導頻符號的裝置^ 用於從該等收到引導頻符號中移 乂, 對該等引導頻副載波的觀測的裝置。導頻調制以獲得該 61.如請求項59之裝置,其中誃 置包括用& I 、 〇X 、處理該等觀測的裝 罝^括用於基於最小均方誤差(mmse ❿ 測以獲得該等第—和第二通道估計的裝置。來處理該等觀 二裝置,其中該等引導頻副載波相隔爲 如請求項58之褒置,其甲該用於處理 樣本的裝置包括: 寻弟输入 用於處理該蓉繁-私W 寺第一輸入樣本以獲得對引導頻副载波的觀 測的裝置;以及 用於處理該等觀測以獲得㈣第三和第四通道估計 置。 • 64.如請求項63之裝置,其中該用於處理該等第二輸入 樣本以獲得觀測的裝置包括: 肖於對該以二輸人樣本執行OFDM解調以獲得對應於 該等引導頻副載波的收到引導頻符號的裝置;以及 用於從該等收到引導頻符號中移除引導頻調制以獲得該 對這些引導頻副載波的觀測的裝置。 65.如明求項63之裝置,其中該用於處理該等觀測的裝 置包括用於基於最小均方誤差(MMSE )技術來處理該該等 觀測以獲得該等第三和第四通道估計的裝置。 42 201014234 置’其中該等引導頻副載波相隔爲 的質數,並且是用於OFDM符 66·如請求項63之裝置 其中户是不能除盡#^的 號的FFT大小。 67.種用於在無線通訊系統中傳送引導頻的電腦程式Where 舨 is the number of transmit antennas and is the length of the cyclic delay used to transmit antenna m, /w = 0,..., M-l. 35. An apparatus for performing channel estimation in a wireless communication system, comprising: logic for obtaining a first input sample comprising first and second pilot frequencies, the first pilot frequency being based on a first cyclic delay Generating and transmitting from a first transmit antenna, the second pilot frequency is generated based on a second cyclic delay and transmitted from a second transmit antenna, the second cyclic delay being greater than the first-cycle delay At least - a cyclic prefix length, and the first input samples are from a first receive antenna; and 'for processing the first input samples to obtain a flute-channel estimate for the first shot and for the first The logic of a second channel estimation of the two transmit antennas. 36. The apparatus of claim 35, further comprising: for obtaining second input sample logic comprising the first and second pilot frequencies, the cage-AA homing the first input sample from a second receive antenna; And processing the second input samples to obtain a logic for the third channel of the first transmit antenna 36 201014234 and a logic for a fourth channel of the second transmit antenna, such as the device of claim 35, Wherein the logic for processing the second input samples comprises: 'logic for processing the first input samples to obtain observations of pilot frequency subcarriers; and for processing the observations to obtain the first sum The edge of the second channel estimate. 38. The apparatus of claim 37, wherein the logic for processing the first input samples to obtain an observation comprises: performing OFDM demodulation on the first input samples to obtain a corresponding pilot frequency pair Logic of receiving a pilot symbol of a carrier; and logic for removing pilot frequency modulation from the received pilot symbols to obtain an observation of the pilot subcarriers. 39. The apparatus of claim 37, wherein the logic for processing the observations comprises for processing the observations based on a minimum mean square error (MMs magic technique to obtain the first and second channel estimates) Logic. The apparatus of claim 37, wherein the pilot subcarriers are separated by a corpse, wherein the eve is a prime number that cannot be exhausted and is used for the FFT size of the FDM symbol. 41. The apparatus of item 36, wherein the logic for processing the second input samples comprises: logic for processing the second input samples to obtain observations of pilot frequency subcarriers; and 37 201014234 for processing the observations The apparatus of claim 41, wherein the apparatus for processing the second round of samples to obtain an observation comprises: for: Performing a sample M demodulation to obtain logic corresponding to received pilot symbols of the pilot frequency subcarriers; and, for removing pilot frequency modulation from the received pilot symbols to obtain the bootstrap Frequency Chang Logic of observation of the carrier 丨 43. The apparatus of claim 41, wherein the logic for processing the observations comprises processing the observations based on a minimum mean square error (MMSE) technique to obtain the third sums The logic of the fourth channel estimation. 44. The apparatus of the monthly finding 41 are separated by the pilot subcarriers, where P is a prime number that cannot be divisible, and is the FFT size for the 〇FDM symbol. Means for transmitting a pilot frequency in a wireless communication system, comprising: means for generating a first pilot frequency for a first-transmitting antenna based on a first-exposure delay; and for using the first The loop delay is greater than at least a loop-length-first loop delay to generate a second pilot frequency for a second transmit antenna. 46. As claimed in claim 45, the step further comprises: Generating a third pilot frequency to a third transmit antenna based on a second cyclic delay that is greater than the second #ring delay by at least the cyclic prefix length. Ο·If the request is determined, Which is used for each delay Do not 'the loop of the antenna m' where 'the weight is in v/y, there is, 'is the loop word, and it is said that the transmitting antenna cable bow G is a cyclic delay for sending a 'degree' -0,1..., 4: The apparatus of claim 45, wherein the first loop delay is zero, and the second loop delay is equal to or greater than the loop prefix length. w 49. The apparatus of claim 45, wherein the first loop is a core The delay is not hunted by the command. 5〇. The device of claim 45, wherein the generating of the first reference includes: generating a first sample including the first pilot frequency a means for sequence; and, means for cyclically delaying the first sequence of samples by the first cyclic delay; and//using means for generating a second pilot frequency comprising generating a frequency comprising the reference Means of the second sample sequence and means for delaying the second sample sequence by the second loop_. 51. The apparatus of claim 45, wherein the means for generating a first pilot frequency comprises: means for generating - a first OFDM symbol comprising the first pilot frequency and having the first timing, and wherein The farm for generating the second 39 201014234 pilot frequency includes a flank for generating a second OFDM symbol including the second bow pilot and having the second cyclic delay. 52. The apparatus of claim 50, wherein the means for generating the first OFDM symbol comprises means for mapping pilot symbols to subcarriers separated by p, where P is a prime number that cannot be divisible, And is the FFT size for the first OFDM symbol. 53. The apparatus of claim 51, wherein the means for generating the second OFDM symbol comprises a ramp for mapping pilot symbols to subcarriers of the neighboring cell. 54. The apparatus of claim S2, wherein the pilot symbols are mapped to the same set of subcarriers for both the first and second OFDM symbols. 55. The apparatus of claim 51, wherein ··, ι=0 where $ is the number of subcarriers having pilot symbols, Λ/ is the number of transmitted celestial lines' and |~ is a loop for transmitting antenna w The length of the delay, τπ = 0,···”Μ—1 0 56. As the device of the request item η, where: ' ρ< νιετ-, y - A/-i Σ ~ where is the number of transmitting antennas, and The length of the cyclic delay of the transmitting antenna w, W = 0, ..., M-1. 57. - A device for performing channel estimation in a wireless communication system, including: 201014234 for obtaining the inclusion of the first and the a device of a first input sample of two 5 ί pilots, the first pilot frequency is generated based on a _th cyclic delay and transmitted from a first transmit antenna, the __α pilot being generated based on a second cyclic delay And the second loop delay is greater than the first loop delay by at least one loop word camp and #1 from the first length of the first input sample, and the second loop delay is sent from the second transmit antenna. From the first receiving antenna; and for processing the first-age Injecting a sample to obtain a first channel estimate for the first transmit antenna and a second channel estimate for the second transmit antenna. 58. The device of claim 57, Further comprising: an intrusion sample for obtaining a second input sample comprising the first pilot frequency of the first electric wall spear from a second receiving antenna; and for processing the first-to-one brother Input samples to obtain a third channel estimate for the first and a device for the music antenna. X - a fourth channel estimate for the transmit antenna 59. If the request item 57 is used to process the first - The device connected to A includes: ^ input samples for processing the devices of the first age measurement; and the method for obtaining the pilot frequency subcarriers for processing the observations to obtain I. Estimated 襞6〇. as requested in item 59, from β, teaches 'the means for processing the first 蚣 丄 secret to obtain observations includes · input samples for the first Private round-in samples to perform OFDM demodulation Means for obtaining received pilot symbols corresponding to the pilot frequency subcarriers of 41 201014234, means for shifting from the received pilot symbols, and observing the pilot subcarriers. Modulating to obtain the apparatus of claim 59, wherein the apparatus comprises: & I, 〇X, processing the observations for inclusion based on a minimum mean square error (mmse 以获得 to obtain the And means for estimating the second channel, wherein the pilot subcarriers are separated by a device as claimed in claim 58, wherein the means for processing the sample comprises: Processing the first input sample of the Rong-Ping W Temple to obtain an observation of the guided frequency subcarriers; and processing the observations to obtain (4) third and fourth channel estimation settings. 64. The apparatus of claim 63, wherein the means for processing the second input samples to obtain an observation comprises: performing OFDM demodulation on the two input samples to obtain a corresponding pilot frequency pair Means for receiving pilot symbols of a carrier; and means for removing pilot frequency modulation from the received pilot symbols to obtain an observation of the pilot subcarriers. 65. The apparatus of claim 63, wherein the means for processing the observations comprises processing the observations based on a minimum mean square error (MMSE) technique to obtain the third and fourth channel estimates Device. 42 201014234 is set to a prime number in which the pilot frequency subcarriers are separated by, and is used for the OFDM symbol 66. The apparatus of claim 63 wherein the household is the FFT size of the number that cannot be divided by #^. 67. A computer program for transmitting a pilot frequency in a wireless communication system 一引導頻的指令;以及a pilot command; and 68. 如請求項67之電腦程式産品,該這些指令還包括: 用於基於比該第二循環延遲大至少該循環字首長度的一 第三循環延遲,產生給第三發射天線的第三引導頻的指令。 69. 如請求項67之電腦程式産品,用於每一發射天線的 φ 循環延遲是 η*68. The computer program product of claim 67, the instructions further comprising: generating a third guidance to the third transmit antenna based on a third cyclic delay that is greater than the second cyclic delay by at least the length of the cyclic prefix Frequency instructions. 69. The computer program product of claim 67, the φ cycle delay for each transmit antenna is η* 其_ iVc,。2 0 ’對於1,有iVc; k #c/>,iVc/>是該循環字首長度, W是發射天線索引’並且G是用於發射天線所的循環延遲, 70·如請求項67之電腦程式産品’其中該第一循環延遲 爲零’並且該第二循環延遲等於或大於該循環字首長度。 71.如請求項67之電腦程式産品,其中該第一和第二循 43 201014234 環延遲並不藉由訊令來發送。 其t該用於產生第一 72.如請求項67之電腦程式產品, 引導頻的指令包括: 用於產生包含該第-引導頻的一第一樣本序列的指令; 以及 用於將該第一樣本序列循環驻馮 幻僱衣延遲該第一循環延遲的指 令;並且 其中該用於產生第二引導頻的指令包括用於產生包含該 第二引導頻的-第二樣本序列的指令和用於將該第二樣本 序列循環延遲該第二循環延遲的指令。 73.如請求項67之電腦程式產品,其中該用於產生第一 引導頻的指令包括用於產生包含該第一引導頻並且具有該 第-循環延遲的第- 0FDM符號的指令,並且其中該/用於產 生第二引導頻的指令包括用於產生包含該第二引導頻並且 具有該第二循環延遲的第二〇FDM符號的指令。 • 74.如請求項72之電腦程式産品,其中該用於產生第一 〇麵符號的指令包括用於將引導頻符號映射至相隔^的副 •載波的指令’其中P是不能除盡〜.的質數,並且~是用於 該第一 OFDM符號的FFT大小。 — 75.如請求項73之電腦程式産品,其中該用於產生第二 OFDM符號的指令包括用於將引導頻符號映射至相隔夕的副 載波的指令。 76.如請求項74之電腦程式産品,其中對於該第一和第 符號兩者而s,引導頻符號是被映射至相同的副載 44 201014234 波集。 77. 如請求項73之電腦程式産品,其中: s 之 ΣΝ。, /-0 其中S是具有引導頻符號的副載波的數目,从是發射天 -線的數目,並且是用於發射天線讲的循環延遲的長度, w = 〇,...,Af-l ° 78. 如請求項73之電腦程式産品,竟中· _ y ^ ΜΑ ❿ ΣΝ。 ι«0 其中从是發射天線的數目,並且是用於發射天線w 的循環延遲的長度,w=0, 。 79. —種用於在無線通訊系統中執行通道估計的電腦程 式産ηπ,包括其上儲存有指令的電腦可讀取媒體該等指令 可由一個或更多個處理器執行並且該等指令包括: 用於獲得包含第一和第二引導頻的第一輸入樣本的指 • 令,該第一引導頻是基於一第一循環延遲產生並且自一第一 發射天線發送的,該第二引導頻是基於一第二循環延遲產生 ,並且自一第二發射天線發送的’該第二循環延遲比該第一循 環延遲大至少一循環字首長度,並且該等第一輸入樣本來自 ' 一第一接收天線;以及 用於處理該等第一輸入樣本以獲得對於該第一發射天線 的一第-通道估計和對於該第二發射天線的一第二通道估 計的指令。 80·如吻求項79之電腦程式産品,該等指令還包括: 45 201014234 用於獲得包含該等第―和第二引導頻的第二輸人樣本的 "該等第二輸入樣本是來自一第二接收天線·以及 用於處理該等第二輸人樣本以獲得對於該第—發射天線 的一第二通道估計和對於該篦-恭缸 丁该第一發射天線的一第四通道估 計的指令》 月求項79之電腦程式産品,其中該用於處理該等 第一輸入樣本的指令包括: 用於處理該算笛—終人#丄 輸樣本以獲得對引導頻副載波的觀 測的指令丨以及 ^ 用於處理該等觀測以獲得 寸规和Λ筏得該等第一和第二通道估計的指 -W· 0 第t如請求項81之電腦程式産品,其中該用於處理該等 第一輸入樣本以獲得觀測的指令包括: 該等用引於導Γ-Γ第—輸人樣本執行OFDM解調以獲得對應於 該等引導頻副載波的收到引導頻符號的指令;以及 用於從該等收到引導頻符號中移除引導頻調制以獲得該 對這些引導頻副載波的觀測的指令。 83.如請求項81之電腦程 傲制沾共人a, 兵节該用於處理該等 理兮盆㈣、,⑽ 均方誤差(MMSE)技術來處 等觀測以獲得該等第—和第二通道估計的指令。 Μ.如請求項81之電腦程式産品,其中 波相隔爲/7,复中是不At ^丨導頻副載 U户疋不錢盡^的質數 OFDM符號的FFT大小。 是用於 85.如請求項8〇之電腦程式産品 八τ涿用於處理該等 46 201014234 第二輸入樣本的指令包括: 用於處理料第二輸人樣本以獲得對㈣頻 測的指令;以及戰波的觀 令 用於處理該等觀測以獲得該等第三和第四通道估古十 的指 其中該用於處理該等 86.如請求項85之電腦程式産品, 第二輸入樣本以獲得觀測的指令包括:Its _ iVc,. 2 0 'For 1, there is iVc; k #c/>, iVc/> is the length of the loop prefix, W is the transmit antenna index ' and G is the cyclic delay for the transmit antenna, 70· as requested The computer program product of 67 wherein the first loop delay is zero and the second loop delay is equal to or greater than the loop prefix length. 71. The computer program product of claim 67, wherein the first and second loop delays are not transmitted by the command. The instructions for generating the first 72. The computer program product of claim 67, wherein the instruction of the pilot frequency comprises: an instruction for generating a first sample sequence including the first pilot frequency; An instruction sequence loops the instruction to delay the first cyclic delay; and wherein the instruction to generate the second pilot frequency includes an instruction to generate a second sample sequence including the second pilot frequency An instruction to cyclically delay the second sample sequence by the second cycle delay. 73. The computer program product of claim 67, wherein the instruction to generate the first pilot frequency comprises instructions for generating a -0FDM symbol including the first pilot frequency and having the first cyclic delay, and wherein The instructions for generating the second pilot frequency include instructions for generating a second 〇FDM symbol including the second pilot frequency and having the second cyclic delay. 74. The computer program product of claim 72, wherein the instructions for generating the first facet symbol comprise instructions for mapping pilot symbols to subcarriers separated by ^ where P is not divisible~. The prime number, and ~ is the FFT size for the first OFDM symbol. 75. The computer program product of claim 73, wherein the instructions for generating the second OFDM symbol comprise instructions for mapping pilot symbols to sub-carriers of the day and night. 76. The computer program product of claim 74, wherein for both the first and the second symbols, the pilot symbols are mapped to the same subcarrier 44 201014234 wave set. 77. The computer program product of claim 73, wherein: s. , /-0 where S is the number of subcarriers with pilot symbols, from the number of transmitted sky-lines, and is the length of the cyclic delay used for the transmit antenna, w = 〇,...,Af-l ° 78. The computer program product of claim 73 is actually _ y ^ ΜΑ ❿ ΣΝ. ι«0 where is the number of transmit antennas and is the length of the cyclic delay used to transmit antenna w, w=0, . 79. A computer program for performing channel estimation in a wireless communication system, ηπ, comprising computer readable medium having instructions stored thereon, the instructions being executable by one or more processors and including: Means for obtaining a first input sample comprising first and second pilot frequencies, the first pilot frequency being generated based on a first cyclic delay and transmitted from a first transmit antenna, the second pilot frequency being Generating based on a second cyclic delay, and transmitting the second cyclic delay from a second transmit antenna by at least one cyclic prefix length, and the first input samples are from a first receive An antenna; and instructions for processing the first input samples to obtain a first channel estimate for the first transmit antenna and a second channel estimate for the second transmit antenna. 80. The computer program product of Kiss 79, the instructions further comprising: 45 201014234 for obtaining a second input sample containing the first and second pilot frequencies "the second input samples are from a second receive antenna and for processing the second input samples to obtain a second channel estimate for the first transmit antenna and a fourth channel estimate for the first transmit antenna for the first transmit antenna The computer program product of the monthly claim 79, wherein the instruction for processing the first input samples comprises: processing the ticker-final #丄 样本 sample to obtain an observation of the pilot frequency subcarrier The instructions 丨 and ^ are used to process the observations to obtain the gauges and the first and second channel estimates of the first- and second-channel estimates - the computer program product of claim 81, wherein the And the first input sample to obtain the observed instructions includes: the instructions for performing OFDM demodulation to obtain the received pilot symbols corresponding to the pilot frequency subcarriers; Used to The instructions that remove the pilot frequency modulation from the received pilot symbols to obtain the observations of the pilot frequency subcarriers are received. 83. If the computer program of claim 81 is arrogant, the military corps should be used to process the basins (4), (10) mean square error (MMSE) techniques to obtain observations such as - and Two-channel estimated instruction.如. The computer program product of claim 81, wherein the wave interval is /7, and the FFT size of the prime OFDM symbol is not the At ^ 丨 pilot subcarrier. The instructions for use in the computer program product 八τ涿 of claim 8 for processing the 46 201014234 second input samples include: processing the second input sample to obtain an instruction for the (four) frequency measurement; And a warfare order for processing the observations to obtain the third and fourth channel estimates, wherein the instructions are for processing the computer program product of claim 86. The second input sample is Instructions for obtaining observations include: 用於對該等第二輸入樣本執行〇FDM解調以獲得對應於 該等引導頻副栽波的收到引導頻符號的指令;以及… 用於從該等收到引導頻符號移除引導頻調制以獲得該對 該等引導頻副载波的觀測的指令。 87. 如請求項85之電腦程式産品,其中該用於處理該等 觀測的指令包括用於基於最小均方誤差(mmse)技術來處 理該等觀測以獲得該等第三和第四通道估計的指令。 88. 如請求項85之電腦程式品,,其中該μ導頻副載 波相隔爲Ρ,其中ρ是不能除盡I的質數,並且、是用於 OFDM符號的FpT大小。 47Performing 〇FDM demodulation on the second input samples to obtain instructions corresponding to the received pilot symbols of the pilot frequency subcarriers; and... for removing pilot frequencies from the received pilot symbols Modulation to obtain an instruction for the observation of the pilot frequency subcarriers. 87. The computer program product of claim 85, wherein the instructions for processing the observations comprise processing the observations based on a minimum mean square error (mmse) technique to obtain the third and fourth channel estimates. instruction. 88. The computer program of claim 85, wherein the μ pilot subcarriers are separated by Ρ, where ρ is a prime number that cannot divide I, and is the FpT size for the OFDM symbol. 47
TW098108098A 2008-03-14 2009-03-12 Methods and systems for choosing cyclic delays in multiple antenna ofdm systems TWI482445B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US3689508P 2008-03-14 2008-03-14
US12/357,935 US8570939B2 (en) 2008-03-07 2009-01-22 Methods and systems for choosing cyclic delays in multiple antenna OFDM systems

Publications (2)

Publication Number Publication Date
TW201014234A true TW201014234A (en) 2010-04-01
TWI482445B TWI482445B (en) 2015-04-21

Family

ID=41478800

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098108098A TWI482445B (en) 2008-03-14 2009-03-12 Methods and systems for choosing cyclic delays in multiple antenna ofdm systems

Country Status (9)

Country Link
EP (1) EP2266247A2 (en)
JP (1) JP5579626B2 (en)
KR (1) KR101200510B1 (en)
CN (2) CN106506054A (en)
BR (1) BRPI0908916A2 (en)
CA (1) CA2714455C (en)
RU (1) RU2471298C2 (en)
TW (1) TWI482445B (en)
WO (1) WO2010011369A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553750B2 (en) 2011-01-07 2017-01-24 Sun Patent Trust Transmitter, receiver, transmission method, and reception method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100952336B1 (en) * 2007-10-25 2010-04-09 에스케이 텔레콤주식회사 Method and Server for Comparing Goods Based on Multi-Criteria
KR101115442B1 (en) * 2008-10-23 2012-02-21 에스케이플래닛 주식회사 Method and Server for Comparing Commodities
CN103686830A (en) * 2012-09-26 2014-03-26 电信科学技术研究院 Method and device for measuring movement speed of terminal
CN104506283B (en) * 2014-11-10 2017-10-20 中国电子科技集团公司第二十研究所 The circulation delay sending method of vectorial OFDM based on many transmission antennas
KR101706629B1 (en) 2016-01-25 2017-02-16 주식회사 이노와이어리스 power calibration method for MIMO-OFDM transmitter
US10063306B2 (en) * 2016-10-24 2018-08-28 Mitsubishi Electric Research Laboratories, Inc. Method and systems using quasi-synchronous distributed CDD systems

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100291476B1 (en) * 1998-05-25 2001-07-12 윤종용 A method and a system for controlling a pilot measurement request order in cellular system
US6546248B1 (en) * 2000-02-10 2003-04-08 Qualcomm, Incorporated Method and apparatus for generating pilot strength measurement messages
US7248559B2 (en) * 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US8233555B2 (en) * 2004-05-17 2012-07-31 Qualcomm Incorporated Time varying delay diversity of OFDM
US8089855B2 (en) * 2004-06-04 2012-01-03 Qualcomm Incorporated Transmission of overhead information for broadcast and multicast services in a wireless communication system
KR100938091B1 (en) * 2004-10-13 2010-01-21 삼성전자주식회사 Apparatus and method for providing efficient transmission using block coding and cyclic delay diversities in the OFDM based cellular systems
US9520972B2 (en) * 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
CN1838655A (en) * 2005-03-24 2006-09-27 北京三星通信技术研究有限公司 MIMO-OFDM receiver
JPWO2007052768A1 (en) * 2005-11-04 2009-04-30 パナソニック株式会社 Radio transmission apparatus, radio reception apparatus, radio communication method, and radio communication system
US7848438B2 (en) * 2006-02-14 2010-12-07 Motorola Mobility, Inc. Method and apparatus for pilot signal transmission
EP2012454B1 (en) * 2006-04-25 2019-08-21 NEC Corporation Pilot signal transmitting method and wireless communication apparatus
JP2008048092A (en) * 2006-08-14 2008-02-28 Toshiba Corp Radio transmission method using ofdm, transmitter and receiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9553750B2 (en) 2011-01-07 2017-01-24 Sun Patent Trust Transmitter, receiver, transmission method, and reception method
US10251174B2 (en) 2011-01-07 2019-04-02 Sun Patent Trust Transmitter, receiver, transmission method, and reception method
US11160076B2 (en) 2011-01-07 2021-10-26 Sun Patent Trust Transmitter, receiver, transmission method, and reception method
US11582082B2 (en) 2011-01-07 2023-02-14 Sun Patent Trust Transmitter, receiver, transmission method, and reception method
US11831483B2 (en) 2011-01-07 2023-11-28 Sun Patent Trust Transmitter, receiver, transmission method, and reception method

Also Published As

Publication number Publication date
JP5579626B2 (en) 2014-08-27
CN106506054A (en) 2017-03-15
KR20100124329A (en) 2010-11-26
WO2010011369A3 (en) 2010-05-20
CN101939943A (en) 2011-01-05
CA2714455A1 (en) 2010-01-28
RU2010141988A (en) 2012-04-20
RU2471298C2 (en) 2012-12-27
TWI482445B (en) 2015-04-21
WO2010011369A2 (en) 2010-01-28
EP2266247A2 (en) 2010-12-29
JP2011517518A (en) 2011-06-09
BRPI0908916A2 (en) 2018-02-14
KR101200510B1 (en) 2012-11-13
CA2714455C (en) 2013-07-09

Similar Documents

Publication Publication Date Title
EP2327171B1 (en) Mimo preamble for initial access with an unknown number of transmit antennas
EP3251234B1 (en) Apparatus and method for transmitting data with conditional zero padding
US9544171B2 (en) Zero insertion for ISI free OFDM reception
US8570939B2 (en) Methods and systems for choosing cyclic delays in multiple antenna OFDM systems
EP2375616B1 (en) Method for managing sounding reference signal transmission
CN107005320B (en) For channel information acquisition, signal detection and the method for transmission in multi-user wireless communication system
KR101481590B1 (en) Reference signal transmission method for downlink multiple input multiple output system
US8400958B2 (en) Apparatus and method for data transmission using transmission diversity in SC-FDMA system
TW201014234A (en) Methods and systems for choosing cyclic delays in multiple antenna OFDM systems
EP2735204A1 (en) Dynamic cyclic prefix mode for uplink radio resource management
TW201119272A (en) Transmission of reference signal on non-contiguous clusters of resources
CN109478962A (en) Demodulated reference signal transmissions method and relevant device
JP2011151803A (en) Method for communicating symbol in network including transmitter and receiver
JP2007174652A (en) Grouping method of pilot sub-carriers in orthogonal frequency division multiple access system
TW201125304A (en) Method and apparatus for performing uplink transmission techniques with multiple carriers and reference signals
JP4830613B2 (en) Multi-user communication system, communication apparatus, and multipath transmission path estimation method using them
US11201765B2 (en) Receiver, transmitter, wireless communication network and method to communicate a non-pulse shaped signal in a multi carrier pulse shaped transmission system
WO2020068315A1 (en) Facilitation of reduction of peak to average power ratio for 5g or other next generation network
TW201004232A (en) Methods and systems for effective channel estimation in OFDM systems
Mohammed et al. A low complexity OFDM system with minimum intersymbol interference
WO2018174981A1 (en) Enhanced pilot tone sequences for wireless transmissions

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees