201003953 九、發明說明: 【發明所屬之技術領域】 本發明係關於-種光二極體結構及其製造方法。特別 是關於一種光敏感之簡光二極體結構及其製造方法。 【先前技術】 息傳送的資訊量越來越大,所需要的傳送距離 2越來越心由於電阻與訊號遲滞㈣天的物理性限制, 傳統的銅纜線已經不能勝任 _ 4此荨負何。由於單條光纖中允 τι * :::广里光束各自攜帶不同的資訊’以光速傳送 二;:不=互干擾,而且經過極長的距離訊號也不會過 度农減’付合滿足魔大眘 貝汛里的通距離的傳送需求,光纖 自然取而代之成為當前最 j取主要的迫距離資訊傳送媒介。201003953 IX. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a photodiode structure and a method of fabricating the same. In particular, it relates to a light-sensitive simple light diode structure and a method of manufacturing the same. [Prior Art] The amount of information transmitted by the information is getting larger and larger, and the required transmission distance 2 is more and more important. Due to the physical limitation of resistance and signal delay (four) days, the traditional copper cable is no longer competent. what. Because a single fiber allows τι * ::: wide-band beams to carry different information 'transmits at the speed of light two;: not = mutual interference, and after a very long distance signal will not be excessively reduced. Behrli's transmission distance requirements, fiber optics naturally replaced it as the most important distance information transmission medium.
;:而不同波長的光再搭配脈衝訊號,構成了光纖通 汛的基礎原則,然而此I 、 此寺基礎傳輸原則與現今電子裝置Φ 以電子流攜帶與傳送訊觫 寻、汛諕的傳輸原則並不相容。 光纖通訊與電流通訊間妒 ^成轉換媒介,光偵測器 (ph0一㈣成為-個便利的有用工具。 光偵測器是一種重 要的先-電子轉換元件。光偵測器可 201003953 以將光脈衝信號轉換成電信號(電壓或電流),所以可以將 光纖中的光脈衝訊號轉換為一般電子元件可以攜帶、傳輸 與利用的電子信號。其中,具有容易製作、可靠度高、低 雜音、可與低電壓放大器電路相匹配、並且有極高頻寬等 特性之PIN光一極體(p-intrinsic-n photodiode)便是目前常 用的光偵測器。 f PIN光一極體的基本工作原理是,當入射光子照射在 半導體之p-n接面(juncti〇n)時,若光子能量足夠大,則 可以使彳于半導體材料中價電帶之電子會吸收光子之能量, 從價電帶越過禁帶到達導電帶,也就是是入射光子會在半 導體之導電帶中產生電子,稱為光電子,同時還會在價電 帶中就留下一電洞’也就是產生一電子電洞對 (electron-hole pair),亦可稱為光生載流子(photocarriers), t 此即為半導體之光電效應(photoelectric effect)。此後,光 i 電子、電洞在内建電場和一外加負偏壓之作用下迅速分 離’分別為正、負電極收集而在外電路中出現了光電流。 為了增強PIN檢光二極體的操作效能,現行技術係將鍺 半導體材料整合至矽基材中以達成寬廣波長的光通訊,這 被認為是由於錯的載子遷移率遠高於石夕,所以將鍺半導體 材料整合至矽基材中的重要性在於快速、有效與低雜訊的 重要特質。鍺的光偵測器具有能夠在光通訊所利用的波長 201003953 範圍内有效地^[貞測光訊號的性質。此外,鍺的光偵測器如 果還可以與矽基材的傳統製程整合,應該能進一步有效降 低PIN光二極體的成本。 已知一種將鍺半導體材料整合至矽基材中的PIN檢光 二極體。第1圖例示此等已知之含鍺半導材料的PIN檢光 二極體。PIN檢光二極體101中包含有矽基材110、氧化層 , 120、P-摻雜矽 130、本質鍺(intrinsic Ge) 140、N-摻雜鍺 150、電極區,其包含第一電極區161與第二電極區162。 P-摻雜矽 130、本質鍺(intrinsic Ge) 140、N-摻雜鍺 150 三者一起構成了 PIN檢光二極體核心元件。由於以上ΠΝ 檢光二極體Η) 1之結構是將電極推雜區中之弟一電極區 161設置於N-摻雜鍺150的上方,因此會降低正面受光的 範圍,而且光在通過P-摻雜矽時會被吸收而降低量子效 率,再者此等PIN檢光二極體101的製作過程並不能與傳 V 統的金氧半導體的製程完全整合。因此需要一種新穎的 PIN檢光二極體結構以及製作方法,可以更有效的將其製 程與傳統發展成熟的金氧半導體的製程完全整合,來達到 降低製造成本的目標。 【發明内容】 . 因此,本發明提出一種新穎的ΠΝ光二極體結構及其 8 201003953 製造方法。可以更有效的將其製造方法與傳統發展成熟的 的金氧半導體的製程完全整合,來達到降低製造成本的目 標,以解決上述問題。 本發明首先關於一種PIN光二極體結構。本發明之PIN 光二極體結構’包含含有夕之半導體基材、位於半導體基 材中之P型摻雜區、位於半導體基材中之N型摻雜區和位 f 於半導體基材中以及位於P型摻雜區與N型摻雜區間之第 一半導體材料。較佳者,此等第一半導體材料包含鍺,或 是,具有鍺濃度梯度。 本發明又提供一種形成P IN光二極體結構之方法。本 發明形成PIN光二極體結構之方法,首先提供半導體基 材,其包含N型摻雜區與P型摻雜區。其次’在半導體基 材中形成溝渠,而位於P型摻雜區與N型摻雜區之間。之 i 後,使用第一半導體材料填滿此溝渠,使得第一半導體材 料還可以自溝渠凸起。較佳者,此等第一半導體材料包含 鍺,或是,具有鍺濃度梯度。 由於本發明之PIN光二極體結構,作為導電電極用之 P型摻雜區與N型摻雜區均位於半導體之基材中,所以製 作本發明新穎的PIN檢光二極體結構的方法’可以增加受 光的範圍並更有效的將其製程與傳統上已經發展到十分成 9 201003953 熟的金氧半導艏的製程完全整合,來達到降低製造成本的 目標。 【實施方式】 本發明關於一種新穎的PIN光二極體結構及其製造方 法。由於本發明之PIN光二極體結構,作為導電電極用之 f P型摻雜區與N型摻雜區均位於鍺半導體材料兩側之基材 中,所以製作本發明新穎的PIN光二極體結構的方法,不 但能大幅增加受光的範圍’並可以更有效的將其製程與傳 統上已經發展到十分成熟的金氧半導體的製程完全整合, 來達到降低製造成本的目標。 本發明首先提供一種光二極體結構。第2圖例示本發 明光二極體結構之一較佳實施例。本發明之光二極體結構 U 200,包含半導體基材201、淺溝渠隔離(shallow trench isolation, STI) 210、P 型摻雜區 221、N 型摻雜區 222、溝 渠230、層間介電層240、P型摻雜區插塞插塞251與N型 摻雜區插塞252。 半導體基材201可以為一般之半導體材料,例如石夕或 矽覆絕緣(SOI)等基底。而淺溝渠隔離210等之絕緣材料即 位於半導體基材201中以區隔不同之元件區域。如第2圖 10 201003953 所示’本發明之光二極體結構2⑽之外圍即設置有淺溝渠 隔離210。 溝渠230亦位於淺溝渠隔離21〇環繞之半導體基材2〇1 中。另外,溝渠230之相對兩侧,分別設置有也位於半導 體基材201中之p型掺雜區221與n型摻雜區222。可以 使用習知之摻質,再配合傳統之離子植入法在半導體基材 2〇1中形成P型摻雜區221與摻雜區222。此外,還 可以再加上熱擴散或是退火步驟以活化p型摻雜區22丨與 N型摻雜區222。 弟一半導體材料231,即位於溝渠23〇中並填滿溝渠 230。由於溝渠230的位置是在半導體基材201 t,同時介 於p型摻雜區221心型摻雜區222之間,所以第 體材料231亦位於半導體其姑 ώ χ 體基材2G1卜並同時介於Ρ型摻 ,-2】與Ν型摻雜區222 以為一沪之主道舰t Π弟丰導體材料231可 ρ ’又V體材料,例如吩、鍺、或其组合。較佳者, 此專弟-半導體材料231具有錯濃度梯度。 此外’第-半導體材料23】之上另外可以 +導體材料231相連祐外山…、丨一 °又有與弟一 第二半導體材料232。第_ I.. * ‘體材料231表面之- +導體材料,例如 丁以為一般之 ^鍺4其組合。較佳者,此等第二 201003953 導體材料231鍺濃度梯 半導體材料232具有繼承自第—半 度之鍺濃度梯度。 層間介電層240,覆蓋半導體基材2〇1、?型推雜區 一 N型摻雜區222、溝渠230、第一半導體材料231與 第二半導體材料232。還有,層間介電層中另具有p 型摻雜區插塞25卜即位於?型摻雜區221上以建立p型 摻雜區221與其他叠層後續的電連接之用。類似的,n型 摻雜區插塞252’位於N型摻雜區222上之層間介電層24〇 中’以建立Νϋ摻雜區222與其他疊層後續的電連接之用。 Ρ型摻雜區插塞251與Ν型摻雜區插塞252分別可以使用 習知之導電材料’例如銘或鶴等。視情況需要,ρ型換雜 區221與Ν型摻雜區222的表面,另外還可以進—步包含 一金屬矽化物,例如矽化鈷或是矽化鎳,以減型摻雜 區插塞251與N型掺雜區插塞252對於p型摻雜區22ι與 N型摻雜區222的表面電阻。 若有需要,本發明之半導體基材2〇1可以進一步包含 至少一金氧半導體(MOS)。換句話說’光二極體結構2〇〇 的鄰近區域可以設置有互補之金氧半導體26〇 (CM〇s)。 第3圖例示本發明光二極體結構旁設置有互補之金氧半導 體之較佳實施例。如圖3所示,本發明之光二極體結構2〇〇 的鄰近區域設置有互補之P型金氧半導體261與^^型金氧 12 201003953 半導體262,其間各以淺溝渠隔離210作絕緣性的分隔。 此外,為了可以與金氧半導體的製程充分相容,本發 明之光二極體結構200中之元件可以與互補金氧半導體 260中之元件共享部分製程特性。例如,本發明光二極體 結構200之P型摻雜區221與N型摻雜區222至少一者之 摻雜濃度可與互補金氧半導體260之源極/汲極等各式摻雜 . 區之摻雜濃度相同。 值得注意的是,本發明光二極體結構200可以有不同 的受光方向。例如,若為第2圖所例示之結構時,本發明 光二極體結構200可用於接受一上方光源(top incident light)。另一方面,本發明光二極體結構200也能應用於接 受一侧邊光源(side incident light)。第4圖例示用於接受 侧邊光源之本發明光二極體結構之一較佳實施例。本發明 ' 光二極體結構200另包含一光導(waveguide) 27〇用於接 受侧邊而來之光源,使得本發明之光二極體結構’同樣適 用於接受上方光源或是接受側邊光源或是同時接受。 本發明又提供一種形成光二極體結構之方法。苐5-9 圖例示本發明形成光二極體結構方法之一較佳實施例。首 先,如第5圖所示,提供一半導體基材501,其包含P型 摻雜區521與N型摻雜區522。半導體基材501可以為一 13 201003953 般之半導體材料,例如矽。氧化物層502則覆蓋半導體基 材501的表面。半導體基材501上可以另包含金氧半導體。 例如,半導體基材501上又設置有互補金氧半導體560, 包含互補之P型金氧半導體561與N型金氧半導體562, 其間各以淺溝渠隔離510作絕緣性的分隔。 為了可以與金氧半導體的製程充分相容,本發明之光 # 二極體結構中之元件可以與互補金氧半導體560中之元件 共享部分製程特性。例如,可以使用習知之摻質,再配合 傳統之離子植入法在形成互補金氧半導體560時同時形成 本發明之光二極體結構中之P型摻雜區521與N型摻雜區 522。此外,還可以再加上熱擴散或是退火步驟以活化P型 摻雜區521與N型摻雜區522。當P型摻雜區521與N型 摻雜區522與互補金氧半導體560同時形成時,P型摻雜 區521與N型摻雜區522至少一者之摻雜濃度會與互補金 | & 氧半導體560之源極/汲極等各式摻雜區之摻雜濃度相同。 其次,如第6圖所示,形成位於半導體基材501中以 及介於P型摻雜區521與N型摻雜區522間之溝渠530。 例如,使用傳統光阻定義出溝渠530的位置後,再配合蝕 刻的方式移除部分的半導體基材501形成溝渠530。 接下來,如第7圖所示,使用第一半導體材料531填 14 201003953 滿溝渠530。第一半導體材料531為一般之半導體材料, 例如石夕、鍺、或其組合。例如,使用習知之蟲晶製程將第 一半導體材料531填滿溝渠53〇。較佳者,此等第一半導 體材料531是矽與鍺之混合物並具有鍺濃度梯度。如此一 來,可有效避免與含矽之半導體基材501的晶格產生插排 (mismatch )的問題。 在一較佳實施例中’可於第一半導體材料531之磊晶 製程中,繼續遙晶形成位於第一半導體材料上丨並突出 半導體基材501表面之第二半導體材料532,來接受上方 光源或侧邊光源。第二半導體材料532可以為一般之半導 體材料,例如矽、鍺、或其组合。較佳者,此等第二半導 體材料532具有繼承自第一半導體材料531鍺濃度梯度之 鍺濃度梯度。 在完成如第7圖之步驟後,如第8圖,繼續形成層間;: The light of different wavelengths is matched with the pulse signal, which constitutes the basic principle of fiber-optic communication. However, the basic transmission principle of this temple, the transmission principle of the current electronic device Φ, and the transmission principle of electron-carrying and transmitting information. Not compatible. Optical fiber communication and current communication 妒^ into conversion medium, light detector (ph0 one (four) becomes a convenient and useful tool. The light detector is an important first-electronic conversion component. The light detector can be 201003953 to The optical pulse signal is converted into an electrical signal (voltage or current), so that the optical pulse signal in the optical fiber can be converted into an electronic signal that can be carried, transmitted and utilized by general electronic components. Among them, it is easy to manufacture, has high reliability, low noise, A PIN optical pole (p-intrinsic-n photodiode) that can be matched with a low-voltage amplifier circuit and has a very high-frequency width and the like is a commonly used photodetector. The basic working principle of the PIN light-polar body is when When the incident photon is irradiated on the pn junction of the semiconductor, if the photon energy is sufficiently large, the electrons in the valence band of the semiconductor material can absorb the energy of the photon, and the valence band passes over the forbidden band to reach the conduction. The band, that is, the incident photon will generate electrons in the conductive strip of the semiconductor, called photoelectron, and will leave a hole in the valence band. An electron-hole pair, also known as photocarriers, is the photoelectric effect of a semiconductor. Thereafter, the electrons and holes are built in an electric field. And the rapid separation under the action of a negative bias. The positive and negative electrodes are collected separately and the photocurrent appears in the external circuit. In order to enhance the operational efficiency of the PIN photodiode, the current technology integrates the germanium semiconductor material into the germanium. In order to achieve wide wavelength optical communication, it is considered that the wrong carrier mobility is much higher than that of Shi Xi, so the importance of integrating germanium semiconductor materials into germanium substrates is fast, effective and low noise. Important features. The 光's photodetector has the ability to effectively measure the optical signal in the range of 201003953 used by optical communication. In addition, the 光 photodetector can also be integrated with the traditional process of ruthenium substrate. It should be possible to further effectively reduce the cost of the PIN photodiode. A PIN light-detecting diode that integrates a germanium semiconductor material into a germanium substrate is known. Figure 1 illustrates such known A PIN light-detecting diode of a germanium semiconductor material. The PIN light-detecting diode 101 includes a germanium substrate 110, an oxide layer, 120, a P-doped germanium 130, an intrinsic Ge 140, and an N-doped germanium. 150. An electrode region comprising a first electrode region 161 and a second electrode region 162. The P-doped germanium 130, the intrinsic germanium 140, and the N-doped germanium 150 together form a PIN light detecting diode The core component is formed by disposing the electrode-electrode region 161 in the electrode doping region above the N-doped germanium 150 because of the above structure, thereby reducing the range of front side light receiving, and the light is When P-doped erbium is absorbed, the quantum efficiency is lowered. Moreover, the fabrication process of the PIN photodiode 101 cannot be completely integrated with the process of the MOS semiconductor. Therefore, a novel PIN photodiode structure and a fabrication method are needed, which can more effectively integrate the process with the traditionally developed MOS process to achieve the goal of reducing manufacturing costs. SUMMARY OF THE INVENTION Accordingly, the present invention is directed to a novel luminescent diode structure and its method of manufacturing 201003039. It is possible to more effectively integrate the manufacturing method with the traditionally developed MOS process to achieve the goal of reducing manufacturing costs to solve the above problems. The invention first relates to a PIN light diode structure. The PIN photodiode structure of the present invention comprises a semiconductor substrate containing a Xi, a P-type doped region in the semiconductor substrate, an N-type doped region in the semiconductor substrate, and a bit f in the semiconductor substrate and located a first semiconductor material of a P-type doped region and an N-type doped region. Preferably, the first semiconductor material comprises germanium or has a germanium concentration gradient. The present invention further provides a method of forming a P IN photodiode structure. The method of forming a PIN photodiode structure of the present invention first provides a semiconductor substrate comprising an N-type doped region and a P-type doped region. Secondly, a trench is formed in the semiconductor substrate and is located between the P-type doped region and the N-type doped region. After i, the trench is filled with the first semiconductor material so that the first semiconductor material can also be raised from the trench. Preferably, the first semiconductor material comprises germanium or has a germanium concentration gradient. Due to the PIN photodiode structure of the present invention, both the P-type doped region and the N-type doped region used as the conductive electrode are located in the substrate of the semiconductor, so the method for fabricating the novel PIN light-detecting diode structure of the present invention can be Increasing the range of light exposure and more effectively integrating its process with the process that has traditionally evolved to a well-established MOS oven to achieve the goal of reducing manufacturing costs. [Embodiment] The present invention relates to a novel PIN photodiode structure and a method of fabricating the same. Due to the PIN photodiode structure of the present invention, both the f P-type doped region and the N-type doped region used as the conductive electrode are located in the substrate on both sides of the germanium semiconductor material, so that the novel PIN photodiode structure of the present invention is fabricated. The method not only greatly increases the range of light received', but also more effectively integrates its process with the process that has traditionally developed into a very mature metal oxide semiconductor to achieve the goal of reducing manufacturing costs. The present invention first provides a photodiode structure. Fig. 2 illustrates a preferred embodiment of the photodiode structure of the present invention. The photodiode structure U 200 of the present invention comprises a semiconductor substrate 201, a shallow trench isolation (STI) 210, a P-doped region 221, an N-type doped region 222, a trench 230, and an interlayer dielectric layer 240. P-type doped region plug plug 251 and N-type doped region plug 252. The semiconductor substrate 201 can be a general semiconductor material such as a substrate such as a stone or a silicon-on-insulator (SOI). The insulating material of the shallow trench isolation 210 or the like is located in the semiconductor substrate 201 to distinguish different component regions. As shown in Fig. 2, 201003953, the periphery of the photodiode structure 2 (10) of the present invention is provided with a shallow trench isolation 210. The trench 230 is also located in the semiconductor substrate 2〇1 surrounded by the shallow trench isolation. In addition, opposite sides of the trench 230 are respectively provided with a p-type doping region 221 and an n-type doping region 222 which are also located in the semiconductor substrate 201. The P-doped region 221 and the doped region 222 may be formed in the semiconductor substrate 2?1 by using a conventional dopant, in combination with a conventional ion implantation method. In addition, a thermal diffusion or annealing step may be added to activate the p-doped region 22 and the N-doped region 222. The semiconductor material 231 is located in the trench 23 and fills the trench 230. Since the position of the trench 230 is between the semiconductor substrate 201 t and the p-doped region 221 between the card-type doped regions 222, the first material 231 is also located on the semiconductor substrate 2G1 and simultaneously Between the Ρ-type doping, -2] and the Ν-type doped region 222, it is considered to be a host ship of the Shanghai t 丰 丰 导体 conductor material 231 can be ρ ' and V body material, such as phenotype, 锗, or a combination thereof. Preferably, the student-semiconductor material 231 has a wrong concentration gradient. Further, on the 'the first semiconductor material 23', a + conductor material 231 can be connected to the outer mountain ..., and the second semiconductor material 232 is formed. The first _ I.. * ‘the surface of the body material 231 - + conductor material, such as D is the general ^ 锗 4 combination. Preferably, the second 201003953 conductor material 231锗 concentration ladder semiconductor material 232 has a germanium concentration gradient inherited from the first half. Interlayer dielectric layer 240 covering semiconductor substrate 2?1? The type of dummy region is an N-type doped region 222, a trench 230, a first semiconductor material 231 and a second semiconductor material 232. Also, the p-type doped region plug 25 is additionally disposed in the interlayer dielectric layer. The doped region 221 is used to establish a subsequent electrical connection of the p-doped region 221 to other stacks. Similarly, an n-type doped region plug 252' is located in the interlayer dielectric layer 24' on the N-type doped region 222 to establish a subsequent electrical connection of the germanium doped region 222 to the other stack. The Ρ-type doping region plug 251 and the Ν-type doping region plug 252 may each use a conventional conductive material such as a seal or a crane. Optionally, the surface of the p-type doping region 221 and the doped doping region 222 may further comprise a metal halide such as cobalt telluride or nickel telluride to reduce the doped region plug 251 and The surface resistance of the N-type doped region plug 252 for the p-type doped region 22i and the N-type doped region 222. The semiconductor substrate 2〇1 of the present invention may further comprise at least one metal oxide semiconductor (MOS), if necessary. In other words, the adjacent region of the photodiode structure 2〇〇 may be provided with a complementary metal oxide semiconductor 26〇 (CM〇s). Fig. 3 illustrates a preferred embodiment in which a complementary metal oxide semiconductor is disposed adjacent to the photodiode structure of the present invention. As shown in FIG. 3, the adjacent region of the photodiode structure 2〇〇 of the present invention is provided with a complementary P-type MOS semiconductor 261 and a ^2 type gold oxide 12 201003953 semiconductor 262, each of which is insulated by shallow trench isolation 210. Separation. Moreover, in order to be sufficiently compatible with the MOS process, the components of the photodiode structure 200 of the present invention can share some of the process characteristics with the components of the complementary MOS 260. For example, the doping concentration of at least one of the P-doped region 221 and the N-type doped region 222 of the photodiode structure 200 of the present invention may be doped with the source/drain of the complementary MOS 260. The doping concentration is the same. It is to be noted that the photodiode structure 200 of the present invention can have different light receiving directions. For example, in the case of the structure illustrated in Fig. 2, the photodiode structure 200 of the present invention can be used to receive a top incident light. On the other hand, the photodiode structure 200 of the present invention can also be applied to receive a side incident light. Fig. 4 illustrates a preferred embodiment of the photodiode structure of the present invention for receiving a side light source. The 'light diode structure 200 of the present invention further includes a light guide 27 〇 for receiving the light source from the side, so that the light diode structure of the present invention is equally suitable for accepting the upper light source or receiving the side light source or Accept at the same time. The invention further provides a method of forming a photodiode structure.苐5-9 illustrates a preferred embodiment of the method of forming a photodiode of the present invention. First, as shown in Fig. 5, a semiconductor substrate 501 comprising a P-type doped region 521 and an N-type doped region 522 is provided. The semiconductor substrate 501 can be a semiconductor material such as 201013 201003953, such as germanium. The oxide layer 502 covers the surface of the semiconductor substrate 501. A metal oxide semiconductor may be further included on the semiconductor substrate 501. For example, the semiconductor substrate 501 is further provided with a complementary MOS semiconductor 560 including a complementary P-type MOS 561 and an N-type MOS 562, each of which is insulated by a shallow trench isolation 510. In order to be sufficiently compatible with the MOS process, the elements of the optical #diode structure of the present invention can share part of the process characteristics with the components of the complementary MOS 560. For example, a conventional dopant may be used in combination with a conventional ion implantation method to simultaneously form a P-doped region 521 and an N-type doped region 522 in the photodiode structure of the present invention in forming a complementary MOS semiconductor 560. In addition, a thermal diffusion or annealing step may be added to activate the P-doped region 521 and the N-type doped region 522. When the P-type doping region 521 and the N-type doping region 522 are simultaneously formed with the complementary gold-oxygen semiconductor 560, the doping concentration of at least one of the P-type doping region 521 and the N-type doping region 522 may be complementary to the gold | & The doping concentrations of the various doping regions such as the source/drain of the oxygen semiconductor 560 are the same. Next, as shown in Fig. 6, a trench 530 is formed in the semiconductor substrate 501 and between the P-type doping region 521 and the N-type doping region 522. For example, after the position of the trench 530 is defined using a conventional photoresist, a portion of the semiconductor substrate 501 is removed in a etched manner to form a trench 530. Next, as shown in Fig. 7, the first semiconductor material 531 is used to fill the 1403903953 full trench 530. The first semiconductor material 531 is a general semiconductor material such as a stone, a crucible, or a combination thereof. For example, the first semiconductor material 531 is filled with the trench 53 using a conventional insect crystal process. Preferably, the first semiconductor material 531 is a mixture of cerium and lanthanum and has a cerium concentration gradient. As a result, the problem of mismatching with the lattice of the semiconductor substrate 501 containing germanium can be effectively avoided. In a preferred embodiment, in the epitaxial process of the first semiconductor material 531, the second semiconductor material 532 located on the first semiconductor material and protruding from the surface of the semiconductor substrate 501 is further formed to receive the upper light source. Or side light source. The second semiconductor material 532 can be a general semiconductor material such as tantalum, niobium, or combinations thereof. Preferably, the second semiconductor material 532 has a germanium concentration gradient that is inherited from the first semiconductor material 531 concentration gradient. After completing the steps as shown in Figure 7, as shown in Figure 8, continue to form the interlayer
減低P型摻雜區怖塞 501、P型摻雜區521、N型摻Reduce P-doped region dysfunction 501, P-type doped region 521, N-type doping
塞551與N型穆雜 區插塞552對於P型 15 201003953 摻雜區521與N型摻雜區522的表面電阻。 如前所述,本發明方法所製作之光二極體可以有不同的 受光方向。例如,若為第8圖所例示之結構時,本發明光 二極體結構適用於接受一上方光源。另一方面,本發明光 二極體結構也能用於接受侧邊光源。第9圖例示本發明方 法所製作之可用於形成接受側邊光源之光二極體結構之一 - 較佳實施方式。在本發明光二極體結構中,第一半導體材 料上531與第二半導體材料532之侧邊更形成光導570, 用於引導使得本發明光二極體結構接受侧邊而來之光源, 使得經由本發明方法所製得之光二極體結構,同樣適用於 接受上方光源或是接受侧邊光源或是同時接受。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範 圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 \ 【圖式簡單說明】 第1圖例示習知含鍺材料的檢光二極體。 第2圖例示本發明光二極體結構之一較佳實施例。 第3圖例示本發明光二極體結構旁設置有互補之金氧半導 體之較佳實施例。 第4圖例示用於接受側邊光源之本發明光二極體結構之一 16 201003953 較佳實施例。 第5-9圖例示本發明形成光二極體結構方法之一較佳實施 例。 【主要元件符號說明】 101 PIN檢光二極體 110 $夕基材 120 氧化層 130 P-摻雜矽 140 固有鍺 150 N-摻雜鍺 161 第一電極區 162 弟二電極區 200 光二極體結構 201 半導體基材 210 淺溝渠隔離 221 P型摻雜區 222 N型摻雜區 230 溝渠 231 第一半導體材料 232 第二半導體材料 240 層間介電層 251 P型摻雜區插塞 252 N型摻雜區插塞 260 互補金氧半導體 261 P型金氧半導體 262 N型金氧半導體 270 光導 501 半導體基材 510 淺溝渠隔離 521 P型摻雜區 522 N型摻雜區 530 溝渠 531 第一半導體材料 532 第二半導體材料 540 層間介電層 551 P型摻雜區插塞 552 N型摻雜區插塞 17 201003953 560 互補金氧半導體561 562 N型金氧半導體570 P型金氧半導體 光導 18The surface resistance of the plug 551 and the N-type doped region 522 to the P-type 15 201003953 doped region 521 and the N-type doped region 522. As described above, the photodiode fabricated by the method of the present invention can have different light receiving directions. For example, in the case of the structure illustrated in Fig. 8, the photodiode structure of the present invention is suitable for receiving an upper light source. Alternatively, the photodiode structure of the present invention can be used to accept side light sources. Figure 9 illustrates one of the photodiode structures that can be used to form a light source that accepts a side light source as produced by the method of the present invention - a preferred embodiment. In the photodiode structure of the present invention, the first semiconductor material 531 and the side of the second semiconductor material 532 further form a light guide 570 for guiding the light source of the present invention to receive the light source from the side, so that The photodiode structure produced by the method of the invention is equally suitable for accepting an upper source or accepting a side source or simultaneously. The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should fall within the scope of the present invention. \ [Simple description of the figure] Fig. 1 illustrates a conventional light-detecting diode of a germanium-containing material. Fig. 2 illustrates a preferred embodiment of the photodiode structure of the present invention. Fig. 3 illustrates a preferred embodiment in which a complementary metal oxide semiconductor is disposed adjacent to the photodiode structure of the present invention. Figure 4 illustrates one of the photodiode structures of the present invention for receiving a side light source. 16 201003953 A preferred embodiment. Figures 5-9 illustrate a preferred embodiment of the method of forming a photodiode of the present invention. [Main component symbol description] 101 PIN light-detecting diode 110 $ 夕 substrate 120 oxide layer 130 P-doped germanium 140 intrinsic germanium 150 N-doped germanium 161 first electrode region 162 second electrode region 200 light diode structure 201 semiconductor substrate 210 shallow trench isolation 221 P-type doped region 222 N-type doped region 230 trench 231 first semiconductor material 232 second semiconductor material 240 interlayer dielectric layer 251 P-type doped region plug 252 N-type doping Zone plug 260 Complementary MOS 261 P-type MOS 262 N-type MOS semiconductor 270 Light guide 501 Semiconductor substrate 510 Shallow trench isolation 521 P-doped region 522 N-doped region 530 Ditch 531 First semiconductor material 532 Second semiconductor material 540 interlayer dielectric layer 551 P-type doped region plug 552 N-type doped region plug 17 201003953 560 Complementary MOS semiconductor 561 562 N-type MOS semiconductor 570 P-type MOS light guide 18