TW200947446A - Method for erasing P-channel non-volatile memory - Google Patents

Method for erasing P-channel non-volatile memory Download PDF

Info

Publication number
TW200947446A
TW200947446A TW97117905A TW97117905A TW200947446A TW 200947446 A TW200947446 A TW 200947446A TW 97117905 A TW97117905 A TW 97117905A TW 97117905 A TW97117905 A TW 97117905A TW 200947446 A TW200947446 A TW 200947446A
Authority
TW
Taiwan
Prior art keywords
voltage
erasing
substrate
source
volts
Prior art date
Application number
TW97117905A
Other languages
Chinese (zh)
Inventor
Hsin-Ming Chen
Shih-Chen Wang
Sheng-Yu Wang
Cheng-Yen Shen
Original Assignee
Ememory Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ememory Technology Inc filed Critical Ememory Technology Inc
Priority to TW97117905A priority Critical patent/TW200947446A/en
Publication of TW200947446A publication Critical patent/TW200947446A/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

A method of erasing a P-channel non-volatile memory is provided. This P-channel non-volatile memory includes a select transistor and a memory cell connected in series and disposed on a substrate. In the method of erasing the P-channel non-volatile memory, holes are injected into a charge storage structure by substrate hole injection effect. Hence, the applied operational voltage is low, so the power consumption is lowered, and the efficiency of erasing is enhanced. As a result, an operational speed of the memory is accelerated, and the reliability of the memory is improved.

Description

200947446 ^.498 ltwf.doc/n 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種半導體記憶元件的操作方法, 特別是有關於一種P型通道非揮發性記憶體的抹 ^且 【先前技術】 、万、杰。 在各種記憶體產品中,具有可進行多次資料之存 讀取或抹除等動作,且存入之資料在積體元件斷電後也 ❹ 會消失之優點的非揮發性記憶體,已成為個人電腦和 設備所廣泛採用的一種記憶體元件。 典型的可電抹除且可程式唯讀記憶體係以摻雜的 石夕(polysilicon)製作浮置閘極(floating gate)與控制= (control gate)。然而,當摻雜的多晶矽浮置閘極層下方 随氧化層有缺陷存在時,就容易造成元件的漏電流 元件的可靠度。 警 因此,在現有的非揮發性記憶體技術中,亦有採用電 ,陷入層(charge-trapping layer)取代多晶矽浮置閘極,此 ❿ 伽人層之材質例如是氮切。這魏切電荷陷入層上 下通常各有一層氧化石夕,而形成氧化石夕/氮化石夕/氧^夕 (〇xide_nitride_oxide,簡稱〇N〇)複合層。此種元件通稱為 矽/氧化石夕/氮化石夕/氧化石夕/石夕(s〇N〇s)元件,由於氮化石夕具 有捕捉電子的特性,注入電荷陷入層之中的電子會集中ς 電荷陷入層的局部區域上。因此’對於穿随氧化層中缺陷 的敏感度較小,元件漏電流的現象較不易發生。 圖^所緣不為依照習知之非揮發性記憶體之抹除方法 的操作示意圖。在圖,符號#表示電子。 200947446 ^-498 ltwf.doc/n 請參照圖1,此P型通道非揮發性記憶體例如是由基 底100、N型井區102、SONOS記憶胞104與選擇電晶體 1〇6所構成的。SONOS記憶胞104與選擇電晶體106例如 是串接在一起。SONOS記憶胞104包括底氧化層1〇8、氮 化矽層110、頂氧化層112、控制閘極114、源極/汲極區 H6與源極/没極區us。選擇電晶體包括閘氧化層 Y〇、選擇閘極122、源極/沒極區118與源極/没極區124。 ❹ 若欲進行抹除操作,可於源極/汲極區ΐ16、Ν型井區1〇2、 源極/汲極區124施加6伏特之電壓,於選擇閘極122施加 3.3伏特之電壓,以打開選擇閘極122下方的通道,使源 ^ /及極區118與源極/没極區124等電位,於控制閘極 $加-6伏特之電壓,以利用F_N穿隧機制將原本所儲存之 _ 貝料抹除。 然而,使用F-N穿隧機制抹除S〇N〇s記憶胞1〇4中 時,S_S記憶胞104的啟始電壓會隨‘抹除時間 ❹ 減少。但是,由於跨在控制閘極U4與基底議之 的電壓差也會使電子自控制閘極114注人氮化石夕層ιι〇 =而使啟始輕改變的效果遞減而呈雜和⑽祕i〇n) 抹二謂的抹除飽和現象。如此,記憶體元件的 抹除時間餘長,㈣響記賴元件的抹除效能。 得到示為依照習知S嶋S記憶胞之抹除方法所 ί抹除時間之關圖。使用仰穿隧機制 抹除SONOS記憶胞1〇4中的資料時,在 N型井區102之間形成不同的電壓差的方^為於n型井區 6 -^981twf.doc/n 200947446 祕/if没極區116、源極/沒極區124施加不同的正電 2於選擇閘極122施加3.3伏特之電壓,以打^200947446 ^.498 ltwf.doc/n IX. Description of the Invention: [Technical Field] The present invention relates to a method of operating a semiconductor memory device, and more particularly to a P-channel non-volatile memory. And [previous technology], Wan, Jie. Among various memory products, there is a non-volatile memory that can perform operations such as reading or erasing a plurality of data, and the stored data is also lost after the integrated component is powered off, and has become a non-volatile memory. A memory component widely used in personal computers and devices. A typical electrically erasable and programmable read-only memory system uses a doped polysilicon to make a floating gate and control gate. However, when the doped polysilicon floating gate layer is present with defects in the oxide layer, it is easy to cause reliability of the leakage current component of the device. Therefore, in the existing non-volatile memory technology, there is also a charge-trapping layer instead of a polysilicon floating gate. The material of the gamma layer is, for example, nitrogen cutting. The Wei-cut charge trapping layer usually has a layer of oxidized oxide, and forms a composite layer of oxidized stone/nitride/oxygen oxide (〇Xide_nitride_oxide, 〇N〇). Such a component is commonly referred to as a 矽/氧化 夕 //氮化 夕 // 氧化 夕 / 石 石 石 石 石 石 石 , , , , , , , , , , , , , , , , , , , , , , , , , , ,电荷 The charge is trapped on a local area of the layer. Therefore, the sensitivity to wear defects in the oxide layer is small, and the leakage current of the element is less likely to occur. Figure 2 is not a schematic diagram of the operation of the conventional non-volatile memory erasing method. In the figure, the symbol # indicates an electron. 200947446 ^-498 ltwf.doc/n Referring to Fig. 1, the P-type channel non-volatile memory is composed of, for example, a substrate 100, an N-type well region 102, a SONOS memory cell 104, and a selective transistor 1〇6. The SONOS memory cell 104 is, for example, connected in series with the selection transistor 106. The SONOS memory cell 104 includes a bottom oxide layer 〇8, a ruthenium nitride layer 110, a top oxide layer 112, a control gate 114, a source/drain region H6, and a source/no-polar region us. The select transistor includes a gate oxide layer Y〇, a select gate 122, a source/nomogram region 118, and a source/nomogram region 124. ❹ If you want to perform the erase operation, apply a voltage of 6 volts in the source/drain region ΐ16, the 井-type well region 〇2, the source/drain region 124, and apply a voltage of 3.3 volts to the selection gate 122. To open the channel below the selection gate 122, the source / / region 118 and the source / no-pole region 124 equipotential, at the control gate $ plus -6 volts to use the F_N tunneling mechanism to the original Stored _ shell material erased. However, when the F-N tunneling mechanism is used to erase the S〇N〇s memory cell 1〇4, the starting voltage of the S_S memory cell 104 decreases with the 'erase time ❹'. However, due to the voltage difference across the control gate U4 and the substrate, the electron self-control gate 114 is also injected into the nitride layer to make the effect of the light change diminish and (10) secret. 〇n) Wipe the second phenomenon to erase saturation. In this way, the erase time of the memory component is long, and (4) the erase performance of the component is recorded. It is shown as a clear view of the erasing time according to the conventional S嶋S memory cell erasing method. When using the tunneling mechanism to erase the data in the SONOS memory cell 1〇4, a different voltage difference is formed between the N-type well regions 102. The n-type well region is 6-^981twf.doc/n 200947446 /if no-pole region 116, source/no-pole region 124 applies a different positive current 2, and a voltage of 3.3 volts is applied to the selection gate 122 to hit ^

Si IS =下方的通道J使源極_區118與源極你 5 5°伕桩番Γ。其中,符號〇表示於控制閘極114施加 特之電壓、符號▲表示於控咖極u ❹ ❹ 二電= 梭,控制閑極114編5伏特』 6伏特二/於控制間極114施加的電麼為-5.5伏特、 長,作所進行的時㈣ 隨時間而降低效果,甚或有抹除飽和表不购作將 而且,隨著元件積集度(Integrity)择加, 記憶體的底氧化層厚“要變得較薄3 力考= =靠度(例如電荷維持能力等)之間的平衡需:以 【發明内容】 揮發的目的就是在提供,型通道非 功率消耗,施加的操作電壓低’可以節省 並且增進其可靠性^政率’進而縮短記憶體的運作速度, 本發明提出—種j&gt;刑、s、音非姑· &amp; 法。此,道非揮發====: 7 ^ltwf.doc/n 200947446 選擇電晶體與記憶胞。選擇電晶體具有設置於基底上的選 擇閘極以及设置於選擇閘極兩側之基底中的第一源極/没 極區與第二源極/汲極區。記憶胞具有設置於基底上的控制 閘極、設置於基底與控制閘極之間的電荷儲存結構以及分 別設置於控制閘極兩側之基底中的第二源極/汲極區與第 三源極/汲極區。在進行此P型通道非揮發性記憶體的抹除 日守,於基底施加第一電壓,於第三源極/没極區施加第二電 〇 壓,於控制閘極施加第三電壓,以利用基底電洞注入效應, 將電洞注入電荷儲存結構中。第一電壓與第二電壓之壓差 足以在靠近第三源極/汲極區的接面以及在控制閘極下方 形成空乏區。當第一電壓與第二電壓之間的電壓差夠大, 在空乏區(靠近第三源極/汲極區的接面處)造成撞擊解離, 而產生電子-電洞對。一些電洞藉由碰撞並取得足夠的能量 ,,再直接越過氧化阻障層。之後,在控制閘極施加有特 定電壓的情況下,這些電洞會被電荷儲存結構捕捉,而且 電性補償原始存在於電荷儲存結構中的電子。如此,完成 轉發性記Μ魄除操作。 一在本發明之一實施例中,第一電壓為3.5〜6.5伏特、 第一電壓為0伏特、第三電壓為_2〜_5伏特。 發明之一實施例中,上述ρ型通道非揮發性記憶 、的抹除方法,更包括於第一源極/汲極區施加第四電壓, 於選擇閘極施加第五電壓。第一電壓與第五電壓之壓差足 =打,選擇閘極下方的通道區。第一電壓為3 5〜伏 、、第—電壓為0伏特、第三電壓為-2〜-5伏特。第四電 8 200947446 w« -4981twf.d〇c/n 壓為0伏特。第五電壓為-2〜6伏特。 井區或絕i二的=:為n型基底、n型 進行抹除的操作,因此所黨的接从仔、'。構中,以 底之間的電場可以電壓低’控制閑極與基 體的運作速度,並且因電荷儲存結構工: =„壓和井區電位下,藉由選擇閘極的開啟盘: 閉,可以易於進行記憶胞的抹除操作。 、 除此之外,由於採用基底電洞注入效應,使電洞 機制,底介電層的厚度較不會影響抹除速 度。因此底介電層的厚度可以增厚,而能有效避免 憶體漏電流,並可以增加電荷儲存結構的資料保存效果。 另外’由於採用基底電洞注入效應,使電洞注入電荷 儲存結構的機制。本發明之抹除機制與其他的抹除機制 如F-N穿隧機制)相比’記憶胞的抹除狀態可以處於更為 OFF的狀態。由於F_N穿隧機制為一種效率較差之抹除機 制,因此使用F-N穿隨機制時,抹除電壓、抹除時間與抹 除狀態之間的平衡需要更一步的考量。另一方面,由灰;基 底熱電洞注入機制使短通道效應更為穩定,即使為製程狀 態的最短通道長度,也可以達到合理的〇FF狀態電流。因 此,當考慮到記憶體的程式化或抹除操作時,在^記^1·胞設 -4981twf.doc/n 200947446 計上可以使記憶體元件更有變通性。 為讓本發明之上述和其他目的、特徵和優點能更明顯 易懂,下文特舉較佳實施例,並配合所附圖式作詳細說 明如下。 &quot;” 【實施方式】 圖3所繪示為依照本發明一較佳實施例之—種p型通 道記憶體抹除操作示意圖。在圖3中,符號_表示 符號〇表示電洞。 η ’ β請參照® 3,本發明之Ρ型通道轉雜記憶體例如 疋由基底200、Ν型井區202、記憶胞204與選擇電晶體 2〇6所構成的。基底2〇〇例如是ρ型基底。Ν型井區2犯 例=設置於基底200中。記憶胞2〇4與選擇電晶體2〇6例 如是攻置於N型井區202上,且記憶胞204與選擇電晶體 206例如是串接在一起。 記憶胞204包括底介電層208、電荷儲存結構21〇、頂 介電層212、控制閘極214、源極/汲極區216與源極/汲極 區218。其中,底介電層2〇8、電荷儲存結構21〇、頂介電 層212與控制閘極214例如是由下而上依序設置於基底 200上。源極/汲極區216與源極/汲極區218例如是設置於 控制閘極214兩侧的基底2〇〇(N型井區202)中。 底介電層208與頂介電層212的材質例如是氧化矽。 底介電層208與頂介電層212的材質也可以是其他的介電 材料。電荷儲存結構210的材質例如是可以使電荷陷入於 其中的材料’如氮化矽、氮氧化矽、姐氧化物、鈦酸錄物 200947446 ^4981twf.d〇c/n 與給氧化物等。電荷儲存結構21〇的材質也可以是導電材 ^例如摻雜多晶料。控制閘極214的材質例如是捧雜 夕曰曰矽、金屬或金屬氧化物等導體材料。源極/汲極區 與源極/汲極區218例如是含有硼或二氟化硼等卩型 p型摻雜區。 修負 值得注意的是,上述頂介電層212可以視元件的設計 而選擇性地設置。在一實施例中,控制閘極120與基底200 ❹ 之間例如是僅設置底介電層208與電荷儲存結構210。 選擇電晶體206包括閘介電層220、選擇閘極222、源 極/&gt;及極區218與源極/没極區224。其中,閘介電層220、 選擇閘極222例如是由下而上依序設置於基底2〇〇上。源 極/汲極區218與源極/汲極區224例如是設置於選擇閘極 222兩側的基底200中。記憶胞204與選擇電晶體206共 用源極/&gt;及極區218而串接在·-起。Si IS = channel J below makes the source _ area 118 and the source you 5 5 ° 伕 pile Γ. Wherein, the symbol 〇 indicates that a special voltage is applied to the control gate 114, the symbol ▲ indicates that the control electrode is u ❹ ❹ 电 = = shuttle, the control idler 114 is 5 volts, and the volt is applied to the control interpole 114. What is -5.5 volts, long, when the work is done (4) Reduce the effect with time, or even the erased saturation table will not be purchased, and with the addition of the component (Integrity), the bottom oxide of the memory Thickness "to become thinner 3 force test = = balance (such as charge retention ability, etc.) balance: to [invention] The purpose of volatilization is to provide, type channel non-power consumption, low operating voltage applied 'It can save and improve its reliability ^ government rate' and thus shorten the operation speed of the memory. The present invention proposes a kind of j&gt; penalty, s, sound, non-gu and & method, this way, non-volatile ====: 7 ^ltwf.doc/n 200947446 Selecting a transistor and a memory cell. The selection transistor has a selection gate disposed on the substrate and a first source/nomogram region and a second source disposed in the substrate on both sides of the selection gate a pole/bungee region. The memory cell has a control gate disposed on the substrate a charge storage structure disposed between the substrate and the control gate; and a second source/drain region and a third source/drain region respectively disposed in the substrate on both sides of the control gate. The erasing of the non-volatile memory, applying a first voltage to the substrate, applying a second electrical voltage to the third source/no-polar region, and applying a third voltage to the control gate to utilize the substrate hole injection effect The hole is injected into the charge storage structure. The voltage difference between the first voltage and the second voltage is sufficient to form a depletion region near the junction of the third source/drain region and under the control gate. When the first voltage and the first The voltage difference between the two voltages is large enough to cause an impact dissociation in the depletion region (near the junction of the third source/drain region), and an electron-hole pair is generated. Some holes are collided and sufficient The energy, then directly across the oxidation barrier layer. Thereafter, where the control gate is applied with a specific voltage, the holes are captured by the charge storage structure and electrically compensated for the electrons originally present in the charge storage structure. , complete forwarding In one embodiment of the invention, the first voltage is 3.5 to 6.5 volts, the first voltage is 0 volts, and the third voltage is _2 to _5 volts. In one embodiment of the invention, the above ρ The non-volatile memory erasing method of the type channel further includes applying a fourth voltage to the first source/drain region and applying a fifth voltage to the selection gate. The voltage difference between the first voltage and the fifth voltage is sufficient Select the channel area below the gate. The first voltage is 3 5 volts, the first voltage is 0 volts, and the third voltage is -2 to -5 volts. The fourth power 8 200947446 w« -4981twf.d〇c /n The voltage is 0 volts. The fifth voltage is -2 to 6 volts. The well area or the absolute two = = for the n-type substrate, n-type erase operation, so the party's pick-up, '. In the structure, the electric field between the bottom can be low voltage to control the operating speed of the idle pole and the substrate, and because of the charge storage structure: = „pressure and well potential, by selecting the opening of the gate: closed, can It is easy to perform the memory cell erasing operation. In addition, due to the substrate hole injection effect, the hole mechanism and the thickness of the bottom dielectric layer are less affected by the erasing speed. Therefore, the thickness of the bottom dielectric layer can be Thickening, can effectively avoid the leakage current of the memory, and can increase the data preservation effect of the charge storage structure. In addition, the mechanism of injecting the hole into the charge storage structure by using the substrate hole injection effect. The erasing mechanism of the present invention Other erasing mechanisms, such as the FN tunneling mechanism, can be in a more OFF state than the memory cell erasing state. Since the F_N tunneling mechanism is a less efficient erasing mechanism, when using the FN wearing random system, The balance between erase voltage, erase time and erase state requires further consideration. On the other hand, the short-channel effect is more stable by the ash; substrate thermal cavity injection mechanism, ie For the shortest channel length of the process state, a reasonable 〇FF state current can also be achieved. Therefore, when considering the stylization or erasing operation of the memory, the device is set to -4981 twf.doc/n 200947446 The above and other objects, features and advantages of the present invention will become more <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; [Embodiment] FIG. 3 is a schematic diagram of a p-type channel memory erasing operation according to a preferred embodiment of the present invention. In Fig. 3, the symbol _ indicates that the symbol 〇 indicates a hole. For η ' β , please refer to ® 3 , and the 通道-type channel-turning memory of the present invention is composed of, for example, a substrate 200, a 井-type well region 202, a memory cell 204, and a selective transistor 2〇6. The substrate 2 is, for example, a p-type substrate. The 井 type well area 2 is exemplified in the base 200. The memory cell 2〇4 and the selective transistor 2〇6 are, for example, attacked on the N-type well region 202, and the memory cell 204 and the selection transistor 206 are, for example, connected in series. The memory cell 204 includes a bottom dielectric layer 208, a charge storage structure 21, a top dielectric layer 212, a control gate 214, a source/drain region 216, and a source/drain region 218. The bottom dielectric layer 2〇8, the charge storage structure 21〇, the top dielectric layer 212 and the control gate 214 are sequentially disposed on the substrate 200 from bottom to top. The source/drain region 216 and the source/drain region 218 are, for example, disposed in a substrate 2 (N-well region 202) on both sides of the control gate 214. The material of the bottom dielectric layer 208 and the top dielectric layer 212 is, for example, ruthenium oxide. The material of the bottom dielectric layer 208 and the top dielectric layer 212 may also be other dielectric materials. The material of the charge storage structure 210 is, for example, a material such as tantalum nitride, bismuth oxynitride, strontium oxide, titanate, 200947446^4981 twf.d〇c/n, and a donor oxide. The material of the charge storage structure 21A may also be a conductive material, such as a doped polycrystalline material. The material of the control gate 214 is, for example, a conductor material such as a metal oxide or a metal oxide. The source/drain regions and the source/drain regions 218 are, for example, germanium-type p-type doped regions containing boron or boron difluoride. It is worth noting that the top dielectric layer 212 described above can be selectively disposed depending on the design of the components. In one embodiment, between the control gate 120 and the substrate 200, for example, only the bottom dielectric layer 208 and the charge storage structure 210 are disposed. The select transistor 206 includes a gate dielectric layer 220, a select gate 222, a source/&gt;, and a polar region 218 and a source/nomogram region 224. The gate dielectric layer 220 and the gate 222 are sequentially disposed on the substrate 2 from bottom to top. The source/drain regions 218 and the source/drain regions 224 are, for example, disposed in the substrate 200 on both sides of the selection gate 222. The memory cell 204 and the selection transistor 206 share the source/&gt; and the polar region 218 in series.

閘介電層220的材質例如是氧化矽等介電材料。選擇 閘極222的材質例如是摻雜多晶矽、金屬或金屬氧化物等 @ 導體材料。源極/&gt;及極區224例如是含有棚等P型播質之P 型摻雜區。此外,記憶胞204與選擇電晶體206也可以設 置有淡摻雜區,以減輕短通道效應。 值得一提的是,本實施例雖是以P型基底200搭配有 N型井區202之P型通道非揮發性記憶體為例作說明’惟 本發明提出之記憶體當然也可以是未設置N型井區’而是 N型基底的P型通道非揮發性記憶體,或者也可以是設置 有N型井區的絕緣層上有矽基底。 11 200947446 知;98 ltwf.doc/n 請參照圖3 ’在對P型通道非揮發性記憶體進行抹除 時,於N型井區202施加電壓Vnw,於源極/沒極區216 施加縣VD,·於控制間極214施加電麼I,以利用基底 t洞注人效應,將電洞注人電荷儲存結構21()中,以中和 «荷儲存結構210中的電子。· %與電壓%之壓差 ,以在控制閘極214下方形成空乏區226。電壓Vnw例如 是3.5〜6.5伏特,在圖示中是以6伏特為例子。電壓%例 © =疋0伏特。電壓Vcg足以將空乏區226中的電洞拉入電 荷儲存結構210中,以中和電荷儲存結構21〇中的電子。 電壓VCG例如是_2〜_5伏特,在圖示中是以_3 3伏特為例子。 ^㊁於1^型井區202與源極/汲極區216之間施加反轉偏 壓時,隨著電壓vNW的提高,在控制閘極214下方形成空 乏區226,電場的強度也會隨之提高,因而產生電子電洞 對,並在反轉偏壓接面形成漏電。此時,電子受到施加於 N型井區202的電壓VNW吸引而往N型井區2〇2移動而 Q 電洞受到施加於源極/汲極區216的電壓VD吸引而往源極/ 及極區216移動。當在控制閘極214施加電壓Vcg,且電 壓VCG相對於電壓Vd為負,因此電洞受到施加於控制閘 極=14的電壓VcG吸引而往控制閘極214移動,並被拉入 電荷儲存結構210中,電洞與先前的電子互相抵銷,p型 通道非揮發性記憶體因此而被抹除。 另一方面,在對P型通道非揮發性記憶體進行抹除 時,於源極/汲極區224施加電壓Vs,於選擇閘極施加電 壓VSG。電壓Vs例如是0伏特。電壓Vnw與電壓Vsg之 12 ^981twf.doc/n 200947446 ,差足以打開選擇閘極222下方的通道區。電壓Vsg例如 是-2〜6伏特,在圖示中是以3 3伏特(使電壓與電壓 VSG之壓差為2.7伏特)或6伏特(使電壓Vnw與電^ Vsg 之壓差為〇伏特或浮置)為例子。 當於選擇閘極222施加偏壓時,而使選擇閘極222下 方的通道區打開時,源極/汲極區218與源極/汲極區224 的電位約略相等。亦即,源極/汲極區218有相當於電壓 VS的電壓。如此’在源極/没極區2!8侧的控制間極214 下方亦形成空乏區226,因而促成電子電洞對的產生,並 在反轉接面形成漏電。此時,電子受到施加於N型井區2〇2 的電壓VN w吸引而往N型井區2 〇 2移動,而電洞受到源極 /汲極區218的電壓Vs吸引而往源極/汲極區218移動Γ告 在控制閘極214施加電壓VcG,且電壓&amp;相對於電壓^ 為負時,電洞受到施加於控制閘極214的電壓v 往控制閘極214移動,並被拉入電荷儲存結構210中,雷 的電子互相抵銷,P型通道非揮發性記憶體因此 而被抹除。The material of the gate dielectric layer 220 is, for example, a dielectric material such as ruthenium oxide. The material of the gate 222 is selected to be, for example, a polysilicon material such as doped polysilicon, metal or metal oxide. The source/&gt; and the polar region 224 are, for example, P-type doped regions containing P-type broadcast materials such as sheds. In addition, the memory cell 204 and the selection transistor 206 may also be provided with a lightly doped region to mitigate short channel effects. It should be noted that, in this embodiment, the P-type substrate 200 is matched with the P-type channel non-volatile memory of the N-type well region 202 as an example. However, the memory proposed by the present invention may of course not be set. The N-type well region 'is a P-type channel non-volatile memory of the N-type substrate, or may also be a germanium substrate on the insulating layer provided with the N-type well region. 11 200947446 知;98 ltwf.doc/n Please refer to FIG. 3 'When erasing the P-type channel non-volatile memory, apply voltage Vnw in the N-type well region 202, and apply the county in the source/no-polar region 216 VD, applying a voltage I to the control interpole 214 to inject the hole into the charge storage structure 21() to neutralize the electrons in the charge storage structure 210 using the substrate t hole injection effect. • A voltage difference between % and voltage % to form a depletion region 226 below the control gate 214. The voltage Vnw is, for example, 3.5 to 6.5 volts, and is exemplified by 6 volts in the drawing. Voltage % example © = 疋 0 volts. The voltage Vcg is sufficient to pull the holes in the depletion region 226 into the charge storage structure 210 to neutralize the electrons in the charge storage structure 21'. The voltage VCG is, for example, _2 to _5 volts, and is exemplified by _3 3 volts in the drawing. When a reverse bias is applied between the well 2 and the source/drain region 216, as the voltage vNW increases, a depletion region 226 is formed under the control gate 214, and the intensity of the electric field also This increases, thereby creating an electron hole pair and creating a leakage on the reverse bias junction. At this time, electrons are attracted by the voltage VNW applied to the N-type well region 202 to move to the N-type well region 2〇2, and the Q-hole is attracted to the source V/W by the voltage VD applied to the source/drain region 216 to the source/and The polar region 216 moves. When the voltage Vcg is applied to the control gate 214 and the voltage VCG is negative with respect to the voltage Vd, the hole is attracted by the voltage VcG applied to the control gate=14 to move to the control gate 214, and is pulled into the charge storage structure. In 210, the holes are offset from the previous electrons, and the p-type channel non-volatile memory is thus erased. On the other hand, when the P-channel non-volatile memory is erased, a voltage Vs is applied to the source/drain region 224 to apply a gate voltage VSG. The voltage Vs is, for example, 0 volts. The voltage Vnw is 12 ^ 981 twf.doc / n 200947446 of the voltage Vsg , and the difference is sufficient to open the channel region below the selection gate 222. The voltage Vsg is, for example, -2 to 6 volts, in the figure, it is 3 3 volts (the voltage difference between the voltage and the voltage VSG is 2.7 volts) or 6 volts (the voltage difference between the voltage Vnw and the voltage Vsg is 〇V or Floating) as an example. When a bias is applied to the select gate 222 to open the channel region below the select gate 222, the potential of the source/drain region 218 and the source/drain region 224 are approximately equal. That is, the source/drain region 218 has a voltage corresponding to the voltage VS. Thus, a depletion region 226 is formed below the control interpole 214 on the source/no-polar region 2!8 side, thereby causing generation of an electron hole pair and forming a leakage current on the inversion junction. At this time, electrons are attracted by the voltage VN w applied to the N-type well region 2〇2 to move to the N-type well region 2 〇2, and the hole is attracted to the source/drain region 218 by the voltage Vs to the source/ The drain region 218 moves the alarm to apply a voltage VcG to the control gate 214, and when the voltage &amp; is negative with respect to the voltage ^, the hole is moved by the voltage v applied to the control gate 214 to the control gate 214, and is pulled In the charge storage structure 210, the electrons of the lightning cancel each other, and the non-volatile memory of the P-type channel is thus erased.

圖4所繪示為依照本發明之非揮發性記憶體之 法所得到的讀取電流與抹除時間之關係圖。在圖 Ί 驗例U以符號表示)為於N型井區逝施加^ IFigure 4 is a graph showing the relationship between the read current and the erase time obtained in accordance with the non-volatile memory method of the present invention. In the figure 验, the example U is symbolized) is applied to the N-type well region.

壓,於源極/祕區216施加G伏特之電壓;於 Z 214施加-3伏特之電壓;於源極/没極區以施加〇 : =,於選侧極施加〇伏特之電壓。實驗例A以符號 不為於N型井區202施加6.5伏特之電壓,原極/沒 13 w81twf.doc/n 200947446 極區216施加〇伏特之電壓;於控制閘極2i4施加_4伏特 之電壓,於源極/汲極區224施加〇伏特之電壓,於選擇閘 極施加0伏特之電壓。 如圖4所示,對於實驗例1而言,當抹除時間經過0 i 秒時,讀取電流快速地降低7個數量級,表示記 ❹ 效達到抹除狀態。同樣的,對於實驗例2而言,當抹除時 間經,G.G1秒時’讀取電流快速地降低至相當於實驗例i 之數量級,表示記憶胞已有效達到抹除狀離。 請同時參關2與圖4,採用f知的;:Nf隨機 除記憶胞時’即使抹除時間經過i秒以上,仍錢使读取 流快速_餘相當讀纽。而_本制之抹^方 法抹除記憶胞時,則可以在較低電壓之操健件、 時間小於G.i秒的情況下,使讀取電流快速並容易的降 低。因此本發_抹除方法與f知的邮穿暖制相比, 所需的操作電壓低,可以節省功率雜,並且可以缩 除時間、提高抹除的效率’進而縮短元件的運作速度。抹 綜上職’本發明之P贿道轉發性記憶體的抹除 /’由於採用基底電洞注人效應,將電洞注人電荷^ ,中,以進行抹除的操作’因此所需的操作電壓低,二 上制極與基底之間的電場可崎低,可以節省功率 以及周邊電荷幫浦電路的魏域,提高抹除的 t 記憶體的運作速度,並且能夠增進元件的可靠性^ 2選擇閘極的開啟與關閉,可以易於進行 _ 200947446秦 £doc/n 除此之外,由於採用基底電洞注入(substrate hole injection)效應,使電洞注入電荷儲存結構的機制,底介電 層的厚度較不會影響抹除速度。因此底介電層的厚度可以 增厚,而能夠以避免記憶體漏電流,並可以增加壽命以及 貢料保存效果。Voltage, a voltage of G volts is applied to the source/secret region 216; a voltage of -3 volts is applied to Z 214; 〇: = is applied to the source/nomogram region, and a voltage of 〇V is applied to the selected side electrode. In the experimental example A, the voltage of 6.5 volts is not applied to the N-type well region 202, the primary pole/no 13 w81 twf.doc/n 200947446 polar region 216 is applied with a voltage of 〇volts; and the voltage of the control gate 2i4 is applied with _4 volts. A voltage of 〇V is applied to the source/drain region 224, and a voltage of 0 volts is applied to the selection gate. As shown in Fig. 4, for Experimental Example 1, when the erasing time elapsed for 0 i seconds, the read current was rapidly reduced by 7 orders of magnitude, indicating that the effect was erased. Similarly, for Experimental Example 2, when the erasing time was passed, the reading current was rapidly decreased to the order of the experimental example i at G.G1 sec, indicating that the memory cell was effectively erased. Please refer to 2 and Figure 4 at the same time, using f to know;: Nf random except for memory cell. ‘ Even if the erasure time is more than i seconds, the money will make the reading stream fast. When the _ system wipes the memory cell, the read current can be quickly and easily reduced at a lower voltage of the exercise component and the time is less than G.i. Therefore, the present invention has a lower operating voltage than that of the postal heating system, which saves power, and can reduce the time and improve the efficiency of erasing, thereby shortening the operating speed of the components. Wiping the above-mentioned 'Purchase of the P-Road Forwarding Memory of the Invention/' Because of the use of the base hole injection effect, the hole is injected into the charge ^, in the middle to perform the erase operation' The operating voltage is low, the electric field between the two upper electrodes and the substrate can be low, which can save power and the Wei domain of the peripheral charge pump circuit, improve the operating speed of the erased t memory, and improve the reliability of the component^ 2 Selecting the opening and closing of the gate can be easily carried out. In addition, due to the use of the substrate hole injection effect, the mechanism of injecting the hole into the charge storage structure, the bottom dielectric The thickness of the layer does not affect the erasing speed. Therefore, the thickness of the bottom dielectric layer can be increased, and the leakage current of the memory can be avoided, and the life and the preservation effect of the tributary can be increased.

另外,由於採用基底電洞注入效應,使電洞注入電荷 儲存結構的機制,抹除操作受到通道長度尺寸的影響較 小’因此元件尺寸縮小’更能夠增進其電性表現,而有助 於提高元件之積集度。 雖然本發明已以較佳實施例揭露如上,然其並非用以 限定本發明,任何熟習此技藝者,在不脫離本發明之精神 =範圍内,當可作些許之更動與潤飾,因此本發明之保護 範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 操作^ i為依照習知之非揮發性記憶體之F-N抹除方法的 =所緣示為習知卩型通道非揮發性記紐之化 ^之關係圖在不同抹除電壓下所得到之讀取電流與抹除時 實施明之非揮發性記憶體之抹除方法的- 法,憶體之袜除方 係圖。 电坚下所侍到之讀取電流與抹除時間之關 +y81twf.doc/n 200947446 【主要元件符號說明】 100、200 :基底 108 :底氧化層 110 :氮化矽層 112 :頂氧化矽 102、202 : N型井區 104、204 :記憶胞 106、206 :選擇電晶體 114、214 :控制閘極 116、118、124、216、218、224 :源極/汲極區 110 :閘氧化層 122、222 :選擇閘極 208 :底介電層 210 :電荷儲存結構 212 :頂介電層 220 :閘介電層 16In addition, due to the substrate hole injection effect, the mechanism of injecting holes into the charge storage structure, the erase operation is less affected by the channel length dimension, so the component size is reduced, which can improve its electrical performance and help improve The degree of integration of components. While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application. [Simple description of the diagram] The operation ^ i is in accordance with the conventional non-volatile memory FN erasing method = the relationship is the conventional 卩 type channel non-volatile statistic ^ relationship diagram in different erasing voltage The reading current obtained in the following and the method of erasing the non-volatile memory in the eradication process, the method of removing the socks of the body. The reading current and the erasing time of the electric support are +y81twf.doc/n 200947446 [Main component symbol description] 100,200: substrate 108: bottom oxide layer 110: tantalum nitride layer 112: top oxide layer 102, 202: N-type well region 104, 204: memory cell 106, 206: select transistor 114, 214: control gate 116, 118, 124, 216, 218, 224: source/drain region 110: gate oxidation Layers 122, 222: select gate 208: bottom dielectric layer 210: charge storage structure 212: top dielectric layer 220: gate dielectric layer 16

Claims (1)

200947446— 十、申請專利範圍: 1.一種p型通道非揮發性記憶體的抹除方法,該p型 通道非揮發性§己憶體包括:串接設置於一基底上的一選擇 電晶體與-記憶胞,其中該選擇電晶體包括設置於該基底 上,-選擇間極以及設置於該選擇閉極兩側之該基底中的 :第一源極/没極區與一第二源極/沒極區;該記憶胞包括 e又置於6亥基底上的一控制閘極、設置於該基底與該控制閘 極之間#電荷儲存結構以及分別設置於該控制閑極兩侧 ❹之該基底中的該第二源極/汲極區與-第三源極/没極區, 該抹除方法包括: a於該基底施加—第一電壓,於該第三源極/汲極區施加 第7*電壓’於該控制閘極施加-第三電壓,以利用基底電 洞注入效應,將電洞注入該電荷儲存結構中,其中該第一 電壓與該第二電壓之壓差足以在該第三源極/汲極區附近 與該控制閘極下方形成一空乏區,該第三電塵足以將該空 乏區中的電洞拉入該電荷儲存結構。 © 2.如申請專利範圍第1項所述之p型通道非揮發性記 憶體的抹除方法,其中該第-電壓為3.5〜6.5伏特。 3. 如申請專利範圍第1項所述之P型通道非揮發性記 憶體的抹除方法,其中該第二電壓為0伏特。 4. 如申請專利範圍第1項所述之p型通道非揮發性記 憶體的抹除方法,其中該第三電壓為-2〜-5伏特。 5. 如申清專利範圍第1項所述之p型通遒非揮發性記 憶體的抹除方法,更包括於該第一源極/沒極區施加一第四 17 81twf.doc/n 200947446 電,,於該選擇閘極施加一第五電壓,其中該第一電壓鱼 該第五電壓之壓差足以打開該選擇閘極下方的-通道區Ϊ 6·如申凊專利範圍第5項所述之p型通道非揮發性 憶體的抹除方法,其中該第—電壓為3.5〜6 5伏二發^己 7. 如申s青專利範圍第5項所述之p型通道非揮發性記 憶體的抹除方法,其中該第二電壓為G伏特。 〇 8. 如申請專利範圍第5項所述之P型通道非揮發性記 φ 隐體的抹除方法,其中該第三電壓為-2〜-5伏特。 9. 如申請專利範圍第5項所述之P型通道非揮發性記 憶體1 的抹除方法,其中該第 四電壓為0伏特。 1〇.如申請專利範圍第5項所述之P型通道非揮發性記 心體=抹除方法,其中該第五電壓為-2〜6伏特。 u.如申請專利範圍第1項所述之P型通道非揮發性記 思體的抹除方法,其中該基底為N型基底或N型井區。200947446—X. Patent Application Range: 1. A method for erasing non-volatile memory of p-type channel, the p-type channel non-volatile memory includes: a selective transistor arranged in series on a substrate a memory cell, wherein the selection transistor comprises a substrate disposed on the substrate, a selected interpole, and the substrate disposed on both sides of the selected closed electrode: a first source/nopole region and a second source/ a non-polar region; the memory cell includes a control gate on which the e is placed on the 6-well substrate, and is disposed between the substrate and the control gate. The charge storage structure is disposed on the two sides of the control idler respectively. The second source/drain region and the third source/drain region in the substrate, the erase method includes: a applying a first voltage to the substrate, applying the third source/drain region The seventh voltage 'applies a third voltage to the control gate to inject a hole into the charge storage structure by using a substrate hole injection effect, wherein a voltage difference between the first voltage and the second voltage is sufficient A depletion zone is formed near the third source/drain region and below the control gate. The third electrical dust empty lack sufficient hole region pulled into the charge storage structure. The method of erasing a p-type channel non-volatile memory according to claim 1, wherein the first voltage is 3.5 to 6.5 volts. 3. The method of erasing a P-type channel non-volatile memory according to claim 1, wherein the second voltage is 0 volts. 4. The method of erasing a p-type channel non-volatile memory according to claim 1, wherein the third voltage is -2 to -5 volts. 5. The method for erasing the p-type overnight non-volatile memory according to claim 1 of the patent scope includes applying a fourth 17 81 twf.doc/n 200947446 to the first source/no-polar region. And applying a fifth voltage to the selection gate, wherein the voltage difference of the fifth voltage of the first voltage fish is sufficient to open a channel region below the selection gate Ϊ 6 as claimed in claim 5 The method for erasing a non-volatile memory of a p-type channel, wherein the first voltage is 3.5~6 5 volts, and the second type is 7. The p-type channel is non-volatile as described in claim 5 of the patent application scope. A method of erasing a memory, wherein the second voltage is G volts. 8. A method of erasing a P-type channel non-volatile φ cryptor as described in claim 5, wherein the third voltage is -2 to -5 volts. 9. The method of erasing a P-type channel non-volatile memory 1 according to claim 5, wherein the fourth voltage is 0 volts. The P-channel non-volatile body-character=wiping method according to claim 5, wherein the fifth voltage is -2 to 6 volts. U. The method of erasing a P-channel non-volatile marker according to claim 1, wherein the substrate is an N-type substrate or an N-type well region.
TW97117905A 2008-05-15 2008-05-15 Method for erasing P-channel non-volatile memory TW200947446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97117905A TW200947446A (en) 2008-05-15 2008-05-15 Method for erasing P-channel non-volatile memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97117905A TW200947446A (en) 2008-05-15 2008-05-15 Method for erasing P-channel non-volatile memory

Publications (1)

Publication Number Publication Date
TW200947446A true TW200947446A (en) 2009-11-16

Family

ID=44870347

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97117905A TW200947446A (en) 2008-05-15 2008-05-15 Method for erasing P-channel non-volatile memory

Country Status (1)

Country Link
TW (1) TW200947446A (en)

Similar Documents

Publication Publication Date Title
TWI304266B (en) Memory cell and memory cell array
TWI358834B (en)
JP5459999B2 (en) Nonvolatile semiconductor memory element, nonvolatile semiconductor device, and operation method of nonvolatile semiconductor element
TW200919708A (en) Memory devices with split gate and blocking layer
JPH10256400A (en) Non-volatile semiconductor memory
JP4480955B2 (en) Semiconductor memory device
TWI238413B (en) Methods for enhancing erase of a memory device, programmable read-only memory device and method for preventing over-erase of an NROM device
TW200933637A (en) Programmable CSONOS logic element
US8320192B2 (en) Memory cell, a memory array and a method of programming a memory cell
JP4490630B2 (en) Method for erasing nonvolatile memory
Zhao et al. A low voltage SANOS nonvolatile semiconductor memory (NVSM) device
TWI320968B (en) Double-side-bias methods of programming and erasing a virtual ground array memory
You et al. Thickness dependence of high-k materials on the characteristics of MAHONOS structured charge trap flash memory
TW200947446A (en) Method for erasing P-channel non-volatile memory
Lee et al. A novel charge-trapping-type memory with gate-all-around poly-Si nanowire and HfAlO trapping layer
US20130114346A1 (en) Method of operating a flash eeprom memory
US7715241B2 (en) Method for erasing a P-channel non-volatile memory
JP2005285935A (en) Semiconductor memory device
JP2007059847A (en) Semiconductor memory device, method of manufacturing semiconductor memory device and information rewriting method for semiconductor memory device
KR20120102454A (en) Nonvolatile memory device and manufacturing method of the same
KR101065060B1 (en) Charge trap type nonvolatile memory
JP2009021305A (en) Nonvolatile memory transistor
Lin et al. HfO2 nanocrystal memory on SiGe channel
JP2010170591A (en) Nonvolatile semiconductor storage device and method for driving the same
TWI288416B (en) Method of erasing non-volatile memory data