TW201000401A - Amorphous silica powder, producing method and usage thereof - Google Patents

Amorphous silica powder, producing method and usage thereof Download PDF

Info

Publication number
TW201000401A
TW201000401A TW98116091A TW98116091A TW201000401A TW 201000401 A TW201000401 A TW 201000401A TW 98116091 A TW98116091 A TW 98116091A TW 98116091 A TW98116091 A TW 98116091A TW 201000401 A TW201000401 A TW 201000401A
Authority
TW
Taiwan
Prior art keywords
powder
amorphous
pyridine
less
detachment
Prior art date
Application number
TW98116091A
Other languages
Chinese (zh)
Other versions
TWI458682B (en
Inventor
Yasuhisa Nishi
Syuji Sasaki
Hiroshi Murata
Original Assignee
Denki Kagaku Kogyo Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo Kk filed Critical Denki Kagaku Kogyo Kk
Publication of TW201000401A publication Critical patent/TW201000401A/en
Application granted granted Critical
Publication of TWI458682B publication Critical patent/TWI458682B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

The present invention provides a resin composition, particularly a semiconductor sealing material, which has a low viscosity during sealing even highly filling with inorganic filler, and a much improved formability. Besides, the present invention provides an amorphous silica powder which is suitable for compounding the resin composition, and a producing method of the amorphous silica powder. The amorphous silica powder after adsorbing pyridine, when heating at 450 DEG C or more and less than 550 DEG C has a pyridine desorption amount L, and when heating at l50 DEG C or more and less than 250 DEG C has a pyridine desorption amount B, and the ratio of L/B is 0.8 or less. Further, the ratio of the pyridine desorption amount B when heating at 150 DEG C or more and less than 250 DEG C to the total pyridine desorption amount A when heating at 150 DEG C or more and less than 550 DEG C, (B/A) x l00% is preferably of 20% or more. Moreover, preferably said amorphous silica powder has a specific surface area of 0.5 to 45m<SP>2</SP>/g, an average particle diameter of 0.1 to 60 μ m, and an average sphericity of 0.80 or more.

Description

201000401 六、發明說明: 【發明所屬之技術領域】 本發明係有關於一種非晶質矽石 及用途。 【先前技術】 近年來,由於保護地球環境的意 密封所使用的半導體密封材,被要求 大的銻化合物或溴化環氧樹脂等有害 難燃性,且必須對未含有鉛的無鉛焊 導體密封材係主要由環氧樹脂、酚樹 劑、無機質塡料等所構成,但是爲了 性,係採用在環氧樹脂、酚樹脂等應 燃性及耐熱性高的結構物之方法,及 方法等。但是該等方法時,半導體密 度上升之傾向。 另一方面,因應電子機器的小型 要求,半導體的內部結構係元件的薄2 長跨距化及配線間距的高密度化正急 導體使用高黏度化的半導體密封材密 線變形、金線切斷、半導體元件傾斜 良。因此,在半導體密封材,被強烈 能夠降低密封時的黏度、減少成形不 爲了滿足該等要求,係採用藉由 所使用的環氧樹脂或酚樹脂硬化劑之 度化並提升成形性之手法(參照專利3 質粉末、其製造方法 識提高,在半導體的 必須未使用環境負荷 的難燃劑而能夠賦予 錫賦予耐熱性等。半 脂硬化劑、硬化促進 滿足如上述的要求特 用含大量芳香環之難 高塡充無機質塡料之 封材在密封時具有黏 輕量化、高性能化之 毁化、金線的小徑化、 速地進展。將此種半 封時,結果會增加金 、狹隙未塡充等的不 地要求具有難燃性且 良。 改良在半導體密封材 手法等,來謀求低黏 :獻1及2)。又,改良 201000401 硬化促進劑,爲了提升環氧樹脂的硬化引發溫度之目的, 係使用抑制硬化性之成分來保護反應性的基質,亦即採用 稱爲潛在化之手法(參照專利文獻3及4)。 無機質塡料的改良係採用即便高塡充,密封劑的黏度 亦不會上升之方式來調整粒度分布之手法(參照專利文獻5 及6)。但是該等手法時,低黏度效果、成形性提升效果不 充分,目前尙未有能夠高塡充無機質塡料且能夠降低密封 時的黏度,而且能夠進一步提升成形性之半導體密封材。 專利文獻 專利文獻1 :特開2007-231159號公報 專利文獻2:特開2007-262385號公報 專利文獻3:特開2006-225630號公報 專利文獻4:特開2002-284859號公報 專利文獻5:特開2005-239892號公報 專利文獻6 : WO/2007/132771號公報 【發明内容】 發明所欲解決之課題 本發明之目的係提供一種即便高塡充無機質塡料,密 封時的黏度亦低且成形性進一步提升之半導體密封材,而 且提供一種該調製之適合的非晶質砂石質粉末及其製造方 法。 解決課題之手段 本發明係一種非晶質矽石質粉末,其係使非晶質矽石 質粉末吸附吡啶後,在4 5 0 °C以上、小於5 5 〇 t加熱時之吡 啶的脫離量L、與在15 0°C以上、小於25 (TC加熱時之吡啶 201000401 的脫離量B之比L/B爲0.8以下。 又,在本發明,使非晶質矽石質粉末吸附吡啶後,在 150°C以上、小於5 5 0°C加熱時之吡啶的總脫離量A中,在 1 5 0 °C以上、小於2 5 0°C加熱時之吡啶的脫離量B所佔有的 比率(B/A) xl 00%爲2 0%以上爲佳。 而且,本發明的非晶質矽石質粉末係以比表面積爲0.5 〜45平方公尺/克,平均粒徑爲〇.1〜60微米,平均球形度 爲0.8 0以上爲佳。 又,本發明係一種含有本發明的非晶質矽石質粉末之 無機質粉末。 在本發明,前述無機質粉末係以本發明以外的非晶質 矽石質粉末及/或氧化鋁質粉末爲佳。 而且,本發明係一種非晶質矽石質粉末的製造方法, 其特徵係將含有原料矽石質粉末與A1源物質之混合物,往 藉由燃燒器形成的火焰中噴射,來製造非晶質矽石質粉末 後,在溫度60〜150 °C、相對濕度60〜90 %的環境下保持 1 5〜3 0分鐘。 又,本發明係在樹脂中含有本發明的非晶質矽石質粉 末之樹脂組成物。前述樹指係以環氧樹脂爲佳。 而且,本發明係使用該等樹脂組成物而成之半導體密 封材。 發明之效果 依照本發明,能夠提供~種流動性、黏度特性及成形 性優良的樹脂組成物,及使用該樹脂組成物而成之半導體 密封材。又,能夠提供一種用以調製前述樹脂組成物之適 合的非晶質矽石質粉末。 201000401 【實施方式】 以下,詳細地說明本發明。 本發明的非晶質矽石質粉末係使其吸附吡啶並使其加 熱脫離後,在4 5 0 °C以上、小於5 5 0 °C加熱時之吡啶的脫離 量L、與在150°C以上、小於250°C加熱時之吡啶的脫離量 B之比L/B爲0.8以下之非晶質矽石質粉末。 矽石的結構中,例如- Ο- Si-O-A卜O-Si-O-,A1取代Si 的位置時,因爲Si的配位數與A1的配位數不同,該點會 成爲固體酸點亦即路易斯酸點(電子對接受體)。又,H20(水) 鍵結於該路易斯酸點時,變成布忍士特酸(Bronsted acid)(質子給予體)。爲鹼性物質的吡啶係鍵結於非晶質矽 石質粉末的表面之該等酸點,越堅固鍵結的吡啶,在加熱 時係在較高的溫度脫離。非晶質矽石質粉末時,因爲與結 晶質比較’結構係無規則,所以在酸強度(脫離溫度)產生 分布’大致上可認爲在150t〜250°C的加熱溫度脫離之吡 陡係與布忍士特酸點鍵結者,在450 °C〜550 °C的加熱溫度 脫離之吡啶係與路易斯酸點鍵結者。 使其吸附啦陡並加熱時,在4 5 0 °C以上、小於5 5 0 °C加 熱時之卩比陡的脫離量L、與在1 5 0 °C以上 '小於2 5 0 °C加熱 時之吡啶的脫離量B之比l/Β爲0.8以下,係意味著布忍 士特酸點的量係比路易斯酸點量多而爲1.25倍以上。使用 此種非晶質砂石時’基於後述的理由,能夠調製流動性、 黏度特性及成形性優良的密封材。相反地,在4 5 〇 t以上、 小於5 5 0 °C加熱時之吡啶的脫離量L、與在i 5 〇 t以上、小 於25 0 °C加熱時之吡啶的脫離量B之比l/b爲大於〇 8時, 係意味著布忍士特酸點的量與路易斯酸點的量比較時,爲 201000401 小於1.2 5倍,難以調製流動性、黏度特性及成形性優良的 密封材。 以下,說明發現本發明的效果之理由。亦即,半導體 密封材係除了非晶質矽石質粉末以外,使用環氧樹脂、酚 樹脂及硬化促進劑作爲主要成分。將半導體密封材加熱至 通常的熱硬化溫度(成形溫度)亦即150 °C〜200°C左右時, 藉由硬化促進劑,酚樹脂硬化劑的質子被拔出,環氧樹脂 與酚樹脂硬化劑進行陰離子聚合鏈鎖反應,且密封材逐漸 硬化。使用本發明的非晶質矽石質粉末時,藉由加熱,質 子被從布忍士特酸點放出。該質子係鍵結於陰離子聚合末 端,由於聚合鏈鎖反應一時停止之結果,密封材產生熱硬 化遲延之現象。亦即,藉由本發明的非晶質矽石質粉末, 能夠使密封材的熱硬化潛在化,能夠調製成形時的流動性 及黏度特性優良的密封材。只有在450 °C以上、小於550 °C加熱時之吡啶的脫離量L、與在1 5 0 °C以上、小於2 5 0 °C 加熱時之吡啶的脫離量B之比L/B爲0.8以下時,潛在化 效果會顯著地出現。基於此種機構來賦予非晶質矽石質粉 末潛在性之事例,係以往未存在的。 另一方面,在4 5 0 °C以上、小於5 5 0 °C加熱時之吡啶的 脫離量L、與在1 5 0 °C以上、小於2 5 0 °C加熱時之吡啶的脫 離量B之比L/B爲大於0.8時,不僅是如上述之從非晶質 矽石質粉末的布忍士特酸點放出質子之密封材的潛在化難 以出現,並且在路易斯酸點,環氧樹脂或酚樹脂中的氧產 生配位鍵結,相反地,因爲會阻礙非晶質矽石質粉末的流 動,致使密封材的流動性及黏度特性變差,乃是不佳。L/B 比以〇 . 7以下爲佳,以〇 _ 6以下爲更佳。 201000401 從非晶質矽石質粉末之吡啶的脫離溫度及脫離量,能 夠按照以下的順序測定。 (1) 吡啶溶液的調製:將7.91克光譜分析用吡啶稱量在500 毫升的量瓶,並使用光譜分析用正庚烷進行定容。接著, 在2 00毫升的量瓶採取1毫升該吡啶溶液,並使用正庚烷 進行定容。 (2) 在非晶質矽石質粉末吸附吡啶:將4.00克預先在大氣中 於200 °C加熱使其乾燥2小時,並與過氯酸鎂乾燥劑一同 在乾燥器放冷而成之非晶質矽石質粉末,精稱在25毫升量 瓶。在該量瓶添加20毫升前述吡啶溶液,並振盪混合3分 鐘。將該量瓶放入設定於25 °C的恆溫槽並保持2小時,來 使吡啶吸附於非晶質矽石質粉末。 (3) 非晶質矽石質粉末的洗淨:爲了洗淨物理性吸附於非晶 質矽石質粉末之吡啶,將從恆溫槽取出的量瓶振盪混合並 靜置10分鐘,來使非晶質矽石質粉末沈降。捨棄吡啶溶液 的上部澄清液,並添加約20毫升光譜分析用正庚烷後,將 量瓶振盪混合並靜置1 〇分鐘。將上部澄清液放入紫外可見 光譜光度計的測定容器,測定波長1 9 0〜3 4 0奈米區域之吸 光度,來確認251奈米之吡啶的吸收。重複使用該正庚烷 之洗淨操作,直至在正庚烷的上部澄清液無法確認吡啶的 吸收爲止。無法確認吡啶的吸收後,將量瓶的上部澄清液 捨棄,並從量瓶的上部’以10分鐘、100毫升/分鐘的流量 邊吹入乾燥氮氣,邊使非晶質矽石質粉末在室溫乾燥。 (4) 吡啶脫離溫度、脫離量的測定:將1 〇毫克乾燥後的非 晶質矽石質粉末,精稱在雙射熱裂解器(D〇BLE-sH〇T P YROLIZER)的試料杯,並邊使用熱分解裝置加熱’邊監控 201000401 吡啶的質譜,來測定吡啶的脫離溫度及脫離量。吡啶的脫 離量比能夠係能夠從所得到的曲線的面積算出。 又’例示確認有無物理性吸附後的吡啶所使用的紫外 線可見光譜光度計時’有島津製作所製商品名「紫外可見 光譜光度計UV- 1 800型」。測定係使用石英玻璃製10毫米 厚度的容器。 例示調製吡啶溶液所使用的試藥時,有和光純藥工業 公司製吡啶(光譜分析用等級)及正庚烷(光譜分析用等級)。 又’例示測定吸附於非晶質矽石質粉末之吡啶的脫離 溫度及脫離量所使用的裝置時,有熱分解裝置、FRONTIER LAB 公司製商品名「DOBLE-SHOT PYROLIZER P Y-2020D 型」、GC/MS測定裝置、Agilent公司製商品名「GC/MSD 6890/5973 型 J〇 熱分解爐的測定條件係升溫速度:以2 5 °C /分鐘升溫至 50〜700 °C,ITF溫度:升溫至150〜300 °C,測定模式:EGA TEMP PROG。GC/MS的測定條件係柱:UADTM-2.5N(無液 相)0.15毫米φ χ2·5公尺、烘箱溫度:3 00°C、注入口溫度: ~ 2 80 °C、測定模式:SIM、分開比:30對卜監控離子:m/z = 52、 79。又,將監控離子52及79的脫離量之和作爲吡啶的脫 離量。 因爲吡啶的脫離量係微量,所以難以嚴密地定量絕對 量,基於上述測定方法所測定的存在率(abundance)時,能 夠正確地求取在450 °C以上、小於550 °C加熱時之吡啶的脫 離量L、與在1 5 0 °C以上、小於2 5 0 °C加熱時之吡啶的脫離 量B之比L/B,或是在1 5 0 °C以上、小於5 5 0 °C加熱時之吡 啶的總脫離量A、與在1 5 0 °C以上、小於2 5 0 °C加熱時之吡 -10- 201000401 啶的脫離量B之比。吡啶係未吸附、脫離時,存在率爲〇, 且吸附、脫離量越多時存在率變大。爲了使如本發明的提 升流動性、黏度特性及成形性之效果出現,在1 5 0 °C以上、 小於25 0 °C加熱時之吡啶的脫離量存在率之最大値必須爲 1 0 0以上,以2 0 0以上爲佳。存在率之最大値小於} 〇 〇時, 即便L/B滿足規定値亦難以出現本發明的效果。 又,存在率係依上述測定法所得到具有一種含義的數 値。 非晶質矽石質粉末係具有以下條件時,有助於提升如 本發明的非晶質矽石質粉末的流動性、黏度特性及成形性 之效果。亦即在1 5 0 °c以上、小於5 5 0 °c加熱時之吡啶的總 脫離量A中,在150°C以上、小於25 0 °C加熱時之吡啶的脫 離量B佔有的比率(B/A) XI 00%爲20%以上。如前述,半導 體密封材之通常的熱硬化溫度(成長溫度)係150°C〜200°C 左右,在2 5 0 °C以上、小於5 5 0 °C加熱時之吡啶的脫離量, 不僅是對藉由質子放出之半導體密封材的潛在化不容易有 幫助,在45 0°C以上、小於5 50 t加熱時之吡啶的脫離量L, 係相反地會阻礙非晶質矽石質粉末的流動,致使密封材的 流動性及黏度特性變差,乃是不佳。因此,在1 50°c以上、 小於5 5 (TC加熱時之吡啶的總脫離量A中,在1 5 0°C以上、 小於 2 5 0 °C加熱時之吡啶的脫離量 B 佔有的比率 (Β/Α)χ 100%以20%以上爲佳。該比率爲25%以上、更佳是 3 0 %以上時,提升成形時的流動性及黏度特性特別顯著。 而且,如本發明的流動性、黏度特性及成形性之提升 效果,係具有非晶質矽石質粉末的比表面積爲0.5〜45平 方公尺/克、平均粒徑爲0.1〜60微米及平均球形度爲〇_80 -11- 201000401 以上的條件時,能夠進一步被促進。 非晶質矽石質粉末的比表面積爲小於〇.5平方公尺/克 時,因爲環氧樹脂及酚樹脂硬化劑與非晶質矽石質粉末表 面之接觸面積太小,難以出現藉由質子放出之潛在化效 果。另一方面,比表面積大於45平方公尺/克時,因爲係 意味著非晶質矽石質粉末係大量地含有小粒子、或是粒子 表面的一部分或全部具有凹凸,使用半導體密封材來密封 半導體時黏度上升,致使成形性受到損害。較佳的比表面 積之範圍爲0.6〜20平方公尺/克,以0_7〜10平方公尺/ 〆 克爲更佳。 又,非晶質矽石質粉末的平均粒徑係小於0.1微米時, 亦同樣地因爲使用半導體密封材來密封半導體時黏度上 升,致使成形性受到損害,乃是不佳。相反地,平均粒徑 大於60微米時,會產生損傷半導體晶片之問題,或無法得 到無凹凸且均勻的封裝。較佳的平均粒徑之範圍爲2〜55 微米,以3〜50微米的範圍爲更佳範圍。又,最大粒徑以 196微米以下爲佳,以128微米以下爲更佳。 而且,本發明的非晶質矽石質粉末之平均球形度以 0.8 0以上爲佳,以0 · 8 5以上爲更佳。 本發明的非晶質矽石質粉末之平均粒徑係基於依照雷 射繞射散射法之粒度測定來測定。測定機係使用CIRRUS 公司製商品名「CIRRUS GRANULOMETER 920型」,使非 晶質矽石質粉末分散於水中,並且使用超音波均化器以 2 00 W的輸出功率分散處理1分鐘後進行測定。又,粒度分 布測定係在粒徑通道(channel)爲0.3、1、1.5、2、3、4、6、 8、 12、 16、 24、 32、 48、 64、 96、 128 及 192 微米進行。 -12- 201000401 在所測定的粒度分布,累積質量爲5 0 %的粒徑係平均粒 徑,累積質量爲100%的粒徑係最大粒徑。 本發明的非晶質矽石質粉末之比表面積係基於依照 BET法之比表面積測定來測定。比表面積測定機係使用 MOUNTECH公司製商品名「MACSORB HM- 1 20 8型」來測 定。 本發明的非晶質矽石質粉末係即便混合其他的無機質 粉末,亦能夠出現其效果。無機質粉末中之本發明的非晶 質矽石質粉末的含有率係以2質量%以上爲佳’以5質量% 以上爲更佳。無機質粉末的種類係以本發明以外的非晶質 矽石質粉末及/或氧化鋁質粉末爲佳。該等粉末可單獨使 用,亦可混合使用二種類以上。降低半導體密封材的熱膨 脹率時,或減少模具的摩耗性時,能夠選擇非晶質矽石質 粉末作爲無機質粉末,賦予半導體密封材的熱傳導性時, 能夠選擇氧化鋁質粉末作爲無機質粉末。又,非晶質矽石 質粉末係以依照後述的方法所測定的非晶質率之値爲95% 以上爲佳,以9 7 %以上爲更佳。 、、 本發明的非晶質矽石質粉末係依照下述的方法所測定 的非晶質率,以95 %以上爲佳,以97%以上爲更佳。非晶 質率係使用粉末X射線繞射裝置(例如RIGAKU公司製商品 名「Mini Flex型」),且在CuKa線的2Θ爲26°〜27.5° 的範圍進行X射線繞射分析,並從特定繞射尖峰的強度比 進行測定。矽石粉末時,結晶質矽石係主尖峰爲存在於 26.7° ,非晶質矽石時則尖峰未存在。非晶質矽石與結晶 質矽石係摻雜時,因爲能夠得到按照結晶質矽石的比率之 2 6 · 7 °的尖峰高度,所以從試料的X射線強度對結晶質矽 -13- 201000401 石標準試料的X射線強度之比,算出結晶質矽石的混合比 (試料的X射線繞射強度/結晶質矽石的X射線繞射強度), 並依照式:非晶質率(%) = (1_結晶質矽石摻雜比)X100,來 求取非晶質率。 本發明的非晶質矽石質粉末、無機質粉末及氧化鋁質 粉末的平均球形度係以〇 · 8 〇以上爲佳,以〇 · 8 5以上爲更 佳。藉此’能夠使本發明的樹脂組成物之黏度降低,且亦 能夠提升成形性。平均球形度能夠將使用實體顯微鏡(例如 NIKON公司製商品名「SMZ-10型」)等所拍攝的粒子影像 輸入影像解析裝置(例如 MOUNTECH公司製商品名 「MacView」)’從照片粒子的投影面積(A)及周長(PM)測 定。因爲將對應周長(PM)之正圓的面積作(B)時,其粒子的 球形度爲A/B,設想試料的周長(pm)與具有同一周長的正 圓時’從 ΡΜ = 2τγγ、Β=7γγ2,Β=τγχ(ΡΜ/27Γ)2,且各自粒 子的球形度係球形度= A/ B = Ax4;r (PM)2。求取如此進行所 得到200個任意粒子之球形度,並將其平均値作爲平均球 形度。 上述以外的球形度之測定方法,能夠使用粒子影像分 析裝置(例如SYSMEX公司製;商品名「FPIA- 3 000型」, 從定量性自動計量所得到各自粒子的圓形度,依照式:球 形度=(圓形度)2換算來求得。 接著’說明本發明的非晶質矽石質粉末之製造方法。 本發明的製造方法係一種特徵係將含有原料矽石質粉 末與A1源物質之混合物,往藉由燃燒器形成的火焰中噴 射,來製造非晶質矽石質粉末後,在溫度6 0〜1 5 0。(:、相 對濕度60〜90 %的環境下保持15〜30分鐘之非晶質较石質 -14 - 201000401 粉末的製造方法。將含有原料矽石質粉末及A1源物質之混 合物往藉由燃燒器形成的火焰中噴射’在進行原料矽石質 粉末的熔融(非晶質化)、球狀化之同時,使A1源物質熔合 於矽石質粉末的表面,並使其形成- O- Si-0-Al-O-Si-O -結構 後,在溫度爲6 0〜1 5 0 °C、相對濕度爲6 0〜9 0 %的環境下 保持15〜30分鐘,來進行調整在150 °C以上、小於250 °C 加熱時之吡啶的脫離量B、及在45 0°C以上、小於5 5 0°C加 熱時之吡啶的脫離量L。藉此,才能夠製造具備本發明的 特徵之非晶質矽石質粉末。 將含有原料矽石質粉末與A1源物質之混合物,往火焰 噴射來熔融、熔合、球狀化,收集之裝置係例如能夠使用 在具備有燃燒器的爐體連接收集器而成者。爐體可以是開 放型或密閉型、或是縱型、橫型之任一者。藉由在收集裝 置設置一個以上重力沈降室、旋風器、袋濾器、電集塵器 等,來調整其收集條件,能夠收集所製造的非晶質矽石質 粉末。例示其一個例子時,有特開平11-57451號公報、特 開平11-71107號公報等。爲了將非晶質矽石質粉末在溫度 * 60〜150 °C、相對濕度60〜90 %的環境下保持15〜30分鐘, 例如可以在上述收集裝置’設置供給蒸氣的線路,並以成 爲規定溫度、相對濕度的方式來調整蒸氣溫度及蒸氣供給 量。爲了調整保持時間’可以將排出閥(用以將非晶質矽石 質粉末從上述收集裝置排出系統外)的開關時間,以成爲希 望時間之方式調整。 剛將含有原料矽石質粉末與A1源物質之混合物,往藉 由燃燒器形成的火焰中噴射後,由於高溫火焰的影響, -0-Si-O-Al-Ο-Si-O-結構的酸點之型式係大部分變化成爲 -15- 201000401 路易斯酸,一部分係變化成爲在火焰形成所使用的可燃性 氣體的燃燒氣體所含有的H2〇鍵結而成之布忍士特酸’ D比 啶的吸附脫離量比L/B係具有大於0.8之關係。因此’未 進行如本發明的製造方法的處理之非晶質矽石質粉末時’ 係無法藉由潛在化效果來提升成形時的流動性及黏度特 性。 加濕保持的濕度爲小於60%,或是保持時間爲小於1 5 分鐘時,路易斯酸變化成爲布忍士特酸不充分,吡啶的脫 離量比L/B無法控制在0.8以下。又,濕度爲大於90%, 或是保持時間爲大於3 0分鐘時,因爲非晶質矽石質粉末凝 聚掉,致使半導體密封材的成形性降低,乃是不佳。 較佳加濕濕度爲6 5〜8 5 %,加濕時間係在2 0〜2 5分鐘 的範圍。同樣地,加濕溫度小於6 時,Η 2 Ο難以鍵結, 路易斯酸變化成爲布忍士特酸不充分,結果吡啶的脫離量 比L/B無法控制在0.8以下。另一方面,保持溫度高於150 °C時,因爲溫度太高’ Η20亦難以鍵結,無法使l/Β爲0.8 以下。只有保持在60〜150。(:的溫度範圍時,才能夠將L/B v 比調整在0.8以下。較佳的保持溫度爲7〇〜120°C,更佳係 在75〜100t:的範圍。 原料矽石質粉末係能夠使用高純度矽石、高純度矽 砂、石英、水晶等天然出產之含矽石礦物的粉末,或沈降 砂石、砂膠等藉由合成法所製造的高純度矽石粉末等,考 慮成本或容易取得時’以矽石粉末爲最佳。矽石粉末的市 售品,係有藉由振動碾磨、球磨等的粉碎機粉碎而成之各 式各樣的粒徑者,以能夠得到需要的非晶質矽石質粉末的 粒倥之方式,來選擇適當的粒徑時即可。 -16 - 201000401 在本發明,A1源物質係以氧化鋁粉末爲佳。A1源物質 可舉出氧化鋁、氫氧化鋁、硝酸鋁、氯化鋁、鋁有機化合 物等。其中’因爲氧化鋁係與原料矽石質粉末的熔點接近, 在從燃燒器噴射時容易熔合於原料矽石質粉末的表面,且 不純物含有率亦低之緣故,乃是最佳。 又’氧化鋁粉末的平均粒徑以0.01〜10微米爲佳。平 均粒徑小於0.01微米時粉末容易凝聚,與矽石質粉末熔合 時之組成會有不均勻的傾向,同樣地,大於10微米時,與 矽石質粉末熔合時之組成亦會有不均勻的傾向,較佳平均 粒徑之範圖係〇·〇3〜8微米,以〇.〇5〜5微米爲更佳。 又,本發明的非晶質矽石質粉末中的ai2o3之含有率 係以〇 · 1〜2 0質量%爲佳。A12 Ο 3之含有率係小於〇 . 1質量 %時,酸點的增加不充分,相反地,若大於20質量%時, 非晶質矽石質粉末的熱膨脹率變爲太大,會對原來的半導 體密封材之機能造成不良的影響。較佳ai2o3之含有率爲 0 . 1 5〜1 8質量%,以0 · 2〜1 5質量%爲更佳。 本發明的非晶質矽石質粉末的A 1203含有率(換算氧化 物)能夠使用原子吸光分析法’並依照以下的順序進行測 定。亦即,將1克非晶質矽石質粉末精稱在白金皿,並添 加試藥特級氫氟酸及試藥特級過氯酸各自爲20毫升及1毫 升。將該白金血靜置於經加熱至3 00 °c的砂浴上1 5分鐘 後,冷卻至室溫,並移至25毫升量瓶且使用純水定容。該 溶液的A1量係藉由使用原子吸光光度計之校正曲線法進 行定量。將該A1量換算成爲Al2〇3’來算出非晶質砂石質 粉末中的含有率。例示原子吸光光度計時’有日本 OPTRONIC公司製商品名「原子吸光光度計AA_969型」。 -17- 201000401 例示製作校正曲線所使用的標準液時,有關東化學公司製 原子吸光用A1標準液(濃度lOOOppm)。又,測定時的火焰 係使用乙炔-一氧化二氮火焰,並測定在波長3 0 9.3奈米的 吸光度來定量。 又,在本發明,在非晶質矽石質粉末吸附吡啶,並加 熱使其脫離時之吡啶的脫離量及脫離溫度,能夠藉由熔合 於原料矽石質粉末的表面之A1源物質的尺寸、量、加濕保 持條件、比表面積、平均粒徑等來調整。 非晶質矽石質粉末的比表面積及平均粒徑能夠藉由原 料矽石質粉末的粒度構成或火焰溫度等來調整。又,平均 球形度及非晶質率能夠藉由原料矽石質粉末對火焰的供給 量或火焰溫度等來調整。而且,藉由預先製造熔合A1源物 質的尺寸、量、加濕保持條件、比表面積、平均粒徑等係 不同之各種非晶質矽石質粉末,並適當地混合該等2種以 上’能夠製造進一步特定吸附吡啶,並加熱脫離時之吡啶 的脫離量、脫離溫度、比表面積、平均粒徑等而成之非晶 質矽石質粉末。 ' 本發明的樹脂組成物係在樹脂中含有本發明的非晶質 砂石質粉末或本發明的無機質粉末之樹脂組成物。樹脂組 成物中的非晶質矽石質粉末或無機質粉末的含有率爲10〜 9 5質量% ’以3 〇〜9 〇質量%爲更佳。 樹脂能夠使用環氧樹脂、矽樹脂、酚樹脂、三聚氰胺 樹脂、脲樹脂、不飽和聚酯、氟樹脂、聚醯亞胺、聚醯胺 醯亞胺、聚醚醯亞胺等聚醯胺、聚對酞酸丁二酯、聚對酞 酸乙一酯等的聚醋、聚苯硫酸、芳香族聚醋、聚碾、液晶 聚合物 '聚醚颯、聚碳酸酯、順丁烯二醯亞胺改性樹脂、 -18- 201000401 ABS樹脂、AAS (丙烯腈-丙烯酸橡膠-苯乙烯)樹脂、aES(丙 烯腈-乙烯-丙烯-二烯橡膠-苯乙烯)樹脂等。 該等之中,半導體密封材用的樹脂係以在1分子中具 有2個以上的環氧樹脂爲佳。將其例示時,有苯酣酧酸清 漆型環氧樹脂、鄰甲酚酚醛清漆型環氧樹脂、將苯酹類與 酸類的酣酸清漆樹脂環氧化而成者、藉由雙酌A、雙酣F 及雙酣S等的環氧丙基酸、酞酸或二聚酸等的多殘酸與表 氯醇反應所得到的環氧丙酯環氧樹脂、線形脂肪族環氧樹 脂、脂環環氧樹脂、雜環環氧樹脂、烷基改性多官能環氧 樹脂、萘酚酚醛清漆型環氧樹脂、1,6-二羥基萘型環氧 樹脂、2,7-二羥基萘型環氧樹脂、雙羥基聯苯型環氧樹脂、 爲了進而賦予難燃性而導入溴等的鹵素而成之環氧樹脂 等。其中,就耐濕性或耐焊錫流動性而言,以鄰甲酚酚醛 清漆環氧樹脂、雙羥基聯苯型環氧樹脂、萘骨架的環氧樹 脂等爲佳。 在本發明所使用的環氧樹脂係含有環氧樹脂的硬化 劑、或環氧樹脂的硬化劑及環氧樹脂的硬化促進劑者。環 氧樹脂的硬化劑可舉出例如將選自由苯酚、甲酚、二甲苯 酚、間苯二酚、氯酚、第三丁基苯酚、壬基苯酚、異丙基 苯酚及辛基苯酚所組成群組之1或2種以上的混合物,使 其與甲醛、對甲醛或對二甲苯一同在氧化觸媒下反應而得 到的酚醛清漆樹脂、聚對羥基苯乙烯樹脂、雙酚A或雙酚 S等的雙酚化合物、五倍子酚或氟甘油等的3官能苯酚類、 順丁烯二酸酐、酞酸酐或焦蜜石酸酐等的酸酐、間苯二胺、 二胺基二苯基甲烷、二胺基二苯基颯等的芳香族胺等。 又,爲了促進環氧樹脂與硬化劑的反應,可使用例如 -19- 201000401 三苯基膦、苄基二甲胺、2 -甲基咪唑等的硬化促進劑。 在本發明的樹脂組成物,能夠按照必要進而調配以下 的成分。亦即,低應力化劑可舉出矽氧橡膠、聚硫橡膠、 丙烯酸系橡膠、丁二烯系橡膠、苯乙烯系嵌段共聚物或飽 和型彈性體等的橡膠狀物質、各種熱塑性樹脂、矽氧樹脂 等的樹脂狀物質,而且有將環氧樹脂、酚樹脂的一部分或 全部使用胺基矽氧、環氧矽氧、烷氧基矽氧等改性而成之 樹脂等。矽烷偶合劑可舉出r -環氧丙氧基丙基三甲氧基矽 烷、/3-(3,4-環氧環己基)乙基三甲氧基矽烷等的環氧矽 /: 烷、胺基丙基三乙氧基矽烷、脲基丙基三乙氧基矽烷、Ν· 苯基胺基丙基三甲氧基矽烷等的胺基矽烷、苯基三甲氧基 矽烷、甲基三甲氧基矽烷、十八烷基三甲氧基矽烷等的疏 水性矽烷化合物或氫硫基矽烷等。表面處理劑可舉出Zr鉗 合劑、鈦酸酯偶合劑、鋁系偶合劑等。難燃助劑可舉出 Sb203、Sb2 04、Sb20 5等。難燃劑可舉出鹵化環氧樹脂或磷 化合物等。著色劑可舉出碳黑、氧化鐵、染料、顔料等。 而且,脫模劑可舉出天然蠟類、合成蠟類、直鏈脂肪酸的 % 金屬鹽、醯胺類、酯類、石蠟等。 本發明的樹脂組成物能夠藉由將使用摻合器或漢塞混 合機(HenschelMixer)等將上述各材料依規定量摻合後,使 用加熱輥、揑合器、單軸或雙軸擠壓機等混練而成之物冷 卻後,進行粉碎來製造。 本發明的半導體密封材係樹脂組成物含有環氧樹脂 者,且係由含有環氧樹脂的硬化劑及環氧樹脂的硬化促進 劑之組成物所構成者。 -20- 201000401 使用本發明的半導體密封材來密封半導體,能夠使用 轉移成型、真空印刷成型法等常用的成形手段。 實施例 以下’藉由本發明的實施例來更詳細地說明,但是不 可被解釋爲限定於該等。 實施例1〜1 0及比較例1〜8 製造本發明的非晶質矽石質粉末所使用的原料係使用 KINSEIMATEC公司製結晶矽石粉末(si〇2#有率爲999質 量%)、日本輕金屬公司製氧化鋁粉末及氫氧化鋁粉末。將 各粉末藉由進行粉碎、分級來進行粒度調整,來準備平均 粒徑不同之各種的原料矽石質粉末及A1源物質。將其藉由 在特開平11-57451號公報所記載之裝置,並在該等收集裝 置設備產生蒸氣的鍋爐及供給蒸氣的線路,並以能夠調整 蒸氣溫度及蒸氣供給量而成爲需要的溫度及相對濕度之方 式來進行。使用本裝置’在火焰中進行熔融、熔合、球狀 化、加濕保b處理’來製造表1及表2所示之各種非晶質 矽石質粉末。又,適當地調配該等粉末來製造表3及表4 所示之非晶質矽石質粉末及無機質粉末。 又’使非晶質矽石質粉末吸附吡啶、脫離時之吡啶的 脫離量及脫離溫度’係藉由變更在原料砂石質粉末的表面 熔合的A1源物質之尺寸、量、加濕保持條件、比表面積、 平均粒徑等來調整。 非晶質砍石質粉末的比表面積及平均粒徑係藉由原料 矽石質粉末的粒度構成或火焰溫度等來調整,非晶質^石 質粉末的平均球形度及非晶質率係藉由原料砂石質粉末對 -21 - 201000401 火焰的供給量或火焰溫度等來調整。又,火焰的形成係使 用LPG及氧氣,將原料粉末搬運至燃燒器之載氣亦使用氧 氣。該火焰的最高溫度係約2 0 0 0 °C〜2 3 0 0 °C的範圍。 關於吡啶吸附於非晶質矽石質粉末、及吡啶從非晶質 矽石質粉末的脫離溫度及脫離量之測定,係依照段落(0014) 所記載之方法進行。 所得到的非晶質矽石質粉末之非晶質率係任一者都是 9 9.5 %以上。測定該等粉末的比表面積、平均粒徑、平均球 形度、吡啶脫離溫度及脫離量,來算出在45 0 °C以上、小 於5 5 0 °C加熱時之吡啶的脫離量L、與在1 5 0 °C以上、小於 250°C加熱時之吡啶的脫離量B之比L/B,及在150°C以上、 小於5 5 0 °C加熱時之吡啶的總脫離量A中,在1 5 0°C以上、 小於 2 5 0 °C加熱時之吡啶的脫離量 B佔有的比率 (Β/Α)χ100%。結果如表3及表4所示。 評價所得到的非晶質矽石質粉末及無機質粉末作爲半 導體密封材的塡料之特性。亦即對87.8份(質量份、以下 相同)各粉末,添加5.9份聯苯型環氧樹脂(JAPAN EPOXY RESINS公司製YX-4 000H)、5.1份苯酚芳烷基樹脂(三井化 學公司製XLC-LL)、0.2份三苯基膦、0.6份環氧樹脂偶合 劑、0.1份碳黑及0.3份掠櫚蠟(carnauba wax),並使用漢 塞混合機乾式摻合。隨後,使用同方向咬合雙軸擠壓機(螺 桿徑D = 25毫米、捏合盤長lODmm、槳轉速50〜120rpm、 吐出量爲2.5公斤/小時、混練溫度爲99〜100 °C)進行加熱 混練。使用加壓機將混練物(吐出物)加壓並冷卻後,粉碎 來製造半導體密封材。依照以下評價所得到的半導體密封 -22- 201000401 材的黏度特性(硬化黏彈性試驗機轉矩)、成形性(線變形率) 及流動性(螺旋流動)。 該等的結果係如表3及表4所示。 (1) 黏度特性(硬化黏彈性試驗機轉矩) 如以下進行,來測定上述所得到的半導體密封材之黏 度特性。使用硬化黏彈性試驗機(例如JSR TRADING公司 製商品名「CURASTMETER3P-S型」),將半導體密封材加 熱至1 1 0 °C後’以3 0秒後的轉矩作爲黏度指數。該値越小 時係表示黏度特性越良好。 (2) 成形性(線變形率) 如以下進行’來測定上述所得到的半導體密封材的成 形性。在BGA(球柵陣列;Ball Grid array)用基板,透過晶 粒黏貼膠膜,將尺寸爲8毫米毫米χ〇.3毫米的模擬半導 體元件2片重疊’並使用金線連接。隨後,使用各半導體 密封材’並使用轉移成型機,成形爲封裝尺寸爲38毫米X 3 8毫米χ 1 · 〇毫米後’在1 7 5 °C進行後烘烤8小時,來製造 BG A型半導體。使用軟X射線透射裝置觀察半導體的金線 部分,來測定金線變形率。金線變形率係測定密封的線最 短距離X及密封後的線最大變位量 γ,來求取(γ/χ)χ 1 0 0 %。該値係1 2支的金線變形率之平均値。又,金線的 直徑爲Φ30微米,平均長度爲5毫米。轉移成形條件係模 具溫度175C、成形壓力爲7.4MPa、及保壓時間爲90秒。 該値越小時,係表示線變形量小,成形性良好。 (3) 流動性(旋轉流動) 使用安裝有依照EMMI-I_66(環氧成型材料學會(Epoxy -23- 201000401201000401 VI. DESCRIPTION OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to an amorphous vermiculite and uses thereof. [Prior Art] In recent years, the semiconductor sealing material used for the purpose of protecting the global environment is required to have a large flame retardancy such as a bismuth compound or a brominated epoxy resin, and it is necessary to seal the lead-free solder conductor which does not contain lead. The material is mainly composed of an epoxy resin, a phenolic resin, an inorganic material, and the like. However, a method and a method for using a structure having high flame resistance and heat resistance such as an epoxy resin or a phenol resin are used for the purpose. However, in these methods, the semiconductor density tends to increase. On the other hand, in response to the small size requirements of electronic equipment, the internal structure of the semiconductor is thin and long, and the wiring pitch is increased. The high-viscosity semiconductor sealing material is densely deformed and the gold wire is cut. The semiconductor components are tilted well. Therefore, in the semiconductor sealing material, it is possible to strongly reduce the viscosity at the time of sealing and to reduce the formation. In order to satisfy these requirements, a method of improving the formability by using an epoxy resin or a phenol resin hardener ( With reference to the patented granules and the method for the production of the granules, the semiconductors are required to impart heat resistance to the tin without using an environmentally hazardous flame retardant. The semi-lipid curing agent and the hardening promotion satisfy the above-mentioned requirements and contain a large amount of aromatics. The sealing material of the ring is difficult to be filled with inorganic materials, which has the advantages of viscosity reduction, high-performance destruction, small diameter of gold wire, and rapid progress. When this half-sealing is performed, the result will increase gold, The gap is not required to be flammable and good. It is improved in semiconductor sealing materials, etc., to achieve low viscosity: 1 and 2). In addition, in order to improve the curing temperature of the epoxy resin, the 201000401 hardening accelerator is used to protect the reactive matrix by using a component that suppresses the curability, that is, a method called potentialization (see Patent Documents 3 and 4). ). The improvement of the inorganic material is a method of adjusting the particle size distribution so that the viscosity of the sealant does not increase even if it is high (see Patent Documents 5 and 6). However, in such a method, the effect of improving the low-viscosity effect and the formability is insufficient. At present, there is no semiconductor sealing material which can increase the viscosity at the time of sealing and can further improve the formability. CITATION LIST Patent Literature Patent Literature No. JP-A-2007- 225 355 Patent Document No. JP-A-2007- 225 355. JP-A-2005-239892 (Patent Document 6) WO-2007/132771 SUMMARY OF INVENTION Technical Problem An object of the present invention is to provide a low viscosity even when a high-twisted inorganic material is sealed and A semiconductor sealing material having further improved formability, and an amorphous aragonite powder suitable for the preparation and a method for producing the same. Means for Solving the Problem The present invention relates to an amorphous strontium powder which is obtained by adsorbing pyridine after amorphous vermiculite powder, and detaching amount of pyridine when heated at 450 ° C or more and less than 5 5 〇t L, and the ratio L/B of the detachment amount B of pyridine 201000401 at 150 ° C or more and less than 25 is 0. 8 or less. Further, in the present invention, after the pyridine is adsorbed on the amorphous vermiculite powder, the total amount of detachment A of the pyridine when heated at 150 ° C or more and less than 550 ° C is 150 ° C or more and less than The ratio of the amount of pyridine detachment B at the time of heating at 25 ° C (B/A) x l 00% is preferably 20% or more. Moreover, the amorphous vermiculite powder of the present invention has a specific surface area of 0. 5 to 45 square meters / gram, the average particle size is 〇. 1~60 microns, average sphericity is 0. More than 80% is better. Further, the present invention is an inorganic powder containing the amorphous vermiculite powder of the present invention. In the present invention, the inorganic powder is preferably an amorphous vermiculite powder and/or an alumina powder other than the present invention. Further, the present invention provides a method for producing an amorphous vermiculite powder characterized by containing a mixture of a raw material gangue powder and an A1 source material, and ejecting it into a flame formed by a burner to produce an amorphous material. After the strontium powder, it is kept at a temperature of 60 to 150 ° C and a relative humidity of 60 to 90% for 1 to 5 minutes. Further, the present invention relates to a resin composition containing the amorphous vermiculite powder of the present invention in a resin. The aforementioned tree finger is preferably an epoxy resin. Further, the present invention is a semiconductor sealing material obtained by using these resin compositions. According to the present invention, it is possible to provide a resin composition excellent in fluidity, viscosity characteristics, and moldability, and a semiconductor sealing material using the resin composition. Further, it is possible to provide a suitable amorphous vermiculite powder for preparing the above resin composition. 201000401 [Embodiment] Hereinafter, the present invention will be described in detail. The amorphous vermiculite powder of the present invention is obtained by adsorbing pyridine and heating it, and then removing the amount L of pyridine when heated at 450 ° C or more and less than 550 ° C, and at 150 ° C The ratio of the detachment amount B of the pyridine when heated above 250 ° C is L/B is 0. An amorphous vermiculite powder of 8 or less. In the structure of vermiculite, for example, - Ο-Si-OA, O-Si-O-, when A1 replaces the position of Si, since the coordination number of Si is different from the coordination number of A1, the point becomes a solid acid point. That is, the Lewis acid point (electron pair acceptor). Further, when H20 (water) is bonded to the Lewis acid point, it becomes a Bronsted acid (proton donor). When the pyridine group of the basic substance is bonded to the acid sites on the surface of the amorphous porphyrite powder, the more strongly bonded pyridine is detached at a higher temperature upon heating. In the case of an amorphous vermiculite powder, since the structure is irregular in comparison with the crystal quality, the distribution at the acid strength (desorption temperature) is roughly considered to be a pyridonia system at a heating temperature of 150 t to 250 ° C. The bond with the sulphate acid point is separated from the pyridine group and the Lewis acid point at a heating temperature of 450 ° C to 550 ° C. When the adsorption is steep and heated, the enthalpy ratio of the crucible is more than 550 °C, less than 550 °C, and the amount of enthalpy is higher than 150 °C and less than 250 °C. The ratio of detachment amount B of pyridine is l/Β is 0. Below 8 means that the amount of the sulphate acid point is 1. More than 25 times. When such an amorphous sandstone is used, a sealing material excellent in fluidity, viscosity characteristics, and moldability can be prepared for the reason described later. On the contrary, the ratio of the detachment amount L of pyridine when heated at 4 5 〇t or more and less than 550 ° C, and the amount of detachment B of pyridine when heated at i 5 〇t or more and less than 25 ° C, l/ When b is greater than 〇8, it means that the amount of the nibble acid point is compared with the amount of the Lewis acid point, which is 201000401 and less than 1. 2 5 times, it is difficult to prepare a sealing material excellent in fluidity, viscosity characteristics, and formability. Hereinafter, the reason for discovering the effects of the present invention will be described. That is, the semiconductor sealing material contains an epoxy resin, a phenol resin, and a hardening accelerator as main components in addition to the amorphous vermiculite powder. When the semiconductor sealing material is heated to a normal heat curing temperature (forming temperature), that is, from about 150 ° C to about 200 ° C, the protons of the phenol resin hardener are extracted by the hardening accelerator, and the epoxy resin and the phenol resin are hardened. The agent undergoes an anionic polymerization chain-locking reaction, and the sealing material is gradually hardened. When the amorphous vermiculite powder of the present invention is used, protons are released from the Bentley acid point by heating. The proton is bonded to the end of the anionic polymerization, and as a result of the temporary stop of the polymerization chain reaction, the sealing material is thermally hardened. In other words, the amorphous vermiculite powder of the present invention can further thermally harden the sealing material, and can prepare a sealing material having excellent fluidity and viscosity characteristics during molding. The ratio L of the detachment amount of pyridine when heated at 450 ° C or more and less than 550 ° C, and the amount of detachment B of pyridine heated at 150 ° C or more and less than 250 ° C is 0. . When the number is below 8, the potential effect will appear prominently. An example of the possibility of imparting an amorphous vermiculite powder based on such a mechanism has not existed in the past. On the other hand, the amount of detachment of pyridine when heated at 450 ° C or higher and less than 550 ° C, and the amount of detachment of pyridine when heated at 150 ° C or higher and less than 250 ° C B The ratio L/B is greater than 0. At 8 o'clock, not only is the potential of the sealing material which releases protons from the abundance of the amorphous ochre powder as described above, but it is difficult to occur in the Lewis acid point, the epoxy resin or the phenol resin. The bit bonding, on the other hand, is disadvantageous because it hinders the flow of the amorphous vermiculite powder, which deteriorates the fluidity and viscosity characteristics of the sealing material. L/B is better than 〇.  7 is better, and 〇 _ 6 or less is better. 201000401 The detachment temperature and the amount of detachment of pyridine from the amorphous chert powder can be measured in the following order. (1) Modulation of pyridine solution: 7. 91 g of spectral analysis was weighed in a 500 ml volumetric flask with pyridine and quantified using n-heptane using spectral analysis. Next, 1 ml of this pyridine solution was taken in a 200 ml volumetric flask and made up to volume with n-heptane. (2) Adsorption of pyridine on amorphous ochre powder: 4. 00 g of an amorphous vermiculite powder which was previously dried in the atmosphere at 200 ° C for 2 hours and cooled together with a magnesium perchlorate desiccant in a desiccator, and weighed in a 25 ml volumetric flask. 20 ml of the aforementioned pyridine solution was added to the measuring flask and shaken for 3 minutes. The measuring flask was placed in a thermostat set at 25 ° C for 2 hours to adsorb pyridine to the amorphous vermiculite powder. (3) Washing of amorphous ochre powder: In order to wash the pyridine which is physically adsorbed to the amorphous chert powder, the measuring flask taken out from the constant temperature bath is oscillated and mixed and allowed to stand for 10 minutes to make the non- The crystalline ochre powder settles. The upper clear liquid of the pyridine solution was discarded, and about 20 ml of n-heptane for spectroscopic analysis was added, and the flask was shaken and mixed and allowed to stand for 1 Torr. The upper clear liquid was placed in a measuring container of an ultraviolet-visible spectrophotometer, and the absorbance at a wavelength of 19 to 300 nm was measured to confirm the absorption of 251 nm of pyridine. The washing operation of the n-heptane was repeated until the pyridine was not confirmed by the supernatant liquid of n-heptane. After the absorption of pyridine could not be confirmed, the upper clear liquid of the measuring flask was discarded, and dry nitrogen was blown from the upper portion of the measuring flask at a flow rate of 10 minutes and 100 ml/min to make the amorphous ochre powder in the chamber. Warm and dry. (4) Determination of pyridine detachment temperature and detachment amount: 1 〇 mg of dried amorphous ochre powder, which is called a sample cup of a double-shot pyrolyzer (D〇BLE-sH〇TP YROLIZER), and The mass spectrum of 201000401 pyridine was monitored while heating using a thermal decomposition apparatus to determine the detachment temperature and the amount of detachment of pyridine. The amount of pyridine to be removed can be calculated from the area of the obtained curve. In addition, the ultraviolet visible spectrum photometric time used to confirm the presence or absence of physical adsorption of pyridine is shown in the product name "Ultraviolet Visible Spectrophotometer UV-1800" manufactured by Shimadzu Corporation. The measurement was carried out using a container of 10 mm thickness made of quartz glass. When the reagent used for the preparation of the pyridine solution is exemplified, there are pyridine (a grade for spectral analysis) and n-heptane (a grade for spectral analysis) manufactured by Wako Pure Chemical Industries, Ltd. In the case of a device for measuring the detachment temperature and the amount of detachment of the pyridine adsorbed on the amorphous skutter powder, there is a thermal decomposition apparatus and a product name "DOBLE-SHOT PYROLIZER P Y-2020D" manufactured by FRONTIER LAB Co., Ltd. GC/MS measuring device, product name "GC/MSD 6890/5973 type J〇 thermal decomposition furnace manufactured by Agilent Co., Ltd." The measurement conditions are the heating rate: the temperature is raised to 50 to 700 ° C at 25 ° C / min, and the ITF temperature is raised. To 150~300 °C, measurement mode: EGA TEMP PROG. GC/MS measurement conditions column: UADTM-2. 5N (no liquid phase) 0. 15 mm φ χ 2·5 m, oven temperature: 300 ° C, inlet temperature: ~ 2 80 ° C, measurement mode: SIM, separation ratio: 30 pairs of monitoring ions: m / z = 52, 79. Further, the sum of the amounts of detachment of the monitor ions 52 and 79 was taken as the amount of pyridine removal. Since the amount of pyridine detachment is small, it is difficult to quantitatively quantify the absolute amount, and based on the abundance measured by the above measurement method, pyridine which is heated at 450 ° C or more and less than 550 ° C can be accurately obtained. The ratio L of the disengagement L to the amount of detachment B of pyridine when heated at 150 ° C or more and less than 250 ° C, or heating at 150 ° C or more and less than 550 ° C The ratio of the total amount of detachment of pyridine to the amount of detachment B of pyridene-10-201000401 pyridine when heated at 150 ° C or higher and less than 250 ° C. When the pyridine system is not adsorbed or desorbed, the existence ratio is 〇, and the amount of adsorption and the amount of detachment increases. In order to improve the fluidity, viscosity characteristics and formability of the present invention, the maximum amount of pyridine detachment at a temperature of 150 ° C or more and less than 25 ° C must be more than 1 0 0 or more. More than 200% is preferred. When the maximum 存在 of the existence rate is less than 〇 ,, the effect of the present invention is hard to occur even if L/B satisfies the regulation. Further, the existence ratio is a number having a meaning obtained by the above measurement method. When the amorphous vermiculite powder has the following conditions, it contributes to the effect of improving the fluidity, viscosity characteristics and formability of the amorphous vermiculite powder of the present invention. That is, in the total amount of detachment A of pyridine heated at 150 ° C or more and less than 550 ° C, the ratio of the detachment amount B of pyridine when heated at 150 ° C or more and less than 25 ° C ( B/A) XI 00% is 20% or more. As described above, the normal heat curing temperature (growth temperature) of the semiconductor sealing material is about 150 ° C to 200 ° C, and the amount of pyridine detachment when heated at 250 ° C or higher and less than 550 ° C is not only The potential for semiconductor sealing materials released by protons is not easy to help. The amount of pyridine detachment L when heated above 45 ° C and less than 5 50 t, on the contrary, hinders the amorphous vermiculite powder. The flow causes the fluidity and viscosity characteristics of the sealing material to deteriorate, which is not preferable. Therefore, the ratio of the detachment amount B of the pyridine when heated at 150 ° C or more and less than 250 ° C in the total amount of detachment A of pyridine at 150 ° C or more and less than 5 5 (when TC is heated) (Β/Α) χ 100% is preferably 20% or more. When the ratio is 25% or more, more preferably 30% or more, the fluidity and viscosity characteristics at the time of lift forming are particularly remarkable. Further, the flow according to the present invention The effect of improving the properties, viscosity and formability is that the specific surface area of the amorphous skutter powder is 0. 5 to 45 square meters / gram, the average particle size is 0. When it is 1 to 60 μm and the average sphericity is 〇_80 -11-201000401 or more, it can be further promoted. The specific surface area of the amorphous ochre powder is less than 〇. At 5 m ^ 2 /g, since the contact area between the epoxy resin and the phenol resin hardener and the surface of the amorphous vermiculite powder is too small, the potential effect by proton emission is difficult to occur. On the other hand, when the specific surface area is more than 45 m 2 /g, it means that the amorphous vermiculite powder contains a large amount of small particles or a part or all of the surface of the particles has irregularities, and is sealed with a semiconductor sealing material. When the semiconductor is in a viscosity, the formability is impaired. The preferred specific surface area is in the range of 0. 6 to 20 square meters / gram, preferably 0-7 to 10 square meters / gram. Further, the average particle diameter of the amorphous talc powder is less than 0. In the case of 1 μm, the viscosity is also increased when the semiconductor is sealed by using a semiconductor sealing material, so that the formability is impaired, which is not preferable. Conversely, when the average particle diameter is larger than 60 μm, there is a problem that the semiconductor wafer is damaged, or a bumpless and uniform package cannot be obtained. The preferred average particle size ranges from 2 to 55 microns, with a range of from 3 to 50 microns being more preferred. Further, the maximum particle diameter is preferably 196 μm or less, more preferably 128 μm or less. Moreover, the average sphericity of the amorphous vermiculite powder of the present invention is 0. More than 80% is preferable, and 0. 8 5 or more is more preferable. The average particle diameter of the amorphous vermiculite powder of the present invention is measured based on particle size measurement by a laser diffraction scattering method. The measurement system was sold under the trade name "CIRRUS GRANULOMETER 920" manufactured by CIRRUS Co., Ltd., and the amorphous ochre powder was dispersed in water, and the mixture was subjected to dispersion treatment at an output of 200 W for 1 minute using an ultrasonic homogenizer. Further, the particle size distribution measurement is in the particle size channel (0). 3, 1, 1. 5, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128 and 192 microns. -12- 201000401 In the particle size distribution measured, the cumulative particle size is 50% of the particle size is the average particle diameter, and the cumulative mass is 100%. The specific surface area of the amorphous vermiculite powder of the present invention is measured based on the specific surface area measurement according to the BET method. The specific surface area measuring machine was measured using the product name "MACSORB HM-1 20 8" manufactured by MOUNTECH. The amorphous vermiculite powder of the present invention can exhibit its effects even when other inorganic powders are mixed. The content of the amorphous vermiculite powder of the present invention in the inorganic powder is preferably 2% by mass or more, and more preferably 5% by mass or more. The type of the inorganic powder is preferably an amorphous vermiculite powder and/or an alumina powder other than the present invention. These powders may be used singly or in combination of two or more kinds. When the thermal expansion ratio of the semiconductor sealing material is lowered or the wear resistance of the mold is reduced, the amorphous vermiculite powder can be selected as the inorganic powder, and when the thermal conductivity of the semiconductor sealing material is imparted, the alumina powder can be selected as the inorganic powder. Further, the amorphous vermiculite powder is preferably 95% or more in terms of the amorphous ratio measured by the method described later, and more preferably 97% or more. Further, the amorphous vermiculite powder of the present invention has an amorphous ratio measured by the following method, preferably 95% or more, more preferably 97% or more. The amorphous ratio is a powder X-ray diffraction device (for example, the product name "Mini Flex type" manufactured by RIGAKU Co., Ltd.), and the 2Θ of the CuKa line is 26° to 27. X-ray diffraction analysis was performed over a range of 5° and measured from the intensity ratio of specific diffraction peaks. When the vermiculite powder is present, the main peak of the crystalline vermiculite is present in 26. At 7°, the peak is not present when the amorphous vermiculite is present. When the amorphous vermiculite and the crystalline vermiculite are doped, since the peak height of 2 6 · 7 ° according to the ratio of the crystalline vermiculite can be obtained, the X-ray intensity from the sample to the crystalline substance 矽-13- 201000401 The ratio of the X-ray intensity of the stone standard sample is calculated, and the mixing ratio of the crystalline vermiculite (the X-ray diffraction intensity of the sample/the X-ray diffraction intensity of the crystalline vermiculite) is calculated, and according to the formula: the amorphous ratio (%) = (1_crystalline vermiculite doping ratio) X100 to obtain the amorphous ratio. The average sphericity of the amorphous vermiculite powder, the inorganic powder and the alumina powder of the present invention is preferably 〇 8 〇 or more, more preferably 〇 · 8 5 or more. Thereby, the viscosity of the resin composition of the present invention can be lowered, and the moldability can be improved. The average sphericity can be used to input a particle image captured by a solid microscope (for example, the product name "SMZ-10" manufactured by NIKON Co., Ltd.) into a video analysis device (for example, the product name "MacView" manufactured by MOUNTECH Co., Ltd.)" from the projected area of the photo particle. (A) and perimeter (PM) measurements. Since the area of the perfect circle corresponding to the circumference (PM) is (B), the sphericity of the particles is A/B. When the circumference of the sample (pm) is assumed to be a perfect circle with the same circumference, 'from ΡΜ = 2τγγ, Β=7γγ2, Β=τγχ(ΡΜ/27Γ)2, and the sphericity of the respective particles is sphericity=A/B = Ax4; r (PM)2. The sphericity of 200 arbitrary particles thus obtained was determined, and the average enthalpy was taken as the average sphericity. For the method of measuring the sphericity other than the above, a particle image analyzer (for example, SYSMEX, Inc.; trade name "FPIA-3 000") can be used to obtain the circularity of each particle from quantitative automatic measurement, according to the formula: sphericity = (circularity) 2 is obtained by conversion. Next, a method for producing the amorphous strontium powder of the present invention will be described. The manufacturing method of the present invention is characterized in that it contains a raw material talc powder and an A1 source material. The mixture is sprayed into a flame formed by a burner to produce an amorphous vermiculite powder, and is maintained at a temperature of 60 to 150. (:, a relative humidity of 60 to 90% is maintained for 15 to 30 minutes. A method for producing a powder of a non-amorphous stone--14-201000401 powder. A mixture containing a raw material talc powder and an A1 source material is sprayed into a flame formed by a burner to perform melting of the raw material gangue powder ( At the same time as the spheroidization, the A1 source material is fused to the surface of the talc powder and formed into an -O-Si-0-Al-O-Si-O- structure at a temperature of 6 0~1 5 0 °C, relative humidity is 6 0~9 0 % The detachment amount of pyridine at a temperature of 150 ° C or more and less than 250 ° C and the detachment of pyridine when heated at 45 ° C or more and less than 550 ° C are maintained for 15 to 30 minutes in an environment. The amount L can be used to produce an amorphous vermiculite powder having the characteristics of the present invention. The mixture containing the raw material talc powder and the A1 source material is sprayed by a flame to be melted, fused, spheroidized, and collected. The apparatus can be used, for example, in a furnace body having a burner connected to the collector. The furnace body can be either an open type or a closed type, or a vertical type or a horizontal type. The gravity sedimentation chamber, the cyclone, the bag filter, the electric dust collector, etc., are used to adjust the collection conditions, and the amorphous ochre powder produced can be collected. For an example thereof, there is a special publication No. 11-57451 Japanese Laid-Open Patent Publication No. H11-71107, etc., in order to hold the amorphous vermiculite powder in an environment of temperature * 60 to 150 ° C and a relative humidity of 60 to 90% for 15 to 30 minutes, for example, in the above-mentioned collecting device' Set the line for supplying steam, and The steam temperature and the steam supply amount are adjusted so as to be a predetermined temperature and a relative humidity. In order to adjust the holding time, the discharge time of the discharge valve (for discharging the amorphous vermiculite powder from the collecting device outside the system) can be performed. Adjusted in the way of becoming the desired time. Just after the mixture containing the raw gangue powder and the A1 source material is sprayed into the flame formed by the burner, due to the influence of the high temperature flame, -0-Si-O-Al- The acid point of the Ο-Si-O- structure is mostly changed to -15-201000401 Lewis acid, and a part of the change is made by H2 含有 bond which is contained in the combustion gas of the flammable gas used for flame formation. The adsorbed and detached amount of the succinic acid 'D-pyridine is more than 0. 8 relationship. Therefore, when the amorphous vermiculite powder which has not been subjected to the treatment of the production method of the present invention is used, the fluidity and viscosity characteristics at the time of molding cannot be improved by the latent effect. When the humidity of the humidification is less than 60%, or the retention time is less than 15 minutes, the Lewis acid change becomes insufficient, and the pyridine release ratio L/B cannot be controlled at 0. 8 or less. Further, when the humidity is more than 90% or the holding time is more than 30 minutes, since the amorphous vermiculite powder is agglomerated, the formability of the semiconductor sealing material is lowered, which is not preferable. Preferably, the humidification humidity is 6 5 to 8 5 %, and the humidification time is in the range of 20 to 25 minutes. Similarly, when the humidification temperature is less than 6, Η 2 Ο is difficult to bond, and the Lewis acid change becomes insufficient for the succinic acid. As a result, the pyridine detachment ratio L/B cannot be controlled at 0. 8 or less. On the other hand, when the temperature is kept above 150 °C, because the temperature is too high, Η20 is also difficult to bond, and l/Β cannot be made 0. 8 or less. Only keep at 60~150. When the temperature range is (:, the L/B v ratio can be adjusted to 0. 8 or less. The preferred holding temperature is 7 Torr to 120 ° C, more preferably in the range of 75 to 100 t:. The raw ruthenium powder can be a high-purity ruthenium produced by a synthetic method such as high-purity vermiculite, high-purity ceramsite, quartz, crystal, or the like, or a natural-produced powder containing vermiculite minerals, or sedimentation sand, sand, or the like. Stone powder, etc., is considered to be the best in terms of cost or easy to obtain. A commercially available product of vermiculite powder is obtained by pulverizing various types of particle diameters by a pulverizer such as vibration milling or ball milling, so that a desired amorphous ochre powder can be obtained. The way to choose the appropriate particle size. -16 - 201000401 In the present invention, the A1 source material is preferably alumina powder. The A1 source material may, for example, be alumina, aluminum hydroxide, aluminum nitrate, aluminum chloride or an aluminum organic compound. In particular, since the alumina system is close to the melting point of the raw material attapulgite powder, it is easily fused to the surface of the raw ruthenium powder when being sprayed from the burner, and the impurity content is also low, which is preferable. Further, the average particle diameter of the alumina powder is 0. 01 to 10 microns is preferred. The average particle size is less than 0. When the powder is 01 μm, the powder tends to aggregate, and the composition tends to be uneven when it is fused with the vermiculite powder. Similarly, when it is larger than 10 μm, the composition when it is fused with the vermiculite powder tends to be uneven. The average particle size is 范·〇3~8 microns, to 〇. 〇 5~5 microns is better. Further, the content of ai2o3 in the amorphous vermiculite powder of the present invention is preferably 〇1 to 20% by mass. The content of A12 Ο 3 is less than 〇.  When the amount is 1% by mass, the increase in the acid point is insufficient. On the contrary, when it is more than 20% by mass, the thermal expansion coefficient of the amorphous vermiculite powder becomes too large, which adversely affects the function of the original semiconductor sealing material. . Preferably, the content of ai2o3 is 0.  1 5 to 1 8 mass%, preferably 0 to 2 to 1 5 mass%. The A 1203 content (converted oxide) of the amorphous vermiculite powder of the present invention can be measured by the following procedure using atomic absorption spectrometry. That is, 1 g of the amorphous ochre powder was finely weighed in a white gold dish, and the test reagent super hydrofluoric acid and the test drug perchloric acid were each 20 ml and 1 ml. The platinum blood was placed on a sand bath heated to 300 ° C for 15 minutes, cooled to room temperature, and transferred to a 25 ml volumetric flask and made up to volume with pure water. The amount of A1 of the solution was quantified by a calibration curve method using an atomic absorption spectrophotometer. The content of A1 was converted into Al2?3' to calculate the content ratio in the amorphous sand-grain powder. The atomic absorption photometer is exemplified by the product name "Atomic Absorbance Photometer AA_969" manufactured by OPTRONIC Corporation of Japan. -17- 201000401 For the standard solution used for the calibration curve, the A1 standard solution for atomic absorption (a concentration of 1000 ppm) manufactured by Toki Chemical Co., Ltd. is used. Further, the flame at the time of measurement was an acetylene-nitrogen monoxide flame and measured at a wavelength of 3 0 9. The absorbance of 3 nm is quantified. Further, in the present invention, the amount of the A1 source material which can be fused to the surface of the raw ruthenium powder can be sized by the amount of pyridine removed and the detachment temperature when the amorphous iridium powder is adsorbed and detached by heating. The amount, the humidification holding condition, the specific surface area, the average particle diameter, and the like are adjusted. The specific surface area and average particle diameter of the amorphous vermiculite powder can be adjusted by the particle size composition of the raw vermiculite powder, the flame temperature, and the like. Further, the average sphericity and the amorphous ratio can be adjusted by the supply amount of the raw ochre powder to the flame, the flame temperature, and the like. In addition, various types of amorphous vermiculite powders having different sizes, amounts, humidification holding conditions, specific surface areas, and average particle diameters of the fused A1 source material are prepared in advance, and these two or more types can be appropriately mixed. An amorphous vermiculite powder obtained by further specifically adsorbing pyridine and heating off, the detachment amount of pyridine, the detachment temperature, the specific surface area, and the average particle diameter are obtained. The resin composition of the present invention contains the amorphous sand powder of the present invention or the resin composition of the inorganic powder of the present invention in the resin. The content of the amorphous vermiculite powder or the inorganic powder in the resin composition is preferably from 10 to 9.5 mass%, more preferably from 3 〇 to 9 〇 mass%. The resin can be used as an epoxy resin, an anthracene resin, a phenol resin, a melamine resin, a urea resin, an unsaturated polyester, a fluororesin, a polyimine, a polyamidimide, a polyether phthalimide, or the like. Polybutyl phthalate, polyphenylene sulphate, aromatic polyacetate, poly-milling, liquid crystal polymer 'polyether oxime, polycarbonate, maleic acid imide Resin, -18-201000401 ABS resin, AAS (acrylonitrile-acrylic rubber-styrene) resin, aES (acrylonitrile-ethylene-propylene-diene rubber-styrene) resin, etc. Among these, the resin for the semiconductor sealing material is preferably one or more epoxy resins in one molecule. When exemplified, there are a benzoic acid varnish type epoxy resin, an o-cresol novolak type epoxy resin, and an epoxidized benzoquinone type acid and an acid phthalic acid varnish resin, by a combination of A and double A propylene acrylate epoxy resin, a linear aliphatic epoxy resin, an alicyclic ring obtained by reacting a polyresin such as a glycopropyl acid, a citric acid or a dimer acid with bismuth S or an epichlorohydrin Epoxy resin, heterocyclic epoxy resin, alkyl modified polyfunctional epoxy resin, naphthol novolac epoxy resin, 1,6-dihydroxynaphthalene epoxy resin, 2,7-dihydroxynaphthalene ring An epoxy resin, a bishydroxybiphenyl type epoxy resin, and an epoxy resin obtained by introducing a halogen such as bromine to impart flame retardancy. Among them, in terms of moisture resistance or solder flow resistance, an o-cresol novolac epoxy resin, a bishydroxybiphenyl type epoxy resin, or a naphthalene skeleton epoxy resin is preferable. The epoxy resin used in the present invention contains a curing agent for an epoxy resin, a curing agent for an epoxy resin, and a curing accelerator for an epoxy resin. The hardener of the epoxy resin may, for example, be selected from the group consisting of phenol, cresol, xylenol, resorcinol, chlorophenol, t-butylphenol, nonylphenol, isopropylphenol and octylphenol. a novolak resin, a poly-p-hydroxystyrene resin, a bisphenol A or a bisphenol S obtained by reacting a mixture of one or more of them in a group with formaldehyde, p-formaldehyde or p-xylene under an oxidation catalyst. a trifunctional phenol such as a bisphenol compound, a gallic phenol or a fluoroglycerol, an acid anhydride such as maleic anhydride, phthalic anhydride or pyrogallic anhydride, m-phenylenediamine, diaminodiphenylmethane or diamine. An aromatic amine such as a diphenyl hydrazine. Further, in order to promote the reaction between the epoxy resin and the curing agent, for example, a hardening accelerator such as -19-201000401 triphenylphosphine, benzyldimethylamine or 2-methylimidazole can be used. In the resin composition of the present invention, the following components can be further blended as necessary. In other words, the low-stressing agent may be a rubber-like substance such as a silicone rubber, a polysulfide rubber, an acrylic rubber, a butadiene rubber, a styrene block copolymer or a saturated elastomer, or various thermoplastic resins. A resinous substance such as a phthalocyanine resin, or a resin obtained by modifying a part or all of an epoxy resin or a phenol resin using an amine oxime, an epoxy oxime, an alkoxy oxime or the like. Examples of the decane coupling agent include epoxy oxime/: alkane and amine group such as r-glycidoxypropyltrimethoxydecane and /3-(3,4-epoxycyclohexyl)ethyltrimethoxydecane. An amino decane such as propyl triethoxy decane, ureidopropyl triethoxy decane, Ν phenylaminopropyl trimethoxy decane, phenyl trimethoxy decane, methyl trimethoxy decane, A hydrophobic decane compound such as octadecyltrimethoxydecane or a thiodecane or the like. The surface treatment agent may, for example, be a Zr tongs, a titanate coupling agent or an aluminum coupling agent. Examples of the flame retardant auxiliary include Sb203, Sb2 04, and Sb20 5 . The flame retardant may, for example, be a halogenated epoxy resin or a phosphorus compound. Examples of the colorant include carbon black, iron oxide, a dye, a pigment, and the like. Further, examples of the release agent include natural waxes, synthetic waxes, % metal salts of linear fatty acids, guanamines, esters, and paraffin waxes. The resin composition of the present invention can be blended with a predetermined amount by using a blender or a Hanschel Mixer, etc., using a heating roll, a kneader, a uniaxial or biaxial extruder, or the like. After the kneaded material is cooled, it is pulverized and manufactured. The semiconductor sealing material-based resin composition of the present invention contains an epoxy resin and is composed of a curing agent containing an epoxy resin and a curing accelerator of an epoxy resin. -20- 201000401 The semiconductor sealing material of the present invention is used to seal the semiconductor, and conventional molding means such as transfer molding or vacuum printing molding can be used. EXAMPLES Hereinafter, the present invention is explained in more detail by way of examples of the invention, but it should not be construed as being limited thereto. Examples 1 to 10 and Comparative Examples 1 to 8 The raw materials used in the production of the amorphous vermiculite powder of the present invention were obtained by using KINSEIMATEC Corporation, a crystalline vermiculite powder (the yield of si〇2# was 999 mass%), and Japan. Alumina powder and aluminum hydroxide powder made by Light Metal Company. Each of the powders is subjected to pulverization and classification to adjust the particle size, and various raw material gangue powders and A1 source materials having different average particle diameters are prepared. In the apparatus described in Japanese Laid-Open Patent Publication No. Hei 11-57451, a steam generating boiler and a steam supply line are provided in the collecting apparatus, and the steam temperature and the steam supply amount can be adjusted to obtain a required temperature and Relative humidity is used. Each of the amorphous vermiculite powders shown in Tables 1 and 2 was produced by using the apparatus 'melting, fusion, spheroidization, and humidification b treatment in a flame. Further, the powders were appropriately prepared to produce amorphous ochre powders and inorganic powders shown in Tables 3 and 4. Further, 'the amount of detachment of pyridine and the temperature of detachment when pyridine is adsorbed by the amorphous ochre powder, the size and amount of the A1 source substance fused on the surface of the raw material sandstone powder, and the humidification and holding conditions are changed. , specific surface area, average particle size, etc. to adjust. The specific surface area and average particle diameter of the amorphous chopped stone powder are adjusted by the particle size composition of the raw material ochre powder or the flame temperature, and the average sphericity and amorphous ratio of the amorphous rock powder are It is adjusted by the supply amount of the raw material sandstone powder to the flame of -21 - 201000401 or the flame temperature. Further, the formation of the flame uses LPG and oxygen, and oxygen is also used to carry the raw material powder to the carrier gas of the burner. The maximum temperature of the flame is in the range of about 2,000 ° C to 2,300 ° C. The measurement of the detachment temperature and the amount of detachment of pyridine from the amorphous talc powder and the pyridine from the amorphous smectite powder was carried out in accordance with the method described in the paragraph (0014). The amorphous ratio of the obtained amorphous vermiculite powder is either 9 9. More than 5 %. The specific surface area, the average particle diameter, the average sphericity, the pyridine detachment temperature, and the amount of detachment of the powders were measured to calculate the amount of detachment L of pyridine when heated at 45 ° C or higher and less than 550 ° C. The ratio L/B of the detachment amount B of pyridine when heated at 50 ° C or more and less than 250 ° C, and the total amount of detachment A of pyridine when heated at 150 ° C or more and less than 550 ° C, in 1 The ratio of pyridine detachment amount B ( 5/Α) χ 100% when heated at 50 ° C or higher and less than 250 ° C. The results are shown in Tables 3 and 4. The properties of the obtained amorphous vermiculite powder and inorganic powder as a semiconductor sealing material were evaluated. That is to say, 87. 8 parts (mass parts, the same below) each powder, add 5. 9 parts of biphenyl type epoxy resin (YX-4 000H made by JAPAN EPOXY RESINS), 5. 1 part phenol aralkyl resin (XLC-LL manufactured by Mitsui Chemicals Co., Ltd.), 0. 2 parts of triphenylphosphine, 0. 6 parts epoxy resin coupling agent, 0. 1 part carbon black and 0. 3 parts of carnauba wax and dry blended using a Hanser mixer. Subsequently, the same direction nip biaxial extruder was used (the screw diameter D = 25 mm, the kneading disc length lODmm, the paddle rotation speed 50 to 120 rpm, and the discharge amount was 2. 5 kg / h, mixing temperature of 99 ~ 100 ° C) for heating and kneading. The kneaded material (discharged material) was pressurized and cooled by a press machine, and then pulverized to produce a semiconductor sealing material. The viscosity characteristics (hardened viscoelasticity tester torque), formability (linear deformation rate), and fluidity (spiral flow) of the semiconductor seal -22-201000401 obtained according to the following evaluation. The results are shown in Tables 3 and 4. (1) Viscosity characteristics (hardened viscoelasticity tester torque) The viscosity characteristics of the obtained semiconductor sealing material were measured as follows. Using a hardened viscoelasticity tester (for example, the product name "CURASTMETER 3P-S type" manufactured by JSR TRADING Co., Ltd.), the semiconductor sealing material was heated to 110 ° C, and the torque after 30 seconds was used as the viscosity index. The smaller the enthalpy, the better the viscosity characteristics. (2) Formability (linear deformation rate) The following was performed to measure the formability of the semiconductor sealing material obtained above. In the BGA (Ball Grid Array) substrate, the size of the film is 8 mm mm by the adhesion of the film. Two 3 mm analog semiconductor elements overlap ‘and are connected using gold wires. Subsequently, each of the semiconductor sealing materials was used and formed into a package size of 38 mm X 3 8 mm χ 1 · 〇 mm and then post-baked at 175 ° C for 8 hours to manufacture BG A type. semiconductor. The gold wire portion of the semiconductor was observed using a soft X-ray transmitting device to measure the gold wire deformation rate. The gold wire deformation rate is determined by taking the shortest distance X of the sealed line and the maximum displacement amount γ of the sealed line to obtain (γ/χ) χ 1 0 0 %. The average enthalpy of the gold wire deformation rate of the lanthanide system. Further, the gold wire has a diameter of Φ 30 μm and an average length of 5 mm. The transfer forming conditions were a mold temperature of 175 C and a forming pressure of 7. 4MPa, and the holding time is 90 seconds. The smaller the enthalpy, the smaller the amount of deformation of the wire and the better the formability. (3) Fluidity (rotary flow) Use is installed in accordance with EMMI-I_66 (Epoxy -23-201000401

Molding Material Institute);塑膠工業協會(Society Plastic Industry))的旋轉流動測定用模具之轉移成形機 測定各半導體密封材的旋轉流動値。又,轉移成形條科 模具溫度爲175°C、成形壓力爲7.4MPa、及保壓時間爲 秒。該値越大時,係表示流動性良好。 of ,來 :係 120 -24- 201000401 [表i] 項 目 非晶質矽石質粉末 a b c d e f g h 原料矽石質粉末的平均粒徑 (微米) 26 26 11 52 26 59 0.2 4 A1源物質的種類 AI2O3 Α1(ΟΗ)3 AI2O3 AI2O3 AI2O3 AI2O3 AbOs AI2O3 A卜源物質的平均粒徑(微米) 0.5 0.5 0.5 5 0.5 10 0.03 0.5 A1源物質的添加率(質量%) 0.5 1.0 0.5 0.2 2 0.5 8 15 非晶質矽石質粉末的Α1Λ含 有率(質量%) 0.5 0.6 0.5 0.2 2.0 0.5 8.0 15 熔融 球狀 化 的條 件 LPG流量(立方公尺/ 小時) 16 16 16 24 16 24 14 14 氧氣流量(立方公尺/ 小時) 96 96 96 144 96 144 84 84 原料矽石質粉末與A1 源物質的混合物之噴 射量 (公斤/小時) 40 40 40 50 40 50 30 30 加濕 的條 件 氺 旋風收集箱內部的環 境溫度(。〇 80 80 60 150 80 80 80 80 旋風收集箱內部的環 境濕度(%RH) 80 80 80 80 80 80 60 90 在旋風收集箱之保持 時間(分鐘) 20 20 20 20 15 30 20 20 *在收集裝置旋旋風收集箱,設置蒸氣供給線路,來將收集的非晶質 矽石質粉末進行加濕處理。 -25- 201000401 [表2] 項 目 非晶質矽石質粉末 i j k 1 m η 0 P 原料矽石質粉末的平均粒徑(微 米) 26 26 26 26 26 26 26 26 A1源物質的麵 無 AI2O3 AI2O3 AI2O3 AI2O3 Al2〇3 AI2O3 AI2O3 A1源物質的平均粒徑(微米) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 A1源物質的添加率(質量%) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 非晶質矽石質粉末的Al2〇3含有 率(質量%) 0 0.5 0.5 0.5 0,5 0.5 0.5 0.5 熔融 球狀 化 的條 件 LPG流量(立方公尺/小 時) 16 16 16 16 16 16 16 16 氧氣流量(立方公尺/小 時) 96 96 96 96 96 96 96 96 原料矽石質粉末與A1 源物質的混合物之噴 射量 (公斤/小時) 40 40 40 40 40 40 40 40 加濕 的條 件 氺 旋風收集箱內部的環 境溫度(。〇 姐 、、 50 160 80 80 80 80 M 旋風收集箱內部的環 境濕度(%RH) 80 80 50 95 80 80 在旋風收集箱之保持 時間(分鐘) 20 20 20 20 10 40 *在收集裝置旋旋風收集箱,設置蒸氣供給線路,來將收集的非晶質矽石質 粉末進行加濕處理。 -26- 201000401 -27- *Tiini德洚鱗{CV鹡筇舛:卡菡傳ίΜΒ100鏵洙' tbm到aiMl.l书bfi^R/掛 '浦涅渌薄藕凇標。 旋轉流動(公分) 金線變形率(%) 硬化黏彈性試驗機轉矩(Ν . m) 非晶質率(%) 平均球形度(-) 最大粒徑(微米) 平均粒徑(微米) 比表面積(平方公尺/¾) 吡啶脫離量比B/Axl00(%) 吡啶脫離量比L/B(-) 在150〜250°C之吡啶脫離的存在率之尖峰値 1 i 1 ! 所調配的非晶質矽石質粉末之比率 (質量%) _1 * ►— · tr tra *-^5 〇« CL· o σ&quot; &amp;3 Ο OJ v〇 § K&gt; *—» to oo to oo ο; bo σ\ p L/1 垂 1 1 1 1 1 1 1 1 Η—· 8 實施例1 ¢: ο LO 〇J 1 99..8 1 0.89 t—* to oo l〇 oo d: LA s 1 1 1 1 I 1 t 1 t—· o 1 實施例2 *—-· LO 以 ο OJ bo Ό v〇 OO 0.90 \〇 ON &gt;—» OJ to bO g LO 1 1 i 1 I 1 1 8 1 1 實施例3 H—· NJ ON *—» Co \o v〇 On ο oo H-* 〇\ g g § S 1 1 1 1 1 1 1—» o 1 1 I 實施例4 I—-» ο L»-&gt; 99.9 g t—» h—&gt; to oo to oo p 〇 1 1 1 1 1 &gt;—* o 1 1 1 1 實施例5 fo «—· ·—· \D VO Lr\ 0.79 ►—· VO ON g δ rs&gt; g ο 1 1 1 I h—* 1 1 1 1 1 實施例6 Η—· OS ·—* 〇 0.99 OO p 6 &gt;—» g 5860 1 • 1 (—» o 1 1 1 1 1 1 實施例7 Η—» to oo ο ►—* 1—* o 0.99 OO to Ch vo to § 1450 : 1 1 t—· ο 1 1 &lt; 1 1 1 1 實施例8 *—*· »-Λ ►—» $ MD v〇 bo § to ►—· b〇 oo to OJ t—» oo g to ° ' VD ON 1 1 1 1 1 1 1 實施例9 ►—* LO bo 1 0.90 I—» to oo to δ Ν&gt; S 1 1 1 1 1 1 1 1 實施例10 【姗3】 201000401 -28- 旋轉流動(公分) 金線變形率(%) 硬化黏彈性試驗機轉矩(N · m) 非晶質率(%) 平均球形度(-) 最大粒徑(微米) 平均粒徑(微米) 比表面積(平方公尺/¾) 吡啶脫離量比Β/Αχ100(%) 吡啶脫離量比L/B(-) 在150〜250°C之吡啶脫離的存在率之尖峰値 所調配的非晶質矽石質粉末的之比率 (質量%) ο 3 3 . ι— · 1—* S ON 99.8 0.90 Η-* to oo to oo 浦 兼 〇 1 I 1 1 t 1 1 ·—» ο 比較例1 t—* to on \D v〇 vo Ο *—* t—» to oo to oo Η—» Οι »—· to ο 1 1 1 1 1 1 Η— ο 1 比較例2 t—» g bo \D \o \a ►—· 1—» to OO to oo Η-&gt; ί-Λ Η—» bo 1 1 &gt; 1 1 1—· ο 1 1 比較例3 t—* OJ L-Λ ϋο VO \o 0.92 ►—* to oo tsJ oo c: οο Ln g t 1 1 1 ►—» ο 1 1 1 比較例4 to 〇.) On v〇 Ό OO '0.92 H—· to oo to oo § OJ 爸 1 1 1 1~1 1 1 • 1 比較例5 s bo VO VO bo 1 0.92 *—» to oo to oo C: L»0 *—» »—ι 1 1 Η—» ο 1 1 1 1 1 比較例6 oo On •OO VO \〇 v〇 § ►—· 1—» N&gt; oo to oo C: to to § LO 1 ο 1 1 1 1 1 I 比較例7 ►—1 1—» LO OO VO v〇 § h—» ►—» to oo to oo Η-* ί-Λ Η-* ο 1 1 1 1 1 1 1 比較例8 201000401 從實施例與比較例的對照能夠清楚明白,依照本發明的 非晶質矽石質粉末,能夠調製與比較例比較時流動性、黏 度特性及成形性更優良的樹脂組成物、特別是半導體密封 材。 產業上之利用可能性 本發明的非晶質矽石質粉末能夠使用在汽車、可攜式 電子機器、個人電腦、家庭電化製品等所使用的半導體密 封材、半導體所搭載的積層板等作爲塡料。又,本發明的 樹脂組成物係除了半導體密封材以外,能夠使其在玻璃織 布、玻璃不織布、及其他的有機基材浸漬硬化而構成,使 用作爲例如印刷基板用的預浸體' 或各種工程塑膠等。 又’將2008年5月16日申請的日本特許出願 2008-129122號說明書、申請專利範圍、及摘要之全部內 容’以引用的方式倂入作爲本發明的說明書的揭示。 【圖式簡單說明】 無。 【主要元件符號說明】 Μ 〇 -29-Molding Material Institute); Plastics Industry Association's transfer molding machine for rotating flow measurement molds The rotational flow enthalpy of each semiconductor sealing material was measured. Further, the transfer molding strip mold temperature was 175 ° C, the molding pressure was 7.4 MPa, and the holding time was seconds. The larger the enthalpy, the better the fluidity. Of , to: Department 120 -24- 201000401 [Table i] Project Amorphous Vermiculite Powder abcdefgh Raw Meteorite Powder Average Particle Size (μm) 26 26 11 52 26 59 0.2 4 A1 Source Material Type AI2O3 Α1 (ΟΗ)3 AI2O3 AI2O3 AI2O3 AI2O3 AbOs AI2O3 A average particle size of the material (micron) 0.5 0.5 0.5 5 0.5 10 0.03 0.5 A1 source material addition rate (% by mass) 0.5 1.0 0.5 0.2 2 0.5 8 15 Amorphous Α1Λ content rate (mass%) of strontium powder 0.5 0.6 0.5 0.2 2.0 0.5 8.0 15 Condition of molten spheroidization LPG flow rate (m ^ 3 / hour) 16 16 16 24 16 24 14 14 Oxygen flow rate (m ^ 3 / Hour) 96 96 96 144 96 144 84 84 Injection volume of mixture of raw ochre powder and A1 source material (kg/hr) 40 40 40 50 40 50 30 30 Condition of humidification 环境 Ambient temperature inside cyclone collection box ( 〇80 80 60 150 80 80 80 80 Ambient humidity inside the cyclone collection box (%RH) 80 80 80 80 80 80 60 90 Hold time in the cyclone collection box (minutes) 20 20 20 20 15 30 20 20 *Collected Rotating air collection box and steam supply The line is used to humidify the collected amorphous ochre powder. -25- 201000401 [Table 2] Item Amorphous ochre powder ijk 1 m η 0 P Average particle size of raw ochre powder ( Micron) 26 26 26 26 26 26 26 26 A1 source material surface no AI2O3 AI2O3 AI2O3 AI2O3 Al2〇3 AI2O3 AI2O3 A1 source material average particle size (micron) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 A1 source material addition rate (quality %) 0.5 1.0 0.5 1.0 0.5 1.0 0.5 Al2〇3 content of amorphous ochre powder (% by mass) 0 0.5 0.5 0.5 0,5 0.5 0.5 0.5 Condition of molten spheroidization LPG flow (m ^ 3 / h 16 16 16 16 16 16 16 16 Oxygen flow rate (m3/h) 96 96 96 96 96 96 96 96 Injection volume of mixture of raw ochre powder and A1 source material (kg/hr) 40 40 40 40 40 40 40 40 Condition of humidification 环境 Ambient temperature inside the cyclone collection box (. 〇姐,, 50 160 80 80 80 80 M Ambient humidity inside the cyclone collection box (%RH) 80 80 50 95 80 80 Holding time in the cyclone collection box (minutes) 20 20 20 20 10 40 * Cyclone in the collection device The collection tank is provided with a vapor supply line to humidify the collected amorphous ochre powder. -26- 201000401 -27- *Tiini de 洚 scale {CV鹡筇舛: card ΜΒ ΜΒ ΜΒ 100铧洙' tbm to aiMl.l book bfi^R/hang 'Pu Nie 渌 藕凇 。. Rotating flow (cm) Gold wire deformation rate (%) Hardened viscoelasticity test machine torque (Ν.m) Amorphous rate (%) Average sphericity (-) Maximum particle size (micron) Average particle size (micron) ratio Surface area (m ^ 2 / 3⁄4) pyridine detachment ratio B / Axl00 (%) pyridine detachment ratio L / B (-) peak at the presence of pyridine detachment at 150 ~ 250 ° C 値 1 i 1 ! Ratio of amorphous ochre powder (% by mass) _1 * ►— · tr tra *-^5 〇« CL· o σ&quot;&3 Ο OJ v〇§ K&gt; *—» to oo to oo ο; Bo σ\ p L/1 垂1 1 1 1 1 1 1 1 Η—· 8 Example 1 ¢: ο LO 〇J 1 99..8 1 0.89 t—* to oo l〇oo d: LA s 1 1 1 1 I 1 t 1 t—· o 1 Example 2 *—-· LO as ο OJ bo Ό v〇OO 0.90 \〇ON &gt;—» OJ to bO g LO 1 1 i 1 I 1 1 8 1 1 Example 3 H—· NJ ON *—» Co \ov〇On ο oo H-* 〇\ gg § S 1 1 1 1 1 1 1—» o 1 1 I Example 4 I—»» ο L»- &gt; 99.9 gt—» h—&gt; to oo to oo p 〇1 1 1 1 1 &gt;—* o 1 1 1 1 Example 5 fo «—· ·—· \D VO Lr\ 0.79 ►—· VO ON g δ rs&gt; g 1 1 1 I h—* 1 1 1 1 1 Example 6 Η—· OS ·—* 〇 0.99 OO p 6 &gt; —» g 5860 1 • 1 (—» o 1 1 1 1 1 1 Example 7 Η —» to oo ο ►—* 1—* o 0.99 OO to Ch vo to § 1450 : 1 1 t—· ο 1 1 &lt; 1 1 1 1 Example 8 *—*· »-Λ ►—» $ MD V〇bo § to ►—· b〇oo to OJ t—» oo g to ° ' VD ON 1 1 1 1 1 1 1 Example 9 ►—* LO bo 1 0.90 I—» to oo to δ Ν&gt; S 1 1 1 1 1 1 1 1 Example 10 [姗3] 201000401 -28- Rotating flow (cm) Gold wire deformation rate (%) Hardened viscoelasticity test machine torque (N · m) Amorphous rate (%) Average sphericity (-) Maximum particle size (micron) Average particle size (micron) Specific surface area (m ^ 2 / 3⁄4) pyridine detachment ratio Β / Αχ 100 (%) pyridine detachment ratio L / B (-) at 150 ~ The ratio (% by mass) of the amorphous talc powder formulated by the peak of the pyridine detachment at 250 ° C ο 3 3 . ι — · 1—* S ON 99.8 0.90 Η-* to oo to oo浦兼〇1 I 1 1 t 1 1 ·—» ο Comparative example 1 t—* to on \D v〇vo Ο *—* t—» to oo to oo Η » Οι »—· to ο 1 1 1 1 1 1 Η— ο 1 Comparative Example 2 t—» g bo \D \o \a ►—· 1—» to OO to oo Η-&gt; ί-Λ Η— » bo 1 1 &gt; 1 1 1—· ο 1 1 Comparative Example 3 t—* OJ L-Λ ϋο VO \o 0.92 ►—* to oo tsJ oo c: οο Ln gt 1 1 1 ►—» ο 1 1 1 Comparative Example 4 to 〇.) On v〇Ό OO '0.92 H—· to oo to oo § OJ Dad 1 1 1 1~1 1 1 • 1 Comparative Example 5 s bo VO VO bo 1 0.92 *—» to oo To oo C: L»0 *—» »—ι 1 1 Η—» ο 1 1 1 1 1 Comparative Example 6 oo On • OO VO \〇v〇§ ►—· 1—» N&gt; oo to oo C: To to § LO 1 ο 1 1 1 1 1 I Comparative Example 7 ►—1 1—» LO OO VO v〇§ h—» ►—» to oo to oo Η-* ί-Λ Η-* ο 1 1 1 1 1 1 1 Comparative Example 8 201000401 It can be clearly seen from the comparison between the examples and the comparative examples that the amorphous vermiculite powder according to the present invention can be more excellent in fluidity, viscosity characteristics and formability when compared with the comparative example. A resin composition, particularly a semiconductor sealing material. Industrial Applicability The amorphous strontium powder of the present invention can be used as a semiconductor sealing material used in automobiles, portable electronic devices, personal computers, home electric products, and the like, and laminated boards mounted on semiconductors. material. In addition to the semiconductor sealing material, the resin composition of the present invention can be formed by immersing and curing a glass woven fabric, a glass nonwoven fabric, and other organic substrates, and using, for example, a prepreg for printing substrates or various Engineering plastics, etc. Further, the entire contents of the specification, the scope of the patent application, and the abstract of the Japanese Patent Application No. 2008-129122, filed on May 16, 2008, are hereby incorporated by reference. [Simple description of the diagram] None. [Main component symbol description] Μ 〇 -29-

Claims (1)

201000401 七、申請專利範圍: 1. 一種非晶質矽石質粉末,其特徵係使非晶質矽石質粉末 吸附吡啶後,在450°C以上、小於5 5 0°C加熱時之吡啶的 脫離量L、與在1 5 0 °C以上、小於2 5 0 °C加熱時之吡啶的 脫離量B之比L/B爲0.8以下。 2. 如申請專利範圍第1項之非晶質矽石質粉末,其中使非 晶質矽石質粉末吸附吡啶後,在1 5 0°C以上、小於5 5 0 °C 加熱時之吡啶的總脫離量A中,在1 5 0 °C以上、小於2 5 0 °C加熱時之吡啶的脫離量B佔有的比率(B/A) XI 00%爲 20%以上 3 .如申請專利範圍第1或2項之非晶質矽石質粉末,其係 比表面積爲0.5〜45平方公尺/克,平均粒徑爲0.1〜60 微米,平均球形度爲0.80以上。 4. 一種無機質粉末,其係含有如申請專利範圍第1至3項 中任一項之非晶質矽石質粉末。 5. 如申請專利範圍第4項之無機質粉末,其中無機質粉末 係本發明以外的非晶質矽石質粉末及/或氧化鋁質粉末。 i 6·—種非晶質矽石質粉末的製造方法,係如申請專利範圍 第1至3項中任一項之非晶質矽石質粉末之製造方法, 其特徵係將含有原料矽石質粉末與A1源物質之混合物’ 往藉由燃燒器形成的火焰中噴射,來製造非晶質矽石質 粉末後,在溫度60〜150°C、相對濕度60〜90%的環境下 保持15〜30分鐘。 7 · —種樹脂組成物,其係含有如申請專利範圍第1至5項 中任一項之非晶質矽石質粉末或無機質粉末。 8 ·如申請專利範圍第7項之樹脂組成物,其中樹脂組成物 -30- 201000401 的樹脂係環氧樹脂。 9. 一種半導體密封材,其係使用如申請專利範圍第7或8 項之樹脂組成物而成。 -31 - 201000401 四、指定代表圖: (一) 本案指定代表圖為:無。 (二) 本代表圖之元件符號簡單說明: 0 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式:201000401 VII. Patent application scope: 1. An amorphous strontium powder characterized in that pyridine is heated at 450 ° C or above and less than 550 ° C after adsorption of pyridine by amorphous ochre powder. The ratio L/B of the amount of detachment L to the amount of detachment B of pyridine when heated at 150 ° C or higher and less than 250 ° C is 0.8 or less. 2. The amorphous vermiculite powder according to item 1 of the patent application, wherein the amorphous ochre powder is adsorbed by pyridine, and the pyridine is heated at a temperature above 150 ° C and less than 550 ° C. In the total amount of detachment A, the ratio of pyridine detachment amount B (B/A) XI 00% when heated at 150 ° C or more and less than 250 ° C is 20% or more. 3 The amorphous ore powder of 1 or 2 has a specific surface area of 0.5 to 45 m 2 /g, an average particle diameter of 0.1 to 60 μm, and an average sphericity of 0.80 or more. An inorganic powder comprising the amorphous vermiculite powder according to any one of claims 1 to 3. 5. The inorganic powder according to item 4 of the patent application, wherein the inorganic powder is an amorphous vermiculite powder and/or an alumina powder other than the present invention. The method for producing an amorphous samarium powder according to any one of claims 1 to 3, which is characterized in that it contains a raw material vermiculite The mixture of the powder and the A1 source material is sprayed into a flame formed by a burner to produce an amorphous vermiculite powder, and is maintained at a temperature of 60 to 150 ° C and a relative humidity of 60 to 90%. ~30 minutes. A resin composition comprising an amorphous vermiculite powder or an inorganic powder according to any one of claims 1 to 5. 8. The resin composition of the seventh aspect of the patent application, wherein the resin composition is a resin epoxy resin of -30-201000401. A semiconductor sealing material which is obtained by using a resin composition as claimed in claim 7 or 8. -31 - 201000401 IV. Designated representative map: (1) The representative representative of the case is: None. (2) A brief description of the symbol of the representative figure: 0 5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention:
TW098116091A 2008-05-16 2009-05-15 Amorphous vermiculite powder, its production method and use TWI458682B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008129122 2008-05-16

Publications (2)

Publication Number Publication Date
TW201000401A true TW201000401A (en) 2010-01-01
TWI458682B TWI458682B (en) 2014-11-01

Family

ID=41318791

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098116091A TWI458682B (en) 2008-05-16 2009-05-15 Amorphous vermiculite powder, its production method and use

Country Status (6)

Country Link
JP (1) JP5553749B2 (en)
KR (1) KR101256299B1 (en)
CN (1) CN102015531B (en)
MY (1) MY155215A (en)
TW (1) TWI458682B (en)
WO (1) WO2009139425A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232045B (en) * 2013-05-13 2015-09-16 神华集团有限责任公司 A kind of synthetic method of molecular sieve
JP6305007B2 (en) * 2013-10-18 2018-04-04 新日鉄住金マテリアルズ株式会社 Spherical amorphous silica particles, method for producing the same, and resin composition containing the same
JP6506940B2 (en) * 2014-10-15 2019-04-24 株式会社アドマテックス Method of producing inorganic filler, method of producing resin composition, and method of producing molded article
JP6812093B2 (en) * 2015-06-26 2021-01-13 日本電気硝子株式会社 Inorganic filler particles and resin composition for three-dimensional modeling using them
JP6966189B2 (en) * 2016-09-29 2021-11-10 デンカ株式会社 Amorphous aluminosilicate toner external additive
JP7112179B2 (en) * 2016-10-19 2022-08-03 日鉄ケミカル&マテリアル株式会社 Spherical siliceous powder for semiconductor encapsulant and method for producing the same
WO2018186315A1 (en) * 2017-04-04 2018-10-11 デンカ株式会社 Powder mixture
CN111670107B (en) * 2018-04-06 2022-06-07 惠普发展公司,有限责任合伙企业 Three-dimensional (3D) object printing based on build material moisture content levels
JP6612919B2 (en) * 2018-04-13 2019-11-27 デンカ株式会社 Amorphous silica powder, resin composition, and semiconductor encapsulant

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661519A (en) * 1970-07-01 1972-05-09 Cities Service Co Hydrolysis of silicon tetrafluoride
DE69633066D1 (en) * 1995-12-19 2004-09-09 Corning Inc METHOD AND DEVICE FOR PRODUCING A QUARTZ GLASS BY COMBUSTION OF LIQUID REAGENTS
JP3478468B2 (en) * 1997-08-25 2003-12-15 電気化学工業株式会社 Method and apparatus for producing inorganic spherical particles
JP3608968B2 (en) * 1999-02-08 2005-01-12 電気化学工業株式会社 Method for producing spherical inorganic particles
DE19919635A1 (en) * 1999-04-30 2000-11-23 Degussa Silicon-aluminum mixed oxide
JP4112125B2 (en) * 1999-08-13 2008-07-02 電気化学工業株式会社 Method for producing fine spherical silica powder
WO2001098211A1 (en) * 2000-06-20 2001-12-27 Nippon Aerosil Co., Ltd. Amorphous, fine silica particles, and method for their production and their use
JP3694474B2 (en) * 2001-10-30 2005-09-14 秀博 神谷 Method for producing spherical silica powder
JP3868347B2 (en) * 2002-07-25 2007-01-17 電気化学工業株式会社 Inorganic powder and resin composition filled therewith
WO2004080916A1 (en) * 2003-03-10 2004-09-23 Ngk Insulators, Ltd. Inorganic porous body and method for producing same
JP2005306923A (en) * 2004-04-19 2005-11-04 Denki Kagaku Kogyo Kk Inorganic powder and composition containing the same
JP4815209B2 (en) * 2005-03-17 2011-11-16 株式会社アドマテックス Curing agent and resin composition
WO2007125891A1 (en) * 2006-04-24 2007-11-08 Denki Kagaku Kogyo Kabushiki Kaisha Inorganic hollow particle, process for producing the same, and composition containing the same
TWI412506B (en) * 2006-05-12 2013-10-21 Denki Kagaku Kogyo Kk Ceramic powder and uses thereof

Also Published As

Publication number Publication date
JP5553749B2 (en) 2014-07-16
KR20110018309A (en) 2011-02-23
TWI458682B (en) 2014-11-01
CN102015531A (en) 2011-04-13
KR101256299B1 (en) 2013-04-18
JPWO2009139425A1 (en) 2011-09-22
MY155215A (en) 2015-09-30
CN102015531B (en) 2013-10-16
WO2009139425A1 (en) 2009-11-19

Similar Documents

Publication Publication Date Title
TW201000401A (en) Amorphous silica powder, producing method and usage thereof
TWI412506B (en) Ceramic powder and uses thereof
JP4302690B2 (en) Spherical coated magnesium oxide powder, method for producing the same, and resin composition containing the powder
KR101406571B1 (en) Silica powder, method for production of the same, and composition using the same
CN101528604A (en) Alumina powder, process for producing the same, and use thereof
JP4112125B2 (en) Method for producing fine spherical silica powder
TWI402214B (en) An amorphous silica powder, a method for manufacturing the same, and a semiconductor sealing material
JP4237182B2 (en) Highly filled coated magnesium oxide powder and resin composition containing the powder
TWI457282B (en) Amorphous siliceous powder, method for production thereof, resin composition, and semiconductor sealing material
JP5767863B2 (en) Spherical alumina powder, method for producing the same, and composition using the same
JP6612919B2 (en) Amorphous silica powder, resin composition, and semiconductor encapsulant
KR101442034B1 (en) Siliceous powder, process for production of the same, and use thereof
TWI257378B (en) High flow rate coated magnesium oxide powder and resin composition containing such powder
JP2002362910A (en) Spheroidal metal oxide fine powder and its use