TW201001080A - Resist underlayer forming composition for lithography comprising resin containing aromatic fused ring - Google Patents

Resist underlayer forming composition for lithography comprising resin containing aromatic fused ring Download PDF

Info

Publication number
TW201001080A
TW201001080A TW098112842A TW98112842A TW201001080A TW 201001080 A TW201001080 A TW 201001080A TW 098112842 A TW098112842 A TW 098112842A TW 98112842 A TW98112842 A TW 98112842A TW 201001080 A TW201001080 A TW 201001080A
Authority
TW
Taiwan
Prior art keywords
photoresist
film
formula
underlayer film
forming
Prior art date
Application number
TW098112842A
Other languages
Chinese (zh)
Other versions
TWI465854B (en
Inventor
Noriaki Fujitani
Tetsuya Shinjo
Original Assignee
Nissan Chemical Ind Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Ind Ltd filed Critical Nissan Chemical Ind Ltd
Publication of TW201001080A publication Critical patent/TW201001080A/en
Application granted granted Critical
Publication of TWI465854B publication Critical patent/TWI465854B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by hetero atoms or groups containing heteroatoms
    • C08F12/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/32Monomers containing only one unsaturated aliphatic radical containing two or more rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • C08F226/12N-Vinylcarbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • C08F232/08Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system having condensed rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/08Copolymers of styrene
    • C09D125/14Copolymers of styrene with unsaturated esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Emergency Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Disclosed is a resist underlayer film-forming composition for lithography, which is effective during processing of a semiconductor substrate. Also disclosed are a resist pattern forming method using the resist underlayer film-forming composition, and a method for manufacturing a semiconductor device. The resist underlayer film-forming composition contains a polymer containing structural units represented by formula (1) and formula (2), a crosslinking agent and a solvent. When the total number of all structural units constituting the polymer is taken as 1.0, the ratio of the number (a) of the structural units represented by formula (1) and the ratio of the number (b) of the structural units represented by formula (2) are respectively within the following ranges: 0.3 ≤ a ≤ 0.95 and 0.05 ≤ b ≤ 0.7. The composition contains 3-30% by mass of the crosslinking agent relative to the solid content which is obtained by excluding the solvent from the composition.

Description

201001080 六、發明說明: 【發明所屬之技術領域】 本發明提供一種半導體基板加工時有效之微 下層膜形成組成物、使用該光阻下層膜形成組成 圖型形成法,及半導體裝置之製造方法。 【先前技術】 過去半導體裝置之製造中,利用使用光阻組 影進行細微加工。所謂該細微加工係在矽晶圓等 基板上形成光阻組成物之薄膜,於其上透過描繪 裝置之圖型之光罩圖型照射紫外線等之活性光線 ,以所得光阻圖形作爲保護膜,蝕刻處理矽晶圓 基板之加工法。 然而,近年來半導體裝置之高積體化有所進 用之活性光線亦自KrF準分子雷射(248nm )朝 子雷射(1 93nm )之短波長化之傾向。伴隨於此 線之自基板之亂反射或駐波之影響成爲大的問題 在光阻與被加工基板之間設置抗反射膜(BARC Anti-Reflective Coating (下層抗反射塗層))之 泛的檢討。 今後,若光阻圖型之微細化更持續進展,則 解像度之改良困難的問題以及光阻圖型於顯像後 題,因此期望光阻膜之薄膜化。然而,藉由薄膜 板加工中獲得充分光阻圖型膜後變得更困難’不 影用光阻 物之光阻 成物之微 之被加工 有半導體 ,經顯像 等被加工 展,所使 ArF準分 ,活性光 。因此, :Bottom 方法被廣 由於產生 崩潰之問 化,於基 僅光阻圖 -5- 201001080 型,而且使在光阻膜與經加工之半導體基板之間所作成光 阻下層膜亦具有作爲基板加工時之光罩之功能的製程亦成 爲必要。作爲此等製程用之光阻下層膜,要求有與以往之 高蝕刻性(蝕刻速度快)光阻下層膜不同之具有接近於光 阻膜之乾蝕刻速度之選擇比之之微影用光阻下層膜、具有 比光阻膜小的乾蝕刻速度之選擇比之微影用光阻下層膜或 具有比半導體基板小之乾時刻速度之微影用光阻下層膜( 例如參考專利文獻1 ~4 )。又,亦可能對此等光阻下層膜 賦予抗反射能,亦要求同時具有以往之抗反射膜之功能。 專利文獻 專利文獻1 :特開2002-296789 專利文獻2:特開2004-177668 專利文獻3:特開2004-271838 專利文獻4:特開2005-250434 【發明內容】 [發明欲解決之課題] 上述明係基於上述問題而完成者,解決該等課題係提 供一種於半導體基板加工時有效之微影用光阻下層膜形成 組成物。又,本發明提供一種具接近於光阻膜之乾蝕刻速 度之選擇比之微影用光阻下層膜、具有比光阻膜小的乾蝕 刻速度之選擇比之微影用光阻下層膜或具有比半導體基板 小的乾蝕刻速度之選擇比之微影用光阻下層膜。再者,本 發明係提供使用光阻下層膜形成組成物之光阻圖型形成法 -6- 201001080 ,及半導體裝置之製造方法。 [用以解決課題之手段] 本發明者爲解決上述課題而進行積極硏究之結果,發 現並完成本發明。 亦即’第一觀點爲一種半導體裝置製造之微影製程中 使用之光阻下層膜形成組成物,其特徵爲該組成物包含含 有以下述式(1)及式(2)表示之各單位構造之聚合物: [化1][Technical Field] The present invention provides a micro-layer film forming composition which is effective in processing a semiconductor substrate, a composition pattern forming method using the photoresist underlayer film, and a method of manufacturing a semiconductor device. [Prior Art] In the past, in the manufacture of a semiconductor device, fine processing was performed using a photoresist composition. The microfabrication is to form a thin film of a photoresist composition on a substrate such as a tantalum wafer, and irradiate active light such as ultraviolet rays through a pattern of a pattern of a drawing device, and use the obtained photoresist pattern as a protective film. A method of etching and processing a wafer substrate. However, in recent years, the active light of the semiconductor device has a tendency to be short-wavelength from the KrF excimer laser (248 nm) toward the laser (1 93 nm). The influence of the disordered reflection or standing wave from the substrate along with this line becomes a big problem. An anti-reflection film (BARC Anti-Reflective Coating) is placed between the photoresist and the substrate to be processed. . In the future, if the miniaturization of the photoresist pattern continues to progress, the problem of difficulty in improving the resolution and the pattern of the photoresist pattern are required for development. Therefore, it is desirable to form a thin film of the photoresist film. However, it becomes more difficult to obtain a sufficient photoresist pattern film by processing a film sheet. The photoresist which is not used for the photoresist is processed into a semiconductor, and is processed by development. ArF quasi-fraction, active light. Therefore, the :Bottom method is widely used due to the collapse of the damage, based on the photoresist pattern only -5 to 201001080 type, and the photoresist film under the photoresist film and the processed semiconductor substrate also has a substrate as a substrate. The process of the function of the reticle during processing is also necessary. As the photoresist underlayer film for such processes, it is required to have a photoresist for lithography having a selectivity ratio close to the dry etching rate of the photoresist film different from the conventional high etching (fast etching speed) photoresist underlayer film. The lower film, the lower etch rate than the photoresist film, the lithographic underlayer film or the lithographic underlayer film having a dry time speed smaller than that of the semiconductor substrate (for example, refer to Patent Documents 1 to 4). ). Further, it is also possible to impart anti-reflection energy to the photoresist underlayer film, and it is also required to have the function of the conventional anti-reflection film. Patent Document 1: JP-A-2002-296789 Patent Document 2: JP-A-2004-177668 Patent Document 3: JP-A-2004-271838 Patent Document 4: JP-A-2005-250434 [Summary of the Invention] In order to solve these problems, the present invention provides a composition for forming a lithographic underlayer film which is effective for processing a semiconductor substrate. Moreover, the present invention provides a lithographic photoresist underlayer film having a selection ratio of a dry etching rate close to a dry etching rate of the photoresist film, and a dry etching rate smaller than that of the photoresist film or A lithographic underlayer film having a smaller dry etching rate than a semiconductor substrate. Furthermore, the present invention provides a photoresist pattern forming method -6-201001080 using a photoresist underlayer film forming composition, and a method of manufacturing a semiconductor device. [Means for Solving the Problems] The present inventors have found and completed the present invention as a result of actively studying the above problems. In other words, the first aspect is a photoresist underlayer film forming composition used in a lithography process for manufacturing a semiconductor device, characterized in that the composition includes each unit structure represented by the following formulas (1) and (2). Polymer: [Chemical 1]

Ri R2Ri R2

R3 R4R3 R4

ΜΜ

I (C=〇)n I ^ O'C-〇-Rg CH-Re r7 (上述式中,X表示氫原子或芳香族縮合環,Y表示芳香 族縮合環,又,X與Y可彼此鍵結形成縮合環,Ri、R2、 R3、R4及R5分別表示氫原子、鹵素原子、或碳原子數1 至3之烷基,R6、R7及R8分別表示氫原子或碳原子數1 至10之烷基,R9表示碳原子數1至w之烷基,又,R7 及R8亦可彼此鍵結形成環,Μ表示直接鍵或連結基,又 201001080 ,η表示0或1),且爲以構成該聚合物之全部單位構造 之總數爲1 .0時,以上述式(1 )表示之單位構造數(a ) 之比例與以上述式(2 )表示之單位構造數(b )之比例分 別爲〇.3Sa各0.95,0.05Sb$0.7之聚合物,且該組成物進 而含有交聯劑以及溶劑,上述組成物以自該組成物去除上 述溶劑之固體成分爲基準含有3至3 0質量%之上述交聯劑 〇 第二觀點爲一種半導體裝置製造之微影製程中使用之 光阻下層膜形成組成物,其特徵爲該組成物除包含以上述 式(1)及式(2)表示之單位構造之聚合物以外,進而包 含分子內分別具有至少兩個以下述式(3 )表示之經保護 羧基或經保護羥基之化合物: [化2] (c=〇) n I Re 式(3) 0~C—O-Rg ch-r8 r7 (上述式中,R6、R?及Rs分別表示氫原子或碳原子數1 至10之烷基,R9表示碳原子數1至1〇之烷基’又,R7 及R8亦可彼此鍵結形成環’ n表示0或丨)’且爲以構成 該聚合物之全部單位構造之數及該化合物之數之總數爲 1 .0時,以上述式(1 )表示之單位構造數(a )之比例及 以上述式(2)表示之單位構造數與以上述式(3)表示之 化合物之數合計(b )之比例分別爲 〇 · 3 S a $ 0 · 9 5, -8- 201001080 0.05 ^b^O.7之上述聚合物及上述化合物,該組成物進而 含有交聯劑以及溶劑,且上述組成物以自該組成物去除上 述溶劑之固體成分爲基準含有3至3 0質量%之上述交聯劑 〇 第三觀點爲如第一觀點或第二觀點所述之光阻下層膜 形成組成物,其中以上述式(1)表示之單位構造爲選自 乙稀基萘、乙嫌合萘(Acenaphthylene)、乙稀基惠、N-乙烯基咔唑或該等之衍生物之單位構造。 第四觀點爲如第一觀點至第三觀點中任一項所述之光 阻下層膜形成組成物,其中進而含有酸或酸產生劑。 第五觀點爲一種光阻下層膜,其係將第一觀點至第四 觀點中任一項所述之光阻下層膜形成組成物塗佈於半導體 基板上並經燒成獲得。 第六觀點爲一種光阻圖型之形成方法,其特徵係用於 包含將第一觀點至第四觀點中任一項所述之光阻下層膜形 成組成物塗佈於半導體基板上並經燒成而形成下層膜之步 驟之半導體製造中。 第七觀點爲一種半導體裝置之製造方法,其特徵係包 含在半導體基板上以第一觀點至第四觀點中任一項所述之 光阻下層膜形成組成物形成下層膜之步驟,及於其上形成 光阻膜之步驟,藉由光或電子束照射及顯像而形成光阻圖 型之步驟,依據所形成之光阻圖型蝕刻該下層膜之步驟, 以及依據圖型化之下層膜對半導體基板進行加工之步驟。 第八觀點爲一種半導體裝置之製造方法,其特徵爲包 -9- 201001080 含在半導體基板上以第一觀點至第四觀點中任一項所述之 光阻下層膜形成組成物形成下層膜之步驟,於其上形成硬 遮罩之步驟,再於其上形成光阻膜之步驟,藉由光或電子 束照射及顯像形成光阻圖型之步驟,藉由所形成之光阻圖 型餓刻硬遮罩之步驟,依據圖型化之硬遮罩餓刻該下層膜 之步驟’以及依據圖型化之下層膜對半導體基板進行加工 之步驟。 [發明效果] 本發明之微影用光阻下層膜形成組成物藉由選擇乾蝕 亥11氣體’可達成提供具有接近光阻膜之乾蝕刻速度之選擇 比'比光阻膜小的乾蝕刻速度之選擇比以及比半導體基板 小之乾蝕刻速度之選擇比之優異光阻下層膜。 又,本發明之微影用光阻下層膜形成組成物可同時具 有作爲曝光之光的抗反射膜之效果。 再者,本發明之光阻下層膜形成組成物可實現良好的 硬光罩龜裂抗性。亦即,藉由本發明之組成物形成之光阻 膜包含具有芳香族縮合環之單位構造、具有經保護之羧基 及/或經保護之羥基之單位構造,藉由可與該等形成交聯 之化合物、促進該交聯形成之酸成分而提高耐溶劑性或耐 龜裂性,而實現可作爲硬光罩使用之功能。 【實施方式】 本發明爲一種微影用光阻下層膜形成組成物,其含有 -10- 201001080 包含經保護之羧基及/或經保護之羥基之聚合物、交聯劑 及溶劑,或含有包含經保護之羧基及/或經保護之羥基之 聚合物、具有經保護之竣基及/或經保護之經基之化合物 、交聯劑及溶劑,且依據需要含有界面活性劑等添加劑。 自上述組成物去除溶劑之固體成分含有〇」至70質 量% ’較好含有1至60質量。/。。固體成分中含有1至% 質量%,或10至90質量%,或20至90質量%或30至90 質量%之聚合物或聚合物與具有經保護之羧基及/或經保護 之羥基之化合物。 以下就本發明加以詳細說明。 本發明中使用之聚合物爲各含有以式(1)及式(2) 表示之單位構造之聚合物, [化3]I (C=〇)n I ^ O'C-〇-Rg CH-Re r7 (In the above formula, X represents a hydrogen atom or an aromatic condensed ring, Y represents an aromatic condensed ring, and further, X and Y may bond each other The condensed ring is formed, and Ri, R2, R3, R4 and R5 each represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 3 carbon atoms, and R6, R7 and R8 represent a hydrogen atom or a carbon atom number of 1 to 10, respectively. An alkyl group, R9 represents an alkyl group having 1 to w carbon atoms, and R7 and R8 may be bonded to each other to form a ring, Μ represents a direct bond or a linking group, and 201001080, η represents 0 or 1), and is constituted by When the total number of all unit structures of the polymer is 1.0, the ratio of the ratio of the unit structure number (a) expressed by the above formula (1) to the unit structure number (b) expressed by the above formula (2) is 〇.3Sa each of 0.95, 0.05 Sb$0.7 of the polymer, and the composition further contains a crosslinking agent and a solvent, and the composition contains 3 to 30% by mass based on the solid content of the composition from which the solvent is removed. The second viewpoint is a photoresist underlayer film forming composition used in a lithography process for manufacturing a semiconductor device, and its characteristics The composition includes, in addition to the polymer having a unit structure represented by the above formulas (1) and (2), and further comprising at least two protected carboxyl groups or protected hydroxyl groups represented by the following formula (3) in the molecule. Compound: [Chemical 2] (c=〇) n I Re Formula (3) 0~C—O—Rg ch-r8 r7 (In the above formula, R6, R? and Rs respectively represent a hydrogen atom or a carbon number of 1 to An alkyl group of 10, R9 represents an alkyl group having 1 to 1 carbon atom, and R7 and R8 may also be bonded to each other to form a ring 'n represents 0 or 丨)' and is constructed in all units constituting the polymer. When the total number of the compounds and the number of the compounds is 1.0, the ratio of the unit structure number (a) expressed by the above formula (1) and the unit structure number represented by the above formula (2) are expressed by the above formula (3). The total number of compounds (b) is 上述· 3 S a $ 0 · 9 5, -8-201001080 0.05 ^b ^ O.7 of the above polymer and the above compound, and the composition further contains a crosslinking agent And the solvent, wherein the composition contains 3 to 30% by mass of the crosslinking agent based on the solid content of the solvent from which the composition is removed. The third viewpoint is a photoresist underlayer film forming composition as described in the first aspect or the second aspect, wherein the unit represented by the above formula (1) is selected from the group consisting of ethylene naphthalene, ethyl phthalate (Acenaphthylene), and B. Unit structure of dilute oxime, N-vinylcarbazole or such derivatives. The fourth aspect is the photoresist underlayer film forming composition according to any one of the first aspect to the third aspect, further comprising an acid or an acid generator. The fifth aspect is a photoresist underlayer film obtained by applying the photoresist underlayer film forming composition according to any one of the first to fourth aspects onto a semiconductor substrate and firing. The sixth aspect is a method for forming a photoresist pattern, which is characterized in that the photoresist underlayer film forming composition according to any one of the first aspect to the fourth aspect is coated on a semiconductor substrate and fired. In the semiconductor fabrication of the step of forming an underlayer film. The seventh aspect is a method of manufacturing a semiconductor device, comprising the step of forming a lower film by a photoresist underlayer film forming composition according to any one of the first aspect to the fourth aspect, and a step of forming a photoresist film, a step of forming a photoresist pattern by light or electron beam irradiation and development, a step of etching the underlayer film according to the formed photoresist pattern, and a layer film according to the pattern A step of processing a semiconductor substrate. The eighth aspect is a method of manufacturing a semiconductor device, characterized in that the package of the underlayer film forming composition of any one of the first to fourth aspects is formed on the semiconductor substrate. a step of forming a hard mask thereon, and then forming a photoresist film thereon, the step of forming a photoresist pattern by light or electron beam irradiation and development, by forming the photoresist pattern The step of honing the hard mask, the step of drilling the underlying film according to the patterned hard mask, and the step of processing the semiconductor substrate according to the patterned underlying film. [Effect of the Invention] The lithographic underlayer film forming composition of the present invention can achieve a dry etching rate close to that of the photoresist film by selecting a dry etching gas. The choice of speed is better than the choice of the dry etching rate of the semiconductor substrate. Further, the photoresist forming underlayer film forming composition of the present invention can simultaneously have an effect as an antireflection film for exposed light. Further, the photoresist underlayer film forming composition of the present invention can achieve good hard mask crack resistance. That is, the photoresist film formed by the composition of the present invention comprises a unit structure having an aromatic condensed ring, a unit structure having a protected carboxyl group and/or a protected hydroxyl group, and can be crosslinked by the same. The compound enhances solvent resistance or crack resistance by promoting the acid component formed by the crosslinking, thereby realizing a function as a hard mask. [Embodiment] The present invention relates to a lithographic photoresist underlayer film forming composition comprising -10-201001080 a polymer comprising a protected carboxyl group and/or a protected hydroxyl group, a crosslinking agent and a solvent, or containing A protected carboxyl group and/or a protected hydroxyl group polymer, a protected sulfhydryl group and/or a protected rhodium group compound, a crosslinking agent and a solvent, and optionally an additive such as a surfactant. The solid component from which the solvent is removed from the above composition contains 〇" to 70% by mass", preferably containing 1 to 60% by mass. /. . 1 to % by mass, or 10 to 90% by mass, or 20 to 90% by mass or 30 to 90% by mass of the polymer or polymer and the compound having a protected carboxyl group and/or a protected hydroxyl group in the solid content . The invention is described in detail below. The polymer used in the present invention is a polymer each having a unit structure represented by the formula (1) and the formula (2), [Chemical 3]

式⑴Formula (1)

式(2) 上述式(1)中,X表示氫原子或芳香族縮合環,Y 表示芳香族縮合環’又,X與Y可彼此鍵結形成縮合環。 -11 - 201001080 該芳香族縮合環爲環以兩個以上縮合而成者,較好爲2至 3個芳香族縮合而成者。 上述方香族縮合環舉例爲基於例如苯并咲喃基、異苯 并咲喃基、苯并嚷吩基、唾琳基、二氮雜萘基、嗤哇啉基 、噌啉基、萘基、蒽基、咔唑基等之基。較好爲基於萘基 、蒽基、昨哩基等之萘環、蒽環、咔'哩環等。又,萘環不 僅可與Y鍵結亦可與X鍵結。具有上述式(1)單位構造 之聚合物係使例如乙烯基萘、乙烯合萘、乙烯基蒽、乙烯 基咔唑或該等之衍生物聚合而獲得。 上述式(1)中,Ri及R2各表示氫原子、鹵素原子或 碳數1至3之烷基。鹵素原子舉例爲氟原子、氯原子、溴 原子、碘原子。碳原子數1至3之烷基舉例爲甲基、乙基 、丙基、異丙基。 以下例示上述式(1)之單位構造。 [化4]In the above formula (1), X represents a hydrogen atom or an aromatic condensed ring, and Y represents an aromatic condensed ring. Further, X and Y may be bonded to each other to form a condensed ring. -11 - 201001080 The aromatic condensed ring is obtained by condensing two or more rings, preferably from 2 to 3 aromatic condensates. The above aromatic condensed ring is exemplified by, for example, a benzofuranyl group, an isobenzopyranyl group, a benzononenyl group, a salinyl group, a diaza naphthyl group, a porphyrin group, a porphyrin group, a naphthyl group. , thiol, carbazolyl and the like. It is preferably a naphthalene ring, an anthracene ring, a fluorene ring or the like based on a naphthyl group, a fluorenyl group or a sulfonyl group. Further, the naphthalene ring may be bonded not only to Y but also to X. The polymer having the unit structure of the above formula (1) is obtained by, for example, polymerizing vinyl naphthalene, vinyl naphthalene, vinyl anthracene, vinyl carbazole or the like. In the above formula (1), each of Ri and R2 represents a hydrogen atom, a halogen atom or an alkyl group having 1 to 3 carbon atoms. The halogen atom is exemplified by a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. The alkyl group having 1 to 3 carbon atoms is exemplified by a methyl group, an ethyl group, a propyl group and an isopropyl group. The unit structure of the above formula (1) is exemplified below. [Chemical 4]

上述式(2)中,R3、R4及R5之定義與上述式(1) 中之R1及R2相同。Μ表示直接鍵或2價之連結基(例如 伸芳基、羥基伸烷基)。伸芳基舉例爲伸苯基、伸萘基、 伸蒽基等。羥基伸烷基舉例爲羥基甲基、羥基乙基、羥基 丙基、羥基丁基等。 -12- 201001080 Μ爲直接鍵時,上述式(2 )爲基於丙烯酸酯之單位 構造。 R6、R7及R8表示氫原子或碳原子數1至10之烷基, R9表示碳原子數1至10之烷基。 上述碳原子數1至10之烷基舉例爲甲基、乙基、正 丙基、異丙基、環丙基、正丁基、異丁基、第二丁基、第 三丁基、環丁基、1-甲基-環丙基、2-甲基-環丙基、正戊 基、1-甲基-正丁基、2-甲基-正丁基、3-甲基-正丁基、 1,1-二甲基·正丙基、1,2-二甲基-正丙基、2,2-二甲基-正 丙基、1-乙基-正丙基、環戊基、1-甲基-環丁基、2-甲基-環丁基、3 -甲基-環丁基、1,2-二甲基-環丙基、2,3-二甲 基-環丙基、卜乙基-環丙基、2-乙基-環丙基、正己基、1-甲基-正戊基、2-甲基-正戊基、3-甲基-正戊基、4-甲基-正 戊基、1,1-二甲基-正丁基、1,2-二甲基-正丁基、1,3-二甲 基-正丁基、2,2-二甲基-正丁基、2,3-二甲基-正丁基、 3,3-二甲基-正丁基、1-乙基-正丁基、2 -乙基-正丁基、 1,1,2-三甲基-正丙基、1,2,2-三甲基-正丙基、1-乙基-1-甲 基-正丙基、1-乙基-2-甲基-正丙基、環己基、1-甲基-環戊 基、2-甲基-環戊基' 3-甲基-環戊基、1_乙基-環丁基、2-乙基-環丁基、3-乙基-環丁基、1,2-二甲基-環丁基、1,3-二甲基-環丁基、2,2-二甲基-環丁基、2,3-二甲基-環丁基 、2,4-二甲基·環丁基、3,3-二甲基-環丁基、1-正丙基-環 丙基、2-正丙基-環丙基、1-異丙基-環丙基、2-異丙基-環 丙基、1,2,2-三甲基-環丙基、1,2,3-三甲基-環丙基、 -13- 201001080 2,2,3-三甲基-環丙基、1-乙基-2-甲基-環丙基' 2-乙基-1-甲基-環丙基、2-乙基-2-甲基-環丙基及2-乙基-3-甲基-環 丙基等。 上述式(2)中,R7及R8亦可彼此鍵結形成環。 上述式(2 )中,η爲〇之情況爲具有經保護羥基之單 位構造。具有該單位構造之聚合物之製造方法爲使乙烯基 酚與乙烯基醚反應獲得之具有經保護羥基之乙烯基酚衍生 物予以聚合之方法,或使乙烯基酚之聚合物與乙烯基醚化 合物反應之方法。又,有使(甲基)丙烯酸羥基烷酯與乙 烯基醚化合物反應獲得之具有經保護羥基之乙烯基衍生物 予以聚合之方法,或使(甲基)丙烯酸羥基烷酯之聚合物 與乙烯基醚化合物反應之方法。 上述式(2)中,η爲1之情況爲具有經保護羧基之單 位構造。具有該單位構造之聚合物之製造方法有使(甲基 )丙烯酸與乙烯基醚化合物反應獲得之具有經保護羧基之 丙烯酸酯聚合之方法,或使(甲基)丙烯酸之聚合物與乙 烯基醚化合物反應之方法。又有使(α甲基)苯乙烯羧酸 與乙烯基醚化合物反應獲得之具有經保護羧基之(α甲基 )苯乙烯衍生物聚合之方法,或使(α甲基)苯乙烯羧酸 之聚合物與乙烯基醚化合物反應之方法。 其中使用之乙烯基醚化合物係以下述式(4)表示。 -14- 201001080 [化5]In the above formula (2), the definitions of R3, R4 and R5 are the same as those of R1 and R2 in the above formula (1). Μ represents a direct bond or a divalent linking group (e.g., an aryl group, a hydroxyalkyl group). Examples of the extended aryl group are a stretching phenyl group, a stretching naphthyl group, an exfoliating group, and the like. The hydroxyalkylene group is exemplified by a hydroxymethyl group, a hydroxyethyl group, a hydroxypropyl group, a hydroxybutyl group or the like. -12- 201001080 When Μ is a direct bond, the above formula (2) is a unit based on acrylate. R6, R7 and R8 represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R9 represents an alkyl group having 1 to 10 carbon atoms. The above alkyl group having 1 to 10 carbon atoms is exemplified by methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, t-butyl, t-butyl, cyclobutyl Base, 1-methyl-cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl 1,1-dimethyl-n-propyl, 1,2-dimethyl-n-propyl, 2,2-dimethyl-n-propyl, 1-ethyl-n-propyl, cyclopentyl, 1-methyl-cyclobutyl, 2-methyl-cyclobutyl, 3-methyl-cyclobutyl, 1,2-dimethyl-cyclopropyl, 2,3-dimethyl-cyclopropyl , ethyl-cyclopropyl, 2-ethyl-cyclopropyl, n-hexyl, 1-methyl-n-pentyl, 2-methyl-n-pentyl, 3-methyl-n-pentyl, 4-methyl - n-pentyl, 1,1-dimethyl-n-butyl, 1,2-dimethyl-n-butyl, 1,3-dimethyl-n-butyl, 2,2-dimethyl-positive Butyl, 2,3-dimethyl-n-butyl, 3,3-dimethyl-n-butyl, 1-ethyl-n-butyl, 2-ethyl-n-butyl, 1,1,2 -trimethyl-n-propyl, 1,2,2-trimethyl-n-propyl, 1-ethyl-1-methyl-n-propyl, 1-ethyl-2-methyl-n-propyl Cyclohexyl, 1-methyl -cyclopentyl, 2-methyl-cyclopentyl '3-methyl-cyclopentyl, 1-ethyl-cyclobutyl, 2-ethyl-cyclobutyl, 3-ethyl-cyclobutyl, 1,2-dimethyl-cyclobutyl, 1,3-dimethyl-cyclobutyl, 2,2-dimethyl-cyclobutyl, 2,3-dimethyl-cyclobutyl, 2, 4-Dimethylcyclobutyl, 3,3-dimethyl-cyclobutyl, 1-n-propyl-cyclopropyl, 2-n-propyl-cyclopropyl, 1-isopropyl-cyclopropane Base, 2-isopropyl-cyclopropyl, 1,2,2-trimethyl-cyclopropyl, 1,2,3-trimethyl-cyclopropyl, -13-201001080 2,2,3- Trimethyl-cyclopropyl, 1-ethyl-2-methyl-cyclopropyl '2-ethyl-1-methyl-cyclopropyl, 2-ethyl-2-methyl-cyclopropyl and 2-ethyl-3-methyl-cyclopropyl and the like. In the above formula (2), R7 and R8 may be bonded to each other to form a ring. In the above formula (2), the case where η is 〇 is a unit structure having a protected hydroxy group. A method for producing a polymer having the unit structure is a method of polymerizing a vinylphenol derivative having a protected hydroxyl group obtained by reacting a vinyl phenol with a vinyl ether, or a polymer of a vinyl phenol and a vinyl ether compound The method of reaction. Further, there is a method of polymerizing a vinyl derivative having a protected hydroxyl group obtained by reacting a hydroxyalkyl (meth) acrylate with a vinyl ether compound, or a polymer of a hydroxyalkyl (meth) acrylate with a vinyl group A method of reacting an ether compound. In the above formula (2), the case where η is 1 is a unit structure having a protected carboxyl group. A method for producing a polymer having the unit structure is a method of polymerizing a acrylate having a protected carboxyl group obtained by reacting (meth)acrylic acid with a vinyl ether compound, or a polymer of (meth)acrylic acid and a vinyl ether The method of compound reaction. Further, there is a method of polymerizing a (α-methyl)styrene derivative having a protected carboxyl group obtained by reacting (α-methyl)styrenecarboxylic acid with a vinyl ether compound, or (α-methyl)styrenecarboxylic acid A method of reacting a polymer with a vinyl ether compound. The vinyl ether compound used therein is represented by the following formula (4). -14- 201001080 [化5]

式⑷ (式中,Re、R7、R8及Κ·9之定義係與上述式(2)之定義 相同)。 具有羧基之化合物與乙烯基醚化合物之反應可如例如 日本接著協會誌第34卷(Vol.34) ,352〜356頁中所述, 以磷酸作爲觸媒,在室溫下攪拌而進行。 以上述式(4 )表示之乙烯基醚化合物舉例爲例如甲 基乙烯基醚、乙基乙烯基醚、異丙基乙烯基醚、正丁基乙 烯基醚、2-乙基己基乙烯基醚、第三丁基乙烯基醚、環己 基乙烯基醚等脂肪族乙烯基醚化合物及2,3-二氫呋喃、4-甲基-2,3-二氫呋喃、2,3-二氫-4Η-吡喃等環狀乙烯基醚化 合物。 以下例示上述式(2 )之單位構造。 -15- 201001080 1 CH /t 3 5CH3)-0H3I Η3-κ=οΗ-οιο(2 c—c'lc·—0 c ^CH3 3 H2 c )-OH IH3— 9 h-c-c(2 c-cIc—〇 :-k. 式H3 2CH H c 0 9H3-1 H3} 9 h-cic(2 c—c·-c:-°·y12 式Formula (4) (wherein, Re, R7, R8, and Κ·9 are the same as defined in the above formula (2)). The reaction of the compound having a carboxyl group with the vinyl ether compound can be carried out, for example, as described in Japanese Unexamined Society, Vol. 34 (Vol. 34), pages 352 to 356, using phosphoric acid as a catalyst and stirring at room temperature. The vinyl ether compound represented by the above formula (4) is exemplified by, for example, methyl vinyl ether, ethyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, 2-ethylhexyl vinyl ether, An aliphatic vinyl ether compound such as a third butyl vinyl ether or a cyclohexyl vinyl ether; and 2,3-dihydrofuran, 4-methyl-2,3-dihydrofuran, 2,3-dihydro-4? a cyclic vinyl ether compound such as pyran. The unit structure of the above formula (2) is exemplified below. -15- 201001080 1 CH /t 3 5CH3)-0H3I Η3-κ=οΗ-οιο(2 c—c'lc·—0 c ^CH3 3 H2 c )-OH IH3— 9 hcc(2 c-cIc—〇 :-k. Formula H3 2CH H c 0 9H3-1 H3} 9 h-cic(2 c—c·-c:-°·y12

H3 c 3 * H ) HICIC 6 輪 _ 9H32-3h o Hc—C ( H\T ^ I 式 c-cIcIο i12 CH 3 /T H 「fO c 3 HI H c--c-c } 9H3-5 £} 9h-c-c(2 CICIC—o t Γ 式 CH H3 4C h2)4 ^ ) 9h34 9h-c-ic(2-clcic—o12 式 CH/TH3 c 3 * H ) HICIC 6 rounds _ 9H32-3h o Hc-C ( H\T ^ I type c-cIcIο i12 CH 3 /TH "fO c 3 HI H c--cc } 9H3-5 £} 9h- Cc(2 CICIC-ot Γ type CH H3 4C h2)4 ^ ) 9h34 9h-c-ic(2-clcic-o12 type CH/T

-°H3 H3H-9H-C-ICetc——c—o 12 CH4V -ο-°H3 H3H-9H-C-ICetc——c—o 12 CH4V -ο

CH 式 2 7 °H3H3l=oH-c-丨 c(2 c Jc'lc:l°式CH type 2 7 °H3H3l=oH-c-丨 c(2 c Jc'lc: l°

12 CH/T cl-o 8 ? 9H-C-C:2 CICIC—〇 式 -0H3 -ο 9 -16- 201001080 [化7]12 CH/T cl-o 8 ? 9H-C-C: 2 CICIC-〇 -0H3 -ο 9 -16- 201001080 [化7]

c=〇 c=〇 c:oc=〇 c=〇 c:o

I Η I Η I H O-C-OCH2CH3 0-C-0(CH2)3CH3 O-C-OCH3 ch3 ch3 ch3 式(2-10) 式(2-11) 式(2-12)I Η I Η I H O-C-OCH2CH3 0-C-0(CH2)3CH3 O-C-OCH3 ch3 ch3 ch3 Formula (2-10) Formula (2-11) Formula (2-12)

c:〇 I H o-c-o(ch2)4ch3 ch3 c:〇 I H ?H3 〇-C-〇—C-CH3 ch3 ch3 c:〇 I Η H O-C-O-C-CH3 ch3 ch3 式(2 - 1 5) 式(2 - 1 3) 式(2— 1 4)c: 〇IH oco(ch2)4ch3 ch3 c:〇IH ?H3 〇-C-〇-C-CH3 ch3 ch3 c:〇I Η H OCOC-CH3 ch3 ch3 formula (2 - 1 5) formula (2 - 1 3) Equation (2—1 4)

201001080 [化8] ch3-fc-c-Vh2J, 0-C-OCH2CH3 ch3 式(2- 1 9)201001080 [Chemical 8] ch3-fc-c-Vh2J, 0-C-OCH2CH3 ch3 (2- 1 9)

0-C-0(CH2)3CH3 ch3 式(2- 2 0)0-C-0(CH2)3CH3 ch3 Formula (2- 2 0)

o-c-och3 ch3 式(2 - 2 1)O-c-och3 ch3 (2 - 2 1)

3 r H\T CIC3 r H\T CIC

h3h-c—c. 12' CHH3h-c-c. 12' CH

-2 CH 4V-2 CH 4V

CH9I Η Η ch3 o-c-〇(ch2)4ch3 0-C-0-C-CH3 CH3 式(2 —2 2) I CH3 ch3 式(2 - 2 3) H H 〇—C-〇—C—CH3 ch3 ch3 式(2 - 2 4) CH3 ch3 ch3is.CH9I Η Η ch3 oc-〇(ch2)4ch3 0-C-0-C-CH3 CH3 Formula (2 — 2 2) I CH3 ch3 Formula (2 - 2 3) HH 〇—C-〇—C—CH3 ch3 ch3 Equation (2 - 2 4) CH3 ch3 ch3is.

H 〇-c-〇-(^y ch3 式(2-2 5)H 〇-c-〇-(^y ch3 type (2-2 5)

Ho-c-o I ch3 式(2-2 6) -oHo-c-o I ch3 type (2-2 6) -o

Cl H O-C-O I ch3 式(2-2 7) -18- 201001080 [化9]Cl H O-C-O I ch3 type (2-2 7) -18- 201001080 [Chemistry 9]

ch3c=o I o ch2chό HC~OCH2CH3 ch3 式(2-2 8) ch3c=o ch3c=o I9 ch2ch ό HC-〇(CH2)3CH3 ch3 式(2_2 9) ^rt>3 c=0 ch2ch hc-och3 ch3 ^ (2-3 0) ch3ti十c=o o ch2ch 0 HC-0(CH2)4〇H3 ch3 式(2-3 1) ch3c=o I o ch2chHC-O^O ch3 式(2-34) o ch2ch ό ch3 HC-0-C-CH3 ch3 ch3 式(2 —3 2) c=〇 ch3oo o ch2ch ch3 式(2-3 5) o ch2ch ό H HC-O-C-CH I I ch3 ch3 式(2 - 3 3 ) CHZ I;?子c=〇 I 9 ch2chH£f-°-〇 ch3 式(2-3 6) 本發明中使用之聚合物之重量平均分子量爲 1000000,較好爲1000至200000。該等分子量係 分析換算成聚本乙煉獲得之分子量。 GPC之測定條件可使用例如GPC裝置(商品4 8 220GPC ’東曹股份有限公司製造)、GPC管柱( Shodex KF803L、KF802、KF801,昭和電工製造) 溫度爲40°C,溶離液(溶出溶劑)爲四氫呋喃,流 100至 'Λ GPC 1 HLC- 商品名 ’管柱 量(流 -19- 201001080 速)爲1 .Oml/min,標準試料爲聚苯乙烯(昭和電光股份 有限公司製造)進行。 另外,各含有以式(1)及式(2)表不之單位構造之 聚合物之合成可倂用其他加成聚合性單體。該等加成聚合 性單體舉例爲丙烯酸酯化合物、甲基丙烯酸酯化合物、丙 烯醯胺化合物、甲基丙烯醯胺化合物、乙烯基化合物、苯 乙烯化合物、馬來醯亞胺化合物、馬來酸酐及丙烯腈等。 丙烯酸酯化合物舉例爲丙烯酸甲酯、丙烯酸乙酯、丙 烯酸異丙酯、丙烯酸苄酯、丙烯酸萘酯、丙烯酸蒽酯、丙 烯酸蒽基甲酯、丙烯酸苯酯、丙烯酸2-羥基乙酯、丙烯酸 2-羥基丙酯、丙烯酸2,2,2-三氟乙酯、丙烯酸4-羥基丁酯 、丙烯酸異丁酯、丙烯酸第三丁酯、丙烯酸環己酯、丙烯 酸異冰片酯、丙烯酸2 -甲氧基乙酯、丙烯酸甲氧基三乙二 醇酯、丙烯酸2 -乙氧基乙酯、丙烯酸四氫糠酯、丙烯酸3-甲氧基丁酯、丙烯酸8 -甲基-8-三環癸酯、丙烯酸8 -乙基· 8 -三環癸酯及5-丙烯醯基氧基-6-羥基原冰片烯-2-羧酸- 6-內酯等。 甲基丙烯酸酯化合物舉例爲甲基丙烯酸甲酯、甲基丙 烯酸乙酯、甲基丙烯酸正丙酯、甲基丙烯酸正戊酯、甲基 丙烯酸環己酯、甲基丙烯酸苄酯、甲基丙烯酸萘酯、甲基 丙烯酸蒽酯、甲基丙烯酸蒽基甲酯、甲基丙烯酸苯酯、甲 基丙烯酸2-苯基乙酯、甲基丙烯酸2-羥基乙酯、甲基丙烯 酸2-羥基丙酯、甲基丙烯酸2,2,2-三氟乙酯、甲基丙烯酸 2,2,2-三氯乙酯、甲基丙烯酸異丁酯、甲基丙烯酸2-乙基 -20- 201001080 己酯、甲基丙烯酸異癸酯、甲基丙烯酸正月桂酯、甲基丙 烯酸正硬脂基酯、甲基丙烯酸甲氧基二乙二醇酯、甲基丙 烯酸甲氧基聚乙二醇酯、甲基丙烯酸四氫糠酯、甲基丙烯 酸異冰片酯、甲基丙烯酸第三丁酯、甲基丙烯酸異硬脂基 酯、甲基丙烯酸正丁氧基乙酯、甲基丙烯酸3·氯-2-羥基 丙酯、甲基丙烯酸8 -甲基-8-三環癸酯、甲基丙烯酸8 -乙 基-8-三環癸酯、5 -甲基丙烯醯氧基-6-羥基原冰片烯-2-羧 酸-6-內酯及甲基丙烯酸2,2,3,3,4,4,4-七氟丁酯等。 丙烯醯胺化合物舉例爲丙烯醯胺、N-甲基丙烯醯胺、 N-乙基丙烯醯胺、N-苄基丙烯醯胺、N-苯基丙烯醯胺及 N,N-二甲基丙烯醯胺等。 甲基丙烯醯胺化合物舉例爲甲基丙烯醯胺、N-甲基甲 基丙烯醯胺、N-乙基甲基丙烯醯胺、N-苄基甲基丙烯醯胺 、N-苯基甲基丙烯醯胺、N,N-二甲基甲基丙烯醯胺等。 乙烯基化合物舉例爲乙烯基醚、甲基乙烯基醚、苄基 乙烯基醚、2-羥基乙基乙烯基醚、苯基乙烯基醚及丙基乙 烯基醚等。 至於苯乙烯化合物舉例爲苯乙烯、甲基苯乙烯、氯苯 乙烯、溴苯乙烯及羥基苯乙烯等。 馬來醯亞胺化合物舉例爲馬來醯亞胺、N-甲基馬來醯 亞胺、N-苯基馬來醯亞胺及N-環己基馬來醯亞胺等。 各含有以式(1)及式(2)表示之單位構造之聚合物 可藉由將加成聚合性單體及依據需要添加之鏈轉移劑(相 對於單體之質量在1 〇%以下)溶解於有機溶劑中之後,添 -21 - 201001080 加聚合起始劑進行聚合反應’隨後,添加聚合終止劑而製 造。聚合起始劑之添加量相對於單體之質量爲1至1 〇%, 聚合終止劑之添加量爲0.0 1至0.2 %。 使用之有機溶劑舉例爲丙二醇單甲基醚、丙二醇單丙 基醚、乳酸乙酯、環己酮、甲基乙基酮及二甲基甲醯胺等 〇 鏈轉移劑舉例爲十二烷硫醇及十二院基硫醇等。 聚合起始劑舉例爲偶氮雙異丁腈及偶氮雙環己甲腈等 〇 聚合終止劑舉例爲4 -甲氧基酚等。 反應溫度係在3 0至1 〇 〇 °c,反應時間在1至4 8小時 適當的選擇。 以下例示各含有以上述式(1)及式(2)表示之單位 構造之共聚合聚合物。 -22- 201001080 [化 10]Ch3c=o I o ch2chό HC~OCH2CH3 ch3 Formula (2-2 8) ch3c=o ch3c=o I9 ch2ch ό HC-〇(CH2)3CH3 ch3 Formula (2_2 9) ^rt>3 c=0 ch2ch hc-och3 Ch3 ^ (2-3 0) ch3ti ten c=oo ch2ch 0 HC-0(CH2)4〇H3 ch3 Formula (2-3 1) ch3c=o I o ch2chHC-O^O ch3 Formula (2-34) o Ch2ch ό ch3 HC-0-C-CH3 ch3 ch3 Formula (2 — 3 2) c=〇ch3oo o ch2ch ch3 Formula (2-3 5) o ch2ch ό H HC-OC-CH II ch3 ch3 Formula (2 - 3 3) CHZ I;?c = 〇I 9 ch2chH£f-°-〇ch3 Formula (2-3 6) The weight average molecular weight of the polymer used in the present invention is 1,000,000, preferably 1,000 to 200,000. These molecular weights are analyzed and converted into molecular weights obtained by polyethylation. The measurement conditions of the GPC can be, for example, a GPC apparatus (product 4 8 220 GPC 'made by Tosoh Corporation), a GPC column (Shodex KF803L, KF802, KF801, manufactured by Showa Denko), a temperature of 40 ° C, and a solution (dissolved solvent). For tetrahydrofuran, the flow rate of 100 to 'Λ GPC 1 HLC-product name' tube volume (flow -19-201001080 speed) was 1.0 ml/min, and the standard sample was made of polystyrene (manufactured by Showa Co., Ltd.). Further, the synthesis of a polymer each having a unit structure represented by the formulas (1) and (2) may be carried out by using another addition polymerizable monomer. Examples of the addition polymerizable monomer are an acrylate compound, a methacrylate compound, an acrylamide compound, a methacrylamide compound, a vinyl compound, a styrene compound, a maleimide compound, and maleic anhydride. And acrylonitrile and the like. The acrylate compound is exemplified by methyl acrylate, ethyl acrylate, isopropyl acrylate, benzyl acrylate, naphthyl acrylate, decyl acrylate, decyl methacrylate, phenyl acrylate, 2-hydroxyethyl acrylate, acrylic acid 2- Hydroxypropyl ester, 2,2,2-trifluoroethyl acrylate, 4-hydroxybutyl acrylate, isobutyl acrylate, tert-butyl acrylate, cyclohexyl acrylate, isobornyl acrylate, 2-methoxy acrylate Ethyl ester, methoxytriethylene glycol acrylate, 2-ethoxyethyl acrylate, tetrahydrofurfuryl acrylate, 3-methoxybutyl acrylate, 8-methyl-8-tricyclodecyl acrylate, 8-ethyl-8-tricyclodecyl acrylate and 5-propenyloxy-6-hydroxynorbornene-2-carboxylic acid-6-lactone. The methacrylate compound is exemplified by methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, n-amyl methacrylate, cyclohexyl methacrylate, benzyl methacrylate, naphthalene methacrylate. Ester, decyl methacrylate, decyl methyl methacrylate, phenyl methacrylate, 2-phenylethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,2-trichloroethyl methacrylate, isobutyl methacrylate, 2-ethyl-20- 201001080 hexyl methacrylate, A Isodecyl acrylate, n-lauryl methacrylate, n-stearyl methacrylate, methoxy diethylene glycol methacrylate, methoxy polyethylene glycol methacrylate, methacrylic acid Hydroquinone ester, isobornyl methacrylate, tert-butyl methacrylate, isostearyl methacrylate, n-butoxyethyl methacrylate, 3·chloro-2-hydroxypropyl methacrylate , 8-methyl-8-tricyclodecyl methacrylate, 8-ethyl-8-tricyclodecyl methacrylate 5 - methyl-6-hydroxy-Bing Xixi norbornene-2-carboxylic acid 6-lactone and 2,2,3,3,4,4,4-heptafluoro-butyl methacrylate, and the like. Examples of the acrylamide compound are acrylamide, N-methyl acrylamide, N-ethyl acrylamide, N-benzyl acrylamide, N-phenyl acrylamide, and N, N-dimethyl propylene. Amidoxime and the like. The methacrylamide compound is exemplified by methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, N-benzylmethacrylamide, N-phenylmethyl Acrylamide, N,N-dimethylmethacrylamide, and the like. The vinyl compound is exemplified by vinyl ether, methyl vinyl ether, benzyl vinyl ether, 2-hydroxyethyl vinyl ether, phenyl vinyl ether, propyl vinyl ether or the like. As the styrene compound, styrene, methyl styrene, chlorostyrene, bromostyrene and hydroxystyrene are exemplified. The maleidin compound is exemplified by maleimide, N-methylmaleimide, N-phenylmaleimide, and N-cyclohexylmaleimide. Each of the polymers having a unit structure represented by the formulas (1) and (2) may be an addition polymerizable monomer and a chain transfer agent (added to 1% by mass or less based on the mass of the monomer). After dissolving in an organic solvent, -21 - 201001080 was added to carry out a polymerization reaction by adding a polymerization initiator, and then it was produced by adding a polymerization terminator. The amount of the polymerization initiator added is 1 to 1% by mass based on the mass of the monomer, and the amount of the polymerization terminator is 0.01 to 0.2%. The organic solvent to be used is exemplified by propylene glycol monomethyl ether, propylene glycol monopropyl ether, ethyl lactate, cyclohexanone, methyl ethyl ketone and dimethylformamide. And 12 yards of thiol and the like. The polymerization initiator is exemplified by azobisisobutyronitrile and azobiscyclohexanecarbonitrile. The polymerization terminator is exemplified by 4-methoxyphenol or the like. The reaction temperature is between 30 and 1 〇 〇 ° C, and the reaction time is from 1 to 48 hours. The copolymerized polymer each having the unit structure represented by the above formula (1) and formula (2) is exemplified below. -22- 201001080 [化 10]

c:oIPo—c I CH3 式(3 — 1) -0-C-CH3 ch3 ch3c:oIPo-c I CH3 (3 - 1) -0-C-CH3 ch3 ch3

ch3Ch3

式(3 —3) CO 〇_0-OCH2CH3 ch3Formula (3 - 3) CO 〇_0-OCH2CH3 ch3

c:o I H 〇-C-0(CH2)3CH3c:o I H 〇-C-0(CH2)3CH3

CH3H子 Π2 I c:o 0-CH3 式(3-4) ch3 -23- 201001080 [化 11]CH3H sub Π2 I c:o 0-CH3 Formula (3-4) ch3 -23- 201001080 [Chem. 11]

ch3 ch3Ch3 ch3

〇-C-〇(CH2)3CH3 ch3〇-C-〇(CH2)3CH3 ch3

〇—C-OCH2CH3〇—C-OCH2CH3

ch3Ch3

式(3 — 8 ) o-c-o(ch2)3ch3 ch3 -24- 201001080 [化 12]Equation (3-8) o-c-o(ch2)3ch3 ch3 -24- 201001080 [Chemistry 12]

式(3 - 1 Ο)(3 - 1 Ο)

ch3 0-C-0(CH2)3CH3 式(3- 1 1)Ch3 0-C-0(CH2)3CH3 Formula (3- 1 1)

o—C-OCH2CH3o-C-OCH2CH3

式(3 — 12)Equation (3-12)

r H. CH3 c:o ‘Η2ό 式(3— 1 3) H 0-CH3 〇-C-〇(CH2)3CH3 ch3 -25- 201001080 [化 13]r H. CH3 c:o ‘Η2ό Equation (3—1 3) H 0-CH3 〇-C-〇(CH2)3CH3 ch3 -25- 201001080 [Chem. 13]

r Η -C-C 、Η2 C=00 CH2CH η ch3 式(3 — 1 4 ) Ο—C-0-C-CH3 I I ch3 ch3r Η -C-C , Η 2 C=00 CH2CH η ch3 Formula (3 — 1 4 ) Ο—C-0-C-CH3 I I ch3 ch3

Η 一C-Η One C-

C=0 Ο CH2CHh 0-C-0(CH2)3CH3 ch3 式(3- 1 5: oCH2CH H0—C~OCH2CH3 ch3 式(3 - 1 6)C=0 Ο CH2CHh 0-C-0(CH2)3CH3 ch3 Formula (3- 1 5: oCH2CH H0-C~OCH2CH3 ch3 Formula (3 - 1 6)

η CH3 CH2CHh 0-CH3 式(3 - 1 7) o-c-o(ch2)3ch3 ch3 本發明爲各含有上述式(1)之單位構造及上述式(2 )之具有經保護羧基之單位構造之聚合物(1 )、及各含 有上述式(1)之單位構造及上述式(2)之具有經保護羥 基之單位構造之聚合物(2),該聚合物(1)及聚合物( 2)可組合使用。 本發明中含有具有經保護之羧基與經保護之羥基之單 位構造之聚合物之情況,由於羧基與羥基可藉由酯鍵而形 -26- 201001080 成交聯構造,故該等單位構造位於聚合物中,於塗佈後之 燒成階段難以作爲低分子成分昇華,且由於聚合物中各單 位構造不會局部分布而可均勻存在於膜中,故作爲下層膜 ,在膜整體中不會產生成分不均。因此,藉由使用該下層 膜,於膜之任何部分在微影步驟中之乾蝕刻速度、或由微 影產生之圖型形狀亦均勻,而可獲得良好矩形之微影圖型 又有於分子內具有至少兩個以下述式(3)表示之經 保護羧基之化合物(1 )或分子內具有至少兩個經保護羥 基之化合物(2 ), [化 14] (C=〇) n I Re 式(3) O-C——O-Rg CH—R8η CH3 CH2CHh 0-CH3 Formula (3 - 1 7) oco(ch2)3ch3 ch3 The present invention is a polymer each having a unit structure of the above formula (1) and a unit structure having a protected carboxyl group of the above formula (2) ( 1) and a polymer (2) each having a unit structure of the above formula (1) and a unit structure having a protected hydroxyl group of the above formula (2), the polymer (1) and the polymer (2) may be used in combination. . In the case where the polymer of the present invention contains a polymer having a protected carboxyl group and a protected hydroxyl group, since the carboxyl group and the hydroxyl group can be formed by a trade bond of -26-201001080, the unit structure is located in the polymer. In the firing stage after coating, it is difficult to sublimate as a low molecular component, and since the unit structure of the polymer is not locally distributed and can be uniformly present in the film, the lower layer film does not generate a component in the entire film. Uneven. Therefore, by using the underlayer film, the dry etching rate in the lithography step or the pattern shape generated by the lithography is uniform in any portion of the film, and a good rectangular lithogram pattern and a numerator can be obtained. a compound (1) having at least two protected carboxyl groups represented by the following formula (3) or a compound (2) having at least two protected hydroxyl groups in the molecule, [Chem. 14] (C=〇) n I Re (3) OC——O-Rg CH—R8

Ry (式中,Re、R7、Rs及R_9之定義係與上述式(3)之定義 相同)。 因而有上述聚合物(1)或上述聚合物(2)與上述化 合物(2)之組合’或上述聚合物(2)與上述化合物 )或上述化合物(2 )之組合。 上述聚合物與上述化合物之比例係以將該等換算成單 體時於全部單體中爲10至50莫耳%之比例包含上述化合 物。 分子內具有至少兩個以上述式(3 )表示之經保護羧 -27- 201001080 基之化合物或分子內具有至少兩個經保護羥基之化合物, 可在相對於分子內具有至少兩個羧基之化合物或分子內具 有至少兩個羥基之化合物一莫耳,使以上述式(4)表示 之乙烯基醚化合物對應於該等羧基或羥基之莫耳數反應而 製造。 與以上述式(4)表示之乙烯基醚化合物反應之分子 內具有至少兩個羧基之化合物只要是具有羧基之化合物則 無特別限制。 分子內具有至少兩個,較好具有兩個至四個羧基之化 合物舉例爲例如間苯二甲酸、對苯二甲酸、均苯四甲酸、 1,2,4-偏苯三酸、1,3,5-偏苯三酸、己二酸、馬來酸、丁烷 四羧酸、參(2-羧基乙基)異尿氰酸酯、萘-2,6-二羧酸、 亞甲基雙羥萘酸(pamoic acid) 、1,1’-雙萘-2,2’-二羧酸 、蒽-9,10-二羧酸、馬來酸、衣康酸、戊二酸、1,2 -環己 烷二羧酸、1,2,3,4-環戊烷四羧酸等。 分子內具有至少兩個,較好兩個至四個羥基之化合物 舉例爲例如二羥苯、多核酚、二羥萘、二羥蒽、乙二醇、 丙三醇、雙酚A、雙酚S等。 由該等化合物製造之分子內具有至少兩個以上述式( 3 )表示之經保護羧基之化合物或分子內具有至少兩個經 保護羥基之化合物之分子量爲200以上較佳。分子量小於 該値時,有在燒成以形成光阻下層膜時出現昇華之問題。 分子量爲例如200至2000,又例如400至2000。 本發明之微影用光阻下層膜形成組成物可在上述聚合 -28- 201001080 物(1 )或上述聚合物(2 )中進而含有交聯劑。 藉由使用交聯劑,在燒成以形成下層膜時,使聚合物 與交聯劑之間產生反應,使形成之下層膜具有交聯構造。 結果,下層膜變強固,且成爲對於塗佈於其上層之硬光罩 或光阻之溶液所使用之有機溶劑之溶解性降低者。 交聯劑係使用具有兩個以上,例如兩個至六個,或兩 個至四個可與經保護之羧基或經保護之羥基反應之取代基 之化合物。 至於交聯劑舉例爲具有經羥基甲基或甲氧基甲基、乙 氧基甲基、丁氧基甲基及己氧基甲基等之烷氧基甲基取代 之氮原子之含氮化合物。 具體而言舉例爲六甲氧基甲基三聚氰胺、四甲氧基甲 基苯并胍胺、1,3,4,6-肆(丁氧基甲基)甘脲(glycoluril )、1,3,4,6·肆(羥基甲基)甘脲、1,3-雙(羥基甲基)尿 素、1,1,3,3-肆(丁氧基甲基)尿素、1,1,3,3-肆(甲氧基 甲基)尿素、1,3-雙(羥基甲基)-4,5-二羥基-2-咪唑酮及 1,3-雙(甲氧基甲基)-4,5-二甲氧基-2-咪唑酮等含氮化合 物。 至於交聯劑可舉例爲三井CYTECH (股)製造之甲氧 基甲基類三聚氰胺化合物(商品名CYMEL 300、CYMEL 301、CYMEL 303、CYMEL 3 5 0 ) 、丁氧基甲基類三聚氰 胺化合物(商品名 MYCOTE 506、MYCOTE 508 )、甘脲 化合物(商品名 CYMEL 1170、POWERLINK 1174)、甲 基化尿素樹脂(商品名U F R 6 5 )、丁基化尿素樹脂(商品 -29- 201001080 名 UFR3 00、U-VAN1 0S60、U-VAN 1 OR、U-VAN1 1 HV )、 大日本油墨化學工業(股)製造之尿素/甲醛系樹脂(高 縮合型,商品名 BECKAMINE J-3 00S ' BECKAMINE P-955 、:BECKAMINE N )等市售化合物。 再者,交聯劑亦可爲使胺基之氫原子經羥基甲基或院 氧基甲基取代之如上述之三聚氰胺化合物、尿素化合物、 甘脈化合物及本并狐fl女化合物縮合獲得之化合物。例如可 使用美國專利第63 23 3 1 0號中所述之由三聚氰胺化合物( 商品名CYMEL 3 03 )及苯并胍胺化合物(商品名CYMEL 1 1 23 )製造之高分子量之化合物作爲交聯性化合物。 另外,作爲交聯劑,可利用使用經羥基甲基取代之 N-羥基甲基丙烯醯胺、N-甲氧基甲基甲基丙烯醯胺、N-乙 氧基甲基丙烯醯胺及N-丁氧基甲基甲基丙烯醯胺等,或 經烷氧基甲基取代之丙烯醯胺化合物及甲基丙烯醯胺化合 物所製造之聚合物化合物。 上述聚合物化合物可舉例爲例如聚(N-丁氧基甲基丙 烯醯胺)、N-丁氧基甲基丙烯醯胺與苯乙烯之共聚物、N-羥基甲基甲基丙烯醯胺與甲基丙烯酸甲酯之共聚物、N-乙 氧基甲基甲基丙烯醯胺與甲基丙烯酸苄酯之共聚物及N-丁氧基甲基丙烯醯胺與甲基丙烯酸苄酯及甲基丙烯酸2-羥 基丙酯之共聚物等。 交聯劑可單獨使用一種,亦可組合兩種以上之化合物 使用。 交聯劑以去除本發明之微影用光阻下層膜形成組成物 -30- 201001080 中所含溶劑之固體成分爲基準,可以3至3 0質量%,較好 5至20質量%之比例含有。又,藉由改變交聯劑之種類或 含量’可調整光阻輪廓或下層基板之階差被覆性。 本發明之微影用光阻下層膜形成組成物可含有上述聚 合物(1)或上述聚合物(2)、及交聯劑、另可含有作爲 交聯觸媒之酸。藉由使用交聯觸媒,可促進交聯劑之反應 。而且,藉由含有促進交聯形成之酸,不會發生光阻下層 膜與上層之相互混合’可形成良好之光阻圖型。 上述酸可使用對-甲苯磺酸、三氟甲烷磺酸、甲烷磺 酸、吡啶鎗-對-甲苯磺酸、水楊酸、樟腦磺酸、磺基水楊 酸、檸檬酸、苯甲酸及羥基苯甲酸等酸化合物。 酸可單獨使用一種亦可組合兩種以上使用。 酸以去除本發明之微影用光阻下層膜形成組成物中所 含溶劑之固體成分爲基準,可以0.3至3.0質量%,較好 爲0.5至2.0質量%之比例含有。 本發明之微影用光阻下層膜形成組成物可進而含有光 酸產生劑。藉由使用光酸產生劑,可在微影步驟中與被覆 於上層之光阻之酸性度一致。 較佳之光酸產生劑舉例爲例如雙(4 -第三丁基苯基) 碘鑰三氟甲烷磺酸鹽、三苯基鏑三氟甲烷磺酸鹽等鐵鹽系 光酸產生劑類,苯基-雙(三氯甲基)-s -三嗪等含鹵素化 合物系光酸產生劑類,苯偶因甲苯磺酸酯、Ν -經基號ί白醯 亞胺三氟甲烷磺酸酯等磺酸系光酸產生劑類等。 光酸產生劑以去除本發明之微影用光阻下層膜形成組 -31 - 201001080 成物中所含溶劑之固體成分爲準,可含有0.2至10質量% ,較好〇. 4至5質量%。 本發明之微影用光阻下層膜形成組成物除上述以外亦 可依據需要進而含有吸光劑、流變調整劑、接著補助劑及 界面活性劑。 吸光劑可適當使用例如「工業用色素之技術與市場」 (CMC出版)或「染料便覽」(有機合成化學協會編)中 所述之市售吸光劑,例如C. I.分散黃1、3、4、5、7、8、 13、 23、 31、 49、 50、 51、 54、 60、 64、 66、 68、 79、 82 、88、90、93、102、114 及 124; C.I.分散橙 1、5、13、 25、29、30、31、44、57、72 及 73; C.I.分散紅 1' 5、7 、13、17、19、43、50、54、58、65、72、73、88、117 、137、143、199 及 210; C.I.分散紫 43; C.I.分散藍 96 ;c I ·螢光亮光劑1 1 2、1 3 5及1 6 3 ; C . I.溶劑橙2及4 5 ; c.l.溶劑紅 1、3、8、23、24、25、27 及 49; C.I.顏料綠 10 ; C.I.顏料棕2等。 吸光劑以去除本發明之微影用光阻下層膜形成組成物 中所含溶劑之固體成分爲基準,可以1 0質量%以下,較好 5質量%以下之比例含有。 組厚塡 二 成膜充 酸 形之之 甲 膜膜部 二 層層內 苯 下下洞 、 阻阻孔 醋 光光朝 甲 升高物 二 提提成 酸 係中組 甲 要驟成 二 主步形 苯 的烤膜 如 目烘層 例 之是下 爲 劑其阻 例 整尤光 舉 調,高 劑 變性提 整 流動或 調 有流, 變 含之性 流 物勻。 成均性 -32- 201001080 乙止、苯二甲酸二異丁酯、苯二甲酸二己酯、 酯異癸酯等之苯二甲酸衍生物,己二酸二正丁 二異丁酯、己二酸二異辛酯、己二酸辛酯癸酯 衍生物,馬來酸二正丁酯、馬來酸二乙酯、馬 等馬來酸衍生物,油酸甲酯、油酸丁酯、油酸 油酸衍生物,或硬脂酸正丁酯、硬脂酸甘油酯 衍生物。 流變調整劑以去除本發明之微影用光阻下 成物中所含溶劑之固體成分爲基準,可以小於 比例含有。 含有接著補助劑之目的主要爲提升基板或 阻下層膜形成組成物之密著性,尤其是爲了於 光阻劑剝離之目的。 至於接著補助劑可舉例爲例如三甲基氯矽 乙烯基氯矽烷、甲基二苯基氯矽烷、氯甲基二 等氯矽烷類;三甲基甲氧基矽烷、二甲基二乙 甲基二甲氧基矽烷、二甲基乙烯基乙氧基矽烷 甲氧基矽烷、苯基三乙氧基矽烷等之烷氧基矽 基二矽胺烷、Ν,Ν’-雙(三甲基矽烷基)尿素 甲基矽烷基胺、三甲基矽烷基咪唑等矽胺烷類 氯矽烷、r-氯丙基三甲氧基矽烷、r-胺基丙 石夕院、7 _縮水甘油氧基丙基二甲氧基砂院等 并三唑、苯并咪唑、吲唑、2 -巯基苯并咪唑、 噻唑、2-锍基苯并噁唑、脲唑(Ur azole )、 苯二甲酸丁 酯、己二酸 等之己二酸 來酸二壬酯 四氫糠酯等 等之硬脂酸 層膜形成組 3 0質量%之 光阻劑與光 顯像中不使 烷、二甲基 甲基氯矽烷 氧基砂院、 ' 二苯基一 烷類,六甲 、二甲基三 ,乙烯基三 基三乙氧基 矽烷類,苯 2 -锍基苯并 硫尿嘧啶( -33- 201001080Ry (wherein, Re, R7, Rs and R_9 are the same as defined in the above formula (3)). Thus, there is a combination of the above polymer (1) or the combination of the above polymer (2) and the above compound (2) or the above polymer (2) with the above compound or the above compound (2). The ratio of the above polymer to the above compound is such that the compound is contained in a ratio of 10 to 50 mol% based on the total amount of the monomer. a compound having at least two protected carboxy-27-201001080 groups represented by the above formula (3) or a compound having at least two protected hydroxyl groups in the molecule, which may have at least two carboxyl groups relative to the molecule Or a compound having at least two hydroxyl groups in the molecule, a mole, which is produced by reacting a vinyl ether compound represented by the above formula (4) with respect to the molar number reaction of the carboxyl group or the hydroxyl group. The compound having at least two carboxyl groups in the molecule which reacts with the vinyl ether compound represented by the above formula (4) is not particularly limited as long as it is a compound having a carboxyl group. Compounds having at least two, preferably two to four, carboxyl groups in the molecule are exemplified by, for example, isophthalic acid, terephthalic acid, pyromellitic acid, 1,2,4-trimellitic acid, 1,3. , 5-trimellitic acid, adipic acid, maleic acid, butane tetracarboxylic acid, ginseng (2-carboxyethyl) isocyanurate, naphthalene-2,6-dicarboxylic acid, methylene double Pamoic acid, 1,1'-bisnaphthalene-2,2'-dicarboxylic acid, hydrazine-9,10-dicarboxylic acid, maleic acid, itaconic acid, glutaric acid, 1,2 - cyclohexanedicarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, and the like. The compound having at least two, preferably two to four, hydroxyl groups in the molecule is exemplified by, for example, dihydroxybenzene, polynuclear phenol, dihydroxynaphthalene, dihydroxyindole, ethylene glycol, glycerin, bisphenol A, bisphenol S. Wait. The compound having at least two protected carboxyl groups represented by the above formula (3) or a compound having at least two protected hydroxyl groups in the molecule produced by the compounds has a molecular weight of 200 or more. When the molecular weight is less than the ruthenium, there is a problem that sublimation occurs when firing to form a photoresist underlayer film. The molecular weight is, for example, from 200 to 2,000, for example from 400 to 2,000. The photoresist-forming underlayer film forming composition for lithography of the present invention may further contain a crosslinking agent in the above polymerization -28-201001080 (1) or the above polymer (2). By using a crosslinking agent, when firing to form an underlayer film, a reaction occurs between the polymer and the crosslinking agent, and the underlayer film is formed to have a crosslinked structure. As a result, the underlayer film becomes strong and becomes a solubility lowering property to the organic solvent used for the solution of the hard mask or the photoresist applied to the upper layer. The crosslinking agent is a compound having two or more, for example two to six, or two to four substituents which are reactive with a protected carboxyl group or a protected hydroxyl group. The crosslinking agent is exemplified by a nitrogen-containing compound having a nitrogen atom substituted with an alkoxymethyl group such as a hydroxymethyl group or a methoxymethyl group, an ethoxymethyl group, a butoxymethyl group or a hexyloxymethyl group. . Specific examples are hexamethoxymethyl melamine, tetramethoxymethylbenzoguanamine, 1,3,4,6-fluorene (butoxymethyl) glycoluril (glycoluril), 1,3,4 ,6·肆(hydroxymethyl)glycoluril, 1,3-bis(hydroxymethyl)urea, 1,1,3,3-indole (butoxymethyl)urea, 1,1,3,3- Ruthenium (methoxymethyl) urea, 1,3-bis(hydroxymethyl)-4,5-dihydroxy-2-imidazolidone and 1,3-bis(methoxymethyl)-4,5- A nitrogen-containing compound such as dimethoxy-2-imidazolidinone. The crosslinking agent can be exemplified by a methoxymethyl melamine compound (trade name: CYMEL 300, CYMEL 301, CYMEL 303, CYMEL 3 50) manufactured by Mitsui CYTECH Co., Ltd., and a butoxymethyl melamine compound (product) MYCOTE 506, MYCOTE 508), glycoluril compound (trade name CYMEL 1170, POWERLINK 1174), methylated urea resin (trade name UFR 6 5 ), butylated urea resin (commodity -29-201001080 UFR3 00, U -VAN1 0S60, U-VAN 1 OR, U-VAN1 1 HV ), Urea/formaldehyde resin manufactured by Dainippon Ink Chemical Industry Co., Ltd. (high condensation type, trade name BECKAMINE J-3 00S 'BECKAMINE P-955, :BECKAMINE N ) and other commercially available compounds. Further, the crosslinking agent may be a compound obtained by condensing a hydrogen atom of an amine group with a hydroxymethyl group or an oxiranylmethyl group, such as the above-mentioned melamine compound, urea compound, glycosides compound, and a fox compound. . For example, a high molecular weight compound produced from a melamine compound (trade name: CYMEL 3 03) and a benzoguanamine compound (trade name: CYMEL 1 1 23) as described in U.S. Patent No. 63 23 3 1 0 can be used as crosslinkability. Compound. Further, as the crosslinking agent, N-hydroxymethylpropenylamine, N-methoxymethylmethacrylamide, N-ethoxymethylpropenylamine and N which are substituted with a hydroxymethyl group can be used. a polymer compound produced by butoxymethylmethacrylamide or the like, or a propylene oxime compound substituted with an alkoxymethyl group and a methacrylamide compound. The above polymer compound can be exemplified by, for example, poly(N-butoxymethylpropenylamine), a copolymer of N-butoxymethyl acrylamide and styrene, and N-hydroxymethylmethacrylamide. Copolymer of methyl methacrylate, copolymer of N-ethoxymethylmethacrylamide and benzyl methacrylate, and N-butoxymethyl acrylamide and benzyl methacrylate and methyl A copolymer of 2-hydroxypropyl acrylate or the like. The crosslinking agent may be used alone or in combination of two or more. The crosslinking agent may be contained in an amount of from 3 to 30% by mass, preferably from 5 to 20% by mass, based on the solid content of the solvent contained in the lithographic underlayer film forming composition of the present invention, -30 to 201001080. . Further, the retardation profile or the step coverage of the underlying substrate can be adjusted by changing the type or content of the crosslinking agent. The lithographic underlayer film forming composition for lithography of the present invention may contain the above polymer (1) or the above polymer (2), a crosslinking agent, and an acid which is a crosslinking catalyst. The crosslinking agent can be promoted by using a crosslinking catalyst. Further, by containing an acid which promotes the formation of cross-linking, the underlayer of the photoresist and the upper layer do not occur, and a good photoresist pattern can be formed. As the above acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid, methanesulfonic acid, pyridine gun-p-toluenesulfonic acid, salicylic acid, camphorsulfonic acid, sulfosalicylic acid, citric acid, benzoic acid and hydroxyl group can be used. An acid compound such as benzoic acid. The acid may be used alone or in combination of two or more. The acid may be contained in an amount of from 0.3 to 3.0% by mass, preferably from 0.5 to 2.0% by mass, based on the solid content of the solvent contained in the photoresist underlayer film forming composition of the present invention. The photoresist forming underlayer film forming composition for lithography of the present invention may further contain a photoacid generator. By using a photoacid generator, the acidity of the photoresist coated on the upper layer can be made uniform in the lithography step. Preferred photoacid generators are, for example, bis(4-tributylphenyl) iodine trifluoromethanesulfonate, triphenylsulfonium trifluoromethanesulfonate, and the like, iron salt-based photoacid generators, benzene Halogen-containing compounds such as bis-bis(trichloromethyl)-s-triazine are photoacid generators, benzoin tosylate, oxime-based leukotriene trifluoromethanesulfonate, etc. A sulfonic acid photoacid generator or the like. The photoacid generator may be contained in an amount of 0.2 to 10% by mass, preferably 〇. 4 to 5 by mass, in order to remove the solid content of the solvent contained in the lithographic underlayer film forming group of the present invention. %. Further, in addition to the above, the photoresist lower layer film forming composition for lithography of the present invention may further contain a light absorbing agent, a rheology adjusting agent, a bonding agent, and a surfactant, as needed. As the light absorbing agent, commercially available light absorbing agents such as those described in "Technology and Market for Industrial Pigments" (CMC Publishing) or "Dye Notes" (edited by the Society of Organic Synthetic Chemistry), such as CI Disperse Yellow 1, 3, 4, may be suitably used. 5, 7, 8, 13, 23, 31, 49, 50, 51, 54, 60, 64, 66, 68, 79, 82, 88, 90, 93, 102, 114 and 124; CI Disperse Orange 1, 5 , 13, 25, 29, 30, 31, 44, 57, 72 and 73; CI dispersion red 1' 5, 7, 13, 17, 19, 43, 50, 54, 58, 65, 72, 73, 88, 117, 137, 143, 199 and 210; CI Disperse Violet 43; CI Disperse Blue 96; c I · Fluorescent Brightener 1 1 2, 1 3 5 and 1 6 3 ; C. I. Solvent Orange 2 and 4 5 ; Cl Solvent Red 1, 3, 8, 23, 24, 25, 27 and 49; CI Pigment Green 10; CI Pigment Brown 2, etc. The light absorbing agent may be contained in an amount of 10% by mass or less, preferably 5% by mass or less, based on the solid content of the solvent contained in the photoresist underlayer film forming composition of the lithography of the present invention. Group thick 塡 塡 成 成 充 充 充 充 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲 甲The baking film of benzene, such as the drying layer of the film, is a lowering agent, and the high-density denaturing is adjusted to flow or adjust the flow, and the flow containing the fluid is uniform. Qualitative -32- 201001080 phthalic acid derivatives such as di-butyl phthalate, dihexyl phthalate, ester isodecyl ester, di-n-butyl diisobutyl adipate, Diisooctyl acid ester, octyl octyl adipate derivative, di-n-butyl maleate, diethyl maleate, maleic acid derivatives such as horse, oleic acid methyl ester, butyl oleate, oleic acid Oleic acid derivative, or n-butyl stearate, glyceryl stearate derivative. The rheology modifier may be contained in a proportion less than the solid content of the solvent contained in the photoresist for lithography of the present invention. The purpose of including the auxiliary agent is mainly to improve the adhesion of the substrate or the underlying film forming composition, especially for the purpose of stripping the photoresist. As the auxiliary agent, for example, trimethylchloroanthryl vinyl chlorodecane, methyl diphenyl chlorodecane, chloromethyl dichloro phthalane, trimethyl methoxy decane, dimethyl diethyl methyl group can be exemplified. Alkoxymercaptodioxane, hydrazine, Ν'-bis(trimethylnonane) such as dimethoxy decane, dimethylvinyl ethoxy decane methoxy decane, phenyl triethoxy decane Alkaloids such as urea methyl hydrazine alkylamine, trimethyl decyl imidazole, chloroalkane, r-chloropropyltrimethoxy decane, r-aminopropyl propyl sulfoxide, 7 _ glycidoxypropyl Dimethicone or the like triazole, benzimidazole, carbazole, 2-mercaptobenzimidazole, thiazole, 2-mercaptobenzoxazole, Urazole, butyl phthalate, A stearic acid layer film forming group of a diacid or the like of adipic acid, such as adipic acid, tetrahydrofurfuryl ester, etc., a 30% by mass of a photoresist and an optical aerogen, which does not cause an alkane or a dimethylmethylchloromethane. Oxygen sand yard, 'diphenyl monoalkane, hexamethyl, dimethyl tris, vinyl triyl triethoxy decane, benzene 2-mercaptobenzothiouracil ( -33- 201001 080

Thiouracil )、锍基咪唑、锍基嘧啶等之雜環化 1,1-二甲基尿素、i,3 -二甲基尿素等之尿素或硫尿 物。 接著補助劑以去除本發明之微影用光阻下層膜 成物中所含溶劑之固體成分爲基準,可以含有小於 %,較好小於2質量。/。之比例調配。 本發明之微影用光阻下層膜形成組成物爲了不 阻膜產生針孔或應變、進一步提高對表面斑之塗佈 含有界面活性劑。 界面活性劑舉例爲例如聚氧伸乙基月桂基醚、 乙基硬脂基醚、聚氧伸乙基鯨蠟基醚類,聚氧伸乙 醚等之聚氧伸乙基烷基醚類;聚氧伸乙基辛基酚醚 伸乙基壬基酚醚等之聚氧伸乙基烷基烯丙基醚類; 乙基·聚氧伸丙基嵌段寡聚物類;山梨糖醇酐單月 、山梨糖醇酐單棕櫚酸酯、山梨糖醇酐單硬脂酸酯 糖醇酐單油酸酯、山梨糖醇酐三油酸酯、山梨糖醇 脂酸酯等之山梨糖醇酐脂肪酸酯類;聚氧伸乙基山 酑單月桂酸酯、聚氧伸乙基山梨糖醇酐單棕櫚酸酯 伸乙基山梨糖醇酐單硬脂酸酯、聚氧伸乙基山梨糖 油酸酯、聚氧伸乙基山梨糖醇酐三硬脂酸酯等之聚 基山梨糖醇酐脂肪酸酯類等非離子系界面活性劑’ EF301、EF303、EF3 5 2 ( TOKEMU PRODUCTS (股 ,商品名)、Megafax F171、F173、R-30(大日本 股)製造,商品名)、Fluorad FC430、FC431 (住Thiouracil), a heterocyclic compound such as mercapto imidazole or mercaptopyrimidine, or urea or sulphur urine such as 1,1-dimethylurea or i,3-dimethylurea. Then, the auxiliary agent may contain less than %, preferably less than 2, based on the solid content of the solvent contained in the lower film of the photoresist for lithography of the present invention. /. Proportional allocation. The photoresist-forming underlayer film forming composition for lithography of the present invention contains pinholes or strains in the film, and further improves the application of the surfactant to the surface spot. The surfactant is exemplified by polyoxyethylene ethyl ethers such as polyoxyethylene ethyl lauryl ether, ethyl stearyl ether, polyoxyethyl methyl cetyl ether, polyoxyethylene ether, and the like; Polyoxyethylene ethyl allylic ethers such as ethyl octyl phenol ether and ethyl decyl phenol ether; ethyl polyoxyl propyl block oligomers; sorbitan Montan, sorbitan monopalmitate, sorbitan monostearate monostearate, sorbitan trioleate, sorbitol fatty acid ester, etc. Ester; polyoxyethylene ethyl hawthorn monolaurate, polyoxyethylene ethyl sorbitan monopalmitate, ethyl sorbitan monostearate, polyoxyethylene ethyl sorbate oleate Non-ionic surfactants such as polysorbate fatty acid esters such as polyoxyethylene sorbitan tristearate, EF301, EF303, EF3 5 2 (TOKEMU PRODUCTS) , Megafax F171, F173, R-30 (made by Dainippon), trade name), Fluorad FC430, FC431 (live)

合物及 素化合 形成組 5質量 對於光 性,可 聚氧伸 基油基 、聚氧 聚氧伸 桂酸酯 、山梨 酐三硬 梨糖醇 、聚氧 醇酐三 氧伸乙 F Top )製造 油墨( :友3M -34- 201001080 (股)製造,商品名)、AsahigardAG710、SurflonS-382 、SCI 01 > SC102 > SC103、SC104、SC105、SC106(旭硝 子(股)製造,商品名)等氟系界面活性劑,有機矽氧烷 聚合物-KP 341 (信越化學工業(股)製造)等。 界面活性劑之調配量以去除本發明之微影用光阻下層 膜形成組成物中所含溶劑之固體成分爲準含有2 · 0質量% 以下,較好1 . 〇質量%以下。界面活性劑可單獨使用或者 亦可組合兩種以上使用。 本發明中,用於使上述聚合物、交聯劑成分及交聯觸 媒等溶解之溶劑舉例爲乙二醇單甲基醚、乙二醇單乙基醚 、甲基溶纖素乙酸酯、乙基溶纖素乙酸酯、二乙二醇單甲 基醚、二乙二醇單乙基醚、丙二醇、丙二醇單甲基醚、丙 二醇單甲基醚乙酸酯、丙二醇丙基醚乙酸酯、甲苯、二甲 苯、甲基乙基酮、環戊酮、環己酮、2-羥基丙酸乙酯、2-羥基-2-甲基丙酸乙酯、乙氧基乙酸乙酯、丙氧基乙酸乙酯 、2-羥基-3-甲基丁酸甲酯、3-甲氧基丙酸甲酯、3-甲氧基 丙酸乙酯、3-乙氧基丙酸乙酯、3-乙氧基丙酸甲酯、丙酮 酸甲酯、丙酮酸乙酯、乙酸乙酯、乙酸丁酯、乳酸乙酯、 乳酸丁酯等。該等有機溶劑可單獨使用,亦可組合兩種以 上使用。 又,本發明之微影用光阻下層膜形成組成物中可混合 使用丙二醇單丁基醚、丙二醇單丁基醚乙酸酯等高沸點溶 劑。該等溶劑中,對於提高勻化性而言較佳者爲丙二醇單 甲基醚、丙二醇單甲基醚乙酸酯、乳酸乙酯、乳酸丁酯、 -35- 201001080 及環己酮等。 本發明中使用之所謂光阻爲光阻劑或電子束光阻劑。 塗佈於使用本發明之微影用光阻下層膜形成組成物形 成之微影用光阻下層膜之上層上之光阻劑可使用負型、正 型之任一種,例如由酚醛清漆樹脂與1,2-萘醌二疊氮磺酸 酯構成之正型光阻劑、由具有因酸分解提高鹼溶解速度之 基之黏合劑與光酸產生劑構成之化學增幅型光阻劑、由鹼 可溶性黏合劑與因酸分解而提高光阻劑之鹼溶解速度之低 分子化合物與光酸產生劑構成之化學增幅型光阻劑、由具 有因酸分解而提高鹼溶解速度之基之黏合劑與因酸分解而 提高光阻劑之鹼溶解速度之低分子化合物及光酸產生劑構 成之化學增幅型光阻劑、於骨架中具有S i原子之光阻劑 等。具體而言,舉例爲羅門哈斯公司製造之商品名爲 APEX-E。 又,塗佈於使用本發明之微影用光阻下層膜形成組成 物形成之微影用光阻下層膜之上層上之電子束光阻劑舉例 爲例如由主鏈上含有si_si鍵之末端包含芳香族環之樹脂 與藉由電子束之照射產生酸之酸產生劑組成之組成物’或 由羥基以含有N-羧基胺之有機基取代之聚(對-羥基苯乙 烯)與藉由電子束之照射產生酸之酸產生劑組成之組成物 等。後者之電子束光阻劑組成物爲使由經電子束照射酸產 生劑產生之酸與聚合物側鏈之N-羧基胺氧基反應’使聚 合物側鏈之羥基分解而顯示驗可溶性並溶解於驗顯像液中 ,形成光阻圖型者。 -36- 201001080 上述酸產生劑舉例爲ι,ι-雙[對-烷、1,1-雙[對-甲氧基苯基]-2,2,2_Ξ 氯苯基]-2,2-二氯乙烷、2-氯-6-(三 化有機化合物,三苯基鏑鹽、二苯基 苄基甲苯磺酸酯、二硝基苄基甲苯磺 作爲具有使用本發明之微影用光 形成之光阻下層膜之光阻之顯像液可 化鉀、碳酸鈉、矽酸鈉、偏矽酸鈉、 胺、正丙胺等一級胺類,二乙胺、二 三乙胺、甲基二乙胺等三級胺類’二 胺等醇胺類,氫氧化四甲基銨、氫氧 四級銨鹽,吡咯、哌啶等環狀胺類等 中較佳之顯像液爲四級銨鹽,更好爲 鹼。又,上述鹼類之水溶液中亦可適 醇類、非離子系等界面活性劑而使用 接著說明本發明之光阻圖型形成 佈器等適當的塗佈方法將光阻下層膜 密積體電路元件之製造中使用之基杉 矽被覆、玻璃基板、ΙΤΟ基板等透明 由烘烤硬化,作成塗佈型下層膜。接 膜上直接或依據需要使一層至數層之 佈型下層膜上後,塗佈光阻劑,且通 或電子束之照射,並藉由顯像、洗滌 阻圖型。另外,可依據需要進行光或 氯苯基]-2,2,2-三氯乙 :氯乙烷、1,1-雙[對-氯甲基)吡啶等之鹵 碘鏺鹽等鑰鹽,硝基 酸酯等之磺酸酯。 阻下層膜形成組成物 使用氫氧化鈉、氫氧 氨水等無機鹼類,乙 正丁胺等二級胺類, 甲基乙醇胺、三乙醇 化四乙基銨、膽鹼等 鹼類之水溶液。該等 氫氧化四甲基銨及膽 度地添加異丙基醇等 〇 法,藉由旋塗法、塗 形成組成物塗佈於精 乏(例如,砂/二氧化 基板)上,隨後,藉 著,於該塗佈型下層 塗膜材料成膜於該塗 過既定之光罩進行光 、乾燥,獲得良好光 電子束之照射後加熱 -37- 201001080 (PEB :曝光後烘烤)。隨後,藉由乾蝕刻去除藉由上述 步驟顯像去除之光阻之部分的光阻下層膜,可在基板上形 成期望之圖型。 上述光阻下層膜之膜厚以0.01至3.0/zm較佳。又, 塗佈後之烘烤條件可採用適當地選自溫度8 0至3 5 (TC,時 間0.5至120分鐘之範圍之溫度及時間。 上述光阻劑曝光之光係使用近紫外線、遠紫外線或極 外紫外線(例如EUV )等化學線,例如248nm ( KrF雷射 光)、193nm(ArF雷射光)、157nm(F2雷射光)等波 長之光。光照射只要是可自光酸產生劑產生酸之方法,則 可無特別限制地使用,曝光量爲1至2000mJ/cm2,10至 1500mJ/cm2 或 50 至 1 000mJ/cm2 ° 電子束光阻劑之電子束照射可使用例如電子束照射裝 置照射。 本發明經由藉由微影用光阻下層膜形成組成物在半導 體基板上形成光阻下成膜之步驟,與於其上形成光阻膜之 步驟,及以光或電子束照射並顯像形成光阻圖型之步驟, 及依據所形成之光阻圖型蝕刻該光阻下層膜之步驟,以及 依據圖型化之光阻下層膜加工半導體基板之步驟,可製造 半導體裝置。 本發明中,可在藉由本發明之微影用光阻下層膜形成 組成物將光阻下層膜成膜於基板上之後,直接或依據需要 將一層至數層之塗膜材料成膜於該光阻下層膜上之後,塗 佈光阻劑。藉此即使於光阻之圖型寬度狹窄,防止圖型崩 -38- 201001080 潰而被覆薄層光阻劑之情況,亦可藉由選擇適當的蝕刻氣 體進行基板加工。 亦即,藉由本發明之微影用光阻下層膜組成物在半導 體基板上形成光阻下層膜之步驟,於其上以含矽成分等之 塗膜材料形成硬光罩之步驟,進而於其上形成光阻膜之步 驟’及以光或電子束照射並顯像形成光阻圖型之步驟,及 依據形成之光阻圖型蝕刻該硬光罩之步驟,及依據圖型化 之硬光罩蝕刻該光阻下層膜之步驟,以及依據圖型化之光 阻下層膜加工半導體基板之步驟,可製造半導體裝置。 又本發明之微影用光阻下層膜組成物若考量作爲抗反 射膜之效果時,由於光吸收部位進入骨架中,因此加熱乾 燥時於光阻中無擴散物,且由於光吸收部位具有足夠大之 吸光性能故而反射光防止效果高。 再者本發明之微影用光阻下層膜形成組成物之熱安定 性高,可防止因燒成時之分解物污染上層膜,且爲具有燒 成時之溫度寬裕度充裕者。 本發明之微影用光阻下層膜形成組成物,依據製程條 件,可使用作爲具有防止光反射之功能、進而具有防止基 板與光阻劑相互作用、或具有防止光阻劑中使用之材料或 光阻劑曝光時產生之物質對基板之不良影響之功能之膜。 又,爲了防止光阻圖型細微化所伴隨之光阻圖型在顯 像後崩潰而進行光阻膜之薄膜化。該等薄膜光阻具有將光 阻圖型以蝕刻製程轉印到其下層膜上,且以該下層膜做爲 光罩對基板進行加工之製程,或將光阻圖型以蝕刻製程轉 -39- 201001080 印到下層膜上,進而使用不同之氣體組成,將轉印於其下 層膜上之圖型轉印於該下層膜上之重覆轉印步驟,最後以 轉印圖型之下層膜做爲光罩對基板進行加工之製程。本發 明之微影用光阻下層膜形成組成物及使用該組成物形成之 微影用光阻下層膜對該製程有效,且利用使用本發明之微 影用光阻下層膜形成組成物形成之微影用光阻下層膜對基 板加工時’爲對加工基版(例如,基板上之熱氧化矽膜、 氮化矽膜、聚矽膜等)具有足夠之蝕刻抗性者。 再者,爲了獲得細微之光阻圖型,亦使用於光阻下層 膜之乾蝕刻時使光阻圖型與光阻下層膜成爲比光阻顯像時 之圖型寬度更細之製程。本發明之微影用光阻用下層膜形 成組成物及使用該組成物形成之微影用光阻下層膜對該製 程有效,且爲具有接近於光阻膜之乾蝕刻速度之選擇性者 0 因此,使用本發明之微影用光阻下層膜形成組成物形 成之微影用光阻下層膜可使用作爲平坦化膜、光阻下層膜 、光阻層之抗污染膜、具有乾蝕刻選擇性之膜。據此,可 容易、精度良好地進行半導體製造之微影製程中之光阻圖 型之形成。 實施例 (合成例1 ) 於200毫升燒瓶中加入20_0克(0.1莫耳)N -乙烯基 咔唑、5.0克(〇·〇26莫耳)對-乙氧基乙氧基苯乙烯、 -40- 201001080 6 1 · 0克作爲溶劑之四氫呋喃。於該反應容器中添加1 .1克 作爲聚合起始劑之AIBN(偶氮雙異丁腈),升溫至8(rC 後,反應24小時。使該反應溶液於3 00克甲醇中沉澱, 過濾所獲得之白色固體後,於40 °C下減壓乾燥,獲得2 1 克之白色聚合物。所得聚合物經GPC測定之分析結果如 下。 質量平均分子量(Mw) = 9000,分子量分布( Mw/Mn) = 2.00,該聚合物稱爲聚合物(樹脂)A。 (合成例2) 於200毫升燒瓶中加入5.0克(0.026莫耳)N-乙烯 基咔唑、14.4克(0.095莫耳)乙烯合萘、9.9克(0.052 莫耳)對-乙氧基乙氧基苯乙烯、71.0克作爲溶劑之四氫 呋喃。於該反應容器中添加 3.3克作爲聚合起始劑之 AIB N ’升溫至 8 0 °C後’反應2 4小時。使該反應溶液於 300克甲醇中沉澱,過濾所獲得之白色固體後,於40 °C下 減壓乾燥,獲得1 〇克之白色聚合物。所得聚合物經GPC 測定之分析結果如下。 質量平均分子量(Mw) = 11000,分子量分布( Mw/Mn) = 2.30,該聚合物稱爲聚合物(樹脂)B。 (比較合成例1 ) 於200毫升燒瓶中加入2〇.〇克(0.1莫耳)N -乙烯基 昨唑、50.0克作爲溶劑之四氫呋喃。在氮氣氛圍下使該反 _ 41 - 201001080 應容器冷卻至-7〇t,經減壓除氣流入氮氣且重複3次。 升溫至室溫後’添加1.0克作爲聚合起始劑之AIBN。升 溫至80 °C後’反應24小時。使該反應溶液於250克甲醇 中沉澱,過濾所獲得之白色固體後,於4 0 °C下減壓乾燥, 獲得1 8克之白色聚合物聚-N-乙烯基昨唑。所得聚合物經 G P C測定之分析結果如下。 質量平均分子量(Mw) = 12000,分子量分布( Mw/Mn)二1.55’該聚合物稱爲聚合物(樹脂)C。 (比較合成例2 ) 於200毫升燒瓶中加入5.0克(0.026莫耳)N -乙烯 基咔唑、15.0克(0.078莫耳)對-乙氧基乙氧基苯乙烯、 5〇.〇克作爲溶劑之四氫呋喃。於該反應容器中添加1.0克 作爲聚合起始劑之AIBN,升溫至8〇°C後,反應24小時 。使該反應溶液於3 0 0克甲醇中沉澱,過濾獲得之白色固 體後,於40 °C下減壓乾燥,獲得1 6克之白色聚合物。所 得聚合物經GP C測定之分析結果如下。 質量平均分子量(Mw) = 12000,分子量分布( Mw/Mn) =1.98,該聚合物稱爲聚合物(樹脂)D。 (比較合成例3 ) 於200毫升燒瓶中加入20.0克(〇_丨莫耳)N -乙烯基 咔唑、0.6克(0.003莫耳)對-乙氧基乙氧基苯乙烯、 5〇.〇克作爲溶劑之四氫呋喃。於該反應容器中添加1.1克 -42- 201001080 作爲聚合起始劑之AIBN,升溫至80°C後’反應24小時 。使該反應溶液於3 0 0克甲醇中沉滅’過濾所獲得之白色 固體後,於401下減壓乾燥,獲得17克之白色聚合物。 所得聚合物經G P C測定之分析結果如下。 質量平均分子量(Mw )二1 2000 ’分子量分布( Mw/Mn ) =1.8,該聚合物稱爲聚合物(樹脂)E。 以表1中所示之比例將以上述聚合物(樹脂)A至E 表示之樹脂、以下述A G 1表示之酸產生劑(吡啶鑰對甲 苯擴酸鹽)、以下述CR1表示之交聯劑(四甲氧基甲基甘 脲)溶解於含氟系界面活性劑(大日本由墨化學工業股份 有限公司’商品名Megafax R-30)之13〇〇質量份有機溶 劑(1 000質量份環己酮與3〇〇質量份丙二醇單甲基醚乙酸 酯之混合溶劑)中,分別調製微影用光阻下層膜形成組成 物(實施例1至2及比較例1至4 )。其中,界面活性劑 係以於各組成物中成爲〇 . 3質量%之方式添加。 [化 15]The compound and the compound forming group 5 are manufactured for the optical property, the polyoxyalkylene group, the polyoxypolyoxylate, the sorbitan tristearyl alcohol, the polyoxyl anhydride trioxetene F Top Ink (:Made 3M -34- 201001080 (manufactured by the company), trade name), Asahigard AG710, Surflon S-382, SCI 01 > SC102 > SC103, SC104, SC105, SC106 (asahi Glass (manufacturing), trade name) It is a surfactant, organic siloxane polymer-KP 341 (manufactured by Shin-Etsu Chemical Co., Ltd.). The amount of the surfactant to be added is 2.0% by mass or less, preferably 1% by mass or less, based on the solid content of the solvent contained in the film forming composition for the lithographic photoresist of the present invention. The surfactants may be used singly or in combination of two or more. In the present invention, a solvent for dissolving the above polymer, a crosslinking agent component, a crosslinking catalyst or the like is exemplified by ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, and methyl cellosolve acetate. , ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, propylene glycol propyl ether Acid ester, toluene, xylene, methyl ethyl ketone, cyclopentanone, cyclohexanone, ethyl 2-hydroxypropionate, ethyl 2-hydroxy-2-methylpropionate, ethyl ethoxyacetate, Ethyl propoxyacetate, methyl 2-hydroxy-3-methylbutanoate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, ethyl 3-ethoxypropionate, Methyl 3-ethoxypropionate, methyl pyruvate, ethyl pyruvate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, and the like. These organic solvents may be used singly or in combination of two or more. Further, in the lithographic underlayer film forming composition for lithography of the present invention, a high boiling point solvent such as propylene glycol monobutyl ether or propylene glycol monobutyl ether acetate may be used in combination. Among these solvents, preferred are propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, ethyl lactate, butyl lactate, -35-201001080, cyclohexanone, and the like for improving the homogenization property. The so-called photoresist used in the present invention is a photoresist or an electron beam photoresist. The photoresist coated on the upper layer of the photoresist for the lithographic underlayer film formed by using the photoresist for forming a lower layer film for lithography of the present invention may be either a negative type or a positive type, for example, a novolac resin and a positive type photoresist composed of 1,2-naphthoquinonediazide sulfonate, a chemically amplified photoresist composed of a binder having a base for increasing the alkali dissolution rate due to acid decomposition, and a photoacid generator, and a base A chemically amplified photoresist composed of a low-molecular compound and a photo-acid generator which dissolves a soluble binder and an alkali-dissolving rate of a photoresist by acid decomposition, and an adhesive having a base which increases the alkali dissolution rate due to acid decomposition and A low-molecular compound which increases the alkali dissolution rate of the photoresist by acid decomposition, a chemically amplified photoresist composed of a photoacid generator, a photoresist having a Si atom in the skeleton, and the like. Specifically, the product name is APEX-E manufactured by Rohm and Haas Company. Further, the electron beam resist coated on the upper layer of the lithographic underlayer film formed using the photoresist underlayer film forming composition of the present invention is exemplified by, for example, an end containing a si_si bond in the main chain. a composition of an aromatic ring resin and an acid generator which generates an acid by irradiation with an electron beam or a poly(p-hydroxystyrene) substituted with an organic group containing an N-carboxyamine by a hydroxyl group and by an electron beam The irradiation produces a composition of an acid generator and the like. The latter electron beam resist composition is such that the acid generated by the electron beam irradiation of the acid generator reacts with the N-carboxyamino group of the polymer side chain to decompose the hydroxyl group of the polymer side chain to exhibit solubility and dissolution. In the test imaging liquid, a photoresist pattern is formed. -36- 201001080 The above acid generator is exemplified by ι, ι-bis[p-alkane, 1,1-bis[p-methoxyphenyl]-2,2,2_Ξchlorophenyl]-2,2-di Ethyl chloride, 2-chloro-6-(tri-ammonium compound, triphenylsulfonium salt, diphenylbenzyltosylate, dinitrobenzyltoluenesulfonate formed as light having lithography using the present invention The photo-resistance of the photoresist of the underlying film can be potassium, sodium carbonate, sodium citrate, sodium metasilicate, amine, n-propylamine and other primary amines, diethylamine, ditriethylamine, methyldiethyl The preferred imaging solution for a tertiary amine such as an amine such as an amine amine such as a diamine, a tetramethylammonium hydroxide or a hydroxy quaternary ammonium salt, or a cyclic amine such as pyrrole or piperidine is a quaternary ammonium salt. Further, in the aqueous solution of the above-mentioned alkali, a surfactant such as an alcohol or a nonionic surfactant may be used, and an appropriate coating method such as a photoresist pattern forming device of the present invention will be described. The base tape coating used for the production of the film-sealed circuit element, the glass substrate, the ruthenium substrate, and the like are bake-hardened to form a coating-type underlayer film. The film is directly or as needed. After layering to a plurality of layers of the underlayer film, the photoresist is coated and irradiated by electron beam or electron beam, and the image is formed by washing and blocking. Further, light or chlorophenyl group can be carried out as needed. 2,2,2-trichloroethane: a key salt such as a halogenated iodonium salt such as ethyl chloride or 1,1-bis[p-chloromethyl)pyridine, or a sulfonic acid ester of a nitro acid ester or the like. The underlayer film forming composition is an inorganic base such as sodium hydroxide or hydroxide aqueous ammonia, a secondary amine such as butyl butylamine, or an aqueous solution of a base such as methylethanolamine, triethylammonium triethylammonium or choline. The tetramethylammonium hydroxide and the guanidine method such as isopropyl alcohol are applied by spin coating or coating to form a composition (for example, a sand/dioxide substrate), followed by The coating type underlayer coating film is formed into a film which is light-dried after being coated with a predetermined mask, and is heated to obtain a good photoelectron beam, and then heated to -37-201001080 (PEB: post-exposure baking). Subsequently, the photoresist underlayer film removed by the above-described step removal is removed by dry etching to form a desired pattern on the substrate. The film thickness of the photoresist underlayer film is preferably from 0.01 to 3.0/zm. Further, the baking condition after coating may be suitably selected from a temperature of 80 to 35 (TC, time and a range of time of 0.5 to 120 minutes. The light of the above photoresist is exposed to near ultraviolet rays and far ultraviolet rays. Or chemical lines such as extreme ultraviolet rays (such as EUV), such as 248nm (KrF laser light), 193nm (ArF laser light), 157nm (F2 laser light), etc. Light irradiation can produce acid from photoacid generator The method can be used without any particular limitation, and the electron beam irradiation of the electron beam resist can be irradiated by, for example, an electron beam irradiation device with an exposure amount of 1 to 2000 mJ/cm 2 , 10 to 1500 mJ/cm 2 or 50 to 1 000 mJ/cm 2 ° . The present invention comprises the steps of forming a film on a semiconductor substrate by photoresist formation by a photolithography underlayer film formation by lithography, forming a photoresist film thereon, and irradiating and developing the light or electron beam The step of forming a photoresist pattern, and the step of etching the photoresist underlayer film according to the formed photoresist pattern, and the step of processing the semiconductor substrate according to the patterned photoresist underlayer film can be used to fabricate a semiconductor device. Can be After the photoresist underlayer film is formed on the substrate by the lithographic underlayer film forming composition of the present invention, after one or several layers of the coating film material are directly formed on the photoresist underlayer film as needed, The photoresist is coated, whereby the substrate can be processed by selecting an appropriate etching gas even if the pattern width of the photoresist is narrow and the pattern is collapsed and the thin layer photoresist is prevented from being collapsed. That is, the step of forming a photoresist underlayer film on the semiconductor substrate by the photoresist lower layer film composition of the present invention, and forming a hard mask thereon by using a coating material containing a bismuth component or the like, and further a step of forming a photoresist film thereon and a step of irradiating and developing a photoresist pattern by light or electron beam, a step of etching the hard mask according to the formed photoresist pattern, and a hard light according to the pattern The step of etching the photoresist underlayer film and the step of processing the semiconductor substrate by the patterned photoresist underlayer film can be used to manufacture a semiconductor device. The lithographic photoresist underlayer film composition of the present invention is considered as an antireflection film. Effect When the light absorbing portion enters the skeleton, there is no diffusing material in the photoresist during heating and drying, and the light absorbing portion has a sufficiently large light absorbing property, so that the reflected light preventing effect is high. Further, the lithographic resist for use in the present invention. The underlayer film forming composition has high thermal stability, and can prevent the upper layer film from being contaminated by the decomposition product at the time of firing, and has a sufficient temperature margin at the time of firing. The lithographic underlayer film forming composition of the present invention According to the process conditions, it can be used as a function of preventing light reflection, thereby preventing the substrate from interacting with the photoresist, or having a material which is prevented from being used in the photoresist or the photoresist is exposed to the substrate. In order to prevent the photoresist pattern associated with the miniaturization of the photoresist pattern from collapsing after development, the photoresist film is thinned. The thin film photoresist has a process of transferring the photoresist pattern onto the underlying film by an etching process, and processing the substrate by using the underlying film as a mask, or converting the photoresist pattern into an etching process-39 - 201001080 printed on the underlying film, using a different gas composition, transferring the pattern transferred onto the underlying film to the transfer step of the underlying film, and finally using the underlying film of the transfer pattern A process for processing a substrate on a reticle. The lithographic underlayer film forming composition for lithography of the present invention and the lithographic underlayer film formed using the composition are effective for the process, and are formed by forming a composition using the lithographic underlayer film of the present invention. The lithography underlayer film has a sufficient etching resistance for processing a substrate (for example, a thermal ruthenium film on a substrate, a tantalum nitride film, a polyimide film, etc.). Further, in order to obtain a fine photoresist pattern, it is also used in a dry etching of a photoresist underlayer film to make the photoresist pattern and the photoresist underlayer film have a finer pattern width than when the photoresist is developed. The underlayer film forming composition for photoresist for lithography of the present invention and the photoresist underlayer film for lithography formed using the composition are effective for the process, and have a selectivity close to the dry etching speed of the photoresist film. Therefore, the lithographic underlayer film formed by using the lithographic underlayer film forming composition of the present invention can be used as a planarization film, a photoresist underlayer film, a photoresist layer anti-contamination film, and has dry etching selectivity. The film. According to this, it is possible to easily and accurately form the photoresist pattern in the lithography process for semiconductor fabrication. EXAMPLES (Synthesis Example 1) 20-Og (0.1 mol) N-vinylcarbazole, 5.0 g (〇·〇26 mol) p-ethoxyethoxystyrene, -40 were placed in a 200 ml flask. - 201001080 6 1 · 0 g of tetrahydrofuran as a solvent. 1 gram of AIBN (azobisisobutyronitrile) as a polymerization initiator was added to the reaction vessel, and the temperature was raised to 8 (rC, and the reaction was carried out for 24 hours. The reaction solution was precipitated in 300 g of methanol, and filtered. The white solid obtained was dried under reduced pressure at 40 ° C to obtain 21 g of a white polymer. The analysis of the obtained polymer by GPC was as follows. Mass average molecular weight (Mw) = 9000, molecular weight distribution (Mw/Mn = 2.00, the polymer is called polymer (resin) A. (Synthesis Example 2) 5.0 g (0.026 mol) of N-vinylcarbazole and 14.4 g (0.095 mol) of ethylene were added to a 200 ml flask. Naphthalene, 9.9 g (0.052 mol) of p-ethoxyethoxystyrene, 71.0 g of tetrahydrofuran as solvent. Add 3.3 g of AIB N ' as polymerization initiator to the reaction vessel to raise to 80 °C After the reaction, the reaction solution was precipitated in 300 g of methanol, and the obtained white solid was filtered, and then dried under reduced pressure at 40 ° C to obtain 1 g of a white polymer. The obtained polymer was determined by GPC. The results of the analysis are as follows. Mass average molecular weight (Mw) = 11000 Molecular weight distribution (Mw/Mn) = 2.30, the polymer is called polymer (resin) B. (Comparative Synthesis Example 1) 2 〇.〇克(0.1 mol) N-vinyl azole was added to a 200 ml flask. 50.0 g of tetrahydrofuran as a solvent. The reactor was cooled to -7 Torr under a nitrogen atmosphere, and the gas was purged under reduced pressure into nitrogen and repeated three times. After heating to room temperature, '1.0 g was added as a solvent. AIBN of the polymerization initiator. After the temperature was raised to 80 ° C, the reaction was carried out for 24 hours. The reaction solution was precipitated in 250 g of methanol, and the obtained white solid was filtered, and dried under reduced pressure at 40 ° C to obtain 1 8 . White polymer poly-N-vinyl azole. The analysis results of the obtained polymer by GPC are as follows. Mass average molecular weight (Mw) = 12000, molecular weight distribution (Mw / Mn) two 1.55 'The polymer is called polymer (Resin) C. (Comparative Synthesis Example 2) 5.0 g (0.026 mol) of N-vinylcarbazole, 15.0 g (0.078 mol) of p-ethoxyethoxystyrene, 5 was added to a 200 ml flask. 〇. gram as a solvent for tetrahydrofuran. Add 1.0 gram to the reaction vessel. The AIBN of the polymerization initiator was reacted for 24 hours after the temperature was raised to 8 ° C. The reaction solution was precipitated in 300 g of methanol, and the obtained white solid was filtered, and dried under reduced pressure at 40 ° C to obtain 1 6 g of a white polymer. The analysis results of the obtained polymer by GP C were as follows: Mass average molecular weight (Mw) = 12,000, molecular weight distribution (Mw/Mn) = 1.98, and the polymer was called polymer (resin) D. (Comparative Synthesis Example 3) 20.0 g of (N-vinyl oxazole) N-vinylcarbazole, 0.6 g (0.003 mol) of p-ethoxyethoxystyrene, 5 〇.〇 were added to a 200 ml flask. Glucan as a solvent. To the reaction vessel, 1.1 g of -42 to 20100,1080 of AIBN as a polymerization initiator was added, and the mixture was heated to 80 ° C and reacted for 24 hours. The reaction solution was quenched in 300 g of methanol. The obtained white solid was filtered, and then dried under reduced pressure at 401 to yield 17 g of white polymer. The analysis results of the obtained polymer by G P C were as follows. The mass average molecular weight (Mw) is 2 2000' molecular weight distribution (Mw/Mn) = 1.8, and the polymer is referred to as polymer (resin) E. The resin represented by the above polymers (resins) A to E, the acid generator represented by the following AG 1 (pyridyl p-toluene), and the crosslinker represented by the following CR1 in the ratios shown in Table 1 (tetramethoxymethyl glycoluril) dissolved in a fluorine-containing surfactant (Daily Ink Chemical Industry Co., Ltd. 'trade name Megafax R-30) 13 parts by mass of organic solvent (1 000 parts by mass of ring In the mixed solvent of hexanone and 3 parts by mass of propylene glycol monomethyl ether acetate, the lithographic underlayer film forming composition (Examples 1 to 2 and Comparative Examples 1 to 4) was separately prepared. Here, the surfactant is added so that each composition becomes 〇. 3 mass%. [化15]

AG1 OMeAG1 OMe

MeO—y j-- N^N0=^( 丁)=〇 N-MeO—y j-- N^N0=^(丁)=〇 N-

MeO 」 ^—OMe CR1MeO ” ^—OMe CR1

-43- 201001080 表1 樹脂(質量份) 交聯劑(質量份) 酸產生劑(質量份) 實施例1 樹脂A ( 100) CR1 ( 15 ) AG1 (1.5) 實施例2 樹脂B ( 100) CR1 ( 15) AG1 (1.5) 比較例1 樹脂C ( 100) 比較例2 樹脂A ( 100) CR1 ( 1 ) AG1 (1.5) 比較例3 樹脂D ( 100) CR1 ( 15 ) AG1 (1.5) 比較例4 樹脂E ( 100) CR1 ( 15 ) AG1 (1.5) 將如此調製之微影用光阻下層膜形成組成物(實施例 1至2及比較例1至4)之溶液塗佈於矽基板上,在240 °C 下烘烤6 0秒,分別形成膜厚5 0 0 nm之光阻下層膜。 [折射率與消光係數之測定] 形成上述光阻下層膜後,以J.A. WOOLLAM公司之入 射角可變之分光橢圓偏光儀(ellipsometers) (VASE), 求得波長1 9 3 nm之折射率(η )及消光係數(k ),結果列 於表2。 [龜裂試驗] 將上述調製之微影用光阻下層膜形成組成物(實施例 1至2及比較例1至4 )之溶液塗佈於矽基板盤上,在240 。(:下烘烤60秒’形成膜厚7〇〇nm之光阻下層膜。於其上 層藉由硬光罩形成組成物(ArF用含矽光阻下層膜形成組 成物,S i含有率3 9 %,固體成分3 % )在2 4 0 °C下烘烤6 0 秒,成膜爲160ηιη之膜厚形成硬光罩。接著’在270°C下 -44- 201001080 烘烤1 8 0秒’確認硬光罩(含矽之光阻下層膜)上是否發 生龜裂(割痕)。確認方法爲以〇iympus股份有限公司製 造之光學顯微鏡B X 5 1 Μ進行。結果列於表2。 [表2] 表2 η k 硬光罩是否有龜裂 實施例1 1.55 0.40 Μ JW\ 實施例2 1.50 0.30 Μ 比較例1 1.52 0.31 有 比較例2 1.55 0.40 有 比較例3 1.59 0.80 /fm·- 賊 比較例4 1.52 0.32 有 如上表 2所示,由實施例 1至2 及比較例1、 2及4 獲得之光阻下層膜之折射率之 η値爲 1 ·50~1.59, 消光係 數k値爲0, .30〜0.40之範圍。 尤其在 200nm以上之膜厚顯 示具有可發揮充分之抗反射效果之最適折射率(η)與消 光係數(k )。 使用實施例1至2及比較例3之光阻下層膜形成組成 物時,顯示良好之硬光罩龜裂抗性,但使用比較例1、2 及4之光阻下層膜形成組成物時硬光罩發生龜裂。 [圖型形狀之觀察] (1 )光阻圖型之形成 將上述調製之光阻下層膜形成組成物(實施例1及2 及比較例1至4)之溶液塗佈於具有膜厚3 00nm之Si〇2 -45- 201001080 之基板上,在240°C下烘烤60秒,形成膜厚200nm之光 阻下層膜。 接著,於該光阻下層膜上塗佈硬光罩形成組成物(含 矽之光阻下層膜形成組成物),在240°C下烘烤60秒’形 成膜厚80nm之硬光罩(含矽之光阻下層膜)。 接著,於該層合膜上使ArF光阻劑(商品名TArF-P6239,東京應化工業(股)製造)在120 °C下烘烤60秒 ,形成膜厚150nm之ArF光阻膜。 接著,以 ArF曝光裝置(Nikon公司製造,商品名 NSR- S307E,NA0.85,外(outer) σ = 0.85,內(inner )σ=0.814,雙重極照明,HT光罩)曝光,在110 °C下 烘烤60秒(PEB ),並於2.38質量%氫氧化四甲基銨( TMAH )水溶液中顯像60秒,獲得0.08 // mL/S (線與空 間)之正型圖型。 (2 )觀察CF4/Ar乾蝕刻後之光阻下層膜之剖面形狀 接著,以上述ArF曝光及顯像後所得之〇.〇8 " m之L (線)/S (空間)之光阻圖型作爲光罩,且以CF4氣體作 爲主體進行乾蝕刻,將圖型轉印在硬光罩(ArF用含矽之 光阻下層膜材料)上。 蝕刻條件如下所示。腔室壓力爲15.0Pa,RF功率爲 200W,CF4氣體流量爲50sccm,Ar氣體流量爲200sccm ,時間爲52秒。 (3 )觀察以〇2/N2系氣體之蝕刻後之光阻下層膜之 剖面形狀 -46 - 201001080 接著’以上述CF4氣體乾蝕刻後,以形成有圖型之硬 光罩(含矽之光阻下層膜材料)作爲光罩在〇2/N2系氣體 中進行鈾刻’將圖型轉印在使用本發明之微影用光阻下層 膜形成組成物所形成之光阻下層膜上。 蝕刻條件如下。腔室壓力爲1 · 0P a,RF功率爲2 8 0 W ’ 〇2氣體流量爲lOsccm,N2氣體流量爲lOsccm,時間爲 125 秒。 (4 )觀察以C4F8/Ar/02系氣體蝕刻後之Si02基板 接著’以上述02/N2系氣體爲主體進行乾蝕刻後,以 形成有圖型之使用本發明之微影用光阻下層膜形成組成物 形成之光阻下層膜作爲光罩,以C4F8/Ar/02系氣體進行蝕 刻,加工Si02基板。 蝕刻條件如下。腔室壓力爲6. OP a,RF功率爲2 8 0 W ,C4F8氣體流量爲30sccm,Ar氣體流量爲lOOsccm,〇2 氣體流量爲3 s c c m,時間爲3 1 5秒。 其結果,使用實施例1及2之微影用光阻下層膜形成 組成物時,基板加工蝕刻後之光阻下層膜之剖面形狀呈垂 直形狀,可確認爲良好。 [乾蝕刻抗性試驗] 乾蝕刻抗性試驗係將上述調製之光阻下層膜形成組成 物(實施例1及2及比較例1至4)之溶液塗佈於矽基板 上,在240 °C下烘烤60秒,形成膜厚500nm之光阻下層 膜。以下列條件進行評價。 -47 - 201001080 (CF4/Ar系氣體之蝕刻抗性試驗) 使用日本SCIENTIFIC股份有限公司製造之乾蝕刻裝 置ES4〇 1 ’測定蝕刻前後之光阻下層膜之膜厚差,作爲蝕 刻速度。蝕刻條件如上述。結果列於表3。 [表3] 表3 光阻下層膜 CF^Ar系氣體之蝕刻速度(nm/min) 實施例1 140 實施例2 115 比較例1 126 比較例2 138 比較例3 160 比較例4 130 如表3所示,CF4/Ar系氣體蝕刻之速度與硬光罩上產 生之龜裂抗性無關,芳香族縮合環之比例高之聚合物之蝕 刻速度慢,顯示具有高的蝕刻抗性。 另外,餓刻速度在1 4 0 n m / m i η以下爲良好,比較例3 之蝕刻速度爲160nm/min,極爲快速。因此轉印圖型之際 ,無法獲得良好之形狀。 [產業上之可能利用性] 可利用於半導體基板加工時有效之微影用光阻下層膜 形成組成物、以及使用該光阻下層膜形成組成物之光阻圖 型形成法、及半導體裝置之製造方法中。 -48--43- 201001080 Table 1 Resin (parts by mass) Crosslinking agent (parts by mass) Acid generator (parts by mass) Example 1 Resin A (100) CR1 (15) AG1 (1.5) Example 2 Resin B (100) CR1 (15) AG1 (1.5) Comparative Example 1 Resin C (100) Comparative Example 2 Resin A (100) CR1 (1) AG1 (1.5) Comparative Example 3 Resin D (100) CR1 (15) AG1 (1.5) Comparative Example 4 Resin E (100) CR1 ( 15 ) AG1 (1.5) The thus prepared lithography solution of the photoresist underlayer film forming composition (Examples 1 to 2 and Comparative Examples 1 to 4) was applied onto a ruthenium substrate, Baking at 240 °C for 60 seconds, respectively forming a film under the photoresist with a film thickness of 500 nm. [Measurement of Refractive Index and Extinction Coefficient] After forming the above-mentioned photoresist underlayer film, the refractive index of 193 nm was obtained by using ellipsometers (VASE) with variable incident angle of JA WOOLLAM. And the extinction coefficient (k), the results are shown in Table 2. [Crack Test] A solution of the above-mentioned prepared lithography underlying photoresist film forming composition (Examples 1 to 2 and Comparative Examples 1 to 4) was applied onto a ruthenium substrate disk at 240 Å. (: baking for 60 seconds) forming a photoresist film having a film thickness of 7 〇〇 nm. The composition is formed by a hard mask on the upper layer (the composition of the underlayer film containing the yttrium photoresist for ArF, the S i content rate is 3 9 %, solid content 3 %) baked at 250 ° C for 60 seconds, filming a film thickness of 160 ηηη to form a hard mask. Then 'bake at 270 ° C -44-201001080 for 180 seconds 'Check for cracks (cuts) on the hard mask (underlying film containing ruthenium). The confirmation method was performed with an optical microscope BX 5 1 制造 manufactured by 〇iympus Co., Ltd. The results are shown in Table 2. Table 2] Table 2 η k hard mask without cracks Example 1 1.55 0.40 Μ JW\ Example 2 1.50 0.30 Μ Comparative Example 1 1.52 0.31 Comparative Example 2 1.55 0.40 Comparative Example 3 1.59 0.80 /fm·- Thief Comparative Example 4 1.52 0.32 As shown in Table 2 above, the refractive index η 値 of the photoresist underlayer film obtained in Examples 1 to 2 and Comparative Examples 1, 2 and 4 was 1 · 50 to 1.59, and the extinction coefficient k 値 was 0, .30 to 0.40. Especially, the film thickness of 200 nm or more shows an optimum refractive index (η) which exhibits sufficient antireflection effect. And extinction coefficient (k). When the composition was formed using the photoresist underlayer films of Examples 1 to 2 and Comparative Example 3, good hard mask crack resistance was exhibited, but the light of Comparative Examples 1, 2, and 4 was used. When the underlayer film is formed to form a composition, the hard mask is cracked. [Observation of pattern shape] (1) Formation of photoresist pattern The above-mentioned modulated photoresist film is formed into a composition (Examples 1 and 2 and Comparative Example) The solution of 1 to 4) was applied onto a substrate having a thickness of 300 nm of Si〇2 - 45 to 201001080, and baked at 240 ° C for 60 seconds to form a photoresist underlayer film having a film thickness of 200 nm. A thin mask is formed on the photoresist underlayer film to form a composition (a film forming composition of a photoresist containing germanium), and baked at 240 ° C for 60 seconds to form a hard mask having a film thickness of 80 nm (a photoresist containing germanium) Next, an ArF photoresist (trade name: TArF-P6239, manufactured by Tokyo Ohka Kogyo Co., Ltd.) was baked on the laminate film at 120 ° C for 60 seconds to form an ArF light having a film thickness of 150 nm. Next, an ArF exposure apparatus (manufactured by Nikon Corporation, trade name NSR-S307E, NA0.85, outer σ = 0.85, inner σ = 0.81) 4, double pole illumination, HT mask) exposure, baking at 110 ° C for 60 seconds (PEB), and imaging in a 2.38 mass% aqueous solution of tetramethylammonium hydroxide (TMAH) for 60 seconds, obtaining 0.08 // Positive pattern of mL/S (line and space). (2) Observing the cross-sectional shape of the underlying film of the photoresist after CF4/Ar dry etching, followed by the L (line) / S (space) photoresist of 〇.〇8 " m obtained by exposure and development of the above ArF The pattern was used as a mask, and dry etching was performed using CF4 gas as a main body, and the pattern was transferred onto a hard mask (a film material containing a germanium-containing photoresist for ArF). The etching conditions are as follows. The chamber pressure was 15.0 Pa, the RF power was 200 W, the CF4 gas flow rate was 50 sccm, the Ar gas flow rate was 200 sccm, and the time was 52 seconds. (3) Observing the cross-sectional shape of the underlying film of the photoresist after etching of the 〇2/N2 gas -46 - 201001080 followed by dry etching with the above CF4 gas to form a pattern of hard mask (including light) The underlayer film material is subjected to uranium engraving in a 〇2/N2-based gas as a photomask. The pattern is transferred onto a photoresist underlayer film formed by using the lithographic photoresist underlayer film forming composition of the present invention. The etching conditions are as follows. The chamber pressure was 1 · 0P a , the RF power was 280 W ’ 〇 2 gas flow rate was lOsccm, the N2 gas flow rate was lOsccm, and the time was 125 seconds. (4) Observing a SiO 2 substrate etched with a C4F8/Ar/02 gas, followed by dry etching using the above-mentioned 02/N 2 gas as a main component, and forming a pattern of the lithographic underlayer film using the lithography of the present invention. The underlayer film of the photoresist formed by the formation of the composition was used as a photomask, and was etched by a C4F8/Ar/02-based gas to process the SiO 2 substrate. The etching conditions are as follows. The chamber pressure was 6. OP a, RF power was 280 W, C4F8 gas flow was 30 sccm, Ar gas flow was lOOsccm, 〇2 gas flow was 3 s c c m, and time was 3 15 seconds. As a result, when the composition was formed using the photoresist underlayer film for lithography of Examples 1 and 2, the cross-sectional shape of the underlayer film of the photoresist after the substrate processing and etching was a vertical shape, and it was confirmed to be good. [Dry etching resistance test] The dry etching resistance test was carried out by applying a solution of the above-mentioned prepared photoresist underlayer film forming composition (Examples 1 and 2 and Comparative Examples 1 to 4) onto a ruthenium substrate at 240 ° C. Bake for 60 seconds to form a photoresist underlayer film having a film thickness of 500 nm. The evaluation was carried out under the following conditions. -47 - 201001080 (Erosion resistance test of CF4/Ar gas) The film thickness difference of the photoresist film before and after etching was measured using the dry etching apparatus ES4〇 1 ' manufactured by SCIENTIFIC Co., Ltd., Japan as the etching speed. The etching conditions are as described above. The results are shown in Table 3. [Table 3] Table 3 Etching speed (nm/min) of the film underlying film CF^Ar-based gas Example 1 140 Example 2 115 Comparative Example 1 126 Comparative Example 2 138 Comparative Example 3 160 Comparative Example 4 130 As shown, the CF4/Ar gas etching rate is independent of the crack resistance generated on the hard mask, and the polymer having a high ratio of the aromatic condensation ring has a slow etching rate and exhibits high etching resistance. Further, the hungry speed was preferably 1 to 40 n m / m i η or less, and the etching rate of Comparative Example 3 was 160 nm/min, which was extremely fast. Therefore, when the pattern is transferred, a good shape cannot be obtained. [Industrial Applicability] A photoresist pattern forming method for forming a photoresist for use in a lithography process, and a photoresist pattern forming method for forming a composition using the photoresist underlayer film, and a semiconductor device In the manufacturing method. -48-

Claims (1)

201001080 七、申請專利範圍: 1. 一種半導體裝置製造之微影製程中使用之光阻下 層膜形成組成物,其特徵爲該組成物包含含有以下述式( 1)及式(2)表示之各單位構造之聚合物:201001080 VII. Patent Application Range: 1. A photoresist underlayer film forming composition used in a lithography process for manufacturing a semiconductor device, characterized in that the composition contains each of the formulas (1) and (2) Unit structure of polymer: ch-r8 H7 (上述式中,X表示氫原子或芳香族縮合環,Y表示芳香 族縮合環,又,X與Y可彼此鍵結形成縮合環,R,、R2、 R3、R4及R5分別表示氫原子、鹵素原子、或碳原子數1 至3之烷基,R6、R7及R8分別表示氫原子或碳原子數1 至10之烷基,R9表示碳原子數1至1〇之烷基,又, 及R8亦可彼此鍵結形成環,Μ表示直接鍵或連結基,又 ,η表示0或1),且爲以構成該聚合物之全部單位構造 之總數爲1.0時,以上述式(1)表示之單位構造數(a) 之比例與以上述式(2 )表示之單位構造數(b )之比例分 別爲0.3SaS0.95,0.05SbS0.7之聚合物,且該組成物進 而含有交聯劑以及溶劑,上述組成物以自該組成物去除上 述溶劑之固體成分爲基準含有3至30質量%之上述交聯劑 -49- 式(3) 201001080 2. —種半導體裝置製造之微影製程中使 層膜形成組成物,其特徵爲該組成物除包含J )及式(2)表示之單位構造之聚合物以外, 子內分別具有至少兩個以下述式(3 )表示之 或經保護羥基之化合物: [化2] (c=0) η I Re 〇~C—〇-Rg ch-r8 r7 (上述式中,R6、R7及R8分別表示氫原子或 至10之烷基,R9表示碳原子數1至10之惊 及R8亦可彼此鍵結形成環,η表示0或I ), 該聚合物之全部單位構造數及該化合物之數5 時,以上述式(1 )表示之單位構造數(a )之 述式(2)表示之單位構造數與以上述式(3) 物之數合計(b)之比例分別爲〇.3SaS0.95, 之上述聚合物及上述化合物,該組成物進而含 及溶劑,且上述組成物以自該組成物去除上述 成分爲基準含有3至30質量%之上述交聯劑。 3-如申請專利範圍第1或2項之光阻下 成物,其中以上述式(1)表示之單位構造爲 萘、乙嫌合萘(Acenaphthylene)、乙燏基意 用之光阻下 (上述式(1 進而包含分 經保護羧基 碳原子數1 基,又,R7 且爲以構成 .總數爲1.0 比例及以上 表不之化合 0.05^b^0.7 有交聯劑以 溶劑之固體 層膜形成組 選自乙烯基 、N-乙烯基 -50- 201001080 咔唑或該等之衍生物之單位構造。 4-如申請專利範圍第1至3項中任一項之光阻下層 膜形成組成物,其中進而含有酸或酸產生劑。 5 · —種光阻下層膜,其特徵係將申請專利範圍第1 至4項中任一項之光阻下層膜形成組成物塗佈於半導體基 板上並經燒成獲得。 6 . —種光阻圖型之形成方法,其特徵係用於包含將 申請專利範圍第1至4項中任一項之光阻下層膜形成組成 物塗佈於半導體基板上並經燒成而形成下層膜之步驟之半 導體製造中。 7. —種半導體裝置之製造方法,其特徵係包含在半 導體基板上以申請專利範圍第1至4項中任一項之光阻下 層膜形成組成物形成下層膜之步驟,及於其上形成光阻膜 之步驟’及藉由光或電子束照射及顯像而形成光阻圖型之 步驟’及依據所形成之光阻圖型蝕刻該下層膜之步驟,以 及依據圖型化之下層膜對半導體基板進行加工之步驟。 8. —種半導體裝置之製造方法,其特徵爲包含在半 導體基板上以申請專利範圍第1至4項中任一項之光阻下 層膜形成組成物形成下層膜之步驟,及於其上形成硬遮罩 之步驟’及再於其上形成光阻膜之步驟,及藉由光或電子 束照射及顯像形成光阻圖型之步驟,及藉由所形成之光阻 圖型鈾刻硬遮罩之步驟,及依據圖型化之硬遮罩蝕刻該下 層膜之步驟’以及依據圖型化之下層膜對半導體基板進行 加工之步驟。 -51 - 201001080 指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明:無 五 本案若有化學式時,請揭示最能顯示發明特徵的化學 式:化1 【化1】 R1 R2Ch-r8 H7 (In the above formula, X represents a hydrogen atom or an aromatic condensed ring, Y represents an aromatic condensed ring, and further, X and Y may be bonded to each other to form a condensed ring, and R, R2, R3, R4 and R5 respectively And a hydrogen atom, a halogen atom, or an alkyl group having 1 to 3 carbon atoms, and R6, R7 and R8 each represent a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and R9 represents an alkyl group having 1 to 1 carbon atom. Further, and R8 may also be bonded to each other to form a ring, Μ represents a direct bond or a linking group, and η represents 0 or 1), and when the total number of structures constituting all the units of the polymer is 1.0, the above formula (1) a polymer having a ratio of a unit structure number (a) to a unit structure number (b) expressed by the above formula (2) of 0.3 SaS 0.95 and 0.05 SbS 0.7, respectively, and the composition further And a crosslinking agent and a solvent, wherein the composition contains 3 to 30% by mass of the crosslinking agent based on the solid content of the solvent to remove the solvent - 49 - Formula (3) 201001080 2. Manufacturing of a semiconductor device In the lithography process, the layer film is formed into a composition, which is characterized in that the composition includes J) and formula (2) In addition to the polymer of the unit structure, there are at least two compounds represented by the following formula (3) or protected hydroxyl groups: [Chemical 2] (c=0) η I Re 〇~C—〇-Rg ch -r8 r7 (In the above formula, R6, R7 and R8 each represent a hydrogen atom or an alkyl group of 10, R9 represents a carbon atom number of 1 to 10 and R8 may be bonded to each other to form a ring, and η represents 0 or I) When the total number of unit structures of the polymer and the number of the compound are 5, the unit structure number represented by the formula (2) represented by the formula (1) and the formula (3) The total amount of (b) is 〇.3SaS0.95, the above polymer and the above compound, and the composition further contains a solvent, and the composition contains 3 to 30 based on the removal of the above component from the composition. % by mass of the above crosslinking agent. 3- The photoresist of the first or second aspect of the patent application, wherein the unit represented by the above formula (1) is under the photoresist of naphthalene, Acenaphthylene, and acetaminophen ( The above formula (1 further comprises a group having a protected carboxyl group having 1 atomic group, and further, R7 is a composition of a total of 1.0 and a combination of 0.05 and b^0.7, and a crosslinking agent is formed by a solid film of a solvent. The group is selected from the group consisting of a vinyl group, an N-vinyl-50-201001080 carbazole or a derivative of the above-mentioned derivatives. The photoresist underlayer film forming composition according to any one of claims 1 to 3, Further, it further contains an acid or an acid generator. The light-receiving underlayer film is characterized in that the photoresist underlayer film forming composition according to any one of claims 1 to 4 is coated on a semiconductor substrate. A method for forming a photoresist pattern, which is characterized in that the photoresist underlayer film forming composition according to any one of claims 1 to 4 is coated on a semiconductor substrate. 7. The semiconductor manufacturing process in which the lower layer film is formed by firing. A method of manufacturing a semiconductor device, comprising the steps of forming a lower film by a photoresist underlayer film forming composition according to any one of claims 1 to 4 on a semiconductor substrate, and forming a photoresist thereon a step of forming a film and a step of forming a photoresist pattern by light or electron beam irradiation and development and a step of etching the underlayer film according to the formed photoresist pattern, and a layer-by-layer film-to-semiconductor according to the patterning The step of processing the substrate. The method for manufacturing a semiconductor device, comprising the step of forming a lower film by forming a photoresist underlayer film forming composition according to any one of claims 1 to 4 on a semiconductor substrate. And the step of forming a hard mask thereon and the step of forming a photoresist film thereon, and the step of forming a photoresist pattern by light or electron beam irradiation and development, and by forming the light The step of obstructing the uranium engraved hard mask, and the step of etching the underlying film according to the patterned hard mask, and the step of processing the semiconductor substrate according to the patterned underlying film. -51 - 201001080 Representative diagram: (1) The representative representative of the case is: No. (2) The symbolic symbol of the representative figure is simple: If there are no five cases, if there is a chemical formula, please disclose the chemical formula that best shows the characteristics of the invention: Chemical 1 R1 R2 R3 R4R3 R4 (C=〇)n I «6 〇*C—0-R〇 ch-r8 Rr(C=〇)n I «6 〇*C—0-R〇 ch-r8 Rr
TW098112842A 2008-04-18 2009-04-17 Resist underlayer forming composition for lithography comprising resin containing aromatic fused ring TWI465854B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008108755 2008-04-18

Publications (2)

Publication Number Publication Date
TW201001080A true TW201001080A (en) 2010-01-01
TWI465854B TWI465854B (en) 2014-12-21

Family

ID=41199200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098112842A TWI465854B (en) 2008-04-18 2009-04-17 Resist underlayer forming composition for lithography comprising resin containing aromatic fused ring

Country Status (3)

Country Link
JP (1) JP5212666B2 (en)
TW (1) TWI465854B (en)
WO (1) WO2009128513A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012161126A1 (en) * 2011-05-20 2012-11-29 日産化学工業株式会社 Composition for forming organic hard mask layer for use in lithography containing polymer having acrylamide structure
KR101599961B1 (en) 2012-12-26 2016-03-04 제일모직 주식회사 Monomer for hardmask composition and hardmask composition including the monomer and method of forming patterns using the hardmask composition
KR101926023B1 (en) 2015-10-23 2018-12-06 삼성에스디아이 주식회사 Method of producimg layer structure, and method of forming patterns
JP7135554B2 (en) * 2018-08-03 2022-09-13 Jsr株式会社 Underlayer film-forming composition, underlayer film of self-assembled film, method for forming the same, and self-assembled lithography process
US10780682B2 (en) * 2018-12-20 2020-09-22 Canon Kabushiki Kaisha Liquid adhesion composition, multi-layer structure and method of making said structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005015532A (en) * 2003-06-23 2005-01-20 Jsr Corp Polymer and antireflection film forming composition
TWI363251B (en) * 2003-07-30 2012-05-01 Nissan Chemical Ind Ltd Sublayer coating-forming composition for lithography containing compound having protected carboxy group
JP4388429B2 (en) * 2004-02-04 2009-12-24 信越化学工業株式会社 Resist underlayer film material and pattern forming method
EP1780600B1 (en) * 2004-07-02 2014-02-26 Nissan Chemical Industries, Ltd. Lower layer film forming composition for lithography including naphthalene ring having halogen atom

Also Published As

Publication number Publication date
WO2009128513A1 (en) 2009-10-22
JP5212666B2 (en) 2013-06-19
TWI465854B (en) 2014-12-21
JPWO2009128513A1 (en) 2011-08-04

Similar Documents

Publication Publication Date Title
US8709701B2 (en) Resist underlayer film forming composition for lithography, containing aromatic fused ring-containing resin
KR101860385B1 (en) Carbazole novolak resin
TWI554835B (en) Resist underlayer film forming composition containing hydroxy group-containing carbazole novolak resin
TWI572988B (en) Resist underlayer film forming composition comprising phenyl indole-containing novolak resin
TWI553035B (en) Resist underlayer film forming composition comprising alicyclic skeleton-containing carbazole resin
JPWO2008069047A6 (en) Lithographic resist underlayer film forming composition comprising a resin containing an aromatic condensed ring
TWI646396B (en) Resist underlayer film forming composition containing polyhydroxy aromatic ring novolac resin having carbonyl group
TWI765872B (en) Indolocarbazole novolac resin-containing resist underlayer film forming composition
TW201314371A (en) Resist underlayer film forming composition containing polyhydroxy benzene novolak resin
WO2010041626A1 (en) Composition for forming resist underlayer film for lithography, which contains fluorene-containing resin
TW201512304A (en) Resist underlayer film forming composition containing pyrrole novolac resin
TWI465854B (en) Resist underlayer forming composition for lithography comprising resin containing aromatic fused ring
TW201512296A (en) Resist underlayer film forming composition containing trihydroxynaphthalene novolac resin