TW201011620A - Sensing circuit for capacitive touch panel - Google Patents

Sensing circuit for capacitive touch panel Download PDF

Info

Publication number
TW201011620A
TW201011620A TW98110713A TW98110713A TW201011620A TW 201011620 A TW201011620 A TW 201011620A TW 98110713 A TW98110713 A TW 98110713A TW 98110713 A TW98110713 A TW 98110713A TW 201011620 A TW201011620 A TW 201011620A
Authority
TW
Taiwan
Prior art keywords
sensing
capacitance value
coupled
reference signal
unit
Prior art date
Application number
TW98110713A
Other languages
Chinese (zh)
Other versions
TWI420374B (en
Inventor
Tse-Hung Wu
Original Assignee
Tpo Displays Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tpo Displays Corp filed Critical Tpo Displays Corp
Priority to US12/554,635 priority Critical patent/US8305360B2/en
Publication of TW201011620A publication Critical patent/TW201011620A/en
Application granted granted Critical
Publication of TWI420374B publication Critical patent/TWI420374B/en

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Electronic Switches (AREA)

Abstract

A sensing circuit for a capacitive touch panel is disclosed. By adding a path for a noise to be passed, the noise is differentially processed through two paths which have the same electrical conditions with each other. The noise is decreased significantly, and a sensing signal can be sensed correctly.

Description

201011620 、 s • 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種感測電路’尤其是一種用於電容式觸控 面板之感測電路。 【先前技術】 目前觸控面板的應用十分廣泛,如手機、公共場合提供資 訊查詢之螢幕、自動提款機等,其直覺式的操作取代鍵盤及滑 鼠的功能,使用上相當方便。 睛參閱第1圖以及第2圖,係繪示兩種電容式觸控面板 150、250感測被觸碰位置的示意圖。在第1圖中,電容式觸 控面板150包括X方向及Y方向的感測線,即感測線χι至感 測線X4以及感測線丫1至感測線丫4’各感測線分別具有複數個 感測電極(未圖示)’各感測電極之感測電容值係以感測電容 csense表示。當無觸碰事件發生時,該感測電容Csense之值為 零,有觸碰事件發生時,該感測電容Csense之值則不等於零。 m 第1圖的電容式觸控面板150係藉由順序(SeqUentja丨)掃描各 掃為線的方式來感測被觸碰的位置。如第^圖所示,掃描順序 從感測線丫1掃描至感測線丫4,然後再從感測線心掃描至感測 線X4。舉例而言,當感測線X4及感測線丫1的交又點被觸碰時, 藉由感測電容csense之電容值的變化,而得知被觸碰的位置。 另一種感測方式僅掃描單一方向的掃描線,未掃描的方向 則輪入激發訊號(stimulating Signal),如第2圖所示,電容式 觸控面板250同樣包括X方向及γ方向的感測線,即感測線 Xl至感測線X4以及感測線丫1至感測線丫4,掃描順序從感測線 Xl掃描至感測線X4’而感測線A至感測線丫4直接輸入激發訊 3 201011620 ' 號。即感測線丫1輸入激發訊號,依序掃描感測線X1至感測線 父4 ’接著感測線丫2輸入激發訊號,再依序掃描感測線父彳至感 測線X4 ’依此類推❶感測電容Ctrans所代表的是感測線X,及感 測線丫1之間的耦合電容值’感測線X1及感測線丫1交又點被觸 碰與未被觸碰時,感測電容Ctrans具有不同的值。如同第】圖, 藉由檢查何處的感測電容Ct rans 之電容值產生變化,因而得知 被觸碰的位置。 睛參閱第3圖,係綜合上述概略緣示習知技術中感測電路 ^ 100之方塊圓。感測電路1〇〇包括感測單元102(感測電極)、 感測訊號產生單元104以及積分器106。感測單元1〇2具有第 1圖的感測電容Csense或第2圖的感測電容Ctrans所表示的用 於指示有無觸碰發生的電容值,當第1圖之電容式觸控面板 150或第2圖之電容式觸控面板250被觸碰時,感測單元1〇2 的電容值改變,感測訊號產生單元1 〇4則根據電容值變化產生 一感測訊號’該感測訊號為電壓訊號,輸入至積分器1〇6執行 積分’並將積分結果輸出以判斷被觸碰的位置。 ❹ 然而’無論是第1圖之電容式觸控面板彳5〇或第2圖之電 容式觸控面板250 ’皆存在著雜訊影響感測訊號的問題。如此 項領域中所泛知者’感測單元102係製作於感測電極基板(未 圖示)上,而感測訊號產生單元1 〇4及積分器彳〇6則製作於液 晶面板之陣列(Array)基板(未圖示)上。感測電極基板及液晶面 板之陣列基板間具有一共同電壓電極(C〇mmon Electrode;未 圖示)用以提供液晶面板操作時所需之電壓準位。當液晶面板操 作時’共同電壓電極所提供的一共通電壓訊號不乾淨,亦即含 有雜訊’例如驅動液晶面板時源極匯流排(s〇urce Bus ;未圖 示)之預充電(Pre-Charge)以及開關的導通及斷開動作等等會 201011620 產生雜訊,此雜訊會進入第3圖之感測電路100 ’容易造成感 測電路100無法感測被觸碰的位置或感測錯誤的問題發生。 因此需要-種方法解決上述雜訊影響感測訊號的問題。 【發明内容】 本發明之目的在於提供一種用於電容式觸#面板之感 測電路,藉由增加-路徑以供雜訊通過,使雜訊經由兩電氣條 件相同的路徑作差動處理後,能大幅減低雜訊的大小,使感測 ^5 訊號能被正確的感測。 根據本發明之一種用於電容式觸控面板之感測電路,包括 一感測訊號部、一參考訊號部以及一積分器。感測訊號部用以 基於電容式觸控面板之電容值及接收之一雜訊,以產生一感測 訊號,該電容式觸控面板之電容值在被觸碰以及未被觸碰的情 況下不同。參考訊號部用以接收該雜訊並且輸出一參考訊號, 且具有與感測訊號部相同之電氣條件。積分器用以接收感測訊 號以及參考訊號’將感測訊號以及參考訊號予以相減,並產生 Φ 一輸出訊號。 根據本發明之一種用於電容式觸控面板之感測電路,包括 一感測訊號路徑、一參考訊號路徑以及一第一差動放大器。感 測訊號路徑用以基於電容式觸控面板之電容值及接收之一雜 訊’以產生一感測訊號,該電容式觸控面板之電容值在被觸碰 以及未被觸碰的情況下不同。參考訊號路徑用以接收該雜訊並 且輸出一參考訊號,且具有與感測訊號路徑相同之電氣條件。 第一差動放大器用以接收感測訊號以及參考訊號,將感測訊號 以及參考訊號予以相減,並產生一輸出訊號。 201011620 【實施方式】 以下將參照所附圖式詳細說明本發明之技術内容。 請參閱第4圖,係繪示根據本發明之感測電路4〇〇的方塊 圖。感測電路400能夠降低電容式觸控面板(未圖示)中因共同 電壓電極440而產生的雜訊Snoise影響。感測電路400基本上 包括一感測訊號部411'一參考訊號部421以及一積分器406。 感測訊號部411用以基於電容式觸控面板之電容值及接收之雜 訊Sn〇ise產生一感測訊號St。電容式觸控面板之電容值在被觸 ^ 碰以及未被觸碰的情況下不同。參考訊號部421用以接收雜訊201011620, s. 6. Description of the Invention: [Technical Field] The present invention relates to a sensing circuit', particularly a sensing circuit for a capacitive touch panel. [Prior Art] At present, touch panels are widely used, such as mobile phones, screens for providing information inquiry in public places, automatic teller machines, etc. The intuitive operation replaces the functions of the keyboard and the mouse, and is quite convenient to use. Referring to Figures 1 and 2, there are shown schematic diagrams of two capacitive touch panels 150, 250 sensing the touched position. In FIG. 1 , the capacitive touch panel 150 includes sensing lines in the X direction and the Y direction, that is, the sensing lines χ to the sensing lines X4 and the sensing lines 至 1 to □ 4 ′ each of the sensing lines respectively have a plurality of sensing lines. The sensing capacitance values of the electrodes (not shown)' respective sensing electrodes are represented by the sensing capacitance csense. When the no-touch event occurs, the value of the sensing capacitor Csense is zero. When a touch event occurs, the value of the sensing capacitor Csense is not equal to zero. m The capacitive touch panel 150 of Fig. 1 senses the touched position by scanning each of the scan lines into a sequence (SeqUentja丨). As shown in Fig. 2, the scanning order is scanned from the sensing line 丫1 to the sensing line 丫4, and then scanned from the sensing line center to the sensing line X4. For example, when the intersection of the sensing line X4 and the sensing line 丫1 is touched, the touched position is known by sensing the change in the capacitance value of the capacitor csense. Another sensing method scans only the scanning lines in a single direction, and the unscanning direction turns into a stimulating signal. As shown in FIG. 2, the capacitive touch panel 250 also includes sensing lines in the X direction and the γ direction. That is, the sensing line X1 to the sensing line X4 and the sensing line 丫1 to the sensing line 丫4, the scanning order is scanned from the sensing line X1 to the sensing line X4' and the sensing line A to the sensing line 丫4 are directly input to the excitation signal 3 201011620 '. That is, the sensing line 丫1 inputs the excitation signal, sequentially scans the sensing line X1 to the sensing line parent 4', then the sensing line 丫2 inputs the excitation signal, and then sequentially scans the sensing line father to the sensing line X4' and so on. Ctrans represents the sensing line X, and the coupling capacitance value between the sensing line '1. The sensing line C1 has a different value when the sensing line X1 and the sensing line 丫1 are touched and untouched. . As shown in the figure, the position of the touched position is known by checking where the capacitance of the sensing capacitor Ct rans changes. Referring to Fig. 3, the square circle of the sensing circuit ^ 100 in the conventional technique is integrated. The sensing circuit 1A includes a sensing unit 102 (sensing electrode), a sensing signal generating unit 104, and an integrator 106. The sensing unit 1〇2 has the sensing capacitance Csense of FIG. 1 or the sensing capacitance Ctrans of FIG. 2 for indicating the presence or absence of a capacitance value, when the capacitive touch panel 150 of FIG. 1 or When the capacitive touch panel 250 of FIG. 2 is touched, the capacitance value of the sensing unit 1 〇 2 is changed, and the sensing signal generating unit 1 〇 4 generates a sensing signal according to the change of the capacitance value. The voltage signal is input to the integrator 1〇6 to perform the integral' and the integral result is output to determine the position to be touched. ❹ However, the capacitive touch panel 彳5〇 of Figure 1 or the capacitive touch panel 250' of Figure 2 has the problem of noise affecting the sensing signal. As is well known in the art, the sensing unit 102 is fabricated on a sensing electrode substrate (not shown), and the sensing signal generating unit 1 〇 4 and the integrator 彳〇 6 are fabricated in an array of liquid crystal panels ( Array) on the substrate (not shown). A common voltage electrode (not shown) is provided between the sensing electrode substrate and the array substrate of the liquid crystal panel to provide a voltage level required for operation of the liquid crystal panel. When the liquid crystal panel is operated, the common voltage signal provided by the common voltage electrode is not clean, that is, it contains noise. For example, the pre-charging of the source busbar (not shown) when driving the liquid crystal panel (Pre- Charge) and the on and off actions of the switch will generate noise in 201011620. This noise will enter the sensing circuit 100 of FIG. 3 'Easy to cause the sensing circuit 100 to not sense the touched position or the sensing error. The problem has happened. Therefore, a method is needed to solve the above problem that the noise affects the sensing signal. SUMMARY OF THE INVENTION It is an object of the present invention to provide a sensing circuit for a capacitive touch panel by adding a path for noise to pass through, so that the noise is differentially processed through two paths having the same electrical condition. It can greatly reduce the size of the noise, so that the sensing ^5 signal can be correctly sensed. A sensing circuit for a capacitive touch panel according to the present invention includes a sensing signal portion, a reference signal portion, and an integrator. The sensing signal portion is configured to generate a sensing signal based on the capacitance value of the capacitive touch panel and receive a noise, and the capacitance value of the capacitive touch panel is touched and untouched. different. The reference signal portion is configured to receive the noise and output a reference signal, and has the same electrical condition as the sensing signal portion. The integrator is configured to receive the sensing signal and the reference signal to subtract the sensing signal and the reference signal, and generate a Φ-output signal. A sensing circuit for a capacitive touch panel according to the present invention includes a sensing signal path, a reference signal path, and a first differential amplifier. The sensing signal path is used to generate a sensing signal based on the capacitance value of the capacitive touch panel and receiving one of the noises, and the capacitance value of the capacitive touch panel is touched and untouched. different. The reference signal path is for receiving the noise and outputting a reference signal and having the same electrical condition as the sensing signal path. The first differential amplifier is configured to receive the sensing signal and the reference signal, subtract the sensing signal and the reference signal, and generate an output signal. 201011620 [Embodiment] Hereinafter, the technical content of the present invention will be described in detail with reference to the accompanying drawings. Referring to Figure 4, there is shown a block diagram of a sensing circuit 4A in accordance with the present invention. The sensing circuit 400 can reduce the noise Snoise effect generated by the common voltage electrode 440 in the capacitive touch panel (not shown). The sensing circuit 400 basically includes a sensing signal portion 411', a reference signal portion 421, and an integrator 406. The sensing signal portion 411 is configured to generate a sensing signal St based on the capacitance value of the capacitive touch panel and the received noise Snsise. The capacitance value of the capacitive touch panel is different when it is touched and not touched. The reference signal unit 421 is configured to receive noise

Snoise並且輸出一參考訊號sn0ise,。該參考訊號部421係模擬 感測訊號部411而具有與感測訊號部411相同之電氣條件。積 分器406用以接收感測訊號St以及參考訊號Snoise,,其特性係 將兩輸入端之差值予以積分,因此積分器406將感測訊號st 以及參考訊號Snoise’予以相減,並產生一輸出訊號sout。 參考訊號部421具有一電容值,該電容值係實質上與感測 訊號部411未被觸碰時的電容值相等。感測訊號部411以及參 ❹ 考訊號部421電氣條件相同係指參考訊號部421之電子元件以 及該等電子元件連接方式為模擬感測訊號部411之等效電路, 以使兩者的阻抗、電容值等電氣特性盡可能一致,其目的在於 使雜訊Snoise通過相同之電路,確保雜訊snoise通過感測訊號 部411以及參考訊號部421後而進入積分器406之值盡可能相 為使本發明更易於了解,以下將比較說明習知技術與本發 明的差別。請參閱第5圖,係繪示根據第4圖之第一實施例之 電路圖。該實施例為用於掃描一方向後再掃描另一方向之電容 式觸控面板中的感測電路500。感測訊號部511包括一感測單 6 201011620 • 元512以及一感測訊號產生單元514»參考訊號部521包括一 參考單元522以及一參考訊號產生單元524。 感測單元512具有一感測電容值,即以感測電容Csense表 示電容值。當電容式觸控面板未被觸碰時,感測單元512之感 測電容Csense之電容值為零,當電容式觸控面板被觸碰時,感 測電容Csense之電容值不為零。此外,感測單元512也具有寄 生電容值’為共同電壓電極54〇與感測電極基板之間的等效電 容值’以寄生電容Cpar1表示。共同電壓電極54〇之雜訊snoise Φ 係經由寄生電容Cpar1_合至感測單元5彳2。 感測單元512經由寄生電容CpaM接收雜訊Sn〇ise,且具有 一第一等效電容值或一第二等效電容值。第一等效電容值為電 容式觸控面板被觸碰時之電容值(即感測電容Csense之電容值) 以及寄生電容CpaM之電容值之等效電容值,第二等效電容值 為電容式觸控面板未被觸碰時之電容值(即感測電容之 電容值為零)以及寄生電容CpaM之電容值之等效電容值。感測 訊號產生單元514耦接至感測單元512,根據第一等效電容值 ❹以及雜訊sn()ise’或根據第二等效電容值以及雜訊Sn。⑹產生感 測訊號St。 第5圖之節,點1之訊號包括控制訊號Vt。㈣(如一方波)所 產生的部份以及雜訊Snoise所產生的部份。控制訊號V丁。_為 外加之訊號’时反應有無碰觸事件(亦即感測電容C—之值) 的發生,即控制訊號VToggle用來將第一等效電容值或第二等效 電容值轉換為訊號的變化,以表示有無碰觸事件,其中控制訊 號vToggle透過一第一叙合電容Cci麵合至感測訊號產生單元 514。至於雜訊snoise透過寄生雷费广 了生電谷CpaM耦合而產生於節點1 的部份S·! n〇jse可由_下列(1 )式求得: 7 201011620 f c ^Snoise also outputs a reference signal sn0ise. The reference signal portion 421 is an analog sensing signal portion 411 and has the same electrical conditions as the sensing signal portion 411. The integrator 406 is configured to receive the sensing signal St and the reference signal Snoise, and the characteristic is to integrate the difference between the two inputs, so the integrator 406 subtracts the sensing signal st and the reference signal Snoise', and generates a Output signal sout. The reference signal portion 421 has a capacitance value which is substantially equal to the capacitance value when the sensing signal portion 411 is not touched. The same electrical conditions of the sensing signal portion 411 and the reference signal portion 421 refer to the electronic components of the reference signal portion 421 and the equivalent circuit of the analog component of the analog sensing signal portion 411 to make the impedance of the two, The electrical characteristics such as the capacitance value are as uniform as possible, and the purpose is to make the noise Snoise pass through the same circuit, and ensure that the noise snoise passes through the sensing signal portion 411 and the reference signal portion 421 and enters the value of the integrator 406 as much as possible. The invention will be more readily understood, and the differences between the prior art and the present invention will be described below. Referring to Fig. 5, there is shown a circuit diagram of a first embodiment according to Fig. 4. This embodiment is a sensing circuit 500 in a capacitive touch panel for scanning one direction and then scanning another direction. The sensing signal unit 511 includes a sensing unit 6 201011620 • a unit 512 and a sensing signal generating unit 514. The reference signal unit 521 includes a reference unit 522 and a reference signal generating unit 524. The sensing unit 512 has a sensing capacitance value, that is, the capacitance value is represented by the sensing capacitance Csense. When the capacitive touch panel is not touched, the capacitance of the sensing capacitor Csense of the sensing unit 512 is zero. When the capacitive touch panel is touched, the capacitance of the sensing capacitor Csense is not zero. Further, the sensing unit 512 also has a parasitic capacitance Cpar1 having a parasitic capacitance value 'as the equivalent voltage value between the common voltage electrode 54A and the sensing electrode substrate'. The noise snoise Φ of the common voltage electrode 54 is coupled to the sensing unit 5彳2 via the parasitic capacitance Cpar1_. The sensing unit 512 receives the noise Snsise via the parasitic capacitance CpaM and has a first equivalent capacitance value or a second equivalent capacitance value. The first equivalent capacitance value is a capacitance value when the capacitive touch panel is touched (ie, a capacitance value of the sensing capacitor Csense) and an equivalent capacitance value of a capacitance value of the parasitic capacitance CpaM, and the second equivalent capacitance value is a capacitance The capacitance value of the touch panel when it is not touched (that is, the capacitance value of the sensing capacitor is zero) and the equivalent capacitance value of the capacitance value of the parasitic capacitance CpaM. The sensing signal generating unit 514 is coupled to the sensing unit 512 according to the first equivalent capacitance value ❹ and the noise sn()ise or according to the second equivalent capacitance value and the noise Sn. (6) A sense signal St is generated. In the section of Figure 5, the signal at point 1 includes the control signal Vt. (4) The part produced by (such as a party wave) and the part produced by the noise Snoise. Control signal V Ding. _ is the additional signal 'when the reaction has no touch event (that is, the value of the sense capacitor C -), that is, the control signal VToggle is used to convert the first equivalent capacitance value or the second equivalent capacitance value into a signal The change is to indicate whether there is a touch event, wherein the control signal vToggle is coupled to the sensing signal generating unit 514 through a first reciprocal capacitor Cci. As for the noise snoise, the part S·! n〇jse generated by the CpaM coupling of the electricity generation valley is generated by the following formula (1): 7 201011620 f c ^

Sinoise = Sn〇ise -ΕΞ]_ /^ nSinoise = Sn〇ise -ΕΞ]_ /^ n

、Cparl + Ccl + Cs_ J 雜訊3n〇iSe除了會通過感測訊號部511外,本發明建立另 一路徑以供共同電壓電極540之雜訊Sn0ise通過。參考單元522 接收雜訊Snoise且具有一第三等效電容值。第三等效電容值為 模擬電容式觸控面板未被觸碰時之電容值以及寄生電容CpaM 之電容值之等效電容值,即具有與感測單元512之第二等效電 容值相同的數值。因此參考單元522具有一電容Cpw,用以模 Φ擬寄生電容。雜訊Snoise透過電容Cpar2耦合至參考單元 522如上所述,寄生電容cpaM係共同電壓電極mo與感測電 極基板之間的等效電容,可藉由測量而得,而㈣Cpw則為 -外加之電容器’具有與寄生電容Cp州實質上相等之電容值。 參考訊號產生單元524之電路與感測訊號產生單元514之 電路相同’並根據參考單元522之第三等效電容值以及雜訊 sn〇ise輸出參考訊號snoise’。參考訊號產生單元524具有一外 加之第—#合電容Ce2 ’為使參考訊號部521之電氣條件與感 ❹測訊號部511之電氣條件相同,控制訊號ντ。㈣e如同透過第- 麵口電令Cc1麵合至感測訊號產生單元514般,亦透過第二叙 合電容U合至參考訊號產生單元524,以使雜訊s_e通過 參考訊號。P 521之電氣條件與通過感測訊號部之電氣條件 相同。其中第二耦合電容Cc2之電容值與第一耦合電容^之 電容值實質上相等。因此節點2 、雜訊訊號S2noise馬· (c λ ^2noise = Sn〇ise - 、Cpar2 +Cc2 > 由於電容cpar2之電容值與寄生電之電容值實質上 相等’且第二耦合電容Cc2之電容值與第一耦合電容Cc1之電 8 201011620 容值實質上相等,因此: 广c S2noise = Sn0ise pari VCparl +Ccl; 輸入積分器506兩輸入端之雜訊差值為:The Cparl + Ccl + Cs_ J noise 3n〇iSe, in addition to passing through the sensing signal portion 511, establishes another path for the noise Sn0ise of the common voltage electrode 540 to pass. The reference unit 522 receives the noise Snoise and has a third equivalent capacitance value. The third equivalent capacitance value is an equivalent capacitance value of the capacitance value of the analog capacitive touch panel when not touched and the capacitance value of the parasitic capacitance CpaM, that is, having the same value as the second equivalent capacitance value of the sensing unit 512. Value. Therefore, the reference unit 522 has a capacitor Cpw for modulating the pseudo parasitic capacitance. The noise Snoise is coupled to the reference unit 522 through the capacitor Cpar2. As described above, the parasitic capacitance cpaM is an equivalent capacitance between the common voltage electrode mo and the sensing electrode substrate, which can be obtained by measurement, and (4) Cpw is an external capacitor. 'There is a capacitance value substantially equal to the state of the parasitic capacitance Cp. The circuit of the reference signal generating unit 524 is identical to the circuit of the sensing signal generating unit 514' and outputs a reference signal snoise' according to the third equivalent capacitance value of the reference unit 522 and the noise sn〇ise. The reference signal generating unit 524 has an additional _th capacitor Ce2' for making the electrical condition of the reference signal portion 521 the same as the electrical condition of the sensible signal portion 511, and the control signal ντ. (4) The e-face is coupled to the sensing signal generating unit 514 through the first-side power transmission, and is also coupled to the reference signal generating unit 524 through the second combining capacitor U to pass the noise s_e through the reference signal. The electrical conditions of P 521 are the same as those of the sensing signal section. The capacitance value of the second coupling capacitor Cc2 is substantially equal to the capacitance value of the first coupling capacitor. Therefore, the node 2, the noise signal S2noise horse · (c λ ^2noise = Sn〇ise - , Cpar2 + Cc2 > since the capacitance value of the capacitor cpar2 is substantially equal to the capacitance value of the parasitic capacitance' and the capacitance of the second coupling capacitor Cc2 The value is substantially equal to the capacitance of the first coupling capacitor Cc1 8 201011620, therefore: wide c S2noise = Sn0ise pari VCparl + Ccl; the noise difference between the two inputs of the input integrator 506 is:

S 1 noise ,S2noise*"Sn〇ise :s noise c pariS 1 noise , S2noise*"Sn〇ise :s noise c pari

C pari cparl +Ccl +cse,C pari cparl +Ccl +cse,

Cparl + Col ^parl X ^sense (2) (Cparl + Ccl + Csense)X (Cp^ + Ccl)· 比較第(1)式之習知技術的雜訊Sin〇ise與第(2)式之第一實 施例的雜訊(Sinoise_S2nojse)可得,第(2)式之雜訊的大小較第(1) 式之雜訊的大小減少 C· (Cparl+Ccl) 倍,經由積分器506積分後之 訊號可排除雜訊Snoise,而增加感測電路500的靈敏性 感測訊號部511較佳地可包括一第一濾波器518耦接於感 測訊號產生單元514與積分器506之間,用以濾除經由感測訊 號產生單元514產生的感測訊號St的高頻部份。比照感測訊號 部511 ’參考訊號部521較佳地包括一第二濾波器528耦接於 參考訊號產生單元524與積分器506之間,且第二濾波器528 之電路與第一濾波器518之電路相同,用以濾除參考訊號 Snoise的尚頻部份。 在本實施例中,第一濾波器51 8包括一第三電阻R3耦接 於感測訊號產生單元514以及積分器506之間;以及一第三電 容〇3耦接於積分器506以及一接地端之間。第二濾波器528 包括一第四電阻R4耦接於參考訊號產生單元524以及積分器 506之間;以及一第四電容〇4耦接於積分器506以及一接地 端之間。為使第一濾波器518之電路與第二濾波器528之電路 201011620 相同’第三電阻R3之電阻值與第四電阻r4之電阻值實質上相 等,第三電容C3之電容值與第四電容c4之電容值實質上相等。 積分器506包括一第一差動放大器532、一第一電阻 以及一第一電容〇1。第一差動放大器532具有一反相輸入端 (-)、一非反相輸入端(+)以及一輸出節點4。第一電阻h耦接 於感測訊號部511以及反相輸入端㈠之間。第一電容Cl耦接 於反相輸入端(-)以及輸出節點4之間。為使雜訊Snoise在進入 第一差動放大器532兩個輸入端之前所通過的路徑完全相同, ^ 積分器506更具有一接地匹配單元536用以使輸入第一差動放 大器532之非反相輸入端(+)的電路與輸入第一差動放大器532 之反相輸入端(-)的電路相同。接地匹配單元536包括一第二電 阻R2以及一第二電容〇2,且第二電阻R2之值必須設計與第一 電阻R!之值相等’第二電容C2之值必須與第一電容C·]之值相 等。第二電阻R2耦接於參考訊號部521以及第一差動放大器 532之非反相輸入端(+)之間,第二電容C2則耦接於第一差動 放大器532之非反相輸入端(+)以及一接地端之間。 φ 感測訊號部511加上積分器506中之第一電阻h以及第 一電容〇1構成根據有無觸碰以及雜訊Snoise所產生之感測信號 St所通過之完整路徑,可視為感測訊號路徑510。而參考訊號 部521以及積分器506中之第二電阻R2、第二電容C2構成雜 訊Sn<)ise通過之路徑,可視為參考訊號路徑520。參考訊號路 徑520係模擬感測訊號路徑510,以使兩路徑之電氣條件相同。 在積分器506之輸出端更可耦接至一放大單元530,用以 放大積分器506所產生之輸出訊號Sout。放大單元530包括一 第二差動放大器534、第五電阻R5以及第六電阻R6。第二差 動放大器534具有一反相輸入端(-)、一非反相輸入端(+)以及 201011620 一輸出節點3’非反相輸入端(+)耦接至積分器5〇6之輪出節點 4。第五電阻Rs耦接於反相輸入端㈠以及一接地端之間。第六 電阻Re耗接於反相輸入端㈠以及輸出節點3之間。 感測訊號產生單元514之開關SW1用以切換不同掃描線, 每一掃描線包括複數個感测單元512,其餘部份元件包括積分 器506、第一濾波器518、參考單元522、參考訊號產生單元 524、接地匹配單元536、第二濾波器528及放大單元53〇為 所有掃描線共用之部分。 ^ 在實際電路佈局上,感測訊號產生單元514、第一濾波器 518 '參考訊號部521、積分器5〇6及放大單元53〇通常整合 於液晶面板之陣列基板,或是獨立於陣列基板製成。如上所 述,每一感測單元512即為電容式觸控面板中之感測電極,係 製作於感測電極基板上。 請參閱第6圖,係繪示根據第4圖之第二實施例之電路 圖。該實施例為用於僅掃描一方向,另一方向輸入激發訊號之 電容式觸控面板中感測電路600的實施例。感測訊號部61彳包 φ 括一感測單元612以及一感測訊號產生單元614。參考訊號部 621包括一參考單元622以及一參考訊號產生單元624。 當電容式觸控面板被觸碰時,感測單元612具有一感測電 容值,即以感測電容Ctrans之表示電容值。當電容式觸控面板 未被觸碰時之電容值,即參考單元622模擬電容式觸控面板未 被觸碰時之電容Ctrans’之表示電容值,此外,感測單元6彳2並 具有寄生電容值,為共同電壓電極640與感測電極基板之間的 等效電谷值,以寄生電容Cpar3以及寄生電容cpar5表示β共同 電壓電極640之雜訊Snoise係經由寄生電容cpar3耦合至感測單 元 612。 11 201011620 感測單元612經由寄生電容cpar3接收雜訊snoise,且具有 一第一等效電容值或一第二等效電容值。第一等效電容值為電 容式觸控面板被觸碰時之電容值(感測電容Ctrans之表示電容值) 以及寄生電容cpar3、cpar5之電容值之等效電容值,第二等效 電容值為電容式觸控面板未被觸碰時之電容Ctrans,之表示電容 值以及寄生電容cpai>3、cpar5之電容值之等效電容值。感測訊 號產生單元614耦接至感測單元612,根據第一等效電容值以 及雜訊snoise,或根據第二等效電容值以及雜訊Snoise產生感測 ^ 訊號st。 第6圖之節點5之訊號包括控制訊號vT〇gg|e(如一方波)所 產生的部份以及雜訊Snoise所產生的部份。控制訊號vToggle為 外加之訊號,用來反應有無碰觸事件(亦即感測電容Ctrans之值) 的發生’即控制訊號VT〇gg|e用來將第一等效電容值或第二等效 電容值轉換為訊號的變化,以表示有無碰觸事件,其中控制訊 號VToggle直接施加至感測單元61 2以及感測訊號產生單元 614。至於雜訊Sn0ise透過寄生電容cpar3搞合而產生於節點§ 參 的部份Ssnoise可由下列(3)式求得: i Q ^ S5noise = Sn〇ise ― ^ (3) \ par3 trans j 雜訊Sn〇iSe除了會通過感測訊號部611外,本發明建立另 一路徑以供共同電壓電極640之雜訊Snoise通過。參考單元622 接收雜訊Sn〇ise且具有一第三等效電容值。第三等效電容值為 模擬電容式觸控面板未被觸碰時之電容Ctrans,之表示電容值以 及寄生電容Cpa「3、Cpar5之電容值之等效電容值,即具有與感 測單元612之第二等效電容值相同的數值。因此參考單元622 具有電容Cpar4以及電容Cpar·6分別表示模擬寄生電容cpar3、 12Cparl + Col ^parl X ^sense (2) (Cparl + Ccl + Csense)X (Cp^ + Ccl)· Compare the noise of the conventional technique of (1) with Sin〇ise and (2) In the noise of an embodiment (Sinoise_S2nojse), the size of the noise of the equation (2) is smaller than the size of the noise of the equation (1) by C·(Cparl+Ccl) times, and is integrated by the integrator 506. The signal can eliminate the noise Snoise, and the sensitive sensing signal portion 511 of the sensing circuit 500 can preferably include a first filter 518 coupled between the sensing signal generating unit 514 and the integrator 506 for filtering. Except for the high frequency portion of the sensing signal St generated by the sensing signal generating unit 514. The reference signal portion 511 ′ of the reference signal portion 521 preferably includes a second filter 528 coupled between the reference signal generating unit 524 and the integrator 506 , and the circuit of the second filter 528 and the first filter 518 . The circuit is the same to filter out the frequency portion of the reference signal Snoise. In this embodiment, the first filter 518 includes a third resistor R3 coupled between the sensing signal generating unit 514 and the integrator 506; and a third capacitor 〇3 coupled to the integrator 506 and a ground. Between the ends. The second filter 528 includes a fourth resistor R4 coupled between the reference signal generating unit 524 and the integrator 506; and a fourth capacitor 〇4 coupled between the integrator 506 and a ground. In order to make the circuit of the first filter 518 the same as the circuit 201011620 of the second filter 528, the resistance value of the third resistor R3 is substantially equal to the resistance value of the fourth resistor r4, and the capacitance value of the third capacitor C3 is the same as the fourth capacitor. The capacitance values of c4 are substantially equal. The integrator 506 includes a first differential amplifier 532, a first resistor, and a first capacitor 〇1. The first differential amplifier 532 has an inverting input (-), a non-inverting input (+), and an output node 4. The first resistor h is coupled between the sensing signal portion 511 and the inverting input terminal (1). The first capacitor C1 is coupled between the inverting input terminal (-) and the output node 4. In order for the noise Snoise to pass the same path before entering the two input terminals of the first differential amplifier 532, the integrator 506 further has a ground matching unit 536 for non-inverting the input first differential amplifier 532. The circuit of the input terminal (+) is the same as the circuit of the inverting input terminal (-) of the first differential amplifier 532. The ground matching unit 536 includes a second resistor R2 and a second capacitor 〇2, and the value of the second resistor R2 must be designed to be equal to the value of the first resistor R! 'The value of the second capacitor C2 must be the same as the first capacitor C· The values are equal. The second resistor R2 is coupled between the reference signal portion 521 and the non-inverting input terminal (+) of the first differential amplifier 532, and the second capacitor C2 is coupled to the non-inverting input terminal of the first differential amplifier 532. (+) and between a ground. The φ sensing signal portion 511 plus the first resistor h and the first capacitor 〇1 in the integrator 506 constitute a complete path through which the sensing signal St generated by the presence or absence of the touch and the noise Snoise passes, and can be regarded as a sensing signal. Path 510. The reference signal path 520 is formed by the reference signal portion 521 and the second resistor R2 and the second capacitor C2 of the integrator 506 forming a path through which the noise Sn <) is passed. The reference signal path 520 is an analog sense signal path 510 such that the electrical conditions of the two paths are the same. The output of the integrator 506 is further coupled to an amplifying unit 530 for amplifying the output signal Sout generated by the integrator 506. The amplifying unit 530 includes a second differential amplifier 534, a fifth resistor R5, and a sixth resistor R6. The second differential amplifier 534 has an inverting input (-), a non-inverting input (+), and a 201011620 output node 3' non-inverting input (+) coupled to the integrator 5〇6 wheel Exit node 4. The fifth resistor Rs is coupled between the inverting input terminal (1) and a ground terminal. The sixth resistor Re is consumed between the inverting input terminal (1) and the output node 3. The switch SW1 of the sensing signal generating unit 514 is used to switch different scan lines, each scan line includes a plurality of sensing units 512, and the remaining components include an integrator 506, a first filter 518, a reference unit 522, and a reference signal generation. The unit 524, the ground matching unit 536, the second filter 528, and the amplifying unit 53A are portions shared by all the scanning lines. In the actual circuit layout, the sensing signal generating unit 514, the first filter 518' reference signal portion 521, the integrator 5〇6, and the amplifying unit 53 are generally integrated on the array substrate of the liquid crystal panel, or are independent of the array substrate. production. As described above, each of the sensing units 512 is a sensing electrode in the capacitive touch panel and is formed on the sensing electrode substrate. Referring to Fig. 6, there is shown a circuit diagram of a second embodiment according to Fig. 4. This embodiment is an embodiment of the sensing circuit 600 in a capacitive touch panel for scanning only one direction and inputting an excitation signal in the other direction. The sensing signal unit 61 includes a sensing unit 612 and a sensing signal generating unit 614. The reference signal portion 621 includes a reference unit 622 and a reference signal generating unit 624. When the capacitive touch panel is touched, the sensing unit 612 has a sensing capacitance value, that is, a capacitance value represented by the sensing capacitance Ctrans. The capacitance value when the capacitive touch panel is not touched, that is, the reference capacitor 622 simulates the capacitance value of the capacitor Ctrans' when the capacitive touch panel is not touched, and further, the sensing unit 6彳2 has parasitic The capacitance value is an equivalent electric valley between the common voltage electrode 640 and the sensing electrode substrate, and the parasitic capacitance Cpar3 and the parasitic capacitance cpar5 indicate that the noise of the β common voltage electrode 640 is coupled to the sensing unit via the parasitic capacitance cpar3. 612. 11 201011620 The sensing unit 612 receives the noise snoise via the parasitic capacitance cpar3 and has a first equivalent capacitance value or a second equivalent capacitance value. The first equivalent capacitance value is a capacitance value when the capacitive touch panel is touched (the capacitance value of the sensing capacitance Ctrans is represented) and an equivalent capacitance value of the capacitance value of the parasitic capacitances cpar3 and cpar5, and the second equivalent capacitance value The capacitance Ctrans when the capacitive touch panel is not touched indicates the capacitance value and the equivalent capacitance value of the capacitance value of the parasitic capacitance cpai>3 and cpar5. The sensing signal generating unit 614 is coupled to the sensing unit 612, and generates a sensing signal ST according to the first equivalent capacitance value and the noise snoise, or according to the second equivalent capacitance value and the noise Snoise. The signal of node 5 in Fig. 6 includes the part generated by the control signal vT〇gg|e (such as a square wave) and the part generated by the noise Snoise. The control signal vToggle is an additional signal used to reflect the occurrence of a touch event (ie, the value of the sense capacitor Ctrans). That is, the control signal VT〇gg|e is used to set the first equivalent capacitance value or the second equivalent. The capacitance value is converted into a change of the signal to indicate whether there is a touch event, wherein the control signal VToggle is directly applied to the sensing unit 61 2 and the sensing signal generating unit 614. As for the noise Snmise generated by the parasitic capacitance cpar3, the Ssnoise generated by the node § parameter can be obtained by the following formula (3): i Q ^ S5noise = Sn〇ise ― ^ (3) \ par3 trans j noise Sn 〇 In addition to passing the sensing signal portion 611, the present invention establishes another path for the noise Snoise of the common voltage electrode 640 to pass. The reference unit 622 receives the noise Sn 〇ise and has a third equivalent capacitance value. The third equivalent capacitance value is the capacitance Ctrans when the analog capacitive touch panel is not touched, and the capacitance value and the equivalent capacitance value of the capacitance value of the parasitic capacitance Cpa “3, Cpar5”, that is, the sensing unit 612 The second equivalent capacitance value is the same value. Therefore, the reference unit 622 has a capacitance Cpar4 and a capacitance Cpar·6 respectively represents the analog parasitic capacitance cpar3, 12

❹ 201011620❹ 201011620

Cpar5 〇雜訊日的心透過電容cpar4耦合至參考單元622 〇與第5 圖之第一實施例相同,電容Cpar4以及電容Cpar6為外加之電容 器’分別具有與寄生電容Cpar3以及電容Cpar5實質上相等之電 容值。 參考訊號產生單元624之電路與感測訊號產生單元614之 電路相同’並根據參考單元622之第三等效電容值以及雜訊 Snoise輸出參考訊號Snoise’。為使參考訊號部621之電氣條件 與感測訊號部611之電氣條件相同,控制訊號vToggle如同施加 至感測單元612以及感測訊號產生單元614般亦直接施加至參 考單元622以及參考訊號產生單元624,以使雜訊Snoise通過 參考訊號部621之電氣條件與通過感測訊號部611之電氣條件 相同。因此節點6之雜訊S6noise為: (Q \ S6noise = Snoise —^ V par4 ^trans' j 由於電容cpa「4之電容值與寄生電容cpar3之電容值實質上 相等,因此: (Q 、 S^noise —Sn〇ise -—- Γ j-Γ V ^trans' j 輸入積分器606兩輸入端之雜訊差值為: S5nolse_S6noise_Sn〇iseThe heart of the Cpar5 〇 日 耦合 is coupled to the reference cell 622 via the capacitor cpar4. The capacitor Cpar4 and the capacitor Cpar6 are respectively applied with capacitors 'which are substantially equal to the parasitic capacitance Cpar3 and the capacitance Cpar5, respectively. Capacitance value. The circuit of the reference signal generating unit 624 is identical to the circuit of the sensing signal generating unit 614' and outputs a reference signal Snoise' according to the third equivalent capacitance value of the reference unit 622 and the noise Snoise. In order to make the electrical condition of the reference signal portion 621 and the electrical condition of the sensing signal portion 611 the same, the control signal vToggle is directly applied to the reference unit 622 and the reference signal generating unit as applied to the sensing unit 612 and the sensing signal generating unit 614. 624, so that the electrical condition of the noise Snoise passing the reference signal portion 621 is the same as the electrical condition passing through the sensing signal portion 611. Therefore, the noise S6noise of node 6 is: (Q \ S6noise = Snoise -^ V par4 ^trans' j Since the capacitance value of the capacitance cpa "4 is substantially equal to the capacitance value of the parasitic capacitance cpar3, therefore: (Q, S^noise —Sn〇ise ————— Γ j-Γ V ^trans' j The noise difference between the two inputs of the input integrator 606 is: S5nolse_S6noise_Sn〇ise

:S noise:S noise

C par3 c +Ct c ㈣ xC, par3C par3 c +Ct c (four) xC, par3

Cpar3 + Ct (Cpar3 + (4) 比較第(3)式之習知技術的雜訊Ssn〇ise與第(4)式之第二實 施例的雜訊(S5noise-S6noise)可得,第(4)式之雜訊的大小較第 13 201011620 式之雜訊的大小減少 C -C ^trans*_trans (Cpar3 +CtnmS') 倍,經由積分器606積分後 之訊號可排除雜訊Snoise,而增加感測電路600的靈敏性 在電路的實施方式中,第一濾波器618、第二渡波器628、 積分器606、接地匹配單元636以及放大單元630之實際電路 如上述第5圖之第一實施例所述,故此不再贅述。 如同第5圖,感測訊號部611加上積分器606中之第七電 阻R?以及第七電容〇7構成根據有無觸碰以及雜訊sn()iSe所產 ^ 生之感測信號所通過之完整路徑,可視為感測訊號路徑 610。而參考訊號部621以及積分器606中之第八電阻R8、第 八電容Ce構成雜訊SnQise通過之路徑,可視為參考訊號路徑 620。參考訊號路徑620係模擬感測訊號路徑61 〇,以使兩路 徑之電氣條件相同。 本發明藉由增加參考訊號路徑以供雜訊通過,使雜訊經由 電氣條件相同的感測訊號路徑及參考訊號路徑通過後輸出至 差動放大器的兩輸入端,透過差動放大器將兩條路徑的雜訊相 ❷ 減之後,大幅減低感測訊號中雜訊的大小,使差動放大器之輸 出僅餘感測元件所產生的訊號而能被正確的感測,增加感測電 路的靈敏度及正確性。 第7圖係繪示一電子裝置7〇〇包含一電容式觸控面板 750,其中電容式觸控面板75〇包括根據本發明之感測電路 400、500及600之其…包含如第4至6圖所示之感測電路 400、500及600之其一的電容式觸控面板75〇可以是電子裝 置700之一部分。電子裝置700包括電容式觸控面板75〇以及 -電源供應器740,電源供應器74〇係與電容式觸控面板75〇 柄接以供電至電容式觸控面板75Q。電子裝置·可為手機、 201011620 數位相機、個人數位助理、筆記型電腦、桌上型電腦、電視、 衛星導航、車上顯示器、航空用顯示器或可攜式數位視訊?光碟 (Digital Video Disc,DVD)放影機等。 本發明已就較佳實施例說明如上,然而該等說明僅為閣釋 而非用於限定本發明。在不脫離本發明之精神與範疇内,熟悉 此項技藝者當可進行各種更動與潤飾,本發明之保護範圍當^ 後附之申請專利範圍所界定者為準,不應限定於所揭示之具體 形式。 【圖式簡單說明】 第1圖以及第2圖係搶示兩種電容式觸控面板感測被觸碰 位置的示意圖; 第3囷係概略繪示習知技術中感測電路之方塊圖; 第4圖係繪示根據本發明之感測電路的方塊圖; 第5圖係繪示根據第4圖之第一實施例之電路圖; 第6圖係繪示根據第4圖之第二實施例之電路囷;以及 第7圖係繪不一電子裝置包含一電容式觸控面板其中電 ❿ 谷式觸控面板包括根據本發明之感測電路。 【主要元件符號說明】 節點 感測電路 感測單元 感測訊號產生單元 積分器 電容式觸控面板 感測訊號部 1-6 100、400、500、600 102、512、612 104、514、614 106、406、506、606 150 ' 250、750 411 、 511 、 611 15 201011620 421 、 521 、 621 參考訊號部 440、540、640 共同電壓電極 510 > 610 感測訊號路徑 518 > 618 第一濾波器 520、620 參考訊號路徑 522、622 參考單元 524、624 參考訊號產生單元 528、628 第二濾波器 530、630 放大單元 532 第一差動放大器 534 第二差動放大器 536、636 接地匹配單元 700 電子裝置 740 電源供應器Cpar3 + Ct (Cpar3 + (4) compares the noise Ssn〇ise of the conventional technique of the formula (3) with the noise of the second embodiment of the formula (4) (S5noise-S6noise), the fourth (4) The size of the noise is smaller than the size of the 13th 201011620 type noise C-C ^trans*_trans (Cpar3 + CtnmS') times, and the signal integrated by the integrator 606 can eliminate the noise Snoise, and the sense of increase Sensitivity of the measuring circuit 600 In the embodiment of the circuit, the first circuit 618, the second wave 628, the integrator 606, the ground matching unit 636, and the actual circuit of the amplifying unit 630 are as in the first embodiment of FIG. 5 described above. As described in FIG. 5, the sensing signal portion 611 is added with the seventh resistor R in the integrator 606, and the seventh capacitor 〇7 is formed according to the presence or absence of the touch and the noise sn()iSe. The complete path through which the raw sensing signal passes can be regarded as the sensing signal path 610. The reference signal portion 621 and the eighth resistor R8 and the eighth capacitor Ce in the integrator 606 form a path through which the noise SnQise passes, which can be regarded as Reference signal path 620. Reference signal path 620 is analog sensing signal path 61 〇 Therefore, the electrical conditions of the two paths are the same. The invention increases the reference signal path for the noise to pass, so that the noise passes through the sensing signal path and the reference signal path with the same electrical condition and is output to the two input ends of the differential amplifier. After the noise of the two paths is reduced by the differential amplifier, the size of the noise in the sensing signal is greatly reduced, so that the output of the differential amplifier can only be correctly sensed by the signal generated by the sensing component. The sensitivity and accuracy of the sensing circuit are increased. FIG. 7 illustrates an electronic device 7A including a capacitive touch panel 750, wherein the capacitive touch panel 75A includes the sensing circuit 400 according to the present invention, The capacitive touch panel 75A including one of the sensing circuits 400, 500, and 600 as shown in FIGS. 4 to 6 may be part of the electronic device 700. The electronic device 700 includes a capacitive touch. The control panel 75A and the power supply 740, the power supply 74 is connected to the capacitive touch panel 75 to supply power to the capacitive touch panel 75Q. The electronic device can be a mobile phone, 201011620 digital phase Machine, personal digital assistant, notebook computer, desktop computer, television, satellite navigation, on-board display, aviation display or portable digital video disc (DVD) player, etc. The present invention has been described with respect to the preferred embodiments, but the description is intended to be illustrative only and not to limit the scope of the invention. The scope of protection is defined by the scope of the patent application and is not limited to the specific form disclosed. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and FIG. 2 are schematic diagrams showing the sensing positions of two capacitive touch panels; FIG. 3 is a block diagram showing a sensing circuit in the prior art; 4 is a block diagram showing a sensing circuit according to the present invention; FIG. 5 is a circuit diagram showing a first embodiment according to FIG. 4; and FIG. 6 is a second embodiment according to FIG. And the circuit diagram comprises a capacitive touch panel, wherein the valley touch panel comprises a sensing circuit according to the present invention. [Description of main component symbols] Node sensing circuit sensing unit sensing signal generating unit integrator Capacitive touch panel sensing signal section 1-6 100, 400, 500, 600 102, 512, 612 104, 514, 614 106 406, 506, 606 150 '250, 750 411, 511, 611 15 201011620 421, 521, 621 reference signal portion 440, 540, 640 common voltage electrode 510 > 610 sensing signal path 518 > 618 first filter 520, 620 reference signal path 522, 622 reference unit 524, 624 reference signal generating unit 528, 628 second filter 530, 630 amplification unit 532 first differential amplifier 534 second differential amplifier 536, 636 ground matching unit 700 electronic Device 740 power supply

Ri -Re C1-C4Ri -Re C1-C4

Cpar、Cpari、Cpar3、Cpar5 ❹Cpar, Cpari, Cpar3, Cpar5 ❹

Cpar2、Cpar4、Cpar6Cpar2, Cpar4, Cpar6

Csense ' CtransCsense ' Ctrans

CtransCtrans

Cc1 CC2 SWiCc1 CC2 SWi

StSt

SnoiseSnoise

Snoise 第一電阻-第八電阻 第一電容-第四電容 寄生電容 電容 感測電容 感測單元未被觸碰時之電容 第一耦合電容 第二耦合電容 開關 感測訊號 雜訊 參考訊號 16 201011620 S〇utSnoise first resistance - eighth resistance first capacitance - fourth capacitance parasitic capacitance capacitance sensing capacitance sensing unit is not touched when the capacitor first coupling capacitance second coupling capacitance switch sensing signal noise reference signal 16 201011620 S 〇ut

Xi-X4 > Y1-Y4 輸出訊號 感測線Xi-X4 > Y1-Y4 output signal sensing line

1717

Claims (1)

201011620 • 七、申請專利範圍: 1· 一種用於電容式觸控面板之感測電路,包括: 一感測訊號部,用以基於該電容式觸控面板之電容值及接 收之一雜訊,以產生一感測訊號,該電容式觸控面板之電容值 在被觸碰以及未被觸碰的情況下不同; 一參考訊號部,用以接收該雜訊並且輪出一參考訊號,該 參考訊號部具有與該感測訊號部相同之電氣條件;以及 一積分器’用以接收該感測訊號以及該參考訊號,將該感 測訊號以及該參考訊號予以相減,並產生一輸出訊號。 2.如申請專利範圍第1項所述之感測電路,其中該參考訊 號部具有一電容值,該電容值係實質上與該感測訊號部未被觸 碰時的電容值相等。 3_如申請專利範圍第1項所述之感測電路,其中該參考訊 號部係具有電子元件,該等電子元件係連接以模擬該感測訊號 部之等效電路。 4.如申請專利範圍第1項所述之感測電路,其中該積分器 φ 包括: 一第一差動放大器’具有一反相輸入端、一非反相輸入端 以及一輸出節點; 一第一電阻,具有一第一端耦接至該感測訊號部,以及一 第二端耦接至該反相輸入端;以及 一第一電容,具有一第一端耦接至該反相輸入端,以及一 第二端耦接至該輸出節點。 5_如申請專利範圍第4項所述之感測電路,其中該積分器 更包括一接地匹配單元,該接地匹配單元包括: 一第二電阻,具有一第一端耦接至該參考訊號部’以及一 18 201011620 第二端耦接至該非反相輸入端;以及 一第二電容’具有—第—端耦接至該非反相輸人端,以及 一第二端耦接至一接地端’其中該第二電阻之電阻值係實質上 與該第一電阻之電阻值相等,且該第二電容之電容值係實質上 與該第一電容之電容值相等。 只夷上 6.如申請專利範圍第1項所述之感測電路,其中: 該感測訊號部包括: 一感測單元,經由一寄生電容接收該雜訊,該感測單 ^ 丨具有—第—等效電容值或—第二等效電容值,該第一等 效電容值為該電容式觸控面板被觸碰時之電容值以及該 容之電容值之等效電容值,該第二等效電容值為該 電容式觸控面板未被觸碰時之電容值以及該寄生電容之 電容值之等效電容值;以及 一感測訊號產生單元’耦接至該感測單元,根據該第 一等效電容值以及該雜訊,或根據該第二等效電容值以及 該雜訊產生該感測訊號;以及 ❹ 該參考訊號部包括: 一參考單元,接收該雜訊且具有一第三等效電容值, 該第三等效電容值為模擬該電容式觸控面板未被觸碰時 之電容值以及該寄生電容之電容值之等效電容值;以及 一參考訊號產生單元,耦接至該參考單元,根據該第 三等效電容值以及該雜訊輸出該參考訊號, 其中該參考皁元具有與該感.測單元相同之電路,且該參考 訊號產生單元具有與感測訊號產生單元相同之電路。 7.如申請專利範圍第6項所述之感測電路,其中: 該感測訊號部更包括一第一濾波器耦接於該感測訊號產 201011620 生單元與該積分器之間,用以濾除經由該感測訊號產生單元所 產生之該感測訊號的高頻部份;以及 該參考訊號部更包括一第二濾波器耦接於該參考訊號產 生單元與該積分器之間,且該第二濾波器之電路與該第一濾波 器之電路相同,用以濾除該參考訊號的高頻部份。 8·如申請專利範圍第6項所述之感測電路,其中包括: 一第一耦合電容,一控制訊號經由該第一耦合電容耦合至 該感測訊號產生單元;以及 ^ 一第二耦合電容,該控制訊號經由該第二耦合電容麵合至 該參考訊號產生單元,其中該第一耦合電容之電容值係實質上 與該第二耦合電容之電容值相等。 9·如申請專利範圍第6項所述之感測電路,其中該參考單 元包括一電容,該電容之電容值係實質上與該寄生電容之電容 值相等,且該雜訊係透過該電容耦合至該參考單元。 10.如申請專利範圍第]項所述之感測電路,更包括一放 大單元耦接至該積分器,用以放大該積分器所產生之該輸出訊 號。 11· 一種用於電容式觸控面板之感測電路,包括: 一感測訊號路徑,用以基於該電容式觸控面板之電容值及 接收之一雜訊,以產生一感測訊號,該電容式觸控面板之電容 值在被觸碰以及未被觸碰的情況下不同; 一參考訊號路徑,用以接收該雜訊並且輸出一參考訊號, 該參考訊號路徑具有與該感測訊號路徑相同之電氣條件;以及 一第一差動放大器,用以接收該感測訊號以及該參考訊 將該感測訊號以及該參考訊號予以相減,並產生一輸出訊 號, 號。 201011620 12.如申請專利範圍第11項所述之感測電路,其中該參 考訊號路徑具有一電容值,該電容值係實質上與該感測訊號路 徑未被觸碰時的電容值相等。 13·如申請專利範圍第11項所述之感測電路,其中該參 考訊號路徑係具有電子元件,該等電子元件係連接以模擬該感 測訊號路徑之等效電路。 14.如申請專利範圍第11項所述之感測電路,其中: 該感測訊號路徑包括: Φ 一感測單元,經由一寄生電容接收該雜訊,該感測單 元具有一第一等政電容值或一第二等效電容值,該第一等 效電容值為該電谷式觸控面板被觸碰時之電容值以及該 寄生電容之電容值之等效電容值,該第二等效電容值為該 電容式觸控面板未被觸碰時之電容值以及該寄生電容之 電容值之等效電容值; 一感測訊號產生單元,耦接至該感測單元,根據該第 一專效電谷值以及該雜訊,或根據該第二等效電容值以及 0 該雜訊產生該感測訊號; 一第一電阻,具有一第一端耦接至該感測訊號產生單 元’以及一第二端耦接至該第一差動放大器之反相輸入 端;以及 一第一電容,具有一第一端耦接至該第一差動放大器 之反相輸入端,以及一第二端耦接至該第一差動放大器之 輸出端;以及 該參考訊號路徑包括: 一參考單元,接收該雜訊且具有一第三等效電容值, 該第三等效電容值為模擬該電容式觸控面板未被觸碰時 21 201011620 之電容值以及該寄生電容之電容值之等效電容值; 一參考訊號產生單元’麵接至該參考單元,根據該第 三等效電容值以及該雜訊輪出該參考訊號; 一第二電阻’具有一第一端耦接至該參考訊號產生單 元,以及一第二端耦接至該第一差動放大器之非反相輸入 端;以及 一第二電容,具有一第一端耦接至該第一差動放大器 之非反相輸入端’以及一第二端耦接至接地端, 其中該參考單元具有與該感測單元相同之電路,該參考訊 號產生單元具有與感測訊號產生單元相同之電路,該第二電阻 之電阻值係實質上與該第一電阻之電阻值相等,且該第二電容 之電容值係實質上與該第一電容之電容值相等。 15. 如申請專利範圍第14項所述之感測電路,其中: 該感測訊號路徑更包括一第一濾波器耦接於該感測訊號 產生單元與該第一電阻之該第一端之間,用以濾除經由該感測 訊號產生單元所產生之該感測訊號的高頻部份;以及 ❹ 該參考訊號路徑更包括一第二濾波器叙接於該參考訊號 產生單元與該第二電阻之該第一端之間,且該第二濾波器之電 路與該第一濾波器之電路相同,用以濾除該參考訊號的高頻部 份。 16. 如申請專利範圍第14項所述之感測電路,其中包括: 一第一耦合電容,一控制訊號經由該第一耦合電容耦合至 該感測訊號產生單元;以及 一第二耦合電容,該控制訊號經由該第二耦合電容耦合至 該參考訊號產生單元,其中該第一耦合電容之電容值係實質上 與該第二耦合電容之電容值相等。 22 201011620 17·如申請專利範圍第14項所述之感測電路,其中該參 考單元包括一電容’該電容之電容值係實質上與該寄生電容之 電容值相等,且該雜訊係透過該電容耦合至該參考單元。 18. 如申請專利範圍第彳彳項所述之感測電路,更包括一 放大單元耦接至該第一差動放大器,用以放大該第一差動放大 器所產生之該輸出訊號。 19. 一種電子裝置,包括: 一電容式觸控路面板’包括如申請專利範圍第1項或第Ί1 Φ 項所述之感測電路,其中該電子裝置為一手機、一數位相機、 一個人數位助理、一筆記型電腦、一桌上型電腦、一電視、一 衛星導航、一車上顯示器、一航空用顯示器或一可攜式數位視 訊光碟放影機。 參 23201011620 • VII. Patent application scope: 1. A sensing circuit for a capacitive touch panel, comprising: a sensing signal portion for determining a capacitance value of the capacitive touch panel and receiving a noise. To generate a sensing signal, the capacitance value of the capacitive touch panel is different when it is touched and not touched; a reference signal portion is configured to receive the noise and rotate a reference signal, the reference The signal portion has the same electrical condition as the sensing signal portion; and an integrator 'for receiving the sensing signal and the reference signal, subtracting the sensing signal and the reference signal, and generating an output signal. 2. The sensing circuit of claim 1, wherein the reference signal portion has a capacitance value that is substantially equal to a capacitance value when the sensing signal portion is not touched. The sensing circuit of claim 1, wherein the reference signal portion has electronic components connected to simulate an equivalent circuit of the sensing signal portion. 4. The sensing circuit of claim 1, wherein the integrator φ comprises: a first differential amplifier having an inverting input, a non-inverting input, and an output node; a resistor having a first terminal coupled to the sensing signal portion and a second terminal coupled to the inverting input terminal; and a first capacitor having a first terminal coupled to the inverting input terminal And a second end coupled to the output node. The sensing circuit of claim 4, wherein the integrator further comprises a grounding matching unit, the grounding matching unit comprising: a second resistor having a first end coupled to the reference signal portion 'and a 18 201011620 second end coupled to the non-inverting input; and a second capacitor 'having - the first end coupled to the non-inverting input terminal, and a second end coupled to a ground end The resistance value of the second resistor is substantially equal to the resistance value of the first resistor, and the capacitance value of the second capacitor is substantially equal to the capacitance value of the first capacitor. 6. The sensing circuit of claim 1, wherein: the sensing signal portion comprises: a sensing unit that receives the noise via a parasitic capacitance, the sensing unit having - a first equivalent capacitance value or a second equivalent capacitance value, the first equivalent capacitance value is a capacitance value when the capacitive touch panel is touched, and an equivalent capacitance value of the capacitance value of the capacitance, the first The second equivalent capacitance value is the capacitance value of the capacitive touch panel when not touched and the equivalent capacitance value of the capacitance value of the parasitic capacitance; and a sensing signal generating unit is coupled to the sensing unit, according to The first equivalent capacitance value and the noise, or the sensing signal is generated according to the second equivalent capacitance value and the noise; and the reference signal portion includes: a reference unit that receives the noise and has a a third equivalent capacitance value, the third equivalent capacitance value is an equivalent capacitance value simulating a capacitance value when the capacitive touch panel is not touched and a capacitance value of the parasitic capacitance; and a reference signal generating unit, Coupled to the reference unit, root The reference signal is output according to the third equivalent capacitance value and the noise, wherein the reference soap cell has the same circuit as the sensing unit, and the reference signal generating unit has the same circuit as the sensing signal generating unit. 7. The sensing circuit of claim 6, wherein: the sensing signal portion further comprises a first filter coupled between the sensing signal and the integrator; Filtering the high frequency portion of the sensing signal generated by the sensing signal generating unit; and the reference signal portion further includes a second filter coupled between the reference signal generating unit and the integrator, and The circuit of the second filter is the same as the circuit of the first filter for filtering the high frequency portion of the reference signal. 8. The sensing circuit of claim 6, comprising: a first coupling capacitor, a control signal coupled to the sensing signal generating unit via the first coupling capacitor; and a second coupling capacitor The control signal is coupled to the reference signal generating unit via the second coupling capacitor, wherein the capacitance of the first coupling capacitor is substantially equal to the capacitance of the second coupling capacitor. The sensing circuit of claim 6, wherein the reference unit comprises a capacitor, the capacitance value of the capacitor is substantially equal to the capacitance of the parasitic capacitor, and the noise is coupled through the capacitor To the reference unit. 10. The sensing circuit of claim 4, further comprising an amplification unit coupled to the integrator for amplifying the output signal generated by the integrator. A sensing circuit for a capacitive touch panel, comprising: a sensing signal path for generating a sensing signal based on a capacitance value of the capacitive touch panel and receiving a noise The capacitance value of the capacitive touch panel is different when it is touched and not touched; a reference signal path is used to receive the noise and output a reference signal, the reference signal path having the sensing signal path The same electrical condition; and a first differential amplifier for receiving the sensing signal and the reference signal subtracting the sensing signal and the reference signal, and generating an output signal. The sensing circuit of claim 11, wherein the reference signal path has a capacitance value that is substantially equal to a capacitance value when the sensing signal path is not touched. 13. The sensing circuit of claim 11, wherein the reference signal path has electronic components that are coupled to simulate an equivalent circuit of the sensing signal path. 14. The sensing circuit of claim 11, wherein: the sensing signal path comprises: Φ a sensing unit that receives the noise via a parasitic capacitance, the sensing unit having a first government a capacitance value or a second equivalent capacitance value, the first equivalent capacitance value is a capacitance value when the electric valley touch panel is touched, and an equivalent capacitance value of a capacitance value of the parasitic capacitance, the second class The capacitance value is an equivalent value of the capacitance value of the capacitive touch panel when not touched and the capacitance value of the parasitic capacitance; a sensing signal generating unit coupled to the sensing unit, according to the first And the noise is generated according to the second equivalent capacitance value and 0; the first resistor has a first end coupled to the sensing signal generating unit And a second end coupled to the inverting input of the first differential amplifier; and a first capacitor having a first end coupled to the inverting input of the first differential amplifier, and a second The end is coupled to the output of the first differential amplifier And the reference signal path includes: a reference unit that receives the noise and has a third equivalent capacitance value, and the third equivalent capacitance value simulates a capacitance value of the 21 201011620 when the capacitive touch panel is not touched And an equivalent capacitance value of the capacitance value of the parasitic capacitance; a reference signal generating unit is connected to the reference unit, and the reference signal is output according to the third equivalent capacitance value and the noise; a first end is coupled to the reference signal generating unit, and a second end is coupled to the non-inverting input end of the first differential amplifier; and a second capacitor having a first end coupled to the first a non-inverting input terminal of the differential amplifier and a second terminal coupled to the ground, wherein the reference unit has the same circuit as the sensing unit, and the reference signal generating unit has the same function as the sensing signal generating unit In the circuit, the resistance value of the second resistor is substantially equal to the resistance value of the first resistor, and the capacitance value of the second capacitor is substantially equal to the capacitance value of the first capacitor. 15. The sensing circuit of claim 14, wherein: the sensing signal path further comprises a first filter coupled to the sensing signal generating unit and the first end of the first resistor The high frequency portion of the sensing signal generated by the sensing signal generating unit is filtered out; and the reference signal path further includes a second filter connected to the reference signal generating unit and the first Between the first ends of the two resistors, and the circuit of the second filter is the same as the circuit of the first filter, for filtering the high frequency portion of the reference signal. 16. The sensing circuit of claim 14, comprising: a first coupling capacitor, a control signal coupled to the sensing signal generating unit via the first coupling capacitor; and a second coupling capacitor, The control signal is coupled to the reference signal generating unit via the second coupling capacitor, wherein a capacitance value of the first coupling capacitor is substantially equal to a capacitance value of the second coupling capacitor. The sensing circuit of claim 14, wherein the reference unit comprises a capacitor whose capacitance value is substantially equal to a capacitance value of the parasitic capacitance, and the noise system transmits the Capacitively coupled to the reference unit. 18. The sensing circuit of claim 2, further comprising an amplifying unit coupled to the first differential amplifier for amplifying the output signal generated by the first differential amplifier. An electronic device comprising: a capacitive touch panel comprising: the sensing circuit according to claim 1 or the item Φ1, wherein the electronic device is a mobile phone, a digital camera, and a number of people Assistant, a notebook computer, a desktop computer, a television, a satellite navigation, a car display, an aviation display or a portable digital video disc player. Reference 23
TW98110713A 2008-09-08 2009-03-31 Sensing circuit for capacitive touch panel and electronic device using the same TWI420374B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/554,635 US8305360B2 (en) 2008-09-08 2009-09-04 Sensing circuit for capacitive touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US9521408P 2008-09-08 2008-09-08

Publications (2)

Publication Number Publication Date
TW201011620A true TW201011620A (en) 2010-03-16
TWI420374B TWI420374B (en) 2013-12-21

Family

ID=42020404

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98110713A TWI420374B (en) 2008-09-08 2009-03-31 Sensing circuit for capacitive touch panel and electronic device using the same

Country Status (2)

Country Link
CN (1) CN101673163B (en)
TW (1) TWI420374B (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8754871B2 (en) 2011-03-21 2014-06-17 Tpk Touch Solutions Inc. Touch sensing device and scanning method thereof
CN104094201A (en) * 2012-01-10 2014-10-08 夏普株式会社 Linear system coefficient estimation method, integrated circuit employing same, touch panel system, and electronic apparatus
US8952922B2 (en) 2010-04-30 2015-02-10 Elan Microelectronics Corporation Sensing unit, sensing arrangement and sensing method for touch panel application
TWI473001B (en) * 2011-01-31 2015-02-11
TWI474233B (en) * 2011-12-16 2015-02-21 Silicon Integrated Sys Corp Sensing device, touch sensing system and display device
US8976154B2 (en) 2011-06-22 2015-03-10 Sharp Kabushiki Kaisha Touch panel system and electronic device
US8994692B2 (en) 2011-10-25 2015-03-31 Sharp Kabushiki Kaisha Touch panel system and electronic device
TWI480791B (en) * 2012-12-20 2015-04-11 Himax Tech Ltd Touch device and driving method of touch panel thereof
US9007313B2 (en) 2011-07-12 2015-04-14 Tpk Touch Solutions Inc. Touch sensing circuit and touch point detecting method thereof
US9013448B2 (en) 2011-06-22 2015-04-21 Sharp Kabushiki Kaisha Touch panel system and electronic device
US9030441B2 (en) 2010-12-28 2015-05-12 Sharp Kabushiki Kaisha Touch panel system and electronic device
EP2752739A4 (en) * 2011-08-30 2015-06-03 Nlt Technologies Ltd Electronic device, electrostatic capacitance sensor, and touch panel
US9218096B2 (en) 2010-11-29 2015-12-22 Innolux Corporation Sensing methods for touch sensing devices
US9342199B2 (en) 2012-12-26 2016-05-17 Japan Display Inc. Touch detection device, display device with touch detection function, and electronic apparatus
TWI550495B (en) * 2015-03-26 2016-09-21 原相科技股份有限公司 Capacitive touch device with high sensitivity and operating method thereof
US9465492B2 (en) 2011-06-22 2016-10-11 Sharp Kabushiki Kaisha Touch panel system and electronic device
TWI567625B (en) * 2010-04-22 2017-01-21 高通公司 Method and apparatus for improving dynamic range of a touchscreen controller
TWI594152B (en) * 2015-04-22 2017-08-01 友達光電股份有限公司 Touching sensing device
US9870097B2 (en) 2010-04-22 2018-01-16 Qualcomm Incorporated Noise cancellation technique for capacitive touchscreen controller using differential sensing
US10831304B2 (en) 2015-03-26 2020-11-10 Pixart Imaging Inc. Control chip for capacitive touch device with high sensitivity and low power consumption
US10900766B2 (en) 2010-04-27 2021-01-26 3M Innovative Properties Company Integrated passive circuit elements for sensing devices

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102253771B (en) * 2010-05-20 2015-08-26 义隆电子股份有限公司 The sensing cell of capacitance type touch-control panel, sensing circuit and method for sensing
CN102419647A (en) * 2010-09-27 2012-04-18 瑞鼎科技股份有限公司 Touch sensing device
US20120182252A1 (en) * 2011-01-17 2012-07-19 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Differential Capacitive Touchscreen or Touch Panel
DE102012108097A1 (en) * 2011-09-09 2013-03-14 Samsung Electronics Co., Ltd. Touch controls, methods thereof, and touch control devices
JP6037327B2 (en) * 2012-09-24 2016-12-07 株式会社ジャパンディスプレイ Liquid crystal display
CN106155435B (en) * 2015-04-07 2019-06-14 原相科技股份有限公司 Highly sensitive capacitance touch-control device and its operation method
TW201638756A (en) * 2015-04-21 2016-11-01 映智科技股份有限公司 Sensing device
CN104834406B (en) 2015-05-29 2018-09-18 京东方科技集团股份有限公司 A kind of display device and its driving method of integrated touch function
TWI569185B (en) 2015-11-06 2017-02-01 財團法人工業技術研究院 Touch control apparatus and noise compensating circuit and method thereof
CN106775141B (en) * 2015-12-30 2019-09-27 深圳市汇顶科技股份有限公司 Capacitance sensing circuit and touch panel
CN107025026A (en) * 2016-02-02 2017-08-08 上海和辉光电有限公司 The method and contactor control device of touch signal amplification
CN107480574A (en) * 2016-06-07 2017-12-15 奇景光电股份有限公司 Fingerprint recognition system, drive circuit and fingerprint identification method
KR101913650B1 (en) * 2017-11-06 2018-10-31 크루셜텍 (주) Biometric image read-out apparatus in display area
TWI627619B (en) 2017-11-28 2018-06-21 Industrial Technology Research Institute Touch panel driving apparatus
CN110321020B (en) * 2018-03-30 2021-01-15 北京钛方科技有限责任公司 Piezoelectric sensor signal noise removing method and device
CN110413189B (en) * 2018-04-28 2021-12-10 北京钛方科技有限责任公司 Virtual keyboard control method and system
US11726616B2 (en) 2021-05-06 2023-08-15 Novatek Microelectronics Corp. Display-and-touch system having interference sensing capacitor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW445714B (en) * 2000-05-05 2001-07-11 Ind Tech Res Inst Capacitor-coupled differential logic circuit
CN2681353Y (en) * 2004-01-05 2005-02-23 敦南科技股份有限公司 Low-noise integration type current-to-voltage image sensor
TWI269997B (en) * 2005-06-08 2007-01-01 Elan Microelectronics Corp Multi-object detection method of capacitive touch pad
US7656168B2 (en) * 2005-11-28 2010-02-02 Avago Technologies General Ip (Singapore) Pte. Ltd. Neutralizing electromagnetic noise for a capacitive input device
CN100485596C (en) * 2006-11-24 2009-05-06 启攀微电子(上海)有限公司 Self-adaptive judging method for capacitor type push-button

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9870097B2 (en) 2010-04-22 2018-01-16 Qualcomm Incorporated Noise cancellation technique for capacitive touchscreen controller using differential sensing
TWI567625B (en) * 2010-04-22 2017-01-21 高通公司 Method and apparatus for improving dynamic range of a touchscreen controller
US10900766B2 (en) 2010-04-27 2021-01-26 3M Innovative Properties Company Integrated passive circuit elements for sensing devices
US8952922B2 (en) 2010-04-30 2015-02-10 Elan Microelectronics Corporation Sensing unit, sensing arrangement and sensing method for touch panel application
US9218096B2 (en) 2010-11-29 2015-12-22 Innolux Corporation Sensing methods for touch sensing devices
TWI486829B (en) * 2010-12-28 2015-06-01 Sharp Kk Touch panel system and electronic device
US9030441B2 (en) 2010-12-28 2015-05-12 Sharp Kabushiki Kaisha Touch panel system and electronic device
TWI473001B (en) * 2011-01-31 2015-02-11
US8754871B2 (en) 2011-03-21 2014-06-17 Tpk Touch Solutions Inc. Touch sensing device and scanning method thereof
US8976154B2 (en) 2011-06-22 2015-03-10 Sharp Kabushiki Kaisha Touch panel system and electronic device
US9013448B2 (en) 2011-06-22 2015-04-21 Sharp Kabushiki Kaisha Touch panel system and electronic device
US9465492B2 (en) 2011-06-22 2016-10-11 Sharp Kabushiki Kaisha Touch panel system and electronic device
US9007313B2 (en) 2011-07-12 2015-04-14 Tpk Touch Solutions Inc. Touch sensing circuit and touch point detecting method thereof
US10330766B2 (en) 2011-08-30 2019-06-25 Nlt Technologies, Ltd. Electronic device, electrostatic capacitance sensor and touch panel
EP2752739A4 (en) * 2011-08-30 2015-06-03 Nlt Technologies Ltd Electronic device, electrostatic capacitance sensor, and touch panel
TWI486854B (en) * 2011-10-25 2015-06-01 Sharp Kk Touch panel system and electronic device
US8994692B2 (en) 2011-10-25 2015-03-31 Sharp Kabushiki Kaisha Touch panel system and electronic device
TWI474233B (en) * 2011-12-16 2015-02-21 Silicon Integrated Sys Corp Sensing device, touch sensing system and display device
CN104094201A (en) * 2012-01-10 2014-10-08 夏普株式会社 Linear system coefficient estimation method, integrated circuit employing same, touch panel system, and electronic apparatus
TWI480791B (en) * 2012-12-20 2015-04-11 Himax Tech Ltd Touch device and driving method of touch panel thereof
US9342199B2 (en) 2012-12-26 2016-05-17 Japan Display Inc. Touch detection device, display device with touch detection function, and electronic apparatus
TWI626568B (en) * 2012-12-26 2018-06-11 日本顯示器股份有限公司 Touch detection device, display device with touch detection function, and electronic apparatus
TWI550495B (en) * 2015-03-26 2016-09-21 原相科技股份有限公司 Capacitive touch device with high sensitivity and operating method thereof
US10831304B2 (en) 2015-03-26 2020-11-10 Pixart Imaging Inc. Control chip for capacitive touch device with high sensitivity and low power consumption
TWI594152B (en) * 2015-04-22 2017-08-01 友達光電股份有限公司 Touching sensing device

Also Published As

Publication number Publication date
TWI420374B (en) 2013-12-21
CN101673163B (en) 2013-11-06
CN101673163A (en) 2010-03-17

Similar Documents

Publication Publication Date Title
TW201011620A (en) Sensing circuit for capacitive touch panel
US8305360B2 (en) Sensing circuit for capacitive touch panel
US10620765B2 (en) Wide dynamic range capacitive sensing
US9377907B2 (en) Self capacitance implementation method
US10990221B2 (en) Multi-power domain touch sensing
US10282026B2 (en) Measuring body capacitance effect in touch sensitive device
JP5411670B2 (en) Capacitive touch panel signal processing circuit
AU2013256581B2 (en) Capacitance touch near field-far field switching
CN107562227B (en) Self-sensing touch panel
TWI505161B (en) System for and method of transferring charge to convert capacitance to voltage for touchscreen controllers
US9965108B2 (en) Simultaneous self- and mutual capacitance sensing
US9189116B2 (en) Noise compensating touch panel and touch device thereof
US20150145802A1 (en) Reconfigurable circuit topology for both self-cap and mutual cap sensing
US20070268272A1 (en) Variable capacitor array
US20150227232A1 (en) Frequency independent offset cancellation scheme in touch receiver channel
WO2018076343A1 (en) Capacitance detection device and method, and pressure detection system
TW201224472A (en) Circuit and method for sensing a capacitor under test
CN102681743B (en) Micro impedance change detection device
US8294678B2 (en) Image display systems
TW201243686A (en) Touch sensing circuit
JPH09185452A (en) Method and device for canceling offset signal on electrostatic digitized tablet
US11592936B2 (en) Capacitive touch device with high sensitivity and low power consumption
TW201003495A (en) Systems for displaying images
TWI426325B (en) Image display system and method for controlling a touch panel thereof
JP2011113186A (en) Signal processing circuit for electrostatic capacity type touch panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees