TW201011273A - Method and apparatus for measuring optically anisotropic parameters - Google Patents

Method and apparatus for measuring optically anisotropic parameters Download PDF

Info

Publication number
TW201011273A
TW201011273A TW098125163A TW98125163A TW201011273A TW 201011273 A TW201011273 A TW 201011273A TW 098125163 A TW098125163 A TW 098125163A TW 98125163 A TW98125163 A TW 98125163A TW 201011273 A TW201011273 A TW 201011273A
Authority
TW
Taiwan
Prior art keywords
light
polarized
reflected
polarized light
measured
Prior art date
Application number
TW098125163A
Other languages
Chinese (zh)
Other versions
TWI467157B (en
Inventor
Daisuke Tanooka
Original Assignee
Moritex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moritex Corp filed Critical Moritex Corp
Publication of TW201011273A publication Critical patent/TW201011273A/en
Application granted granted Critical
Publication of TWI467157B publication Critical patent/TWI467157B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Polarising Elements (AREA)

Abstract

Provided are a method and an apparatus for measuring optically anisotropic parameters, which are developed from a differential SMP method and capable of measuring the phase difference and the magnitude of a complex amplitude reflectivity ratio in different three polarizing states within a short time. In the present invention, the phase difference and the magnitude are measured based on total 12 kinds of light intensities of three polarizing states in A to D. (A) total 4 kinds of S polarized lights contained in reflective lights when total 4 kinds of polarized lights, in which inter-polarized-lighted phases with respect to P ± α A polarized light are adjusted to γ A1 and γ A2, are incident. (B) total 4 kinds of polarized lights vibrating in S ± α B, which are selected from polarized lights in which inter-polarized-lighted phase difference between P polarized light and S polarized light of reflective lights are adjusted to γ B1 and γ B2, when P polarized lights are incident. (C) total 4 kinds of P polarized lights contained in reflective lights when total 4 kinds of polarized lights, in which inter-polarized-lighted phases with respect to S ± α C polarized light are adjusted to γ C1 and γ C2, are incident. (D) total 4 kinds of polarized lights vibrating in P± α D, which are selected from polarized lights in which inter-polarized-lighted phase difference between P polarized light and S polarized light of reflective lights are adjusted to γ D1 and γ D2, when S polarized lights are incident.

Description

201011273 4 六、發明說明: 【發明所屬之技術領域】 本發明係有關一種測量形成於測量對象面之光學異 向性膜的複振幅反射率比的相位差之光學異向性參數測量 方法及測量裝置,尤其適用於液晶配向膜的檢查等。 【先前技術】 液晶顯示器係構成為:於表面層疊形成有透明電極及 配向膜之背面侧玻璃基板與於表面層疊形成有彩色濾光 片、透明電極、以及配向膜之表面側玻璃基板係隔著間隔 物互相對合配向膜,在液晶封入至該配向膜的間隙之狀態 下予以密封,並於該表面背面兩侧層疊偏光濾光片而成者。 在此,為了使液晶顯示器正常動作,液晶分子必須均 勻地排列於相同方向,而配向膜係決定液晶分子的方向性。 該配向膜之所以能使液晶分子整齊排列,乃是因為具 有一軸性光學異向性之故,當配向膜的整面具有均勻的一 轴性光學異向性時,液晶顯示器不易產生缺陷,而當存在 光學異向性不均勻的部分時,由於液晶分子的方向混亂, 因此液晶顯示器會變成不良品。 亦即,配向膜的品質係直接影響液晶顯示器的品質, 當配向膜有缺陷時,由於液晶分子的方向性混亂,因此液 晶顯示器亦產生缺陷。 因此,在組裝液晶顯示器時,預先檢查配向膜有無缺 陷且要求使用品質穩定的配向膜,即可提升液晶顯示器的 良率,並提升生產效率。 4 321299 201011273 • 因此,以以往的配向膜的檢查方法而言,已知有一般 • 的橢圓偏振測量法(ellipsometry)(非專利文獻1 )。 • 非專利文獻 1 : R.M.A.Azzam and N.M.Bashara : • Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1986) 此方法係對三種以上的複數種射入偏光狀態分別測 量反射偏光狀態,並測量複振幅反射率比RppErpp/rss、 RPS Ξ rps/rss、Rsp Ξ rsp/rss的測量方位方向依存性。 Ο 在此’ Rx (X為偏光狀態)係由分別照射至測量點的 射入光的複振幅反射率來定義,具體而言,係由射入p偏 光時的p偏光的複振幅反射率Γρρ、射入S偏光時的s偏光 的複振幅反射率rss、射入S偏光時的ρ偏光的複振幅反射 率rps、以及射入p偏光時的S偏光的複振幅反射率rsp的 比來定義。 由於繞著自測量點所延伸的法線使射入光的測量方 ❹位旋轉360度來進行測量時,能測量複振幅反射率比的測 量方位方向依存性,因此能詳細地評價配向膜的分子配 向’但有測量耗時的問題。此外’當膜厚較薄時,由於異 向性的檢測能力低,因此有時無法檢測出異向性。 因此’以兩速測量依據分子配向之光學異向性的方法 而σ本發明人曾提案一種差動SMP ( Symmetric Multi Processors,對稱式多重處理器)法。 專利文獻1 :日本特開2008-76324號公報 此方法係相對於測量對象物,將P偏光或S偏光任一 5 321299 201011273 者的方向作為基準方向,將射人光及測量光的—方設為於 基準方向振動之直線偏光,將人射光及測量光的另一方設 為相對於基準方向於π/2±α (()<α<7Γ/2)的方向振 動之-對直線偏光,測量與該—對偏光對應之兩種測量光 的光強度’依據表示所獲得的兩個光強度⑽的差分之差 刀貝料測量光學異向性參數,能在短時間測量測量對象物 的配向方位、光學軸的傾斜角、以及配向的大小以作為光 學異向性參數。 然而 在差動SPM法中201011273 4 VI. Description of the Invention: [Technical Field] The present invention relates to an optical anisotropy parameter measuring method and measurement for measuring a phase difference of a complex amplitude reflectance ratio of an optical anisotropic film formed on a surface of a measuring object The device is especially suitable for inspection of liquid crystal alignment films and the like. [Prior Art] The liquid crystal display is configured such that a back side glass substrate having a transparent electrode and an alignment film formed on its surface is laminated with a surface-side glass substrate on which a color filter, a transparent electrode, and an alignment film are laminated. The spacers are aligned with each other, and the liquid crystal is sealed in a state in which the liquid crystal is sealed to the gap of the alignment film, and a polarizing filter is laminated on both sides of the front surface of the surface. Here, in order for the liquid crystal display to operate normally, the liquid crystal molecules must be uniformly arranged in the same direction, and the alignment film determines the directivity of the liquid crystal molecules. The reason why the alignment film can align the liquid crystal molecules because of the axial optical anisotropy is that the liquid crystal display is less prone to defects when the entire surface of the alignment film has a uniform axial optical anisotropy. When there is a portion where the optical anisotropy is uneven, the liquid crystal display becomes a defective product due to the disorder of the direction of the liquid crystal molecules. That is, the quality of the alignment film directly affects the quality of the liquid crystal display. When the alignment film is defective, the liquid crystal display also has defects due to the directional disorder of the liquid crystal molecules. Therefore, when assembling a liquid crystal display, it is possible to improve the yield of the liquid crystal display and improve the production efficiency by checking the presence or absence of the alignment film in advance and requiring the use of an alignment film of stable quality. 4 321299 201011273 Therefore, in general, an ellipsometry method (non-patent document 1) is known as a method for inspecting an alignment film of the related art. • Non-Patent Document 1: RMAAzzam and NMBashara: • Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1986) This method measures the reflected polarization state for three or more types of incident polarization states and measures complex amplitude reflections. The ratio of the ratio of RppErpp/rss, RPS Ξ rps/rss, Rsp Ξ rsp/rss is measured. Ο Here, 'Rx (X is a polarized state) is defined by the complex amplitude reflectance of the incident light that is respectively irradiated to the measurement point, specifically, the complex amplitude reflectance Γρρ of the p-polarized light when the p-polarized light is incident. The ratio of the complex amplitude reflectance rss of the s-polarized light when the S-polarized light is incident, the complex-amplitude reflectance rps of the ρ-polarized light when the S-polarized light is incident, and the complex-amplitude reflectance rsp of the S-polarized light when the p-polarized light is incident is defined. . Since the measurement is performed by rotating the measurement side of the incident light by 360 degrees around the normal line extending from the measurement point, the measurement azimuth direction dependence of the complex amplitude reflectance ratio can be measured, so that the alignment film can be evaluated in detail. Molecular alignment 'but there are problems with measuring time consuming. Further, when the film thickness is thin, since the detection ability of the anisotropy is low, the anisotropy may not be detected. Therefore, the method of measuring the optical anisotropy according to the molecular alignment at two speeds has been proposed by the inventors to propose a differential SMP (Symmetric Multi Processors) method. In the method of measuring the object to be measured, the direction of the person who emits the human light and the measurement light is set as the reference direction with respect to the direction of any of the P polarized light or the S polarized light 5 321299 201011273. For the linearly polarized light vibrating in the reference direction, the other of the human light and the measurement light is set to be a linearly polarized light in a direction of π/2±α (() <α<7Γ/2) with respect to the reference direction, The measurement of the optical intensity of the two kinds of measurement light corresponding to the pair of polarized lights is measured according to the difference between the two light intensities (10) obtained by measuring the optical anisotropy parameter, and the alignment of the measurement object can be measured in a short time. The orientation, the tilt angle of the optical axis, and the size of the alignment are used as optical anisotropy parameters. However in the differential SPM method

-…,並無法測量最能表示光与 異向性物質的特性之複振幅反射率比的相位差及大小,i 此有必須併關圓偏_量法等其他方法之問題。 只要能測量對應測量方位之複振幅反射率比的㈣ 人及大小’即可利用以往公知的方法依據該測量結果測^ ^七個騎有光學異向性參數(配向方位、光學軸㈣ 層加2巾光折料、異常域料、配向層膜厚、配卢 層折射率、以及無配向層膜厚)。-..., it is impossible to measure the phase difference and size of the complex amplitude reflectance ratio which best expresses the characteristics of light and anisotropic substances, and i have to solve the problem of other methods such as the circular deviation method. As long as it can measure the complex amplitude reflectance ratio of the corresponding measured azimuth (4) person and size ', it can be measured according to the measurement result by using a conventionally known method. The seven rides have optical anisotropy parameters (orthogonal orientation, optical axis (four) layer plus 2 towel light-folding material, abnormal domain material, alignment layer film thickness, refractive index of the layer, and film thickness of the unaligned layer).

【發明内容】 (發明所欲解決之課題) 因此,本發明的技術性課題乃是使差動靖法進一 ,發展,一方面能測量不同 射率比_ M b 07 —種偏植恕中的複振幅反 射^_位差’另—方面能測量錢光狀態的複振幅反 (解決課題的手段) 為了解決上述課題,申請專利範圍第1項之發明係一 321299 6 201011273 — 種光學異向性參數測量方法,係以一定射入角度將射入光 . 從預定測量方位照射至測量對象面上的測量點,依據測量 * 其反射光所含有的特定方向的偏光成分的光強度而獲得的 • 光強度資料,測量成為光學異向性參數之複振幅反射率比 的相位差Δχ (X為偏光狀態)之方法;在該方法中,將前 述射入光予以偏光化,在預先設定的測量方位使前述偏光 化的射入光照射至測量點而進行測量時,將測量對象面作 為基準’將在與測量對象面正交的面内振動之直線偏光作 ❹為Ρ偏光’將於與該Ρ偏光正交的方向振動之直線偏光作 為S偏光時’依據在以下的a至D四種偏光狀態中的至少 三種偏光狀態下測量各四種合計十二種的反射光所得之光 強度資料’依循預先設定的程式,就各偏光狀態從所賦予 之偏光間相位差為相等的諸反射光強度資料間的兩個差計 算出兩個光強度差資料,除算該等兩個光強度差資料,藉 此計算出該射入光的測量方位的複振幅反射率比的相位差 ❿Δχ,該A至〇的四種偏光狀態為: (A)針鮮相對於P偏光的振動方向於±αΑ (〇< αΑ < ;r/2)的方向振動之一對偏光,將各者的ρ偏光成分 與S偏光成分的偏光間相位差業已調整為T A1及7 Α2之合 計四種的偏光作為射入光並使其被測量對象面反射時’各 反射光所含有的合計四種的S偏光‘; (Β)將ρ偏光作為射入光並使其被測量對象面反射 時,將反射光的Ρ偏光成分與S偏光成分的偏光間相位差 業已調整為γΒι及r於之兩種的光所含有的偏光中相對於 321299 7 201011273 S偏光的振動方向於±αΒ(0< αΒ< ττ/2)的方向振動之 合計四種的偏光; (C) 針對相對於S偏光的振動方向於±(3;。(〇< < 7Γ/2)的方向振動之一對偏光’將各者的p偏光成分 與S偏光成分的偏光間相位差業已調整為γ Q及γ c2之合 汁四種的偏光作為射入光並使其被測量對象面反射時,各 反射光所含有的合計四種的Ρ偏光; (D) 將S偏光作為射入光並使其被測量對象面反射 時,將反射光的Ρ偏光成分與s偏光成分的偏光間相位差 業已調整為7〇1及71)2之兩種的光所含有的偏光中相對於 ?偏光的振動方向於±心(0<心<"2)的方向振動之 合计四種的偏光。 申請專利範圍第2項之發明係依據一邊繞著自測量點 立起的法線使前述測量方位變化,一邊在至少三種偏光狀 態下測量各四種合計十二種的反射光而獲得的測量方位— 光強度資料,依循預先設定的程式’計算出與射入光的測 量方位對應的複振幅反射率比的相位差。 申請專利範圍第3項之發明係一種光學異向性參數測 量裝置,具備有:發光光學系統,係將偏光化成預定偏光 狀態的光以一定射入角度從預定測量方位照射至測量對象 面上的測量點;受光光學系統,係檢測已將其反射光偏光 化成預定偏光狀態的光的光強度;以及運算裝置,係依據 所測量出的光強度計算出成為光學異向性參數之複振幅反 射率比的相位差^31(叉為偏光狀態);在該光學異向性參 321299 8 201011273 -數測量裝置中’於前述發光光學系統依序設置有用以照射 .單色光之光源、可調整偏光方向之偏光子、以及可調整相 .位之發光側相位補彳員子,於前述受光光學系統依序設置有 .可調整相位之受光侧相位補償子、可調整偏光方向之檢光 子、以及測量穿透檢光子的偏光的光強度之光感測器;當 以測量對象面為基準’將在與測量對象面正交之面内振動 之直線偏光作為p偏光,將於與此正交之方向振動之直線 偏光作為s偏光時’在前述運算裝置中,依據針對四種偏 光狀態A至D中至少三種偏光狀態的各四種之合計十二種 的反射光所測量的光強度資料,依循預先設定的程式,就 各偏光狀態從所賦予之偏光間相位差為相等的諸反射光強 度資料間的兩個差計算出兩個光強度差資料’除算該等兩 個光強度差資料,藉此計算出該射入光的測量方位的複振 幅反射率比的相位差△ χ。 申請專利範圍第4項之發明係發光光學系統與受光光 ❹學系統以可相對地繞著從測量點立起的法線旋轉之方式配 置或繞著該法線呈放射狀配置;且復具備有運算裝置,該 運鼻裝置係依據與射入光的測量方位對應的光強度計异出 成為光學異向性參數之複振幅反射率比的相位差Δχ (X為 偏光狀態);在運算裝置中,依據針對四種偏光狀態Α至 D中至少三種偏光狀態的各四種之合計十二種的反射光所 測量而獲得之測量方向—光強度資料,依循預先設定的程 式’就各偏光狀態從所賦予之偏光間相位差為相等的諸反 射光強度資料間的兩個差計算出兩個測量方位—光強度差 321299 9 201011273 資料,除算該等兩個光強度差資料,藉 的測量方位對應的複振幅反射率比的相位差^射先 離將;4專郷圍第5至8項之發明魏各偏光狀 ::::!的一組的反射光強度資料的和作為光強度和 Γ= ’並從前述光強度差資料的-方與光強度 H 出該射入光的測量方位(或與其對應)的 複振幅反射率比的大小|Rx|。 (發明之效果) 、ρίθ ^據申請專利11圍第1項及第3項之發明,在從預定 2方位將射^光照射朗量點,朗量其反射光的光強 又,以預先叹定的三種偏光狀態進行 =差資料的比,藉此而能夠針對該測量方位方= 態)烏先狀搞難幅㈣率比的她差‘(χ為偏光狀 纟’如中請專·圍第5項及第7項之發明,只要 :十异出光強度差資料與光強度和資料的比,即能針對其測 :!:方位方向測量各種偏光狀態的複振幅反射率比的大小 Κ I (X為偏光狀態)。 此外,如申請專利範㈣2項及第4項之發明,例如 的、^絲㈣統及受光光學⑽以可繞著㈣量點立起 一^、旋轉之方式配置或繞著該法線呈放射狀配置,且能 性或階段性地使測量方位變化一邊進行測量,即 射入光的測量方位對應之複振幅反射率比的相位 △山為偏光狀態),而能將相位差^作為測量方位 1〇 321299 201011273 的函數進行測量。 在此,如申請專利範圍第6項及第8項之發明,只要 計算出光強度差資料與光強度和資料的比,即能針對進行 變化的測量方位方向測量各種偏先狀態的複振幅反射率比 的大小|RX| (X為偏光狀態),而能將複振幅反射率比 的大小作為測量方位的函數進行測量。 【實施方式】SUMMARY OF THE INVENTION (Problems to be Solved by the Invention) Therefore, the technical problem of the present invention is to advance the differential homing method, and to measure the different ratios of _ M b 07 on the one hand. Complex amplitude reflection ^ _ difference 'other side can measure the complex amplitude of the money light state (means to solve the problem) In order to solve the above problem, the invention of claim 1 is a 321299 6 201011273 - optical anisotropy The parameter measurement method is to inject light at a certain angle of incidence. The measurement point irradiated from the predetermined measurement azimuth to the measurement target surface is obtained according to the measurement* the light intensity of the polarization component of the specific direction contained in the reflected light. The light intensity data is a method of measuring a phase difference Δχ (X is a polarization state) of a complex amplitude reflectance ratio of an optical anisotropy parameter; in the method, the incident light is polarized at a predetermined measurement orientation When the polarized incident light is irradiated to the measurement point and measured, the measurement target surface is used as a reference to linearly polarize the vibration in the plane orthogonal to the measurement target surface. In the case of Ρpolarized light, a linearly polarized light that will vibrate in a direction orthogonal to the Ρ-polarized light is used as S-polarized light, and four of the four totals are measured in accordance with at least three of the four polarized states of the following a to D. The light intensity data obtained by the reflected light 'according to a preset program, two light intensity difference data are calculated for two differences between the reflected light intensity data of the polarization states from which the phase differences between the polarized lights are equal. The two light intensity difference data are used to calculate the phase difference ❿Δχ of the complex amplitude reflectance ratio of the measured azimuth of the incident light, and the four polarization states of the A to 〇 are: (A) the needle is relatively polarized with respect to P The vibration direction is one of the direction vibrations of ±αΑ(〇<αΑ <;r/2), and the phase difference between the polarization of each of the ρ polarization component and the S polarization component has been adjusted to T A1 and 7 Α2 When the four types of polarized light are used as the incident light and are reflected by the surface of the measurement target, the total of the four types of S-polarized light contained in each of the reflected lights is used; (Β) the ρ-polarized light is used as the incident light and is measured. When the surface is reflected, the reflected light will be polarized The phase difference between the polarizations of the S-polarized component and the polarization of the γΒι and r are adjusted to be ±αΒ(0<αΒ< ττ/2) with respect to the polarization direction of the 321299 7 201011273 S polarized light. The total of the directional vibrations is four kinds of polarizations; (C) For the vibration direction with respect to the S-polarized light, one of the vibrations in the direction of ±(3; (〇<< 7Γ/2) When the phase difference between the polarization of the component and the S-polarized component is adjusted to be four kinds of polarized light of γ Q and γ c2 as the incident light and reflected by the surface of the measurement target, the total of four types of Ρ contained in each reflected light (D) When the S-polarized light is used as the incident light and is reflected by the surface of the measuring object, the phase difference between the polarized light component of the reflected light and the polarized light of the s-polarized component has been adjusted to be 7〇1 and 71)2. The polarized light contained in the light has a total of four kinds of polarized light in the direction of the vibration of the ±polarized light in the direction of the ±heart (0<<>>" The invention of claim 2 is based on measuring the azimuth of the measurement direction by changing the aforementioned measurement orientation around a normal line rising from the measurement point, and measuring the measurement directions obtained by measuring the total of twelve kinds of reflected light in at least three kinds of polarization states. — The light intensity data, based on a preset program', calculates the phase difference of the complex amplitude reflectance ratio corresponding to the measured orientation of the incident light. The invention of claim 3 is an optical anisotropic parameter measuring device, comprising: an illuminating optical system that illuminates light that is polarized into a predetermined polarization state from a predetermined measuring azimuth to a measuring object surface at a certain incident angle. a measuring point; a light receiving optical system detects a light intensity of light whose polarized light has been polarized into a predetermined polarized state; and an arithmetic device that calculates a complex amplitude reflectance which becomes an optical anisotropy parameter based on the measured light intensity The phase difference of the ratio is 31 (the fork is in a polarized state); in the optical anisotropy 321299 8 201011273 - the number measuring device, a light source for illuminating the monochromatic light and an adjustable polarized light are sequentially disposed in the illuminating optical system. The polarized light of the direction and the light-emitting side phase supplement of the adjustable phase are provided in the light receiving optical system in sequence, the light receiving side phase compensator capable of adjusting the phase, the photodetector capable of adjusting the polarization direction, and the measuring a light sensor that transmits the intensity of the polarized light of the photodetector; when the surface of the measuring object is used as a reference, the surface will be vibrated in a plane orthogonal to the surface of the measuring object The linear linear polarization is p-polarized, and the linearly polarized light that vibrates in the direction orthogonal to this is used as the s-polarized light. In the aforementioned arithmetic device, each of the four kinds of polarization states for at least three of the four polarization states A to D is used. A total of twelve kinds of light intensity data measured by the reflected light are calculated according to a preset program, and two lights are calculated for two differences between the reflected light intensity data of the polarization states from which the phase differences between the polarization directions are equal. The intensity difference data 'receives the two light intensity difference data, thereby calculating the phase difference Δ χ of the complex amplitude reflectance ratio of the measured azimuth of the incident light. The invention of claim 4 is characterized in that the illuminating optical system and the light-receiving optical system are arranged to be relatively rotatable about a normal line rising from a measuring point or radially arranged around the normal line; There is an arithmetic device that emits a phase difference Δχ (X is a polarized state) which is a complex amplitude reflectance ratio of the optical anisotropy parameter according to a light intensity meter corresponding to the measured orientation of the incident light; The measurement direction-light intensity data obtained by measuring the total of twelve kinds of reflected light of each of the four kinds of polarization states Α to D at least three of the polarization states, according to a preset program' Calculate two measured azimuths—light intensity difference 321299 9 201011273 data from two differences between the reflected light intensity data of the phase difference between the given polarizations, except for the two light intensity difference data, the measured position The phase difference of the corresponding complex amplitude reflectance ratio is the first to leave; 4 is the circumference of the 5th to 8th inventions. The polarization of the reflected light intensity data of a group of::::! Γ = 'and the light intensity difference from the data - the measurement of the orientation of the incident light (or corresponding thereto) complex amplitude reflectance ratio of the size of the square of the light intensity H | Rx |. (Effects of the Invention) ρίθ According to the inventions of the first and third items of the patent application 11, in the predetermined two directions, the light is irradiated to the light, and the light intensity of the reflected light is measured to sigh in advance. The three kinds of polarization states are determined as the ratio of the difference data, so that the measurement orientation can be made to the state of the state, and the difference between the ratios of the four dimensions is four (the ratio of the ratio is 偏 她 偏 如 如 如 如 如 如 如 如 如 如 如 如The inventions of items 5 and 7 are as long as: the ratio of the light intensity difference data to the light intensity and the data can be measured for: :: Azimuth direction measures the magnitude of the complex amplitude reflectance ratio of various polarization states Κ I (X is a polarized state.) In addition, as in the inventions of the patents (4) 2 and 4, for example, the wire (four) system and the light-receiving optics (10) can be arranged around the (four) point to form a ^, rotation or Radially arranged around the normal line, and the measurement is performed while changing the measurement orientation, that is, the phase Δ mountain of the complex amplitude reflectance ratio corresponding to the measurement direction of the incident light is a polarization state) The phase difference ^ is performed as a function of measuring the orientation 1 〇 321299 201011273 the amount. Here, as in the inventions of claims 6 and 8, the complex amplitude reflectance of various pre-states can be measured for the measured azimuth direction by calculating the ratio of the light intensity difference data to the light intensity and the data. The size of the ratio |RX| (X is the polarization state), and the magnitude of the complex amplitude reflectance ratio can be measured as a function of the measured orientation. [Embodiment]

為了達成使差動SMP法進一步發展並測量不同的三 種偏光狀態中的複振幅反射率比的相位差之目的,本發明 的光學異向性參數測量方法係以一定射入角度將射入光照 射至測量對象面上的測量點,依據測量其反射光所含有的 特疋方向的偏光成分的光強度而獲得的光強度資料,測量 成為光學異向性參數之複振幅反射率比的相位差Δχ(χ* 偏光狀態)之方法;在該方法中,將前述射人光予以偏> ❹ 化,在預歧定的測量純使前述偏絲的射人光照射』 測量點而進行測量時,將測量對象面作為基準,將在與須 量對象面正交的面内振動之直線偏光作為ρ偏光,將於多 ^偏光正㈣方向齡之錄偏光作為s偏光時,依名 =下^至〇四種偏光狀態中的至少三種偏光狀態下須 十二種的反射光所得之光強度資料,依循壬 相等就各偏光狀態從所^予之偏光間相位差3 相4的诸反射光強度資料間的兩個差 資料’除算該等兩個光強度差資料异,固一久 的測量方位的複振幅反射率比的=計算出該射入 伯位差Δχ;該A至D# 321299 11 201011273 四種偏光狀態為: (A) 針對相對於P偏光的振動方向於±αΑ (0<αΑ < ττ/2)的方向振動之—對偏光,將各者的ρ偏光成分 與S偏光成分的偏光間相位差業已調整為〜及〜之合 計四種的偏光作為射人光並使其被測量對象面反射時,各 反射光所含有的合計四種的s偏光; (B) 將p偏光作為射入光並使其被測量對象面反射 時’將反射光的;P偏光成分與s偏光成分的偏光間相位差 業已調整為rB1及rB2之兩種的光所含有的偏光中相對於 s偏光的振動方向於±αΒ(()<αΒ<;Γ/2)的方向振動之 合計四種的偏光; (c)針對相對於§偏光的振動方向於土 < 7Γ /2)的方向振動之一對偏光,將各者的ρ偏光成分 與S偏光成分的偏光間相位差業已調整為及Yu之合 计四種的偏光作為射入光並使其被測量對象面反射時,各 反射光所含有的合計四種的P偏光; (D)將S偏光作為射入光並使其被測量對象面反射 時,將反射光的P偏光成分與s偏光成分的偏光間相位差 業已調整為·rD1及yd2之兩種的光所含有的偏光中相對於 p偏光的振動方向於±aD(0< aD< π/2)的方向振動之 合計四種的偏光。 第1圖係顯示本發明的光學異向性參數測量裝置的一 例之說明圖。第2圖係顯示運算裝置的主程序(r〇utine) 的處理順序之流程圖。第3圖係顯示副程序的處理順序之 321299 12 201011273 流程圖。第4圖係顯示偏光狀態A中的光強度差資料與光 強度和資料之圖表。第5圖係顯示偏光狀態b中的光強度 差資料與光強度和資料之圖表。第6圖係顯示偏光狀態c 中的光強度差資料與光強度和資料之圖表。第7圖係顯示 偏光狀態D中的光強度差資料與光強度和資料之圖表。第 8圖係顯示計算出的複振幅反射率比的相位差之圖表。第9 圖係顯示計算出的複振幅反射率比的大小之圖表。 首先’說明本發明的複振幅反射率及其相位差的測量 理論。 、 考量到偏光的反射,複振幅反射率Γχ ( X為偏光狀態) 係表示成: βχρίίδ χ]In order to achieve the purpose of further developing the differential SMP method and measuring the phase difference of the complex amplitude reflectance ratio in different three polarization states, the optical anisotropy parameter measurement method of the present invention irradiates the incident light at a certain incident angle. The measurement point on the measurement target surface is measured based on the light intensity data obtained by measuring the light intensity of the polarization component in the characteristic direction of the reflected light, and the phase difference Δχ of the complex amplitude reflectance ratio which becomes the optical anisotropy parameter is measured. (χ* polarized state) method; in the method, the above-mentioned incident light is polarized > and the measurement is performed when the pre-determined measurement is purely irradiated with the incident light of the partial filament; Using the measurement target surface as a reference, the linearly polarized light vibrating in the plane orthogonal to the surface of the whisker object is used as the ρ-polarized light, and when the polarized light of the positive (four) direction is used as the s-polarized light, the name = lower ^ to光 Light intensity data obtained from at least three types of reflected light in at least three of the four polarization states, according to 壬 equal, each of the polarized states is reflected from the phase difference of the phase 3 of the polarized light The difference data between the two data 'except for the two light intensity differences, the complex amplitude reflectance ratio of the measured azimuth for a long time = the calculated initial difference Δχ; the A to D# 321299 11 201011273 The four polarization states are: (A) For the polarization direction of the vibration direction of the P-polarized light in the direction of ±αΑ (0<αΑ < ττ/2), the polarization of the ρ and the S-polarized component of each The phase difference between the polarizers has been adjusted to a total of four kinds of polarized light of ~ and ~ as the incident light and reflected by the surface of the measurement target, the total of four kinds of s-polarized light contained in each reflected light; (B) Using p-polarized light as When the light is incident on the surface of the object to be measured and reflected, the phase difference between the polarization of the P-polarized component and the s-polarized component is adjusted to be the polarized light contained in the two types of light, rB1 and rB2, relative to the s-polarized light. The direction of vibration is a total of four types of polarized light in the direction of ±αΒ(()<αΒ<;Γ/2); (c) vibrating in the direction of soil < 7Γ /2) with respect to the direction of vibration of § polarized light One pair of polarized light, between the ρ polarized component of each and the polarized component of the S polarized component When the disparity of the four types of polarized light is adjusted as the incident light and the surface of the object to be measured is reflected, the total of the four types of P-polarized light contained in each of the reflected lights; (D) S-polarized light is used as the incident light. When the surface of the object to be measured is reflected, the phase difference between the P-polarized component of the reflected light and the polarization of the s-polarized component is adjusted to the vibration direction of the polarized light contained in the light of the two types of ·rD1 and yd2. Four types of polarized light are combined in the direction of ±aD (0<aD< π/2). Fig. 1 is an explanatory view showing an example of the optical anisotropy parameter measuring apparatus of the present invention. Fig. 2 is a flow chart showing the processing procedure of the main program (r〇utine) of the arithmetic unit. Figure 3 shows the processing sequence of the subprogram. 321299 12 201011273 Flowchart. Fig. 4 is a graph showing light intensity difference data and light intensity and data in the polarization state A. Fig. 5 is a graph showing light intensity difference data and light intensity and data in the polarization state b. Fig. 6 is a graph showing light intensity difference data and light intensity and data in the polarization state c. Fig. 7 is a graph showing light intensity difference data and light intensity and data in the polarization state D. Figure 8 is a graph showing the phase difference of the calculated complex amplitude reflectance ratio. Figure 9 shows a graph of the calculated complex amplitude reflectance ratio. First, the measurement theory of the complex amplitude reflectance and the phase difference thereof of the present invention will be described. Considering the reflection of polarized light, the complex amplitude reflectance Γχ (X is the polarized state) is expressed as: βχρίίδ χ]

ΓΡΡ·射入ρ偏光時的反射光的Ρ偏光的複振幅反射率 rsp :射入ρ偏光時的反射光的S偏光的複振幅反射率 rps :射入S偏光時的反射光的ρ偏光的複振幅反射率 ·射入S偏光時的反射光的s偏光的複振幅反射率 5pp :相對於射入光的ρ偏光的相位之反射光的P偏 光的相位的跳躍 dSp :相對於射入光的ρ偏光的相位之反射光的S偏 光的相位的跳躍 5ps:相對於射入光的S偏光的相位之反射光的P偏 光的相位的跳躍 ss •相對於射入光的S偏光的相位之反射光的S偏 13 321299 201011273 光的相位的跳躍 此時,以下式定義複振幅反射率 r Χ/Γ ss 比Rx時,係變成 r s s I e X p [ j (5 ;c - δ s s)] δ ssl) 而複振幅反射率比&的相位差^係表示成 Δ Xs δ δ ss 以此方式㈣的幅反射率比Rx的三種位相差^ PP、lP、\s以及3種大小|RpJ、丨^丨、|R山系 作為配相膜等光學異向性材料的物性參數而具有重要性, 尤其知道相位差Δρρ、、在進行其光學異向性材料 的評價具有重要性。 在各偏光狀態所測量的反射光強度的理論式如下。 [偏光狀態A] 針對相對於p偏光的振動方向於土αΑ(0 <aA<;r /2)的方向振動之一對偏光,將各者的ρ偏光成分與s 偏光成分的偏光間相位差業已調整為7 ai與7 a2之合計四 種的偏光作為射入光並使其被測量對象面反射時的反射光 的光強度係使用壤斯矩陣(J0nes matrix )以下述方式表示。 【數學式1】 lA = Km\2 =^{μκ{-Θα)-Μα· M^(&A)-Ms-Qr-MK(-ep)-Mf-Mji(ep)^ 在此,I。為裝置常數,Ein、Eat為射入光及測量光的 偏光向量’ Mp、Q、Ms、MA、MR分別為偏光子、相位板、 14 321299 201011273 試料、檢光子、座標旋轉的瓊斯矩陣,分別以下述的形 提供。 【數學式2】复· Complex amplitude reflectance of the Ρ-polarized light of the reflected light when the ρ-polarized light is incident rsp: Complex-amplitude reflectance rps of the S-polarized light of the reflected light when the ρ-polarized light is incident: ρ-polarized of the reflected light when the S-polarized light is incident Complex amplitude reflectance, complex amplitude reflectance of s-polarized light of reflected light when incident S-polarized light: 5pp: jump of phase of P-polarized light of reflected light with respect to phase of ρ-polarized light of incident light: relative to incident light The phase of the S-polarized light of the reflected light of the phase of the ρ-polarized light is 5 ps: the jump of the phase of the P-polarized light of the reflected light with respect to the phase of the S-polarized light of the incident light. • The phase of the S-polarized light with respect to the incident light. S-displacement of reflected light 13 321299 201011273 Jump of phase of light At this time, when the complex amplitude reflectivity r Χ / Γ ss ratio Rx is defined by the following equation, it becomes rss I e X p [ j (5 ; c - δ ss)] δ ssl) and the phase difference of the complex amplitude reflectance ratio & is expressed as Δ Xs δ δ ss. In this way, the amplitude reflectance of the amplitude (R) is different from that of Rx ^ PP, lP, \s and 3 sizes | RpJ丨^丨,|R mountain system is important as a physical property parameter of an optical anisotropic material such as a phase film, especially It is important to know the phase difference Δρρ and to evaluate its optically anisotropic material. The theoretical formula of the intensity of the reflected light measured in each polarization state is as follows. [Polarization state A] For the polarization of the direction of the vibration of the p-polarized light in the direction of the soil αΑ(0 <aA<;r /2), the phase between the polarization of the ρ-polarized component and the s-polarized component The light intensity of the reflected light of the total of 7 ai and 7 a2 as the reflected light and reflected by the surface of the measuring object is expressed by the following equation using a Jess matrix (J0nes matrix). [Math 1] lA = Km\2 =^{μκ{-Θα)-Μα· M^(&A)-Ms-Qr-MK(-ep)-Mf-Mji(ep)^ Here, I . For the device constant, Ein and Eat are the polarization vectors of the incident light and the measurement light. Mp, Q, Ms, MA, and MR are respectively a polarizer, a phase plate, and a Jones matrix of the sample, the photodetector, and the coordinate rotation, respectively. It is provided in the form described below. [Math 2]

E (%、 ❹E (%, ❹

Mr (θ) = Μρ: cos0 sin^' sin0 cos^ 0、Mr (θ) = Μρ: cos0 sin^' sin0 cos^ 0,

Ms: Μα: PP rps .% rss ‘0 〇j 丫 .偏光間相位差 θρ : (deflection angle) 0 A :檢光子的偏轉角 ,射人光的偏光的偏轉角設為$時,光強度θ, 7)係以下式計算出。 【數學式3】 ... ....... )〇{U| COS 叫y Sm2 叫%||~丨sin(如)c〇s(〜—心灯)j 在偏光狀態A中,分4老、 量。 依據以下各條件進行光強度的測 321299 15 201011273 12 3 4遣量量遣 測測測測 '、、、 7 y V 7 —·"·: ·*-· _ . ·Ms: Μα: PP rps .% rss '0 〇j 丫. Phase difference between polarizations θρ : (deflection angle) 0 A : Deflection angle of the photodetector, when the deflection angle of the polarization of the incident light is set to $, the light intensity θ , 7) is calculated by the following formula. [Math 3] ... ....... ) 〇{U| COS is called y Sm2 is called %||~丨sin (for example) c〇s (~-heart light) j In the polarized state A, 4 old, quantity. The light intensity is measured according to the following conditions. 321299 15 201011273 12 3 4 The amount of measurement is measured. ',,, 7 y V 7 —·"·: ·*-· _ .

A A A A V V 7 7 *™I i—I i—- n Ilf二二 I iI I—I i-1 I—* A A A A ο ο ο ο ο ο ο ο 將該值代入上式中,分別求取 Ιαιι^Ια (αΑ, Vai) ΙΑΐ2=ΙΑ(αΑ, yA2) I Α2 1 二 I Α (- α Α, y Α1) I Α22= I Α (— α Α’ y Α2) ,取其差分與和分,並以下式提供。 【數學式4】 DIai = 2/〇sin(2%H|c〇s(冬 ~sss+rA1) DIa2 = 270sin(2^)j^||^|cos(^ SIa =2/〇(|7vfcos、+ r«fsin2 DIai : 1八11與Ia21之差 DIa2 · 1八12與Ia22之差 SIA · IaII 與 Ia21 或 IA12 與 Ia22 之和_ [偏光狀態 B] 將Ρ偏光作為射入光並使其被測量對象面反射時將 反射光的Ρ偏光成分與s偏光成分的偏光間相位差業已調 整為7 Β1與ΤΒ2之兩種的光所含有的偏光中之相對於S偏 光的振動方向於±αΒ(〇< 〇;Β< π / 2)的方向振動之合計 四種的偏光的光強度係以下式計算出。 【數學式5】 321299 16 201011273AAAAVV 7 7 *TMI i-I i-- n Ilf 二 二 I iI I—I i-1 I—* AAAA ο ο ο ο ο ο ο ο 将该 将该 将该 将该 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代 代(αΑ, Vai) ΙΑΐ2=ΙΑ(αΑ, yA2) I Α2 1 II I Α (- α Α, y Α1) I Α22= I Α (— α Α' y Α2), take the difference and the sum, and below Available. [Math 4] DIai = 2/〇sin(2%H|c〇s(Winter~sss+rA1) DIa2 = 270sin(2^)j^||^|cos(^ SIa =2/〇(|7vfcos , + r«fsin2 DIai : Difference between 1 8 11 and Ia21 DIa2 · Difference between 1 8 12 and Ia22 SIA · IaII and Ia21 or IA12 and Ia22 _ [Polarized state B] Ρ polarized light is used as incident light When the surface of the object to be measured is reflected by the surface of the object to be measured, the phase difference between the polarization of the Ρ-polarized component and the s-polarized component is adjusted to be ±αΒ among the polarizations of the light of the two types of Β1 and ΤΒ2 with respect to the S-polarized light. (〇<〇; Β < π / 2) The total of the four types of polarized light is calculated by the following equation: [Math 5] 321299 16 201011273

Ib ~ |E〇« |2 = /〇 { Mr {-Θα ) · Ma · Mr (^ ) · Qy · Ms · Ma (-θρ ) · Mp · Mr (^ ) · Eift | 當將反射光的偏光的偏轉角設為Θ時,光強度IB ( 0, γ)係以下式計算出。 【數學式6】 叫,r) = /0||^如2叫r》〇s2叫;+γ). i 於偏光狀態B中,依據以下各條件進行光強度的測 量。 12 3 4量量量量 ffu rf3 rtu ϋIb ~ |E〇« |2 = /〇{ Mr {-Θα ) · Ma · Mr (^ ) · Qy · Ms · Ma (-θρ ) · Mp · Mr (^ ) · Eift | When polarized light is reflected When the deflection angle is set to Θ, the light intensity IB (0, γ) is calculated by the following equation. [Math 6] Called, r) = /0||^ If 2 is called r 〇 s2 called; + γ). i In the polarized state B, the light intensity is measured according to the following conditions. 12 3 4 quantity quantity ffu rf3 rtu ϋ

p p p p Θ AD 6 @ % V V V VY77 rL [ I_ J 1....I ο ο ο 0 ο ο ο ο 112 1 B B B B V y r y I—- rw I_I I__I il fi II l{ TJ TJ I—S I—I A A A A θ β Θ d + - + I Ο Ο 〇 0 ο ο ο ο 9 9 9 9 a B J a b3a B] a B] 將該值代入上式,分別求取Ppppp Θ AD 6 @ % VVV VY77 rL [ I_ J 1....I ο ο ο 0 ο ο ο ο 112 1 BBBBV yry I — rw I_I I__I il fi II l{ TJ TJ I—SI—IAAAA θ β Θ d + - + I Ο Ο 〇0 ο ο ο ο 9 9 9 9 a BJ a b3a B] a B] Substituting this value into the above formula, respectively

H B 1 1 = I B ( a B » 8 12=18 ( α B, Β 2 1 = I B (~ α B > B 2 2 = I B a Β» y b i)y bz) y b〇 y b2) * b 2 2 — i B < a B> 7 B 2 取其差分與和分,並以下式提供 【數學式7】 观=2/»冰1卜。也_^^) 孤2 =2J°sin㈣W4〇s( w〜) a 叫|〜丨2血、+|rspf c〇s、) DIbi . IB11 與 lB21 之差 DIb2_. Ibi2 與 Ib22 之差 321299 17 201011273 ϊβ · Ibii 與 IB21 或 IB12 與 ιΒ22 之和 [偏光狀態c] 針對相對於S偏光的振動方向於±ac(0<ac<7r// 2)的方向振動之一對偏光,將各者的p偏光成分與s偏 光成分的偏光間相位差業已調整為&與&之合計四種 的偏光作為射人光並使其被測量對象面反射時的反射光的 光強度係以下式表示。 【數學式8】 |E〇«/| MR(^).Ms-Qr-MR(-<9p)-Mp-MR(^)-Ein} 當將偏光的偏轉角設為0時,光強度Ic ( θ,7 )係 以下式計算出。 【數學式9】 咏尸)=/。{卜小in2叫糾、s2叫,』和 &偏光狀g c巾’依據以下各條件進行光強度的測 量。 12 3 4 量M1量量 rfu rfu ® 消湏湏湏HB 1 1 = IB ( a B » 8 12=18 ( α B, Β 2 1 = IB (~ α B > B 2 2 = IB a Β» ybi) y bz) yb〇y b2) * b 2 2 — i B < a B> 7 B 2 Take the difference and the sum, and provide the following equation [Math 7] View = 2 / » Ice 1 Bu. Also _^^) Lone 2 = 2J°sin (4) W4〇s( w~) a Called |~丨2 blood, +|rspf c〇s,) DIbi . Difference between IB11 and lB21 DIb2_. Difference between Ibi2 and Ib22 321299 17 201011273 Ϊβ · Ibii and IB21 or the sum of IB12 and ιΒ22 [polarized state c] one pair of polarized light in the direction of ±ac (0<ac<7r//2) with respect to the vibration direction of S-polarized light, the p of each The phase difference between the polarization of the polarizing component and the s-polarized component has been adjusted to the following equations: The light intensity of the reflected light when the four types of polarized light are combined with & [Math 8] |E〇«/| MR(^).Ms-Qr-MR(-<9p)-Mp-MR(^)-Ein} When the deflection angle of the polarized light is set to 0, the light intensity Ic ( θ, 7 ) is calculated by the following formula. [Math 9] Zombie) = /. {Bu small in2 called correction, s2 call, 』 and & polarized g c towel' are measured for light intensity according to the following conditions. 12 3 4 Quantity M1 quantity rfu rfu ®

li = {I ί—I I—I I—I I—I A A A A Θ 0 θ Θ ''', p p p p CD 0 CD CDLi = {I ί—I I—I I—I I—I A A A A Θ 0 θ Θ ''', p p p p CD 0 CD CD

112 1 c c c C Ύ V V 7 —I I—- W I__> I_I ο ο ο ο ο ο ο ο 9 9 9 0 將該值代入上式,分別求取 C 1 1 c 1 2 C 2 1 C 2 2112 1 c c c C Ύ V V 7 —I I—W I__> I_I ο ο ο ο ο ο ο ο 9 9 9 0 Substituting this value into the above equation, respectively, C 1 1 c 1 2 C 2 1 C 2 2

C C α c > I c (一 (一 ^ c 1 ) y c2) y a) y 〇z) c ^ ac, 7 c, 取其差分與和分’並以下式提供 18 321299 201011273 . 【數學式10】CC α c > I c (一(一^ c 1 ) y c2) ya) y 〇z) c ^ ac, 7 c, take the difference and the sum ' and provide the following formula 18 321299 201011273 . 】

Did =2/03^(2%)|^||^|〇〇8(^ + γα) DIc2 = <% ) 1¾ 1I cos ^ δρρ - Sps + yc2^ . Sic =2/0[(^|2sm2^+J^.|2cos2^j DIci : Icii 與.Ic2i 之差 DIC2 ·· ϊ<:12 與 Ic22 之差 Sic ·· Icil 與 Ic21 或 Ici2 與 Ic22 之和 ❹ [偏光狀態D] 將S偏光作為射入光並使其被測量對象面反射時,將 反射光的P偏光成分與S偏光成分的偏光間相位差業已調 整為7 〇1與7 D2之兩種的光所含有的偏光中之相對於p偏 光的振動方向於±aD(〇< α〇<龙/2)的方向振動之合計 四種的偏光的光強度係以下式表示。 【數學式11】 鲁 /z? H ⑹.<VMs.Mr(h9p).MP.Mr⑹·Ε^ 當將偏光的偏轉角設為Θ時,㈣度Ιϋ(θ,7)係 以下式計算出。 【數學式12】 岭’)-々{|…。S2叫必记2叫▲丨邮,。啦〆 曰d烏光狀態D中’依據以下各條件進行光強度的測 19 321299 201011273 12 3 4 量fi量量 測測測測 V* p p p p θ θ Λσ Λσ I—l I—I I—I I—I A A A A θ θ Θ Θ D D D D 7ryY rL I_I i—I ί_j o o o o o o o o 0 9 9 9 O O O 0 o o o o 將該值代入上式中,分別求取 I D 1 1 ^ ^ D (aD,YD1)Did =2/03^(2%)|^||^|〇〇8(^ + γα) DIc2 = <% ) 13⁄4 1I cos ^ δρρ - Sps + yc2^ . Sic =2/0[(^| 2sm2^+J^.|2cos2^j DIci : Difference between Icii and .Ic2i DIC2 ·· ϊ<:12 Difference with Ic22 Sic ·· Icil and Ic21 or Ici2 and Ic22 ❹ [Polarization state D] S-polarized When the incident light is reflected by the surface of the measurement target, the phase difference between the P-polarized component of the reflected light and the polarization of the S-polarized component is adjusted to be the polarized light of the light of the two types of 7 〇 1 and 7 D 2 . The total light intensity of the four types of polarized light with respect to the vibration direction of the p-polarized light in the direction of ±aD (〇<α〇<龙/2) is expressed by the following equation: [Formula 11] Lu/z? H (6) .<VMs.Mr(h9p).MP.Mr(6)·Ε^ When the deflection angle of the polarized light is Θ, the (fourth) degree θ(θ, 7) is calculated by the following equation: [Math 12] Ridge ')- 々{|... S2 must be remembered 2 called ▲ 丨 post,. 〆曰 〆曰 乌 状态 状态 ' ' ' 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据 依据θ θ Θ Θ DDDD 7ryY rL I_I i—I ί_j oooooooo 0 9 9 9 OOO 0 oooo Substituting this value into the above equation, respectively, find ID 1 1 ^ ^ D (aD, YD1)

Id12=Id ( α D > VD2) 1021=10 ( — aD,VDi) I D 2 2 = 1 D (— a D» Ύ D 2 ) 取其差分與和分,並以下式提供。 【數學式13】 DIdi ~ 2/q $111(2(¾) j^jl^ | cos ^<5*^ — + yD} j D/历=2/0sin(2〇卜泰 |cos(〜-¾ + 〜) =2/0(|〜 cos2 叫rw| sin26>) 求取以偏光狀態A至D所測量的反射光強度的差之 間的比以及差與和的比,而導出下述式子。 [偏光狀態A] (1 )差之比 D I A1/D I A2=c〇s (厶 SP+"V Ai) /c〇s (厶 SP+7 A2) (2)差與和之比 D I A i / s I A = sin (2 α A) | RSP I cos(A Sp + T a i) / { 2 ( I R s P I 2c〇s2 aA + sin2 αΑΠ [偏光狀態B] (1)差之比 DIB1/DIB2 = cos (ΔΡΡ — Δρ+γΒΐ) /cos (App_Asp 20 321299 201011273 (2)差與和之比 DIB1/SIB =sin(2«B) I Rpp I I Rsp I C0S(App^Asp+VBi) , / ^ 2 ( I R PP I 2 cos2 〇 B+ I RSP I 2 sin2 a B)} • [偏光狀態C] (1) 差之比 D I Ci/D I C2=cos (Δ ρρ~Δρδ+γ C1) /cos (Δ pp-APS +y c2) (2) 差與和之比 〇 DId/Slc =sin(2Q:c) I Rpp I I RPS I cos(APP-APS+ycl)) ^ (|RPP|2c〇s2ac+|RPS| [偏光狀態D] (1) 差之比 D I di/D ID2=cos (Aps+7di) /cos (Δρ8 + Ύι>2) (2) 差與和之比Id12=Id (α D > VD2) 1021=10 ( — aD, VDi) I D 2 2 = 1 D (— a D» Ύ D 2 ) Take the difference sum and the fraction, and provide the following equation. [Math 13] DIdi ~ 2/q $111(2(3⁄4) j^jl^ | cos ^<5*^ — + yD} j D/历=2/0sin(2〇卜泰|cos(~- 3⁄4 + 〜 = 2/0 (|~ cos2 is called rw| sin26>) Find the ratio between the difference between the intensity of the reflected light measured in the polarized states A to D and the ratio of the difference to the sum, and derive the following formula [Polarization state A] (1) Ratio of difference DI A1/DI A2=c〇s (厶SP+"V Ai) /c〇s (厶SP+7 A2) (2) Ratio of difference to sum DIA i / s IA = sin (2 α A) | RSP I cos(A Sp + T ai) / { 2 ( IR s PI 2c〇s2 aA + sin2 αΑΠ [polarized state B] (1) ratio of difference DIB1/ DIB2 = cos (ΔΡΡ - Δρ+γΒΐ) /cos (App_Asp 20 321299 201011273 (2) Ratio of difference to sum DIB1/SIB = sin(2«B) I Rpp II Rsp I C0S(App^Asp+VBi) , / ^ 2 ( IR PP I 2 cos2 〇B+ I RSP I 2 sin2 a B)} • [Polarized state C] (1) Ratio of difference DI Ci/DI C2=cos (Δ ρρ~Δρδ+γ C1) /cos ( Δ pp-APS +y c2) (2) Ratio of difference to sum 〇DId/Slc =sin(2Q:c) I Rpp II RPS I cos(APP-APS+ycl)) ^ (|RPP|2c〇s2ac+| RPS| [Polarization state D] (1) Difference ratio DI di/D ID2=cos (Aps+7di) /cos (Δρ8 + Ύι>2) (2) Ratio of difference to sum

Di/s I D =sin(2〇:D) I Rps I C0S(APS + γ D1) / { 2 ( I R P s I 2 cos 2 a; :〇 + sin 2 a D)}Di/s I D =sin(2〇:D) I Rps I C0S(APS + γ D1) / { 2 ( I R P s I 2 cos 2 a; :〇 + sin 2 a D)}

上式中,光強度差資料DIai、DIa2、DIbi、DIb2、DIci、 DIC2 ' DID1、DID2為能從所測量的反射光強度計算出的已 知的值,偏光的偏轉角a a至aD與藉由相位補償子等所賦 予的偏光間相位差7 、r 、 ^ 7 A1 r A2 ^ Bi' r B2' r ci ' r C2' 7d〗、7d2亦為已知的設定值。 Δ 此外,由於三種複振幅反射率比的相位差△刃 △ps與三種複振幅反射率比的大小丨Rpp|、|RP]丨、^In the above formula, the light intensity difference data DIai, DIa2, DIbi, DIb2, DIci, DIC2 'DID1, DID2 are known values that can be calculated from the measured reflected light intensity, and the deflection angles aa to aD of the polarized light are used by The phase difference between the polarizations given by the phase compensator or the like 7 , r , ^ 7 A1 r A2 ^ Bi' r B2' r ci ' r C2' 7d and 7d2 are also known set values. Δ In addition, due to the phase difference Δedge Δps of the three complex amplitude reflectance ratios and the magnitude of the three complex amplitude reflectance ratios 丨Rpp|, |RP]丨, ^

RPS I為未知數’因此代入各值,能計算^這些未:數。I 此外,只要繞著從自測量點所立起的法線—邊使朝測 321299 21 201011273 △ sp、△ ps以及複RPS I is an unknown number, so the values are substituted and ^ can be calculated. I In addition, as long as the normal line from the self-measuring point is raised, the side is measured 321299 21 201011273 △ sp, Δ ps and complex

sp R 篁點的射入光的測量方位變化一邊測量反射光強度,即能 測量相對於反射光⑽、光強度差㈣、以及光強度和資 料的測量方位之變化,並能依據光強度差㈣的變化求取 配向方向,此外,亦能針對相位差△The measured orientation change of the incident light of the sp R 篁 point is measured by measuring the intensity of the reflected light, that is, the change in the measured azimuth relative to the reflected light (10), the light intensity difference (4), and the light intensity and the data, and can be based on the difference in light intensity (4) The change is obtained in the direction of the alignment, and in addition, the phase difference can also be

Rsp | 測量相對 振幅反射率比的大小| |、 於測量方位之變化。 在此情形中’由於複振幅反射率比的相位差心及大 小丨Rx I係能作為配向方位、光學軸的傾斜角、尋常光折 射率、異常光折射率、配向層膜厚、配向層折射率、無配 向層膜厚這七種參數的函數來表示,因此能藉由依據該等 六個值使㈣腦進行擬合(fitting)之以往公知的手法求 得前述七種光學異向性參數。 [實施例] /第1圖所示的光學異向性參數測量裝置1係將發光光 學系統10與X光光學系統2G以可相對地繞著從前述測量 點4立起的法線5旋轉之方式g己置或繞著該法線呈放射狀 配置’該發光光學系統1()係從預定測量方位以—㈣入角 度將已偏光化成預定偏光狀態的光照射至置放於工作台2 的樣品的表面(測定對象面)3上的測量點4,❿該受光光 學系統20係檢測將其反射光業已偏光化成預定偏光狀態 的光的光強度’該光學異向性參數測量裝置1復具備有電 腦(運算裝置)30,該電腦3〇係依據與射入光的測量方位 對應的光強度計算出成為光學異録參數之複振幅反射率 比的相位差Δχ(χ為偏光狀態)及大小|Rj。 321299 22 201011273 - 此外,於工作台2的上方配置用以檢測傾角量之自動 , 準直儀(auto collimator) 6,且工作台2係安裝於傾角調 - 整工作台7、高度調整工作台8、以及旋轉工作台9上。 • 於發光光學系統10依序設置有照射單色光之光源 11、可調整偏光方向之偏光子12、以及可調整相位之發光 側相位補償子13。 在本例中,光源11係使用發送波長532nm的半導體 激發 SHG ( Second Harmonic Generation ;二次諧波產生) 雷射,偏光子係使用消光比(extinction ratio ) 10_6的格蘭 湯普森稜鏡(Glan-Thompson prism),相位補償子13係 使用巴比内一索雷依補償器(Babinet-Soleil compensator)〇 於受光光學系統20依序設置有可調整P偏光成分與S 偏光成分的偏光間相位差之受光側相位補償子21、可調整 偏光方向之檢光子22、以及測量穿透檢光子22後的偏光 的光強度之光感測器23 〇 參 在本例中,相位補償子21係使用巴比内一索雷依補 償器’檢光子22係使用消光比i(T6的格蘭湯普森稜鏡, 光感測器23係使用光電子增倍管,且構成為使用組入於電 腦30的A/D(Analog-to-Digital;類比數位轉換)轉換器 將光感測器23所檢測出的光強度予以數位資料化而能讀 取。 此外’在本例中,一對發光光學系統10與受光光學 系統20係配置成可相對於用以載置樣品的工作台2相對地 旋轉’以便能使射入角的測量方位連續性地變化,具體而 23 321299 201011273 言,係以水平地旋轉驅動工作台2之旋轉工作台所形成。 在此情形中,亦可固定工作台2,並以可旋轉之方式 配置發光光學系統10及受光光學系統20,亦可例如將複 數對發光光學系統10及受光光學系統20等角性地配置成 放射狀。 此外,在僅以特定的測量方位測量複振幅反射率比的 相位差Δχ及大小丨Rx |之情形中,無須將發光光學系統 10及受光光學系統20配置成可對工作台2相對性地旋轉 或以放射狀設置複數對等測量方位可變機構。 接著,使工作台旋轉,一邊使射入光的測量方位變化 一邊針對以下A至D四種偏光狀態中至少三種偏光狀態的 各四種之合計十二種的反射光測量測量方位一光強度資 料: (A) 針對相對於P偏光的振動方向於±0: a (0< < 7Γ/2)的方向振動之一對偏光,將各者的Ρ偏光成分 與S偏光成分的偏光間相位差業已調整為7 A1及7 Α2之合 計四種的偏光作為射入光並使其被測量對象面反射時,各 反射光所含有的合計四種的S偏光。 (B) 將P偏光作為射入光並使其被測量對象面反射 時,將反射光的P偏光成分與S偏光成分的偏光間相位差 業已調整至7" B1及7 B2之兩種的光所含有的偏光中相對於 S偏光的振動方向於±αΒ (0< αΒ< π/2)的方向振動之 合計四種的偏光。 (C) 針對相對於S偏光的振動方向於±ac (0< 24 321299 201011273 <7Γ/2)的方向振 與S偏光成分的偏一子偏光,將各者的ρ偏光成分 計四種的偏先作切]相位差業已調整為r。及rc2之合 反射光所含有的合彳A並使其被測1對象面反射時,各 (D )將 D ^四種的P偏光。Rsp | Measure the relative amplitude of the reflectance ratio | |, the change in the measured azimuth. In this case, 'the phase difference between the complex amplitude reflectance ratio and the size 丨Rx I can be used as the orientation direction, the tilt angle of the optical axis, the ordinary light refractive index, the extraordinary light refractive index, the alignment layer film thickness, and the alignment layer refraction. The function of the seven parameters of the rate and the film thickness of the aligning layer is expressed. Therefore, the above seven optical anisotropy parameters can be obtained by a conventionally known method of fitting (4) the brain according to the six values. . [Embodiment] The optical anisotropy parameter measuring apparatus 1 shown in Fig. 1 rotates the illuminating optical system 10 and the X-ray optical system 2G so as to be relatively rotatable about a normal line 5 rising from the aforementioned measuring point 4. The mode g is disposed or radially arranged around the normal line. The illuminating optical system 1() illuminates the light that has been polarized into a predetermined polarization state from the predetermined measurement direction to the position placed on the table 2 at a predetermined angle. a measurement point 4 on the surface (measurement target surface) 3 of the sample, and the light-receiving optical system 20 detects the light intensity of light whose polarization has been polarized into a predetermined polarization state. The optical anisotropy parameter measuring device 1 is provided. There is a computer (computing device) 30 that calculates a phase difference Δχ (χ is a polarized state) and a size of a complex amplitude reflectance ratio that becomes an optical different recording parameter based on the light intensity corresponding to the measured orientation of the incident light. |Rj. 321299 22 201011273 - In addition, an automatic collimator 6 for detecting the amount of inclination is disposed above the table 2, and the table 2 is mounted on the tilt adjustment-construction table 7, and the height adjustment table 8 And on the rotary table 9. • The light-emitting optical system 10 is provided with a light source 11 for irradiating monochromatic light, a polarizer 12 for adjusting the polarization direction, and a light-emitting side phase compensator 13 for adjusting the phase. In this example, the light source 11 is a semiconductor-excited SHG (Second Harmonic Generation) laser having a transmission wavelength of 532 nm, and the polarized light system is a Glan-Tingson (Glan-) using an extinction ratio of 10_6. In the Thompson prism, the phase compensator 13 is provided with a Babinet-Soleil compensator, and the light-receiving optical system 20 is sequentially provided with a light-receiving phase difference between the P-polarized component and the S-polarized component. The side phase compensator 21, the photodetector 22 that can adjust the polarization direction, and the photo sensor 23 that measures the light intensity of the polarized light that passes through the photodetector 22 are in this example, and the phase compensator 21 uses Barbine The Soreling Compensator 'Detector 22 uses the extinction ratio i (T6's Glan Thompson, the photo sensor 23 uses a photoelectron multiplier, and is configured to use the A/D incorporated in the computer 30 (Analog) The -to-Digital; analog-to-digital conversion converter converts the light intensity detected by the photo sensor 23 digitally and can be read. Further, in this example, a pair of illuminating optical systems 10 and a light receiving optical system The 20 series is configured to be relatively rotatable relative to the table 2 on which the sample is placed so as to continuously change the measurement azimuth of the injection angle, specifically 23 321299 201011273, to drive the table 2 horizontally In this case, the table 2 can be fixed, and the illuminating optical system 10 and the light receiving optical system 20 can be rotatably arranged. For example, the plurality of illuminating optical systems 10 and the light receiving optical system 20 can be exemplified. Further, in the case where the phase difference Δχ and the magnitude 丨Rx | of the complex amplitude reflectance ratio are measured only in a specific measurement azimuth, it is not necessary to configure the illuminating optical system 10 and the light receiving optical system 20 to The plurality of peer-to-peer measurement azimuth variable mechanisms can be rotated relative to the table 2 or radially. Next, the table is rotated, and the measurement direction of the incident light is changed while being in the following four polarization states A to D. Measurement of azimuth-light intensity data for a total of twelve types of reflected light in each of at least three polarization states: (A) for the direction of vibration relative to P-polarized light 0: a (0<< 7Γ/2) direction vibration of one pair of polarized light, the phase difference between the polarization of each of the Ρ-polarized component and the S-polarized component has been adjusted to a total of 7 A1 and 7 Α 2 When the incident light is reflected by the surface of the measurement target, the total of the four types of S-polarized light contained in each of the reflected lights is included. (B) When the P-polarized light is incident on the surface of the measurement target, the reflected light is reflected. The phase difference between the P-polarized component and the S-polarized component has been adjusted to 7" B1 and 7 B2, and the polarization of the light contained in the B1 and 7B2 is ±αΒ (0<αΒ<π/2) with respect to the vibration direction of the S-polarized light. The direction of vibration is a total of four types of polarized light. (C) For the partial polarization of the directional vibration and the S-polarized component with respect to the vibration direction of the S-polarized light at ±ac (0< 24 321299 201011273 <7Γ/2), the ρ-polarized component of each of the four is calculated. The first step is to cut the phase difference has been adjusted to r. And rc2 combination When the reflected light contains the combined A and the surface of the object to be measured is reflected, each (D) will polarize D ^ four kinds of P.

時,將反射光的P = 4射人光並使其被測量對象面反射 業已調整為7 Dl及成刀與S偏光成分的偏光間相位差 1>偏光的振動方向=2之_的統含㈣偏光中相對於 合計四種的偏光。D(〇< α〇<冗/2)的方向振動之 電腦30的輸人側係連接用以驅動卫 =的旋轉角度感測器%、以及 : 的輸出側係連接光源Μ、热& 電腌30 ^ ^ 12 紋轉工作台9的驅動機構9d、偏 光子12的驅動機構12d、 槿13d、a發先側相位補償子13的驅動機 構13d〖先側相位補償子21的驅動機構2ι 子22的驅動機構22d。 乂及板光 如此,調整偏光子12、發光侧相位補償子13、受光At the time of P = 4 of the reflected light, the surface reflection of the object to be measured has been adjusted to 7 Dl and the phase difference between the polarization of the formed and S polarized components is 1> the direction of the polarization of the polarized light = 2 (4) Polarization in the polarized light relative to the total of four types. The input side of the computer 30 of the direction vibration of D (〇 < α〇 < redundant/2) is connected to drive the rotation angle sensor % of the guard =, and the output side of the connection is connected to the light source 热, heat & Electric drive 30 ^ ^ 12 drive mechanism 9d of the table 9, the drive mechanism 12d of the polarizer 12, 槿13d, a drive mechanism 13d of the front side phase compensator 13d, drive mechanism of the front side phase compensator 21 2ι 22 drive mechanism 22d.乂 and plate light, adjust the polarizer 12, the light-emitting side phase compensator 13, and receive light

側相位補償子21、以及檢光子22即能蚊成偏光狀態A 至D,且分別在各個偏光狀態A至D中以光感測器23檢 測光強度,同時輸入在該檢測時間點的射入光的測量方位。 此外,在電腦30中,依據預先設定的程式,從每種 偏光狀態中相位相等的諸反射光強度資料間的兩個差計算 出兩個測量方位—光強度差資料,並從該等兩個光強度差 育料的比計算出與射入光的測量方位對應的複振幅反射率 比的相位差Δχ以及大小丨Rx| ^ 321299 25 201011273 第2圖及第3圖係顯示電腦所進行的處理順序之流程 圖。 王 首先,步驟STP1係進行初始設定。 設定要以偏光狀態A至D中哪幾個偏光狀態進行測 量之三種偏光狀態,並因應此處所設定的偏光狀態來設定 藉由偏光子13所設定的相對於P偏光與S偏光之偏轉角 a a與ac、以及藉由檢光子14所設定的相對於s偏光與p 偏光之偏轉角〇:8與01),並設定藉由發光側相位補償子13 與受光側相位補償子21所設定的相位差。 在本例中,設定偏光狀態A至C ’依據偏光子13咬 檢光子之偏轉角係設定成α Α= α B= a c= α d= 1〇。,藉由 發光側相位補償子13及受光側相位補償子21所職予^偏 光間相位差係設定成: r ai= r bi= r ci= r di = 〇° T A2= T B2= T C2= T D2= 90 在步驟STP2中’進打得機直至按下預定的啟動 關,按下開關後,在步驟STP3中光源u與光感測器^ 係被開啟(ON),開始對載置於工作台2 1-认扭/ β 心上日g樣品進行杏 學異向性參數的測量。 首先,在步驟STP4中,判斷是否選擇偏光狀能a, 若選擇偏光狀態A _進行_序A的處理, 光狀態A時或在該處理結束的時間點丨 ^ 幻移至步騍STP5 〇 在步驟STP5巾,判斷是否選擇偏光狀HB,若選擇 偏光狀態β時則進行副程序B的處理,杏 释 虽禾選擇偏光狀態 321299 26 201011273 B時==的時間點,則移至步一 ㈣=::副=, ㈣在該處蝴 偏光巾’觸^轉料狀㈣,若選擇 偏時則進㈣程序D的處理,當未選擇偏光狀萍 D時或在該處理結束的時間點,則移至步驟STP8。〜 ❹The side phase compensator 21 and the photodetector 22 can be in a polarized state A to D, and the light intensity is detected by the photo sensor 23 in each of the polarization states A to D, and the incident at the detection time point is input. The measured orientation of the light. In addition, in the computer 30, two measurement azimuth-light intensity difference data are calculated from two differences between the reflected light intensity data of equal phase in each polarization state according to a preset program, and from the two The ratio of the light intensity difference is calculated as the phase difference Δχ of the complex amplitude reflectance ratio corresponding to the measured direction of the incident light and the magnitude 丨Rx| ^ 321299 25 201011273 Fig. 2 and Fig. 3 show the processing performed by the computer Sequence flow chart. Wang First, step STP1 is initially set. Set three polarization states to be measured in which of the polarization states A to D, and set the deflection angle a relative to the P-polarized and S-polarized light set by the polarizer 13 in accordance with the polarization state set here. The angles set by the light-emitting side phase compensator 13 and the light-receiving side phase compensator 21 are set with ac and the deflection angles 8: 8 and 01) with respect to the s-polarized light and the p-polarized light set by the photodetector 14. difference. In this example, the polarization states A to C' are set to determine the deflection angle of the photon according to the polarizer 13 to be α Α = α B = a c = α d = 1 〇. The phase difference between the light-emitting side phase compensator 13 and the light-receiving side phase compensator 21 is set to: r ai= r bi= r ci= r di = 〇° T A2= T B2= T C2 = T D2= 90 In step STP2, 'Enter the machine until the predetermined start switch is pressed. After the switch is pressed, the light source u and the light sensor are turned ON (ON) in step STP3, and the pair is placed. The apricot anisotropy parameter was measured on the table 2 1-tick/β heart-day g sample. First, in step STP4, it is judged whether or not the polarization state a is selected, and if the polarization state A_ is performed for the process of the sequence A, the state of the light state A or at the time point when the process ends, 幻^ is shifted to the step STP5. In the step STP5, it is judged whether or not the polarized HB is selected. If the polarized state β is selected, the subroutine B is processed. When the apricot release selects the polarized state 321299 26 201011273 B == time point, the step moves to step one (four)= ::Sub =, (4) At this point, the polarized towel 'touches the transfer shape (4), if the selection is partial, then enters (4) the processing of the procedure D, when the polarized shape D is not selected or at the end of the processing, then Move to step STP8. ~ ❹

為了=,偏光子及檢光子的角度係以p偏光方向為 〇 ,MS偏光方向為90。,將偏光子12的角度嗖為Θ 將發光侧相位補償子13所賦予的偏光間相位差設為又p I 將受光侧相位補償子14所賦予的偏光間相位差設為 out’將檢光子12的角度設為ΘΑ。 在第3圖(a)所示的副程序Α的步驟STP11中,啟 動各驅動機構12d、13d、21d、22d,以變成[0 、λ 入⑽、ΘΑ]=[0+ αΑ、0、0、90]之方式調整發光光學系統 粵1〇及受光光學系統20,在步驟12中一邊使工作台2旋轉 360°—邊以每預定角度間隔讀入光強度ΙΑιι。 在步驟STP13中,以變成[θρ、入.、) .η P ^ in ^ out ' ^ a]=[〇 —αΑ、0、0、90]之方式調整發光光學系統1〇及受光光學 系統20,在步驟STP14中一邊使工作台2旋轉36〇。—^ 以每預定角度間隔讀入光強度ια21。 在步驟STP15中,以變成[θρ、λίη、λ_、0Α]π + αΑ、90、0、90]之方式調整發光光學系統1〇及受光光 學系統20 ’在步驟STP16中一邊使工作台2旋轉36〇。— 321299 27 201011273 邊以每預定角度間隔讀入光強度ia12。 在步驟 STP17 中,以變成[θρ、λίη、A〇ut、θΑ]=[〇 —αΑ、90、〇、90]之方式調整發光光學系統10及受光光 學系統20,在步驟STP18中一邊使工作台2旋轉360° — 邊以每預定角度間隔讀入光強度ΙΑ22。 以下同樣,在第3圖(b)所示的副程序Β的步驟STP21 中,以變成[0ρ、λίη、入灿、0A]=[〇、〇、〇 ' 90+ αΒ] 之方式調整,並在步驟22讀入光強度ΙΒ11。 在步驟 STP23 中,以變成[θρ、λίη、Aout、θΑ]=[〇、 〇、0、90— αΒ]之方式調整,並在步驟STP24讀入光強度 Ιβ21。 在步驟STP25中,以變成[0P、;lin、又咖、0 Α]=[0、 Q'9〇、90+ αΒ]之方式調整,並在步驟STP26讀入光強度 Ιβ12。 在步驟 STP27 中,以變成[θρ、λίη、A〇ut、θ Α]=[〇、 90 ' 〇、9〇— α Β]之方式調整’並在步驟STP28讀入光強度 ΙΒ22。 在第3圖(c)所示的副程序C的步驟STP31中,以For =, the angle of the polarizer and the photodetector is p with the p-polarization direction and the MS polarization direction is 90. The angle of the polarizer 12 is set to Θ The phase difference between the polarizations given by the light-emitting side phase compensator 13 is set to p I, and the phase difference between the polarizations given by the light-receiving side phase compensator 14 is set to out'. The angle of 12 is set to ΘΑ. In step STP11 of the subroutine 所示 shown in Fig. 3(a), each of the drive mechanisms 12d, 13d, 21d, and 22d is activated to become [0, λ, (10), ΘΑ] = [0 + α Α, 0, 0 In the manner of 90, the illuminating optical system and the light receiving optical system 20 are adjusted, and in step 12, the table 2 is rotated by 360°, and the light intensity ΙΑ ιι is read at intervals of a predetermined angle. In step STP13, the light-emitting optical system 1A and the light-receiving optical system 20 are adjusted so as to become [θρ, in., .η P ^ in ^ out ' ^ a]=[〇—αΑ, 0, 0, 90]. At the step STP14, the table 2 is rotated by 36 。. —^ The light intensity ια21 is read at intervals of every predetermined angle. In step STP15, the light-emitting optical system 1A and the light-receiving optical system 20' are adjusted so as to become [θρ, λίη, λ_, 0Α] π + α Α, 90, 0, 90], and the table 2 is rotated in step STP16. 36〇. — 321299 27 201011273 The light intensity ia12 is read at intervals of every predetermined angle. In step STP17, the light-emitting optical system 10 and the light-receiving optical system 20 are adjusted so that [θρ, λίη, A〇ut, θΑ]=[〇-αΑ, 90, 〇, 90], and the operation is performed in step STP18. The stage 2 is rotated 360° - the light intensity ΙΑ 22 is read at intervals of a predetermined angle. Similarly, in step STP21 of the subroutine 所示 shown in FIG. 3(b), it is adjusted so as to become [0ρ, λίη, 入灿, 0A]=[〇, 〇, 〇' 90+ αΒ], and At step 22, the light intensity ΙΒ11 is read. In step STP23, it is adjusted so as to become [θρ, λίη, Aout, θΑ] = [〇, 〇, 0, 90 - αΒ], and the light intensity Ιβ21 is read in step STP24. In step STP25, it is adjusted so as to become [0P,; lin, café, 0 Α] = [0, Q'9 〇, 90 + α Β], and the light intensity Ι β12 is read in step STP26. In step STP27, it is adjusted so as to become [θρ, λίη, A〇ut, θ Α] = [〇, 90 '〇, 9〇 - α Β] and the light intensity ΙΒ 22 is read in step STP28. In step STP31 of the subroutine C shown in Fig. 3(c),

變成[θρ、入 in、入⑽、0a]=[9O+q:c、〇、O、〇]2*S 調整’並在步驟22讀入光強度IC11。 在步驟STP23中,以變成[θρ、;lin、又⑽、θα]=[90 ~ac、0、0、0]之方式調整,並在步驟STP23讀入光強度 1。21。 在步驟 STP25 中,以變成[0P、Ain、λ。/ Θα]=[90 321299 28 201011273 + a c、90、〇、0]之方式調整,並在步驟STp26讀入光強 度 1。12 。 在步驟 STP27 中,以變成[θρ、λίη、A〇ut、0a]^[9〇 —、90、0、〇]之方式調整,並在步驟STp28讀入光強 度 1。22 〇 在第3圖(d)所示的副程序D的步驟STp41中,以 ❹ 變成[0 p、λ in、λ om、0 A] = [〇、〇、〇、9〇 + a b]之方式 調整’並在步驟42讀入光強度Idu。 在步驟 STP43 中,以變成[θρ、λίη、λ<θΑ>[() —αΒ、0、〇、90]之方式調整,並在步驟STp44讀入光強 度 Id21 0 在步驟STP45中,以變成[θρ、又in、Aout、0A卜[〇 + αΒ、9〇、〇、90]之方式調整,並在步驟STP46讀入光強 度 ID12。 在步驟STP47中,以變成[m、〜卜[〇 © - αΒ、90、〇、9〇]之方法調整,並在步驟STp48讀入光 度 ID22。 當各副程序A至D所進行的測量結束時,移至步騍 STP8 ’依據測量結果計算出複振幅反射率比的相位差△ 以及大小| rx |。 x 在步驟STP8中’依據各偏光狀態a至D所測量的光 強度、’就各偏光狀態從相位相等的諸反射光強度資料間的 ^個差计异出兩個測量方位—光強度差資料,並將相位相 等的反射光強度資料的和作為測量方位—光強度和資料予 321299 29 201011273 以計算出。 第4圖(a )至(c )係偏光狀態A中的反射光強度差 diai = IAh —IA21、反射光強度差 DIA2 = IAI2 —IA22、以及反 射光強度和SIA = IA11 + IA21的測量結果。 第5圖(a)至(c)係偏光狀態B中的反射光強度差 DIB1 = Imi-iB21、反射光強度差 〇ΐΒ2 = ιΒ12—ΙΒ22、以及反 射光強度和SIB=IB11 + IB2i的測量結果。 第6圖(a)至(c)係偏光狀態c中的反射光強度差 DIC1 = IC11 —iC21、反射光強度差 mc2==Ici2 — Ic22、以及反 射光強度和Sic == ICi 1 + Ic2i的測量結果。 第7圖(a)至(c)係偏光狀態〇中的反射光強度差 did1 = id11 —iD21、反射光強度差〇1〇2=1體—1〇22、以及反 射光強度和sid=Idu + Id21的測量結果。 接著’在步驟STP9中,就各偏光狀態計算出兩個光 強度差育料的比,並計算出光強度差資料的一方與光強度 和資料的比。 接著’在步驟STP10中’計算出複振幅反射率比的相 位差 Δρρ、^以及大小 I RPP I、I Rsp 丨、I Rps |。 此時表示光強度差資料的比之邏輯式以及表示光強 度差資料的-方與錢度和資料的比之邏輯式係從步驟 STP1所設定的參數改寫成下式。 [偏光狀態A] (1)差之比 D I a 1 / D I A 2 s= cot (厶 s p) 321299 30 201011273 (2 )差與和之比 D 】a 1 / S I A =c〇s ( Δ s p) / {tanlO/ I R s p I + I R s p I 卫) 由於DIA1、DIa2、SIa係能從測量值計算出之已知的 值,因此從該等式子計算出Asp以及I Rsp丨。 、 [偏光狀態B] (1)差之比 DIB1/DlB2=c〇t (Δρρ-Δ8Ρ) 參 ❹ (2)差與和之比It becomes [θρ, in, in (10), 0a]=[9O+q:c, 〇, O, 〇]2*S adjustment' and the light intensity IC11 is read in step 22. In step STP23, it is adjusted so as to become [θρ,; lin, again (10), θα] = [90 ~ ac, 0, 0, 0], and the light intensity is 1.21 in step STP23. In step STP25, it becomes [0P, Ain, λ. / Θα]=[90 321299 28 201011273 + a c, 90, 〇, 0] The mode is adjusted, and the light intensity is read in step STp26 by 1.12. In step STP27, it is adjusted so as to become [θρ, λίη, A〇ut, 0a]^[9〇—, 90, 0, 〇], and the light intensity is read in step STp28. 22 〇 in Fig. 3 (d) In the step STp41 of the subroutine D shown, 调整 becomes [0 p, λ in, λ om, 0 A] = [〇, 〇, 〇, 9〇 + ab] and is adjusted in steps 42 read in the light intensity Idu. In step STP43, it is adjusted so as to become [θρ, λίη, λ < θ Α > [() - α Β, 0, 〇, 90], and the light intensity Id21 0 is read in step STp44 in step STP45 to become [ Θρ, in, Aout, 0A, [〇+αΒ, 9〇, 〇, 90] are adjusted, and the light intensity ID12 is read in step STP46. In step STP47, the method is changed to [m, ~Bu [〇 © - αΒ, 90, 〇, 9〇], and the illuminance ID 22 is read in step STp48. When the measurement by each of the sub-programs A to D is completed, the process proceeds to step STP8', and the phase difference Δ of the complex amplitude reflectance ratio and the magnitude | rx | are calculated based on the measurement results. x In step STP8, 'the light intensity measured according to each of the polarization states a to D, and the difference between the reflected light intensity data of the phase with respect to each polarization state are two measurement directions - the light intensity difference data And the sum of the reflected light intensity data of equal phase is calculated as the measured azimuth-light intensity and data to 321299 29 201011273. Fig. 4 (a) to (c) show the difference in reflected light intensity in the polarized state A diai = IAh - IA21, reflected light intensity difference DIA2 = IAI2 - IA22, and reflected light intensity and SIA = IA11 + IA21. Fig. 5 (a) to (c) are the reflected light intensity difference DIB1 = Imi-iB21 in the polarized state B, the reflected light intensity difference 〇ΐΒ2 = ιΒ12 - ΙΒ22, and the measured results of the reflected light intensity and SIB = IB11 + IB2i . Fig. 6 (a) to (c) are the reflected light intensity difference DIC1 = IC11 - iC21 in the polarized state c, the reflected light intensity difference mc2 == Ici2 - Ic22, and the reflected light intensity and Sic == ICi 1 + Ic2i Measurement results. Fig. 7 (a) to (c) are the reflected light intensity difference in the polarized state ddid1 = id11 - iD21, reflected light intensity difference 〇1 〇 2 = 1 body - 1 〇 22, and reflected light intensity and sid = Idu + Id21 measurement results. Next, in step STP9, the ratio of the two light intensity difference nurturing is calculated for each polarization state, and the ratio of one of the light intensity difference data to the light intensity and the data is calculated. Then, in step STP10, the phase differences Δρρ, ^ and the sizes I RPP I, I Rsp 丨, I Rps | of the complex amplitude reflectance ratio are calculated. At this time, the logical expression indicating the ratio of the light intensity difference data and the ratio of the ratio of the squareness to the money and the data indicating the light intensity difference data are rewritten from the parameters set in the step STP1 to the following equation. [Polarized state A] (1) Ratio of difference DI a 1 / DIA 2 s = cot (厶sp) 321299 30 201011273 (2) Ratio of difference to sum D 】a 1 / SIA = c〇s ( Δ sp) / {tanlO/IR sp I + IR sp I Wei) Since DIA1, DIa2, and SIa can calculate the known values from the measured values, Asp and I Rsp丨 are calculated from the equation. [Polarization state B] (1) Ratio of difference DIB1/DlB2=c〇t (Δρρ-Δ8Ρ) Reference ❹ (2) Ratio of difference to sum

D 1 / S I B = cos (Δρρ—Δ SP) / { I R s P I tanlO/lRppl + lRp。! / p 1 /-tanl〇} 由於DIB1、Dim、SIB係能從測量值計算出之已知的 值,且Δπ以及丨Rsp I係根據偏光狀態A的測量結果而 知,因此從該等式子計算出Δρρ以及|Rpp| 。 [偏光狀態C] (1)差之比 D Ϊ c X ΧΌ 1 c 2 = cot (Δρρ—ΔΡδ) (2)差與和之比D 1 / S I B = cos (Δρρ - Δ SP) / { I R s P I tanlO / lRppl + lRp. ! / p 1 /-tanl〇} Since DIB1, Dim, and SIB are known values that can be calculated from the measured values, and Δπ and 丨Rsp I are known from the measurement results of the polarization state A, from this equation Calculate Δρρ and |Rpp|. [Polarized state C] (1) Ratio of difference D Ϊ c X ΧΌ 1 c 2 = cot (Δρρ - ΔΡδ) (2) Ratio of difference to sum

D I C1/S ID I C1/S I

cos (Δρρ-Δ pg) / { \ R s p I tanlO/ I R p p I + I p I /t anl〇} 由於DIC1、Die2、SIC係能從測量值計算出之 值’且△ pp以及丨Rpp I係根據偏光狀態B的測量結果 知,因此從該等式子計算出△ ps以及丨Rps |。 [偏光狀態D] (1)差之比 已知的 而已 321299 31 201011273 co-j. ( Δ p s) (2 )差與和之比 D I D1/S I D =c〇s (Aps) /{tanl〇/ t Rps , + j Rpg ( 由於Dim、Dim、SId係能從測量值計算出之已知的 值,因此從該等式子計算出Aps以及丨丨。 如此,從偏光狀態A至D,將相關於複振幅反射率比 的三種相位差Δρρ、〜且以該些作為未知數之合叶 四種的光強度差資料的比的邏輯式予以成立,因此能使用 其中的三種計算出相位差〜,是以只要針對 二種的偏光狀態測量反射光強度即可。 此外,同樣地,從偏光狀態八至D,將相關於複振幅 三種大小1 Rpp卜1 Rsp卜IRpsi且以該 乍為未知數之合計四種的光強度差資料的比的邏輯式予 以成立,因此能使用其中的三種計算出相位差、 △ps ’是以只要針對三種的偏光狀態測量反射光二即;。 第8圖(a) s (c)係表示計算出的複振幅反射率比 、目位差Δρρ、〜之圖表’第9圖⑷至⑷係 ,不計算出的複振幅反射率比的大小f r^、丨% )、^ R ps I之圖表。 :立差Δρρ、“以及大小|R^、丨^卜 向方位、光學軸的傾斜角、尋常光折射。率、 層配向層膜厚、配向層折射率、以及無配向 層膜厚以個參數的參數來㈣,因此能B依據該等六 卜由於以此種方式計算A的複振幅反射率比的相 321299 32 201011273 . 個值使用電腦進行擬合之以往公知的手法求得前述七種光 學異向性參數。 , 依據將液晶配向膜作為樣品所測量的複振幅反射率 . 比的相位差及大小,使用貝里曼(Berreman )的4x4矩陣, 藉由擬合求出上述參數之結果,配向方位為90.3°、光學 軸的傾斜角為24.6°、尋常光折射率為1.76、異常光折射 率為1.79、配向層膜厚為6.Onm、配向層折射率為1.77、 無配向層膜厚為94.lnm,與一般的橢圓偏振測量法所進行 ❹的測量結果-致。 此外,在測量時,雖需一邊調整發光光學系統10以 及受光光學系統20 —邊使工作台2合計旋轉十二次,即使 如此,合計測量時間為20秒至30秒前後,與一般的橢圓 偏振測量法所進行的測量相比,可以1 /10時間的極短時 間進行測量,而可應用於工廠的生產線的製品檢查等。 此外,雖是針對於發光側及受光側的相位補償子12、 © 21使用巴比内一索雷依補償器的情形進行說明,但並未限 定於此,亦可使用以可朝光路徑前進後退之方式配置有相 位差固定的相位板之相位補償子。 (產業上的可利用性) 本發明係適用於具有光學異向性的製品的品質檢查 等,尤其適甩於液晶配向膜的品質檢查等。 【圖式簡單說明】 第1圖係顯示本發明的光學異向性參數測量裝置的一 例之說明圖。 33 321299 201011273 第2圖係顯示運算裝置的主程序的處理順序之流程 圖。 第3圖⑷至⑷係顯胡程相處理順序之流程圖。 第4圖(a)至(c)係顯示偏光狀態A中的光強度差 資料及光強度和資料之圖表。 第5圖(a)至(c)係顯示偏光狀態b中的光強度差 資料及光強度和資料之圖表。Cos (Δρρ-Δ pg) / { \ R sp I tanlO / IR pp I + I p I /t anl〇} Since DIC1, Die2, SIC can calculate the value from the measured value 'and Δ pp and 丨Rpp I Based on the measurement result of the polarization state B, Δ ps and 丨Rps | are calculated from the equation. [Polarization state D] (1) The ratio of the difference is known. 321299 31 201011273 co-j. ( Δ ps) (2 ) The ratio of difference to sum DI D1/SID = c〇s (Aps) / {tanl〇/ t Rps , + j Rpg (Since Dim, Dim, and SId can calculate the known values from the measured values, the Aps and 丨丨 are calculated from the equation. Thus, from the polarized states A to D, the correlation is The three phase differences Δρρ of the complex amplitude reflectance ratio and the logical expression of the ratio of the light intensity difference data of the four types of hinges as the unknown number are established. Therefore, the phase difference can be calculated using three of them. It is only necessary to measure the intensity of the reflected light for the two polarized states. In addition, similarly, from the polarized state of eight to D, the correlation will be related to the complex amplitude, three sizes, 1 Rpp, 1 Rsp, IRpsi, and the total of the unknowns. The logical formula of the ratio of the light intensity difference data is established, so that the phase difference can be calculated using three of them, and Δps' is to measure the reflected light for only three kinds of polarization states; Fig. 8(a) s ( c) indicates the calculated complex amplitude reflectance ratio, the target position difference Δρρ, The graph '⑷ to Figure 9 ⑷ system, not the size of f r calculated complex amplitude reflectance ratio ^, Shu%), ^ R ps I of the graph. : Δρρ, "and size | R ^, 丨 ^ azimuth orientation, tilt angle of the optical axis, ordinary light refraction. Rate, layer thickness of the alignment layer, refractive index of the alignment layer, and film thickness of the unaligned layer. The parameters come to (4), so B can obtain the above seven kinds of optics according to the conventionally known methods of calculating the complex amplitude reflectance ratio A of 321299 32 201011273 in this way. The anisotropy parameter. , based on the phase difference and size of the complex amplitude reflectance measured by using the liquid crystal alignment film as a sample, using the 4x4 matrix of Berreman, the result of the above parameters is obtained by fitting. The orientation is 90.3°, the tilt angle of the optical axis is 24.6°, the refractive index of ordinary light is 1.76, the refractive index of the extraordinary light is 1.79, the film thickness of the alignment layer is 6. Onm, the refractive index of the alignment layer is 1.77, and the film thickness of the alignment layer is It is a measurement result of ❹ 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 Times, ie In this way, the total measurement time is about 20 seconds to 30 seconds, and compared with the measurement performed by the general ellipsometry, the measurement can be performed in a very short time of 1/10 time, and can be applied to the product inspection of the factory production line. In addition, although the phase compensator 12 and the photo-receiving phase compensator 12 and the photo-receiving side are described using a Babione-Sorre compensator, the present invention is not limited thereto, and may be used to make a light path. A phase compensator for a phase plate having a fixed phase difference is disposed in a forward-rearward manner. (Industrial Applicability) The present invention is applicable to quality inspection of a product having optical anisotropy, and is particularly suitable for a liquid crystal alignment film. Fig. 1 is an explanatory view showing an example of the optical anisotropy parameter measuring device of the present invention. 33 321299 201011273 Fig. 2 is a flow chart showing the processing procedure of the main program of the arithmetic unit. Fig. 3 (4) to (4) show the flow chart of the Hu Cheng phase processing sequence. Fig. 4 (a) to (c) show the light intensity difference data and the light intensity and data in the polarized state A. Fig. 5 (a) to (c) show the light intensity difference data and the light intensity and data in the polarized state b.

第6圖(a)至(c)係顯示偏光狀態c中的光強度差 資料及光強度和資料之圖表。 第7圖(a)至(C)係顯示偏光狀態D中的光強度差 資料及光強度和資料之圖表。 第8圖(a)至⑷係顯示計算出的複振幅反射率比 的相位差之圖表。 第9圖(a) (c)係顯示計算出的複振幅反射率比 的大小之圖表。 【主要元件符號說明】 〇 1 光學異向性參數測量裝置 2 工作台 3 樣品的表面(測量對象面) 4 測量點 5 法線 6 自動準直儀 7 傾角調整工作台 8 高度調整工作台 321299 201011273 9 旋轉工作台 9s 旋轉角度感測器 9d、 12d、13d、21d、22d 10 發光光學系統 11 光源 12 偏光子 13 發光侧相位補償子 20 受光光學系統 21 受光側相位補償子 22 檢光子 23 光感測器 30 電腦(運算裝置) 驅動機構 35 321299Fig. 6 (a) to (c) are graphs showing light intensity difference data and light intensity and data in the polarization state c. Fig. 7 (a) to (C) show the light intensity difference data and the light intensity and data in the polarized state D. Fig. 8 (a) to (4) are graphs showing the phase difference of the calculated complex amplitude reflectance ratio. Fig. 9 (a) and (c) are graphs showing the calculated magnitude of the complex amplitude reflectance ratio. [Description of main component symbols] 〇1 Optical anisotropy parameter measuring device 2 Table 3 Surface of the sample (measurement object surface) 4 Measuring point 5 Normal line 6 Automatic collimator 7 Inclination adjustment table 8 Height adjustment table 321299 201011273 9 Rotary table 9s Rotation angle sensor 9d, 12d, 13d, 21d, 22d 10 Illumination optical system 11 Light source 12 Polarizer 13 Light-emitting side phase compensator 20 Light-receiving optical system 21 Light-receiving side phase compensator 22 Photodetector 23 Light perception Detector 30 computer (computing device) drive mechanism 35 321299

Claims (1)

201011273 七、申請專利範圍: 1. -種光學異向性參數測量方法’係以一定射入角度將射 入光從預定測量方位照射至測量對象面上的測量點,依 據測量其反射光所含有的特定方向的偏光成分的光強 度而獲得的光強度資料,測量成為光學異向性參數之複 振幅反射率t匕的相位差Κχ為偏光狀態)之方法;在 該方法中,將前述射入光予以偏光化且在預先設定的測 量方位使前述偏光化之射入光照射至測量點而進行測 量時’將測量對象面作為基準,將在與測量對象面正交 〇 2面内振動之直線偏光作為?偏光’將於與該P偏光正 父的方向振動之直線偏光作為s偏光時,依據在以下的 A至D四種偏光狀態中的至少三種偏光狀態下測量各 四種合計十二種的反射光所得之光強度資料,依循預先 設,的程式’就各偏光狀態從所賦予之偏光間相位差為 相等的諸反射光強度資料間的兩個差計算出兩個光強 度差資料,除算該等兩個光強度差資料,藉此計算出該❹ 射入光的測量方位的複練反射率比的相位差Δχ;該A 至D的四種偏光狀態為: (A) 針對相對於p偏光的振動方向於±αΑ (〇&lt; αΑ&lt; ΤΓ/2)的方向振動之—對偏光,將各者的ρ偏光 成分與S偏光成分的偏光間相位差業已調整為^及 rA2之合計四種的偏光作為射入光並使其被測量對象 面反射時’各反射光所含有的合計四種的s偏光; (B) 將1&gt;偏光作為射人光並使其被測量對象面反 321299 36 201011273 射時’將反射光的p偏光成分與s偏光成分的偏光間相 位差業已調整為7B1及7 B2之兩種的光所含有的偏光 中相對於S偏光的振動方向於± 〇; b ( 0&lt; α Β&lt; 7Γ /2) 的方向振動之合計四種的偏光; (C) 針對相對於S偏光的振動方向於±ac;(〇&lt; α c&lt;7T/2)的方向振動之一對偏光,將各者的Ρ偏光成 分與S偏光成分的偏光間相位差業已調整為7 ci及r c2 之合計四種的偏光作為射入光並使其被測量對象面反 射時’各反射光所含有的合計四種的p偏光; (D) 將S偏光作為射入光並使其被測量對象面反 射時,將反射光的P偏光成分與s偏光成分的偏光間相 位差業已調整為T D1及7〇2之兩種的光所含有的偏光 中相對於P偏光的振動方向於士aD (0&lt; aD&lt; 7γ/2) 的方向振動之合計四種的偏光。 2. —種光學異向性參數測量方法,係以一定射入角度將射 入光從預定測量方位照射至測量對象面上的測量點,依 據測量其反射光所含有的特定方向的偏光成分的光強 度而獲得的光強度資料,測量成為光學異向性參數之複 振幅反射率比的相位hx(x為偏光狀態)之方法;在 S方法中將測量對象面作為基準,將在與測量對象面 正=的面内振動之直線偏光作為P偏光,將於與該P 偏光f交的方向振動之直線偏光作4 S偏光時,依據一 邊繞著自測量點立;^的法線使前述測量方位變化,一邊 在以下A至D的四種偏光狀態中至少三種偏光狀態下 321299 37 201011273 別量各四種合计十二種的反射光而獲得的測量方位— 光強度&gt; 料’依循預先設定的程式,就各偏光狀態從所 賦予之偏光間相位差為相等的諸反射光強度資料間的 差計算出兩個測量方位-光強度差資料,從該等兩個光 強度差:貝料的比计算出與射入光的測量方位對應的複 振巾田反射率比的相位差Δχ ;該A至D的四種偏光狀態 為: (A)針對相對於p偏光的振動方向於土(〇&lt; αΑ&lt;7Γ/2)的方向振動之一對偏光,將各者的ρ偏光 ❹ 成分與S偏光成分的偏光間相位差業已調整為及 Τα2之合計四種的偏光作為射入光並使其被測量對象 面反射時’各反射光所含有的合計四種的s偏光; (B )將p偏光作為射入光並使其被測量對象面反 射時,將反射光的P偏光成分與s偏光成分的偏光間相 位差業已调整為Tbi及&amp;之兩種的光所含有的偏力 中相對於S偏光的振動方向於±αΒ (〇&lt; αβ&lt;疋/2) 〇 的方向振動之合計四種的偏光; (C) 針對相對於S偏光的振動方向於±ac(0&lt; α π/2)的方向振動之一對偏光,將各者的ρ偏光成 分與S偏光成分的偏光間相位差業已調整為了^及了^ 之合计四種的偏光作為射入光並使其被測量對象面反 射時,各反射光所含有的合計四種的p偏光; (D) 將S偏光作為射入光並使其被測量對象面反 射時’將反射光的P偏光成分與s偏光成分的偏光間相 38 321299 201011273 位差業已調整為tdi及rD2之兩種的光所含有的偏光 中相對於P偏光的振動方向於±α〇 (〇&lt; aD&lt;苁/2) 的方向振動之合計四種的偏光。 3. —種光學異向性參數測量裴置,具備有: 發光光學系統’係將偏光化成預定偏光狀態的光以 一定射入角度從預定測量方位照射至測量對象面上的 測量點;201011273 VII. Patent application scope: 1. - The optical anisotropy parameter measurement method is to irradiate the incident light from a predetermined measurement azimuth to a measurement point on the measurement object surface at a certain angle of incidence, according to the measurement of the reflected light. a method of measuring a light intensity data obtained by a light intensity of a polarization component in a specific direction, and measuring a phase difference 复 of a complex amplitude reflectance t匕 of the optical anisotropy parameter is a polarization state; in the method, the aforementioned injection When the light is polarized and the polarized light is incident on the measurement point and measured in a predetermined measurement orientation, the measurement target surface is used as a reference, and the line vibrating in the plane perpendicular to the measurement target surface Polarized as? When the polarized light' is linearly polarized in the direction of the positive direction of the P-polarized light as the s-polarized light, the four kinds of the total of the twelve kinds of reflected light are measured in accordance with at least three of the four polarization states of the following A to D. The obtained light intensity data is calculated according to a preset program to calculate two light intensity difference data from two differences between the reflected light intensity data of the phase differences obtained by the polarization directions given to each polarization state, except for the data. Two light intensity difference data, thereby calculating a phase difference Δχ of the rehearsal reflectance ratio of the measured orientation of the 射 incident light; the four polarization states of the A to D are: (A) for the polarized light relative to p The vibration direction is vibrated in the direction of ±αΑ(〇&lt;αΑ&lt; ΤΓ/2)—for the polarized light, the phase difference between the ρ-polarized component and the S-polarized component of the S-polarized component has been adjusted to the total of ^ and rA2. When polarized light is incident on the surface of the measurement target and is reflected by the surface of the measurement target, the total of the four types of s-polarized light contained in each of the reflected lights; (B) The 1&gt; polarized light is used as the incident light and the surface of the object to be measured is reversed 321299 36 201011273 When shooting, 'will reflect the light p The phase difference between the polarization of the polarized component and the s-polarized component has been adjusted to be ± 〇 with respect to the vibration direction of the S-polarized light in the polarized light of the two types of 7B1 and 7 B2; b ( 0&lt; α Β &lt; 7Γ /2) The total of the directional vibrations of the four kinds of polarized light; (C) for the direction of vibration relative to the S-polarized light in the direction of ±ac; (〇 &lt; α c &lt; 7T/2), one pair of polarized light, each of which is polarized When the phase difference between the polarization of the component and the S-polarized component is adjusted to be four kinds of polarized light of 7 ci and r c2 as the incident light and reflected by the surface of the measurement target, the total of four kinds of p-polarized light contained in each reflected light (D) When the S-polarized light is incident on the surface of the object to be measured, the phase difference between the P-polarized component of the reflected light and the polarized component of the s-polarized component has been adjusted to two types, T D1 and 7〇2. The polarized light contained in the light has four types of polarized light in the direction of vibration of the P-polarized light in the direction of ±aD (0&lt;aD&lt;7γ/2). 2. A method for measuring an optical anisotropy parameter, which irradiates incident light from a predetermined measurement azimuth to a measurement point on a surface of a measurement object at a certain incident angle, and measures a polarization component of a specific direction contained in the reflected light. The light intensity data obtained by the light intensity is measured as a method of the phase hx (x is a polarization state) of the complex amplitude reflectance ratio of the optical anisotropy parameter; in the S method, the measurement target surface is used as a reference, and the measurement object is The linear polarized light of the in-plane vibration of the positive surface = as the P-polarized light, when the linear polarized light vibrating in the direction intersecting the P-polarized light f is 4 S polarized light, the above-mentioned measurement is made according to the normal line of the self-measuring point; Azimuth change, at least three of the four polarization states of A to D below: 321299 37 201011273 Amounts of four kinds of total reflections of twelve kinds of reflected light - Light intensity > Material 'Follow the preset a program for calculating two measured azimuth-light intensity differences data for each polarization state from the difference between the reflected light intensity data of the phase differences between the given polarizations. Two light intensity differences: the ratio of the shell material calculates the phase difference Δχ of the reverberation field reflectance ratio corresponding to the measured orientation of the incident light; the four polarization states of the A to D are: (A) The vibration direction of the p-polarized light is one of the pairwise polarizations in the direction of the soil (〇&lt;αΑ&lt;7Γ/2), and the phase difference between the polarization of the ρ-polarized ❹ component and the S-polarized component of each is adjusted to be the total of Τα2 When the polarized light is incident on the surface of the measurement target and is reflected by the surface of the measurement target, the total of the four types of s-polarized light contained in each of the reflected lights; (B) when the p-polarized light is incident on the surface of the measurement target, The phase difference between the P-polarized component of the reflected light and the polarized component of the s-polarized component has been adjusted to be ±αΒ (〇&lt;αβ&lt;&gt; with respect to the vibrational direction of the S-polarized light among the biasing forces of the two kinds of light of Tbi and &amp;疋/2) The total direction of vibration of the 〇 is four kinds of polarized light; (C) One pair of polarized light is vibrated in the direction of ±ac (0&lt; α π/2) with respect to the vibration direction of S-polarized light, and ρ of each The phase difference between the polarization of the polarized component and the S-polarized component has been adjusted to the total of four When the polarized light is incident on the surface of the object to be measured and reflected by the surface of the object to be measured, the total of the four kinds of p-polarized light contained in each of the reflected lights; (D) When the S-polarized light is incident on the surface of the object to be measured, The P-polarized component of the reflected light and the polarized phase of the s-polarized component 38 321299 201011273 The difference between the polarized light contained in the light of tdi and rD2 is adjusted to ±α〇(〇&lt; The a directional vibration of aD&lt;苁/2) is a total of four types of polarized light. 3. An optical anisotropy parameter measuring device, comprising: an illuminating optical system </ RTI> illuminating a light that is polarized into a predetermined polarization state from a predetermined measuring azimuth to a measuring point on a measuring object surface at a certain incident angle; ❹ 受光光學系統’係檢測已將其反射光偏光化成預定 偏光狀態的光的光強度;以及 運算裝置,係依據所測量出的光強度計算出成為光 學異向性參數之複振幅反射率比的相位差Δχ(χ為偏光 狀態); 在該光學異向性參數測量裝置中, 於前述發光光學系統依序設置有用以照射單色光 光源了調整偏光方向之偏光子、以及可調整相位之 發光侧相位補償子; ^於則述受光光學系統依序設置有可調整相位之受 補償子、可調整偏光方向之檢光子、以及測量 牙者、’子後的偏光的光強度之光感測器; 面内基準’將在與測量對象面正交之 振動之直線偏先2作為ρ偏光,將於與此正交之方向 據針對以下Α至 S偏光時,在前述運算裝置中,依 態的各四種之合^0的四種偏光狀態中至少三種偏光狀 n十二種的反射光所測量的光強度資 321299 39 201011273 料,依循預先設定的程式,就各偏光狀態從所賦予之偏 ^間相位差為相等的諸反射光強度資料間的兩個差計 算^出兩個光強度差資料,從該等兩個光強度差資料的比 計算出該射入光的測量方位的複振幅反射率比的相位 差Δχ ;該A至D的四種偏光狀態為: (A)針對相對於P偏光的振動方向於士“A (〇&lt; αΑ&lt; ;r/2)的方向振動之一對偏光,將各者的p偏光 成分與S偏光成分的偏光間相位差業已調整為〜及 rA2之合計四種的偏光作為射入光並使其被測量對象 〇 面反射時’各反射柄含有的合計四種的s偏光,· (B) 將p偏光作為射人光並使其被測量對象面反 射時’將反射光的P偏光成分與S偏光成分的偏光間相 位差業已調整為^及^之兩種的光所含有的偏光 中相對於S偏光的振動方向於±αΒ (〇&lt; 的方向振動之合計四種的偏光; (C) 針對相對於S偏光的振動方向於±ae(G&lt; α c&lt; π/2)的方向振動之一對偏光,將各者的ρ偏光成 分與S偏光成分的偏光間相位差f已調整為^及以 之合計四種的偏光作為射入光並使其被測量對象面反 射時各反射光所含有的合計四種的p偏光; (D) 將S偏光作為射入光並使其被測量對象面反 射時將反射光的P偏光成分與s偏光成分的偏光間相 =差業已調整為r Di及7〇2之兩種的光所含有的偏光 相對於P偏光的振動方向於±aD (〇&lt; aD&lt;疋/2) 321299 40 201011273 的方向振動之合計四種的偏光。 4. 一種光學異向性參數測量裝置,具備有: 發光光學系統,係將偏光化成預定偏光狀態的光以 一定射入角度從預定測量方位照射至測量對象面上的 測量點;及 受光光學系統,係檢測已將其反射光偏光化成預定 偏光狀態的光的光強度;❹ the light-receiving optical system' detects the light intensity of the light whose polarization is polarized into a predetermined polarization state; and the arithmetic means calculates the complex amplitude reflectance ratio which becomes the optical anisotropy parameter based on the measured light intensity a phase difference Δχ (χ is a polarization state). In the optical anisotropy parameter measuring device, a polarizer for adjusting a polarization direction and an adjustable phase illuminating light for illuminating a monochromatic light source are sequentially disposed in the illuminating optical system. Side phase compensator; ^ The light-receiving optical system is sequentially provided with a compensated phase of the adjustable phase, a photodetector capable of adjusting the polarization direction, and a photosensor for measuring the light intensity of the polarizer after the child The in-plane reference 'will be the first to be the ρ-polarized light in the line perpendicular to the vibration of the surface to be measured, and the direction orthogonal thereto will be in the above-mentioned operation device according to the following direction. The light intensity measured by at least three kinds of polarized n-twelve kinds of reflected light in each of the four polarization states of each of the four types is 321299 39 201011273, according to the advance a predetermined program for calculating two light intensity difference data from two differences between the reflected light intensity data of the phase differences obtained by the polarization states of the respective polarization states, from the two light intensity difference data The phase difference Δχ of the complex amplitude reflectance ratio of the measured azimuth of the incident light is calculated; the four polarization states of the A to D are: (A) for the direction of vibration relative to the P-polarized light, “A” (〇&lt;; Α Α ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; When the object to be measured is reflected by the surface of the measurement, the total of the four types of s-polarized light contained in each of the reflection handles is used. (B) When the p-polarized light is used as the incident light and is reflected by the surface of the measurement target, the P-polarized component of the reflected light is The phase difference between the polarizations of the S-polarized component has been adjusted to be a total of four types of polarized light in the direction of the vibration of the S-polarized light in the polarized light contained in the light of the two types of light and the light of the S-polarized light; ) for the vibration direction relative to the S-polarized light at ±ae(G&lt; α c&lt; π/2) One of the directional vibrations is polarized, and the phase difference f between the ρ-polarized component and the S-polarized component of each of the directional polarizations is adjusted to be a total of four types of polarized light as the incident light and reflected by the surface of the measuring object. The total of four kinds of p-polarized light contained in the reflected light; (D) When the S-polarized light is incident on the surface of the measurement target, the phase between the P-polarized component of the reflected light and the s-polarized component is adjusted. The polarized light contained in the light of the two types of r Di and 7 〇 2 is a total of four types of polarized light vibrating in the direction of ±aD (〇&lt;aD&lt;疋/2) 321299 40 201011273 with respect to the vibration direction of the P-polarized light. An optical anisotropy parameter measuring device comprising: an illuminating optical system that measures light polarized into a predetermined polarization state from a predetermined measurement angle to a measurement point on a measurement target surface at a certain incident angle; and a light receiving optical system Is detecting the light intensity of light that has polarized its reflected light into a predetermined polarization state; ❹ 前述發光光學系統與前述受光光學系統係配置成 可相對地繞著從前述測量點立起的法線旋轉、或繞著該 法線呈放射狀; 且復具備有運算裝置,該運算裝置係依據與射入光 的測量方位對應的光強度計算出成為光學異向性參數 之複振幅反射率比的相位差Δχ(χ為偏光狀態); 在該光學異向性參數測量裝置中, 於前述發光光學系統依序設置有用以照射單色光 之光源、可調整偏先方向之偏光子、以及可調整相位之 發光側相位補償子; Μ光光學系統依序設置有可調整相a 先側相位補償子、·# 一 穿透檢井早售从 調正偏光方向之檢光子、以及測i 告、、,的偏光的光強度之光感測器; 面^^I對象面為基準,將在與測量對象面正交$ 振動之直:ΐ:::作為p偏光’將於與此正交之料 化,一邊針對以為s偏光時’依據一邊使測量方位變 下Α至D的四種偏光狀態中至少三種 321299 41 201011273 ^光狀態的各四種之合計十二種的反射光所測量而獲 侍量方位—光強度資料’在前述運算裝置中依循預 先叹疋的程式’就各偏光狀態從所賦予之偏光間相位差 為相等的諸反射光強度資料間的兩個差計算出兩個測 量=位光強度差=貝料,從該等兩個光強度差資料的比 計算出與射人光的測量方位對應的複振幅反射率比的 相位差Δχ;該人至〇的四種偏光狀態為: (Α)針對相對於Ρ偏光的振動方向於(〇&lt; αΑ&lt; ΤΓ/2)的方向振動之一對偏光,將各者的ρ偏光 成分與S偏光成分的偏光間相位差業已調整為^及 Tm之合計四種的偏光作為射入光並使其被測量對象 面反射8^,各反射光所含有的合計四種的$偏光; (B) 將P偏光作為射入光並使其被測量對象面反 射日文’將反射光的P偏光成分與s偏光成分的偏光間相 位差業已調整為7βι及^以之兩種的光所含有的偏光 中相對於S偏光的振動方向於±αΒ (〇&lt;αΒ&lt;;Γ//2) 的方向振動之合計四種的偏光; (C) 針對相對於s偏光的振動方向於土 ac(〇&lt; α c&lt; ττ /2)的方向振動之一對偏光,將各者的ρ偏光成 分與S偏光成分的偏光間相位差業已調整為rci及 之合計四種的偏光作為射入光並使其被測量對象面反 射時’各反射光所含有的合計四種的P偏光; (D) 將S偏光作為射入光並使其被測量對象面反 射時,將反射光的P偏光成分與S偏光成分的偏光間相 321299 42 201011273 - 位差業已調整為及TD2之兩種的光所含有的偏光 , 中相對於1&quot;偏光的振動方向於土 “D (0&lt;aD&lt;;r/:2) ^ 的方向振動之合計四種的偏光。 .5.如申請專利範圍第1項之光學異向性參數測量方法,其 中,依據在前述三種偏光狀態下針對各四種之合計十二 種的反射光所測量的光強度資料,依循預先設定的程 式,就各偏光狀態將所賦予的偏光間相位差為相等的反 籲 射光強度資料的和作為光強度和資料予以計算,並從前 述光強度差資料的一方與光強度和資料的比計算出該 射入光的測量方位的複振幅反射率比的大小| | (X 為偏光狀態)。 6.如申凊專利範圍第2項之光學異向性參數測量方法,其 中’依據在前述三種偏光狀態下針對各四種之合計十二 種的反射光所測量的測量方位—光強度資料,依循預先 設定的程式,就各偏光狀態將所賦予的偏光間相位差為 ❹相等的反射光強度資料的和作為測量方位—光強度和 資料予以計算,並從前述光強度差資料的一方與光強度 和貝料的比計算出與該射入光的測量方位對應的複振 幅反射率比的大小丨Rx| (χ為偏光狀態)。 7,如申請專利範圍第3項之光學異向性參數測量裝置,其 中,在前述運算裝置巾,依據針對三種偏光狀態的各二 種之合計十二種的反射光所測量的㈣度資料,依循預 先設定的程式,就各偏紐_所舒的偏光間相位差 為相等的反射光強度資料的和作為光強度和資料予以 321299 43 201011273 計算,並從前述光強度差資料的一方與光強度和資料的 比計算出該射入光的測量方位的複振幅反射率比的大 小| Rx | ( X為偏光狀態)。 8.如申請專利範圍第4項之光學異向性參數測量裝置,其 中’在前述運算裝置中,依據針對三種偏光狀態的各四 種之合計十二種的反射光所測量的測量方位—光強度 資料,依循預先設定的程式,就各偏光狀態將所賦予的 偏光間相位差為相等的反射光強度資料的和作為測量 方位一光強度和資料予以計算,並從前述光強度差資料 的一方與光強度和資料的比計算出與射入光的測量方 位對應的複振幅反射率比的大小丨心丨(χ為偏光狀 態)〇 321299 44发光 the light-emitting optical system and the light-receiving optical system are arranged to be rotatable relative to a normal line rising from the measurement point or radially around the normal line; and the arithmetic device is provided Calculating a phase difference Δχ (χ is a polarization state) which is a complex amplitude reflectance ratio of the optical anisotropy parameter according to the light intensity corresponding to the measured orientation of the incident light; in the optical anisotropy parameter measuring device, The illuminating optical system sequentially sets a light source for illuminating the monochromatic light, a polarizer capable of adjusting the pre-direction, and an illuminating side phase compensator for adjusting the phase; the illuminating optical system is sequentially provided with the adjustable phase a. Compensator, ·# A penetrating well is sold early from the photodetector that corrects the direction of the polarized light, and the light sensor that measures the light intensity of the polarized light; the surface of the object is the reference, and will be The measurement object surface is orthogonal to the vertical of the vibration: ΐ::: as the p-polarized light will be orthogonalized to the other, and the four polarization states of the measurement orientation will be reduced to D according to the side when the s-polarized light is considered. At least three types of 321299 41 201011273 ^ The four states of the light state are measured by a total of twelve kinds of reflected light and the volume direction is obtained - the light intensity data 'in the aforementioned arithmetic device follows the pre-sighing program' Calculating two measurements = position light intensity difference = shell material by giving two differences between the reflected light intensity data of the phase difference between the polarized lights, and calculating the ratio of the two light intensity difference data The phase difference Δχ of the complex amplitude reflectance ratio corresponding to the measured orientation; the four polarization states of the person to the 为 are: (Α) for the direction of the vibration relative to the Ρ polarized light (〇&lt;αΑ&lt; ΤΓ/2) One of the vibrations is polarized, and the phase difference between the ρ-polarized component and the S-polarized component of the S-polarized component has been adjusted to a total of four kinds of polarized light of T and Tm as the incident light and reflected by the measuring object surface. The total of four types of polarized light contained in the reflected light; (B) The P-polarized light is used as the incident light and the surface of the object to be measured is reflected. The phase difference between the P-polarized component of the reflected light and the polarized component of the s-polarized component has been adjusted. For 7βι and ^ The polarized light contained in the light has a total of four types of polarized light in a direction of ±αΒ(〇&lt;αΒ&lt;;Γ//2) with respect to the vibration direction of the S-polarized light; (C) For the vibration with respect to the s-polarized light The direction is one of the pair of polarizations in the direction of the soil ac (〇 &lt; α c &lt; ττ /2), and the phase difference between the polarization of the ρ polarization component and the S polarization component of each of the elements is adjusted to rci and the total of four polarizations When the light is incident on the surface to be measured and reflected by the surface of the measurement target, the total of four types of P-polarized light contained in each of the reflected lights; (D) When the S-polarized light is incident on the surface of the measurement target, the reflected light is reflected. The polarization between the P-polarized component and the S-polarized component is 321299 42 201011273 - The difference has been adjusted to the polarization of the light of the two types of TD2, which is relative to the 1&quot;polarized vibration direction of the soil "D (0&lt;aD&lt;;;r/:2) ^ The total amount of polarized light in the direction of vibration. .5. The optical anisotropy parameter measuring method according to claim 1, wherein the light intensity data measured for the total of twelve kinds of reflected light of each of the four kinds of polarization states is set according to a preset The program calculates the sum of the anti-projection light intensity data of the phase difference between the polarizations given by the respective polarization states as the light intensity and the data, and calculates the ratio of the light intensity difference data to the light intensity and the data. The magnitude of the complex amplitude reflectance ratio of the measured azimuth of the incident light | | (X is a polarized state). 6. The optical anisotropy parameter measuring method according to item 2 of the claim patent scope, wherein 'measured azimuth-light intensity data measured according to the total of twelve kinds of reflected light of each of the four kinds of polarized states, According to a preset program, the sum of the reflected light intensity data with the phase difference between the polarized lights given by the polarization states is calculated as the measured azimuth-light intensity and the data, and the light intensity difference data is combined with the light and the light. The ratio of the intensity to the shell material calculates the magnitude 丨Rx| of the complex amplitude reflectance ratio corresponding to the measured orientation of the incident light (χ is the polarized state). 7. The optical anisotropy parameter measuring device according to claim 3, wherein the arithmetic device wipes the (four) degree data measured by a total of twelve kinds of reflected light for each of the three kinds of polarization states. According to the preset program, the sum of the reflected light intensity data with the phase difference between the polarizations of the respective offsets is calculated as the light intensity and the data are calculated as 321299 43 201011273, and one of the light intensity difference data and the light intensity are calculated. The ratio of the data to the ratio of the complex amplitude reflectance of the measured direction of the incident light | Rx | (X is the polarized state). 8. The optical anisotropy parameter measuring device according to claim 4, wherein 'in the aforementioned arithmetic device, the measured azimuth measured according to the total of twelve kinds of reflected light of each of the four kinds of polarization states - The intensity data is calculated according to a preset program, and the sum of the reflected light intensity data of the phase difference obtained by the polarization between the polarization states is calculated as the measured azimuth light intensity and the data, and the light intensity difference data is calculated from one side of the light intensity difference data. The ratio of the ratio of the light intensity to the data is calculated as the magnitude of the complex amplitude reflectance ratio corresponding to the measured orientation of the incident light. (χ is the polarization state) 〇321299 44
TW98125163A 2008-09-02 2009-07-27 Method and apparatus for measuring optically anisotropic parameters TWI467157B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224392A JP5198980B2 (en) 2008-09-02 2008-09-02 Optical anisotropy parameter measuring method and measuring apparatus

Publications (2)

Publication Number Publication Date
TW201011273A true TW201011273A (en) 2010-03-16
TWI467157B TWI467157B (en) 2015-01-01

Family

ID=41803612

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98125163A TWI467157B (en) 2008-09-02 2009-07-27 Method and apparatus for measuring optically anisotropic parameters

Country Status (4)

Country Link
JP (1) JP5198980B2 (en)
KR (1) KR101624271B1 (en)
CN (1) CN101666926B (en)
TW (1) TWI467157B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2685307B1 (en) * 2011-03-11 2019-07-10 Citizen Watch Co., Ltd. Light modulation element and microscope device provided with light modulation element
JP5806837B2 (en) * 2011-04-11 2015-11-10 株式会社モリテックス Optical anisotropy parameter measuring device, measuring method and measuring program
US8854623B2 (en) * 2012-10-25 2014-10-07 Corning Incorporated Systems and methods for measuring a profile characteristic of a glass sample
JP6087751B2 (en) * 2013-07-05 2017-03-01 株式会社モリテックス Optical anisotropy parameter measuring device, measuring method and measuring program
JP6682263B2 (en) * 2015-12-25 2020-04-15 キヤノン株式会社 Detecting apparatus, exposure apparatus, and article manufacturing method
CN105783723B (en) * 2016-04-26 2018-07-10 广东技术师范学院 Precision die surface processing accuracy detection device and method based on machine vision
CN105842889B (en) * 2016-06-21 2019-09-06 京东方科技集团股份有限公司 The detection device and method of light alignment substrates
WO2019142569A1 (en) * 2018-01-18 2019-07-25 Jfeスチール株式会社 Spectroscopic analysis device, spectroscopic analysis method, method for manufacturing steel strip, and steel strip quality assurance method
KR102550690B1 (en) * 2018-05-28 2023-07-04 삼성디스플레이 주식회사 Ellipsometer
CN111895923B (en) * 2020-07-07 2021-09-21 上海辰慧源科技发展有限公司 Method for fitting and measuring thickness of thin film
CN111818251B (en) * 2020-08-12 2021-07-20 中国海洋大学 Rotary polarization range gating camera device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781837B2 (en) * 1986-12-10 1995-09-06 日本分光工業株式会社 Ellipsometer
JPH05133810A (en) * 1991-11-13 1993-05-28 Nkk Corp Ellipso-parameter measuring method and ellipsometer
JP3311497B2 (en) * 1994-06-29 2002-08-05 日本電子株式会社 Fourier transform spectral phase modulation ellipsometry
JP2004279286A (en) * 2003-03-18 2004-10-07 Nippon Laser & Electronics Lab Method and device for evaluating optically anisotropic thin film
JP3936712B2 (en) * 2004-09-22 2007-06-27 名菱テクニカ株式会社 Parameter detection method and detection apparatus for detection object
KR101280335B1 (en) * 2005-01-24 2013-07-01 가부시키가이샤 모리텍스 Method and apparatus for measuring optical aeolotropic parameter
JP2007285926A (en) * 2006-04-18 2007-11-01 Omron Corp Optical system, anisotropic thin-film evaluating apparatus and anisotropic thin-film evaluating method
JP4692892B2 (en) * 2006-06-01 2011-06-01 株式会社ニコン Surface inspection device
JP4921090B2 (en) * 2006-09-25 2012-04-18 株式会社モリテックス Optical anisotropy parameter measuring method and measuring apparatus
JP2008122405A (en) * 2007-12-25 2008-05-29 Olympus Corp Method of reaction analysis

Also Published As

Publication number Publication date
CN101666926A (en) 2010-03-10
JP2010060352A (en) 2010-03-18
KR20100027951A (en) 2010-03-11
TWI467157B (en) 2015-01-01
JP5198980B2 (en) 2013-05-15
CN101666926B (en) 2013-07-31
KR101624271B1 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
TW201011273A (en) Method and apparatus for measuring optically anisotropic parameters
TWI384213B (en) Method and device for measuring optical anisotropy parameter
US6937341B1 (en) System and method enabling simultaneous investigation of sample with two beams of electromagnetic radiation
US6219139B1 (en) Full field photoelastic stress analysis
TWI331672B (en) Focused-beam ellipsometer
US7889339B1 (en) Complementary waveplate rotating compensator ellipsometer
EP0397388A2 (en) Method and apparatus for measuring thickness of thin films
WO2005119169A3 (en) Beam profile complex reflectance system and method for thin film and critical dimension measurements
JP5140451B2 (en) Birefringence measuring method, apparatus and program
JP2006509219A5 (en)
JP2008533447A5 (en)
JPH03205536A (en) Ellipsometer with high resolving power and method of its use
JP4538344B2 (en) Axial bearing measuring apparatus and method
JP6100803B2 (en) Improved surface plasmon resonance method
An et al. Calibration and data reduction for a UV-extended rotating-compensator multichannel ellipsometer
JP2008122405A (en) Method of reaction analysis
RU2302623C2 (en) Ellipsometer
US20080212095A1 (en) Optical Monitoring Apparatus and Method of Monitoring Optical Coatings
JP2011117792A (en) Device for measuring lamination angle of elliptically polarized light plate
TW200813393A (en) Photoelastic measuring method and apparatus
JP2008151559A (en) Infrared thickness/orientation meter, and infrared thickness/orientation measuring method
JP2004279286A (en) Method and device for evaluating optically anisotropic thin film
JP3181655B2 (en) Optical system and sample support in ellipsometer
TWI558975B (en) Multi-analyzer angle spectroscopic ellipsometry system and ellipsometry method
WO2022024669A1 (en) Method for measuring concentration of optically active substance and device for measuring concentration of optically active substance

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees