TW201010961A - A low-fire dielectric composition - Google Patents

A low-fire dielectric composition Download PDF

Info

Publication number
TW201010961A
TW201010961A TW97133509A TW97133509A TW201010961A TW 201010961 A TW201010961 A TW 201010961A TW 97133509 A TW97133509 A TW 97133509A TW 97133509 A TW97133509 A TW 97133509A TW 201010961 A TW201010961 A TW 201010961A
Authority
TW
Taiwan
Prior art keywords
dielectric
low
composition
temperature
weight percent
Prior art date
Application number
TW97133509A
Other languages
Chinese (zh)
Other versions
TWI393693B (en
Inventor
Jau-Ho Jean
Jui-Chuan Chang
Original Assignee
Advanced Ceramic X Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Ceramic X Corp filed Critical Advanced Ceramic X Corp
Priority to TW97133509A priority Critical patent/TWI393693B/en
Publication of TW201010961A publication Critical patent/TW201010961A/en
Application granted granted Critical
Publication of TWI393693B publication Critical patent/TWI393693B/en

Links

Abstract

A low-fire dielectric composition, which contains 80-96.5 wt% TiO2 and 3.5-20 wt% CuO and MnCO3, can be densified at temperatures below 900 DEG C. The resulting dielectric composition exhibits a dielectric constant of 70-101 and dielectric loss of less than 0.5% at 1MHz. A multilayer dielectric device cofired with high-electrical-conductivity metallization such as Ag, Cu and Au can be fabricated using conventional tape casting, screen printing and cofiring processes.

Description

201010961 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種低溫共燒介電組合物,特職與介電陶究材料相關,本 發明之介電組合物可在低溫下燒結緻密,因此可與低溶點、高導電性之金屬導 體如銀和鋼魏成具有哺體層或帶線型式之介電歧 常數與低介電損失的特性。 【先前技術】 ® 縮小70件尺寸乃當前研發上一個重要的課題,為了因應這個需求,市面上 已開發出多層結構的電子元件,以增加體積效率,故渡波器也朝向多層及微小 型化發展。然而,在多層濾波器中,必須與低電阻的金屬導體如銀或銅共燒, 但是銅導體必須在無氧的氣氛下進行燒結,以避免形成氧化銅,但在無氧的氣 氛下,陶瓷粉末内的有機黏結劑移除困難,而使生產成本提高;而銀導體雖可 在大氣氣氣下燒結,然而其稼點為攝氏962度(°C),因此陶曼組件必須在低於 銀的熔點以下燒結完成。所以,低溫可燒結緻密之介電材料的開發就變的非常 重要了。 # 為了因應濾波器微小型化的需求,在陶瓷材料的選擇上必須滿足下列特 性:(1)具有高介電常數(K) ’通常κ值介於10到100間,主要原因是濾波器 尺寸的減少與κ1/2有關,K越高則濾波器的尺寸就越小。(2)具有較小的介電損 失(tan&lt;5 )’介電損失越小,可以得到較高的品質因子,以利共振頻率的選取。 在不同的介電陶瓷材料中,多種已知可滿足上述需求的陶瓷材料如:Ti〇2, BazTi晶〇,BaTiA,Zra-SnMi〇2’ Ba(Znv3Ta2/3)〇3,和(Ba,Pb)N肌 些陶竞材料的燒結溫度都在攝氏1300度(°C)以上,無法舆高導電金屬導鍾如 銀等共燒,因此為了降低燒結溫度至攝氏962度或更低,一般已知的方 案有:以化學方法製造微細粉末、於陶瓷材料中加入助燒劑或加入低軟化點的 玻璃幫助燒結。添加由碳酸猛及氧化銅所組成的助燒劑到純的二氧化鈦是本實 201010961 驗所採用的方法。 在美國專利第5,449, 652號内提到的微波介電陶瓷材料是由 Bi(2-&gt;〇(Zn(2+y)/3Nb(仍))〇(7-3x/2+y/3),其中 〇. 24〈χ〈0· 333, 0.120〈y&lt;0· 3 ;和201010961 IX. Description of the Invention: [Technical Field] The present invention relates to a low-temperature co-fired dielectric composition, which is related to a dielectric ceramic material, and the dielectric composition of the present invention can be sintered at a low temperature. Therefore, it can be combined with low melting point, highly conductive metal conductors such as silver and steel, and has the characteristics of dielectric dispersion and low dielectric loss of the feeder layer or the strip type. [Prior Art] ® Reducing the size of 70 pieces is an important issue in the current research and development. In order to meet this demand, electronic components of multilayer structure have been developed on the market to increase volumetric efficiency. Therefore, the wave filter is also oriented toward multi-layer and miniaturization. . However, in a multilayer filter, it must be co-fired with a low-resistance metal conductor such as silver or copper, but the copper conductor must be sintered in an oxygen-free atmosphere to avoid the formation of copper oxide, but in an oxygen-free atmosphere, the ceramic The removal of the organic binder in the powder is difficult, and the production cost is increased. While the silver conductor can be sintered under atmospheric gas, the harvest point is 962 degrees Celsius (°C), so the Taman component must be lower than the silver. The melting point below the sintering is completed. Therefore, the development of low temperature sinterable dense dielectric materials becomes very important. # In order to meet the needs of miniaturization of filters, the following characteristics must be met in the selection of ceramic materials: (1) have a high dielectric constant (K) 'usually κ values range from 10 to 100, mainly due to filter size The reduction is related to κ 1/2, and the higher the K, the smaller the size of the filter. (2) With a smaller dielectric loss (tan&lt;5)', the smaller the dielectric loss, the higher the quality factor can be obtained to facilitate the selection of the resonant frequency. Among the different dielectric ceramic materials, various ceramic materials known to satisfy the above requirements are, for example, Ti〇2, BazTi wafers, BaTiA, Zra-SnMi〇2' Ba(Znv3Ta2/3)〇3, and (Ba, Pb) N muscles of some ceramic materials are sintered at temperatures above 1300 ° C ( ° C), can not be high-conductivity metal conductive bells such as silver co-firing, so in order to reduce the sintering temperature to 962 degrees Celsius or lower, generally known The solution is to chemically make fine powder, add a sintering aid to the ceramic material or add a glass with a low softening point to help sintering. The addition of a sintering aid consisting of carbonic acid and copper oxide to pure titanium dioxide is the method used in the 201010961 test. The microwave dielectric ceramic material mentioned in U.S. Patent No. 5,449,652 is Bi(2-&gt;〇(Zn(2+y)/3Nb(还))〇(7-3x/2+y/3) ), where 〇. 24<χ<0· 333, 0.120<y&lt;0· 3 ;

Bi(i-x)Ca⑴(Zn(2柳Nb_)〇(7-3祕y版&quot;z) ’ 其中 0&lt;x&lt;0 667,〇&lt;y&lt;〇 3〇,〇&lt;γ 成。此微波介電陶瓷材料所得到的介電常數為1〇〇 (@7GHz)、品質因子為7〇〇〇 (@7GHz)及共振頻率溫度係數為i〇ppm/c。 在美國專利第4, 672,152號内提到的低介電陶瓷材料是由5〇至95重量百 分比(wt%)的結晶玻璃和50至5重量百分比(wt%)的陶瓷填充劑所組成。所 •添加的結晶玻璃成分為5至20重量百分比(wt%) LiA、60至90重量百分比 (wt%) Si〇2和1至1〇重量百分比(wt%) Α1ζ〇3。而陶瓷填充劑則由si〇z*Al2〇3 所組成。此介電材料所得到的介電常數在5 1至6. 〇之間。 在美國專利第4, 755,490號内提到的低介電陶瓷材料是由1〇至50重量百 分比(wt?〇 Al2〇3、〇至30重量百分比(wt%) fused Si〇2和50至60重量百分 比(wt%)玻璃所組成。其中玻璃的成分為4wt%Ca〇、i2重量百分比(wt%) MgO、 29重量百分比(wt%) BA和42重量百分比(wt%) Si〇2。此介電陶瓷材料可在 溫度低於攝氏1000度(t)下燒結,所得到的介電常數為4· 5至6.1,線熱膨 ϋ脹係數為3. 9至4. 2X1011 〇 在美國專利第5,415, 945號内提到高介電常數的陶瓷材料的成分為75至85 莫耳百分比(mol%) Pb(Ni^Nb2/3)〇3、0 至 15 莫耳百分比(mol%) PbTi〇3、5 至 16. 5 莫耳百分比(m〇i%) pb(Zni/2Wl/2)〇3* pb(;Cui/3Nb2/3)〇3。其燒結溫度為攝氏 1000度(°C )’所得到的介電常數在1〇〇〇至4〇〇〇之間》 在美國專利第5,262,368號内提到的高介電陶瓷材料是由BaTi〇3、BaCu〇2、 WO3和M0O3所組成。其燒結溫度為攝氏U50度(。(:),所得到的介電常數為2000 至3000 (@1ΚΗζ) ’介電損失為2. 5至16百分比⑻(@1ΚΗζ)。 在美國專利第5,461,014號内提到的高介電陶瓷材料是由Pb(Mgi/3Nb2/3)〇3 和BaCu〇2所組成。其燒結溫度為攝氏丨〇5〇度(充),所得到的介電常數為7000 6 201010961 至8000 (@lKHz),介電損失低於3百分比(%)。 在美國專利第6, 309, 993號内提到的低溫燒結微波介電材料成分為2〇至如 體積百分比(v〇W卿玻璃和80至10體積百分比(v〇1%) m。其可在溫 度低於攝氏1000度(c )下燒結,所得到的介電常數為2〇至45 (@7GHz),品 質因子為 1000 至 1300 (®7GHz)。 °° 在美國專利第6,159, 883號内提到的低溫燒結介電材料其成分為3〇至9〇 體積百分比(德)Ca-Pb-Al-Zn-B-Si glass和70至1〇體積百分比(v〇1%) oxide。其燒結溫度為攝氏800至1000度),所得到的介電常數為6至ι〇, #介電損失為0. 01百分比(%)至〇. 05百分比(%) (@1MHz)。 由上述說明可知,業界仍急需具低燒結溫度與高介電係數及低介電損失的 陶瓷材料,本發明即針對此一需求所為之研發。 【發明内容】 本發明其目的在於:提供—種新顆之低溫共燒介電組合物,可於低溫燒結 緻密’並且具有高介電常數及低介電損失等特性。 本發明其目的還在於:此低溫共燒介電組合物的陶瓷組合物,可在低溫燒 #結緻密,因此可與低熔點、低阻抗之導體相容,經由與低熔點、高導電金屬共 燒以及疊壓之過程,提供市場所需之積層型介電陶瓷元件。 為實現這些本發明的目的及其他特質,本發明提供了一種低溫共燒介電組 合物,其在於技術方案是: 一種低/at共燒介電組合物,其係含go至96. 5重量百分比(^¾)之二氧化 鈦(Ti〇2,rutile)和3. 5至20重量百分比(wt%)之碳酸短及氧化銅助燒劑的成 份組成,此成份組成可於攝氏875至925度(〇c )下獲得相對燒結密度95百分 比(%)以上,另,根據該成分組成所製成之生胚,燒結緻密後在1MHz可得到 70至101的介電常數和小於〇.5百分比(%)的介電損失;又其中所述之助燒劑 組成,其係含9至50重量百分比(wt%)碳酸短和5〇至91重量百分比(wt%) 201010961 氧化銅。 在本發明的另一個方面,所述之低溫共燒介電組合物,其中進一步用來製 作低溫共燒介電組合物元件的漿料,係含7〇至85重量百分比(wt%)如上所述 低溫共燒介電組合物之成份組成,和3〇至15重量百分比之有機載體; 其中該有機載體係為有機溶劑、有機黏結劑及有機塑化劑之混合漿料;另,進 一步使用此小段所述之漿料’其所製成的生胚,可使生胚在低於攝氏925度(π) 下燒結緻密。 【實施方式】 以下茲將本發明為達成其發明目的,配合附圖及實施例,作進一步詳細說 明如下: 首先,如業界所知,純二氧化鈦(Ti〇2)具有很好的微波特性,如高介電常數 (〜100⑫GHz)和高品質因子(〜1000() @GHz)等,唯純二氧化鈥的燒結溫 度需達攝氏1100度(t:)以上才可燒結敏密。在如此高的燒結溫度和需氣氣氣 氛的條件下,使其被製造成積層陶瓷元件時需使用貴重金屬當電極,如銀_鈀合 金。 故而本案發明人發現,在純二氧化鈦(Ti〇2)中添加碳酸猛和氧化銅的混合 物,可有效的降低燒結溫度至攝氏900度(。〇以下,因而可以使用較便宜的 純銀來取代昂貴的銀把合金’以降低製造成本。 特定言之,本發明係為一新穎低溫共燒介電組合物,其係依不同比例混合 之二氧化鈦(Ti〇2,rutile)加上助燒劑(MnC〇3-CuO, MC)所組成,該陶瓷加上助 燒劑所組成之比例並無特別限制,可視所需成品的性質而調整。 在本發明實施上,較佳的低溫共燒介電組合物,係含8〇至96 5重量百分 比(wt%)之二氧化鈦(Ti〇2,rutile)與20至3. 5重量百分比(wt96)之助燒制 (MC);另,所述之助燒劑,其較佳成分之礙酸短及氧化銅(MnC〇3_Cu〇)重量比 為(1:3)及(1:6)。 201010961 本發明低溫共燒介電組合物,可應用於積層陶究元件。於此應用中,需將 該低溫共燒介额合物與機載舰合形成轉,其齡Μ至85重旦百八比 (Wt%)低溫共燒介餘合物和3G〜15重量百分比⑽)有機麵^經二刀 成形程序而得到生胚薄片,其後經網印導體膏、疊麼與共燒等習知技術,製備 而得到積層_元件。其情述之低溫共燒介電組合物,含有3. 5至別重量百 分比UW之碳酸鍾和氧化銅(MnC〇3_Cu〇)混合物及96 5至8〇重量百分比(㈣ 之二氧化欽(rutile)。 $在於本發明—種製備介電元件之方法,其包括將低溫錢介電組合 ⑩物之粉末製成生胚,並將該生胚於溫度低於攝氏%2度rc)下進行緻密化。 其中’該緻密化步驟包括第一階段脫脂與第二階段燒結,且於空氣中進行較佳。 如熟悉此項技藝者所知,該稅脂階段係為清除生胚内之有機黏結劑燒結階段 則可使胚體緻密化;於本發明中,其較佳的燒結條件係於攝氏875至925度(^ ) 持溫60分鐘;由此緻密化步驟所得之介電喊元件於職下具7〇至ι〇ι之介 電常數及低於0.5百分比(%)之介電損失’因此符合業界對於高介電常數與低 介電損失之需求。 可以理解,前面技術實施時的描述和下面的詳細較佳可行實施例說明都是 ❹示例性和說明性的’在頂本發騎述的實施例,_以進—步說明本發明, 仁不限制本發明專利範圍。故凡熟悉此項技術之人士所知之替換與修飾仍均 涵蓋於本發明之精神與範圍内,合予陳明。 請參閱第四囷所示、係本發明各實施例的材料成份'製程條件與性質。 其中; 資拖例-:先以碳缝:氧摘,依重量百分比等於1:1的成分比例,量 取純度99百分比⑻以上的碳酸短、氧化銅等陶竟粉末共4〇公克⑷,將配 製好的粉末加入已裝有32毫升(cc)正丙醇(1_pr〇pyl也冰⑷和46公克(g) 氧化銘磨球的1G0毫升(CC)塑膠(PE)瓶中,以三度空間懸臂混粉機混合2 小時後’置於攝氏80度(°c )之烘箱烘乾,烘乾完的粉末以研妹和杵研磨均句, 201010961 放入二氡化鍅(Zr〇2)坩鍋内後置於高溫爐中,以每分鐘攝氏5度(°c/min)的 升溫速度加熱到攝氏740度(。〇持溫2小時進行鍛燒接著爐冷,將鍛燒完畢 的粉末加入已裝有500g二氧化锆(Zr〇2)磨球、55毫升(CC)正丙醇(1—proPyi alcohol)及〇. 15毫升(CC)分散劑(Darvan C)的250毫升(CC)塑膠(PE)瓶 中’球磨72小時後’放入攝氏80度rc )的烘箱烘乾,烘乾完的粉末以研砵 和杵研磨後即得到所需要的助燒劑(MC)。 以3. 5重量百分比(wt%)助燒劑(MC)加上96. 5重量百分比(的%)二氧 化鈦(TiOO' 5重量百分比(wt%)助燒劑(MC)加上95重量百分比(wt%)二 眷·氧化鈦(TiOO、10重量百分比(wt%)助燒劑(MC)加上90重量百分比(wt%) 二氧化鈦(Ti〇2)、15重量百分比(wt%)助燒劑(MC)加上85重量百分比(wt%) 二氧化鈦(Ti〇2)及20重量百分比(wt%)助燒劑(MC)加上80重量百分比(wt%) 二氧化鈦(TiOO之比例,量取助燒劑(MC)與純度99百分比(%)以上之二氧 化鈦(TiOO粉末共20公克(g),放入已裝有46公克(g)氧化銘磨球、16毫 升(CC)的正丙醇(1-propyl alcohol)及5重量百分比(wt%)聚乙二醇 (polyethylene glycol 200, PEG 200)的 100 毫升(CC)塑膠(PE)瓶中,以 三度空間懸臂混粉機混合2小時後,置於攝氏80度(。〇之烘箱烘乾,烘乾後 鲁的粉末以研妹和料研磨’形成備用低溫共燒介電組合物的粉末。 秤取所述備用低溫共燒介電組合物的粉末〇. 8公克(g),放入直徑13公釐 (_)的圓形壓模中,以90毫巴(MPa)的壓力持壓15秒(sec),將粉末壓片 成型製成生胚。 將準備好的生胚放入高溫爐中,在大氣氣氛下,以每分鐘攝氏3度彳乞颅化) 的速率升温到攝氏500度(°c)持溫-小時,藉以去除生胚内的有機黏結劑, 隨即以每分鐘攝氏5度(t/min)的速率升溫到攝氏875度(它)、攝氏900度 (C)或攝氏925度(C)持溫1小時紐冷,形成相對燒結密度之敏密化燒 結完成的試片。 所述燒結完成的試片,利用阿基米德原理量得燒結體的相對燒結密度,在 201010961 此實施例所得到的相對燒結密度於攝氏900度(。〇之3 5重量百分比(wt%) 助燒劑(MC)加上96. 5重量百分比(wt%)二氧化鈦(Ti〇2)、5重量百分比(wt%) 助燒劑(MC)加上95重量百分比(wt%)二氧化欽(Ti〇2)的試片及攝氏925度 (°c)之各添加比例的試片,皆可使相對燒結密度高於95百分比以上, 此結果與燒結體破斷面的掃瞄式電子顯微照片結果相符。 將燒結完的試片上下表面各塗上一層低溫銀膠,放入攝氏8〇度(。〇烘箱 中烘乾後’以pP4l92丨量測電容值(Cp)和介電損失(tanr^ ),經由下列公式求得 介電常數(K)。 ❹ Cp=(KetiA)/t其中ε。為真空介電常數, t為兩電極板間距, A為電極板面積。 在此實施例一中所得到的結果列於第一圖(如編號丨至編號15所示)。 實旅例二:本實施例除了助燒劑其中成分改為礙酸猛:氧化銅之重量百分 比等於1:3外,其餘製程與量測程序均與實施例一相同^在此實施例所得到的 相對燒結密度除攝氏875度(°C)之15重量百分比(的%)助燒劑(MC)加上 85重量百分比(wt%)二氧化鈦(Ti〇2)和20重量百分比(wt%)助燒劑(MC) 籲加上80重量百分比(wt%)二氧化鈦(Ti〇2)外’其餘之相對燒結密度皆高於 95百分比(%)以上,介電常數為70至98,介電損失皆小於〇.5百分比(%); 在此實施例二中所得到的結果列於第二圓(如編號16至編號3〇所示)。 實施树三:本實施例除了助燒劑成分改為碳酸鍾:氧化銅之重量百分比等 於1:6外’其餘製程與量測程序均與實施例一相同。在此實施例所得到的相對 燒結密度皆大於95百分比(%),介電常數為74至98,介電損失皆小於〇. 5百 分比(%);在此實施例三中所得到的結果列於第三圓(如編號31至編號45所 示)。 實施例田:本實施例除了助燒劑成分改為碳酸链:氧化銅之重量百分比等 於0:1外,其餘製程與量測程序均與實施例一相同。在此實施例所得到的相對 201010961 燒結密度皆大於95百分比(%),介電常數為77至101,但是介電損失皆遠大於 0.5百分比(%);在此實施例四中所得到的結果列於第四圖(如編號仙至編號 60所示)。 在上述的實施例二和實施例三中,所有二氧化鈦(Ti〇2)加上助燒劑(Mc) flux的低溫共燒介電組合物,均可在低於攝氏9〇〇度(t:)下完成94百分比⑻ 以上的緻密化。由於完成高緻密化所需的燒結溫度與低熔點、低阻抗的導體如 銀均能相容,因此在實施例二和實施例三中所有的介電成分均可與銀導體乓燒 製成積層低溫共燒介電組合物的元件。 • 在製程上,製成所述的積層低溫共燒介電組合物的元件,首先必須將上述 的低溫共燒介電組合物與有機溶劑(如甲苯與乙醇)、有機黏結劑(如聚乙稀縮 丁搭(PVB))及塑化劑(如酸二丁醋(DBP))混合形成聚料,經刮刀成形產製厚 度約為125微米(仁m)的生胚薄片,然後經沖片裁成10公分(cm)見方的生 胚薄片。 利用模具在生胚薄片上打孔,孔徑約為125微米(ym),經網印將導體膏 如銀填入孔中。另外,在生胚薄片上的導體線路亦經網印製成。 所述網印與填孔好的生胚薄片再依序堆疊,經疊壓製成積層低溫共燒介電 嚳組合物的生胚,番壓條件為攝氏6〇至1〇〇度(。〇 )與1〇〇〇至3〇〇〇每寸/碎(psi )。 最後,積層低溫共燒介電組合物的生胚在空氣氣氛中經脫脂與共燒完成緻密化。 另外,在各實施例中的低溫共燒介電組合物,亦可經由傳統製成如乾壓、 冷均壓與熱均壓製成各種不同用途的陶瓷體。以乾壓為例,該低溫共燒介電組 合物可以水和黏結劑(如聚乙烯酵(PVA))混合,經喷霧造粒後,改進粉體的流 動性,再經乾麼、脫醋與燒結即可製成低溫共燒介電組合物之陶竞想成品。 综上所述,本發明在突破先前之技術結構及製造方法下,確實已達到所欲 增進之功效,且也非熟悉該項技藝者所易於思及;再者,本發明申請前未曾公 開,其所具之進步性、實用性,顯已符合發明專利之申請要件,爰依法提出發 明申請。 12 201010961 【圖式簡單說明】 第一圖係本發明之實施例一的材料成份、製程條件與性質。 第二圖係本發明之實施例二的材料成份、製程條件與性質。 第三圖係本發明之實施例三的材料成份、製程條件與性質。 第四圖係本發明之實施例四的材料成份、製程條件與性質。 【主要元件符號說明】Bi(ix)Ca(1)(Zn(2柳Nb_)〇(7-3秘y版&quot;z) ' where 0 &lt;x&lt;0 667,〇&lt;y&lt;〇3〇,〇&lt;γ成.This microwave The dielectric constant of the dielectric ceramic material is 1 〇〇 (@7 GHz), the quality factor is 7 〇〇〇 (@7 GHz), and the temperature coefficient of the resonance frequency is i 〇 ppm / c. In US Patent No. 4, 672, 152 The low dielectric ceramic material mentioned therein is composed of 5 to 95 weight percent (wt%) of crystallized glass and 50 to 5 weight percent (wt%) of ceramic filler. The added crystal glass composition is 5 Up to 20 weight percent (wt%) LiA, 60 to 90 weight percent (wt%) Si〇2 and 1 to 1 weight percent (wt%) Α1ζ〇3, and ceramic filler by si〇z*Al2〇3 The dielectric material has a dielectric constant of between 5 and 6. The low dielectric ceramic material mentioned in U.S. Patent No. 4,755,490 is from 1 to 50 weight percent (wt). 〇Al2〇3, 〇 to 30% by weight (wt%) fused Si〇2 and 50 to 60% by weight (wt%) glass, wherein the composition of the glass is 4wt% Ca〇, i2 weight percent (wt%) MgO, 29 weight percent Ratio (wt%) BA and 42 weight percent (wt%) Si〇2. The dielectric ceramic material can be sintered at a temperature lower than 1000 degrees Celsius (t), and the resulting dielectric constant is from 4.5 to 6.1. The thermal expansion coefficient of the line is 3.9 to 4. 2X1011. In U.S. Patent No. 5,415,945, the composition of the high dielectric constant ceramic material is 75 to 85 mole percent (mol%) Pb (Ni^ Nb2/3) 〇3, 0 to 15 Molar percentage (mol%) PbTi〇3, 5 to 16. 5 Molar percentage (m〇i%) pb(Zni/2Wl/2)〇3* pb(;Cui /3Nb2/3) 〇3. The sintering temperature is 1000 ° C (°C)' and the dielectric constant obtained is between 1 〇〇〇 and 4 》. The height mentioned in U.S. Patent No. 5,262,368 The dielectric ceramic material is composed of BaTi〇3, BaCu〇2, WO3 and M0O3. The sintering temperature is U50 degrees Celsius (. (:), and the obtained dielectric constant is 2000 to 3000 (@1ΚΗζ) 'dielectric The loss is 2.5 to 16% (8) (@1ΚΗζ). The high dielectric ceramic material mentioned in U.S. Patent No. 5,461,014 is composed of Pb(Mgi/3Nb2/3)〇3 and BaCu〇2. The temperature is 5 degrees Celsius (charged), and the result is 70006201010961 dielectric constant to 8000 (@lKHz), dielectric loss is less than 3 percent (%). The composition of the low-temperature sintered microwave dielectric material mentioned in U.S. Patent No. 6,309,993 is from 2 Å to, for example, volume percent (v〇W ging glass and 80 to 10 volume percent (v 〇 1%) m. Sintering at temperatures below 1000 ° C (c) yields a dielectric constant of 2 to 45 (@7 GHz) with a quality factor of 1000 to 1300 (®7 GHz). °° in US Patent No. 6,159, 883 The low-temperature sintered dielectric material mentioned therein has a composition of 3 to 9 volume percent (de) Ca-Pb-Al-Zn-B-Si glass and 70 to 1 volume percent (v 〇 1%) oxide. The sintering temperature is 800 to 1000 degrees Celsius, and the resulting dielectric constant is 6 to ι 〇, and the dielectric loss is 0.01% (%) to 〇. 05% (%) (@1 MHz). As can be seen from the above description, there is still a need in the industry for ceramic materials having a low sintering temperature and a high dielectric constant and low dielectric loss, and the present invention has been developed in response to this need. SUMMARY OF THE INVENTION The object of the present invention is to provide a novel low-temperature co-fired dielectric composition which can be sintered at a low temperature and has characteristics such as high dielectric constant and low dielectric loss. The object of the present invention is also that the ceramic composition of the low-temperature co-fired dielectric composition can be densely formed at a low temperature, so that it can be compatible with a low-melting, low-impedance conductor, and is compatible with a low-melting, high-conductivity metal. The process of firing and lamination provides the laminated dielectric ceramic components required by the market. The weight of the low-at co-fired dielectric composition, which contains go to 96. 5 weight, in order to achieve the object of the present invention and other characteristics, the low-temperature co-fired dielectric composition. Percentage (^3⁄4) of titanium dioxide (Ti〇2, rutile) and 3.5 to 20% by weight (wt%) of short carbonic acid and copper oxide sintering agent composition, this composition can be 875 to 925 degrees Celsius ( 〇c) obtains a relative sintered density of 95% or more (%) or more, and according to the composition of the raw material, the dielectric constant of 70 to 101 and less than 〇.5% (%) can be obtained at 1 MHz after sintering and compacting. Dielectric loss; further comprising a sintering aid composition thereof comprising 9 to 50 weight percent (wt%) of carbonic acid short and 5 to 91 weight percent (wt%) of 201010961 copper oxide. In another aspect of the invention, the low temperature co-fired dielectric composition, wherein the slurry further used to form the low temperature co-fired dielectric composition component comprises from 7 to 85 weight percent (wt%) as above The composition of the low-temperature co-fired dielectric composition, and 3 to 15% by weight of the organic vehicle; wherein the organic carrier is a mixed slurry of an organic solvent, an organic binder and an organic plasticizer; further, further use The slurry described in the subsection can be made into a green embryo which can be sintered and densified at less than 925 degrees Celsius (π). [Embodiment] Hereinafter, the present invention will be further described in detail with reference to the accompanying drawings and embodiments as follows: First, as is known in the art, pure titanium dioxide (Ti〇2) has excellent microwave characteristics, such as High dielectric constant (~10012GHz) and high quality factor (~1000() @GHz), etc., the pure copper dioxide sintering temperature needs to reach 1100 degrees Celsius (t:) or more before sintering can be sensitive. At such a high sintering temperature and a gas atmosphere, it is necessary to use a precious metal as an electrode, such as a silver-palladium alloy, when it is fabricated into a laminated ceramic component. Therefore, the inventors of the present invention have found that the addition of a mixture of carbonic acid and copper oxide in pure titanium dioxide (Ti〇2) can effectively lower the sintering temperature to 900 degrees Celsius (hereinafter less than 〇, so that cheaper silver can be used instead of expensive ones. The silver alloy is used to reduce the manufacturing cost. In particular, the present invention is a novel low-temperature co-fired dielectric composition which is mixed with titanium dioxide (Ti〇2, rutile) and a sintering aid (MnC〇) in different proportions. 3-CuO, MC), the ratio of the ceramic and the sintering aid is not particularly limited, and can be adjusted according to the properties of the desired product. In the practice of the present invention, a preferred low-temperature co-fired dielectric composition , containing 8 to 96 5 weight percent (wt%) of titanium dioxide (Ti〇2, rutile) and 20 to 3.5 weight percent (wt96) of co-firing (MC); The preferred component has a short acidity and a copper oxide (MnC〇3_Cu〇) weight ratio of (1:3) and (1:6). 201010961 The low temperature co-fired dielectric composition of the invention can be applied to laminated ceramics Component. In this application, the low temperature co-fired complex is combined with the airborne ship to form a turn , age Μ to 85 heavy denier ratio (Wt%) low temperature co-firing residue and 3G~15 weight percent (10)) organic surface ^ through the two-knife forming procedure to obtain the green sheet, followed by screen printed conductor A conventional method such as paste, stacking, and co-firing is prepared to obtain a laminate_element. The low temperature co-fired dielectric composition of the present invention contains a mixture of 3.5 to other weight percent UW of carbonic acid clock and copper oxide (MnC〇3_Cu〇) and 96 5 to 8 〇 by weight ((4) of rutile (rutile) The invention is a method for preparing a dielectric component, which comprises forming a powder of a low-temperature money dielectric composition 10 into a green embryo, and densifying the green embryo at a temperature lower than 2 degrees Celsius (rc) Chemical. Wherein the densification step comprises a first stage degreasing and a second stage sintering, and is preferably carried out in air. As is known to those skilled in the art, the tax fat phase is to densify the embryo body by removing the sintering phase of the organic binder in the green embryo; in the present invention, the preferred sintering conditions are 875 to 925 Celsius. Degree (^) holds the temperature for 60 minutes; the dielectric shunt component obtained by the densification step has a dielectric constant of 7〇 to ι〇ι and a dielectric loss of less than 0.5% (%). The need for high dielectric constant and low dielectric loss. It will be understood that the description of the prior art and the following detailed description of the preferred embodiments are illustrative and illustrative of the embodiments of the present invention, and the present invention is described in a step-by-step manner. Limit the scope of the invention. All alternatives and modifications known to those skilled in the art are still within the spirit and scope of the present invention and are incorporated herein by reference. Please refer to the fourth step, which is a material composition process condition and property of various embodiments of the present invention. Among them; capital tow--first with carbon seam: oxygen picking, according to the proportion of the weight percentage equal to 1:1, the purity of 99% (8) or more of short carbon, copper oxide and other pottery powder a total of 4 gram (4), will The prepared powder was added to a 1G0 ml (CC) plastic (PE) bottle containing 32 ml (cc) of n-propanol (1_pr〇pyl also ice (4) and 46 g (g) oxidized grinding balls in a three-dimensional space. After 2 hours of mixing by the cantilever mixer, it is oven-dried at 80 degrees Celsius (°c). The dried powder is dried in the form of Yanmei and 杵, 201010961, placed in the 氡 氡 (Zr〇2) 坩The inside of the pot is placed in a high-temperature furnace and heated to 740 ° C at a heating rate of 5 ° C (° c / min) per minute. (The temperature is maintained for 2 hours for calcination followed by furnace cooling, and the calcined powder is added. 250 ml (CC) plastic containing 500 g of zirconium dioxide (Zr〇2) grinding balls, 55 ml of (CC) n-propanol (1-proPyi alcohol) and 15 ml of (CC) dispersant (Darvan C) (PE) in the bottle after 'ball milling for 72 hours' into 80 degrees Celsius rc) oven drying, the dried powder is grinded with mortar and pestle to obtain the required sintering aid 5% by weight (% by weight) of titanium dioxide (TiOO' 5 weight percent (wt%) combustion aid (MC) plus 95 Weight percent (wt%) bismuth titanium oxide (TiOO, 10 weight percent (wt%) combustion aid (MC) plus 90 weight percent (wt%) titanium dioxide (Ti〇2), 15 weight percent (wt%) Burning agent (MC) plus 85 weight percent (wt%) titanium dioxide (Ti〇2) and 20 weight percent (wt%) combustion aid (MC) plus 80 weight percent (wt%) titanium dioxide (TiOO ratio, The amount of the sintering aid (MC) and the purity of 99% (%) or more of titanium dioxide (20 parts by weight of TiOO powder (g), put into the 46 gram (g) oxidized grinding ball, 16 ml (CC) 1 propyl alcohol and 5 weight percent (wt%) polyethylene glycol 200 (PEG 200) in 100 ml (CC) plastic (PE) bottles, mixed in a three-degree space cantilever mixer After 2 hours, it was placed at 80 ° C. (The oven was dried, and the dried powder was ground to form a powder of the alternate low-temperature co-fired dielectric composition. The powder of the standby low-temperature co-fired dielectric composition was taken up in 8 g (g), placed in a circular die having a diameter of 13 mm (_), and held at a pressure of 90 mbar (MPa) for 15 seconds. (sec), the powder is tableted into a green embryo. The prepared raw embryo is placed in a high temperature furnace and heated to a temperature of 500 degrees Celsius at a rate of 3 degrees Celsius per minute in an atmospheric atmosphere. °c) Hold the temperature-hour to remove the organic binder in the raw embryo, and then heat up to 875 degrees Celsius (there), 900 degrees Celsius (C) or Celsius 925 at a rate of 5 degrees per minute (t/min) The degree (C) was kept at a temperature of 1 hour and cold, and a test piece which was densely sintered with respect to the sintered density was formed. The sintered test piece was obtained by using the Archimedes principle to obtain the relative sintered density of the sintered body. In 201010961, the relative sintered density obtained in this example was 900 degrees Celsius (. 35 weight percent (wt%) The sintering aid (MC) plus 95.6 weight percent (wt%) titanium dioxide (Ti〇2), 5 weight percent (wt%) combustion aid (MC) plus 95 weight percent (wt%) dioxins ( The test piece of Ti〇2) and the test piece of each of 925 degrees Celsius (°c) can make the relative sintered density higher than 95%. This result is related to the scanning electron microscopy of the fracture surface of the sintered body. The photo results are consistent. The upper and lower surfaces of the sintered test piece are coated with a layer of low-temperature silver glue and placed in 8 degrees Celsius (after drying in the oven), the capacitance value (Cp) and dielectric loss are measured by pP4l92丨 ( Tanr^), the dielectric constant (K) is obtained by the following formula: ❹ Cp = (KetiA) / t where ε is the vacuum dielectric constant, t is the distance between the two electrode plates, and A is the area of the electrode plate. The results obtained in the first one are listed in the first figure (as shown in number 丨 to number 15). Example 2: In addition to the assistance in this example In the composition of the burning agent, the acidity is fierce: the weight percentage of copper oxide is equal to 1:3, and the other processes and measurement procedures are the same as in the first embodiment. The relative sintered density obtained in this embodiment is 875 degrees Celsius (°°C). C) 15% by weight (%) of the combustion aid (MC) plus 85 weight percent (wt%) titanium dioxide (Ti〇2) and 20 weight percent (wt%) combustion aid (MC) Percentage (wt%) of titanium dioxide (Ti〇2), the remaining relative sintered density is above 95% (%), the dielectric constant is 70 to 98, and the dielectric loss is less than 0.5% (%); The results obtained in this second embodiment are listed in the second circle (as indicated by the number 16 to the number 3 )). Implementation tree 3: In this example, the composition of the sintering agent is changed to a carbonic acid clock: the weight percentage of copper oxide is equal to 1 The remaining processes and measurement procedures are the same as in the first embodiment. The relative sintered densities obtained in this example are all greater than 95% (%), the dielectric constant is 74 to 98, and the dielectric loss is less than 〇. 5 percentage (%); the results obtained in this third example are listed in the third circle (such as 31 to the number 45.) Example: In this example, except that the composition of the sintering agent is changed to a carbonate chain: the weight percentage of copper oxide is equal to 0:1, the other processes and measurement procedures are the same as in the first embodiment. The relative density of the 201010961 obtained in this example is greater than 95% (%), the dielectric constant is 77 to 101, but the dielectric loss is much greater than 0.5% (%); the results obtained in the fourth embodiment In the fourth figure (as shown in the numbered to 60). In the above-mentioned Example 2 and Example 3, all of the titanium dioxide (Ti〇2) plus the sintering agent (Mc) flux low-temperature co-fired dielectric combination Densification of 94% (8) or more can be achieved at less than 9 degrees Celsius (t:). Since the sintering temperature required to complete the high densification is compatible with the low melting point, low impedance conductor such as silver, all of the dielectric components in the second and third embodiments can be laminated with the silver conductor. A component of a low temperature co-fired dielectric composition. • In the process, the components of the laminated low-temperature co-fired dielectric composition are prepared by first reacting the above-mentioned low-temperature co-fired dielectric composition with an organic solvent (such as toluene and ethanol) and an organic binder (such as polyethylene). A scaled butadiene (PVB) and a plasticizer (such as dibutyl vinegar (DBP)) are mixed to form a polymer, which is formed into a green sheet having a thickness of about 125 μm by a doctor blade, and then subjected to a sheeting. Cut into 10 cm (cm) square raw embryo sheets. A hole was punched into the green sheet by a mold having a pore size of about 125 μm (ym), and a conductor paste such as silver was filled into the hole by screen printing. In addition, the conductor tracks on the green sheets are also screen printed. The screen printing and the well-filled green embryo sheets are sequentially stacked, and laminated to form a green layer of a low-temperature co-fired dielectric enthalpy composition, and the pressing condition is 6 摄 to 1 摄 ((〇). With 1〇〇〇 to 3〇〇〇 per inch / broken (psi). Finally, the green embryos of the laminated low-temperature co-fired dielectric composition are densified by degreasing and co-firing in an air atmosphere. In addition, the low-temperature co-fired dielectric composition in each embodiment can also be made into a ceramic body of various uses such as dry pressing, cold equalizing and hot equalizing. Taking dry pressure as an example, the low-temperature co-fired dielectric composition can be mixed with water and a binder (such as polyethylene glycol (PVA)), and after spray granulation, the fluidity of the powder is improved, and then dried, The vinegar and sintering can be used to make the finished product of the low-temperature co-fired dielectric composition. In summary, the present invention has achieved the desired effect under the prior art structure and manufacturing method, and is not easily understood by those skilled in the art; further, the present invention has not been disclosed before the application. Its progressive and practical nature has been consistent with the application requirements of the invention patent, and the invention application has been filed according to law. 12 201010961 [Simplified description of the drawings] The first figure is the material composition, process conditions and properties of the first embodiment of the present invention. The second figure is the material composition, process conditions and properties of the second embodiment of the present invention. The third figure is the material composition, process conditions and properties of the third embodiment of the present invention. The fourth figure is the material composition, process conditions and properties of the fourth embodiment of the present invention. [Main component symbol description]

1313

Claims (1)

201010961 十、申請專利範圍: 1. 一種低溫共燒介電組合物,其係含80至96. 5重量百分比(wt%)之二氧 化鈦(Ti〇2,rutile)和3. 5至20重量百分比(wt%)之碳酸錳及氧化銅助 燒劑的成份組成,此成份組成可於攝氏875至925度(°C )下獲得相對燒 結密度95百分比(%)以上。 2. 如申晴專利範圍第1項之低溫共燒介電組合物,其中該助燒劑組成,其係 含9至50重量百分比(wt%)碳酸猛和50至91重量百分比(wt%)氧化 銅0 • 3·如申請專利範圍第1項所述之低溫共燒介電組合物,其中進一步用來製作 低溫共燒介電組合物元件的漿料’係含70至85重量百分比(wt%)如申 請專利第1項所列之成份組成,和30至15重量百分比(wt%)之有機載 體。 .如申請專利範圍第3項所述之低溫共燒介電組合物,其中該有機載艘係為 有機溶劑、有機黏結劑及有機塑化劑之混合漿料。 5.如申請專利範圍第3項所述之低溫共燒介電組合物,其中漿料其所製成 的生胚,可使生胚在低於攝氏925度(ec )下燒結緻密。 • 6·如申請專利範圍第1項所述之低溫共燒介電組合物,其成份組成所製成之 生胚,燒結緻密後在1MHz可得到70至1〇1的介電常數和小於〇 5百分比 (%)的介電損失。5至20重量百分比((1), 5% by weight (wt%) of titanium dioxide (Ti〇2, rutile) and 3. 5 to 20 weight percent ( The composition of the manganese carbonate and copper oxide sintering agent is wt%), and the composition can be obtained at a relative sintered density of 95% (%) or more at 875 to 925 degrees Celsius (°C). 2. The low temperature co-fired dielectric composition according to claim 1, wherein the sintering aid comprises 9 to 50 weight percent (wt%) of carbonic acid and 50 to 91 weight percent (wt%). The low temperature co-fired dielectric composition of claim 1, wherein the slurry further used to form the low temperature co-fired dielectric composition component contains 70 to 85 weight percent (wt) %) The composition of the ingredients listed in the first application of the patent, and 30 to 15% by weight (wt%) of the organic vehicle. The low temperature co-fired dielectric composition according to claim 3, wherein the organic carrier is a mixed slurry of an organic solvent, an organic binder and an organic plasticizer. 5. The low temperature co-fired dielectric composition of claim 3, wherein the slurry produces a green embryo which allows the green embryo to be sintered densely below 925 degrees Celsius (ec). • 6. The low-temperature co-fired dielectric composition according to claim 1 of the patent application, wherein the raw material is composed of the raw material, and the dielectric constant of 70 to 1〇1 is obtained at 1 MHz after sintering and compactness is less than 〇. 5 percent (%) of dielectric loss.
TW97133509A 2008-09-01 2008-09-01 A low-fire dielectric composition TWI393693B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97133509A TWI393693B (en) 2008-09-01 2008-09-01 A low-fire dielectric composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97133509A TWI393693B (en) 2008-09-01 2008-09-01 A low-fire dielectric composition

Publications (2)

Publication Number Publication Date
TW201010961A true TW201010961A (en) 2010-03-16
TWI393693B TWI393693B (en) 2013-04-21

Family

ID=44828422

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97133509A TWI393693B (en) 2008-09-01 2008-09-01 A low-fire dielectric composition

Country Status (1)

Country Link
TW (1) TWI393693B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112750551A (en) * 2019-10-31 2021-05-04 东莞华科电子有限公司 Electrode paste, electrode, ceramic electronic component including the same, and method of manufacturing the component

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246628A (en) * 1990-08-16 1993-09-21 Korea Institute Of Science & Technology Metal oxide group thermistor material
US6309993B1 (en) * 1999-04-28 2001-10-30 National Science Council Of Republic Of China Low-fire microwave dielectric compositions
TW499691B (en) * 2000-07-03 2002-08-21 Advanced Ceramic X Corp Low-fire microwave dielectric composition
KR100522134B1 (en) * 2003-04-02 2005-10-18 한국과학기술연구원 Low-fire high-permittivity dielectric compositions

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112750551A (en) * 2019-10-31 2021-05-04 东莞华科电子有限公司 Electrode paste, electrode, ceramic electronic component including the same, and method of manufacturing the component
CN112750551B (en) * 2019-10-31 2022-10-18 东莞华科电子有限公司 Electrode paste, electrode, ceramic electronic component including the same, and method of manufacturing the component

Also Published As

Publication number Publication date
TWI393693B (en) 2013-04-21

Similar Documents

Publication Publication Date Title
JP4991564B2 (en) Multilayer ceramic capacitor
JP3746763B2 (en) Reduction-resistant low-temperature fired dielectric ceramic composition, multilayer ceramic capacitor using the same, and manufacturing method thereof
JP5645136B2 (en) Dielectric porcelain composition, multilayer dielectric substrate, electronic component, and method for producing dielectric porcelain composition
CN102272072B (en) Low-temperature sintered ceramics material and ceramic substrate
KR101730184B1 (en) Conductive paste composition and method for producing multilayer ceramic capacitor using the same
JP5321066B2 (en) Ceramic composition and ceramic substrate
JP2009088089A (en) Ceramic multilayer substrate
JP5998765B2 (en) Dielectric porcelain composition and ceramic electronic component using the same
CN102219478B (en) Dielectric ceramic composition and ceramic electronic component
US20070045912A1 (en) Production method of dielectric ceramic composition
TWI793148B (en) Multilayer ceramic capacitor and manufacturing method thereof
WO2006098462A1 (en) Dielectric porcelain composition and method for production thereof
JP2018041814A (en) Multilayer ceramic capacitor and manufacturing method of the same
JP2008078593A (en) Multilayer ceramic capacitor and manufacturing method therefor
JP6728859B2 (en) Ceramic substrate and manufacturing method thereof
JP4775583B2 (en) Dielectric particle aggregate, low-temperature sintered dielectric ceramic composition using the same, and low-temperature sintered dielectric ceramic manufactured using the same
JP4267438B2 (en) DIELECTRIC CERAMIC COMPOSITION, ELECTRONIC COMPONENT AND METHOD FOR PRODUCING THEM
KR101994723B1 (en) Paste compound for termination electrode and multilayer ceramic electronic component by using the same and manufacturing method thereof
JP2007039755A (en) Composite metal powder, manufacturing method therefor, electroconductive paste, method for manufacturing electronic parts, and electronic parts
TW201010961A (en) A low-fire dielectric composition
JP2005526687A (en) Dielectric composition based on barium titanate
JP5046595B2 (en) Production method of dielectric material powder
JP2010037126A (en) Ceramic composition and ceramic sintered compact
TWI224086B (en) Low temperature microwave dielectric composition
JP2004026543A (en) Dielectric porcelain composition and laminated ceramic component using the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees