TW201005248A - Gas leakage detection system for sintering trolley and detection method thereof - Google Patents

Gas leakage detection system for sintering trolley and detection method thereof Download PDF

Info

Publication number
TW201005248A
TW201005248A TW97129108A TW97129108A TW201005248A TW 201005248 A TW201005248 A TW 201005248A TW 97129108 A TW97129108 A TW 97129108A TW 97129108 A TW97129108 A TW 97129108A TW 201005248 A TW201005248 A TW 201005248A
Authority
TW
Taiwan
Prior art keywords
sintering
sintering trolley
signal
trolley
detection system
Prior art date
Application number
TW97129108A
Other languages
Chinese (zh)
Other versions
TWI424138B (en
Inventor
Zhi-Zhong Wang
jia-xian Xiao
Zhi-Tai Chang
Chun-Hui Liu
Rong-Cun Jian
Original Assignee
China Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Steel Corp filed Critical China Steel Corp
Priority to TW97129108A priority Critical patent/TWI424138B/en
Publication of TW201005248A publication Critical patent/TW201005248A/en
Application granted granted Critical
Publication of TWI424138B publication Critical patent/TWI424138B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

A gas leakage detection system for sintering trolley and its detection method utilize a RFID (radio frequency identification) tag disposed to the sintering trolley to generate an transmission signal. At least one voice signal capturing unit is used to capture a plurality of voice signals under a predetermined resolution, and a wireless receiving unit is used to receive the transmission signal to generate an interval signal. A data processing unit calculates and determines the position of the sintering trolley which leaks gas based upon the voice signals, the interval signal and a set sound pressure value. Accordingly, the invention could automatically detect gas leakage and the location thereof. The gas leakage during the sintering process can be improved, and the sintered ore yield and quality can be enhanced, and people do not need to detect during the operation process of the sintering equipment so that people may not be harmed by powder and noise.

Description

201005248 九、發明說明: 【發明所屬之技術領域】 本發明係有關於一種漏氣檢測系統及其檢測方法,詳+ 之,係關於一種燒結台車漏氣檢測系統及其檢測方法。 【先前技術】 一般煉鐵廠主要係為負責供應煉鋼作業所需之鐵水,而 高爐煉鐵所需煉鐵原料,如焦碳及燒結礦,係分別由煉焦 爐及燒結機所供應。其中,燒結工場係生產燒結礦作為高 爐煉鐵之原料,其主要製程是將各種粉鐵礦(Ir〇n 〇代)、 助熔劑(Flux,如石灰石等)、焦碳屑(c〇ke Breeze)等原 料,依設定之配比配料後,經勻拌滾筒加水攪拌造粒,送 至燒結機進行鍛燒,燒結完成之燒結礦經軋碎篩選整粒 後,其中粒度為5〜50 mm合格之燒結礦再送至高爐作為煉 鐵主要原料。 在燒結過程中,檢測燒結狀況好壞之重要指標之一為燒 φ 結透氣性(JPU)。混合料(Raw Mix)之透氣性受組成礦石之 粒度影響甚大,一般細粒之礦石其透氣性差,故須混有顆 粒較粗之礦石以增加空隙率來改善之。另外,除了原料本 身粒度之分佈對混合料之透氣性有甚大之影響外,在混合 料中添加水份,以水的表面張力來促進造粒效果出叩 Effect)亦能改善透氣性》 一般原料在乾燥狀態時之粒度稱為真粒度,而添加水份 攪拌造粒後之粒度稱為擬似粒子(Pseud〇_Particle)。該擬似 粒子主要是細粒礦石(小於0.25 mm)附在核心粒子(1〜5 131117.doc -6 · 201005248 mm)周圍而形成之顆粒,而一 ^ ^ ^ . 版祖度在0.25〜1·〇 mm間之粒 子是不易被造粒成擬似粒子的。因此,若添加—些造粒劑 (如燒石灰粉),财助於其中之礦石附著在核心粒子上而 形成擬似粒子。混合料之透顏,神npm π <您礼性(jpu)如下列方程式所 示: 0.6 JPU=I(-)201005248 IX. Description of the Invention: [Technical Field] The present invention relates to a gas leakage detecting system and a detecting method thereof, and more particularly to a sintering trolley gas leakage detecting system and a detecting method thereof. [Prior Art] The general ironmaking plant is mainly responsible for supplying molten iron required for steelmaking operations, and the ironmaking raw materials required for blast furnace ironmaking, such as coke and sinter, are supplied by coke ovens and sintering machines, respectively. Among them, the sintering plant produces sinter as raw material for blast furnace ironmaking, and its main process is to use various kinds of fine iron ore (Ir〇n deuterium), flux (Flux, such as limestone, etc.), coke breeze (c〇ke Breeze). After the ingredients are mixed according to the set ratio, they are stirred and granulated by adding water to the sintering machine, and sent to the sintering machine for calcination. After the sintered sinter is crushed and sieved, the particle size is 5~50 mm. The sinter is sent to the blast furnace as the main raw material for iron making. One of the important indicators for detecting the quality of sintering during sintering is the burning of φ junction gas permeability (JPU). The gas permeability of the Raw Mix is greatly affected by the particle size of the ore. Generally, the ore of the fine grain has poor gas permeability, so it is necessary to mix the coarse ore to increase the void ratio to improve it. In addition, in addition to the distribution of the particle size of the raw material itself has a great influence on the gas permeability of the mixture, the addition of water to the mixture to promote the granulation effect by the surface tension of the water can also improve the gas permeability. The particle size in the dry state is referred to as the true particle size, and the particle size after the addition of water agitation granulation is called pseudo-particles (Pseud〇_Particle). The pseudo-particles are mainly particles formed by fine-grained ore (less than 0.25 mm) attached to the core particles (1~5 131117.doc -6 · 201005248 mm), and a ^ ^ ^ . version of the ancestors is 0.25~1· Particles between 〇mm are not easily granulated into pseudo-particles. Therefore, if some granulating agents (such as calcined lime powder) are added, the ore is supported on the core particles to form pseudo-particles. The mixture of the face, God npm π < your courtesy (jpu) as shown in the following equation: 0.6 JPU = I (-)

AS A .抽吸面積(m2) ; h :料層 其中AS A. suction area (m2); h: material layer

參 厚度(m) ; S :抽風壓力(m · η2〇) β 由上式可知’通風量正㈣於透氣性,因此,當燒結機 台車發生漏氣時’科致通風量減少,直接造成粒子不易 形成,降低燒結礦產量,並造成能源之浪費。 燒結機之結構上係由複數個燒結台車組合而成,每一台 車削後之Φ封裝置與台車橫樑底部及風箱側邊,均為金屬 材質且硬的平板接觸,在燒結過程中均需留有一定 空間,同時又需與鋒利的燒結料摩擦,因此產生糊痕 而漏氣。因此,在習知機構設計之下,燒結台車使用沒多 久即產生漏氣現象’故檢修抽風系統是燒結廠每次檢修的 重要項目。 " 在習知技術中,係依靠人員檢測方式在燒結機操作過程 中檢測故人員長期暴露於高粉塵(例如:燒結機運行一 個週期需60至70分鐘)及高噪音(約85至95分貝)環境下,利 用人的眼力、聽力作判斷,無法達到台車漏氣之定量及定 位分析,因此習知漏氣檢測技術之漏氣檢測率較低,且人 員於漏氣檢測過程中嚴重地遭受粉塵及噪音之危宝。 131117.doc 201005248 另卜s知漏氣檢測技術偏重於 基礎而發展之檢測方法,其可分為彳:製程化學反應為 平衡法及漏氣分析法等四種方式為=法:密封法、熱 熱平衡法缺乏可靠之檢 量、密封法及 “具,故無法於實際狀況中進行 县/礼刀析法係於燒結過程中量測同-部位,比較 ίΓΓ後量測之漏氣成分分析結果,以物質平衡觀點為 2礎進行漏風率計算,根據漏氣中不同成们農度的變化列 ❿ 平衡方程’明得前、後風量的比值及成分濃度變化之 >的關係進而間接算出漏氣率'然而,上述該等習知漏 =檢測方法皆無法達到自動化檢測燒結機台車漏氣及漏氣 定位之功效。 因此冑必要提供一創新且富有進步性之燒結台車漏氣 檢測系統及其檢測方法,以解決上述問題。 【發明内容】 本發明提供一種燒結台車漏氣檢測方法,包括以下步 驟(a)叹定一預設解析度;(b)在該預設解析度下擷取複 數個聲a Λ號;(e)根據一發射訊號取得一間隔資訊,其 至乂 無線射頻辨識系統(Radio Frequency IdentifiCatlon System,RFID)標籤係設置於複數個燒結台 車至少其中之一,該RFID標籤用以產生該發射訊號;及 (d)根據該間隔資訊、該等聲音訊號及一設定聲壓值,計算 及判斷燒結台車發生漏氣之位置。 本發明另提供一種燒結台車漏氣檢測系統,其包括:至 少一 RFID標籤、至少一聲音訊號擷取單元、一無線接收單 131117.doc -8 - 201005248 元及一資料處理單元.該RFID標籤設置於複數個燒结台車 至少其中之一,用以產生一發射訊號。該聲音訊號擷取單 兀接近該等燒結台車,在一預設解析度下擷取複數個聲音 訊號。該無線接收單元接收該發射訊號,以產生一間隔訊 號。該資料處理單元用以根據該等聲音訊號、該間隔訊號 及一設定聲壓值,計算及判斷發生漏氣之燒結台車之位 置。 本發月之燒結台車漏氣檢測系統及其檢測方法係結合聲 音訊號分析及RFID技術,以自動化地檢測出該等燒結台車 發生漏氣現象及其發生位置,提供操作及維護人員即時瞭 解漏氣發生位置,作為燒結設備修護之依據’以適時修護 燒結設備,故可改善燒結過程中之漏氣現象,並可提高燒 結礦產能及品質。再者,本發明之燒結台車漏氣檢測系統 及其檢測方法,不需人員在燒結設備操作過程中進行檢 測’故人員不會遭受粉塵及噪音之危害。 【實施方式】 圓1顯示本發明燒結台車漏氣檢測系統應用於一燒結製 程之示意圓。該燒結台車漏氣檢測系統j包括: 線射頻辨識系統(Radio Frequency Identificati〇n System, R/id)標籤n、至少一聲音訊號擷取單元12、一無線接收 單元U、一濾波單元I4及一資料處理單元15。 該燒結台車漏氣檢測系統1可具有至少一 rFIC)標錢,其 中,該RFID標藏係設置於複數個燒結台車至少其令之一, 用以產生一發射訊號》在本實施例中,該燒結台車漏氣檢 131I17.doc 201005248 測系統1具有複數個rFID標藏1丨,該等RFID標箴11分別設 置於每一燒結台車16,且該等燒結台車16係沿一燒結機之 軌道17移動》 參考圖2’其顯示本發明RFID標籤之示意圖。該RFID標 籤Π較佳為一利用單極化天線之RFIE)標籤,該利用單極化 天線之RFID標籤11包括:一金屬板111、一天線結構112及 一RFID晶片Π3。該天線結構112電性連接該金屬板lm。 φ 在本實施例中,該金屬板111具有一第一側邊114及一第二 側邊11 5,該第二侧邊J〗5相對於該第一侧邊丨丨4,該天線 結構112係設置於該金屬板U1之該第一側邊114 ^該天線 結構112係電性連接該金屬板丨u。要注意的是,在其他應 用中’該天線結構112係可設置於該金屬板1丨丨之尹間部 分。 該RFID晶片113之二端電性連接該天線結構112,使得該 RFID晶片113、該天線結構112及該金屬板1U形成一迴路 ❹ 結構116。在本實施例中,該天線結構112所在之一參考平 面117(如虛線所示)與一延伸平面118(如虛線所示)形成一 夾角Θ,。其中,該延伸平面118係為自該第一侧邊114沿一 第一方向延伸之平面,該第一方向係該第二側邊115朝該 第一側邊114之方向。 在本實施例中,該天線結構112另包括一延伸金屬片 119,電性連接該迴路結構116,該延伸金屬片119具有阻 抗匹配及天線增益之功效。 本實施例該利用單極化天線iRFlD標籤u具有一電磁波 131117.doc •10- 201005248 發射方向’該電磁波發射方向係根據該夾角01而改變,使 其具有較大之可讀取距離,且藉由該金屬板丨丨丨與該天線 結構112之不同夾角01,可調整電磁波發射方向,故具有 訊號讀取容易及辨識能力較佳之功效β 再參考圖1,該燒結台車漏氣檢測系統1可具有至少一聲 音訊號擷取單元’其中,該聲音訊號擷取單元係設置接近 該等燒結台車16之二相對側邊及頂面其中之一 β在本實施 例中’該燒結台車漏氣檢測系統i具有複數個聲音訊號擷 取單元12’該等聲音訊號掏取單元12分別固設於支樓該無 線接收單元13之一支撐架18及位於該等燒結台車16上方之 一頂板19,其中,該支撐架18係設置於接近該等燒結台車 1 6之二相對側邊(亦即’該等聲音訊號擷取單元12接近於 s亥等燒結台車16之二相對側邊及頂面),在一預設解析度 下擷取複數個聲音訊號。較佳地,該等聲音訊號擷取單元 12係為聲壓麥克風。 該無線接收單元13(例如:標籤機)’固設於該支撐架18 且接近該等燒結台車I6,用以接收該RFID標籤丨丨之發射訊 號,以產生一間隔訊號。該滤波單元14接受來自該等聲音 訊號擷取單元12之該等聲音訊號,並過濾該等聲音訊號。 在本實施例中’該濾波單元14係為高通濾波器,其_,該 高通滤波器係過遽該等聲音訊號中頻率低於2〇 Hz之訊 該資料處理單元15接受該間隔訊號以取得一間隔資訊, 以及接受過濾後之該等聲音訊號並計算其訊號強度,並且 131117.doc 201005248 根據該訊號強度及該間隔資訊,計算及判斷發生漏氣之燒 結台車16之位置。較佳地,該資料處理單元15係為一電 腦。 該預設解析度可選擇根據該等RFID標籤u之配置而設 定,但不限定於根據該等RFID標籤11之配置設定。本實施 例中,每一燒結台車設有—RFID標籤11,該間隔資訊係為 該等RFID標籤11其中之二RFID標藏n(例如:相鄰二rfid 標籤)之間隔距離及該等燒結台車16移動該間隔距離之時 間。其中,因每一燒結台車16分別設有一RFID標籤丨〖,該 間隔資訊可顯示相對應該等RFID標籤丨丨之該等燒結台車16 之相對位置,且該無線接收單元13可以接收該等rfid標籤 11其中之二RFID標籤11之發射訊號並取得一台車單位時 間’其中該台車單位時間係該等燒結台車經過一燒結台車 長度之距離所需之時間。該台車單位時間可作為該預設解 析度之設定參考,據以計算聲壓均方根值及發生漏氣之燒 結台車16之位置。 要注意的是’若該燒結台車漏氣檢測系統1僅具有一 RFID標籤,該RFID標籤係作為該等燒結台車16起迄點感 應,則該間隔資訊係顯示該等燒結台車運轉一週期,該 RFID標籤移動之距離及移動時間。另外,在實際燒結製程 中’由於該等燒結台車16速度控制在一設定範圍内,在一 運轉週期内該等燒結台車16之速度可能不一致,因此需透 過在一次運轉週期内該等燒結台車16所通過之距離,除以 該運轉週期之時間,以獲得該等燒結台車16之平均速度, 131117.doc -12- 201005248 再結合燒結歷程時間,計算燒結製程所經過之總距離,並 配合使用者所設定之該預設解析度(依不同需求而設定, 例如:0·1秒至i.o秒)計算聲壓均方根值,以判斷該聲壓均 方根值所對應漏氣之燒結台車16之位置》 圖3顯示本發明燒結台車漏氣檢測方法之流程圖。在本 實施例中,該燒結台車漏氣檢測系統丨具有複數個rfid標 籤11,該等RFID標籤11分別設置於每一燒結台車16。 配合參考圖1及圖3 ’首先’參考步驟831,設定一預設 解析度。該預設解析度可選擇根據該等rfid標籤丨〗之配置 而設定(例如:每0.1秒至丨秒或台車單位時間),該預設解 析度之設定方法已詳述如前,在此不再加以贅述。 參考步驟S32,在該預設解析度下擷取複數個聲音訊 號。在本實施例中’係以該無線接收單元13接收該等RFID 標籤11之發射訊號,並且,利用接近於該等燒結台車16之 二相對側邊及頂面之該等聲音訊號擷取單元12(聲壓麥克 風)擷取該等聲音訊號。 參考步驟S33 ’根據該等rFID標籤11之發射訊號取得一 間隔資訊。其中’該間隔資訊係為該等RFID標籤11其中之 二RFID標籤11之間隔距離及該等燒結台車16移動該間隔距 離之時間。其中,步驟S33另包括一濾波步驟,以該濾波 單元14過濾該等聲音訊號。較佳地,在該濾波步驟_係以 一高通濾波器過濾該等聲音訊號,以過濾該等聲音訊號中 頻率低於20 Hz之訊號。 參考步驟S34,計算該等聲音訊號之訊號強度。在本實 131117.doc -13· 201005248 施例中,其係計算該等聲音訊號之均方根值。其中,根據 實際之量測結果,當該等燒結台車其中之一發生漏氣時, 會產生頻率20 Hz以上之寬頻噪音,而一般燒結製轾中之 背景噪音頻率在20 Hz以下》因此,先利用該濾波單元 14(局通濾波器)過濾該等聲音訊號中頻率低於2〇 jjz之訊 號’再計算該等聲音訊號(聲壓訊號)之均方根值。 其中’本發明亦可選擇設置於該等燒結台車之該等 φ RFID標籤11其中之一,以作為感應量測之起迄點,進行複 數次運轉週期,並將經濾波後之該等聲音訊號傳輸至該資 料處理單元15,以計算經濾波後之該等聲音訊號之均方根 值(該訊號強度)。 參考步驟S35,計算及判斷燒結台車發生漏氣之位置。 若該等訊號強度至少其中之一大於一設定聲壓值,則根據 強度大於該設定聲壓值之該聲音訊號及該間隔資訊,計算 及判斷燒結台車發生漏氣之位置。在本實施例中,該設定 ❹ 聲壓值係設定為聲壓均方根值大於0.5帕(Pa)。 圖4顯示在複數個運轉週期甲利用本發明燒結台車漏氣 檢測系統進行燒結台車漏氣檢測之聲音訊號均方根値曲線 圖曲線L1至Ll〇分別顯示每一運轉週期中之聲音訊號均 方根值之變化,其中,曲線L1Liq於⑺公尺位置(由該等 RFLD標籤u之發射訊號取得之該間隔資訊得出)出現奇異 峰值(聲壓均方根值量大於Q5帕),亦即,在iq公尺之位置 發生燒、.,σ Q車漏氣現象。因此,根據該等聲音訊號均方根 值之變化,即可快速、明確地檢測出燒結台車發生漏氣現 131117.doc 201005248 象及其發生位置。 本發明之燒結台車漏氣檢測系統及其檢測方法係結合聲 音訊號(嗓音)分析及RFID技術,以自動化地檢測出該等燒 結台車發线氣現象及其發生位置,提供操作及維護人員 即時瞭解漏氣發生位置,作為燒結設備修護之依據,以適 時修護燒結設備,故可改善燒結過程中之漏氣現象,並可 提高燒結礦產能及品質。再者,本發明之燒結台車漏氣檢 測系統及其檢測方法,不需人員在燒結設備操作過程中進 行檢測,故人員不會遭受粉塵及噪音之危害。 上述實施例僅為說明本發明之原理及其功效,並非限制 本發明。因此習於此技術之人士對上述實施例進行修改及 變化仍不脫本發明之精神。本發明之權利範圍應如後述之 申請專利範圍所列。 【圖式簡單說明】 圖1顯示本發明燒結台車漏氣檢測系統應用於一燒結製 程之示意圖; 圖2顯示本發明RFID標籤之示意圖; 圖3顯示本發明燒結台車漏氣檢測方法之流程圖;及 圖4顯示在複數個運轉週期中利用本發明燒結台車漏氣 檢測系統進行燒結台車漏氣檢測之聲音訊號均方根值曲線 圖。 【主要元件符號說明】 I 本發明燒結台車漏氣檢測系統 II RFID標籤 131117.doc •15- 201005248Reference thickness (m); S: Exhaust pressure (m · η2〇) β From the above formula, it can be seen that 'the amount of ventilation is positive (4) in gas permeability. Therefore, when the sintering machine trolley leaks, the ventilation is reduced, directly causing particles. It is not easy to form, reducing the output of sinter and causing waste of energy. The structure of the sintering machine is composed of a plurality of sintering trolleys. The Φ sealing device after each turning and the bottom of the trolley beam and the side of the bellows are made of metal and hard flat plate, which are required in the sintering process. There is a certain amount of space, and at the same time it needs to be rubbed against the sharp sinter, thus causing crevices and leaking. Therefore, under the design of the conventional mechanism, the use of the sintering trolley does not take long to cause air leakage. Therefore, the inspection and exhaust system is an important item for each maintenance of the sintering plant. " In the prior art, it relies on the personnel detection method to detect the long-term exposure of the personnel to high dust during the operation of the sintering machine (for example, 60 to 70 minutes for one cycle of the sintering machine) and high noise (about 85 to 95 decibels). Under the environment, using human eyesight and hearing judgment, it is impossible to achieve the quantitative and positioning analysis of trolley leakage. Therefore, the leakage detection rate of the conventional leak detection technology is low, and the personnel seriously suffer from the leak detection process. The danger of dust and noise. 131117.doc 201005248 Another method is to develop a detection method that focuses on the basics and develops. It can be divided into four methods: process chemical reaction as balance method and gas leakage analysis method. = Method: Seal method, heat The heat balance method lacks reliable inspection quantity, sealing method and "have", so it is impossible to carry out the county/knife analysis method in the actual situation to measure the same-site part in the sintering process, and compare the measurement results of the leaking gas component after the measurement. Calculate the air leakage rate based on the material balance point of view. According to the difference in the degree of agronomic change in the air leakage, the equilibrium equation 'the ratio of the front and rear air volume and the change of the component concentration> is indirectly calculated. Rate 'However, the above-mentioned conventional leakage = detection methods can not achieve the effect of automatic detection of gas leakage and gas leakage positioning of the sintering machine trolley. Therefore, it is necessary to provide an innovative and progressive sintering trolley gas leakage detection system and its detection. The invention provides a method for detecting a gas leakage of a sintering trolley, comprising the following steps: (a) sighing a preset resolution; (b) A plurality of sounds a Λ are captured at a preset resolution; (e) an interval information is obtained according to a transmitted signal, and the Radio Frequency IdentifiCatlon System (RFID) tag is set in at least a plurality of sintering trolleys. One of the RFID tags is configured to generate the emission signal; and (d) calculating and determining the location of the gas leakage of the sintering trolley based on the interval information, the audio signals, and a set sound pressure value. The present invention further provides a The sintering trolley air leakage detecting system comprises: at least one RFID tag, at least one audio signal capturing unit, a wireless receiving unit 131117.doc -8 - 201005248 and a data processing unit. The RFID tag is disposed in a plurality of sintering At least one of the trolleys is configured to generate a transmission signal. The audio signal acquisition unit approaches the sintering trolleys and captures a plurality of audio signals at a predetermined resolution. The wireless receiving unit receives the transmission signals to receive the transmission signals. Generating an interval signal. The data processing unit is configured to calculate and determine based on the audio signal, the interval signal, and a set sound pressure value. The location of the sintering trolley that is leaking. The sintering trolley leak detection system and its detection method of this month are combined with sound signal analysis and RFID technology to automatically detect the gas leakage phenomenon and its occurrence position of the sintering trolley. Provide operation and maintenance personnel to instantly understand the location of the leak, as the basis for the repair of the sintering equipment 'to repair the sintering equipment in a timely manner, so it can improve the gas leakage during the sintering process, and can improve the production capacity and quality of the sinter. The sintering trolley gas leakage detecting system and the detecting method thereof of the invention do not require personnel to perform detection during the operation of the sintering device, so that the personnel are not exposed to dust and noise. [Embodiment] The circle 1 shows the gas leakage of the sintering trolley of the present invention. The detection system is applied to a schematic circle of a sintering process. The sintering trolley air leakage detecting system j includes: a radio frequency identification system (R/id) tag n, at least one audio signal capturing unit 12, a wireless receiving unit U, a filtering unit I4, and a Data processing unit 15. The sintering trolley air leakage detecting system 1 may have at least one rFIC) standard, wherein the RFID tag is disposed in at least one of a plurality of sintering trolleys for generating a transmitting signal. In this embodiment, the Sintering trolley air leakage inspection 131I17.doc 201005248 The measuring system 1 has a plurality of rFID labels 1 丨, the RFID labels 11 are respectively disposed in each sintering trolley 16, and the sintering trolleys 16 are along a track of a sintering machine 17 Mobile" Referring to Figure 2', a schematic diagram of the RFID tag of the present invention is shown. The RFID tag Π is preferably an RFIE) tag using a single-polarized antenna. The RFID tag 11 using a single-polarized antenna includes a metal plate 111, an antenna structure 112, and an RFID chip raft 3. The antenna structure 112 is electrically connected to the metal plate lm. In this embodiment, the metal plate 111 has a first side edge 114 and a second side edge 11 5 . The second side edge J 5 5 is opposite to the first side edge 丨丨 4 , and the antenna structure 112 . The antenna structure 112 is electrically connected to the first side 114 of the metal plate U1. The antenna structure 112 is electrically connected to the metal plate 丨u. It is to be noted that in other applications, the antenna structure 112 can be disposed in the inter-growth portion of the metal plate. The two ends of the RFID chip 113 are electrically connected to the antenna structure 112, so that the RFID chip 113, the antenna structure 112 and the metal plate 1U form a loop structure 116. In this embodiment, one of the reference planes 117 (shown in phantom) of the antenna structure 112 forms an angle Θ with an extension plane 118 (shown in phantom). The extension plane 118 is a plane extending from the first side edge 114 in a first direction, and the first direction is the direction of the second side edge 115 toward the first side edge 114. In this embodiment, the antenna structure 112 further includes an extension metal piece 119 electrically connected to the circuit structure 116. The extension metal piece 119 has the functions of impedance matching and antenna gain. In this embodiment, the single-polarized antenna iRF1D tag u has an electromagnetic wave 131117.doc •10-201005248. The emission direction is changed according to the angle 01, so that it has a larger readable distance, and The angle between the metal plate and the antenna structure 112 can adjust the direction of electromagnetic wave emission, so that the signal reading is easy and the recognition ability is better. Referring again to FIG. 1, the sintering trolley air leakage detecting system 1 can be Having at least one sound signal capturing unit', wherein the sound signal capturing unit is disposed adjacent to one of the opposite sides and the top surface of the sintering trolleys 16 in the present embodiment, the sintering trolley air leakage detecting system The plurality of audio signal capturing units 12 ′ are respectively fixed to the support frame 18 of the wireless receiving unit 13 and the top plate 19 above the sintering trolley 16 . The support frame 18 is disposed adjacent to the opposite side of the sintering carriages 16 (ie, the sound signal extraction unit 12 is close to the sintering carriage 16 such as shai A top surface and edges), capturing a plurality of audio signal at a predetermined resolution. Preferably, the audio signal capturing unit 12 is a sound pressure microphone. The wireless receiving unit 13 (e.g., a labeling machine) is fixed to the supporting frame 18 and adjacent to the sintering trolleys I6 for receiving the transmitting signals of the RFID tag to generate an interval signal. The filtering unit 14 receives the audio signals from the audio signal capturing unit 12 and filters the audio signals. In the present embodiment, the filtering unit 14 is a high-pass filter, and the high-pass filter receives the interval signal after the frequency of the audio signals is less than 2 Hz. An interval information, and receiving the filtered audio signals and calculating the signal strength thereof, and 131117.doc 201005248 calculates and judges the position of the sintering trolley 16 in which the air leakage occurs based on the signal strength and the interval information. Preferably, the data processing unit 15 is a computer. The preset resolution can be set according to the arrangement of the RFID tags u, but is not limited to being set according to the configuration of the RFID tags 11. In this embodiment, each of the sintering carts is provided with an RFID tag 11, and the interval information is a distance between the RFID tags 11 of the RFID tags 11 (for example, adjacent two rfid tags) and the sintering trolleys. 16 The time to move the separation distance. Wherein, each sintering trolley 16 is respectively provided with an RFID tag ,, the interval information can display the relative positions of the sintering trolleys 16 corresponding to the RFID tags ,, and the wireless receiving unit 13 can receive the RFID tags. 11 of the two RFID tags 11 transmit signals and obtain a car unit time 'where the car unit time is the time required for the sintering trolleys to pass the length of the sintering trolley. The unit time of the vehicle can be used as a reference for setting the preset resolution, and the sound pressure rms value and the position of the burnt-out trolley 16 in which the air leak occurs are calculated. It should be noted that if the sintering trolley air leakage detecting system 1 has only one RFID tag, and the RFID tag is used as the starting point induction of the sintering trolleys 16, the interval information indicates that the sintering trolleys are operated for one cycle. The distance and movement time of the RFID tag. In addition, in the actual sintering process, since the speeds of the sintering trolleys 16 are controlled within a set range, the speeds of the sintering trolleys 16 may not coincide during an operation cycle, and therefore the sintering trolleys 16 are required to pass through in one operation cycle. The distance passed, divided by the time of the operation cycle, to obtain the average speed of the sintering trolleys 16, 131117.doc -12- 201005248 combined with the sintering history time, calculate the total distance traveled by the sintering process, and cooperate with the user The preset resolution (set according to different requirements, for example, 0·1 second to io seconds) is calculated by calculating the root mean square value of the sound pressure to determine the leaking sintering trolley 16 corresponding to the sound pressure root mean square value. Position" Figure 3 shows a flow chart of the gas leakage detecting method of the sintering trolley of the present invention. In the present embodiment, the sintering trolley air leak detecting system 丨 has a plurality of RFID tags 11 which are respectively disposed in each of the sintering carriages 16. Referring to Fig. 1 and Fig. 3 'first', referring to step 831, a preset resolution is set. The preset resolution can be set according to the configuration of the RFID tags (for example, every 0.1 seconds to leap seconds or the trolley unit time), and the preset resolution setting method has been described in detail as before. Let me repeat them. Referring to step S32, a plurality of audio signals are captured at the preset resolution. In the present embodiment, the wireless receiving unit 13 receives the transmitting signals of the RFID tags 11 and uses the audio signal capturing units 12 that are adjacent to the opposite sides and the top surface of the sintering trolleys 16 (Sound pressure microphone) captures the sound signals. Referring to step S33', an interval information is obtained based on the transmission signals of the rFID tags 11. Wherein the interval information is the distance between the RFID tags 11 of the RFID tags 11 and the time at which the sintering carts 16 move the separation distance. Step S33 further includes a filtering step of filtering the audio signals by the filtering unit 14. Preferably, in the filtering step, the audio signals are filtered by a high-pass filter to filter signals having a frequency lower than 20 Hz in the audio signals. Referring to step S34, the signal strengths of the audio signals are calculated. In the embodiment of the present invention, the rms value of the audio signals is calculated. Among them, according to the actual measurement results, when one of the sintering trolleys leaks, broadband noise of more than 20 Hz is generated, and the background noise frequency in the general sintering system is below 20 Hz. The filter unit 14 (bureau filter) is used to filter the signal of the audio signal whose frequency is lower than 2〇jjz and then calculate the root mean square value of the audio signal (sound pressure signal). Wherein, the present invention may also select one of the φ RFID tags 11 disposed in the sintering trolleys to serve as a starting and ending point of the sensing measurement, perform a plurality of operating cycles, and filter the filtered audio signals. The data processing unit 15 is transmitted to calculate the root mean square value (the signal strength) of the filtered audio signals. Referring to step S35, the position of the gas leakage of the sintering trolley is calculated and judged. If at least one of the signal strengths is greater than a set sound pressure value, the sound signal and the interval information whose intensity is greater than the set sound pressure value are used to calculate and determine the location of the gas leakage of the sintering trolley. In the present embodiment, the set ❹ sound pressure value is set to a sound pressure root mean square value greater than 0.5 Pa (Pa). Figure 4 shows the sound signal rms curve L1 to L1 of the sound signal of the sintering trolley leak detection using the sintering trolley gas leakage detecting system of the present invention in a plurality of operating cycles, respectively, showing the mean square of the sound signal in each operation cycle. a change in the root value, wherein the curve L1Liq exhibits a singular peak at a position of (7) meters (the interval information obtained from the transmitted signals of the RFLD tags u) (the rms value of the sound pressure is greater than Q5 Pa), that is, In the position of iq meters, burning, ., σ Q car leakage phenomenon. Therefore, according to the change of the rms value of the sound signals, the gas leakage of the sintering trolley can be quickly and clearly detected and its occurrence position. The sintering trolley air leakage detecting system and the detecting method thereof of the invention are combined with an audio signal (sounding sound) analysis and an RFID technology to automatically detect the phenomenon of the gas generated by the sintering trolley and its occurrence position, and provide an immediate understanding of the operation and maintenance personnel. The position where the air leakage occurs is used as the basis for the repair of the sintering equipment to repair the sintering equipment in a timely manner, so that the air leakage phenomenon during the sintering process can be improved, and the sinter production capacity and quality can be improved. Furthermore, the sintering trolley air leakage detecting system and the detecting method thereof of the present invention do not require personnel to perform testing during the operation of the sintering equipment, so that personnel are not exposed to dust and noise. The above embodiments are merely illustrative of the principles and effects of the invention and are not intended to limit the invention. Therefore, those skilled in the art can make modifications and changes to the above embodiments without departing from the spirit of the invention. The scope of the invention should be as set forth in the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view showing the application of the sintering trolley gas leakage detecting system of the present invention to a sintering process; FIG. 2 is a schematic view showing the RFID tag of the present invention; FIG. 4 is a graph showing the rms value of the sound signal of the sintering trolley gas leakage detection using the sintering trolley gas leakage detecting system of the present invention in a plurality of operation cycles. [Explanation of main component symbols] I Sintering trolley leakage detection system of the present invention II RFID tag 131117.doc •15- 201005248

12 聲音訊號擷取單元 13 無線接收單元 14 濾波單元 15 資料處理單元 16 燒結台車 17 燒結機之軌道 18 支撐架 19 頂板 111 一金屬板 112 天線結構 113 RFID晶片 114 第一側邊 115 第二側邊 116 迴路結構 117 參考平面 118 延伸平面 119 延伸金屬片 131117.doc -16-12 Audio signal acquisition unit 13 Wireless reception unit 14 Filter unit 15 Data processing unit 16 Sintering trolley 17 Sintering machine rail 18 Support frame 19 Top plate 111 A metal plate 112 Antenna structure 113 RFID wafer 114 First side 115 Second side 116 Circuit structure 117 Reference plane 118 Extension plane 119 Extension metal piece 131117.doc -16-

Claims (1)

201005248 十、申請專利範圍: 1 · 一種燒結台車漏氣檢測方法,包括以下步驟: (a) 設定一預設解析度; (b) 在該預設解析度下擷取複數個聲音訊號;201005248 X. Patent application scope: 1 · A sintering trolley air leakage detection method, comprising the following steps: (a) setting a preset resolution; (b) capturing a plurality of sound signals at the preset resolution; (c) 根據一發射訊號取得一間隔資訊,其中,至少一無 線射頻辨識系統(Radio Frequency Identification System ’ RFID)標籤係設置於複數個燒結台車至少其 中之一’該RFID標籤用以產生該發射訊號;及 (d) 根據該間隔資訊、該等聲音訊號及一設定聲壓值, 計算及判斷燒結台車發生漏氣之位置。 2.如請求項1之檢測方法,其中在步驟(幻中係設定該預設 解析度為0.1秒至1.0秒或一台車單位時間,其中該台車 單位時間係該等燒结A直越;品 k* Λ1. y T Z寸坭葙σ旱經過一燒結台車長度之距離所 需之時間。 4. 穴τ 7騍(b)中係設置至少— 聲音訊號棟取單元’接近於該等燒結台車之二相對側邊 及頂面其中之-,以擷取該等聲音訊號。 ::=1之檢測方法’其中在步驟(㈣系設置複數個 聲a訊唬擷取單元,分別接近於 側邊及頂面。 n σ車之—相對 5 _如請求項1之檢測方法,其 克風擷取該等聲音訊號。 中在步驟(b)中係以一聲壓麥 6.如請求項1之檢測方 步驟’以一濾波單元 法,其中在步驟(b)中 過濾該等聲音訊號。 另包括一濾波 131117.doc 201005248 7.如請求項6之檢測方法,其中在該溏波步射係以一高 通濾波器過濾該等聲音訊號。 8·如請求項6之檢測方法,其令在步驟(b)中係過渡該等聲 音訊號中頻率低於20 Hz之訊號。 9.如請求項1之檢測方法’其令在步驟⑷中係以一無線接 收單元接收該RFID標籤之發射訊號。 1〇·如請求項1之檢測方法,其中在該檢測方法令係於每一 燒結台車設置一 RFID標藏。 11. 如請求項10之檢測方法,其中在步驟(勾中係以一無線接 收單元接收該等RFID標籤之發射訊號。 12. 如請求項1之檢測方法,其_在步驟(d)中另包括一計算 該等聲音訊號之訊號強度之步驟。 13. 如請求項12之檢測方法,其中在步驟(d)中若該等訊號 強度至少其中之-大於該設定聲壓值,根據強度大於該 設定聲壓值之該聲音訊號及該間隔資訊,計算及判斷燒 結台車發生漏氣之位置。 14. 如請求項丨2之檢測方法,其中在步驟(勾中係計算該等聲 音訊號之均方根值。 15. 如請求項1之檢測方法,其中在步驟(d)中該設定聲壓 值係設定為聲壓均方根值大於0.5帕(pa)。 16 · —種燒結台車漏氣檢測系統,包括: 至少一 RFID私籤,没置於複數個燒結台車至少其中之 一,用以產生一發射訊號; 至少一聲音訊號擷取單元,接近該等燒結台車,在一 131117.doc -2 - 201005248 預設解析度下擷取複數個聲音訊號; 一無線接收單元,接收該發射訊號,以產生一間隔訊 號;及 一資料處理單元,用以根據該等聲音訊號、該間隔訊 號及一設定聲壓值,計算及判斷發生漏氣之燒結台車之 位置。 1 7.如明长項1 6之燒結台車漏氣檢測系統,其中該rfid標籤 包括:(c) obtaining an interval information according to a transmission signal, wherein at least one radio frequency identification system (RFID) tag is disposed in at least one of the plurality of sintering trolleys, wherein the RFID tag is used to generate the transmission signal And (d) calculate and judge the location of the gas leakage of the sintering trolley based on the interval information, the sound signals and a set sound pressure value. 2. The detection method of claim 1, wherein in the step (the default resolution is set to 0.1 second to 1.0 second or one vehicle unit time, wherein the unit time of the vehicle is such a sintering A straight; k* Λ1. y TZ inch 坭葙 旱 经过 经过 经过 经过 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. Two of the opposite sides and the top surface of the top surface to capture the sound signals. ::=1 detection method 'wherein the step ((4) is to set a plurality of sound a signal acquisition units, respectively, close to the side and Top σ car - relative 5 _ As in the detection method of claim 1, the gram wind captures the audio signals. In step (b) is a sound pressure wheat 6. As claimed in claim 1 The square step 'in a filtering unit method, wherein the sound signals are filtered in the step (b). The filter unit 131117.doc 201005248. The method of claim 6, wherein the chopping step is in the The high-pass filter filters the audio signals. 8. The detection method of claim 6 In step (b), a signal having a frequency lower than 20 Hz is transmitted in the audio signal. 9. The detection method of claim 1 is to receive the RFID tag in a wireless receiving unit in step (4). The detection method of claim 1, wherein the detection method is to set an RFID tag for each sintering trolley. 11. The method of claim 10, wherein in the step (in the hook A wireless receiving unit receives the transmission signals of the RFID tags. 12. The method of detecting the item 1 includes, in step (d), a step of calculating the signal strength of the audio signals. The method of detecting 12, wherein in step (d), if at least one of the signal strengths is greater than the set sound pressure value, calculating and determining the sintering trolley according to the sound signal and the interval information whose intensity is greater than the set sound pressure value The position where the air leak occurs. 14. The method of detecting the item ,2, wherein in the step (the rms value of the sound signal is calculated in the hook. 15. The method of detecting the item 1 in the step (d) ) The fixed sound pressure value is set to a sound pressure root mean square value greater than 0.5 Pa (pa). 16 · A sintering trolley leak detection system, including: at least one RFID private sign, not placed in at least one of the plurality of sintering trolleys For generating a transmission signal; at least one audio signal acquisition unit is adjacent to the sintering trolley, and capturing a plurality of audio signals at a predetermined resolution of 131117.doc -2 - 201005248; a wireless receiving unit receiving the signal The signal is transmitted to generate an interval signal; and a data processing unit is configured to calculate and determine the position of the sintered trolley in which the air leak occurs based on the sound signal, the interval signal and a set sound pressure value. 1 7. The sintering trolley leak detection system of Ming Chang 1 6 wherein the RFID tag includes: 一金屬板; 一天線結構’電性連接該金屬板;及 一 RFID晶片,其二端電性連接該天線結構該rfid 晶片、該天線結構及該金屬板形成一迴路結構。 18.如請求項16之燒結台車漏氣檢測系統,其中該預設解析 度係設定為0.1秒至i.O秒或一台車單位時間,其中該台 車單位時間係該等燒結台車經過一燒結台車長度之距離 所需之時間。 19. 如凊求項16之燒結台車漏氣檢測系統,其中該間隔資訊 係顯示該等燒結台車運轉一週期,該RFID標藏移動之距 離及移動時間。 20. 如請求項16之燒結台車漏氣漏氣檢測系统,其中該漏氣 檢測系統包括複數個RFID標籤,每一RFm標藏設置於 每一燒結台車。 21.如請求項2〇之燒結台車漏氣漏氣檢測系統,其中該間隔 資訊係為該等RFID標籤其中之二R / iJJ棵載之間隔距離 131117.doc 201005248 及該等燒結台車移動該間隔距離之時間。 22. 23. 24. 25. 26. 27. • 28. 29. 30. 如請求項16之燒結台車漏氣漏氣檢測系統,其中該聲音 訊號擷取單元係接近該等燒結台車之二相對側邊及頂面 其中之一。 如請求項16之燒結台車漏氣漏氣檢測系統,其中該漏氣 檢測系統包括複數個聲音訊號擷取單元,分別接近於該 等燒結台車之二相對侧邊及頂面。 如請求項16之燒結台車漏氣漏氣檢測系統,其中該聲音 訊號擷取單元係為一聲壓麥克風。 如請求項16之燒結台車漏氣漏氣檢測系統,其中該資料 處理單元係為一電腦。 如請求項16之燒結台車漏氣檢測系統,另包括一濾波單 元’用以接受該等聲音訊號並過濾該等聲音訊號。 如請求項26之燒結台車漏氣漏氣檢測系統,其中該濾波 單元係過濾該等聲音訊號中頻率低於2〇 Hz之訊號。 如請求項26之燒結台車漏氣漏氣檢測系統,其中該濾波 單元係為一高通濾波器。 如請求項26之燒結台車漏氣檢測系統,其中該資料處理 單元接受該間隔訊號以取得一間隔資訊,及接受過濾後 之該等聲音訊號並計算其訊號強度,以及根據該訊號強 度及該間隔資訊,計算及判斷發生漏氣之燒結台車之位 置。 如請求項29之燒結台車漏氣檢測系統,其中該設定聲壓 值係設定為聲壓均方根值大於0.5帕(Pa)。 131117.doc 201005248 3 1.如請求項30之燒結台車漏氣檢測系統, 強度至少其中之一大於該設定聲壓值, 設定聲壓值之該聲音訊號及該間隔資訊 結台車發生漏氣之位置。 其中若該等訊號 根據強度大於該 ,計算及判斷燒a metal plate; an antenna structure electrically connected to the metal plate; and an RFID chip, the two ends of which are electrically connected to the antenna structure, the rfid chip, the antenna structure and the metal plate form a loop structure. 18. The sintering trolley leak detection system of claim 16, wherein the preset resolution is set to 0.1 second to iO seconds or one vehicle unit time, wherein the unit time of the trolley is the length of the sintering trolley through a sintering trolley. Distance required time. 19. The sintering trolley air leak detecting system of claim 16, wherein the interval information indicates that the sintering trolley operates for one cycle, and the RFID tag moves the distance and the moving time. 20. The sintering trolley leak detection system of claim 16, wherein the leak detection system comprises a plurality of RFID tags, each RFm being disposed in each sintering trolley. 21. The sintering trolley leak detection system of claim 2, wherein the interval information is a spacing distance between the two R/iJJ trees of the RFID tags 131117.doc 201005248 and the sintering trolley moves the interval The time of the distance. 22. 23. 24. 25. 26. 27. 28. 28. 29. 30. The sintering trolley leak detection system of claim 16, wherein the sound signal extraction unit is adjacent to the opposite side of the sintering trolley One of the sides and the top. The sintering trolley air leakage detecting system of claim 16, wherein the air leakage detecting system comprises a plurality of sound signal capturing units respectively adjacent to opposite side and top surfaces of the sintering trolleys. The sintering trolley air leakage detecting system of claim 16, wherein the sound signal capturing unit is a sound pressure microphone. The sintering trolley leak detection system of claim 16, wherein the data processing unit is a computer. The sintering trolley leak detection system of claim 16 further comprising a filtering unit </ RTI> for receiving the audio signals and filtering the audio signals. The sintering trolley leak detection system of claim 26, wherein the filtering unit filters signals having a frequency lower than 2 Hz in the audio signals. A sintering trolley leak detection system according to claim 26, wherein the filtering unit is a high pass filter. The sintering trolley leak detection system of claim 26, wherein the data processing unit receives the interval signal to obtain an interval information, and receives the filtered audio signal and calculates the signal strength thereof, and according to the signal strength and the interval Information, calculation and judgment of the location of the sintering trolley where air leakage occurs. The sintering trolley leak detection system of claim 29, wherein the set sound pressure value is set to a sound pressure root mean square value greater than 0.5 Pa (Pa). 131117.doc 201005248 3 1. The sintering trolley leak detection system of claim 30, wherein at least one of the strengths is greater than the set sound pressure value, the sound signal of the set sound pressure value and the position of the interval information indicating the leak of the trolley . If the signals are greater than the intensity according to the strength, calculate and judge the burning 131117.doc131117.doc
TW97129108A 2008-07-31 2008-07-31 Sintering trouble leak detection system and its detection method TWI424138B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97129108A TWI424138B (en) 2008-07-31 2008-07-31 Sintering trouble leak detection system and its detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97129108A TWI424138B (en) 2008-07-31 2008-07-31 Sintering trouble leak detection system and its detection method

Publications (2)

Publication Number Publication Date
TW201005248A true TW201005248A (en) 2010-02-01
TWI424138B TWI424138B (en) 2014-01-21

Family

ID=44826184

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97129108A TWI424138B (en) 2008-07-31 2008-07-31 Sintering trouble leak detection system and its detection method

Country Status (1)

Country Link
TW (1) TWI424138B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396751B (en) * 2010-12-24 2013-05-21 China Steel Corp Sinter machine pallet and system thereof
TWI502517B (en) * 2012-09-10 2015-10-01 Chunghwa Telecom Co Ltd Adaptive radio frequency tag comparison and customs clearance system and method
TWI623719B (en) * 2017-06-22 2018-05-11 中國鋼鐵股份有限公司 System and method of warning air leakage of sintering trolleys
TWI706409B (en) * 2019-02-01 2020-10-01 中國鋼鐵股份有限公司 System for identifying air leakage type of sintering trolleys

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56105436A (en) * 1980-01-23 1981-08-21 Nippon Steel Corp Detecting method for gas leakage in sintering machine
KR100393677B1 (en) * 1999-12-29 2003-08-06 주식회사 포스코 Method for diagnosis for air leakage in sinter process
US7889058B2 (en) * 2004-07-29 2011-02-15 Mitsubishi Electric Corporation Radio-tag reading system, radio-tag reader, and radio tag
TWM352141U (en) * 2005-10-13 2009-03-01 Yeon Technologies Co Ltd Embedded RFID tag for automobile

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI396751B (en) * 2010-12-24 2013-05-21 China Steel Corp Sinter machine pallet and system thereof
TWI502517B (en) * 2012-09-10 2015-10-01 Chunghwa Telecom Co Ltd Adaptive radio frequency tag comparison and customs clearance system and method
TWI623719B (en) * 2017-06-22 2018-05-11 中國鋼鐵股份有限公司 System and method of warning air leakage of sintering trolleys
TWI706409B (en) * 2019-02-01 2020-10-01 中國鋼鐵股份有限公司 System for identifying air leakage type of sintering trolleys

Also Published As

Publication number Publication date
TWI424138B (en) 2014-01-21

Similar Documents

Publication Publication Date Title
TW201005248A (en) Gas leakage detection system for sintering trolley and detection method thereof
US9404904B2 (en) Methods and systems for non-destructive inspection
CN110308200A (en) A kind of high-speed track method of detection that the leakage field of differential type is compound with vortex
WO2009074276A3 (en) Marker panel for colorectal cancer
EP2693809A3 (en) A small cell detection method and apparatuses using the same
KR20130019872A (en) Method of non-destructive test using impedance analysis technique
TW201244243A (en) Non-destructive testing methods for fuel cell interconnect manufacturing
CN105823797B (en) A kind of induction thermal imagery non-destructive testing device based on symbiosis formula magnetic yoke coil
CN108303141A (en) A kind of city environmental quality monitoring system
TW201321788A (en) Smart electromagnetic sensor array
CN201548522U (en) Multiple-frequency eddy current detecting instrument
CN109342446A (en) A kind of steel structure girder cosmetic bug detection instrument and method
TWI623719B (en) System and method of warning air leakage of sintering trolleys
TW200828129A (en) System and method for testing power intensity of RFID
US20240159730A1 (en) A signal processing system and method for inductive oil abrasive particle sensor
CN107884473A (en) A kind of multi frequency detection system
CN105577895A (en) Mobile phone for testing concentration of PM2.5 dust
JP2013011503A (en) Steel material temperature measurement method and steel material temperature measurement device
CN201368726Y (en) Leather thickness measuring meter
CN102590327A (en) Multi-channel magnetic flaw detector
CN109030617A (en) Barkhausen effect-based magnetic characteristic detection method and device for magnetic suspension track
CN207215755U (en) One kind vortex wire defectoscope
Ling et al. Effect of sintering and porosity development on direct reduction of manganese ore pellets
CN208672533U (en) A kind of Volume Concrete Cracks monitoring device
Liu et al. Multi-signal aptasensor for thrombin detection based on catalytically active gold nanoparticles and fluorescent silicon quantum dots

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees