TWI485897B - Electrostrictive material and method for making the same and electrothermic type actuator - Google Patents

Electrostrictive material and method for making the same and electrothermic type actuator Download PDF

Info

Publication number
TWI485897B
TWI485897B TW098106501A TW98106501A TWI485897B TW I485897 B TWI485897 B TW I485897B TW 098106501 A TW098106501 A TW 098106501A TW 98106501 A TW98106501 A TW 98106501A TW I485897 B TWI485897 B TW I485897B
Authority
TW
Taiwan
Prior art keywords
material layer
carbon nanotubes
polymer matrix
electrostrictive
polymer
Prior art date
Application number
TW098106501A
Other languages
Chinese (zh)
Other versions
TW201032367A (en
Inventor
Lu-Zhuo Chen
Chang-Hong Liu
Hong-Jiang Li
Shou-Shan Fan
Original Assignee
Hon Hai Prec Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon Hai Prec Ind Co Ltd filed Critical Hon Hai Prec Ind Co Ltd
Priority to TW098106501A priority Critical patent/TWI485897B/en
Publication of TW201032367A publication Critical patent/TW201032367A/en
Application granted granted Critical
Publication of TWI485897B publication Critical patent/TWI485897B/en

Links

Description

電致伸縮材料及其製備方法以及電熱式致動器 Electrostrictive material, preparation method thereof and electrothermal actuator

本發明涉及一種電熱式致動器,同時涉及一種電致伸縮材料及其製備方法。 The invention relates to an electrothermal actuator, and to an electrostrictive material and a preparation method thereof.

致動器的工作原理為將其他能量轉換為機械能,實現這一轉換經常採用的途徑有三種:通過靜電場轉化為靜電力,即靜電驅動;通過電磁場轉化為磁力,即磁驅動;利用材料的熱膨脹或其他熱特性實現能量的轉換,即熱驅動。 The working principle of the actuator is to convert other energy into mechanical energy. There are three ways to achieve this conversion: the electrostatic field is converted into electrostatic force, that is, electrostatic drive; the electromagnetic field is converted into magnetic force, that is, magnetic drive; The thermal expansion or other thermal properties enable energy conversion, ie thermal drive.

靜電驅動的致動器一般包括兩個電極及設置在兩個電極之間的電致伸縮元件,其工作過程為在兩個電極上分別注入電荷,利用電荷間的相互吸引和排斥,通過控制電荷數量和電負性來控制電極間電致伸縮元件的相對運動。但是由於靜電力反比於電容板之間距離的平方,因此一般只有在電極間距很小時靜電力才比較顯著,該距離的要求使該致動器的結構設計較為複雜。磁驅動的致動器一般包括兩個磁極及設置在兩個磁極之間的電致伸縮元件,其工作是通過磁場的相互吸引和排斥作用使兩磁極之間的電致伸縮元件產生相對的運動,但是磁驅動的缺點和靜電驅動相同,即由於磁場作用範圍有限,導致電致伸縮元件的上下兩個表面必須保持較小的距離,該結構的設計要求嚴格且也限制了該致動器的應用範圍。 An electrostatically driven actuator generally comprises two electrodes and an electrostrictive element disposed between the two electrodes, the working process of which is to inject a charge on each of the two electrodes, using mutual attraction and repulsion between the charges, by controlling the charge The quantity and electronegativity are used to control the relative motion of the electrostrictive elements between the electrodes. However, since the electrostatic force is inversely proportional to the square of the distance between the capacitive plates, the electrostatic force is generally significant only when the electrode spacing is small, and the requirements of the distance make the structural design of the actuator more complicated. A magnetically driven actuator generally comprises two magnetic poles and an electrostrictive element disposed between the two magnetic poles, the function of which is to cause relative movement of the electrostrictive elements between the two magnetic poles by mutual attraction and repulsion of the magnetic fields. However, the disadvantage of the magnetic drive is the same as that of the electrostatic drive, that is, due to the limited range of the magnetic field, the upper and lower surfaces of the electrostrictive element must be kept at a small distance. The design of the structure is strict and the actuator is also limited. Application range.

而利用熱驅動的致動器克服了上述靜電驅動和磁驅動致動器的缺點,該致 動器結構只要能夠保證獲得一定的熱能就能產生相應的形變,另外,相對於靜電力和磁場力,熱驅動力較大。現有技術公開一種電熱式致動器,請參閱“基於熱膨脹效應的微電熱式致動器進展”,匡一寧等,電子器件,vol 22,p162(1999)。該電熱式致動器採用兩片熱膨脹係數不同的金屬結合成雙層結構作為電致伸縮元件,當通入電流受熱時,由於一片金屬的熱膨脹量大於另一片,雙金屬片將向熱膨脹量小的一方彎曲。然而,由於上述電致伸縮材料採用金屬結構,其柔性較差,導致整個電熱式致動器熱回應速度較慢。 The use of thermally driven actuators overcomes the shortcomings of the above electrostatic drive and magnetic drive actuators, The actuator structure can produce a corresponding deformation as long as it can ensure a certain amount of thermal energy, and the thermal driving force is large with respect to the electrostatic force and the magnetic field force. The prior art discloses an electrothermal actuator, see "Progress in Micro-Electrothermal Actuators Based on Thermal Expansion Effect", Yan Yining et al., Electronic Devices, vol 22, p162 (1999). The electrothermal actuator adopts two pieces of metal with different thermal expansion coefficients to form a two-layer structure as an electrostrictive element. When the current is heated, since the amount of thermal expansion of one piece of metal is larger than the other piece, the bimetal piece will have a small amount of thermal expansion. One side is bent. However, since the above electrostrictive material adopts a metal structure, its flexibility is poor, resulting in a slow thermal response of the entire electrothermal actuator.

有鑒於此,提供一種柔性的電致伸縮材料及其製備方法,以及一種熱回應速度快的電熱式致動器實為必要。 In view of the above, it is necessary to provide a flexible electrostrictive material and a method for preparing the same, and an electrothermal actuator having a fast heat response speed.

一種電致伸縮材料,其包括一第一材料層和一第二材料層,所述第一材料層和第二材料層層疊設置且熱膨脹係數不同,其中,所述第一材料層包括一第一聚合物基體及均勻分散在該第一聚合物基體中的多個奈米碳管,所述第二材料層包括一第二聚合物基體。 An electrostrictive material comprising a first material layer and a second material layer, wherein the first material layer and the second material layer are stacked and have different thermal expansion coefficients, wherein the first material layer comprises a first a polymer matrix and a plurality of carbon nanotubes uniformly dispersed in the first polymer matrix, the second material layer comprising a second polymer matrix.

一種電致伸縮材料的製備方法,其包括以下步驟:提供多個奈米碳管與一第一聚合物單體溶液;混合該多個奈米碳管及第一聚合物單體溶液形成一混合溶液;聚合上述混合溶液,從而形成一第一材料層;在所述第一材料層的一表面形成一第二材料層。 A method for preparing an electrostrictive material, comprising the steps of: providing a plurality of carbon nanotubes and a first polymer monomer solution; mixing the plurality of carbon nanotubes and the first polymer monomer solution to form a mixture a solution; polymerizing the mixed solution to form a first material layer; and forming a second material layer on a surface of the first material layer.

一種電熱式致動器,其包括一第一材料層、一第二材料層及至少兩個電極,所述第一材料層和第二材料層層疊設置且熱膨脹係數不同,該至少兩個電極間隔設置並與第一材料層電連接,其中,所述第一材料層包括一第一聚合物基體及分散在該第一聚合物基體中的多個奈米碳管,所述第二材料層包括一第二聚合物基體。 An electrothermal actuator comprising a first material layer, a second material layer and at least two electrodes, the first material layer and the second material layer being stacked and having different coefficients of thermal expansion, the at least two electrodes being spaced apart And electrically connected to the first material layer, wherein the first material layer comprises a first polymer matrix and a plurality of carbon nanotubes dispersed in the first polymer matrix, the second material layer comprises a second polymer matrix.

相較於先前技術,所述電熱式致動器、電致伸縮材料及其製備方法具有以下優點:由於所述電熱式致動器中的電致伸縮材料包括分散的奈米碳管,所述奈米碳管具有低熱容、導熱性和導電性良好的性質,使得該電熱式致動器也相應具有較高的導電和導熱性,且熱回應速率較快;由於第一材料層和第二材料層均採用聚合物基體,因此該電致伸縮材料具有一定的柔性,所述電致伸縮材料的製備方法簡單。 Compared to the prior art, the electrothermal actuator, the electrostrictive material and the method of preparing the same have the following advantages: since the electrostrictive material in the electrothermal actuator comprises a dispersed carbon nanotube, The carbon nanotube has the properties of low heat capacity, thermal conductivity and electrical conductivity, so that the electrothermal actuator has correspondingly high electrical and thermal conductivity, and the thermal response rate is faster; due to the first material layer and the second material layer The material layers all adopt a polymer matrix, so the electrostrictive material has a certain flexibility, and the preparation method of the electrostrictive material is simple.

10‧‧‧電熱式致動器 10‧‧‧Electrical actuator

12‧‧‧第一材料層 12‧‧‧First material layer

122‧‧‧第一聚合物基體 122‧‧‧First polymer matrix

124‧‧‧奈米碳管 124‧‧‧Nanocarbon tube

14‧‧‧第二材料層 14‧‧‧Second material layer

16‧‧‧電極 16‧‧‧Electrode

圖1係本發明實施例之電熱式致動器之剖面結構示意圖。 1 is a schematic cross-sectional view showing an electrothermal actuator according to an embodiment of the present invention.

圖2係本發明實施例之電熱式致動器之伸縮特性對比圖。 Fig. 2 is a comparison diagram of the telescopic characteristics of the electrothermal actuator of the embodiment of the present invention.

圖3係本發明實施例之電致伸縮材料之製備方法流程圖。 3 is a flow chart showing a method of preparing an electrostrictive material according to an embodiment of the present invention.

以下將結合附圖詳細說明本發明實施例的電熱式致動器及其製備方法。 Hereinafter, an electrothermal actuator and a method of manufacturing the same according to embodiments of the present invention will be described in detail with reference to the accompanying drawings.

請參閱圖1,本發明第一實施例提供一種電熱式致動器10,其包括一電致伸縮材料(圖未示)及至少兩個電極16。該電致伸縮材料包括一第一材料層12和一第二材料層14,該第一材料層12和第二材料層14層疊設置且相互結合。所述第一材料層12和第二材料層14的表面積和厚度基本相同,且第一材料層12和第二材料層14的厚度可根據實際需要選擇。該第一材料層12和第二材料層14具有不同的熱膨脹係數。 Referring to FIG. 1, a first embodiment of the present invention provides an electrothermal actuator 10 comprising an electrostrictive material (not shown) and at least two electrodes 16. The electrostrictive material includes a first material layer 12 and a second material layer 14, and the first material layer 12 and the second material layer 14 are stacked and bonded to each other. The surface area and thickness of the first material layer 12 and the second material layer 14 are substantially the same, and the thicknesses of the first material layer 12 and the second material layer 14 can be selected according to actual needs. The first material layer 12 and the second material layer 14 have different coefficients of thermal expansion.

該第一材料層12為導電材料層,該第一材料層12包括一第一聚合物基體122及一均勻分散於該第一聚合物基體122中之複數奈米碳管124,該奈米碳管124互相搭接於該第一聚合物基體122中形成大量導電網路。 The first material layer 12 is a conductive material layer, and the first material layer 12 includes a first polymer matrix 122 and a plurality of carbon nanotubes 124 uniformly dispersed in the first polymer matrix 122. The tubes 124 overlap each other in the first polymer matrix 122 to form a plurality of conductive networks.

該第一材料層12中之複數奈米碳管124呈無序排列,且相鄰或者相近之複數奈米碳管124之間部分接觸,形成交錯縱橫之導電導熱通道。該奈米碳管 124於第一材料層12中之質量百分含量小於等於10%,優選地,該奈米碳管124於第一材料層12中之質量百分含量為0.5%~2%。該奈米碳管124之含量若太少,則其不能構成一導電通路且導熱性能不好,若太多則增加了第一材料層12之硬度,使其柔性及熱膨脹性能變差。該奈米碳管124可為單壁奈米碳管、雙壁奈米碳管及多壁奈米碳管中之一種或其任意組合,單壁奈米碳管之直徑為0.5奈米~50奈米,雙壁奈米碳管之直徑為1.0奈米~50奈米,多壁奈米碳管之直徑為1.5奈米~50奈米,該奈米碳管124之長度為0.5微米~10微米。 The plurality of carbon nanotubes 124 in the first material layer 12 are arranged in disorder, and the adjacent or adjacent plurality of carbon nanotubes 124 are partially in contact with each other to form a staggered cross-section conductive heat conduction channel. The carbon nanotube The mass percentage of 124 in the first material layer 12 is 10% or less. Preferably, the mass percentage of the carbon nanotubes 124 in the first material layer 12 is 0.5% to 2%. If the content of the carbon nanotubes 124 is too small, it does not constitute a conductive path and the thermal conductivity is not good. If too much, the hardness of the first material layer 12 is increased to deteriorate the flexibility and thermal expansion properties. The carbon nanotubes 124 can be one of a single-walled carbon nanotube, a double-walled carbon nanotube, and a multi-walled carbon nanotube, or any combination thereof. The diameter of the single-walled carbon nanotube is 0.5 nm to 50. Nano, double-walled carbon nanotubes have a diameter of 1.0 nm to 50 nm, and multi-walled carbon nanotubes have a diameter of 1.5 nm to 50 nm. The length of the carbon nanotubes 124 is 0.5 μm to 10 Micron.

該第一材料層12中之第一聚合物基體122之材料為一柔性材料,包括矽橡膠、聚甲基丙烯酸甲酯、聚氨脂、環氧樹脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯、聚丙烯腈、聚苯胺、聚吡咯及聚噻吩等中之一種或幾種之組合。該第一聚合物基體122於第一材料層12中之質量百分比含量為92%~99.9%。 The material of the first polymer matrix 122 in the first material layer 12 is a flexible material, including ruthenium rubber, polymethyl methacrylate, polyurethane, epoxy resin, polyethyl acrylate, polybutyl acrylate, A combination of one or more of polystyrene, polybutadiene, polyacrylonitrile, polyaniline, polypyrrole, and polythiophene. The content of the first polymer matrix 122 in the first material layer 12 is 92% to 99.9%.

本實施例中,該第一材料層12中之第一聚合物基體122之材料為聚甲基丙烯酸甲酯,該聚甲基丙烯酸甲酯於第一材料層12中之質量百分含量為98.5%。奈米碳管124為多壁奈米碳管,該奈米碳管124於第一材料層12中之質量百分含量為1.5%。 In this embodiment, the material of the first polymer matrix 122 in the first material layer 12 is polymethyl methacrylate, and the mass percentage of the polymethyl methacrylate in the first material layer 12 is 98.5. %. The carbon nanotubes 124 are multi-walled carbon nanotubes having a mass percentage of 1.5% in the first material layer 12.

該第二材料層14之熱膨脹係數不同於第一材料層12,該第二材料層14至少包括一第二聚合物基體,該第二聚合物基體之材料為柔性材料,包括矽橡膠、聚甲基丙烯酸甲酯、聚氨脂、環氧樹脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯、聚丙烯腈、聚苯胺、聚吡咯及聚噻吩等中之一種或幾種之組合。該第二材料層14可僅包括一第二聚合物基體,因第一材料層12中之奈米碳管124對第一材料層12之熱膨脹係數影響較小,所以此時該第二聚合物基體之材料需不同於第一材料層12中之第一聚合物基體122 之材料且二者之熱膨脹係數不同。可以理解,第二材料層14也可包括複數奈米碳管,該複數奈米碳管均勻分散於第二聚合物基體中,由於奈米碳管導熱性良好,故可進一步提高整個電熱式致動器10之熱响應速度。本實施例中,該第二材料層14僅包括一第二聚合物基體,該第二聚合物基體為矽橡膠,且該矽橡膠之熱膨脹係數大於本實施例中第一材料層12中第一聚合物基體122之材料聚甲基丙烯酸甲酯之熱膨脹係數。 The second material layer 14 has a thermal expansion coefficient different from that of the first material layer 12, and the second material layer 14 includes at least a second polymer matrix. The second polymer matrix is made of a flexible material, including ruthenium rubber and polymethyl. One or more of methyl acrylate, polyurethane, epoxy resin, polyethyl acrylate, polybutyl acrylate, polystyrene, polybutadiene, polyacrylonitrile, polyaniline, polypyrrole and polythiophene a combination of species. The second material layer 14 may include only a second polymer matrix, because the carbon nanotubes 124 in the first material layer 12 have less influence on the thermal expansion coefficient of the first material layer 12, so the second polymer at this time The material of the substrate needs to be different from the first polymer matrix 122 in the first material layer 12 The material and the thermal expansion coefficients of the two are different. It can be understood that the second material layer 14 can also include a plurality of carbon nanotubes, and the plurality of carbon nanotubes are uniformly dispersed in the second polymer matrix. Since the carbon nanotubes have good thermal conductivity, the entire electrothermal heating can be further improved. The thermal response speed of the actuator 10. In this embodiment, the second material layer 14 includes only a second polymer matrix, the second polymer matrix is a ruthenium rubber, and the 膨胀 rubber has a thermal expansion coefficient greater than that of the first material layer 12 in the embodiment. The thermal expansion coefficient of the material of the polymer matrix 122, polymethyl methacrylate.

另,該第一材料層12或第二材料層14可進一步包括一均勻分散於該第一聚合物基體122或第二聚合物基體中之摻雜體(圖未示),該摻雜體可調節第一材料層12或第二材料層14之熱膨脹係數,該摻雜體包括陶瓷顆粒、金屬顆粒、氣泡或玻璃顆粒等。若第二材料層14所包括之第二聚合物基體與第一材料層12中之第一聚合物基體122之材料相同,則該第一材料層12和第二材料層14可分別包括一均勻分散於該第一聚合物基體122和第二聚合物基體中之摻雜體,且二者所包含之摻雜體不同且熱膨脹係數也不同;同時,也可只於第一材料層12或第二材料層14之其中一層中包括有一摻雜體,以使第二材料層14之熱膨脹係數不同於第一材料層12之熱膨脹係數。該摻雜體於第一材料層12或第二材料層14中之質量百分含量根據其熱膨脹係數之大小而定。 In addition, the first material layer 12 or the second material layer 14 may further include a dopant (not shown) uniformly dispersed in the first polymer matrix 122 or the second polymer matrix, and the dopant may be The coefficient of thermal expansion of the first material layer 12 or the second material layer 14 is adjusted, and the dopant includes ceramic particles, metal particles, bubbles or glass particles, and the like. If the second polymer matrix of the second material layer 14 is the same material as the first polymer matrix 122 of the first material layer 12, the first material layer 12 and the second material layer 14 may each comprise a uniform a dopant dispersed in the first polymer matrix 122 and the second polymer matrix, and the dopants included in the two are different and the coefficient of thermal expansion is also different; and at the same time, only the first material layer 12 or the first One of the two material layers 14 includes a dopant such that the coefficient of thermal expansion of the second material layer 14 is different from the coefficient of thermal expansion of the first material layer 12. The mass percentage of the dopant in the first material layer 12 or the second material layer 14 depends on the magnitude of its thermal expansion coefficient.

電熱式致動器10之整體厚度不限,可依實際需求而定,一般為0.02毫米~2毫米,且第一材料層12之厚度為0.5毫米~1.5毫米,第二材料層14之厚度為0.5毫米~1.5毫米。本實施中,第一材料層為1毫米,第二材料層為1毫米。 The overall thickness of the electrothermal actuator 10 is not limited, and may be determined according to actual needs, generally 0.02 mm to 2 mm, and the thickness of the first material layer 12 is 0.5 mm to 1.5 mm, and the thickness of the second material layer 14 is 0.5 mm to 1.5 mm. In this embodiment, the first material layer is 1 mm and the second material layer is 1 mm.

所述至少兩個電極16間隔設置並固定於第一材料層12的兩端或表面。本實施例中該電極16為兩個,該兩個電極16與第一材料層12電連接,用於將外部電流輸入至第一材料層12中。所述電極16可以為棒狀、條狀、塊狀或其 他形狀,其橫截面的形狀可為圓形、方形、梯形、三角形、多邊形或其他不規則形狀。該兩個電極16的材料可選擇為金、銅或鐵等。本實施例中該電極16的材料為銅並固定於第一材料層12的兩端。 The at least two electrodes 16 are spaced apart and fixed to both ends or surfaces of the first material layer 12. In this embodiment, the electrodes 16 are two, and the two electrodes 16 are electrically connected to the first material layer 12 for inputting an external current into the first material layer 12. The electrode 16 may be in the form of a rod, a strip, a block or His shape, the shape of its cross section may be a circle, a square, a trapezoid, a triangle, a polygon or other irregular shape. The material of the two electrodes 16 may be selected from gold, copper or iron. In this embodiment, the material of the electrode 16 is copper and is fixed to both ends of the first material layer 12.

該電熱式致動器10於應用時,將電壓施加於該電熱式致動器10之第一材料層12之兩端,電流可通過上述奈米碳管124所形成之導電網路進行傳輸。由於奈米碳管124之熱導率很高,從而使得該電熱式致動器10之溫度快速升高,熱量從該電熱式致動器10中奈米碳管124之周圍快速地向整個電熱式致動器10擴散,即第一材料層12可迅速加熱第二材料層14。由於熱膨脹量與材料之體積及熱膨脹係數成正比,且本實施例之電熱式致動器10由兩層具有不同熱膨脹係數之第一材料層12和第二材料層14複合而成,從而使得加熱後之電熱式致動器10將向熱膨脹係數小之材料層彎曲。另,該電熱式致動器10不僅可沿電流延伸之方向上產生一明顯之線性熱變形,還可於垂直於電流延伸之方向發生一彎曲形變。此外,由於奈米碳管124具有導電性好、熱容小之特點,所以使該電熱式致動器10之熱响應速率快,同時只需於其中一層加入少量之奈米碳管124就可獲得較大之變形,節省了奈米碳管124。 The electrothermal actuator 10 applies a voltage to both ends of the first material layer 12 of the electrothermal actuator 10 when applied, and current can be transmitted through the conductive network formed by the carbon nanotubes 124. Since the thermal conductivity of the carbon nanotubes 124 is high, the temperature of the electrothermal actuator 10 is rapidly increased, and heat is rapidly transferred from the periphery of the carbon nanotubes 124 to the entire electric heater in the electrothermal actuator 10. The actuator 10 is diffused, i.e., the first material layer 12 can rapidly heat the second material layer 14. Since the amount of thermal expansion is proportional to the volume of the material and the coefficient of thermal expansion, and the electrothermal actuator 10 of the present embodiment is composed of two layers of the first material layer 12 and the second material layer 14 having different coefficients of thermal expansion, thereby heating The latter electrothermal actuator 10 will bend a layer of material having a small coefficient of thermal expansion. In addition, the electrothermal actuator 10 not only produces a significant linear thermal deformation in the direction in which the current extends, but also a bending deformation perpendicular to the direction in which the current extends. In addition, since the carbon nanotubes 124 have the characteristics of good electrical conductivity and small heat capacity, the thermal response rate of the electrothermal actuator 10 is fast, and only a small amount of carbon nanotubes 124 are added to one of the layers. Larger deformations are obtained, saving the carbon nanotubes 124.

請參閱圖2,另外,本實施例中通過導線將電源電壓施加於所述電致伸縮材料的兩端並對所述的電致伸縮材料進行伸縮特性測量。 Referring to FIG. 2, in addition, in the embodiment, a power supply voltage is applied to both ends of the electrostrictive material through a wire, and the electrostrictive material is subjected to measurement of a telescopic characteristic.

在未通電時,測得所述電致伸縮材料的原始長度L1為5厘米;施加一40伏特的電壓2分鐘後,測得所述電致伸縮材料的長度L2為5.5厘米;在垂直於電流延伸的方向上,所述電致伸縮材料的位移△S為5毫米左右。 When not energized, the original length L1 of the electrostrictive material was measured to be 5 cm; after applying a voltage of 40 volts for 2 minutes, the length L2 of the electrostrictive material was measured to be 5.5 cm; In the direction of extension, the displacement ΔS of the electrostrictive material is about 5 mm.

請參閱圖3,本發明第一實施例所述的電致伸縮材料的製備方法,包括以下步驟: Referring to FIG. 3, a method for preparing an electrostrictive material according to a first embodiment of the present invention includes the following steps:

步驟一:提供複數奈米碳管與一第一聚合物單體溶液;本實施例該奈米碳管通過化學氣相沈積法獲得,也可通過電弧放電法或鐳射燒灼法獲得。該第一聚合物單體溶液可為甲基丙烯酸甲酯(MMA)、丙烯酸乙酯、丙烯酸丁酯、苯乙烯、丁二烯、丙烯腈中之至少一種,本實施例採用甲基丙烯酸甲酯。 Step 1: providing a plurality of carbon nanotubes and a first polymer monomer solution; in this embodiment, the carbon nanotubes are obtained by chemical vapor deposition, or by arc discharge or laser cauterization. The first polymer monomer solution may be at least one of methyl methacrylate (MMA), ethyl acrylate, butyl acrylate, styrene, butadiene, acrylonitrile, and methyl methacrylate is used in this embodiment. .

步驟二:混合該奈米碳管及第一聚合物單體溶液,從而獲得一第一混合溶液;首先,將該第一聚合物單體溶液與奈米碳管進行混合,形成一第一混合溶液,該第一聚合物單體於混合溶液中之質量百分含量為92~99.8%,該奈米碳管於混合溶液中之質量百分含量為0.2~10%;其次,用超聲波振蕩法處理上述第一混合溶液,使得奈米碳管均勻分散於上述第一聚合物單體溶液中。當第一聚合物單體具有揮發性時,為保持該第一混合溶液原有之質量不變,可於該超聲分散過程結束之後補充於超聲波振蕩過程中揮發掉之第一聚合物單體溶液。 Step 2: mixing the carbon nanotube and the first polymer monomer solution to obtain a first mixed solution; first, mixing the first polymer monomer solution with a carbon nanotube to form a first mixture The solution, the mass percentage of the first polymer monomer in the mixed solution is 92 to 99.8%, and the mass percentage of the carbon nanotube in the mixed solution is 0.2 to 10%; secondly, the ultrasonic oscillation method is used. The first mixed solution is treated such that the carbon nanotubes are uniformly dispersed in the first polymer monomer solution. When the first polymer monomer has volatility, in order to maintain the original mass of the first mixed solution, the first polymer monomer solution volatilized during the ultrasonic vibration may be added after the ultrasonic dispersion process is completed. .

該步驟二進一步包括一球磨過程,即於用超聲波振蕩法處理上述第一混合溶液前或後,將上述第一混合溶液倒入球磨罐中球磨一定時間。由於奈米碳管具有較大之長徑比,容易團聚,從而導致奈米碳管於混合溶液中分散不均勻,經過球磨之後,奈米碳管可受到進一步之破碎,從而減小尺寸,使奈米碳管進一步分散於混合溶液中,該球磨時間可為1~5小時,本實施例優選為3小時。 The second step further includes a ball milling process of pouring the first mixed solution into the ball mill tank for a certain period of time before or after the first mixing solution is treated by ultrasonic vibration. Since the carbon nanotubes have a large aspect ratio and are easily agglomerated, the carbon nanotubes are unevenly dispersed in the mixed solution. After the ball milling, the carbon nanotubes can be further broken, thereby reducing the size and The carbon nanotubes are further dispersed in the mixed solution, and the ball milling time may be 1 to 5 hours, and this embodiment is preferably 3 hours.

另,該步驟可進一步包括提供一摻雜體並將該摻雜體加入到上述第一聚合物單體溶液中,該摻雜體可為陶瓷顆粒、金屬顆粒、氣泡或玻璃顆粒等。該摻雜體可調節該第一材料層之熱膨脹係數。 In addition, the step may further include providing a dopant and adding the dopant to the first polymer monomer solution, and the dopant may be ceramic particles, metal particles, bubbles or glass particles, or the like. The dopant can adjust a coefficient of thermal expansion of the first material layer.

步驟三:聚合上述第一混合溶液,從而形成第一材料層;該步驟中聚合上述第一混合溶液之反應方法依第一聚合物單體之種類不同可包括縮聚反應、聚加反應、自由基聚合、陰離子聚合或陽離子聚合等。如聚丙烯酸甲酯、聚甲基丙烯酸甲酯和聚丙烯腈等採用自由基聚合反應,環氧樹脂和聚氨脂採用縮聚反應。 Step 3: polymerizing the first mixed solution to form a first material layer; the reaction method for polymerizing the first mixed solution in the step may include polycondensation reaction, polyaddition reaction, and free radical depending on the type of the first polymer monomer Polymerization, anionic polymerization or cationic polymerization, and the like. For example, polymethyl acrylate, polymethyl methacrylate and polyacrylonitrile are subjected to radical polymerization, and epoxy resin and polyurethane are subjected to polycondensation reaction.

本實施例中之第一聚合物單體溶液為甲基丙烯酸甲酯(MMA),聚合該第一混合溶液之具體方法包括以下步驟: The first polymer monomer solution in this embodiment is methyl methacrylate (MMA), and the specific method for polymerizing the first mixed solution comprises the following steps:

第一,於上述第一混合溶液中加入一定比例之引發劑,從而獲得一第二混合溶液。該引發劑之材料選擇與第一聚合物單體之材料有關,該引發劑可為偶氮二異丁腈(AIBN),過氧化苯甲醯及偶氮二異丁腈中之至少一種,本實施例選用偶氮二異丁腈(AIBN),該引發劑於混合液中之質量百分含量為0.02~2%。該引發劑之加入可使於聚合反應中單體分子之雙鍵活化而成為遊離基,從而進行進一步之反應。 First, a certain proportion of the initiator is added to the first mixed solution to obtain a second mixed solution. The material of the initiator is selected to be related to the material of the first polymer monomer, and the initiator may be at least one of azobisisobutyronitrile (AIBN), benzammonium peroxide and azobisisobutyronitrile. In the examples, azobisisobutyronitrile (AIBN) was used, and the mass percentage of the initiator in the mixture was 0.02 to 2%. The addition of the initiator allows activation of the double bond of the monomer molecule in the polymerization reaction to become a radical, thereby allowing further reaction.

另,可進一步於上述第二混合溶液中加入一定比例之增塑劑,該增塑劑之材料選擇與第一聚合物單體之材料有關。該增塑劑可為鄰苯二甲酸二丁酯(DBP)、十六烷基三甲基溴化胺、聚乙烯酸鹽、聚甲基丙烯酸鹽、C12-C18高級脂肪酸、矽烷偶聯劑、鈦酸酯偶聯劑及鋁酸酯偶聯劑中之至少一種,本實施例選用鄰苯二甲酸二丁酯(DBP),其於第二混合溶液中之質量百分含量為0~5%。該增塑劑之作用在於削弱聚合物分子間之作用力,增加聚合物分子鏈之移動性、降低聚合物分子鏈之結晶度,從而使聚合物之塑性增加。 Further, a certain proportion of a plasticizer may be further added to the second mixed solution, and the material of the plasticizer is selected to be related to the material of the first polymer monomer. The plasticizer may be dibutyl phthalate (DBP), cetyltrimethylammonium bromide, polyvinyl acetate, polymethacrylate, C12-C18 higher fatty acid, decane coupling agent, At least one of a titanate coupling agent and an aluminate coupling agent, in this embodiment, dibutyl phthalate (DBP) is used, and the mass percentage in the second mixed solution is 0 to 5%. . The plasticizer acts to weaken the interaction between the polymer molecules, increase the mobility of the polymer molecular chain, and reduce the crystallinity of the polymer molecular chain, thereby increasing the plasticity of the polymer.

第二,使上述第二混合溶液發生預聚合反應並形成第一預聚合混合溶液。 Second, the second mixed solution is prepolymerized and a first prepolymerized mixed solution is formed.

該形成第一預聚合混合溶液之方法具體包括以下步驟:首先,將上述第二 混合溶液加熱到一定溫度並攪拌,使第二混合溶液發生預聚合反應,待溶液反應至具有一定黏性時停止加熱,本實施例中,採用水浴法將第二混合溶液加熱到92攝氏度,之後攪拌10分鐘並待其反應至具有一定黏性或呈甘油狀時停止加熱;其次,冷卻並攪拌第一預聚合混合溶液直至預聚合反應停止,本實施例中,將甘油狀第一預聚合混合溶液放置於空氣中待其自然冷卻。 The method for forming the first prepolymerized mixed solution specifically includes the following steps: First, the second step The mixed solution is heated to a certain temperature and stirred to cause pre-polymerization of the second mixed solution, and the heating is stopped when the solution reacts to have a certain viscosity. In this embodiment, the second mixed solution is heated to 92 degrees Celsius by a water bath method, after which Stir for 10 minutes and wait until it reacts to have a certain viscosity or glycerin shape to stop heating; secondly, cool and stir the first prepolymerized mixed solution until the prepolymerization reaction is stopped. In this embodiment, the glycerin-like first prepolymerization is mixed. The solution is placed in the air to be naturally cooled.

第三,使上述第一預聚合混合溶液發生聚合反應並形成包含複數奈米碳管和第一聚合物基體之第一材料層;該步驟具體為:首先,將上述已經冷卻之預聚合混合溶液倒入一容器中並放置於一定之溫度環境中,使上述容器中之預聚合混合溶液進行聚合反應。本實施例為將容器放於50攝氏度~60攝氏度之溫度環境中,發生聚合反應之時間為1小時~4小時。其次,將上述第一預聚合混合溶液繼續加熱到之一定溫度,使其進行聚合反應直至完全聚合,從而得到一含有奈米碳管之聚合物薄膜。本實施例中加熱溫度為70攝氏度~100攝氏度。 Thirdly, the first prepolymerized mixed solution is polymerized and a first material layer comprising a plurality of carbon nanotubes and a first polymer matrix is formed; the step is specifically: first, the previously cooled prepolymerized mixed solution Pour into a container and place it in a temperature environment to polymerize the prepolymerized mixed solution in the above container. In this embodiment, the container is placed in a temperature environment of 50 degrees Celsius to 60 degrees Celsius, and the polymerization reaction takes place for 1 hour to 4 hours. Next, the first prepolymerized mixed solution is further heated to a certain temperature to carry out polymerization until complete polymerization, thereby obtaining a polymer film containing a carbon nanotube. In this embodiment, the heating temperature is 70 degrees Celsius to 100 degrees Celsius.

進一步地,可將上述含有奈米碳管之聚合物薄膜於溫水中浸泡一定時間,然後將其從容器中剝離,從而得到一完整之包含複數奈米碳管之第一材料層。本實施例為於50攝氏度~60攝氏度之水中浸泡2分鐘左右,然後迅速將上述含有奈米碳管之聚合物薄膜從容器中剝離,從而得到一完整之包含複數奈米碳管和聚甲基丙烯酸甲酯(PMMA)之第一材料層。 Further, the above-mentioned carbon nanotube-containing polymer film may be immersed in warm water for a certain period of time, and then peeled off from the container to obtain a complete first material layer containing a plurality of carbon nanotubes. In this embodiment, the film is immersed in water of 50 degrees Celsius to 60 degrees Celsius for about 2 minutes, and then the polymer film containing the carbon nanotubes is quickly peeled off from the container, thereby obtaining a complete composite carbon nanotube and polymethyl group. The first material layer of methyl acrylate (PMMA).

步驟四:於第一材料層之一表面上形成第二材料層,該第二材料層包括一第二聚合物基體,該第二材料層與第一材料層之熱膨脹係數不同。 Step 4: forming a second material layer on a surface of one of the first material layers, the second material layer comprising a second polymer matrix, the second material layer and the first material layer having different thermal expansion coefficients.

該第二材料層之製備方法為:提供一第二聚合物單體溶液;聚合上述第二聚合物單體溶液,從而形成第二材料層。另該第二材料層之製備方法可進 一步包括提供複數奈米碳管或摻雜體並將該複數奈米碳管或摻雜體與上述第二聚合物單體溶液混合均勻。該複數奈米碳管可進一步提高該電熱致動器之導電和導熱性能,該摻雜體可調節該第二材料層之熱膨脹係數,該摻雜體可為陶瓷顆粒、金屬顆粒、氣泡或玻璃顆粒等。 The second material layer is prepared by providing a second polymer monomer solution; polymerizing the second polymer monomer solution to form a second material layer. In addition, the preparation method of the second material layer can be The step of providing a plurality of carbon nanotubes or dopants and mixing the plurality of carbon nanotubes or dopants with the second polymer monomer solution described above. The plurality of carbon nanotubes can further improve the electrical and thermal conductivity of the electrothermal actuator, and the dopant can adjust a thermal expansion coefficient of the second material layer, and the dopant can be ceramic particles, metal particles, bubbles or glass Particles, etc.

該第二材料層與第一材料層之結合方法具有以下兩種:第一種為,將上述已經製備好之第二材料層通過黏結、壓合等方式形成於第一材料層之表面上;第二種為將未發生固化之第二聚合物單體溶液以其自有之流動性於第一材料層之表面上展開,從而於第一材料層之表面上形成第二材料層。該第二材料層所包括之第二聚合物基體之材料為矽橡膠、聚甲基丙烯酸甲酯、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯、聚丙烯腈、聚苯胺、聚吡咯及聚噻吩等中之一種或幾種。 The method for bonding the second material layer and the first material layer has the following two types: the first one is that the second material layer which has been prepared is formed on the surface of the first material layer by bonding, pressing, or the like; The second method is to spread the second polymer monomer solution which has not undergone solidification on the surface of the first material layer with its own fluidity, thereby forming a second material layer on the surface of the first material layer. The material of the second polymer matrix included in the second material layer is ruthenium rubber, polymethyl methacrylate, polyethyl acrylate, polybutyl acrylate, polystyrene, polybutadiene, polyacrylonitrile, poly One or more of aniline, polypyrrole and polythiophene.

本實施例中於第一材料層之一表面上形成第二材料層之方法為將一第二聚合物單體溶液倒於上述第一材料層之一表面,並利用其自有之流動性於第一材料層之一表面展開,之後於室溫下靜置12小時~18小時後聚合便得到了第二材料層。該方法可使第一材料層和第二材料層具有良好之結合,從而使第一材料層更容易將熱量擴散到第二材料層,減少二者之間之熱阻。本實施例該第二材料層中之第二聚合物基體之材料選用矽橡膠。 In this embodiment, the second material layer is formed on one surface of the first material layer by pouring a second polymer monomer solution onto one surface of the first material layer, and utilizing its own fluidity. One of the first material layers is unfolded on the surface, and then left to stand at room temperature for 12 hours to 18 hours to obtain a second material layer. The method provides a good bond between the first material layer and the second material layer, thereby making it easier for the first material layer to diffuse heat to the second material layer, reducing the thermal resistance between the two. In this embodiment, the material of the second polymer matrix in the second material layer is made of ruthenium rubber.

該矽橡膠係由GF-T2A彈性電子灌封膠A、B兩組分按A:B之質量比為100:4~100:8之比例組成。其具體之製備方法為:首先,充分混合並攪拌上述之A、B兩組分;其次,將攪拌後之A、B兩組分混合溶液倒於第一材料層上使其利用自有之流動性於第一材料層之表面上展開。 The ruthenium rubber is composed of GF-T2A elastic electronic potting glue A and B components in a ratio of A:B of 100:4~100:8. The specific preparation method is as follows: firstly, thoroughly mixing and stirring the above two components A and B; secondly, pouring the mixed mixture of A and B components on the first material layer to make use of their own flow. Sexually spread on the surface of the first material layer.

本實施例可進一步包括通過導電黏結劑將兩個電極間隔設置於第一材料層之兩端或者表面。 This embodiment may further include spacing the two electrodes at both ends or surfaces of the first material layer by a conductive adhesive.

本技術方案實施例所述的電致伸縮材料及其製備方法以及電熱式致動器具有以下優點:由於所述電熱式致動器中的電致伸縮材料包括分散的奈米碳管,使得該電熱式致動器具有較高的導電和導熱性,且熱回應速率較快;由於所述電致伸縮材料的第一材料層和第二材料層具有不同的熱膨脹係數,從而使該電致伸縮材料在有電流通過時,不僅可以在電流流過的方向上發生變形,還可在垂直於該電流的方向上發生彎曲;所述電致伸縮材料中,只需有一層加入少量的奈米碳管就可以獲得較大的變形,節省了奈米碳管,節約了成本;所述電致伸縮材料是柔性材料,該材料結構簡單,更接近自然肌肉,生物相容性好,還可用作人工肌肉;所述電致伸縮材料的製備方法簡單、適合大規模生產集成等。綜上所述,本發明確已符合發明專利之要件,遂依法提出專利申請。惟,以上所述者僅為本發明之較佳實施方式,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士援依本發明之精神所作之等效修飾或變化,皆應涵蓋於以下申請專利範圍內。 The electrostrictive material described in the embodiments of the present technical solution, the preparation method thereof, and the electrothermal actuator have the following advantages: since the electrostrictive material in the electrothermal actuator includes a dispersed carbon nanotube, The electrothermal actuator has higher electrical and thermal conductivity and a faster thermal response rate; since the first material layer and the second material layer of the electrostrictive material have different coefficients of thermal expansion, the electrostriction When a current passes, the material can not only deform in the direction in which the current flows, but also bend in a direction perpendicular to the current; in the electrostrictive material, only one layer is added with a small amount of nanocarbon. The tube can obtain large deformation, saves carbon nanotubes and saves cost; the electrostrictive material is a flexible material, the material has simple structure, is closer to natural muscle, has good biocompatibility, and can be used as Artificial muscle; the preparation method of the electrostrictive material is simple, suitable for large-scale production integration and the like. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Equivalent modifications or variations made by persons skilled in the art in light of the spirit of the invention are intended to be included within the scope of the following claims.

10‧‧‧電熱式致動器 10‧‧‧Electrical actuator

12‧‧‧第一材料層 12‧‧‧First material layer

122‧‧‧第一聚合物基體 122‧‧‧First polymer matrix

124‧‧‧奈米碳管 124‧‧‧Nanocarbon tube

14‧‧‧第二材料層 14‧‧‧Second material layer

16‧‧‧電極 16‧‧‧Electrode

Claims (20)

一種電致伸縮材料,其包括一第一材料層和一第二材料層,該第一材料層和第二材料層層疊設置且熱膨脹係數不同,其改良在於,該第一材料層包括一第一聚合物基體及均勻分散於該第一聚合物基體中之複數奈米碳管,該第二材料層包括一第二聚合物基體,所述複數奈米碳管於第一材料層中的質量百分含量為0.5%~2%。 An electrostrictive material comprising a first material layer and a second material layer, the first material layer and the second material layer being stacked and having different coefficients of thermal expansion, wherein the first material layer comprises a first a polymer matrix and a plurality of carbon nanotubes uniformly dispersed in the first polymer matrix, the second material layer comprising a second polymer matrix, and the mass of the plurality of carbon nanotubes in the first material layer The content of the fraction is 0.5% to 2%. 如請求項1所述之電致伸縮材料,其中,該第一材料層和第二材料層可通過黏結、壓合之方式重疊設置。 The electrostrictive material according to claim 1, wherein the first material layer and the second material layer are overlapped by bonding and pressing. 如請求項1所述之電致伸縮材料,其中,該第二材料層可進一步包括複數奈米碳管,該複數奈米碳管均勻分散於該第二聚合物基體中。 The electrostrictive material according to claim 1, wherein the second material layer further comprises a plurality of carbon nanotubes, the plurality of carbon nanotubes being uniformly dispersed in the second polymer matrix. 如請求項1所述之電致伸縮材料,其中,所述第一聚合物基體及第二聚合物基體的材料相同,第一材料層或第二材料層之其中一層包括一摻雜體,該摻雜體包括陶瓷顆粒、金屬顆粒、氣泡或玻璃顆粒。 The electrostrictive material according to claim 1, wherein the first polymer matrix and the second polymer matrix are the same material, and one of the first material layer or the second material layer comprises a dopant. The dopant includes ceramic particles, metal particles, bubbles or glass particles. 如請求項1所述之電致伸縮材料,其中,該複數奈米碳管形成一導電網路。 The electrostrictive material of claim 1, wherein the plurality of carbon nanotubes form a conductive network. 如請求項1所述的電致伸縮材料,其中,所述第一聚合物基體的材料為導電聚合物。 The electrostrictive material according to claim 1, wherein the material of the first polymer matrix is a conductive polymer. 如請求項6所述的電致伸縮材料,其中,所述多個奈米碳管無序分佈於所述導電聚合物中,以提高第一材料層的電導率。 The electrostrictive material according to claim 6, wherein the plurality of carbon nanotubes are disorderly distributed in the conductive polymer to increase the electrical conductivity of the first material layer. 如請求項1所述之電致伸縮材料,其中,該第一聚合物基體或第二聚合物基體之材料為矽橡膠、聚甲基丙烯酸甲酯、聚氨脂、環氧樹脂、聚丙烯酸乙酯、聚丙烯酸丁酯、聚苯乙烯、聚丁二烯、聚丙烯腈、聚苯胺、聚吡咯及聚噻吩中之一種或幾種之組合。 The electrostrictive material according to claim 1, wherein the material of the first polymer matrix or the second polymer matrix is ruthenium rubber, polymethyl methacrylate, polyurethane, epoxy resin, polyacrylic acid One or a combination of ester, polybutyl acrylate, polystyrene, polybutadiene, polyacrylonitrile, polyaniline, polypyrrole, and polythiophene. 如請求項1所述之電致伸縮材料,其中,該第一材料層及第二材料層中之至少一材料層進一步包括一摻雜體,該摻雜體為陶瓷顆粒、金屬顆粒、氣泡及玻璃顆粒中之一種或者幾種。 The electrostrictive material according to claim 1, wherein at least one of the first material layer and the second material layer further comprises a doping body, the doping body being ceramic particles, metal particles, bubbles and One or more of the glass particles. 一種電致伸縮材料之製備方法,其包括以下步驟:提供複數奈米碳管與一第一聚合物單體溶液;混合所述之複數奈米碳管及第一聚合物單體溶液形成一混合溶液,所述複數奈米碳管於混合溶液中的質量百分含量為0.5%~2%;聚合上述混合溶液,從而形成一第一材料層;於所述之第一材料層之一表面形成一第二材料層。 A method for preparing an electrostrictive material, comprising the steps of: providing a plurality of carbon nanotubes and a first polymer monomer solution; mixing the plurality of carbon nanotubes and the first polymer monomer solution to form a mixture a solution, the mass percentage of the plurality of carbon nanotubes in the mixed solution is 0.5% to 2%; polymerizing the mixed solution to form a first material layer; forming a surface of the first material layer a second layer of material. 如請求項10所述之電致伸縮材料之製備方法,其中,該形成混合溶液之方法進一步包括:採用超聲波振蕩法處理上述混合溶液,使得奈米碳管均勻分散於上述混合溶液中。 The method for producing an electrostrictive material according to claim 10, wherein the method of forming the mixed solution further comprises: treating the mixed solution by ultrasonic vibration to uniformly disperse the carbon nanotube in the mixed solution. 如請求項10所述之電致伸縮材料之製備方法,其中,形成混合溶液之方法進一步包括將上述混合溶液進行球磨處理。 The method for producing an electrostrictive material according to claim 10, wherein the method of forming the mixed solution further comprises subjecting the mixed solution to a ball milling treatment. 如請求項10所述之電致伸縮材料之製備方法,其中,所述聚合混合溶液,形成第一材料層之方法包括以下步驟:於上述混合溶液中加入引發劑;使上述加入引發劑之混合溶液發生預聚合反應並形成預聚合混合溶液;使上述預聚合混合溶液發生聚合反應並形成包含複數奈米碳管和第一聚合物基體之第一材料層。 The method for producing an electrostrictive material according to claim 10, wherein the method for forming the first material layer by the polymerization mixed solution comprises the steps of: adding an initiator to the mixed solution; and mixing the above-mentioned initiator; The solution is prepolymerized and forms a prepolymerized mixed solution; the prepolymerized mixed solution is polymerized and a first material layer comprising a plurality of carbon nanotubes and a first polymer matrix is formed. 如請求項10所述之電致伸縮材料之製備方法,其中,該形成第二材料層之方法包括:提供一第二聚合物單體溶液;聚合上述第二聚合物單體溶液形成第二材料層;將該第二材料層通過黏結、壓合之方法設置於第一材料層之表面。 The method for preparing an electrostrictive material according to claim 10, wherein the method of forming the second material layer comprises: providing a second polymer monomer solution; and polymerizing the second polymer monomer solution to form a second material a layer; the second material layer is disposed on the surface of the first material layer by bonding and pressing. 如請求項10所述之電致伸縮材料之製備方法,其中,該形成一第二材料 層之方法包括:提供一第二聚合物單體溶液;將該第二聚合物單體溶液倒於第一材料層之一表面,並利用其自有的流動性於第一材料層之一表面展開;聚合該第二聚合物單體溶液並形成第二材料層。 The method for preparing an electrostrictive material according to claim 10, wherein the second material is formed The method of layer includes: providing a second polymer monomer solution; pouring the second polymer monomer solution onto one surface of the first material layer, and utilizing its own fluidity on one surface of the first material layer Expanding; polymerizing the second polymer monomer solution and forming a second material layer. 一種電熱式致動器,其包括一第一材料層、一第二材料層及至少兩個電極,所述第一材料層和第二材料層層疊設置且熱膨脹係數不同,該至少兩個電極間隔設置並與第一材料層電連接,其改良在於,所述第一材料層包括一第一聚合物基體及分散在該第一聚合物基體中的多個奈米碳管,所述第二材料層包括一第二聚合物基體,所述複數奈米碳管於第一材料層中的質量百分含量為0.5%~2%。 An electrothermal actuator comprising a first material layer, a second material layer and at least two electrodes, the first material layer and the second material layer being stacked and having different coefficients of thermal expansion, the at least two electrodes being spaced apart And electrically connected to the first material layer, wherein the first material layer comprises a first polymer matrix and a plurality of carbon nanotubes dispersed in the first polymer matrix, the second material The layer includes a second polymer matrix, and the mass percentage of the plurality of carbon nanotubes in the first material layer is 0.5% to 2%. 如請求項16所述的電熱式致動器,其中,所述第一聚合物基體的材料為導電聚合物。 The electrothermal actuator of claim 16, wherein the material of the first polymer matrix is a conductive polymer. 如請求項17所述的電熱式致動器,其中,所述多個奈米碳管無序分佈於所述導電聚合物中,以提高第一材料層的電導率。 The electrothermal actuator of claim 17, wherein the plurality of carbon nanotubes are disorderly distributed in the conductive polymer to increase electrical conductivity of the first material layer. 如請求項16所述的電熱式致動器,其中,所述多個奈米碳管形成一導電網路。 The electrothermal actuator of claim 16, wherein the plurality of carbon nanotubes form a conductive network. 如請求項19所述的電熱式致動器,其中,所述導電網路與所述至少兩個電極電連接。 The electrothermal actuator of claim 19, wherein the electrically conductive network is electrically coupled to the at least two electrodes.
TW098106501A 2009-02-27 2009-02-27 Electrostrictive material and method for making the same and electrothermic type actuator TWI485897B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW098106501A TWI485897B (en) 2009-02-27 2009-02-27 Electrostrictive material and method for making the same and electrothermic type actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW098106501A TWI485897B (en) 2009-02-27 2009-02-27 Electrostrictive material and method for making the same and electrothermic type actuator

Publications (2)

Publication Number Publication Date
TW201032367A TW201032367A (en) 2010-09-01
TWI485897B true TWI485897B (en) 2015-05-21

Family

ID=44854872

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098106501A TWI485897B (en) 2009-02-27 2009-02-27 Electrostrictive material and method for making the same and electrothermic type actuator

Country Status (1)

Country Link
TW (1) TWI485897B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116219595A (en) * 2023-03-02 2023-06-06 青岛大学 Temperature self-adaptive temperature-regulating fiber and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241641A1 (en) * 2005-11-30 2007-10-18 Hitachi, Ltd. Actuator and method of manufacturing actuator module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070241641A1 (en) * 2005-11-30 2007-10-18 Hitachi, Ltd. Actuator and method of manufacturing actuator module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Electrothermal actuation based on carbon nanotube network in silicon elastomer" , Applied Physics Letter, 92, 263104, 2008 *

Also Published As

Publication number Publication date
TW201032367A (en) 2010-09-01

Similar Documents

Publication Publication Date Title
CN101814577B (en) Electrostrictive material and preparation method thereof as well as electrothermal type actuator
Chen et al. High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites
JP5086308B2 (en) Electrostrictive composite material and manufacturing method thereof
Zeng et al. Low-voltage and high-performance electrothermal actuator based on multi-walled carbon nanotube/polymer composites
CN105206738B (en) Electro-active material and electric actuator
Yan et al. Highly elastic and transparent multiwalled carbon nanotube/polydimethylsiloxane bilayer films as electric heating materials
Peng et al. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application
US8253300B2 (en) Electrostrictive composite and method for making the same
CN105336841B (en) Electric heating actuator
CN102044627A (en) Electrostrictive composite material and electrostrictive element
CN105336843B (en) Electric heating actuator
Yang et al. Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli
CN103897405B (en) Preparation method of ionic liquid modified graphite micro plate/silicon rubber conductive composite material
Ahn et al. Heterogeneous conductance‐based locally shape‐morphable soft electrothermal actuator
Yuse et al. Development of large-strain and low-powered electro-active polymers (EAPs) using conductive fillers
CN105355776B (en) Electro-active material and preparation method thereof and the actuator using the electro-active material
TWI485897B (en) Electrostrictive material and method for making the same and electrothermic type actuator
TWI441366B (en) Electrostrictive material and actuator using the same.
Jiang et al. Grab and heat: highly responsive and shape adaptive soft robotic heaters for effective heating of objects of three-dimensional curvilinear surfaces
Yang et al. Application of MWCNT-SA based sol–gel coatings to enhance the electrically-actuated performance of biomass hydrogel paper actuators
TWI398972B (en) Electrostrictive composite material and method for making the same
TWI382047B (en) Electrostrictive composite material and method for making the same
Yang et al. A low normalized voltage-driven and low-working-temperature electrothermal actuator based on reduced graphene oxide/PE composites
TWI485896B (en) Electrostrictive structure and actuator using the same.
CN109135286B (en) Electric heating phase change actuator based on graphene/nano silver-latex film and manufacturing method thereof