TW201003343A - Method for processing an aspheric lens mold - Google Patents

Method for processing an aspheric lens mold Download PDF

Info

Publication number
TW201003343A
TW201003343A TW97126268A TW97126268A TW201003343A TW 201003343 A TW201003343 A TW 201003343A TW 97126268 A TW97126268 A TW 97126268A TW 97126268 A TW97126268 A TW 97126268A TW 201003343 A TW201003343 A TW 201003343A
Authority
TW
Taiwan
Prior art keywords
tool
mold
workpiece
processing
coordinate value
Prior art date
Application number
TW97126268A
Other languages
Chinese (zh)
Other versions
TWI416291B (en
Inventor
Wen-Ssu Chiu
Kun-Jung Tsai
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97126268A priority Critical patent/TWI416291B/en
Publication of TW201003343A publication Critical patent/TW201003343A/en
Application granted granted Critical
Publication of TWI416291B publication Critical patent/TWI416291B/en

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The invention provides a method for processing an aspheric lens mold, The method includes the following steps: providing a processing equipment for processing a mold, fixing the mold on a main axis of the processing equipment; driving a knife of the processing equipment to the zero point position of a workpiece coordinate; a numerical control unit of the processing equipment transforms a polar coordinates value of the knife to a workpiece coordinate value, and determines the working point on the mold for the knife; the numerical control unit gets the workpiece coordinate value of a mold hole's the geometric center according to the workpiece coordinate value of the knife, calculating the face shape of the mold hole by according to the polar coordinates value of the knife and the workpiece coordinate value of geometric center of the mold hole and an aspheric formula, and determining immediate feeding quantity of the knife; Supplements emendation to the cutting tool way according to the mold hole's face shape, completes the process of the aspheric surface lens mold.

Description

201003343 九、發明說明: 【發明所屬之技術領域】 . 本發明涉及一種加工方法,特別涉及一種非球面透鏡 . 模具加工方法。 【先前技術】 光學零件注射成型技術中之模具要達到很高之要 求,用一般之機械加工方法無法達到。目前國外大多數模 具製造商均採用超精密單點金剛石車床進行車削或磨削, 再用金剛石研磨膏進行手工拋光來加工模具表面(請參見 “非球面透鏡模具之製造”,張松,《記錄媒體技術》,2007 年第6期,62-64頁),但是此種方法效率低,不利於非球 面透鏡模具之批量生產。然而,其他之方法,如:電火花 加工、電鑄複製及光學修磨等,加工精度很低,因此非球 面透鏡模具之加工變得十分困難。 【發明内容】 有鐘於此,有必要提供一種加工精度好且加工效率高 %, 之非球面透鏡模具加工方法。 一種非球面透鏡模具加工方法,其包括以下步驟:提 供一加工裝置,其用於對待加工模具進行加工,將待加工 模具固定在加工裝置之主轴上,所述主轴帶動加工模具轉 動;驅動加工裝置之刀具進入工件坐標系之原點位置;加 工裝置之數控單元將刀具之極座標值轉化為工件座標值, 並確定刀具在待加工模具上之加工點;數控單元根據刀具 之工件座標值得出待加工模具之一模穴之幾何中心工件座 7 201003343 枯值通過將刀具之極座標值及模穴 值代入到非球面面型公式計算出待加工=:工件座標 並確定刀具之即時進刀量;根據待加工莫之面型, 刀具路徑補正,完成非球面透鏡模具之八之面型對 相較於先前技術,所述之非城j加工。 過非球面面型公式得出非球面模具模具加工方法通 具根據非球面面型對待加工模行肖然後驅動刀 高加工精度和生產效率。 丁 p時切削,可有效提 【實施方式】 以下將結合_對本發明作進 如圖1及圖2所-4. , y之咩細說明。 法包括以下步^ •所不’本發明之非球面透鏡模具加工方 S101,提供—加工裝置,其 之變換。在電機20内有一主轴22,該主轴、2帶動= 行加工,將待加工模具簾固定在加工具100進 所述主軸22帶動待加工模具·轉動。2=轴上, 模具加工裝置還包括:-數控裝置10、球面透鏡 驅動軸14、一 Z軸導執16、一電機20 :具12、一壓電 在Z軸導執16上有—固定壓電驅動軸“。=執24。 軸14相對於待加工模具1〇〇之一端固定有一 4電驅動 述刀具12為鑽石刀頭’具有較強之耐磨性:==所 軸導軌18之方向設置有一 X軸導執24,—電機2〇位^ 軸導軌24上,在X轴導執24内有〜驅動|置可驅動= 機二在移動,實現待加工模具100被加:電 % 201003343 行旋轉。 、定義刀具12與待加工模具之接觸點為刀具12之 中。點刀八12中心點在以工件坐標系原點為極點,以工 件坐標系之X軸正方向為叫之触標系巾之極座標值為 (P ’ Θ) ’所述工件坐標系採用標準右手笛卡兒直角坐標系, 符合右手法則,所述刀具12之極座標值(p,_化後之工 件座標值為(Xm,Ym);每個模穴1GG之幾何中心點在工 件坐標系中之座標值為(Χη,γη)。 S102,驅動加工裝置之刀具12進人卫件坐標系之原 點位置,此時,刀具12之極座標值為(〇,〇)。當轉動主 軸22及移動位於X軸導軌24上之電機加時,刀具12之 極座標值發生改變。 S103,在加工過程中,數控裝置10將刀具12之極座 標值轉化為工件座標值,㈣,其中,Xm 為刀具12在工件坐標系中之橫坐標值,Ym為刀具12在201003343 IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a processing method, and more particularly to an aspherical lens. [Prior Art] The mold in the optical component injection molding technology has to meet high requirements and cannot be achieved by general machining methods. At present, most foreign mold manufacturers use ultra-precision single-point diamond lathes for turning or grinding, and then use diamond polishing paste for manual polishing to process the mold surface (see "Manufacture of aspherical lens molds", Zhang Song," Recording Media Technology, No. 6, 2007, pp. 62-64), but this method is inefficient and is not conducive to mass production of aspheric lens molds. However, other methods, such as EDM, electroforming, and optical grinding, have low processing accuracy, so the processing of aspherical lens molds becomes very difficult. SUMMARY OF THE INVENTION In view of this, it is necessary to provide an aspherical lens mold processing method with high processing precision and high processing efficiency. An aspherical lens mold processing method, comprising the steps of: providing a processing device for processing a mold to be processed, fixing the mold to be processed on a main shaft of the processing device, the spindle driving the processing mold to rotate; driving the processing device The tool enters the origin position of the workpiece coordinate system; the numerical control unit of the processing device converts the polar coordinate value of the tool into the workpiece coordinate value, and determines the machining point of the tool on the mold to be processed; the numerical control unit is worthy of processing according to the workpiece coordinate of the tool The geometric center of the mold cavity is the workpiece center 7 201003343 The dry value is calculated by substituting the pole coordinate value and the cavity value of the tool into the aspherical surface formula =: the workpiece coordinate and determining the instantaneous feed amount of the tool; The surface shape of the machine is corrected, the tool path is corrected, and the surface type of the aspherical lens mold is completed. Compared with the prior art, the non-town j processing is described. The aspherical surface type formula is obtained by the aspherical surface mold processing method. The mold is processed according to the aspherical surface type and then the cutter is driven to high machining precision and production efficiency. The cutting can be effectively carried out in the case of dicing p. [Embodiment] The present invention will be described in conjunction with the present invention as shown in Fig. 1 and Fig. 2, and y. The method includes the following steps: • The aspherical lens mold processing unit S101 of the present invention provides a processing apparatus and a conversion thereof. Inside the motor 20, there is a main shaft 22, which is driven by the main shaft, and is driven by the processing tool 100 to fix the mold curtain to be inserted into the main shaft 22 to drive the mold to be processed and rotated. 2= On the shaft, the mold processing device further comprises: - numerical control device 10, spherical lens drive shaft 14, a Z-axis guide 16, a motor 20: with 12, a piezoelectric on the Z-axis guide 16 - fixed pressure The electric drive shaft ". = hold 24. The shaft 14 is fixed with a 4 electric drive relative to one end of the mold to be machined. The cutter 12 is a diamond cutter head' with strong wear resistance: == direction of the shaft guide 18 An X-axis guide 24 is provided, the motor 2 is clamped on the shaft guide rail 24, and there is a drive in the X-axis guide 24; the drive can be driven = the machine 2 is moving, and the mold 100 to be processed is added: electricity % 201003343 The rotation of the line defines the contact point between the tool 12 and the mold to be processed as the tool 12. The center point of the point knife is 12, and the origin of the workpiece coordinate system is the pole, and the positive direction of the X coordinate of the workpiece coordinate system is called the touch. The polar coordinate value of the towel is (P ' Θ) 'The workpiece coordinate system adopts the standard right-handed Cartesian rectangular coordinate system, which conforms to the right-hand rule, and the coordinate value of the tool 12 (p, _ after the workpiece coordinate value is ( Xm, Ym); the geometric center point of each cavity 1GG is the coordinate value in the workpiece coordinate system (Χη, γη) S102, the tool 12 driving the processing device enters the origin position of the coordinate system of the human body. At this time, the polar coordinate value of the tool 12 is (〇, 〇). When the spindle 22 is rotated and the motor on the X-axis guide 24 is moved, the motor is added. The polar coordinate value of the tool 12 is changed. S103, during the machining process, the numerical control device 10 converts the polar coordinate value of the tool 12 into a workpiece coordinate value, (4), where Xm is the abscissa value of the tool 12 in the workpiece coordinate system, Ym For the cutter 12

/工件坐標系中之縱坐標值,p為刀具12在極坐標系中之極 仫Θ為刀具12在極坐標系中之極角。數控裝置根據 12之工件座私值確疋刀具12在待加工模具1⑻上之 加工點。 S104,當刀具12進入待加工模具1〇〇之模穴1〇1區 或時數控裝置10通過將刀具12之工件座標值與模穴皿 =工件座值範圍之對比,得出待加工模具⑽之模穴皿 成何中心座標值(Xn,Yn)。如圖3所示,當待加工模旦 _不斷旋轉時,刀具12先後經過模穴ι〇ι上兩個不同工 件座標值之加卫點Α和加4 Β,在這侧㈣刀具Η 9 201003343 之極座標值發生改變,數控裝置10不斷之將刀具12之極 座標值轉化為工件座標值,當刀具丨2經過加工點A時, , 轉化後之刀具12之工件座標值就是力π工點A之工件座標 值’同理,當刀具12經過加工點B時,轉化後之刀具12 之工件座標值就是加工點B之工件座標值,刀具12之轉 化後之每一個工件座標值與待加工模具1〇〇上之加工點一 一相對應;數控裝置10將刀具12之工件座標值與模穴ι〇1 之工件座標值範圍進行比對’就可判斷出刀具12進入了哪 一個模穴101之加工範圍,以及這個模穴101之幾何中心 座標值,數控裝置10就可以準確之根據模穴101幾何中心 座標值(Xn,Yn)、刀具12之極座標值(ρ,Θ)及一非球 面面型公式計算出刀具12之進刀量。 非球面面型公式: ζ—γ=£Ζ£!=_+α4 *r4+a *r6+a*r8+a〇*rw..........(l) ^+^i~(nk)*c2*R2 其中,Z是以垂直於光軸且經過透鏡光學中心之平面 l 為參考面,垂直方向上距離光軸為R處沿光軸方向之位移 值’ C是曲率半徑,r為鏡片高度,K為圓錐定數(Coin Constant ) ,Ai 為 i 次之非球面係數(i-th order Aspherical/ The ordinate value in the workpiece coordinate system, p is the pole of the tool 12 in the polar coordinate system 仫Θ is the polar angle of the tool 12 in the polar coordinate system. The numerical control device determines the machining point of the tool 12 on the mold 1 (8) to be processed based on the workpiece value of the workpiece. S104, when the cutter 12 enters the cavity 1〇1 area of the mold to be processed, the numerical control device 10 obtains the mold to be processed by comparing the workpiece coordinate value of the cutter 12 with the mold pocket=workpiece value range. The central coordinate value of the cavity is (Xn, Yn). As shown in Fig. 3, when the mold to be processed is continuously rotated, the cutter 12 passes through the two points of the different workpiece coordinate values of the mold point ι〇ι and the addition of 4 Β, on this side (four) the cutter Η 9 201003343 The pole coordinate value is changed, and the numerical control device 10 continuously converts the polar coordinate value of the tool 12 into the workpiece coordinate value. When the tool 丨 2 passes the machining point A, the workpiece coordinate value of the converted tool 12 is the force π work point A. The coordinate value of the workpiece is the same. When the tool 12 passes the machining point B, the coordinate value of the workpiece of the converted tool 12 is the workpiece coordinate value of the machining point B. The coordinate value of each workpiece after the transformation of the tool 12 and the mold to be processed 1 The machining points on the cymbal correspond to each other; the numerical control device 10 compares the workpiece coordinate value of the tool 12 with the workpiece coordinate value range of the cavity ι 〇 1 to determine which cavity 101 the tool 12 has entered. The processing range, and the geometric center coordinate value of the cavity 101, the numerical control device 10 can accurately determine the geometric center coordinate value (Xn, Yn) of the cavity 101, the polar coordinate value (ρ, Θ) of the tool 12, and an aspherical surface. Type formula 12 the amount of feed. Aspherical surface formula: ζ—γ=£Ζ£!=_+α4 *r4+a *r6+a*r8+a〇*rw..........(l) ^+^i ~(nk)*c2*R2 where Z is the reference plane perpendicular to the optical axis and passing through the optical center of the lens, and the displacement value along the optical axis from the optical axis R in the vertical direction is the radius of curvature , r is the height of the lens, K is the conical constant (Coin Constant ), and Ai is the aspherical coefficient of i times (i-th order Aspherical)

Coefficient)。 所述非球面高度值Λ = _ χηγ + (ym _ γηγ ; ( 2 ) 通過將公式(2)代入公式(1)得出一全部由已知量 組成之非球面面型公式,數控裝置10根據刀具12極座標 值和待加工模具100之模穴101之幾何中心座標值,計算 出模穴1 101非球面面型,並驅動壓電驅動軸14作快速回 201003343 應,帶動刀具12根據非球面面型對模穴101進行切削,所 述之驅動壓電驅動軸14之最大移動頻率為400HZ,最大 移2距離為7()um。通過對模穴1。1非球面面型之計算,則 確定了刀具12之進刀量,且壓電驅動軸14具有較快之移 動頻率大之移動距離,可有效之減少刀具12之回應時 門提同切削精度。在本實施方式中,可以通過設定壓電 f動轴U之回應頻率,控制刀具12在對模穴1〇1某-點 力:定之時間後自動退刀,準備對下一點進行加工,通 過對某-點之多次進刀完成對其之加工。 诚通過路馒補正方法可進—步提高加工精度,所 :之二正:去疋由於刀具12之刀頭並非無限小,存在-接觸時仫^田刀碩之切點與待加工模具100之模穴101相 =導:周之點可能會與模穴101之間存在-定之 之一種方、& ^精度變差’而對刀具12走刀路徑進行優化 對刀頭四周之點進行„通過非球面面型公式即時 否會存在干涉現象,=异,確定刀具12之進刀量’判斷是 面面型上相對·刀碩四周存在—點之高度小於非球 上各點最大干朗存在干涉,於是就根據刀頭 度與非球面面型上土 =退刀,所述干涉量為刀頭四周之高 即時偵測可選擇〜對點之高度之差值。通過對干涉量之 存在干涉之位置^碩上各點都不存在干涉之切點對先前 效提高形狀精度。仃切削’通過對刀具12之路徑補正可有 並且可有效提高 工, 通過本方法可實 非球面模具之加工,译/非球面之加 積度和加工效率。 11 201003343 綜上所述,本發明符合發明專利要件,爰依法提出專 利申請。惟,以上所述者僅為本發明之較佳實施方式,本 發明之範圍並不以上述實施方式為限,舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係本發明實施方式非球面透鏡模具加工方法流程 圖; : 圖2係本發明實施方式非球面透鏡模具加工方法之加 工裝置示意圖; 圖3係本發明實施方式非球面透鏡模具加工方法原理 示意圖。 【主要組件符號說明】 模具 100 模穴 101 數控裝置 10 刀具 12 壓電驅動軸 14 Z軸導軌 16 電機 20 主軸 22 X轴導執 24 12Coefficient). The aspherical height value Λ = _ χ γ γ + (ym _ γ η γ; ( 2 ) by substituting the formula (2) into the formula (1) to obtain an aspherical surface type formula which is all composed of known quantities, the numerical control device 10 is based on The tool 12 polar coordinate value and the geometric center coordinate value of the cavity 101 of the mold 100 to be processed, the cavity 1 101 aspherical surface type is calculated, and the piezoelectric drive shaft 14 is driven to quickly return to 201003343, and the cutter 12 is driven according to the aspherical surface. The type cuts the cavity 101, and the maximum moving frequency of the piezoelectric driving shaft 14 is 400HZ, and the maximum moving distance is 7 () um. By calculating the aspherical surface of the cavity 1. The cutting amount of the cutter 12 and the piezoelectric drive shaft 14 have a moving distance with a relatively fast moving frequency, which can effectively reduce the cutting accuracy of the tool when the tool 12 is responded. In the present embodiment, the setting pressure can be set. The response frequency of the electric f-axis U, the control tool 12 automatically retracts after a certain time to the cavity 1〇1: a predetermined time, ready to process the next point, through multiple injections of a certain point Its processing. Cheng can be improved through the road correction method - Steps to improve the machining accuracy, the second: Zheng: Because the cutter head of the cutter 12 is not infinitely small, there is a contact point when the contact point of the 田^田刀硕 is the same as the mold cavity 101 of the mold 100 to be processed = guidance: the point of the week Between the cavity 101 and the cavity 101, there may be a certain square, & ^ precision deterioration ', and the tool 12 path is optimized to the point around the tool head. „After the aspherical surface formula, there will be interference immediately. Phenomenon, = different, determine the amount of cutting of the tool 12 'judgment is the face type relative · the knife is around the same - the height of the point is less than the maximum dry interference of the points on the aspheric ball, so according to the degree of the head and the aspheric surface The surface type of soil = retracting, the interference amount is the height of the periphery of the cutter head. The instantaneous detection can select the difference of the height of the pair of points. There is no interference in the position of the interference by the interference of the interference amount. The cutting point improves the shape accuracy for the prior effect. The 仃 cutting 'can be corrected by the path of the tool 12 and can effectively improve the work. The method can be used for the processing of the aspherical mold, the translation/aspheric addition degree and the processing efficiency. 11 201003343 In summary The invention is in accordance with the invention patent requirements, and the patent application is filed according to the law. However, the above description is only a preferred embodiment of the present invention, and the scope of the present invention is not limited to the above embodiments, and those who are familiar with the skill of the present invention are assisted by the invention. The equivalent modifications or variations of the spirit of the present invention are intended to be included in the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart of a method for processing an aspherical lens mold according to an embodiment of the present invention; FIG. 2 is a view of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 3 is a schematic view showing the principle of aspheric lens mold processing method according to an embodiment of the present invention. [Main component symbol description] Mold 100 cavity 101 Numerical control device 10 Tool 12 Piezoelectric drive shaft 14 Z-axis guide 16 motor 20 spindle 22 X-axis guide 24 12

Claims (1)

201003343 . 十、申請專利範圍 1 · 一種非球面透鏡模具加工方法,其包括以下步驟:提供 • 一加工裝置,其用於對待加工模具進行加工,將待加工模 - 具固定在加工裝置之主軸上,所述主軸帶動加工模具轉 動;驅動加工裝置之刀具進入工件坐標系之原點位置;加 工裝置之數控單元將刀具之極座標值轉化為工件座標值, 並確定刀具在待加工模具上之加工點;數控單元根據刀具 之工件座標值得出待加工模具之一模穴之幾何中心工件座 標值,通過將刀具之極座標值及模穴之幾何中心工件座標 值代入到非球面面型公式計算出待加工模具模穴之面型, 並確定刀具之即時進刀量;根據待加工模具模穴之面型對 刀具路徑補正,完成非球面透鏡模具之加工。 2. 如專利申請範圍第1項所述之非球面透鏡模具加工方 法,其中:所述路徑補正步驟為加工過程中根據刀具上各 點與待加工模具之間之位置關係,判斷刀具與待加工模具 之間是否存在干涉,如果存在干涉就按刀具上各點最大干 ' 涉量進行退刀。 3. 如專利申請範圍第1項所述之非球面透鏡模具加工方 法,其中:所述工件坐標系採用標準右手笛卡兒直角坐標 系,符合右手法則;所述極坐標系,是以原點為極點,以 工件坐標系之X軸正方向為極軸。 4. 如專利申請範圍第1項所述之非球面透鏡模具加工方 法,其中:通過公式Zm = pcos0,7m = psin0將刀具之極座標值 轉化為工件座標值,其中,Xm、Ym分別為刀具在工件坐 13 201003343 標系中之橫、縱坐標值,p為刀具在極坐標系中之極徑,θ 為刀具在極坐標系中之極角。 -5·如專利申請範圍第1項所述之非球面透鏡模具加工方 - 法,其中:所述非球面面型公式中鏡片高度值 Λ = ,其中,Xm、Ym分別為刀具在工件坐 標系中之橫、縱坐標值,Xn、Yn為每個待加工模穴之幾 何中心在工件坐標系中之橫、縱坐標值。201003343 . X. Patent Application No. 1 · An aspherical lens mold processing method comprising the following steps: providing: a processing device for processing a mold to be processed, and fixing the mold to be processed on a spindle of the processing device The spindle drives the processing die to rotate; the tool driving the processing device enters the origin position of the workpiece coordinate system; the numerical control unit of the processing device converts the polar coordinate value of the tool into the workpiece coordinate value, and determines the machining point of the tool on the mold to be processed The numerical control unit calculates the coordinate value of the geometric center workpiece of one of the molds according to the workpiece coordinate of the tool, and calculates the workpiece to be processed by substituting the polar coordinate value of the tool and the geometric center workpiece coordinate value of the cavity into the aspherical surface formula. The shape of the mold cavity is determined, and the instantaneous feed amount of the cutter is determined; the cutter path is corrected according to the shape of the mold cavity to be processed, and the processing of the aspherical lens mold is completed. 2. The aspherical lens mold processing method according to claim 1, wherein: the path correction step is to determine a tool and a workpiece to be processed according to a positional relationship between each point on the tool and the mold to be processed during the machining process. Whether there is interference between the molds, if there is interference, the tool is retracted according to the maximum dryness of each point on the tool. 3. The aspherical lens mold processing method according to claim 1, wherein: the workpiece coordinate system adopts a standard right-handed Cartesian rectangular coordinate system, which conforms to a right-hand rule; and the polar coordinate system is an origin For the pole, the positive direction of the X-axis of the workpiece coordinate system is the polar axis. 4. The method for machining an aspherical lens mold according to the first aspect of the patent application, wherein: the coordinate value of the tool is converted into a workpiece coordinate value by a formula Zm = pcos0, 7m = psin0, wherein Xm and Ym are respectively Workpiece sitting 13 201003343 The horizontal and vertical coordinate values in the standard system, p is the polar diameter of the tool in the polar coordinate system, and θ is the polar angle of the tool in the polar coordinate system. The method of processing aspheric lens mold according to claim 1, wherein: the lens height value Λ = in the aspherical surface formula, wherein Xm and Ym are respectively the tool coordinate system The horizontal and vertical coordinate values, Xn and Yn are the horizontal and vertical coordinate values of the geometric center of each cavity to be processed in the workpiece coordinate system.
TW97126268A 2008-07-11 2008-07-11 Method for processing an aspheric lens mold TWI416291B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97126268A TWI416291B (en) 2008-07-11 2008-07-11 Method for processing an aspheric lens mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97126268A TWI416291B (en) 2008-07-11 2008-07-11 Method for processing an aspheric lens mold

Publications (2)

Publication Number Publication Date
TW201003343A true TW201003343A (en) 2010-01-16
TWI416291B TWI416291B (en) 2013-11-21

Family

ID=44825520

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97126268A TWI416291B (en) 2008-07-11 2008-07-11 Method for processing an aspheric lens mold

Country Status (1)

Country Link
TW (1) TWI416291B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613188B (en) * 2013-04-05 2018-02-01 帕萊斯化學股份有限公司 Water-soluble cutting fluid for fixed honing granule saw, cutting method using the same, and substrate for electronic material obtained therefrom
CN112394432A (en) * 2020-11-10 2021-02-23 中国科学院空天信息创新研究院 Method for processing special-shaped curved surface prism
CN114952425A (en) * 2022-05-27 2022-08-30 南方科技大学 Processing method and processing equipment for aspheric surface by linear blade pair

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112486091B (en) * 2020-11-27 2022-02-11 江苏科技大学 Method for machining key hole series of medium-low speed diesel engine

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4895677B2 (en) * 2006-05-19 2012-03-14 パナソニック株式会社 3-axis tool unit and processing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI613188B (en) * 2013-04-05 2018-02-01 帕萊斯化學股份有限公司 Water-soluble cutting fluid for fixed honing granule saw, cutting method using the same, and substrate for electronic material obtained therefrom
CN112394432A (en) * 2020-11-10 2021-02-23 中国科学院空天信息创新研究院 Method for processing special-shaped curved surface prism
CN114952425A (en) * 2022-05-27 2022-08-30 南方科技大学 Processing method and processing equipment for aspheric surface by linear blade pair

Also Published As

Publication number Publication date
TWI416291B (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5032049B2 (en) A method for automatic calibration of the tool (s), especially in a tool turning device used for the manufacture of ophthalmic lenses
US6623339B1 (en) Lens processing device, lens processing method, and lens measuring method
CN104290002B (en) A kind of processing method of cylindrical mirror
CN102773503B (en) Single point diamond lathe and method for machining special-shape workpiece
CN102248451B (en) Relief angle adjustable device for automatic grinding of arc-edge diamond lathe tool
CN102161169A (en) Small-caliber aspherical composite precise processing method
CN104864811B (en) A kind of complex-curved in-situ measuring method of blade
TW201003343A (en) Method for processing an aspheric lens mold
CN104551894A (en) Processing method of L-shaped ZnSe (zinc selenide) turning prism
CN201872026U (en) Double-grinding-head thermal extension noncontact measuring mechanism of guide rail shaping grinding machine
Feng et al. Fabrication of freeform progressive addition lenses using a self-developed long stroke fast tool servo
CN201881150U (en) Aspheric lens numerical control turning and milling composite machine tool
CN113977383B (en) Deburring device for machining
CN106514147B (en) A kind of type face precision machining method of high temperature alloy compressor blade
JP2008272861A (en) Tool position measuring method, tool position measuring system and machining method
CN108044129A (en) Ultra-precise turning method for high-gradient inner-outer cavity conformal optical element
CN102962741B (en) Pipe orifice grinding device and method for grinding pipe orifice by applying pipe orifice grinding device
CN101620282B (en) Method for processing aspherical lens module
CN102059652A (en) Thermal-elongation non-contact measuring mechanism of double grinding heads of guiding rail forming grinding machine
CN102248467B (en) Numerical control polishing method for blade edge plate and blade transitional arc part
CN114393519B (en) Target distance adjustable nozzle and method suitable for grinding material water jet steel rail grinding
CN201862780U (en) Aspheric lens numerical control lathe
CN102284834A (en) Processing technique for positioning golf head
CN109434275A (en) A kind of transparent material surface laser processing auxilary focusing method
CN113626953A (en) High-energy-efficiency milling error dynamic distribution characteristic identification method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees