TW201001764A - Electrostrictive composite material and method for making the same - Google Patents

Electrostrictive composite material and method for making the same Download PDF

Info

Publication number
TW201001764A
TW201001764A TW97123095A TW97123095A TW201001764A TW 201001764 A TW201001764 A TW 201001764A TW 97123095 A TW97123095 A TW 97123095A TW 97123095 A TW97123095 A TW 97123095A TW 201001764 A TW201001764 A TW 201001764A
Authority
TW
Taiwan
Prior art keywords
composite material
electrostrictive composite
electrostrictive
ceramic particles
carbon nanotubes
Prior art date
Application number
TW97123095A
Other languages
Chinese (zh)
Other versions
TWI398972B (en
Inventor
Lu-Zhuo Chen
Chang-Hong Liu
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW97123095A priority Critical patent/TWI398972B/en
Publication of TW201001764A publication Critical patent/TW201001764A/en
Application granted granted Critical
Publication of TWI398972B publication Critical patent/TWI398972B/en

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention relates to an electrostrictive composite material. The electrostrictive composite material includes a flexible polymer base, and a plurality of carbon nanotubes dispersed therein. Further, the electrostrictive composite material includes a plurality of ceramic particles dispersed in the flexible polymer base. Moreover, the present invention also provides a method of making the above-described electrostrictive composite material.

Description

201001764 九、發明說明: 【發明所屬之技術領域】 ' 本發明涉及一種電致伸縮複合材料及其製備方法,尤 其涉及一種包含有奈米碳管的電致伸縮複合材料及其製備 方法。 【先前技術】 電致伸縮複合材料係在電場的作用下能産生伸縮運 動,從而實現電能-機械能轉換的一種材料。電致伸縮複合 材料由於其電能-機械能轉換中類似肌肉的運動形式又被稱 爲人工肌肉材料。先前技術中的基於電致伸縮複合材料的 電能-機械能轉化的材料和器件中,所述的電致伸縮複合材 料主要係以單組分的材料形成,其驅動電壓較高、輸出應 力較小,使得其性能與肌肉相比還有較大的差距。 奈米石炭管紙(請參見“Carbon Nanotube Actuators”, Ray H. Baughman,et al.,Science,vol 284,pl340 (1999))或 含有奈米碳管的複合材料等經常被用來製備所述電致伸縮 、 複合材料。請參閱圖1,爲先前技術的奈米柔性電熱材料 10。所述奈米柔性電熱材料包括柔性高分子基底材料14及 分散在柔性高分子基底材料14中的大量奈米碳管12。奈米 碳管12互相搭接在柔性高分子基底材料14中形成大量導電 網絡,從而奈米柔性電熱材料10可以導電,通電以後可發 熱,發熱後,所述的奈米柔性電熱材料10體積發生膨脹。 其中,在沿奈米柔性電熱材料10的電流流過的方向上,會 産生一較大的形變。然,上述的奈米柔性電熱材料10通常 採用將分散好的奈米碳管溶液與所述的高分子材料的預聚 6 201001764 物溶液混合,之後通過聚合固化形成。然而,由於在所述 奈米柔性電熱材料ίο中的奈米碳管12易發生團聚,從而使 得奈米碳管12在所述奈米柔性電熱材料1〇中分散不够均 勻。故,使得所述的奈米柔性電熱材料1〇在響應速率、導 電性以及應力等方面還有待進一步地提高。 有馨於此,提供-種響應速率快及能提供較大應力的 電致伸縮複合材料及其製備方法實為必要。 【發明内容】 -種電致伸縮複合材料’其包括:一柔性高分子基底, 分散在所述柔性高分子基底中的多個奈来碳管。其中,所 述電致伸縮複合材料還進—步包括分散在所述柔性高分子 基底中的多個陶瓷顆粒。 一種電致伸縮複合材料的製備方法,其包括以下步 驟:混合一奈米碳管、陶:光顆粒及柔性高分子的第一組分 形成-混合物’並用-可揮發性溶劑溶解上述的混合物, 從而形成-含有奈米碳管和陶竞顆粒的溶液;超聲破碎處 理上述的奈米碳管和陶究顆粒的溶液,並超聲清洗處理上 述含有奈米碳管和㈣顆粒的溶液;加熱上述超聲處理後 的溶液,揮發掉溶液中的溶劑,形成—含有分散了的奈 碳管和陶竟顆粒的混合物;將柔性高分子的第二組分加入 到上逑經加熱處理過的混合物中,㈣混合反應後,形成 -複合物’並將該複合物塗覆至一支撑體的表面;及脫泡 處理所述塗覆有複合物的支撑體,除去支撑體後形成所述 的電致伸縮複合材料。 < 與先前技術相比較,所述電致伸縮複合材料及其製備 7 201001764 .方法具有以下優點··其一,由於所述電致伸縮複合材料中 除包括分散的奈米碳管,還包括大量的均勻分布的陶瓷顆 粒所述陶瓷顆粒具有較高的熱導率和耐高溫特性,因而 I&尚所述的電致伸縮複合材料的傳熱效率,加快響應速 率。其二,由於陶瓷顆粒的機械性能好和高彈性模量的優 點,故,陶究顆粒的引入可提高所述電致伸縮複合材料的 彈性模量,在同樣的應變下獲得更大的應力。其三,由於 陶究顆粒具有高電阻率、低介電常數以及低介電損耗等電 學性能,因而在所述電致伸縮複合材料中捧入一定量的陶 究顆粒,可調節所述的電致伸縮複合材料的導電性能,。 需施加較小的電壓即可獲得理想的形變,因而降低了所述 電致伸縮複合材料的使用電壓。其四,在形成所述的電致 伸縮複合材料的過程中,通過採用超聲破碎處理從而使得 所述奈米碳管和陶竞顆粒在所述電致伸縮複合材料中得到 很好的分散。 【實施方式】 :下將結合附圖對本技術方案作進—步的詳細說明。 研參閱圖2,本技術方案實施例所提供一種 複合材料2〇’其包括—柔性高分子基底仏均勻分散在所 述柔性尚分子基底中的多個奈来碳管2 4,及均勻分散在所 述柔性高分子基底22中的多個陶竞顆粒26。所述夺米碳 管24在所料橡膠基底中均勻分布,奈米碳管、互相搭 接在柔性高分子基底22中形成大量導電網絡。柔性高分子 基底20可選自石夕橡膠彈性體、聚氨脂、環氧樹脂、聚甲基 201001764 丙稀酸甲醋中的一種及其任意組合。所述陶兗顆粒26可選 自氮化鋁、氧化鋁、氮化硼中的一 、 致 料20中n: #奈米碳管24在所述電致伸縮複合材 26的質; 致伸縮:::料 二可爲早壁奈米碳管、雙壁奈米碳管及 二 中的一種及其任音細人 《吐▲ 少土不木反& 〜50今米,雙卷太口’不米碳管的直徑爲〇.5奈米 太乎::C 管的直徑爲U奈米〜50奈米,多壁 不未石厌管的直徑爲1.5奈米〜50奈米。 夕壁 奈米ίΓΓϊ:::述柔性高分子基底材料1〇爲梦橡膠, 微米。所= 的長一 電致伸縮材料20的4%,太半二t百刀比含1爲整個 爲整個電致伸縮材料2。的官24的質量百分比含量 陶咖二具顆有 作:爲:其7由於所述氮化銘等 高所述電致伸縮複Γ材料熱導率和耐高温等特性,因而可提 伸縮複合材料的相L速率,傳熱=銘並等加快所述電致 具有高電阻垄,入 ,、一亂化鋁荨陶瓷顆粒% 丰、低介電常數及介電損耗等良好的電學性 201001764 能,故’摻入上述的陶瓷顆粒26後 合材料20的導電性進行調 ^料電致伸縮複 拉26具有機械性能好和高彈 陶是顆 的陶究顆粒26後,可提高所㈣^ 推入上述 柹捃曰.^ ^ 义电双1甲細複合材料20的彈 Η莫置,在同㈣應變下獲得更大的應力。 將兩電極設置於所述電致伸縮複合材料2〇 ^夺此^電壓通過電極施加於所述電致伸縮複 〇 ’電流可通過上述的導電網絡進行傳輸。由於夺 未石…4和陶究顆粒26的熱導率很高,從而使得所述電 致伸縮複合材料20的溫度快速升古 石山势μ Ba 又厌逯升同,進而,使得所述奈米 二吕24之間㈣橡膠處於熔融狀態,而所述電致伸縮複合 材料20的電流隨著其溫度的升高而增大,即形成了 一個正 回饋的過程。由於熱量從所述電致伸縮複合材料加的微觀 局部快速地向整個電致伸縮複合材料2()擴散,這樣,由於 熱膨脹,會引起所述電致伸縮複合材料2〇的伸展現象。由 於本實施财的奈米碳管24和料顆粒26在電致伸縮複 口材料20中分布較爲均勻’因此所述電致伸縮複合材料 20的響應速度較快且具有較大的伸縮率。具體地,本實施 例中,所述電致伸縮複合材料2〇的伸縮率爲1%〜8%。 可以理解’當所述電致伸縮複合材料2〇製備成具有一 定形狀的樣品時,當在所述樣品上施加一定電壓時,由於 電荷在所述電致伸縮複合材料2〇中的電流延伸的方向上 不斷積累,從而使得所述電致伸縮複合材料2〇延所述電流 延伸的方向上産生一明顯的形變。而在與所述電流延伸方 201001764 $垂直的方面上所述的形變不明顯,從而所述電致伸縮複 ^材料20進行收縮時,可看作爲—線性收縮。因而當需要 制一線性收縮的電致伸縮複合材料2()時,可直接使用 =例提供的電致伸縮複合材料2(),無需其他複雜設計便可 實現線性收縮和彎曲,降低了製作卫藝的難度和製作成本。 對本實施例所述的電致伸縮複合材料2〇進行伸縮特 =量。通過導線將電源(未標示)㈣施加於所述電致 伸縮複合材料2〇的兩端。 在未通電時,測得所述長方體電致伸縮複合材料⑼ 、原始長度L1爲4厘米;施加—4〇伏特的電壓2分鐘後, ^导所述長方體電致伸縮複合材料2()的長度u爲η厘 材料m鼻可知’在通電後,所述長方體電致伸縮複合 八材料%度變化^爲〇.2厘米。故’所述電致伸縮複 ; 的伸縮率爲通電前後所述電致伸縮複合材料20 的長度變化AL與所述電致伸縮複合材料的原始長度L1 的比值,即5%。 進步地,還可在本實施例所述的電致伸縮複合材料 2〇的上下表面分別設置—石夕橡膠薄層,從而形成一三明治 j跌即本實施例所述的電致伸縮複合材料2G夾在兩個 >溥㈢之間。其中,所述矽橡膠薄層的厚度爲所述電 致伸縮複^材料2G的。由於⑪橡膠薄層和所述電 致伸縮複合材料2Q中的高分子基底22成分相同,因此石夕 橡:f層和電致伸縮複合材料2G的接觸面上會形成很好 ' 在元成相同厚度的電致伸縮複合材料時,本實施 11 201001764 ,例所述的三明治結構的電致伸縮複合材料在保持較好的電 .致伸縮特性,節省了奈米碳管和陶瓷顆粒的用量,節約了 成本。另外,由於所述的矽橡膠薄層具有較好的絕緣性, 故可在需要絕緣的電致伸縮複合材料情况下使用。可以理 解,本實施例所述的電致伸縮複合材料2〇,還可根據上述 的原理,設置成一具有多層結構的電致伸縮複合材料,且 各層的設置方式及厚度可以根據實際需要進行調整。 請參閱圖3’本實施例所述的電致伸縮複合材料2〇的 製備方法,包括以下步驟: 步驟一:混合奈米碳管24、陶瓷顆粒26及矽橡膠的 第組分(A組分)形成一混合物,並用一可揮發性溶劑溶 解上述的混合物,從而形成一含有奈米碳管24和陶瓷顆粒 26的溶液。 本實施例中,首先將矽橡膠的A組分與奈米碳管22 =陶瓷顆粒24進行混合,之後,加入適量的乙酸乙酯,使 得矽橡膠A組分完全溶解,並形成一含有的奈米碳管24 和陶瓷顆粒26的溶液。所述的矽橡膠係由GF-T2A彈性電 子灌封膠A、B兩組分按A:B的質量比爲1〇〇:6混合反應 生ί 1本實施例中,矽橡膠22在電致伸縮複合材料20中 的=置比爲91% ’奈米碳管在電致伸縮複合材料20中的 質量比爲5%,陶瓷顆粒在電致伸縮複合材料2〇中的質量 比爲4%。 步驟二:超聲破碎處理上述的奈米碳管24和陶瓷顆粒 的办/夜’並超聲清洗處理上述含有奈米碳管24和陶竟 12 201001764 顆粒26的溶液。 具體地,用超聲波細胞破碎儀超聲處理上述的奈米碳 管24和陶兗顆粒26的溶液10分鐘;之後,用保鮮膜將上 述的奈米碳管24和陶瓷顆粒26的溶液密封起來,並將密 封後的奈米碳管24和陶瓷顆粒26的溶液放入超聲波清洗 機中超聲處理3小時,從而使得上述的奈米碳管24和陶瓷 顆粒26可在上述的溶液中得到較好的分散。其中,超聲波 破碎處理可使得奈米碳管24和陶瓷顆粒26的受到一定程 度的破碎,從而减小尺寸。超聲清洗處理可進一步將奈米 碳管24和陶瓷顆粒26分散到溶液中。 步驟三:加熱上述超聲處理後的溶液,揮發掉溶液中 的溶劑,形成一奈米碳管24、陶瓷顆粒26以及矽橡膠的 第一組分均勻分散的混合物。 具體地,上述經超聲處理後的溶液冷却至室溫時,將 上述的溶液放入一 80攝氏度恒溫的烘箱中進行加熱,一直 加熱至溶液中的乙酸乙酯完全揮發,形成一奈米碳管24、 陶瓷顆粒26以及矽橡膠的第一組分均勻分散的混合物。 步驟四:將矽橡膠的第二组分(B組分)加入到上述經 加熱處理過的混合物中,攪拌混合反應後,形成一複合物, 並將該複合物塗覆至一支撑體的表面。 具體地,冷却上述經加熱處理後的混合物至室溫後, 將矽橡膠的B組分加入到上述的溶液中,並用玻璃棒進行 攪拌,從而使得矽橡膠B組分和矽橡膠A組分混合均勻, 以便於進行充分反應。之後,將上述反應後形成的複合物 13 201001764 用一玻璃棒塗覆至一支撑體的表面,輕輕震蕩上述的支撑 體’從而使得所述混合物均勻分布於所述支撑體的表面。 其中’所述支撑體可爲矽基片、玻璃基板等,只需具有一 定的支撑作用即可’可根據實際需要進行相應的選擇。 步驟五:脫泡處理所述塗覆有複合物的支撑體,除去 支撑體後形成所述的電致伸縮複合材料2〇。 具體地,將塗覆有所述複合物的支撑體放置於一真空 裝置中進行抽真空,從而除去所述複合物中的氣泡。爲使 得本實施例所製備的電致伸縮複合材料具有光滑的表面, 本實施例採用一具有光滑表面的微孔濾膜對上述的電致伸 縮複合材料進行擠壓,通過擠壓可將複合物均勻地且平整 地塗覆於所述支撑體的表面。靜置12~18個小時後,用一 刀片對上述的微孔濾膜的邊緣進行切割,從而確保最終得 到的電致伸縮複合材料的邊緣連續無破損和無缺口,之 後’將整個電致伸縮複合材料從支撑體的表面緩慢地揭起 另外,本實施例可進-步在所述電致伸縮複合材料2〇 的上下表面分別形成一矽橡膠薄層,從而形成一個三明户 結構。所述三明治結構的製備方法爲:將發橡膠的第一: 分溶於-揮發性溶劑中,形成—溶液;財橡膠的第二植 ㈣於所述溶液中,形成—料膠預㈣溶液;將料電 致伸k複合㈣2G浸人到所財橡_聚物溶液中,靜置 固化所述的矽橡膠預聚物溶液, 的上下表面形成所料橡㈣層材料 /诼胗潯層。由於矽橡膠薄層與電 14 201001764 致伸縮複合材料20中的矽橡膠基底22材料相同,因而, 可將上述的電致伸縮複合材料20直接放入到矽橡膠預聚 物溶液中形成所述的三明治結構,故,方法簡單、易於應 用0 本技術方案實施例所述的電致伸縮複合材料2〇及其 製備方法具有以下優點:其一,由於所述電致伸縮複合材 料20中除包括分散的奈米碳管24,還包括大量的均勻分 布的陶瓷顆粒26。所述陶瓷顆粒26具有較高的熱導率和 耐兩溫特性’因而可提高所述的電致伸縮複合材料20的傳 熱效率,加快響應速率。其二,由於陶瓷顆粒26的機械性 月b好和同彈性模量的優點,故,陶瓷顆粒的引入可提高所 述電致伸縮複合材料2G的彈性模量,在同樣的應變下獲得 更大的應力。其三,由於陶竞顆粒26具有高電阻率、低介 電常數以及低介電損耗等電學性能’因而在所述電致伸縮 複合材料2G中摻人量的陶究顆粒,可調節所述的電致 伸縮複合材料2G的導電性能,只需施加較小的電壓即可獲 付理心的形變’因而降低了所述電致伸縮複合材料加的使 用電疋其四在形成所述的電致伸縮複合材料的過程 中,通過採用超聲破碎處理從而使得所述奈米碳管和陶究 顆粒在所述電致伸縮複合材料中得到很好的分散。盆五, 電致伸縮複合射斗2〇的上下表面分別形成一石夕橡 膠薄層’從而形成一二明、、Λ &士战 . 一月/口結構。由於矽橡膠薄層和所述 電致伸縮複合材料20中的古八2 — 的呵分子基底22成分相同,因此 矽橡膠薄層和電致伸縮複人姑* 设口材枓2〇的接觸面上會形成很 201001764 ,好的結合。在形成㈣厚度的電致伸縮複合材料時,所述 的二明治結構的電致伸縮複合材料在保持較好的電致伸縮 特性’節賓了奈米竣管和陶究顆粒的用量,節约了成本。 另外,由於所述的石夕橡谬薄層具有較好的絕緣性,故可在 需要絕緣的電致伸縮複合材料情况下使用。 綜上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 之人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1為先前技術中的奈米柔性電熱材料的結構示意 圖。 圖2為本技術方案實施例的電致伸縮複合材料發生伸 縮前後的結構對比示意圖。 圖3為本技術方案實施例製備的電致伸縮複合材料的 製備方法的流程圖。 【主要元件符號說明】 20 22 24 電致伸縮複合材料 柔性高分子基底 奈米碳管 陶瓷顆粒 16 26201001764 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an electrostrictive composite material and a preparation method thereof, and more particularly to an electrostrictive composite material comprising a carbon nanotube and a preparation method thereof. [Prior Art] An electrostrictive composite material is a material that can generate telescopic motion under the action of an electric field, thereby realizing electrical-mechanical energy conversion. Electrostrictive composites are also referred to as artificial muscle materials due to their muscle-like forms of motion in electrical-mechanical energy conversion. In the materials and devices for electro-mechanical energy conversion based on electrostrictive composite materials in the prior art, the electrostrictive composite materials are mainly formed of a single-component material, which has a high driving voltage and a small output stress. Therefore, there is still a big gap between its performance and muscle. Nanocarboniferous paper (see "Carbon Nanotube Actuators", Ray H. Baughman, et al., Science, vol 284, pl 340 (1999)) or composites containing carbon nanotubes, etc. are often used to prepare the described Electrostrictive, composite materials. Referring to Figure 1, a prior art nano-flexible electrocaloric material 10 is shown. The nano flexible electrothermal material includes a flexible polymer base material 14 and a plurality of carbon nanotubes 12 dispersed in the flexible polymer base material 14. The carbon nanotubes 12 are overlapped with each other to form a large number of conductive networks in the flexible polymer base material 14, so that the nano-flexible electrothermal material 10 can be electrically conductive, and can be heated after being energized. After the heat is generated, the nano-flexible electrothermal material 10 is generated in volume. Swell. Among them, a large deformation occurs in the direction in which the current flowing along the nanometer flexible electrothermal material 10 flows. However, the above-described nano-flexible electrothermal material 10 is usually formed by mixing a dispersed carbon nanotube solution with the prepolymerized polymer solution of the polymer material, followed by solidification by polymerization. However, since the carbon nanotubes 12 in the nano-flexible electrothermal material LY are prone to agglomeration, the carbon nanotubes 12 are not uniformly dispersed in the nano-flexible electrothermal material. Therefore, the nano-flexible electrocaloric material 1 has to be further improved in terms of response rate, electrical conductivity, and stress. It is necessary to provide an electrostrictive composite material with a fast response rate and a large stress, and a preparation method thereof. SUMMARY OF THE INVENTION An electrostrictive composite material includes a flexible polymer substrate and a plurality of carbon nanotubes dispersed in the flexible polymer substrate. Wherein the electrostrictive composite further comprises a plurality of ceramic particles dispersed in the flexible polymer substrate. A method for preparing an electrostrictive composite material, comprising the steps of: mixing a carbon nanotube, a ceramic: light particle and a first component of a flexible polymer to form a mixture, and dissolving the mixture with a volatile solvent; Thereby forming a solution containing a carbon nanotube and a ceramic particle; ultrasonically crushing the solution of the above carbon nanotube and the ceramic particle, and ultrasonically cleaning the solution containing the carbon nanotube and the (four) particle; heating the ultrasonic The treated solution volatilizes the solvent in the solution to form a mixture containing the dispersed carbon nanotubes and the ceramic particles; the second component of the flexible polymer is added to the heat treated mixture of the upper layer, (4) After the mixing reaction, forming a complex - and applying the composite to the surface of a support; and defoaming the support coated with the composite, and forming the electrostrictive composite after removing the support material. < The electrostrictive composite material and its preparation 7 201001764. Compared with the prior art, the method has the following advantages: First, since the electrostrictive composite material includes, in addition to the dispersed carbon nanotubes, A large number of uniformly distributed ceramic particles have high thermal conductivity and high temperature resistance, and thus the heat transfer efficiency of the electrostrictive composite described by I& accelerates the response rate. Second, due to the mechanical properties of the ceramic particles and the high modulus of elasticity, the introduction of the ceramic particles can increase the elastic modulus of the electrostrictive composite and obtain greater stress under the same strain. Third, since the ceramic particles have electrical properties such as high electrical resistivity, low dielectric constant, and low dielectric loss, a certain amount of ceramic particles are held in the electrostrictive composite material, and the electricity can be adjusted. The conductive properties of the stretchable composite. A desired voltage is obtained by applying a small voltage, thereby lowering the voltage of use of the electrostrictive composite. Fourthly, in the process of forming the electrostrictive composite material, the carbon nanotubes and the ceramic particles are well dispersed in the electrostrictive composite material by using ultrasonication treatment. [Embodiment]: The present technical solution will be further described in detail with reference to the accompanying drawings. Referring to FIG. 2, a composite material of the embodiment of the present invention provides a plurality of carbon nanotubes 24 which are uniformly dispersed in the flexible molecular substrate, and are uniformly dispersed in the composite material. A plurality of Taojing particles 26 in the flexible polymer substrate 22. The carbon nanotubes 24 are evenly distributed in the rubber substrate to be coated, and the carbon nanotubes are joined to each other to form a large number of conductive networks in the flexible polymer substrate 22. The flexible polymer substrate 20 may be selected from the group consisting of a Lithium rubber elastomer, a polyurethane, an epoxy resin, a polymethyl 201001764 acrylic acid vinegar, and any combination thereof. The ceramic particles 26 may be selected from one of aluminum nitride, aluminum oxide, boron nitride, and the feedstock 20: n: the carbon nanotubes 24 in the quality of the electrostrictive composite 26; ::Material 2 can be an early-walled carbon nanotube, double-walled carbon nanotube and one of the two and its fine-sounding person "spit ▲ less soil and no wood anti-amp; ~50 meters, double-volume Taikou" The diameter of the non-meter carbon tube is 〇.5 nm. The diameter of the :C tube is U nanometer ~ 50 nm, and the diameter of the multi-walled stone tube is 1.5 nm to 50 nm.夕壁 Nano ΓΓϊ::: The flexible polymer base material 1 〇 is a dream rubber, micron. The length of the long electrostrictive material 20 is 4%, and the half-two-t-knife ratio is 1 for the entire electrostrictive material 2. The content percentage of the official 24 is more than one of the ceramics: for the 7th, due to the high thermal conductivity and high temperature resistance of the electrostrictive retanning material according to the nitriding height, the elastic composite material can be extracted. The phase L rate, heat transfer = Ming and so on to accelerate the electrical high-resistance ridge, into, a chaotic aluminum-bismuth ceramic particles, abundance, low dielectric constant and dielectric loss, etc. Good electrical property 201001764 can, Therefore, the conductivity of the composite material 20 after the above-mentioned ceramic particles 26 is mixed and the electrostrictive re-drawing 26 has a good mechanical property and a high-elastic ceramic is a ceramic granule 26, which can be improved (4) The above 柹捃曰.^ ^ Yi electric double 1 nail composite material 20 is freely placed, and obtains greater stress under the same (four) strain. The two electrodes are disposed on the electrostrictive composite material. The voltage applied to the electrostrictive multiplexer through the electrodes can be transmitted through the conductive network described above. Since the thermal conductivity of the stone (4) and the ceramic particles 26 is high, the temperature of the electrostrictive composite material 20 is rapidly increased, and the Ba Ba is also abruptly agglomerated, thereby making the nano Between the two Lu 24 (four) rubber is in a molten state, and the current of the electrostrictive composite material 20 increases as its temperature increases, that is, a process of positive feedback is formed. Since the heat is rapidly diffused from the microscopic portion of the electrostrictive composite material to the entire electrostrictive composite material 2(), the stretching of the electrostrictive composite material 2〇 is caused by thermal expansion. Since the carbon nanotube 24 and the material particles 26 of the present embodiment are relatively uniformly distributed in the electrostrictive composite material 20, the electrostrictive composite material 20 has a relatively fast response speed and a large expansion ratio. Specifically, in the present embodiment, the expansion ratio of the electrostrictive composite material 2〇 is 1% to 8%. It can be understood that when the electrostrictive composite material 2 is prepared into a sample having a shape, when a certain voltage is applied to the sample, the current in the electrostrictive composite material 2〇 is extended due to the electric charge. The direction continues to accumulate, causing the electrostrictive composite 2 to undergo a significant deformation in the direction in which the current extends. However, the deformation described in the aspect perpendicular to the current extension side 201001764$ is not conspicuous, so that when the electrostrictive composite material 20 is shrunk, it can be regarded as a linear contraction. Therefore, when it is required to produce a linearly contracted electrostrictive composite material 2(), the electrostrictive composite material 2() provided by the example can be directly used, and linear shrinkage and bending can be realized without other complicated design, thereby reducing the production of Wei The difficulty of the art and the cost of production. The electrostrictive composite material 2 of the present embodiment was subjected to expansion and contraction. A power source (not shown) (4) is applied to both ends of the electrostrictive composite material 2 through a wire. When not energized, the cuboid electrostrictive composite material (9) was measured, and the original length L1 was 4 cm; after applying a voltage of -4 volts for 2 minutes, the length of the rectangular parallelepiped electrostrictive composite 2 () was measured. u is η PCT material m nose knows that after the energization, the cuboid electrostrictive composite eight material % change ^ is 〇. 2 cm. Therefore, the expansion ratio of the electrostrictive composite is a ratio of the length change AL of the electrostrictive composite material 20 before and after energization to the original length L1 of the electrostrictive composite material, that is, 5%. Further, a thin layer of a stone rubber layer may be separately disposed on the upper and lower surfaces of the electrostrictive composite material 2 of the present embodiment, thereby forming a sandwich j, which is an electrostrictive composite material 2G according to the embodiment. Sandwiched between two > 溥 (three). Wherein the thickness of the thin layer of ruthenium rubber is 2G of the electrostrictive composite material. Since the 11 rubber thin layer and the polymer base 22 in the electrostrictive composite material 2Q have the same composition, the contact surface of the Shihe rubber: f layer and the electrostrictive composite material 2G will be formed well. In the thickness of the electrostrictive composite material, the electrostrictive composite material of the sandwich structure described in the present embodiment 11 201001764, while maintaining good electrical and telescopic characteristics, saves the amount of carbon nanotubes and ceramic particles, and saves The cost. In addition, since the thin layer of the ruthenium rubber has good insulation properties, it can be used in the case of an electrostrictive composite material requiring insulation. It can be understood that the electrostrictive composite material 2 本 according to the embodiment can be set into an electrostrictive composite material having a multi-layer structure according to the above principle, and the arrangement and thickness of each layer can be adjusted according to actual needs. Please refer to FIG. 3 for the preparation method of the electrostrictive composite material 2〇 according to the embodiment, which comprises the following steps: Step 1: mixing the carbon nanotubes 24, the ceramic particles 26 and the first component of the tantalum rubber (component A) A mixture is formed and the above mixture is dissolved with a volatile solvent to form a solution containing the carbon nanotubes 24 and the ceramic particles 26. In this embodiment, the A component of the ruthenium rubber is first mixed with the carbon nanotube 22 = ceramic particles 24, and then an appropriate amount of ethyl acetate is added to completely dissolve the ruthenium rubber component A, and form a contained naphthalene. A solution of carbon nanotubes 24 and ceramic particles 26. The ruthenium rubber is made of GF-T2A elastic electronic potting glue A, B two components according to A: B mass ratio of 1 〇〇: 6 mixed reaction ί 1 in this embodiment, 矽 rubber 22 is electro The ratio of the ratio in the stretchable composite material 20 is 91%. The mass ratio of the carbon nanotubes in the electrostrictive composite material 20 is 5%, and the mass ratio of the ceramic particles in the electrostrictive composite material 2 is 4%. Step 2: ultrasonically crushing the above-mentioned carbon nanotubes 24 and ceramic particles at night/night and ultrasonically treating the above solution containing the carbon nanotubes 24 and the ceramics 12 201001764 particles 26. Specifically, the solution of the above carbon nanotubes 24 and ceramic particles 26 is ultrasonically treated with an ultrasonic cell disrupter for 10 minutes; thereafter, the solution of the above carbon nanotubes 24 and ceramic particles 26 is sealed with a plastic wrap, and The sealed solution of the carbon nanotube 24 and the ceramic particles 26 is ultrasonically treated in an ultrasonic cleaner for 3 hours, so that the above-mentioned carbon nanotubes 24 and ceramic particles 26 can be well dispersed in the above solution. . Among them, the ultrasonic breaking treatment can cause the carbon nanotubes 24 and the ceramic particles 26 to be broken to a certain extent, thereby reducing the size. The ultrasonic cleaning treatment further disperses the carbon nanotubes 24 and the ceramic particles 26 into the solution. Step 3: heating the sonicated solution to volatilize the solvent in the solution to form a carbon nanotube 24, ceramic particles 26, and a uniformly dispersed mixture of the first component of the ruthenium rubber. Specifically, when the sonicated solution is cooled to room temperature, the solution is placed in an oven at a constant temperature of 80 degrees Celsius, and heated until the ethyl acetate in the solution is completely volatilized to form a carbon nanotube. 24. A mixture of ceramic particles 26 and a first component of the ruthenium rubber uniformly dispersed. Step 4: adding the second component (component B) of the ruthenium rubber to the above heat-treated mixture, stirring and mixing to form a composite, and applying the composite to the surface of a support . Specifically, after cooling the above heat-treated mixture to room temperature, the component B of the ruthenium rubber is added to the above solution, and stirred with a glass rod, thereby mixing the bismuth rubber component B and the ruthenium rubber component A. Uniform to facilitate adequate reaction. Thereafter, the composite 13 201001764 formed after the above reaction was applied to the surface of a support with a glass rod, and the above-mentioned support was gently shaken so that the mixture was uniformly distributed on the surface of the support. Wherein the support body can be a ruthenium substrate, a glass substrate or the like, and only needs to have a certain supporting effect, and the corresponding selection can be made according to actual needs. Step 5: Defoaming the support coated with the composite, and forming the electrostrictive composite 2〇 after removing the support. Specifically, the support coated with the composite is placed in a vacuum apparatus for evacuation to remove air bubbles in the composite. In order to make the electrostrictive composite material prepared in the embodiment have a smooth surface, in this embodiment, the electrostrictive composite material is extruded by using a microporous filter membrane having a smooth surface, and the composite can be extruded by extrusion. Uniformly and evenly applied to the surface of the support. After standing for 12 to 18 hours, the edge of the above-mentioned microporous membrane is cut with a blade to ensure that the edge of the finally obtained electrostrictive composite material is continuous without damage and no gap, and then 'the entire electrostriction The composite material is slowly lifted from the surface of the support. In addition, in this embodiment, a thin layer of rubber is separately formed on the upper and lower surfaces of the electrostrictive composite material 2, thereby forming a Sanminghu structure. The sandwich structure is prepared by dissolving the first part of the rubber in a volatile solvent to form a solution, and the second planting of the rubber (four) in the solution to form a pre-(4) solution; The electric extension k complex (4) 2G is immersed in the solid rubber _ polymer solution, and the ruthenium rubber prepolymer solution is statically solidified to form a rubber (four) layer material/ruthenium layer. Since the thin layer of tantalum rubber is the same as the material of the tantalum rubber base 22 in the telescoping composite material 20 201001764, the electrostrictive composite material 20 described above can be directly placed into the tantalum rubber prepolymer solution to form the above-mentioned The sandwich structure is simple and easy to apply. The electrostrictive composite material 2 according to the embodiment of the present technical solution and the preparation method thereof have the following advantages: First, since the electrostrictive composite material 20 includes dispersion The carbon nanotubes 24 also include a plurality of uniformly distributed ceramic particles 26. The ceramic particles 26 have a high thermal conductivity and resistance to two-temperature characteristics, thereby increasing the heat transfer efficiency of the electrostrictive composite material 20 and accelerating the response rate. Secondly, due to the good mechanical properties of the ceramic particles 26 and the advantages of the same elastic modulus, the introduction of ceramic particles can increase the elastic modulus of the electrostrictive composite 2G, and obtain greater under the same strain. Stress. Third, since Tao Jing particles 26 have electrical properties such as high electrical resistivity, low dielectric constant, and low dielectric loss, the amount of ceramic particles in the electrostrictive composite material 2G can be adjusted. The electrical conductivity of the electrostrictive composite 2G can be compensated for by the application of a small voltage, thus reducing the use of the electrostrictive composite and the use of the electrolysis In the process of stretching the composite material, the carbon nanotubes and ceramic particles are well dispersed in the electrostrictive composite material by using ultrasonication treatment. In the basin 5, the upper and lower surfaces of the electrostrictive composite shooting jet 2 respectively form a thin layer of stone rubber, which forms a two-bright, Λ & war. January/mouth structure. Since the thin layer of the ruthenium rubber and the composition of the ruthenium base 22 of the ancient octagonal composite material 20 are the same, the contact layer of the ruthenium rubber layer and the electrostrictive compound *2 On the formation will be very 201001764, a good combination. In forming the (four) thickness electrostrictive composite material, the electrostrictive composite material of the second Meiji structure maintains good electrostrictive properties, and the amount of the nanotube and ceramic particles is saved. The cost. In addition, since the thin layer of the diarrhea rubber has good insulation properties, it can be used in the case of an electrostrictive composite material requiring insulation. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the present invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of a nano-flexible electrothermal material in the prior art. Fig. 2 is a schematic view showing the structure comparison of the electrostrictive composite material before and after the expansion and contraction of the embodiment of the present invention. FIG. 3 is a flow chart of a method for preparing an electrostrictive composite material prepared according to an embodiment of the present technical solution. [Main component symbol description] 20 22 24 Electrostrictive composite material Flexible polymer substrate Nano carbon tube Ceramic particles 16 26

Claims (1)

201001764 十、申請專利範圍 1. -種電致伸縮複合材料,其包括:—柔 分散在所述牟性高八早莫念由从夕 门刀子基底, 朱往问刀子基底中的多個奈米碳管,苴改 良在於,所述電致伸縮複合材料還進一步包 ς 所述柔性高分子基底中的多個陶竟顆粒。 2. t申凊專利範圍第1項所述的電致伸縮複合㈣,其 ,所述柔性高分子基底材料爲矽橡膠彈性 二環氧樹脂、聚曱基丙稀酸甲醋中的—種或其= 組合。 3·如中請專利範圍第!項所述的電致伸縮複合材料,其 I ’所述奈米碳管在所述錄高分子基底材料中均勾 7刀布’且多個奈米碳管相互搭接形成多個導電網絡。 •如申請專利範圍第3項所述的電致伸縮複合材料,其 I ’所述奈米碳管爲單壁奈米碳管、雙壁奈米碳管、 夕壁奈米碳管中的一種及其任意組合,單壁奈米碳管 =直徑爲0.5奈米〜50奈米,雙壁奈米碳管的直徑爲ι 〇 二米〜5〇奈米,多壁奈米碳管的直徑爲1.5奈米〜5〇奈 米’其長度爲1〜1〇微米。 不 5.如申請專利範圍帛工項所述的電致伸縮複合材料,其 中所述陶竟顆粒材料爲氮化紹或/和氧化紹。 、 6·如申請專利範圍帛1項所述的電致伸縮複合材料,其 中,所述奈米碳管和陶瓷顆粒在所述電致伸縮複合材 料的貝里比小於等於10%,且奈米碳管和陶瓷顆粒的 質量比大於等於1:1。 17 201001764 A 7.如申請專利範圍第1項所述的電致伸縮複合材料,其 - 中,所述陶瓷顆粒在所述電致伸縮複合材料中的晰 比爲1%〜5%。 、貝置 8·如申請專利範圍第1項所述的電致伸縮複合材料,其 中該電致伸細複合材料進一步包括兩個高分子材料 薄層,該高分子材料薄層設置於所述電致伸縮複合材 料的兩個相對的表面。 9. 如申請專利範圍第1項所述的電致伸縮複合材料,其 中,所述電致伸縮複合材料的伸縮率爲。 10. 二種電致伸縮複合材料的製備方法,其包括以下步驟: =合奈米碳管、陶瓷顆粒及柔性高分子材料的第一組 :形成一混合物,並用一可揮發性溶劑溶解上述的混 合物,從而形成一含有奈米碳管和陶瓷顆粒的溶液; 超聲破碎處理上述含有奈米碳管和陶瓷顆粒的溶液, 並超聲清洗處理上述含有奈米碳管和陶瓷顆粒的溶 液; 力熱上述超聲處理後的溶液,揮發掉溶液中的溶劑, 形成一奈米碳管、陶瓷顆粒以及柔性高分子的第一組 分均勻分散的混合物; 將柔性尚分子材料的第二組分加入到上述經加熱處理 過的尾合物中,授拌混合反應後,形成一複合物,並 將該複合物塗覆至一支撑體的表面;及 脫泡處理所述塗覆有複合物的支撑體,除去支撑體後 形成所述的電致伸縮複合材料。 18 201001764 11. 如申請專利範圍第10項所述的電致伸縮複合材料的製 備方法,其中,所述奈米碳管和陶瓷顆粒在所述電致 伸縮複合材料的質量比小於等於10%,且奈米碳管和 陶瓷顆粒的質量比大於等於1:1,所述陶瓷顆粒在所述 電致伸縮複合材料中的質量比爲1%〜5%。 12. 如申請專利範圍第1〇項所述的電致伸縮複合材料的製 備方法’其中,所述揮發性溶劑包括乙酸乙醋。 13. 如申請專利範圍第1〇項所述的電致伸縮複合材料的製 備方法’其中,所述柔性高分子材料爲矽橡膠,且石夕 橡膠的第一組分與矽橡膠的第二組分的質量比爲 100:6 。 14. 如申請專利範圍第1〇項所述的電致伸縮複合材料的製 備方法,其中,在除去所述支撑體之前,還進一步包 括採用微孔濾膜對所述複合物進行擠壓的步驟。 15. 如申請專利範圍第1〇項所述的電致伸縮複合材料的製 、 備方法’其中,該電致伸縮複合材料的製備方法進一 步包括一切割電致伸縮複合材料邊緣的步驟。 16. 如申請專利範圍第1〇項所述的電致伸縮複合材料的製 備方法,其中,可進一步在所述電致伸縮複合材料的 上下表面分別形成一矽橡膠薄層’從而形成一三明治 結構。 17. 如申睛專利範圍第16項所述的電致伸縮複合材料的製 備方法’其中,所述三明治結構的製備方法包括以下 步驟.將矽橡膠的第一組分溶於一揮發性溶劑中,形 19 201001764 成一溶液;將矽橡膠的第二組分溶於所述溶液中,形 成一矽橡膠預聚物溶液;將所述電致伸縮複合材料浸 入到所述矽橡膠預聚物溶液中,靜置固化所述矽橡膠 預聚物溶液,即可在電致伸縮複合材料的上下表面形 成所述矽橡膠薄層。 20201001764 X. Patent application scope 1. An electrostrictive composite material, which comprises: - soft dispersion in the sturdy high eight-morning Mo Yan from the base of the kiln knife, Zhu Xiang asked a plurality of carbon nanotubes in the base of the knife The improvement is that the electrostrictive composite further encapsulates a plurality of ceramic particles in the flexible polymer substrate. 2. The electrostrictive composite according to claim 1, wherein the flexible polymer base material is ruthenium rubber elastic epoxy resin or polymethyl methacrylate methyl vinegar or Its = combination. 3. Please ask for the scope of patents! The electrostrictive composite material according to the invention, wherein the carbon nanotubes of the I' are hooked in the recording polymer base material and the plurality of carbon nanotubes overlap each other to form a plurality of conductive networks. The electrostrictive composite material according to claim 3, wherein the carbon nanotube of the I' is a single-walled carbon nanotube, a double-walled carbon nanotube, or a smectic carbon nanotube. And any combination thereof, single-walled carbon nanotubes = 0.5 nm to 50 nm in diameter, double-walled carbon nanotubes having a diameter of ι 〇 2 m to 5 〇 nm, and the diameter of the multi-walled carbon nanotubes is 1.5 nm ~ 5 〇 nano 'its length is 1 ~ 1 〇 micron. 5. The electrostrictive composite material according to the above-mentioned patent application, wherein the ceramic particles are nitrided or/and oxidized. The electrostrictive composite material according to claim 1, wherein the carbon nanotube and the ceramic particle have a Berry ratio of 10% or less in the electrostrictive composite material, and the nanometer The mass ratio of carbon tube to ceramic particles is greater than or equal to 1:1. The electrostrictive composite material according to claim 1, wherein the ceramic particles have a clear ratio of 1% to 5% in the electrostrictive composite material. The electrostrictive composite material according to claim 1, wherein the electrostrictive composite material further comprises two thin layers of a polymer material, the thin layer of the polymer material being disposed on the electricity Two opposing surfaces of the stretchable composite. 9. The electrostrictive composite material according to claim 1, wherein the electrostrictive composite material has a stretching ratio. 10. A method for preparing two electrostrictive composite materials, comprising the steps of: = a first group of carbon nanotubes, ceramic particles and flexible polymer materials: forming a mixture and dissolving the above with a volatile solvent Mixing to form a solution containing carbon nanotubes and ceramic particles; ultrasonically crushing the above solution containing carbon nanotubes and ceramic particles, and ultrasonically cleaning the above solution containing carbon nanotubes and ceramic particles; The sonicated solution volatilizes the solvent in the solution to form a carbon nanotube, ceramic particles, and a uniformly dispersed mixture of the first component of the flexible polymer; and adding the second component of the flexible molecular material to the above In the heat-treated tail compound, after mixing and reacting, forming a composite, and applying the composite to the surface of a support; and defoaming the support coated with the composite to remove The electrostrictive composite material is formed after the support. The method for producing an electrostrictive composite material according to claim 10, wherein the mass ratio of the carbon nanotubes and ceramic particles to the electrostrictive composite material is 10% or less, And the mass ratio of the carbon nanotubes to the ceramic particles is 1:1 or more, and the mass ratio of the ceramic particles in the electrostrictive composite material is 1% to 5%. 12. The method of producing an electrostrictive composite material according to the above-mentioned claim 1, wherein the volatile solvent comprises ethyl acetate. 13. The method for preparing an electrostrictive composite material according to claim 1, wherein the flexible polymer material is ruthenium rubber, and the first component of the shishan rubber and the second group of ruthenium rubber The mass ratio of the points is 100:6. 14. The method for producing an electrostrictive composite according to claim 1, wherein the step of extruding the composite with a microporous filter is further included before the support is removed. . 15. The method of preparing an electrostrictive composite according to claim 1, wherein the method of preparing the electrostrictive composite further comprises the step of cutting the edge of the electrostrictive composite. 16. The method for producing an electrostrictive composite according to claim 1, wherein a thin layer of a rubber layer is formed on the upper and lower surfaces of the electrostrictive composite to form a sandwich structure. . 17. The method for preparing an electrostrictive composite according to claim 16, wherein the method for preparing the sandwich structure comprises the steps of dissolving the first component of the ruthenium rubber in a volatile solvent. Form 19 201001764 into a solution; dissolving the second component of the ruthenium rubber in the solution to form a ruthenium rubber prepolymer solution; immersing the electrostrictive composite material in the ruthenium rubber prepolymer solution The ruthenium rubber prepolymer solution is statically cured to form a thin layer of the ruthenium rubber on the upper and lower surfaces of the electrostrictive composite. 20
TW97123095A 2008-06-20 2008-06-20 Electrostrictive composite material and method for making the same TWI398972B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97123095A TWI398972B (en) 2008-06-20 2008-06-20 Electrostrictive composite material and method for making the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97123095A TWI398972B (en) 2008-06-20 2008-06-20 Electrostrictive composite material and method for making the same

Publications (2)

Publication Number Publication Date
TW201001764A true TW201001764A (en) 2010-01-01
TWI398972B TWI398972B (en) 2013-06-11

Family

ID=44824951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97123095A TWI398972B (en) 2008-06-20 2008-06-20 Electrostrictive composite material and method for making the same

Country Status (1)

Country Link
TW (1) TWI398972B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8593034B2 (en) 2010-04-30 2013-11-26 Tsinghua University Carbon nanotube based electrostrictive composite and electrostrictive element using the same
TWI485896B (en) * 2010-05-06 2015-05-21 Hon Hai Prec Ind Co Ltd Electrostrictive structure and actuator using the same.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812624B1 (en) * 1999-07-20 2004-11-02 Sri International Electroactive polymers
US7402264B2 (en) * 2004-03-09 2008-07-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Sensing/actuating materials made from carbon nanotube polymer composites and methods for making same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8593034B2 (en) 2010-04-30 2013-11-26 Tsinghua University Carbon nanotube based electrostrictive composite and electrostrictive element using the same
US8853917B2 (en) 2010-04-30 2014-10-07 Tsinghua University Carbon nanotube based electrostrictive element
TWI485896B (en) * 2010-05-06 2015-05-21 Hon Hai Prec Ind Co Ltd Electrostrictive structure and actuator using the same.

Also Published As

Publication number Publication date
TWI398972B (en) 2013-06-11

Similar Documents

Publication Publication Date Title
JP5086308B2 (en) Electrostrictive composite material and manufacturing method thereof
Zhu et al. Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field
CN101781461B (en) Electrostriction composite material and preparation method thereof
De La Osa et al. Printing of graphene nanoplatelets into highly electrically conductive three-dimensional porous macrostructures
US9054312B2 (en) Method for making electrostrictive composite
CN101958394B (en) Electrostriction composite material and electrostriction element
CN101671442A (en) Preparation method of carbon nano tube array composite material
JP5046127B2 (en) High-aspect-ratio carbon nanotubes and ionic liquids, conductive thin films and actuator elements
KR101884701B1 (en) PVDF NANOFIBROUS MEMBRANE WITH HIGH RATIO OF β-PHASE, PIEZOELECTRIC AND FERROELECTRIC PROPERTIES, AND MANUFACTURING METHOD OF THE SAME
JP2006312677A (en) Carbon fiber oriented connecting film and its manufacturing method
CN111268639A (en) Multi-stimulus response actuating film and preparation and application thereof
Liu et al. Modified carbon nanotubes/polyvinyl alcohol composite electrothermal films
TW201001764A (en) Electrostrictive composite material and method for making the same
JP5388192B2 (en) Conductive polymer actuator material
KR20120058710A (en) Manufacturing method for flexible nanogenerator and flexible nanogenerator manufactured by the same
CN108891108B (en) High-drive-strain electro-drive elastomer and preparation method thereof
TWI382047B (en) Electrostrictive composite material and method for making the same
CN112713236A (en) Piezoelectric composite material with piezoelectric particles and metal nanorods in cochain arrangement and preparation method thereof
TWI485897B (en) Electrostrictive material and method for making the same and electrothermic type actuator
TW200909342A (en) Thermal pad with carbon nanotube array and method of making the same
CN115594930B (en) Modified liquid metal particle doped PVDF-TrFE composite membrane, preparation method and application
TWI394302B (en) Electrostrictive material and actuator using the same
CN117015294B (en) Integrated stretchable piezoelectric film, sensor and preparation method
KR102596122B1 (en) Flexible Planar Heater and Manufacturing Method Thereof
CN115651409A (en) Composite material based on boron nitride nanotube and preparation method and application thereof