TW201125304A - Method and apparatus for performing uplink transmission techniques with multiple carriers and reference signals - Google Patents

Method and apparatus for performing uplink transmission techniques with multiple carriers and reference signals Download PDF

Info

Publication number
TW201125304A
TW201125304A TW98135420A TW98135420A TW201125304A TW 201125304 A TW201125304 A TW 201125304A TW 98135420 A TW98135420 A TW 98135420A TW 98135420 A TW98135420 A TW 98135420A TW 201125304 A TW201125304 A TW 201125304A
Authority
TW
Taiwan
Prior art keywords
symbols
reference signals
wtru
precoded
modulation symbols
Prior art date
Application number
TW98135420A
Other languages
Chinese (zh)
Inventor
Erdem Bala
Sung-Hyuk Shin
Philip J Pietraski
Guo-Dong Zhang
Joseph S Levy
Kyle Jung-Lin Pan
Original Assignee
Interdigital Patent Holdings
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Patent Holdings filed Critical Interdigital Patent Holdings
Publication of TW201125304A publication Critical patent/TW201125304A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Radio Transmission System (AREA)

Abstract

A method and apparatus are described for performing uplink (UL) transmission techniques with multiple carriers. Multiple transmission techniques with low cubic metric (CM), especially for cell-edge wireless transmit/receive units (WTRUs), are preferred for long term evolution advance (LTE-A) systems. A method for performing efficient codeword-to-carrier mapping is also described. Furthermore, a method and apparatus are described for reference signaling in UL transmissions in LTE. The method and apparatus includes multiplexing precoded pilots, multiplexing multiple WTRUs in uplink multi-user multiple-input multiple-output (MU-MIMO), and multiplexing sounding reference signals (SRS).

Description

201125304 六、發明說明: 【發明所屬之技術領域】 [0001] 本申請與無線通信有關。 【先前技_術·】 [0002] 098135420 在長期演進(LTE)系統中,單載波分頻多重存取(sc_ fdma)被用於上鏈(UL)傳輸,這是因為SC_FMA具有 較小的立方度量(CM)或峰均功率比(pApR)。除了調 變後的資料首先用離散傅立葉變換(DFT)被展開外, SC-FDMA傳輸類似於正交分頻多工(〇FDM)傳輸,然後 在逆快速傅立葉變換(IFFT)區塊中被映射到連續的副 載波上。為了改進SC-FDMA的頻域排程,已經提出了稱為 群集DFT展開FDMA (CL-DFTS-FDMA)的一種類似的多路 存取方案。在這種情況下,DFT展開的符號不是必須被映 射到連續的副載波上。相反,資料可以被映射到非鄰近 的群集上,其中群集由許多連續㈣載波組成。 LTE中支持的最大頻寬是2〇 MHz。為了獲得最高達1 Gb/ s的資料率,已經提出了載波聚合(aggregati〇n)。在 載波聚合中,20 MHz或更小的頻寬的載波被聚合並用於 傳輸。所聚合的載波可以是鄰近的或非鄰近的。 LTE UL參考信號(RS)基於Zad〇ff —Chu序列,201125304 VI. Description of the invention: [Technical field to which the invention pertains] [0001] The present application relates to wireless communication. [Previous Technology_]· [0002] 098135420 In Long Term Evolution (LTE) systems, single carrier frequency division multiple access (sc_fdma) is used for uplink (UL) transmission because SC_FMA has a smaller cube. Metric (CM) or peak-to-average power ratio (pApR). The SC-FDMA transmission is similar to orthogonal frequency division multiplexing (〇FDM) transmission except that the modulated data is first spread using the discrete Fourier transform (DFT), and then mapped in an inverse fast Fourier transform (IFFT) block. On consecutive subcarriers. To improve the frequency domain scheduling of SC-FDMA, a similar multiple access scheme called Cluster DFT Expansion FDMA (CL-DFTS-FDMA) has been proposed. In this case, the DFT-expanded symbols do not have to be mapped onto consecutive subcarriers. Instead, the data can be mapped to non-contiguous clusters, where the cluster consists of many consecutive (four) carriers. The maximum bandwidth supported in LTE is 2 〇 MHz. In order to obtain data rates of up to 1 Gb/s, carrier aggregation (aggregati) has been proposed. In carrier aggregation, carriers of bandwidths of 20 MHz or less are aggregated and used for transmission. The aggregated carriers can be contiguous or non-contiguous. The LTE UL Reference Signal (RS) is based on the Zad〇ff-Chu sequence.

Zadoff-Chu序列屬於恆定振幅零自相關(CAZAC)序列 的系列。方根CAZAC序列的循環移位相互正交,並且不同 方根序列之間的交叉相關較低。當UL基於sc傳輸時,與 在LTE中-樣,似隨時間與資料多工的,(也就是财 分離的OFDM符號中傳輸)。例如,在LTE中,對於每個子 訊框或傳輸時間間隔(ΤΤί)存在兩個時槽。每個時槽可 0993015227- 表單編號Α0101 第4頁/共3〇頁 201125304 Ο ο 以有7個OFDM符號,並且中間的OFDM符號(時槽中的第4 個OFDM符號)被用於導頻傳輸。 先前已經研究了來自於WTRU的不同天線的RS的多工。一 些可能的方法是使用分頻多工(FDM)進行多工,(包括 在頻率中對來自於不同天線的RS進行多工),使用分碼 多工(CM)進行多工,包括在頻率和/或時間或二者的 任何組合中將來自不同天線的RS與正交碼進行多工。 在LTE中,可以使用多個天線進行UL傳輸。在使用多個天 線的情況下,可以使用閉環或開環預編碼和傳輸分集。 在LTE系統中用於UL的RS當前設計,也稱為導頻,假定了 單一發射天線。當使用多個天線時,將需要用於另外的 天線的新參考信號。 當支援多個天線以用於UL傳輸時,資料調變參考信號( MRS )可與資料類似地被預編碼。同樣,來自於WTRU的 不同天線的RS和來自於多個WTRU的RS可以被多工。最後 ,來自於WTRU的不同天線的探測參考信號(SRS)和來自 於多個WTRU的探測參考信號(SRS)可以被多工。 當載波聚合被用於UL傳輸時,大的CM或PAPR就會成為問 題。因而,具有低CM的多種存取方案,尤其是用於胞元 邊緣的無線發射/接收單元(WTRU),對於高級LTE ( LTE-A)系統來說是較佳的。需要一種用於高效地執行碼 字-載波映射的方法和裝置。 [0003] 【發明内容】 揭露了 一種用於使用多載波來執行UL傳輸技術的方法和 098135420 裝置。具有低CM的多種傳輸技術,尤其是用於胞元邊緣 表單編號A0101 第5頁/共30頁 0993015227-0 201125304 的WTRU,對於LTE-A系統來說是較佳的。還揭露了一種 用於執行高效的碼字-載波映射的方法。此外,描述了一 種用於在LTE中的UL傳輸中的參考信令的方法和裝置。該 方法和裝置包括對預編碼的導頻進行多工、在UL多用戶 多輸入多輸出(MU-ΜΙΜΟ)中對多個WTRU進行多工、以 及對SRS進行多工。 【實施方式】 [0004] 下文提及的術語“無線發射/接收單元(WTRU) ”包括但 不限於使用者設備(UE)、行動站、固定或行動用戶單 元、呼叫器、蜂窩電話、個人數位助理(PDA)、電腦或 能夠在無線環境中操作的任何其他類型的使用者設備。 下文提及的術語“演進型節點B(e節點B)”包括但不限 於基地台、站點控制器、存取點(AP)或者任何其他類 型的能在無線環境中操作的周邊設備。 下面的表1給出了在存在單載波(即,不存在聚合或聚合 的載波)情況下多種存取方案的可能的組合的列表。注 意SC-FDMA是群集DFT-S-FDMA在群集數目為1時的特定 情況。 表1 無聚合- 聚合. 鄰近載波. 1 a. _ 集的 DFT-S-FD3VIA. 群-集 DFT-S-FDIvIA. lb- 戈渾集的 DFT-S-FDViA。' N SOFDIVIA, 非鄰近載波*· —> 群集的 DFT-S_FD;M;A. N SC-FDMA' 3. OFDK1A. OFOMA. 在碼字的數目和聚合載波的數目之間存在一種關係。第1 098135420 表單編號A0101 第6頁/共30頁 0993015227-0 201125304 圖示出了碼字-載波映射方案。在第1圖中,有鄰近載波 的群組,並且這些群組是非鄰近的。對於給定的WTRU, 當有多個碼字時,可以實施幾種碼字-載波映射方案。 在第一種方案中,每個碼字被饋入單獨的DFT區塊中,然 後被映射到IFFT區塊中的副載波,並且之後在給定的分 量(component)載波或一組鄰近載波上被傳輸。對於 DFT區塊的輸入是不同的碼字。IFFT區塊的輸出可以被映 射到幾個鄰近載波或單載波上。 在第二種方案中,一個碼字可以被輸入到兩個或更多DFT 區塊,(例如,一個碼字在不同DFT區塊上被交錯)。在 這種情況下,碼字在不同載波上被傳輸並且可能得益於 頻率分集。 在第三種方案中,一個碼字可以跳過幾個載波,(即並 非在給定時間使用全部的載波)。 在第四種方案中,當多個天線被用於空間多工/預編碼時 ,在多個載波上使用大延遲循環延遲分集(CDD)的層置 換可以被使用。 在第五種方案中,如果0FDMA被用於空氣介面,則碼字-載波映射方法也可以被使用,除非在SC-FDMA中在IFFT 之前DFT預編碼沒有被應用於0FDMA。 碼字-載波映射與使用的實體下鏈控制通道(PDCCH)格 式有關。 在一個實施方式中,對於一個載波有一個PDCCH。碼字可 以在單載波上傳輸。或者,碼字的塊可以在不同載波上 傳輸。對於一個碼字可能有超過一個PDCCH。 在另一實施方式中,對於一組載波有一個PDCCH。碼字在 098135420 表單編號A0101 第7頁/共30頁 0993015227-0 201125304 PDCCH分配了傳輸資源的載波上被傳輸。對於碼字可能有 單一 PDCCH。或者,碼字的塊可以在不同的載波組上傳輸 。對於一個碼字可能有超過一個PDCCH。 在又一實施方式中,對於一個碼字有一個PDCCH。該 PDCCH可以為該碼字在一個或多個載波上分配資源。對於 不同載波的調變等級(order)、編碼率和其他參數可以 是相同的或不同的,這可能導致更大的PDCCH格式。 下面給出碼字-載波映射方案中使用頻寬聚合來執行ΜIM0 預編碼的細節。 在LTE中,預編碼與大延遲CDD結合,所以每個層具有相 似的SNR。定義了具有大延遲CDD的預編碼,其中矩陣W是 預編碼矩陣,並且矩陣D和U是本領域中具有通常知識者 已知的,並定義於標準中。 例如,The Zadoff-Chu sequence is a family of constant amplitude zero autocorrelation (CAZAC) sequences. The cyclic shifts of the square root CAZAC sequence are orthogonal to each other, and the cross-correlation between different square root sequences is low. When UL is based on sc transmission, it is similar to LTE-like, and it is time-multiplexed with data (that is, transmission in OFDM symbols). For example, in LTE, there are two time slots for each subframe or transmission time interval (ΤΤί). Each time slot can be 0993015227 - Form number Α 0101 Page 4 / Total 3 page 201125304 Ο ο There are 7 OFDM symbols, and the middle OFDM symbol (the 4th OFDM symbol in the time slot) is used for pilot transmission . The multiplexing of RSs from different antennas of the WTRU has been previously studied. Some possible methods are multiplexing using frequency division multiplexing (FDM), including multiplexing of RSs from different antennas in frequency, and multiplexing using code division multiplexing (CM), including in frequency and / or time or any combination of the two multiplexes the RSs from the different antennas with the orthogonal codes. In LTE, multiple antennas can be used for UL transmission. In the case of multiple antennas, closed loop or open loop precoding and transmit diversity can be used. The current design of RS for UL in LTE systems, also known as pilot, assumes a single transmit antenna. When multiple antennas are used, a new reference signal for the additional antenna will be required. When multiple antennas are supported for UL transmission, the data modulation reference signal (MRS) can be precoded similarly to the data. Likewise, RSs from different antennas of the WTRU and RSs from multiple WTRUs may be multiplexed. Finally, sounding reference signals (SRS) from different antennas of the WTRU and sounding reference signals (SRS) from multiple WTRUs may be multiplexed. Large carrier CM or PAPR can be a problem when carrier aggregation is used for UL transmission. Thus, multiple access schemes with low CM, especially for the cell edge, are preferred for LTE-Advanced systems. There is a need for a method and apparatus for efficiently performing code-carrier mapping. SUMMARY OF THE INVENTION A method and a 098135420 apparatus for performing UL transmission techniques using multiple carriers are disclosed. A variety of transmission techniques with low CM, especially for WTRU edge form number A0101 page 5 / page 30 0993015227-0 201125304, are preferred for LTE-A systems. A method for performing efficient codeword-carrier mapping is also disclosed. Furthermore, a method and apparatus for reference signaling in UL transmissions in LTE is described. The method and apparatus include multiplexing a precoded pilot, multiplexing multiple WTRUs in a UL multi-user multiple input multiple output (MU-ΜΙΜΟ), and multiplexing the SRS. [Embodiment] The term "wireless transmitting/receiving unit (WTRU)" mentioned below includes but is not limited to user equipment (UE), mobile station, fixed or mobile subscriber unit, pager, cellular telephone, personal digital Assistant (PDA), computer or any other type of user device capable of operating in a wireless environment. The term "evolved Node B (eNodeB)" mentioned below includes, but is not limited to, a base station, a site controller, an access point (AP), or any other type of peripheral device capable of operating in a wireless environment. Table 1 below gives a list of possible combinations of multiple access schemes in the presence of a single carrier (i.e., no aggregated or aggregated carriers). Note that SC-FDMA is a specific case when the cluster DFT-S-FDMA has a cluster number of one. Table 1 No aggregation - aggregation. Adjacent carrier. 1 a. _ Set of DFT-S-FD3VIA. Group-set DFT-S-FDIvIA. lb- Goth set DFT-S-FDViA. 'N SOFDIVIA, non-contiguous carrier*·-> clustered DFT-S_FD; M; A. N SC-FDMA' 3. OFDK1A. OFOMA. There is a relationship between the number of codewords and the number of aggregated carriers. No. 1 098135420 Form No. A0101 Page 6 of 30 0993015227-0 201125304 The figure shows a codeword-carrier mapping scheme. In Figure 1, there are groups of adjacent carriers, and these groups are non-contiguous. For a given WTRU, when there are multiple codewords, several codeword-carrier mapping schemes can be implemented. In the first scheme, each codeword is fed into a separate DFT block and then mapped to a subcarrier in the IFFT block and then on a given component carrier or a group of adjacent carriers. Being transmitted. The input to the DFT block is a different codeword. The output of the IFFT block can be mapped to several adjacent carriers or a single carrier. In the second scheme, one codeword can be input to two or more DFT blocks (for example, one codeword is interleaved on different DFT blocks). In this case, the codewords are transmitted on different carriers and may benefit from frequency diversity. In the third scheme, one codeword can skip several carriers (i.e., not all carriers are used at a given time). In the fourth scheme, when multiple antennas are used for spatial multiplexing/precoding, layer switching using large delay cyclic delay diversity (CDD) on multiple carriers can be used. In the fifth scheme, if OFDM is used for the air interface, the codeword-carrier mapping method can also be used unless DFT precoding is not applied to the OFDM before the IFFT in SC-FDMA. The codeword-carrier mapping is related to the physical downlink control channel (PDCCH) format used. In one embodiment, there is one PDCCH for one carrier. Codewords can be transmitted on a single carrier. Alternatively, blocks of codewords can be transmitted on different carriers. There may be more than one PDCCH for one codeword. In another embodiment, there is one PDCCH for a group of carriers. Codeword at 098135420 Form No. A0101 Page 7 of 30 0993015227-0 201125304 The PDCCH is allocated on the carrier to which the transmission resource is allocated. There may be a single PDCCH for the codeword. Alternatively, blocks of codewords can be transmitted on different carrier groups. There may be more than one PDCCH for one codeword. In yet another embodiment, there is one PDCCH for one codeword. The PDCCH may allocate resources for the codeword on one or more carriers. The modulation order, coding rate and other parameters for different carriers may be the same or different, which may result in a larger PDCCH format. The details of performing ΜIM0 precoding using bandwidth aggregation in the codeword-carrier mapping scheme are given below. In LTE, precoding is combined with large delay CDD, so each layer has a similar SNR. Precoding with a large delay CDD is defined, where matrix W is a precoding matrix, and matrices D and U are known to those of ordinary skill in the art and are defined in the standard. E.g,

^ /(0 : = r(i)D{〇Dr 等式(1) 可表示為等效於: XNr X 1 W = ( ^r,Vr KR RXr){ I W)) ~ ( Vr 1 :等式(2) 其中4 是經過k次d循環地序列改變的形式。 因而,預編碼矩陣的不同行被用於在不同副載波上對層 進行預編碼。這改進了分集,這是因為現在所有層都通 過通道的所有特徵方向傳輸而不是對固定層進行特徵方 098135420 表單編號A0101 第8頁/共30頁 0993015227-0 201125304 向映射。 當有幾個載波時,(對於一個載波也是同樣),大延遲 ⑽可在DFT展開之後應^對於不同栽波可以使其能夠 啟動/中斷大延遲CDD。 在DFT展開之後應用大延遲⑽可能會増加pApR ;例如當 預編碼矩陣W正好是單位矩陣時。為了保持ΜΕ相同並且 仍然受益於通過幾個特徵方向來傳輸層的優點,資料流 (即調變符號流)可以在DFT操作之前進行多工,(即在^ /(0 : = r(i)D{〇Dr Equation (1) can be expressed as equivalent to: XNr X 1 W = ( ^r,Vr KR RXr){ IW)) ~ ( Vr 1 : Equation (2) where 4 is the form of sequence change over k times of d cycles. Thus, different rows of the precoding matrix are used to precode the layers on different subcarriers. This improves diversity because now all layers All are transmitted through all the characteristic directions of the channel instead of the fixed layer. 098135420 Form No. A0101 Page 8 / Total 30 Page 0993015227-0 201125304 Directional mapping. When there are several carriers, (for a carrier, the same), large The delay (10) can be used to enable/break large delay CDDs after DFT expansion. Applying a large delay (10) after DFT unrolling may add pApR; for example when the precoding matrix W is exactly the identity matrix. Keeping ΜΕ the same and still benefiting from the advantages of transporting layers through several feature directions, the data stream (ie the modulated symbol stream) can be multiplexed before the DFT operation (ie in

時域中進行)。例如,假定有兩個f料流,表示為χΗ〇 χ2。當應用層多工(或層移位)時,對於第一dft的輸入 可以疋XII、X21、X13、X23........並且第二DFT的輸 入可以是X12、X22、X14、X24,其中Xab表示第&層中 的第b個付號。在進行DFT展簡之後,可以應用預編碼矩 車评和延遲矩陣D。注意,在這一實例中,調變符號在時 域中進行多工。調變符號可以逐區塊地被多工(層移位 這樣調變符號的每個區塊都與資料的數量相對應,In the time domain). For example, suppose there are two f streams, denoted as χΗ〇 χ2. When the application layer is multiplexed (or layer shifted), the input to the first dft may be XII, X21, X13, X23........ and the input of the second DFT may be X12, X22, X14, X24, where Xab represents the bth payout in the & layer. After the DFT is simplified, the precoding moment car evaluation and delay matrix D can be applied. Note that in this example, the modulation symbols are multiplexed in the time domain. The modulation symbol can be multiplexed block by block (layer shifting, such that each block of the modulation symbol corresponds to the number of data,

"貝料包括,例如,一個正交分頻多工(OFDM)符號或 ~個時槽。 另 __ 乃案中,未預編碼的參考信號可以在UL中被傳輸 使e節點Β能夠進行通道估計。或者,預編碼的參考信 儿可以破傳輪。這可能允許e節點b直接估計有效通道。 同4襄,福46 丁貝編碼/波束成形的導頻可能具有增強的接收信號 干擾和雜訊比(SINR)。 098135420 使用 預編碼的導頻可能導致更有效地使用方根序列的循 環移位。戶斤 而不是天線 表單編貌Α〇1〇ι 需正交序列的數目變為等於資料流的數目 的數目。這可能也會減少導頻開銷。 第9頁/共30頁 0993015227-0 201125304 預編碼RS的設計 R S的預編碼可以使用與資 、 的預編碼類似的方式來實現 。在母個副載波上,導頻係_沾人 ㈣係數的向量與預編碼矩陣相乘 。術s吾預編碼被用於通當音盖τ %、義下,因此波束成形也是一 種預編碼,可能是秩1和寬頻的預編碼。作為-個實例,"Belt material includes, for example, an orthogonal frequency division multiplexing (OFDM) symbol or ~ time slot. In the other case, the unprecoded reference signal can be transmitted in the UL to enable the e-node to perform channel estimation. Alternatively, the precoded reference letter can be broken. This may allow e-Node b to directly estimate the effective channel. In the same way, the pilot of the 46 mb/o encoding/beamforming may have an enhanced received signal interference and noise ratio (SINR). 098135420 Using precoded pilots may result in more efficient use of the cyclic shift of the square root sequence. The number of orthogonal sequences is equal to the number of data streams. This may also reduce pilot overhead. Page 9 of 30 0993015227-0 201125304 Design of precoding RS The precoding of R S can be implemented in a similar way to precoding of resources. On the mother subcarrier, the vector of the pilot system _ 人 (four) coefficient is multiplied by the precoding matrix. The precoding is used for the normal sound cover τ %, so beamforming is also a kind of precoding, which may be precoding of rank 1 and broadband. As an example,

Pl和p2是零自相_兩個循環移位的cmc序列’即它 們藉由應用不_循環移位而從相同的方根序列得出。 這些序列的長度為L。從而,該序列可以在被預編碼㈣ 映射到L個副載波。w是具有大小為(VV的預編碼 矩陣,其中Nt疋發射天線的數目,而㈣資料流的數目 。在給定的副載波k上,相應的導頻係數_編碼㈣相 乘。包含導頻係數的向量的太小為(%χ丨)。這一操作 對於兩個資料流和兩個發射天線在等式⑴中示出,如 下:P1 and p2 are zero self-phases - two cyclically shifted cmc sequences', i.e. they are derived from the same square root sequence by applying a non-cyclic shift. These sequences are of length L. Thus, the sequence can be precoded (4) to L subcarriers. w is a precoding matrix of size VV, where the number of Nt疋 transmit antennas, and (iv) the number of data streams. On a given subcarrier k, the corresponding pilot coefficients_code (4) are multiplied. Contains pilots The vector of coefficients is too small (%χ丨). This operation is shown in equation (1) for two data streams and two transmit antennas, as follows:

Pm η Pm Ραι 丨 +p*2w2 等式(3) 然後,從每個天線傳輸係數、丄,其中k=1,…,Nt。當 正交序列被使用作為參考信號時,相同的矩陣可以被用 於對全部的導頻序列進行預編碼,以保持兩個序列之間 的正交性。 預編碼的導頻序列可以應用下述的多工技術來進行多工 在頻域中藉由CDM對預編碼的導頻進行多工 預編碼後的導頻可以在頻域中使用CDM進行多工,(即正 098135420 表單編號A0101 第10頁/共30頁 0993015227-0 201125304 交序列被使用作為參考信號)。特別地,正交序列可以 從相同方根序列進行循環移位而得到。序列的數目等於 資料流的數目。在每個副載波上,來自預編碼後的CAZAC 序列的相應係數被傳輸。第2圖示出了用於兩個資料流, (兩個正交序列)的多工方法,其中陰影代表不同的序 列。 在頻域和時域中使用CDM對預編碼後的導頻進行多工 為了增加導頻的數目,除了在頻域中應用CDM之外,也可 以使用時域展開。在LTE中,UL RS被攜帶於子訊框中兩 個時槽中每個時槽的一個0FDM符號上。正交導頻序列在 被預編碼之後,可以通過使用正交碼,例如沃爾什( Walsh)碼,而在兩個或更多個0FDM符號上展開。例如 ,如果在兩個0FDM符號上展開,(其中每個0FDM符號在 一個時槽中,像在LTE中一樣),則展開矩陣D 1可 « | _ 1 一 被用於時域展開。如果在三個0FDM符號上展開,則可以 使用展開矩陣卩丨 | | 1。舉例來說,可以使用預 J e e /V j e e 編碼導頻序列來實施使用D 丨1進行的時域展開,該 „1 一 1 _ 導頻序列在第一個0 F D Μ符號中與1相乘並在第二個0 F D Μ 符號中與1相乘之後被映射到相應的副載波,該第一個 0FDM符號被用於傳輸參考信號(表示為RS-0FDM)。另 外,相同的預編碼後的導頻序列可在第一個RS-0FDM符號 098135420 表單編號A0101 第11頁/共30頁 0993015227-0 201125304 中與1相乘並在第二個Rs—抓⑽符號中與—丨相乘之後被映 射到相應的副載波。 當除了 CDM之外在頻域中使用時域展開時,除了基礎( base)序列和循環移位之外’時域展開序列也應為訂Ru 所知。 在頻域中對預編碼後的導頻進行多工(F Μ ) 如第3圖所示,預編碼後的RS也可以在頻域中被多工。對 應於天線料的-個埠的參相號可以在給㈣副載波 上傳輸例如,在副載波k上,第一個預編碼後的參考信 號被傳輸,這等效於設定钟2 = 0。利用頻域多工,同樣的 導頻序列可被用於所有的資料流,這是因為在頻域中獲 得了正交性。在這種情況下’方根序列的長度可以是L/m ,其中L是用於資料傳輸的副載波的數目,而111是重複因 數’即天線埠或資料流的數目。 在頻域和碼域中對預編碼後的導頻進行多工(CDM和fm ) 這是在頻域和碼域中對預編碼後的導頻進行多工的組合 。一組副載波被分配用於傳輸兩個或更多個特定的預編 碼後的參考信號。預編碼後的參考信號如上所述在碼域 中被多工’並被映射到這些副載波上。不同組的副載波 被分配用於傳輸其他預編碼後的參考信號。在這裏在第4 圖中給出了一個實例。編號為奇數的副載波被分配用於 傳輸兩個預編碼後的參考信號(預編碼後的參考信號丨和 2)。這兩個參考信號可以藉由預編碼兩個正交序列來產 生(例如,使用預編碼矩陣)。編號為偶數的副載波類 似地可被用於傳輸兩個其他預編碼後的參考信號(預編 098135420 表單編號A0101 第12頁/丘30頁 、 ^ 、 0993015227-0 201125304 碼後的參考信號3和4)。在該實例中,方根序列的長度 變為L/2,這是因為每隔一個副載波被用於傳輸該序列。 在時間中對預編碼後的導頻進行多工(TDM) 預編碼後的導頻也可以只在時域中多工。在此情況下, 不同的預編碼後的RS可以在不同的0FDM符號上傳輸。 在MU-MIM0中進行多工 當MU-MIM0被用於UL傳輸時,天線和WTRU可以被多工。 在一種選擇中,如果每個WTRU傳輸單個資料流,那麼上 述方法可以被應用,如同每個WTRU是不同的資料流一樣 。在另一選擇中,如果允許每個WTRU有多個資料流,則 仍可以使用相同的方法。 循環移位索引的信令 當多個天線被用於UL傳輸時,序列(用於頻域展開的那 些序列)的循環移位可被用信號發送給WTRU。在具有預 編碼後的導頻的情況下,所需的循環移位的數目等於資 料流的數目,而不是發射天線的數目。這意味著該數目 可能會動態地變化,因此控制信令格式應被適當地設計 以能夠適應所有可能的選擇。下面描述了 一些控制通道 格式設計選擇。 如果單獨的UL授權格式分別被用於MU-MIM0和單用戶 ΜΙΜΟ (SU-MIM0),則下列實施方式可以被實現。 對於SU-ΜΙΜΟ UL授權,循環移位可被更高層信令配置。 該配置可以是胞元特定的或WTRU特定的。循環移位可以 被預先確定並且可能不變。可以使用具有最多為最大數 目資料流的保留空間的UL授權格式,但這可能導致效率 低下。對於不同數目的資料流可以使用不同的UL授權格 098135420 表單編號A0101 第13頁/共30頁 0993015227-0 201125304 式。例如,如果支援最多為四個資料流,那麼可以設計 四種不同格式。這可能導致盲檢測的次數增加。循環移 位的隱式信令可被使用,其中存在UL授權格式,並且e節 點B用信號發送第一個循環移位的索引。其他格式可以應 用等式來得到,例如可使用連續的循環移位。 對於MU-MIMO UL授權,如果對MU-MIM0有限制以使得資 料流的數目被限為1,那麼循環移位被用信號發送。如果 沒有這種限制,那麼可以使用上面提出的用於SU-MIM0的 方法。 如果同樣的控制發信號格式被用於SU-ΜΙΜΟ和MU-MIM0 ,那麼可以用信號發送循環移位並且可以使用上面提出 的方法。 如果時域展開被用於導頻,則正交序列索引就可被確定 。這可以按照胞元特定的方式或WTRU特定的方式用信號 發送。或者,正交序列索引也可以從其他參數得到。 方根序列和循環移位可以在子訊框内或子訊框之間改變 。“循環移位群組跳躍”可能發生在循環移位的群組之 間。例如,如果有6個循環移位並且其中的2個循環移位 在給定時間使用,則跳躍模式可以是{c 1,c 2 }、{ c 3, c4}、{cl,c4}等等。每個循環移位也可能彼此獨立地 跳躍’即沒有分組。跳躍模式可以是固定的或被W T R U特 定的或胞元特定的信令配置的。 開環預編碼 預編碼的一種形式是開環預編碼,其中可以選擇預編碼 矩陣/向量而不帶任何回饋。舉例來說,對於高速W T R U, 使e節點B選擇將在UL中使用的預編碼器可能是不實際的 098135420 表單編號A0101 第14頁/共30頁 0993015227-0 201125304 。當使用開環預編碼時,並且如果預編碼是寬頻的或者 相同的預編碼矩陣/向量被用於大量副載波,則可以使用 上述用於對預編碼RS進行多工的方法。或者,如果預編 碼矩陣/向量被用於窄帶或少量副載波,例如,每個副載 波,那麼非預編碼後的RS可以被使用。開環和閉環預編 碼可以被更高層信令配置,並且之後相應的RS傳輸方案 可被使用。Pm η Pm Ραι 丨 +p*2w2 Equation (3) Then, the coefficient, 丄, where k = 1, ..., Nt is transmitted from each antenna. When orthogonal sequences are used as reference signals, the same matrix can be used to precode all pilot sequences to maintain orthogonality between the two sequences. The precoded pilot sequence can be multiplexed using the multiplex technique described below to perform multiplexed pilot precoding on the precoded pilot by CDM in the frequency domain. CDMA can be used in the frequency domain using CDM. , (ie, positive 098135420 form number A0101 page 10 / total 30 pages 0993015227-0 201125304 intersection sequence is used as a reference signal). In particular, orthogonal sequences can be obtained by cyclic shifting from the same square root sequence. The number of sequences is equal to the number of streams. On each subcarrier, the corresponding coefficients from the precoded CAZAC sequence are transmitted. Figure 2 shows a multiplexed method for two data streams, (two orthogonal sequences), where the shading represents a different sequence. Multicasting of precoded pilots using CDM in the frequency and time domains To increase the number of pilots, time domain spreading can be used in addition to applying CDM in the frequency domain. In LTE, the UL RS is carried on an OFDM symbol for each time slot in the two time slots in the subframe. The orthogonal pilot sequences, after being precoded, can be spread over two or more OFDM symbols by using orthogonal codes, such as Walsh codes. For example, if spread over two OFDM symbols (where each OFDM symbol is in a time slot, as in LTE), the expansion matrix D 1 can be used for time domain expansion. If you expand on three OFDM symbols, you can use the expansion matrix 卩丨 | | 1. For example, a pre-J ee /V jee coded pilot sequence can be used to implement time domain expansion using D 丨1, which is multiplied by 1 in the first 0 FD Μ symbol And after multiplying by 1 in the second 0 FD Μ symbol, it is mapped to the corresponding subcarrier, and the first 0FDM symbol is used to transmit the reference signal (expressed as RS-0FDM). In addition, after the same precoding The pilot sequence can be multiplied by 1 in the first RS-0FDM symbol 098135420 Form No. A0101 Page 11 of 30 0993015227-0 201125304 and multiplied by -丨 in the second Rs-catch (10) symbol It is mapped to the corresponding subcarrier. When time domain expansion is used in the frequency domain except for CDM, the 'time domain expansion sequence' should be known to the order except for the base sequence and cyclic shift. Multiplexing of precoded pilots in the domain (F Μ ) As shown in Figure 3, the precoded RSs can also be multiplexed in the frequency domain. Corresponding to the antenna phase of the antenna material The first precoded reference signal can be transmitted, for example, on subcarrier k, for (4) subcarriers. Transmitted, this is equivalent to setting clock 2 = 0. With frequency domain multiplexing, the same pilot sequence can be used for all data streams because orthogonality is obtained in the frequency domain. The length of the lower 'square root sequence' may be L/m, where L is the number of subcarriers used for data transmission, and 111 is the repetition factor 'ie the number of antennas or data streams. Pre-frequency in the frequency domain and the code domain The coded pilot is multiplexed (CDM and fm). This is a combination of multiplexing the precoded pilots in the frequency and code domains. A set of subcarriers is allocated for transmission of two or more. a specific precoded reference signal. The precoded reference signal is multiplexed in the code domain as described above and mapped onto these subcarriers. Different sets of subcarriers are allocated for transmission of other precoded Reference signal. An example is given here in Figure 4. The odd-numbered subcarriers are allocated for transmission of two precoded reference signals (precoded reference signals 丨 and 2). The reference signal can be generated by precoding two orthogonal sequences For example, a precoding matrix is used. Subcarriers numbered evenly can similarly be used to transmit two other precoded reference signals (pre-edited 098135420 Form No. A0101 Page 12 / Yau 30 pages, ^, 0993015227-0 Reference signals 3 and 4) after the 201125304 code. In this example, the length of the square root sequence becomes L/2, because every other subcarrier is used to transmit the sequence. Pre-coded in time The pilot multiplexed (TDM) precoded pilot can also be multiplexed only in the time domain. In this case, different precoded RSs can be transmitted on different OFDM symbols. Multiplexing in MU-MIM0 When MU-MIM0 is used for UL transmission, the antenna and WTRU can be multiplexed. In one option, if each WTRU transmits a single data stream, then the above method can be applied as if each WTRU were a different data stream. In another option, the same method can still be used if each WTRU is allowed to have multiple streams. Signaling of the cyclic shift index When multiple antennas are used for UL transmission, the cyclic shift of the sequence (the sequences used for frequency domain spreading) can be signaled to the WTRU. In the case of pre-coded pilots, the number of required cyclic shifts is equal to the number of streams, not the number of transmit antennas. This means that the number may change dynamically, so the control signaling format should be properly designed to accommodate all possible choices. Some control channel format design choices are described below. The following implementations can be implemented if separate UL grant formats are used for MU-MIM0 and Single User ΜΙΜΟ (SU-MIM0), respectively. For SU-ΜΙΜΟ UL grants, cyclic shifts can be configured with higher layer signaling. This configuration may be cell-specific or WTRU-specific. The cyclic shift can be predetermined and may not change. A UL grant format with a reserved space of up to the maximum number of streams can be used, but this can result in inefficiencies. Different UL Authorizations can be used for different numbers of data streams 098135420 Form No. A0101 Page 13 of 30 0993015227-0 201125304. For example, if you support up to four streams, you can design four different formats. This may result in an increase in the number of blind detections. Implicit signaling of cyclic shifting can be used where there is a UL grant format and e-Node B signals the index of the first cyclic shift. Other formats can be derived using equations, such as continuous cyclic shifts. For MU-MIMO UL grants, cyclic shift is signaled if there is a limit to MU-MIM0 such that the number of streams is limited to one. If there is no such restriction, then the method proposed above for SU-MIM0 can be used. If the same control signaling format is used for SU-ΜΙΜΟ and MU-MIM0, the cyclic shift can be signaled and the method proposed above can be used. If time domain expansion is used for the pilot, the orthogonal sequence index can be determined. This can be signaled in a cell-specific manner or in a WTRU-specific manner. Alternatively, the orthogonal sequence index can also be derived from other parameters. The square root sequence and cyclic shift can be changed within the sub-frame or between the sub-frames. "Cycle shift group jump" may occur between groups of cyclic shifts. For example, if there are 6 cyclic shifts and 2 of the cyclic shifts are used at a given time, the skip mode can be {c 1, c 2 }, { c 3, c4}, {cl, c4}, etc. . Each cyclic shift may also jump independently of each other' ie no packets. The skip mode can be fixed or configured by W T R U specific or cell specific signaling. Open-loop precoding One form of precoding is open-loop precoding, where precoding matrices/vectors can be selected without any feedback. For example, for high speed W T R U , it may not be practical for the eNodeB to select a precoder to be used in the UL 098135420 Form No. A0101 Page 14 of 30 0993015227-0 201125304 . When open-loop precoding is used, and if the precoding is wideband or the same precoding matrix/vector is used for a large number of subcarriers, the above method for multiplexing the precoded RS can be used. Alternatively, if the precoding matrix/vector is used for a narrow band or a small number of subcarriers, for example, each subcarrier, then a non precoded RS can be used. Open loop and closed loop precoding can be configured by higher layer signaling, and then the corresponding RS transmission scheme can be used.

用於0FDMA的RSRS for 0FDMA

當使用單載波傳輸時,如上所示,RS與資料使用時間進 ^ 行多工,(即一個或多個0FDM符號被只用於RS)。在UL 授權用於0FDMA傳輸的情況下,RS可能被限制於資源元素 (RE)範圍而不是跨越整個符號。在這種情況下,類似 於下鏈,RS可以在幾個0FM符號上傳輸。上述方法也可 以類似地被用於0FDM傳輸。When using single carrier transmission, as shown above, RS and data usage time are multiplexed (ie, one or more OFDM symbols are used only for RS). In the case of UL grants for 0FDMA transmissions, the RS may be limited to resource element (RE) ranges rather than across the entire symbol. In this case, similar to the downlink, the RS can be transmitted on several 0FM symbols. The above method can also be similarly used for OFDM transmission.

為了獲得由e節點B確定的每層的有效通道估計,某些RE 或幾組RE可被預留以用於使用的預編碼矩陣的不同列( 或行)。然後對於每層的通道估計可以使用不同組的RE 〇 來確定。RE可以在時間和/或頻率上是分離的。 或者,除了使用具有良好相關特性的不同序列,導頻可 以預編碼並以與資料相同的方式用信號發送(同時在一 組R E上)。 RE的數目和位置可能依賴於諸如速度或信號-雜訊比( SNR)等環境因素或幾何結構(geometry)、以及層數 。用於發送RS的RE可以作為廣播、胞元特定的或WTRU特 定的信令的一部分而被用信號發送。 SC和0FDMA傳輸可以由更高層信令配置。相應的RS傳輸 098135420 表單編號A0101 第15頁/共30頁 0993015227-0 201125304 方案被使用。 探測RS (SRS)多工 前述的方法可被用於在不同WTRU以及—細彻的不同天 線之間多工SRS。SRS傳輸可以是預編碼的或非預編碼的 。在LTE中,支持的最大頻寬是2〇 MHz。為了增加該頻 寬’可以聚合幾個分量載波,例如兩個2G MHz的分量載 波。當幾個分量載波被用於UL時,則WTRU功率可能不足 以同時探測所有的分量似。在這種情況下,時間多工 可被用於在不㈣間探測不同分量載波的地方。同樣, 頻率多工可以被用於_分量罐的不_帶的地方。 另外’這兩者的結合也可以被使用。 用於UL控制通道的rS傳輸 :, 在UL控制通道中’諸如發射分集等開環傳輪可被使用。 在這種情況T ’可能f要來自於财錢的非預編碼導 頻而不疋預編碼後的導頻。與UL資料通道的Μ所用方法 相同的方法可以被用於預編碼矩蟀可被認為是單位陣的 情形,陣大小為vv:, 第5圖是e節點B 500方塊圖的一個實例。e節點B 5〇〇包 括ΜΙΜΟ天線505、接收器51〇、處理器515和發射器52〇 。ΜΙΜΟ天線505包括天線元件so、、μ%、μ%和Μ、 。儘官在第5圖中畫出了4個天線元件,但擴展為更多或 更少個天線元件是可以實現的,並且對於本領域中具有 通常知識者而言應當是顯而易見的。 第6圖是WTRU 600方塊圖的一個實例。WTRU議包括 MIM0天線605、接收器610、處理器61 5和發射器620。 098135420 ΜΙΜΟ天線605包括天線元件605ι、6〇5 表單編號A0101 第16頁/共30頁 605^05/ 〇 4 0993015227-0 201125304 Ο 儘管在第6圖中畫出了 4個天線元件,但擴展為更多或更 少個天線元件是可以實現的,並且對於本領域中具有通 常知識者而言應當是顯而易見的。WTRU 600執行ΜΙΜΟ上 鏈傳輸。 WTRU 600中的處理器615被配置用於執行上面公開的任 何實施例。例如,處理器615可以被配置用於產生調變符 號、在時域執行層移位時將調變符號映射到至少兩個層 上以用於空間多工,從而使得一個輸入流中的調變符號 就可以在多個層上被多工,以及在層移位後的調變符號 上執行DFT展開。處理器615可以被配置用於在對調變符 號執行層移位(即層多工)之後的DFT展開之前或之後應 用預編碼矩陣。處理器615可以被配置用於逐區塊地執行 調變符號的層移位。調變符號的一個區塊包括一個OFDM 符號或一個時槽。處理器615可以被配置用於將預編碼矩 陣應用於藉由循環移位方根序列而產生的參考信號來產 生多個預編碼後的參考信號,並將預編碼後的參考信號 Ο 應映射在多個副載波上。 WTRU 60 0中的處理器61 5可被配置用於產生多個預編碼 參考信號(其中每個參考信號包括從其他參考信號的正 交序列循環地移位得到的正交導頻序列),並且基於參 考信號之間的循環移位分離,將CDM在頻域中應用於參考 信號。正交導頻序列可以在時域中在多個正交分頻多工 (OFDM)符號上展開。 實施例 1、 一種由WTRU實施以執行ΜΙΜΟ上鏈傳輸的方法。 2、 如實施例1所述的方法,該方法包括產生複數個調變 098135420 表單編號Α0101 第17頁/共30頁 0993015227-0 201125304 符號。 3、 如實施例2所述的方法,該方法包括將該複數個調變 符號映射到至少兩個層上以進行空間多工,同時在時域 中執行層移位,從而使得一個輸入流中的該複數個調變 符號在多個層上被多工。 4、 如實施例3所述的方法,該方法包括在該複數個層移 位後的調變符號上執行DFT展開。 5、 如實施例4所述的方法,該方法包括在該複數個DFT展 開後的調變符號上執行0FDM處理,以在多個層上產生複 數個0FDM符號。 6、 如實施例5所述的方法,該方法包括通過多個天線傳 輸該複數個0FDM符號。 7、 如實施例3 - 6中任一實施例所述的方法,該方法更包 括在時域中對該複數個調變符號進行層移位之後應用預 編碼矩陣。 8、 如實施例7所述的方法,其中該複數個調變符號是被 逐區塊地層移位的。 9、 如實施例8所述的方法,其中一個區塊中的複數個調 變符號被處理以在一個0FDM符號中傳輸。 1 0、如實施例8所述的方法,其中一個區塊中的複數個調 變符號被處理以在一個時槽中傳輸。 11、 如實施例2-10中任一實施例所述的方法,該方法更 包括將預編碼矩陣應用於藉由方根序列循環地移位所產 生的複數個參考信號來產生多個預編碼後的參考信號。 12、 如實施例11所述的方法,該方法包括將該複數個預 編碼後的參考信號映射到多個副載波上。 098135420 表單編號A0101 第18頁/共30頁 0993015227-0 201125304 13、 如實施例1所述的方法,該方法包括將預編碼矩陣應 用於藉由對方根序列循環地移位所產生的複數個參考信 號來產生多個預編碼後的參考信號。 14、 如實施例13所述的方法,該方法包括將該複數個預 編碼後的參考信號映射到多個副載波上。 15、 如實施例13-14中任一實施例所述的方法,其中該複 數個參考信號是CAZAC序列。 16、 如實施例15所述的方法,其中該複數個參考信號是 基於Zadoff-Chu序列。 Ο 17、 如實施例13-16中任一實施例所述的方法,該方法更 包括在時域中於多個0 F D Μ符號上展開該複數個預編碼後 的導頻序列。 18、 如實施例17所述的方法,其中使用綠陣「丨j 1在In order to obtain a valid channel estimate for each layer as determined by the eNodeB, certain REs or groups of REs may be reserved for different columns (or rows) of the precoding matrix used. Channel estimates for each layer can then be determined using different sets of RE 〇. REs can be separated in time and / or frequency. Alternatively, in addition to using different sequences with good correlation characteristics, the pilots can be precoded and signaled in the same manner as the data (both on a set of R Es). The number and location of REs may depend on environmental factors such as speed or signal-to-noise ratio (SNR) or geometry, and the number of layers. The RE used to transmit the RS may be signaled as part of a broadcast, cell-specific or WTRU-specific signaling. SC and OFDM transmissions can be configured by higher layer signaling. Corresponding RS transmission 098135420 Form number A0101 Page 15 of 30 0993015227-0 201125304 The scheme is used. Probing RS (SRS) Multiplexing The foregoing method can be used to multiplex SRS between different WTRUs and finely different antennas. SRS transmissions can be precoded or non-precoded. In LTE, the maximum supported bandwidth is 2 〇 MHz. In order to increase this bandwidth, several component carriers can be aggregated, for example two 2G MHz component carriers. When several component carriers are used for UL, the WTRU power may not be sufficient to simultaneously detect all components. In this case, time multiplexing can be used to detect different component carriers between (4). Similarly, frequency multiplexing can be used where the _ component tank is not. In addition, a combination of the two can also be used. rS transmission for UL control channels: In the UL control channel, an open-loop wheel such as transmit diversity can be used. In this case T' may be derived from the non-precoded pilot of the money rather than the precoded pilot. The same method as the method used for the UL data channel can be used for the case where the precoding matrix can be regarded as a unit matrix, the matrix size is vv:, and Fig. 5 is an example of the block diagram of the eNodeB 500. The eNodeB 5 includes an antenna 505, a receiver 51A, a processor 515, and a transmitter 52A. The ΜΙΜΟ antenna 505 includes antenna elements so, μ%, μ%, and Μ, . It is achievable to draw four antenna elements in Figure 5, but that expansion to more or fewer antenna elements is achievable and should be apparent to those of ordinary skill in the art. Figure 6 is an example of a block diagram of the WTRU 600. The WTRU protocol includes a MIM0 antenna 605, a receiver 610, a processor 61 5, and a transmitter 620. 098135420 ΜΙΜΟ Antenna 605 includes antenna elements 605ι, 6〇5 Form No. A0101 Page 16 of 30 605^05/ 〇4 0993015227-0 201125304 Ο Although four antenna elements are drawn in Figure 6, they are expanded to More or fewer antenna elements are achievable and will be apparent to those of ordinary skill in the art. The WTRU 600 performs an uplink transmission. Processor 615 in WTRU 600 is configured to perform any of the embodiments disclosed above. For example, processor 615 can be configured to generate a modulation symbol, map the modulation symbol to at least two layers for spatial multiplexing when performing layer shifting in the time domain, such that modulation in one input stream The symbol can be multiplexed on multiple layers and DFT unwrapped on the modulated symbols after layer shifting. Processor 615 can be configured to apply a precoding matrix before or after DFT expansion after performing layer shifting (i.e., layer multiplexing) on the modulated symbols. Processor 615 can be configured to perform layer shifting of the modulated symbols block by block. A block of modulation symbols includes an OFDM symbol or a time slot. The processor 615 may be configured to apply the precoding matrix to the reference signal generated by cyclically shifting the square root sequence to generate a plurality of precoded reference signals, and map the precoded reference signal to Multiple subcarriers. The processor 61 5 in the WTRU 60 may be configured to generate a plurality of precoded reference signals (where each reference signal includes orthogonal pilot sequences cyclically shifted from orthogonal sequences of other reference signals), and The CDM is applied to the reference signal in the frequency domain based on the cyclic shift separation between the reference signals. The orthogonal pilot sequences can be spread over multiple orthogonal frequency division multiplexing (OFDM) symbols in the time domain. Embodiment 1. A method implemented by a WTRU to perform uplink transmission. 2. The method of embodiment 1, the method comprising generating a plurality of modulations 098135420 Form Number Α 0101 Page 17 of 30 0993015227-0 201125304 Symbol. 3. The method of embodiment 2, the method comprising mapping the plurality of modulation symbols onto at least two layers for spatial multiplexing while performing layer shifting in the time domain such that an input stream is present The plurality of modulation symbols are multiplexed on multiple layers. 4. The method of embodiment 3, the method comprising performing DFT expansion on the modulation symbols after the plurality of layers are shifted. 5. The method of embodiment 4, comprising performing OFDM processing on the modulated symbols after the plurality of DFTs are expanded to generate a plurality of OFDM symbols on the plurality of layers. 6. The method of embodiment 5, the method comprising transmitting the plurality of OFDM symbols over a plurality of antennas. 7. The method as in any one of embodiments 3-6, further comprising applying a precoding matrix after layer shifting the plurality of modulated symbols in the time domain. 8. The method of embodiment 7, wherein the plurality of modulation symbols are shifted by a block-by-block formation. 9. The method of embodiment 8 wherein the plurality of modulation symbols in a block are processed for transmission in an OFDM symbol. 10. The method of embodiment 8 wherein the plurality of modulation symbols in a block are processed for transmission in a time slot. 11. The method as in any one of embodiments 2-10, further comprising applying a precoding matrix to the plurality of reference signals generated by cyclically shifting the square root sequence to generate a plurality of precodings After the reference signal. 12. The method of embodiment 11 comprising mapping the plurality of precoded reference signals onto a plurality of subcarriers. 098135420 Form No. A0101 Page 18 of 30 0993015227-0 201125304 13. The method of Embodiment 1, the method comprising applying a precoding matrix to a plurality of references generated by cyclically shifting a base sequence of the base The signal is used to generate a plurality of precoded reference signals. 14. The method of embodiment 13 comprising mapping the plurality of precoded reference signals onto a plurality of subcarriers. The method of any one of embodiments 13-14 wherein the plurality of reference signals are CAZAC sequences. 16. The method of embodiment 15 wherein the plurality of reference signals are based on a Zadoff-Chu sequence. The method of any one of embodiments 13-16, further comprising expanding the plurality of precoded pilot sequences over the plurality of 0 F D Μ symbols in the time domain. 18. The method of embodiment 17, wherein the green array "丨j 1 is used

J -L 兩個0FDM符號上展開該預編碼後的導頻序列。 19、 一種用於執行ΜΙΜΟ上鏈傳輸的WTRU。The pre-coded pilot sequence is spread on J-L two OFDM symbols. 19. A WTRU for performing uplink transmission.

20、 如實施例19所述的WTRU,該WTRU包括處理器,該處 理器被配置用於產生複數個調變符號。 21、 如實施例20所述的WTRU,其中該處理器被配置用於 將該複數個調變符號映射到至少兩個層上以進行空間多 工,同時在時域中執行層移位,使得一個輸入流中的該 複數個調變符號在多個層上被多工。 22、 如實施例21所述的WTRU,其中該處理器被配置用於 在複數個層移位後的調變符號上執行DFT展開。 23、 如實施例22所述的WTRU,其中該處理器被配置用於 在複數個DFT展開後的調變符號上執行OFDM處理,以在多 098135420 表單編號A0101 第19頁/共30頁 0993015227-0 201125304 個層上產生複數個OFDM符號。 24、 如實施例23所述的WTRU,該WTRU包括用於傳輸該複 數個0FDM符號的多個天線。 25、 如實施例21-24中任一實施例所述的WTRU,其中該 處理器被配置用於對該複數個調變符號進行層移位之後 應用預編碼矩陣。 26、 如實施例20-25中任一實施例所述的WTRU,其中該 處理器被配置用於逐區塊地執行複數個調變符號的層移 位。 27、 如實施例26所述的WTRU,其t 一個區塊中的複數個 調變符號被處理以在一個0FDM符號上傳輸。 28、 如實施例26所述的WTRU,其中一個區塊中的該複數 個調變符號被處理以在一個時槽中傳輸。 29、 如實施例2 0-28中任一實施例所述的WTRU,其中該 處理器被配置用於將預編碼矩陣應用於藉由對方根序列 循環地移位所產生的複數個參考信號來產生多個預編碼 後的參考信號,並將複數個預編碼後的參考信號映射到 多個副載波上。 30、 如實施例19所述的WTRU,該WTRU包括多個天線。 31、 如實施例30所述的WTRU,該WTRU包括處理器,該處 理器被配置用於將預編碼矩陣應用於藉由對方根序列循 環地移位所產生的複數個參考信號來產生多個預編碼後 的參考信號,並將複數個預編碼後的參考信號映射到多 個副載波上。 32、 如實施例31所述的WTRU,其中該複數個參考信號是 CAZAC序列。 098135420 表單編號A0101 第20頁/共30頁 0993015227-0 201125304 33、 如實施例32所述的WTRU,其中該複數個參考信號是 基於Zadoff-Chu序列。 34、 如實施例31-33中任一實施例所述的WTRU,其中該 處理器被配置用於在時域中於多個OFDM符號上展開複數 個預、編碼後的導頻序列。 [0005] 35、 如實施例34所述的WTRU,其中使用矩陣|-|丨在 1 1 • I ~ 1· 兩個OFDM符號上展開該預編碼後的導頻序列。 Ο20. The WTRU of embodiment 19, the WTRU comprising a processor, the processor configured to generate a plurality of modulation symbols. 21. The WTRU as in embodiment 20 wherein the processor is configured to map the plurality of modulated symbols onto at least two layers for spatial multiplexing while performing layer shifting in the time domain such that The plurality of modulation symbols in an input stream are multiplexed on multiple layers. 22. The WTRU of embodiment 21 wherein the processor is configured to perform DFT expansion on a plurality of layer shifted modulation symbols. 23. The WTRU as in embodiment 22, wherein the processor is configured to perform OFDM processing on the plurality of DFT-expanded modulation symbols to include 098,135,420, form number A0101, page 19, total 30 pages, 0993015227- 0 201125304 Multiple OFDM symbols are generated on multiple layers. 24. The WTRU of embodiment 23, the WTRU comprising a plurality of antennas for transmitting the plurality of OFDM symbols. The WTRU as in any one of embodiments 21-24, wherein the processor is configured to apply a precoding matrix after layer shifting the plurality of modulated symbols. The WTRU as in any one of embodiments 20-25, wherein the processor is configured to perform layer shifting of the plurality of modulated symbols block by block. 27. The WTRU of embodiment 26 wherein a plurality of modulation symbols in a block are processed for transmission on an OFDM symbol. 28. The WTRU of embodiment 26 wherein the plurality of modulation symbols in a block are processed for transmission in a time slot. The WTRU as in any one of embodiments 2-28, wherein the processor is configured to apply a precoding matrix to a plurality of reference signals generated by cyclically shifting a base sequence of the base. A plurality of precoded reference signals are generated, and the plurality of precoded reference signals are mapped onto a plurality of subcarriers. 30. The WTRU as in embodiment 19, the WTRU comprising a plurality of antennas. 31. The WTRU as in embodiment 30, the WTRU comprising a processor configured to apply the precoding matrix to the plurality of reference signals generated by cyclically shifting the base root sequence to generate the plurality of reference signals The precoded reference signal maps the plurality of precoded reference signals to a plurality of subcarriers. 32. The WTRU as in embodiment 31 wherein the plurality of reference signals are CAZAC sequences. 098135420 Form No. A0101 Page 20 of 30 0993015227-0 201125304 33. The WTRU as in embodiment 32, wherein the plurality of reference signals are based on a Zadoff-Chu sequence. The WTRU as in any one of embodiments 31-33, wherein the processor is configured to develop a plurality of pre-coded pilot sequences over a plurality of OFDM symbols in the time domain. [0005] 35. The WTRU as in embodiment 34, wherein the precoded pilot sequence is spread over the 1 1 • I ~ 1· two OFDM symbols using a matrix |-|丨. Ο

雖然本發明的特徵和元件以特定的結合在以上進行了描 述,但每個特徵或元件可以在沒有其他特徵和元件的情 況下單獨使用,或在與或不與本發明的其他特徵和元件 結合的各種情況下使用。本發明提供的方法或流程圖可 以在由通用電腦或處理器執行的電腦程式、軟體或韌體 中實施,其中所述電腦程式、軟體或韌體是以有形的方 式包含在電腦可讀存儲媒體中的,關於電腦可讀儲存媒 體的實例包括唯讀記憶體(ROM)、隨機存取記憶體( RAM)、暫存器、快取記憶體、半導體記憶裝置、内部硬 碟和可移動磁片之類的磁性媒體、磁光媒體以及CD-ROM 碟片和數位多功能光碟(DVD)之類的光學媒體。 舉例來說,適當的處理器包括:通用處理器、專用處理 器、傳統處理器、數位信號處理器(DSP)、多個微處理 器、與DSP核心相關聯的一或多個微處理器、控制器、微 控制器、專用積體電路(ASIC)、現場可編程閘陣列( FPGA)電路、其他任何一種積體電路(1C)及/或狀態機 098135420 表單編號A0101 第21頁/共30頁 0993015227-0 201125304 與軟體相關的處理器可用於實現射頻收發器,以便在無 線發射接收單元(WTRU)、使用者設備(UE)、終端、 基地台、無線電網路控制器(RNC)或是任何一種主機電 腦中加以使用。WTRU可以與採用硬體及/或軟體形式實施 的模組結合使用,例如相機、攝像機模組、視訊電話、 揚聲器電話、振動裝置、揚聲器、麥克風、電視收發器 、免持耳機、鍵盤、藍芽®模組、調頻(FM)無線電單元 、液晶顯示器(LCD)顯示單元、有機發光二極體(0LED )顯示單元、數位音樂播放器、媒體播放器、視訊遊戲 機模組、網際網路瀏覽器及/或任何一種無線區域網路( WLAN)模組或無線超寬頻(UWB)模組。 【圖式簡單說明】 [0006] 從以下描述中可以更詳細地理解本發明,這些描述是以 實例的方式給出的,並且可以結合所附圖式加以理解, 其中: 第1圖示出了碼字-載波映射方案; 第2圖示出了與正交碼進行多工(CDM); 第3圖示出了在頻率中進行多工(FDM);以及 第4圖示出了使用FDM和CDM進行多工; 第5圖示出了一個演進型節點B ( e節點B)的方塊圖的實 例;以及 第6圖示出了 WTRU方塊圖的實例。 【主要元件符號說明】 098135420 表單編號A0101 第22頁/共30頁 0993015227-0 201125304 [0007]Although the features and elements of the present invention are described above in terms of specific combinations, each feature or element can be used alone or in combination with other features and elements of the present invention without or without other features and elements. Used in various situations. The method or flowchart provided by the present invention can be implemented in a computer program, software or firmware executed by a general purpose computer or processor, wherein the computer program, software or firmware is tangibly embodied in a computer readable storage medium. Examples of computer readable storage media include read only memory (ROM), random access memory (RAM), scratchpad, cache memory, semiconductor memory device, internal hard disk, and removable magnetic disk. Magnetic media such as magnetic media, magneto-optical media, and CD-ROM discs and digital versatile discs (DVDs). Suitable processors, for example, include: general purpose processors, special purpose processors, conventional processors, digital signal processors (DSPs), multiple microprocessors, one or more microprocessors associated with a DSP core, Controller, Microcontroller, Dedicated Integrated Circuit (ASIC), Field Programmable Gate Array (FPGA) Circuit, any other integrated circuit (1C) and/or state machine 098135420 Form No. A0101 Page 21 of 30 0993015227-0 201125304 A software-related processor can be used to implement a radio frequency transceiver for use in a wireless transmit receive unit (WTRU), user equipment (UE), terminal, base station, radio network controller (RNC), or any Used in a host computer. The WTRU may be used in conjunction with modules implemented in hardware and/or software, such as cameras, camera modules, video phones, speaker phones, vibration devices, speakers, microphones, television transceivers, hands-free headsets, keyboards, Bluetooth ® module, FM radio unit, liquid crystal display (LCD) display unit, organic light emitting diode (0LED) display unit, digital music player, media player, video game console module, internet browser And/or any wireless local area network (WLAN) module or wireless ultra-wideband (UWB) module. BRIEF DESCRIPTION OF THE DRAWINGS [0006] The present invention may be understood in more detail from the following description, which is given by way of example, and can be understood in conjunction with the accompanying drawings, wherein: FIG. Codeword-carrier mapping scheme; Figure 2 shows multiplexing with orthogonal codes (CDM); Figure 3 shows multiplexing in frequency (FDM); and Figure 4 shows the use of FDM and The CDM performs multiplexing; Figure 5 shows an example of a block diagram of an evolved Node B (eNode B); and Figure 6 shows an example of a WTRU block diagram. [Main component symbol description] 098135420 Form number A0101 Page 22 of 30 0993015227-0 201125304 [0007]

DFT :離散傅立葉變換 OFDM :正交分頻多工 505、605 : ΜΙΜΟ天線 ΜΙΜΟ :多輸入多輸出 505,、5059、505q、5054 :天線元件 510、61 0 :接收器 515、615 :處理器 520、620 :發射器DFT: Discrete Fourier Transform OFDM: Orthogonal Frequency Division Multiplexing 505, 605: ΜΙΜΟ Antenna ΜΙΜΟ: Multiple Input Multiple Output 505, 5059, 505q, 5054: Antenna Element 510, 61 0: Receiver 515, 615: Processor 520 , 620: transmitter

BOSi、6052、6053、6054 :天線元件 WTRU、600 :無線發射/接收單元 e節點B、500 :演進型節點B 0993015227-0 098135420 表單編號A0101 第23頁/共30頁BOSi, 6052, 6053, 6054: Antenna Element WTRU, 600: Wireless Transmitting/Receiving Unit eNodeB, 500: Evolved Node B 0993015227-0 098135420 Form Number A0101 Page 23 of 30

Claims (1)

201125304 七、申請專利範圍: 1 .種由-無線發射/接收單元(wtru)實施以執行多輸入 多輸出(ΜΙΜΟ)上鏈傳輸的方法,該方法包括: 產生複數個調變符號; 將該複數個調變符號映射到至少兩個層上以進行空間多工 ,同時在時域中執行層移位,使得—個輸人流中的該複數 個調變符號在多個層上被多工; Ζ層移位後的調變付號上執行離散傅立葉變換⑽τ ) ’展開; 在該m展開後的調變符號上執行正交分頻多工(〇F.DM) 處理,以在多個層上產生複數個OFDM符號;以及 通過多個天線傳輸該0FDM符號。 2 ·如申請專利範圍第i項所述的方法,該方法更包括: 在時域中對該複數個調變符號進行層移位之後應用一預編 碼矩陣。 3 ·如申請專利範圍第工項所述的方法,其中該複數個調變符 號被逐區塊地層移位。 4 .如申請專利範圍第3項所述的方法,其中_個區塊中的複 數個複數個調變符號被處理以在一個主交分頻多工( 0FDM)符號中傳輸。 、 5 ·如申請專利範圍第3項所述的方法,其中一個區塊中的複 數個調變符號被處理以在_個時槽中傳輸。 6 .如申請專利範圍第1項所述的方法,該方法更包括: 將一預編碼矩陣應用於藉由對-方根序列循環地移位所產 生的複數個參考信號來產生複數個預編碼後的參考信號; 098135420 表單編號A0101 第24頁/共3〇頁 0993015227-0 201125304 Ο ίο · 11 Ο 098135420 以及 將該複數個預編碼後的參考信號映射到多個副載波上。 —種由一無線發射/接收單元(WTRU)實施以執行多輸入 多輸出(ΜΙΜΟ)上行鏈路傳輸的方法,該方法包括: 將一預編碼矩陣應用於藉由對一方根序列循環地移位所產 生的複數個參考信號來產生多個預編碼後的參考信號;以 及 υ 將該複數個預編碼後的參考信號映射到多個副載波上。 气申請專利範圍第7項所述的方法,其中該複數個參考信 號是恆定振幅零自相關(C1ZAC)序列。 如申請專利範圍第7項所述的方法,其中該複數個參考信 號基於Zadoff-Chu序列。 如申晴專利範圍第7項所述的方法,該方法遠包括: 在時域中於多個正交分頻多工(0FDM)符號上展開該複 數個預編碼後的導頻序列。 、 如申請專利範圍第10項所述的方法,其中使用一矩陣 1 1,在兩個OFDM符號上展開該複數個預編碼後的導 J 1 L 1 j 頻序列。 —種用於執行多輸入多輸出(ΜΙΜΟ)上鏈傳輸的無線發 射/接收單元(WTRU),該WTRU包括: 處理器,被配置用於產生複數個調變符號,將該複數個 調變符號映射到至少兩個層上以進行空間多工,同時在時 域中執行層移位’使得-個輸入流中的該複數個調變符號 在多個層上被多工,在該層移位後的調變符號上執行離散 傅立葉變換(DFT)展開,並且在該複數個DFT展開後的 表單蝙號A0101 第25頁/共30頁 ' 0993015227-0 201125304 , 調變符號上執行正交分頻多工(〇FDM)處理以在多個層 上產生複數個0FDM符號;以及 多個天線’用於傳輸該複數個〇FDM符號。 13 ·如申請專利範圍第12項所述的町㈣,其中該處理器被配 置用於對該複數個調變符號進行層移位之後應用一預編碼 矩陣。 14 ·如申請專利範圍第12項所述的WTRU,其中該處理器被配 置用於逐區塊執行該複數個調變符號的層移位。 15 ·如申請專利範圍第14項所述的耵咄,其中一個區塊中的 複數個调變符破被處理=;以在一個..正交分頻多工(0FDM) 符號中傳輸。 16 ·如申請專利範圍第丨4項所述的方法,其中一個區塊中的複 數個調變符號被處理以在一個時槽中傳輸。 17 ·如申請專利範圍第12項所述的”抓,其中該處理器被配 置甩於將一預編碼矩陣應用於藉由對一方根序列循環地移 位所產生的複數個參考.信號來產生.多個預編碼後的參考信 號,以及將該複數個預編碼後的參考信號映射到多個副載 波上。 18 種用於執行多輸入多輸出(ΜΙΜΟ )上鏈傳輸的無線發 射/接收單元(WTRU),該WTRU包括: 多個天線;以及 一處理器,被配置用於將一預編碼矩陣應用於藉由對一方 根序列循環地移位所產生的複數個參考信號來產生多個預 編碼後的參考信號,並且將該複數個預編碼後的參考信號 映射到多個副載波上。 19 . 098135420 如申請專利範圍第18項所述_TRU,其中該複數個參考 表單編號A0101 第26頁/共30頁 ' 0993015227-0 201125304 信號是恆定振幅零自相關(CAZAC)序列。 20 , 21 . 22 . Ο 如申請專利範圍第18項所述的WTKII,其中該複數個參考 號基於Zadoff-Chu序列。 如申請專利範圍第18項所述的WTRU,其中該處理器被配 置用於在時域中於多個正交分頻多工(〇FDM)符號上展 開該複數個預編碼後的導頻序列。 如申請專利範圍第21項所述的WTRU,其中使用一矩陣 "I 1 在兩個0FDM符號上展開該複數個預編碼後的導 一 | 頻序列。 ο 098135420 表單編號A0101 第27頁/共30頁 0993015227-0201125304 VII. Patent application scope: 1. A method implemented by a wireless transmitting/receiving unit (wtru) to perform multi-input multiple-output (ΜΙΜΟ) uplink transmission, the method comprising: generating a plurality of modulation symbols; The modulation symbols are mapped onto at least two layers for spatial multiplexing while performing layer shifting in the time domain such that the plurality of modulation symbols in the input stream are multiplexed on multiple layers; Performing a discrete Fourier transform (10) τ ) 'expansion on the modulated shift sign after the layer shift; performing orthogonal frequency division multiplexing (〇F.DM) processing on the m-modulated modulation symbols to be on multiple layers Generating a plurality of OFDM symbols; and transmitting the OFDM symbols over a plurality of antennas. 2. The method of claim i, wherein the method further comprises: applying a precoding matrix after layer shifting the plurality of modulated symbols in the time domain. 3. The method of claim 2, wherein the plurality of modulation symbols are shifted by block-by-block formation. 4. The method of claim 3, wherein the plurality of modulation symbols in the _ blocks are processed for transmission in a primary crossover multiplex (OFDM) symbol. 5. The method of claim 3, wherein the plurality of modulation symbols in one block are processed to be transmitted in the _ time slots. 6. The method of claim 1, further comprising: applying a precoding matrix to the plurality of reference signals generated by cyclically shifting the pair-square root sequence to generate a plurality of precodings Subsequent reference signal; 098135420 Form number A0101 Page 24/Total 3 page 0993015227-0 201125304 Ο ίο · 11 Ο 098135420 and map the plurality of precoded reference signals onto multiple subcarriers. - A method implemented by a wireless transmit/receive unit (WTRU) to perform multiple input multiple output (MIMO) uplink transmission, the method comprising: applying a precoding matrix cyclically by shifting a root sequence Generating a plurality of reference signals to generate a plurality of precoded reference signals; and mapping the plurality of precoded reference signals onto the plurality of subcarriers. The method of claim 7, wherein the plurality of reference signals are constant amplitude zero autocorrelation (C1ZAC) sequences. The method of claim 7, wherein the plurality of reference signals are based on a Zadoff-Chu sequence. The method of claim 7, wherein the method further comprises: expanding the plurality of precoded pilot sequences over a plurality of orthogonal frequency division multiplexing (OFDM) symbols in the time domain. The method of claim 10, wherein the plurality of precoded J 1 L 1 j frequency sequences are spread over the two OFDM symbols using a matrix 1-1. a wireless transmit/receive unit (WTRU) for performing multiple input multiple output (ΜΙΜΟ) uplink transmission, the WTRU comprising: a processor configured to generate a plurality of modulated symbols, the plurality of modulated symbols Mapping to at least two layers for spatial multiplexing while performing layer shifting in the time domain 'so that the plurality of modulated symbols in the one input stream are multiplexed on multiple layers, shifted at that level Discrete Fourier Transform (DFT) expansion is performed on the subsequent modulation symbols, and orthogonal division is performed on the modulation symbols after the complex DFT unfolded form bat number A0101 page 25/30 pages ' 0993015227-0 201125304 Multiplex (〇FDM) processing to generate a plurality of OFDM symbols on multiple layers; and multiple antennas 'for transmitting the plurality of 〇FDM symbols. 13. The town (four) as described in claim 12, wherein the processor is configured to apply a precoding matrix after layer shifting the plurality of modulation symbols. The WTRU as claimed in claim 12, wherein the processor is configured to perform layer shifting of the plurality of modulated symbols block by block. 15 • As described in item 14 of the patent application, a plurality of modulators in one of the blocks are processed = to be transmitted in an .. Orthogonal Frequency Division Multiplexing (OFDM) symbol. 16. The method of claim 4, wherein the plurality of modulation symbols in one block are processed for transmission in a time slot. 17. The "scratch" described in claim 12, wherein the processor is configured to apply a precoding matrix to a plurality of reference signals generated by cyclically shifting a root sequence. a plurality of precoded reference signals and mapping the plurality of precoded reference signals onto a plurality of subcarriers. 18 wireless transmit/receive units for performing multiple input multiple output (ΜΙΜΟ) uplink transmission a (WTRU), the WTRU comprising: a plurality of antennas; and a processor configured to apply a precoding matrix to generate a plurality of pre-references by a plurality of reference signals generated by cyclically shifting a root sequence An encoded reference signal, and mapping the plurality of precoded reference signals onto a plurality of subcarriers. 19. 098135420 _TRU as described in claim 18, wherein the plurality of reference form numbers A0101 26 Page / Total 30 pages ' 0993015227-0 201125304 The signal is a constant amplitude zero autocorrelation (CAZAC) sequence. 20 , 21 . 22 . WT WTKII as described in claim 18, where The plurality of reference numbers are based on a Zadoff-Chu sequence, such as the WTRU of claim 18, wherein the processor is configured to deploy on a plurality of orthogonal frequency division multiplexing (〇FDM) symbols in the time domain. The plurality of pre-coded pilot sequences, such as the WTRU of claim 21, wherein a plurality of precoded pilot-to-frequency sequences are spread over two OFDM symbols using a matrix "I1 ο 098135420 Form No. A0101 Page 27 / Total 30 Page 0993015227-0
TW98135420A 2008-10-20 2009-10-20 Method and apparatus for performing uplink transmission techniques with multiple carriers and reference signals TW201125304A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10685708P 2008-10-20 2008-10-20
US11078908P 2008-11-03 2008-11-03

Publications (1)

Publication Number Publication Date
TW201125304A true TW201125304A (en) 2011-07-16

Family

ID=41528735

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98135420A TW201125304A (en) 2008-10-20 2009-10-20 Method and apparatus for performing uplink transmission techniques with multiple carriers and reference signals

Country Status (3)

Country Link
AR (1) AR073834A1 (en)
TW (1) TW201125304A (en)
WO (1) WO2010048129A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101689039B1 (en) * 2010-01-07 2017-01-03 엘지전자 주식회사 Method and apparatus of generating reference singal sequence in wireless communication system
US8687728B2 (en) 2010-05-13 2014-04-01 Qualcomm Incorporated Cubic-metric based frequency selective precoding for uplink in MIMO communication system
WO2012149178A2 (en) * 2011-04-29 2012-11-01 Interdigital Patent Holdings, Inc. Open loop spatial processing
WO2018126474A1 (en) 2017-01-09 2018-07-12 Qualcomm Incorporated Transmitting multiplexed sounding reference signal ports in new radio
TWI808623B (en) * 2017-03-22 2023-07-11 美商內數位專利控股公司 Methods and apparatus for reference signal (rs) transmission for next generation wireless communication systems
EP3776895A1 (en) * 2018-04-13 2021-02-17 Telefonaktiebolaget LM Ericsson (publ) Reference signaling for radio access networks
CN110535594B (en) * 2018-10-22 2022-11-01 中兴通讯股份有限公司 Pilot sequence configuration method and device, electronic equipment and storage medium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8130857B2 (en) * 2006-01-20 2012-03-06 Qualcomm Incorporated Method and apparatus for pilot multiplexing in a wireless communication system
US7852811B2 (en) * 2006-02-03 2010-12-14 Freescale Semiconductor, Inc. Communication system with MIMO channel estimation using peak-limited pilot signals

Also Published As

Publication number Publication date
WO2010048129A1 (en) 2010-04-29
AR073834A1 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
USRE49159E1 (en) Method and apparatus of transmitting reference signal for uplink transmission
US8218663B2 (en) Reference signal resource allocation for single user MIMO
CA2759204C (en) Operation of terminal for multi-antenna transmission
US9154276B2 (en) Wireless communication system, mobile station apparatus, and base station apparatus using demodulation reference signal
CN107005320B (en) For channel information acquisition, signal detection and the method for transmission in multi-user wireless communication system
US8514783B2 (en) Method and apparatus for transmitting signal in wireless communication system
KR101497154B1 (en) Apparatus and method for data transmission using transmit diversity in sc-fdma system
CN109526246A (en) Data transmission method for uplink, signaling method, apparatus and system
KR101567078B1 (en) Apparatus and method for data transmission using multiple antenna
US8718168B2 (en) Method of transmitting uplink DM-RS multiplexed with data in uplink MIMO transmission
NZ552150A (en) Multiplexing for a multi-carrier cellular communication system
KR101467586B1 (en) Apparatus and method for data transmission using transmit diversity in wireless system
BRPI0813868B1 (en) TRANSMISSION METHODS WITH RETARDING DIVERSITY AND SPACE-FREQUENCY DIVERSITY
US8837393B2 (en) Method and apparatus for transmitting data in radio communication system
US11212025B2 (en) Transmitting apparatus, receiving apparatus, method, and recording medium
KR101440628B1 (en) Apparatus and method for data transmission using transmit diversity in sc-fdma system
TW201110594A (en) Method and apparatus for orthogonal pilot tone mapping in multiple-in and multiple-out (MIMO) and spatial division multiple access (SDMA) systems
WO2014114113A1 (en) Dmrs processing method and device
TW201125304A (en) Method and apparatus for performing uplink transmission techniques with multiple carriers and reference signals
CN104602358A (en) Wireless communication equipment providing acess of wireless communication system, and method
CA2786700A1 (en) Method and apparatus for generating a reference signal sequence in a wireless communication system
WO2008151534A1 (en) Multi-antennae system and data transmitting method
WO2018211821A1 (en) Communication device, base station, method and recording medium
US11477053B2 (en) Method and apparatus for estimating channel in wireless communication system
WO2007128199A1 (en) Pilot multiplexing method, apparatus and radio communication system of multiple antennas