TW200944582A - Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method - Google Patents

Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method Download PDF

Info

Publication number
TW200944582A
TW200944582A TW98104943A TW98104943A TW200944582A TW 200944582 A TW200944582 A TW 200944582A TW 98104943 A TW98104943 A TW 98104943A TW 98104943 A TW98104943 A TW 98104943A TW 200944582 A TW200944582 A TW 200944582A
Authority
TW
Taiwan
Prior art keywords
chemical mechanical
mechanical polishing
acid
aqueous dispersion
water
Prior art date
Application number
TW98104943A
Other languages
Chinese (zh)
Other versions
TWI463000B (en
Inventor
Hirotaka Shida
Takafumi Shimizu
Masatoshi Ikeda
Shou Kubouchi
Yousuke Shibata
Michiaki Andou
Kazuhito Uchikura
Akihiro Takemura
Original Assignee
Jsr Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr Corp filed Critical Jsr Corp
Publication of TW200944582A publication Critical patent/TW200944582A/en
Application granted granted Critical
Publication of TWI463000B publication Critical patent/TWI463000B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/32115Planarisation
    • H01L21/3212Planarisation by chemical mechanical polishing [CMP]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Disclosed is an aqueous dispersion for chemical mechanical polishing, which contains (A) silica particles and (B1) an organic acid. The silica particles (A) have such a chemical property that the silanol group density thereof as calculated based on the specific surface area determined by using a BET method and the amount of silanol groups determined by titration is 1.0-3.0 groups/nm2.

Description

200944582 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種化學機械研磨用水系分散體及化學機 械研磨方法。 【先前技術】 近年來’為了防止因半導體裝置之多層佈線化所引起之訊 號延遲的增加,而研究使用低介電常數之層間絕緣膜(以 下’亦稱作「低介電常數絕緣膜」)。作為此種低介電常數 絕緣膜’例如已研究有日本專利特開2001-308089號公報或 特開2001-298023號公報中所記載之材料。使用如上所述之 低介電常數絕緣膜作為層間絕緣膜時,由於佈線材料要求高 導電性’因此通常使用銅或銅合金。藉由金屬鑲散法 ❹BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical mechanical polishing aqueous dispersion and a chemical mechanical polishing method. [Prior Art] In recent years, in order to prevent an increase in signal delay due to multilayer wiring of a semiconductor device, an interlayer insulating film using a low dielectric constant (hereinafter referred to as "low dielectric constant insulating film") has been studied. . As such a low dielectric constant insulating film, for example, materials described in JP-A-2001-308089 or JP-A-2001-298023 have been studied. When the low dielectric constant insulating film as described above is used as the interlayer insulating film, copper or a copper alloy is usually used because the wiring material requires high conductivity. By metal inlaying

(Damascene如让〇(1)製造此種半導體裝置時,通常必須實 如下步驟:藉由化學機械研磨除去障壁金屬(barriermet 膜上之佈線材料之步驟(第4磨步驟);以及其後藉由化 機械研磨除姆壁金祕,並視需要進-步對佈線^料及 =Γ。膜進行化學機械研磨而予以平坦化之步驟(第2研 首先,於上述第1研磨步驟中, 僅對佈線材料進行研磨。 ㈤速且選擇性地 壁金屬膜等其他種:二 高研磨速度之狀態下難以抑制佈線部分的淺H後材料之 098104943 vaishing) 3 200944582 ,磨姓(erosion)。例如’若僅提高研磨速度,财時雖可 藉由增加研磨時之施加壓力以加大對晶圓施加的摩擦力而 達成i_佈線。卩;7之淺碟化或磨㈣會隨著研磨逮度之提言 而惡化’故來自研磨方法之途徑(卿職h)中有其極限。進 而為了在第2研磨步驟中獲得良好之研磨面,必須抑制 1研磨步驟結束時於微細佈線_上之銅殘留(銅殘潰)。 ❹ 如上所述,除高速研磨性能及高平坦化特性以外,於第丄 研磨步職束時直接除去峨料者藉由 簡單的清洗步驟 而除去銅殘留’係很難以目前之研磨方法達成,為了彌補此(Damascene, when manufacturing such a semiconductor device by 〇(1), usually has to perform the following steps: removing the barrier metal by the chemical mechanical polishing (the step of the wiring material on the barriermet film (the fourth grinding step); and thereafter The mechanical polishing is performed in addition to the gold wall of the wall, and the step of planarizing the film by chemical mechanical polishing is carried out as needed (second research, first, in the first polishing step, only for wiring The material is ground. (5) Other types such as a fast and selective wall metal film: it is difficult to suppress the light H after the wiring portion in the state of high polishing speed. 098104943 vaishing) 3 200944582 , erosion. For example, if only Increasing the polishing speed, the i_ wiring can be achieved by increasing the friction applied during the grinding to increase the friction applied to the wafer. 浅; 7 The shallow disc or the grinding (4) will be accompanied by the grinding arrest. However, there is a limit in the way from the grinding method (Qi's job h). In order to obtain a good polished surface in the second grinding step, it is necessary to suppress the copper on the fine wiring at the end of the 1 grinding step. Remaining (copper residue) ❹ As described above, in addition to the high-speed polishing performance and high flattening characteristics, it is difficult to remove the copper residue by a simple cleaning step in the first polishing step. The current grinding method is achieved to compensate for this

It况亦要求開發—種可収上料性之_的化學機械研 磨用水系分散體。It also requires the development of a chemical mechanical grinding water dispersion that is acceptable for feeding.

另方面於上述第2研磨步驟中,特別要求將被研磨面 研磨成平β之特性。因此’為了進-步提高第2研磨步驟中 之被研磨面之平坦性’而研究半導體裝置構造之設計變更。 〃體而"使用機械強度較弱之低介電常數絕緣膜時,係根 據如下方面等理由:⑴由於化學機械研磨,而於被研磨面 上產生稱作|彳落或刮痕⑻加⑻之表面缺陷 ;(2)對具有微 細佈線構造之曰固、也 曰曰圓進行研磨時,低介電常數絕緣膜之研磨速 度月,員提n ’因此無法獲得經平坦化之高精度的拋光面;(3) 障壁金相與低介電常數絕緣膜之密著性不 良;從而研究了 匕石夕等所構成之稱作上覆層(caplayer)之被覆膜 形成於低介電常數絕緣膜之上層的構造等。於該構造之第2 098104943 4 200944582 研磨步驟中,必須將上層之上覆層快速研磨除去,極力抑制 下層之低介電常數絕緣膜之研磨速度。即,要求上覆層之研 • 磨速度(RR1)與低介電常數絕緣膜之研磨速度(RR2)之關係 . 滿足 RR1>RR2。 又’為了防止低介電常數絕緣膜之破壞或與積層材料之界 面剝離,而有降低研磨時之施加壓力以減小對晶圓施加之摩 擦力的方法。然而,該方法係藉由減小研磨時之施加壓力而 ❹造成研磨速度下降,故而會導致半導體裝置之生產效率明顯 下降。為了解決該等課題,國際公開第2〇〇7/11677〇號公報 中,记載有藉由在化學機械研磨用水系分散體中含有水溶性 咼分子,而可提高研磨速度的技術,但該方法中第2研磨步 驟中之研磨速度亦稱不上充分。 如上所述,要求開發一種防止低介電常數絕緣膜之損傷, 並且具備對障壁金屬膜及上覆層之高研磨速度及高平坦化 ❿特性之新穎的化學機械研磨用水系分散體。 然而,通常化學機械研磨用水系分散體之組成係由研磨粒 (abrasive grain)及添加劑成分所構成。近年來,化學機械 .研磨用水系分散體之開發主要著眼於添加劑成分之組合,但 ‘另-方面’例如日本專利特開2_一 197573號公報或特開 2〇〇3-1_21號公報t ’則研究了藉由控制研磨粒之性狀來 改善研磨特性。 然而,於使用日本專利特開2__197573號公報或特開 098104943 5 200944582 2003-109921號公報中所記載之研磨粒時,存在如下問題: 該研磨粒中存在鈉等金屬成分,研磨後難以將殘留於被研磨 物上之鈉等金屬成分除去,故難以在實際裝置之研磨中使 用。進而’日本專利特開2003-197573號公報或特開 2003-109921號公報中所記載之研磨粒,由於粒子分散液缺 乏穩定性,因此存在有保存穩定性差之問題。 【發明内容】 本發明之目的在於提供一種化學機械研磨用水系分散體 及使用其之化學機械研磨方法’該化學機械研磨用水系分散 體係不會在金屬膜或低介電常數絕緣膜上引起缺陷,減小對 低介電常數絕緣膜之研磨速度,具有對TE〇s膜等層間絕緣 膜(上覆層)之高研磨速度及高平坦化特性,且晶圓之金屬污 染較少’可抑制淺碟化、磨蝕、刮痕及尖型凹槽({卿)等表 面缺陷者。 本發明之另-目的在於提供—種即便在普龍力條件下 亦不會在金屬膜或低介電常數絕緣膜上引起缺陷,具有對鋼 膜之高研磨速度及高研磨選擇性,且晶κ之金屬污染較 =學機械研磨用水系分㈣、及使用其之化學機械研磨方 上述「尖型凹槽」係本案發明所欲解決之新課題。以下, 針對「尖型凹槽」加以詳細說明。 於本說明書中,所謂「尖型凹槽」,係特別是在金屬膜由 098104943 Λ 200944582 銅或銅合錄成軸著產生之職,餘 邊佈線之區域、與不含有鋼或銅合金之微細佈 岐(held)部分)的界面上,因化學機械研磨而局潘 碟化或磨蝕之研磨缺陷。 座生戋 之 二為產生㈣凹槽之—個要因,—般料,於 合金之微細佈線之區域、與不含有鋼或銅合金之微細=On the other hand, in the second polishing step described above, it is particularly required to polish the surface to be polished to a flat β. Therefore, the design change of the structure of the semiconductor device has been studied in order to further improve the flatness of the surface to be polished in the second polishing step. When using a low dielectric constant insulating film having a weak mechanical strength, it is based on the following reasons: (1) due to chemical mechanical polishing, a phenomenon called [slumping or scratching (8) plus (8) is generated on the surface to be polished. (2) When the tamping and the rounding of the fine wiring structure are performed, the polishing rate of the low dielectric constant insulating film is lowered, so that the flattening and high precision polishing cannot be obtained. (3) The adhesion between the barrier metallurgy and the low dielectric constant insulating film is poor; thus, it is studied that a coating called a caplayer composed of a stone or the like is formed on the low dielectric constant insulation. The structure of the upper layer of the film, etc. In the grinding step of the construction of the second 098104943 4 200944582, the coating on the upper layer must be quickly ground and removed, and the polishing rate of the lower dielectric constant insulating film of the lower layer is suppressed as much as possible. That is, the relationship between the grinding speed (RR1) of the overlying layer and the polishing rate (RR2) of the low dielectric constant insulating film is required. RR1 > RR2 is satisfied. Further, in order to prevent breakage of the low dielectric constant insulating film or peeling off from the interface of the build-up material, there is a method of reducing the applied pressure during polishing to reduce the frictional force applied to the wafer. However, this method causes a decrease in the polishing speed by reducing the applied pressure during polishing, which results in a significant decrease in the production efficiency of the semiconductor device. In order to solve such a problem, the technique of increasing the polishing rate by including a water-soluble ruthenium molecule in a chemical mechanical polishing aqueous dispersion is described in the publication No. 2/7,677, 〇. The polishing rate in the second polishing step in the method is also not sufficient. As described above, it is required to develop a novel chemical mechanical polishing aqueous dispersion which prevents damage of the low dielectric constant insulating film and which has high polishing rate and high flattening properties for the barrier metal film and the overlying layer. However, in general, the composition of the chemical mechanical polishing aqueous dispersion is composed of abrasive grains and additive components. In recent years, the development of chemical machinery and polishing water-based dispersions has mainly focused on a combination of additive components, but the 'other aspects' are disclosed, for example, in Japanese Patent Laid-Open No. Hei. No. Hei. No. Hei. 'It was studied to improve the grinding characteristics by controlling the properties of the abrasive particles. However, when the abrasive grains described in Japanese Laid-Open Patent Publication No. Hei. No. Hei. No. Hei. No. 098104943 No. Hei No. 098104943 No. Hei No. 098104943 No. 2003-109921, there is a problem that a metal component such as sodium is present in the abrasive grains, and it is difficult to remain in the polishing after polishing. Since the metal component such as sodium on the object to be polished is removed, it is difficult to use it in the polishing of an actual device. Further, the abrasive grains described in Japanese Laid-Open Patent Publication No. 2003-197573 or JP-A-2003-109921 have a problem that the particle dispersion liquid lacks stability and thus has poor storage stability. SUMMARY OF THE INVENTION An object of the present invention is to provide a chemical mechanical polishing aqueous dispersion and a chemical mechanical polishing method using the same. The chemical mechanical polishing aqueous dispersion system does not cause defects on a metal film or a low dielectric constant insulating film. , reducing the polishing rate of the low dielectric constant insulating film, having a high polishing rate and high flattening property for an interlayer insulating film (overlying layer) such as a TE〇s film, and having less metal contamination of the wafer can be suppressed Surface defects such as shallow discs, abrasion, scratches, and sharp grooves ({卿). Another object of the present invention is to provide a method which does not cause defects on a metal film or a low dielectric constant insulating film even under conditions of Proton, has a high polishing rate and a high polishing selectivity to a steel film, and has a crystal. The metal contamination of κ is lower than that of the mechanical polishing water (4), and the chemical mechanical polishing using the above-mentioned "pointed groove" is a new problem to be solved by the invention of the present invention. Hereinafter, the "tip groove" will be described in detail. In this specification, the term "pointed groove" is specially generated when the metal film is recorded by 098104943 Λ 200944582 copper or copper. The area of the remaining side wiring and the fineness of steel or copper alloy are not included. On the interface of the slab (held part), the grinding defects due to chemical mechanical polishing are caused by panning or abrasion. The second is the origin of the (four) groove, the general material, the fine wiring area of the alloy, and the fineness of the steel or copper alloy.

==成?勻地局部存在有化學機械研磨用水系分 政體中所S之成分,而使界面附近過度研磨。例如,==成? The component of S in the chemical mechanical polishing water system is locally present in the ground, and the vicinity of the interface is excessively ground. E.g,

機械研磨用水系分散體中所含之研磨粒成分以較高之J 存在於上述界面附近,職界面之研磨速度會局部增大^ 亦 致過度研磨。若如此進行過度研磨,則出現平坦性不良。 即為稱作「尖型凹槽」之研磨缺陷。 尖型凹槽係根據佈_案而有各種產生態樣,針對本 明所欲解決之尖型凹槽之產生要因,以圖i〜圖4所示之被 處理體100為一例,加以具體說明。 如圖1所不,被處理體100係於基體1〇上依序積層有絕 緣膜12、障壁金屬冑14及由銅或銅合金所構成之膜16而 構成’其中,該絕緣膜12係形成有溝等佈線用凹部2〇者, »亥障壁金;!臈14係以覆蓋絕緣膜12之表面及佈線用凹部 20之底部及内壁面之方式設置者,該由銅或銅合金所構成 之膜16係填充佈線用凹部2G且形成於障壁金屬膜14上 者。又’被處理體1〇〇包含含有銅或銅合金之微細佈線之區 098104943 7 200944582 域22及不含有銅或銅合金之微細佈線之區域μ。 、 ==佈線之區域22中,如圖1所示易於形成鋼或銅t 圖2表示藉由化學機械研磨對由銅或銅 16進行研磨直至_金屬膜14-於表_ ^膜 此階段中,還未產生尖型凹槽。 狀I。 圖3表示切削障壁金屬膜14且進行化學機械研磨直 緣膜12出現於表面為止後之狀態。若轉壁金相Μ進^ 化學機械研磨’則於含_或銅合金之微細佈線之區^ 22、與不含有銅或銅合金之微細佈線之區域%的界面上, 產生微細之傷痕26。 圖4表示進步進行化學機械研磨而削入絕緣膜12後之 狀態。此階段中’微細之傷痕26成為溝狀傷痕之㈣凹槽 28。 該尖型凹槽有時成為半導體襄置之缺陷,由導致半導體裝 置之製造良率下降之觀點而言不佳。、 本發明之第1化學機械研磨用水系分散體,係含有⑷工 氧化矽粒子及(B1)有機酸者,且 上述(A)二氧化錄子具有下錢學性質。 根據利用BET法所測定之比表面積及藉由滴定所測定之 石夕燒醇基量而計算的錢醇基密度為i 〇〜3.0個/⑽2。 本發明之第1化學機械研磨財系分散體可具有下述態 098104943 200944582 .. 樣。 上述(B1)有機酸可為具有2個以上羧基之有機酸。 - 上述具有2個以上鲮基之有機酸在託乞下之酸解離指數 • Ρκ&(其中,具有2個羧基之有機酸中以第2個羧基之pKa 為指標,具有3個以上羧基之有機酸中以第3個羧基之pKa 為指標)可為5.0以上。 上述具有2個以上幾基之有機酸可為選自順丁稀二酸、丙 ❹ 二酸及檸檬酸中之至少1種。 進而,可含有(C1)非離子性界面活性劑。 上述(C1)非離子性界面活性劑可具有至少1個乙炔基。 上述(C1)非離子性界面活性劑可為由下述通式(1)所表,一、 之化合物。 [化1]The abrasive grain component contained in the mechanical polishing aqueous dispersion is present in the vicinity of the above interface at a higher J, and the polishing rate of the interface is locally increased, and excessive polishing is caused. If excessive polishing is performed in this way, flatness is poor. This is a grinding defect called a "pointed groove". The pointed groove has various production forms according to the cloth, and the cause of the pointed groove to be solved by the present invention is taken as an example, and the object to be processed 100 shown in FIG. . As shown in Fig. 1, the object to be processed 100 is formed by sequentially laminating an insulating film 12, a barrier metal crucible 14 and a film 16 made of copper or a copper alloy on the substrate 1 to form a structure in which the insulating film 12 is formed. There are grooves and other recesses for wiring, etc., » Hai barrier wall gold; The crucible 14 is provided so as to cover the surface of the insulating film 12 and the bottom and inner wall surfaces of the wiring recess 20, and the film 16 made of copper or a copper alloy is filled in the wiring recess 2G and formed on the barrier metal film 14. By. Further, the object to be processed 1 includes a region containing fine wiring of copper or a copper alloy, 098104943 7 200944582, a region 22, and a region μ which does not contain fine wiring of copper or a copper alloy. , == in the area 22 of the wiring, as shown in Figure 1, it is easy to form steel or copper. Figure 2 shows the grinding of copper or copper 16 by chemical mechanical polishing until the metal film 14 is in the stage. , no sharp groove has been produced. Shape I. Fig. 3 shows a state in which the barrier metal film 14 is cut and the chemical mechanical polishing of the film 12 is present on the surface. If the metallographic transition of the transfer wall is chemical mechanical polishing, fine scratches 26 are formed at the interface of the region 22 containing the fine wiring of the _ or copper alloy and the area of the fine wiring containing no copper or copper alloy. Fig. 4 shows a state in which the chemical mechanical polishing is progressed and the insulating film 12 is cut. At this stage, the "fine flaw 26" becomes the groove (28) of the groove-like flaw. This sharp groove sometimes becomes a defect of the semiconductor device, which is not preferable from the viewpoint of causing a decrease in the manufacturing yield of the semiconductor device. In the first chemical mechanical polishing aqueous dispersion according to the present invention, the (4) cerium oxide particles and the (B1) organic acid are contained, and the (A) dioxide album has the following properties. The density of the phenolic group calculated based on the specific surface area measured by the BET method and the amount of the sulphuric acid base measured by titration was i 〇 3.0 3.0 / (10) 2 . The first chemical mechanical polishing financial dispersion of the present invention may have the following state: 098104943 200944582 . . . The above (B1) organic acid may be an organic acid having two or more carboxyl groups. - the acid dissociation index of the above-mentioned organic acid having two or more sulfhydryl groups under the support of 乞κ& (wherein the organic acid having two carboxyl groups is an organic compound having a second carboxyl group as an index, and having an organic group of three or more carboxyl groups The acid may have a pKa of the third carboxyl group as an index) of 5.0 or more. The organic acid having two or more substituents may be at least one selected from the group consisting of cis-butyl diacid, acesulfonic acid, and citric acid. Further, (C1) a nonionic surfactant may be contained. The above (C1) nonionic surfactant may have at least one ethynyl group. The (C1) nonionic surfactant may be a compound represented by the following formula (1). [Chemical 1]

CH3-CH(CH3)-CH2-i C(CH3>- 0-(CH2CH3-CH(CH3)-CH2-i C(CH3>- 0-(CH2

0-CCH2CH2(%H >-CsC-C(CH3)-CH2-CH(CH3>-CH3 CHiOfeH (1) (式中,m及n分別獨立為1以上之整數,滿足m + ns5Q^ 進而,可含有(D1)具有5萬以上且500萬以下之重量平均 分子量的水溶性高分子。 上述(D1)水溶性高分子可為聚羧酸。 上述聚羧酸可為聚(甲基)丙烯酸。 098104943 9 200944582 » * 述(D1)水騎高分子之含量仙對於化學機械研磨用 2散體之總質量,可為0.001質量H.。質量%。 氧化石夕粒子之長徑(Rmax)與短徑(Rmin)之比率 (Rmax/Rmin)可為 1 〇〜1 5。 上述(/)一氧化矽粒子之根據利用BET法所測定之比表面 積而口十算的平均粒徑可為10 nm〜100 nm。 pH值可為6〜12。 本發月之第2化學機械研磨用水系分散體,係含有(A)二 氧化石夕粒子及(B2)胺基酸,並用以對銅膜進行研磨者, 上述(A)二氧化矽粒子具有下述化學性質。 根據利用BET法所測之比表面積及藉由滴定所測定之 石夕烧醇基量而計算的魏醇基密度為丨㈠^個/心 本發明之第2化學機械研磨用水系分散體可具有下述態 樣。 上述(B2)胺基酸可為選自甘胺酸、丙胺酸及組胺酸中之至 少1種。 進而’可含有具有含氮雜環及羧基之有機酸。 進而’可含有(C2)陰離子性界面活性劑。 上述(C2)陰離子性界面活性劑可具有選自叛基、續酸基、 磷酸基、及該等官能基之銨鹽及金屬鹽中之至少1種官能 基。 上述(C2)陰離子性界面活性劑可為選自烷基硫酸鹽、烷基 098104943 10 200944582 醚硫酸酯鹽、烷基醚羧酸鹽、烷基苯磺酸鹽、α-磺酸基脂 肪酸酯鹽、烷基聚氧乙烯硫酸鹽、烷基磷酸鹽、單烷基碟酸 酯鹽、萘磺酸鹽、α-烯烴磺酸鹽、烷烴磺酸鹽及烯基丁二 酸鹽中之1種。 上述(C2)陰離子性界面活性劑可為由下述通式(2)所表示 之化合物。 [化2]0-CCH2CH2(%H >-CsC-C(CH3)-CH2-CH(CH3>-CH3 CHiOfeH (1) (wherein m and n are each independently an integer of 1 or more, satisfying m + ns5Q^ and further, (D1) A water-soluble polymer having a weight average molecular weight of 50,000 or more and 5,000,000 or less. The (D1) water-soluble polymer may be a polycarboxylic acid. The polycarboxylic acid may be poly(meth)acrylic acid. 098104943 9 200944582 » * (D1) The water mass of the polymer is 0.001 mass H. mass% for the total mass of the two bodies for chemical mechanical polishing. The long diameter (Rmax) and short diameter of the oxidized stone particles The ratio of (Rmin) (Rmax/Rmin) may be 1 〇 to 15 5. The average particle diameter of the above (/) cerium oxide particles according to the specific surface area measured by the BET method may be 10 nm to 100. The pH value may be 6 to 12. The second chemical mechanical polishing aqueous dispersion of the present month contains (A) cerium oxide particles and (B2) amino acid, and is used for grinding a copper film. The above (A) cerium oxide particles have the following chemical properties. According to the specific surface area measured by the BET method and the scoline alcohol measured by titration The amount of the farinol group calculated by the amount is 丨(一)^/心 The second chemical mechanical polishing aqueous dispersion of the present invention may have the following aspect. The above (B2) amino acid may be selected from the group consisting of glycine and propylamine. At least one of an acid and a histidine. Further, the organic acid having a nitrogen-containing heterocyclic ring and a carboxyl group may be contained. Further, the (C2) anionic surfactant may be contained. The (C2) anionic surfactant may have The at least one functional group selected from the group consisting of a thiol group, a carboxylic acid group, a phosphoric acid group, and an ammonium salt and a metal salt of the functional group. The (C2) anionic surfactant may be selected from the group consisting of an alkyl sulfate and an alkyl group. Base 098104943 10 200944582 Ether sulfate ester, alkyl ether carboxylate, alkylbenzene sulfonate, α-sulfonate fatty acid ester salt, alkyl polyoxyethylene sulfate, alkyl phosphate, monoalkyl dish One of the acid ester salt, the naphthalene sulfonate, the α-olefin sulfonate, the alkane sulfonate, and the alkenyl succinate. The above (C2) anionic surfactant may be represented by the following formula (2) ) the compound represented. [Chemical 2]

…⑵ (上述通式(2)中,R1及R2分別獨立表示氫原子、金屬原 子或者經取代或未經取代之烷基,R3表示經取代或未經取代 之烯基或者磺酸基(-SOd)。其中,X表示氫離子、銨離子或 金屬離子。) 進而’可含有(D2)重量平均分子量為丨萬以上且15〇萬以 下之具有作為路易斯驗之性質的水溶性高分子。 —上述⑽水溶性高分子可具有選自錢雜環及陽離子性 官能基中之至少1種分子構造。 上述(D2)水溶性高分子可為以含氮單體為重複單元之均 聚物、或含有含氮單體作為重複單元之共聚物。 上述含氮單體可為選自N-乙烯基吡咯啶鯛、(,基)丙烯 098104943 ,, 200944582 醯胺、N-經曱基 基咮啉、N, N—碲醯^、N-2_羥基乙基丙烯醯胺、丙烯醯 鹽、N,N-二甲我曱基胺基丙基丙烯醯胺及其之二乙基硫酸 醯胺、曱基場醯胺、N'異丙基丙烯醯胺、N-乙烯基乙 鹽、以及N-乙條甘N’N—二曱基胺基乙醋及其之二乙基硫酸 上述⑴二氣心甲醯胺中之至少1種。 (R祖/Rmin)可子之長徑(RmaX)與練⑽in)之比率 々I 〇〜1. 5。 上述(A)二氣化 ,t姑 又粒子之根據利用BET法所測定之比表面 積而計真的平L可為lOmn〜100nm。 pH值可為6〜a。 本發月之第1化學機械研磨用水系分散體及第2化學機械 研磨用水系分散體中,—上述(A)二氧化雜子可具有下 述化學性質。 根據利用交感耦合電漿(ICP,Inductively Coupled )發光刀析法或Icp質量分析法之元素分析、及利用 Γ 銨離子之定量分析所败_、鉀及娜子之 糸爲足以下關係’納含量:5〜5G0ppm,選自钟及敍 離子之至夕1種之含量:10〇〜20000 ppm。 ,之化予機械研磨方法之特徵在於:使用上述第1 化子機械研磨用水系分散體,對具有選自金屬膜、障壁金屬 膜及絕賴巾^幻制半料裝置讀研磨面進行研 磨0 098104943 200944582 若利用上述第1化學機械研磨用水系分散體,則可減小對 低介電常數絕緣膜之研磨速度,且可同時滿足對te〇s膜等 *層間絕緣膜(上覆層)之高研磨速度及高平坦化特性。又,若 . 利用上述第1化學機械研磨用水系分散體,則不會在金屬膜 或低介電常數絕緣膜上引起缺陷,可實現抑制了淺碟化、磨 蝕、刮痕或尖型凹槽等表面缺陷之高品質化學機械研磨,且 可減小晶圓之金屬污染。 〇 若利用上述第2化學機械研磨用水系分散體,則可同時滿 足對銅膜之高研磨速度及高研磨選擇性。又,若利用上述化 學機械研磨用水系分散體,則即便在普通壓力條件下,亦不 會在金屬膜或低介電常數絕緣膜上引起缺陷,而可實現高品 質化學機械研磨,且可減小晶圓之金屬污染。 【實施方式】 以下’針對本發明之較佳實施形態,加以詳細說明。 ❷ 丨.第1化學機械研磨用水系分散體 本實施形態之第1化學機械研磨用水系分散體,係含有(A) 二氧化矽粒子及(B1)有機酸者,且上述(A)二氧化矽粒子具 - 有「根據利用bet法所測定之比表面積及藉由滴定所測定之 . 石夕燒醇基量而計算的矽烷醇基密度為1. 0〜3. 0個/nm2。」 之化學性質。首先,針對構成本實施形態之化學機械研磨用 水系分散體之各成分加以說明。 1.1 (A)二氧化矽粒子 098104943 13 200944582 本實施形態之二氧化石夕粒子之「石夕燒醇基」,係指盘 ^石夕粒子表面切原子直接鍵結喊之祕,讀配置= 體別限定。又’細基之生成條件等亦無限定。 本實施㈣之「魏雜密度」,係指二氧切粒子表面 之每單位面積之魏醇基數,成為表示二氧切粒子 電氣特性或化學特性之純。於化學機械研㈣水系分散 中’石夕烧醇基(_)之H+解離而以SiG.之狀_定存在 =常帶_。藉此’表現二氧切粒子之電氣特性或化 干特性。矽烷醇基密度之單位以個/nm2表示。 本實施形態中所使用之(A)二氧切粒子之錢醇基密 又,係根據利用BET法所測定之二氧切粒子之表面積及藉 =定所測定之魏醇基量而計算c氧切粒子之魏醇 =可藉由普遍知曉之電位差較㈣以,或 邮年精密工學會春季大會學術演講會演講論文集p84?〜 848中所記狀二氧化錄仅水分輯、或分散有二氧化 石夕粒子之化學機械用水系分域,使•絲化納之眾 所周知之鹼來進行滴定而測定。 衫施形態中所使用之(Α)二氧切㈣之魏醇基密度 〜“W。若錢醇基為密度二 相為1.2 Λ W㈣上,關由二氧 =子表面之電氣特性或化學特性,來吸引或排斥化學機 械研磨財h舰巾所含之有機料水雜高分子等添 098104943 14 200944582 加劑成分。結果-般認為’化學機械研磨用水系分散體中添 加劑成分在H綠子之厢產生微奴濃輯度,從而 實現良好之研磨特性,因此可形成最佳之化學機械研磨用水 系分散體。 又,-般認為,於含有銅或銅合金之微細佈線之區域、與 不含有銅或銅合金之微細佈線之區域(唾部分)的界化 學機械研剌水系分散财所含之齡局部存在於界面附 近而招致過度研磨,由此產生尖型凹槽’但若残醇基密度 為上述範圍内,則於(Α)-氣仆石々私 〇 一氧切拉子之周圍產生微小之濃 度梯度,因此亦可抑制尖型凹槽之產生。 又,若石夕烧醇基密度為上述範圍内,則於化學機械研磨用 水糸分散體中因二氧切粒子與其他添加狀相互作用而 適度穩定化,從0使二氧化錄子敎分躲化學機械研 ❹ 磨用水系分散體中,在研磨時不會產生成為缺陷原因之凝 聚。若魏祕密度超過3· G個心2,職法獲得此種取得 平衡之分散狀態,因此成為不充分之研磨速度比或不充分之 平坦化特性,故不佳。另一方 ,y 2 方面,於矽烷醇基密度未滿1 〇 個/⑽之情形時,化學機械用水系分散體中之二氧化石夕 粒子之分散敎雜差,二氧化錄子產生縣 性惡化,故不佳。 赞、疋 本實施形態中所使用之U;)二 量較佳為5〜500 ppm,更佳為 氧化矽粒子可含有鈉,納含 10〜400 ppm,特佳為15〜 098104943 200944582 300 ppm。進而,可含有100〜2〇〇〇〇 ppm之選自鉀及銨離子 中之至夕1種。於上述(A)二氧化石夕粒子含有鉀之情形時, 鉀含虿較佳為100〜20000 ppm,更佳為5〇〇〜15〇〇〇卯m, 特佳為1_〜1〇〇()() ppm<5於上述(A)二氧化雜子含有録 離子之情形時,銨離子含量較佳為100〜20000 P卵,更佳 為200〜10000 ppm,特佳為5〇〇〜8〇〇〇 ppm。又即便上述 (A)二氧化矽粒子中所含之鉀或銨離子之含量不在上述範圍 内之情形時,卸及銨離子之含量之合計在較佳為100〜 20000 ppm,更佳為 500〜15000 ppm,特佳為 1〇〇〇〜1〇〇〇〇 ppm 之範圍内即可。 若鈉含量超過500 ppm’則研磨後產生晶圓污染,故不佳。 另方面為了使納含量未滿5 ppm,而必須進行複數次離 子交換處理,但有技術性之困難。 右選自鉀及銨離子中之至少i種之含量超過細〇〇 _, 則二氧化絲子分舰之pH值會變得過高岐二氧化石夕溶 解另方面,若選自卸及録離子中之至少1種之含量未滿 100 ppm’則二氧化石夕粒子之分散穩定性下降而引起二氧化 石夕粒子之凝聚,由此導致晶圓上產生缺陷故不佳。 另外,上述二氧化矽粒子中所含之鈉含量及鉀含量,係利 用icp發光分析法(ICP一AES)或Icp質量分析法(icp_Ms)進 行定量所得之值H ICp發光分析裝置,例如可使用 「ICPE-删(島津製作所公司製造)」等。作為i(:p質量分 098104943 200944582 析裝置,例如可使用「ICPM-8500(島津製作所公司製造)」、 「ELAN DRC PLUS(PerkinElmer公司製造)」等。又,上述 二氧化矽粒子中所含之銨離子含量係利用離子層析法進行 定量所得之值。作為離子層析法,例如可使用非抑制型離子 層析儀(non-suppressor ion chromatography)「HIS-NS(島(2) (In the above formula (2), R1 and R2 each independently represent a hydrogen atom, a metal atom or a substituted or unsubstituted alkyl group, and R3 represents a substituted or unsubstituted alkenyl group or a sulfonic acid group (- SOd), wherein X represents a hydrogen ion, an ammonium ion or a metal ion. Further, "D2" may contain a water-soluble polymer having a weight average molecular weight of not less than 10,000 and not more than 150,000, which has a property as a Lewis test. The above (10) water-soluble polymer may have at least one molecular structure selected from the group consisting of a heterocyclic ring and a cationic functional group. The (D2) water-soluble polymer may be a homopolymer having a nitrogen-containing monomer as a repeating unit or a copolymer containing a nitrogen-containing monomer as a repeating unit. The above nitrogen-containing monomer may be selected from the group consisting of N-vinyl pyrrolidinium, (,) propylene 098104943,, 200944582 decylamine, N-pyridyl porphyrin, N, N-碲醯^, N-2_ Hydroxyethyl acrylamide, propylene sulfonium salt, N,N-dimethylheptylaminopropyl acrylamide and its diethyl sulphate, sulfhydryl field amide, N' isopropyl propylene hydride At least one of the amine, the N-vinylethyl salt, and the N-ethylglycine N'N-didecylaminoethyl vinegar and the diethylsulfonic acid thereof (1) dicentric meglumine. (Rzu/Rmin) ratio of long diameter (RmaX) to practice (10) in) 々I 〇~1. 5. The above (A) two gasification, and the particle diameter of the tantalum particles can be from 10 nm to 100 nm based on the specific surface area measured by the BET method. The pH can be 6 to a. In the first chemical mechanical polishing aqueous dispersion and the second chemical mechanical polishing aqueous dispersion of the present month, the (A) dioxins may have the following chemical properties. According to the elemental analysis using ICP (Inductively Coupled) illuminating knife method or Icp mass spectrometry, and the quantitative analysis of Γ ammonium ion, the _, potassium and Nazi 糸 are sufficient for the relationship : 5~5G0ppm, which is selected from the group consisting of a clock and a syrup to a cerium: 10 〇 to 20000 ppm. The mechanical polishing method is characterized in that the water-based dispersion of the first chemical mechanical polishing is used to polish the surface of the polished surface selected from the group consisting of a metal film, a barrier metal film, and a smashing device. 098104943 200944582 When the first chemical mechanical polishing aqueous dispersion is used, the polishing rate of the low dielectric constant insulating film can be reduced, and the interlayer insulating film (overcoat layer) such as the te〇s film can be simultaneously satisfied. High grinding speed and high flattening characteristics. Further, when the first chemical mechanical polishing aqueous dispersion is used, defects are not caused on the metal film or the low dielectric constant insulating film, and shallow dishing, abrasion, scratching or sharp grooves can be suppressed. High quality chemical mechanical polishing of surface defects and reducing metal contamination of the wafer. 〇 If the second chemical mechanical polishing aqueous dispersion is used, the high polishing rate and high polishing selectivity to the copper film can be satisfied at the same time. Further, when the above-described chemical mechanical polishing aqueous dispersion is used, defects are not caused on the metal film or the low dielectric constant insulating film under ordinary pressure conditions, and high-quality chemical mechanical polishing can be achieved and can be reduced. Metal contamination of small wafers. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described in detail.第 丨. First chemical mechanical polishing aqueous dispersion The first chemical mechanical polishing aqueous dispersion of the present embodiment contains (A) cerium oxide particles and (B1) organic acid, and the above (A) is oxidized. 0〜3. 0个/nm2。 The 矽 矽 nm 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 」 Chemical properties. First, each component constituting the aqueous dispersion for chemical mechanical polishing of the present embodiment will be described. 1.1 (A) cerium oxide particles 098104943 13 200944582 The "stone smelting alcohol base" of the cerium dioxide particles of the present embodiment refers to the secret of the direct bonding of the surface of the smear particle of the shovel, and the read configuration = body Do not limit. Further, the conditions for the formation of the fine base are not limited. The "Wei density" in the fourth embodiment of the present invention refers to the number of the group of the thiol groups per unit area of the surface of the diced particles, and is a purity indicating the electrical or chemical properties of the diced particles. In the chemical mechanical research (4) water system dispersion, the "H+ dissociation of the Shixi burning alcohol base (_) and the existence of SiG. Thereby, the electrical characteristics or drying characteristics of the diced particles are expressed. The unit of the density of the stanol group is expressed in units of / nm 2 . The (A) dioxy-cut particles used in the present embodiment are based on the surface area of the dioxo particles measured by the BET method and the amount of the prol base determined by the determination of c-oxygen. The sulphate of the cut particles can be compared with the commonly known potential difference (4), or the syllabus of the lectures of the syllabus of the Spring Society of the Institute of Precision Engineering, p84?~ 848. The chemical mechanical water of the oxidized stone particles is divided into regions, and the well-known alkali of the sulphate is used for titration. The density of the thiol group of (Α) dioxo (4) used in the form of shirt application ~ "W. If the weight of the alcohol base is 1.2 Λ W (4) on the density of two phases, the electrical or chemical properties of the surface of the dioxin = sub-surface To attract or repel the organic mechanical water-containing polymer contained in the chemical mechanical grinding of the ship, add 098104943 14 200944582 Additive ingredients. The result is generally considered as 'the chemical mechanical grinding water dispersion in the additive component in the H green The micro-nano concentration is produced in the chamber to achieve good polishing characteristics, so that an optimal chemical mechanical polishing aqueous dispersion can be formed. Moreover, it is generally considered that the region containing fine wiring of copper or copper alloy does not contain The area of the fine wiring of the copper or copper alloy (salt part) is the boundary of the chemical system. The age of the water is dispersed in the vicinity of the interface to cause excessive grinding, thereby producing a sharp groove 'but if the residual alcohol density In the above range, a slight concentration gradient is generated around the (Α)-gas servant stone, and the formation of a sharp groove can also be suppressed. For the above Within the range, the chemical mechanical polishing water hydrazine dispersion is moderately stabilized by the interaction of the dioxo prior particles with other additions, and the oxidized recordings are separated from the chemical mechanical mortar by the water dispersion. When the polishing is performed, the cause of the defect is not formed. If the degree of confidentiality exceeds 3·G cores 2, the service method obtains such a balanced state of dispersion, and thus the polishing rate ratio is insufficient or the flattening characteristics are insufficient. On the other hand, in the case of y 2 , when the density of the stanol group is less than 1 / / (10), the dispersion of the sulphur dioxide particles in the chemical mechanical water dispersion is mixed, and the oxidization record It is not good for the sub-generation to deteriorate in the county. The U used in the present embodiment is preferably 5 to 500 ppm, more preferably the cerium oxide particles may contain sodium, and the sodium content is 10 to 400 ppm. Particularly preferred is 15 to 098104943 200944582 300 ppm. Further, it may contain 100 to 2 〇〇〇〇 ppm of one selected from the group consisting of potassium and ammonium ions. In the case where the above (A) sulphur dioxide particles contain potassium, When the potassium content is preferably from 100 to 20000 ppm More preferably, it is 5 〇〇 15 15 m, and particularly preferably 1 _ 1 〇〇 () () ppm < 5 when the (A) dioxide contains a recording ion, the ammonium ion content is better. It is 100 to 20000 P eggs, more preferably 200 to 10000 ppm, and particularly preferably 5 to 8 〇〇〇 ppm. Even if the content of potassium or ammonium ions contained in the above (A) cerium oxide particles is not the above In the case of the range, the total content of the unloading ammonium ions is preferably in the range of 100 to 20000 ppm, more preferably 500 to 15000 ppm, particularly preferably in the range of 1 〇〇〇 to 1 〇〇〇〇 ppm. . If the sodium content exceeds 500 ppm', wafer contamination occurs after polishing, which is not preferable. On the other hand, in order to make the nano content less than 5 ppm, it is necessary to perform a plurality of ion exchange treatments, but it is technically difficult. The content of at least one of the potassium and ammonium ions selected from the right is higher than that of the fine 〇〇, and the pH value of the sulphur dioxide sub-ship will become too high, and the sulphur dioxide will dissolve in another aspect. When the content of at least one of the ions is less than 100 ppm, the dispersion stability of the silica dioxide particles is lowered to cause aggregation of the particles of the cerium oxide, which causes defects in the wafer to be defective. Further, the sodium content and the potassium content contained in the above cerium oxide particles are quantified by icp luminescence analysis (ICP-AES) or Icp mass spectrometry (icp_Ms), and the H ICp luminescence analyzer can be used, for example. "ICPE-Deleted (made by Shimadzu Corporation)". For example, "ICPM-8500 (manufactured by Shimadzu Corporation)", "ELAN DRC PLUS (manufactured by PerkinElmer Co., Ltd.)", etc., can be used as the i (: p mass fraction 098104943 200944582), and the above-mentioned cerium oxide particles are included. The ammonium ion content is a value obtained by ion chromatography. For ion chromatography, for example, a non-suppressor ion chromatography "HIS-NS" can be used.

像 津製作所公司製造^^冗卜⑺⑽^^⑽以公司製造^等。 又,二氧化矽粒子中所含之鈉、鉀,可分別為鈉離子、鉀離 子。藉由測定鈉離子、鉀離子、銨離子之含量,可對二氧化 矽粒子中所含之鈉、鉀、銨離子進行定量。另外,本說明書 中記載之納、鉀、娜子之含量係相對於二氧切粒子之; 量的鈉、鉀、録離子之重量。 藉由在上述㈣内含有納、選自卸及錢離子中之至少1 種^使二氧切好敎錄純學機械研磨时系讀 之凝=㈣研磨日林會產生成為賴原因之二氧切粒子 ^又,若為上述範圍内,則可防止研磨後晶圓之金屬 算據利用BET法所測定之比表面積而計 内,則作為化學機械研:化石夕:子之千均粒徑處於上述範圍 徑未滿上滑的研磨面。若二氧化〜之平均粒 圍,則對丽膜等層間絕緣棋(上覆層)之研 098104943 17 200944582 磨速度變得過小,故不實用。另一 平均粒徑超過上述範圍,則二氧化矽粒:-氧:矽粒子之 差,故不佳。 子之保存穩定性較 氧切粒子之平均粒徑,例如根·由流動式比表 面積自動測定裝置「micr騰triesFlQwSQrbn 製作所公司製造)」並利續法所測定之比表*積而計算 方ΪΓ料㈣4切好之比表®積計料均粒徑之 方法加以說明。 < 〇 假設二氧化石夕粒子之形狀為圓球狀且 d㈤、比重為p (g/cm3>粒子n個之表面積A為卜= =之質量N為NK/6。比表面積 構成粒子的表面積表示。如此,則粒子‘ 比表面積sw6/心將二氧化石夕粒子之比重t 2·2代入此式錢行單位換錢,可μ下述式⑶。 〇 平均粒徑(nm) = 2727/S(m2/g)...(3) 另外,本說明書中之二氧 ⑶式計算而得。 作子之千均粒㈣全部根據 二氧切粒子之長極(Rmax)與短徑㈣ :::較佳為1:0〜“,更佳為1〇〜“特佳為二 右Rmax/Rmin為上述範圍内,則金屬膜或絕緣膜 不會引起缺陷’可表現高研磨速度及高平坦化特性。若 RmaX/Rmin大於L5,則研磨後產生缺陷’故不佳。 098104943 18 200944582 此處’所謂二氧切粒子之長徑(Rmax),係指在藉由穿透 式電子顯微鏡所拍攝之—個獨立的二氧切粒子之影像 ,中,連結影像之端部與卿之距財最長的距離。所謂二氧 .化夕粒子之短徑(Rmin) ’係指在藉由穿透式電子顯微鏡所拍 =之個獨立的一氧化石夕粒子之影像中,連結影像之端部與 端部之距離中最短的距離。 ❹ 例如’如圖5所不’藉由穿透式電子顯微鏡所拍攝之一個 门二氧切粒子3Ga之影像為橢圓形狀之情形時,將橢 斷為二氧切粒子之長徑―,且將橢 =穿:子— 粒子鳩之影像為立的二氧㈣ 之端部與端部之最長距離 2時將連U像 (Rmax),且將遠社麥你 ^斷為一氧化矽粒子之長徑 ❹ 氧化石夕粒子之ϋ之端部與端部之最短距離d判斷為二 乳化石夕粒子之^KRmin)。如圖 微鏡所拍攝之-個獨立藉由穿透式電子顯 以上粒子之凝聚體之情^氧化石夕粒子3〇C之影像為三個 長距離e判斷為二氧化石夕粒將連結影像之端部與端部之最 之端部與端部之最短矩離教子之長控(Rmax),且將連結影像 (Rmin)。 f判斷為二氧化發粒子之短徑 藉由如上所述之判辦 之長徑(R臟)及短經50個二氧化石夕粒子 计算長徑(Rmax)及短徑(Rmin) 098104943 19 200944582 之平均值後’可計算求得長徑與短徑之比率⑻。 上述(A)二氧化矽粒子之含量係相對於使用時之化學機械 研磨用水系分散體之總質量,較佳為丨〜別質量%,更佳為 15質量% ’特佳為卜^質量%。若上述二氧化石夕粒子之 含量未滿上述範圍’則無法獲得充分之研磨速度,故不實’ 用另方面,若上述二氧化矽粒子之含量超過上述範圍, 則成本增加’並且無法獲得敎之化學鋪研㈣水系分散 體。 本實施形態中所使用之(A)二氧化石夕粒子之製作方法,若❹ 可獲得納、卸及娜子之含量為上述範圍内之二氧化石夕粒 子’則並無特別限制,可應用習知之眾所周知之方法。例如, 可依據日本專利特開20〇3_1〇9921號公報或特開 2006-80侧號公報巾域之二氧化雜子分散液之製造; 法來製作。 又’作為習知之眾所周知之方法,有如自石夕酸驗水溶液除 去驗,而製作二氧化雜子之方法。作為赠驗水溶液,可 舉出通常已知作為水玻璃(water glass)的矽酸鈉水溶液、 矽酸銨水溶液、矽酸鋰水溶液、矽酸鉀水溶液等。 石夕酸銨,可舉出由氫氧化錄、四f基氫氧化錢所形‘ 氣化矽粒子之具 為20〜38質量% 以下’針對本實施形態中所使用之(A)二 體製作方法之一加以說明。將二氧化矽含量 20 098104943 200944582 且Si(h/Na2〇之莫耳比為2 〇〜 稀釋,而製成二·傾度為2〜5 H财溶_水進行 液。繼而’使稀釋_水溶液通過酸::溶 層,而生成除去了大部分軸子 乂換樹脂 下用驗將該術溶液之邱值調整成:常:;容液。在授拌 熱熟化’使其進行成長直至達到目標粒徑^ ❹ 狀-氧化石夕粒子。該熱熟化過程令,進而 體 性石夕酸水溶液或小粒子之膠體二氧切^點地添加活 粒徑為1〇〜1〇0 Μ之範圍的目標粒徑之二氧化平:: 子分散_濃縮,使二= =去二而使其再次通過氣型陽離子交換樹 月曰層’除去辭所有_子,並_調 ❹ 作納含量為5〜〜且選自卸及娜子中之至= 含量為1〇〇〜2__的二氧化雜子。 —又’(A)二氧化石夕粒子中所含之納、卸、録離子之含量可 藉由如下方式計算:藉由離心分離、超遽等公知之方法,自 3有-氧化⑪粒子之化學機械研磨用水系分散體回收二氧 化石夕成分,再對所回收之二氧切成分中所含之納、卸、錢 離子進仃疋!。因此,藉由公知之方法對用上述方法自化學 機械研磨用水系分散體所回收之二氧化發成分進行分析,由 此亦可確認本案發明之構成要件充裕。 12 (B1)有機酸 098104943 200944582 本實施形態之化學機械研磨用水系分散體含有(B1)有機 酸。作為上述(B1)有機酸,較佳為具有2個以上羧基之有機 酸。作為具有2個以上羧基之有機酸之效果,可舉出以下方 面。 (1)與藉由研磨而溶出至化學機械研磨用水系分散體中之 銅、钽、敛等之金屬離子配位,從而可防止金屬之析出。結 果可抑制刮痕等研磨缺陷。It is manufactured by the company, and it is manufactured by the company. Further, sodium and potassium contained in the cerium oxide particles may be sodium ions or potassium ions, respectively. The sodium, potassium, and ammonium ions contained in the cerium oxide particles can be quantified by measuring the contents of sodium ions, potassium ions, and ammonium ions. Further, the contents of sodium, potassium, and chlorin described in the present specification are relative to the amount of sodium, potassium, and ion recorded by the amount of the diced particles. By the inclusion of at least one of the above-mentioned (4), selected from the unloading and the money ion, the dioxic cut is purely mechanically milled, and the coagulation is read. (4) The grinding of the forest will produce the dioxane When the particle size is in the above range, the metal data of the wafer after polishing can be prevented from being measured by the specific surface area measured by the BET method, and the chemical fiber is studied as: The above range is not full of slippery polished surfaces. If the average particle size of the oxidized oxidized layer is 168104943 17 200944582, the grinding speed of the interlayer insulating chess (upper layer) is not too practical. When the other average particle diameter exceeds the above range, the cerium oxide particles: - oxygen: cerium particles are poor, which is not preferable. The storage stability of the sub-particles is smaller than the average particle diameter of the oxygen-cut particles, for example, the root is calculated by the flow-type specific surface area automatic measuring device "Mic-TurstriesFlQwSQrbn Manufacturing Co., Ltd." and the ratio is calculated by the method of the method. (4) The method of cutting the average particle size of the table is calculated. < 〇 It is assumed that the shape of the cerium dioxide particles is spherical and d(f), and the specific gravity is p (g/cm3). The surface area A of the particles is the mass of the material. The mass N is NK/6. The specific surface area constitutes the surface area of the particles. In this case, the particle 'specific surface area sw6/heart' substitutes the specific gravity t 2·2 of the dioxide particle to the money unit, and can be changed by the following formula (3). The average particle size (nm) = 2727/S (m2/g) (3) In addition, the dioxin (3) formula in the present specification is calculated. The thousand-average particles (4) of the preparation are all based on the long pole (Rmax) and the short diameter (four) of the dioxo prior particles :: It is preferably 1:0 to ", more preferably 1" to "excellently, if the right Rmax/Rmin is within the above range, the metal film or the insulating film does not cause defects", which can exhibit high polishing speed and high planarization. Characteristics: If RmaX/Rmin is greater than L5, it will cause defects after grinding. 098104943 18 200944582 Here, the long diameter (Rmax) of the so-called dioxo prior particles is taken by a transmission electron microscope. An image of an independent dioxygen-cut particle, in which the end of the image is the longest distance from the end of the image. The short diameter (Rmin) is the shortest distance between the end of the image and the end of the image in the image of a separate ion monoxide particle captured by a transmission electron microscope. As shown in Figure 5, when the image of a gate dioxin particle 3Ga captured by a transmission electron microscope is in the shape of an ellipse, the ellipse is broken to the long diameter of the dioxoparticle, and the ellipse = wear : child - the image of the particle 鸠 is the longest distance between the end and the end of the dioxine (4). The U image (Rmax) will be connected, and the long diameter of the cerium oxide particle will be broken. The shortest distance d between the end and the end of the Shixi particle is judged as ^KRmin of the second emulsified stone particle. As shown in the micro-mirror, the image of the oxidized stone particles 3〇C is separated by the transmission electrons. The image of the three-dimensional long distance e is determined as the dioxide dioxide. The shortest end of the end and end of the end and the end of the end are separated from the gods (Rmax) and will be connected to the image (Rmin). f is judged to be the short diameter of the oxidized hair particles. The long diameter (Rmax) and the short diameter (Rmin) are calculated by the long diameter (R dirty) and the short 50 SiO2 particles as described above. 098104943 19 200944582 After the average value, the ratio of the long diameter to the short diameter can be calculated (8). The content of the (A) cerium oxide particles is preferably 丨% by mass, more preferably 15% by mass, based on the total mass of the chemical mechanical polishing aqueous dispersion at the time of use. . If the content of the above-mentioned cerium oxide particles is less than the above range, a sufficient polishing rate cannot be obtained, so it is not true. If the content of the cerium oxide particles exceeds the above range, the cost increases and the enthalpy is not obtained. Chemical research (4) water dispersion. The method for producing the (A) cerium oxide cerium particles used in the present embodiment is not particularly limited as long as the cerium is obtained in the range of the above-mentioned range. A well-known method of the well-known. For example, it can be produced by the method of producing a dioxate dispersion of the Japanese Patent Laid-Open Publication No. 20-301-9921 or the No. 2006-80 side. Further, as a well-known method of the prior art, there is a method of preparing a dioxide from the aqueous solution of the sulphuric acid. Examples of the aqueous solution to be tested include sodium citrate aqueous solution, aqueous ammonium citrate solution, lithium citrate aqueous solution, and potassium citrate aqueous solution which are generally known as water glass. The ammonium sulphate is exemplified by the oxidized ruthenium and the fluorinated ruthenium hydroxide. The gasified ruthenium particles are 20 to 38% by mass or less, and are produced for the (A) two-body used in the present embodiment. One of the methods is explained. The cerium oxide content is 20 098104943 200944582 and the Si (h/Na2 莫 molar ratio is 2 〇~ diluted, and the second inclination is 2~5 H 财 _ water is carried out. Then the dilution _ aqueous solution is passed Acid:: dissolves the layer, and removes most of the axons and replaces the resin. The Qi value of the solution is adjusted to: often:; liquid. In the heat of cooking, it is grown until it reaches the target particle. ^ ❹ - 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化 氧化The particle size of the oxidized flat:: sub-dispersion _ concentration, so that two = = go two and make it again through the gas-type cation exchange tree 曰 layer 'removal of all _ sub, and _ ❹ ❹ ❹ content is 5~~ And from the unloading and Nazi to = the content of 1 〇〇 ~ 2 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Calculated by the following method: a chemical mechanical polishing water system from 3-oxidized 11 particles by a known method such as centrifugation or super-ruthenium The porous body recovers the composition of the cerium oxide, and then the nano, smear, and ionic ions contained in the recovered dioxo component are added. Therefore, the water system is chemically mechanically ground by the above method by a known method. The analysis of the dioxin component recovered by the dispersion confirmed that the constituent elements of the present invention were sufficient. 12 (B1) Organic Acid 098104943 200944582 The chemical mechanical polishing aqueous dispersion of the present embodiment contains (B1) an organic acid. The (B1) organic acid is preferably an organic acid having two or more carboxyl groups. The effect of the organic acid having two or more carboxyl groups is as follows: (1) elution to chemical machinery by polishing By collating the metal ions such as copper, ruthenium, or the like in the aqueous dispersion, the precipitation of the metal can be prevented. As a result, polishing defects such as scratches can be suppressed.

(2)具有提高對銅膜、障壁金屬膜、TE0S膜等研磨對象之 研磨速度之效果。若添加後述水溶性高分子,财時因該水 溶性高分子倾研磨對象之表面,而引起研磨速度之下降。 即使於此種情形時’亦可藉㈣用具有2個以场基之有機 酸,而提高對上述研磨對象之研磨速度。(2) It has an effect of improving the polishing rate of a polishing object such as a copper film, a barrier metal film, or a TEOS film. When a water-soluble polymer described later is added, the surface of the object is tilted by the water-soluble polymer, which causes a decrease in the polishing rate. Even in such a case, the polishing rate of the above-mentioned polishing object can be increased by using (4) an organic acid having two field groups.

(3)如上所述由於對金屬離子具有配位能力 (_dlnatlng ability)’因此與研磨過程中被破碎而自二 氧化石夕粒子料之娜子或雜子雜,㈣崎_ : 卸離子吸麟贿對象之表面。結果_子或娜子游離^ 溶液中’㈣可容易除切等娜子或_子。 ; ⑷-般認為吸附於二氧化矽粒子之表面,而可提言一 ,石夕粒子之分散敎性。結果可增強二氧化雜子之= 疋性,並可大幅抑制推測由凝聚之粒子所巧起之到痕子 相對於此’認為即便使用?酸、⑽、丙料具有。 基之有機酸,亦無法期待對金屬離子之較高配位能力,^ 098104943 22 200944582 提高對上述研磨對象之研磨速度。 具有2個以上羧基之有機酸之 下的酸解離指數(pKa),較佳為5Q以上個解離階段在饥 離指數(pKa)而言,於且有個 *本發明之酸解 基之pKa值為浐俨,而= *之有機酸中以第2個羧 值為而於具有3似场 標謂離指數^== 則對藉由研磨而溶出至化學機械研磨^系分散體中之 銅、组、鈦等之金屬離子具有更高的配位能力,從而可防止 金屬之析出。藉此’可防止研磨對象表面之顺。進而,可 緩衝抑制研磨步驟中之研磨用組成物中之Ρ Η值變化,從而 可抑制本案發明中所使用之上述(Α)二氧化矽粒子在研磨步 驟中因pH值變化而產生凝聚。另一方面,若酸解離指數(pKa) 未滿5. 0 ’則無法期待上述效果。 酸解離指數(pKa)例如可藉由(a)The Journal of ❹(3) As described above, due to the ability to coordinate with metal ions (_dlnatlng ability), it is broken with the Nazi or miscellaneous particles from the cerium oxide particles during the grinding process. (4) Saki _ : Unloading ions The surface of the object of bribery. The result _ sub or Nazi free ^ solution in the '(4) can be easily removed to cut the Nazi or _ sub. (4) It is generally considered that it is adsorbed on the surface of the cerium oxide particles, and it can be mentioned that the dispersion of the shixi particles is ambiguous. As a result, it is possible to enhance the enthalpy of the dioxins, and it is possible to greatly suppress the speculation that the particles are agglomerated by the condensed particles. Acid, (10), and propylene have. The organic acid of the base cannot be expected to have a higher coordination ability for the metal ion, and 098104943 22 200944582 improves the polishing rate of the above-mentioned abrasive object. An acid dissociation index (pKa) under an organic acid having two or more carboxyl groups, preferably a dissociation phase of 5Q or more in terms of a hunger index (pKa), and having a pKa value of the acidolytic group of the present invention浐俨, and the organic acid of =* has a second carboxy value and has a 3-field-like index of the index ^== for the copper which is eluted into the chemical mechanical polishing dispersion by grinding, The metal ions of the group, titanium and the like have a higher coordination ability, thereby preventing metal precipitation. Thereby, the surface of the object to be polished can be prevented from being smooth. Further, it is possible to suppress the change in the enthalpy value in the polishing composition in the polishing step, and it is possible to suppress the aggregation of the above-mentioned (cerium) cerium oxide particles used in the present invention due to a change in pH during the polishing step. On the other hand, if the acid dissociation index (pKa) is less than 5.0 Å, the above effects cannot be expected. The acid dissociation index (pKa) can be obtained, for example, by (a) The Journal of ❹

Physical Chemistry vol. 68, number6, pagel560(1964) 中所記載之方法、(b)使用平沼產業股份有限公司製造之電 位差自動滴定裝置(COM-980Win等)之方法等進行測定, 又,可利用(c)曰本化學會編之化學便覽(修訂第3版,昭和 59年(1984年)6月25日,丸善股份有限公司發行)所記載 之酸解離指數、(d)Compudrug公司製造之pKaBASE等數據 庫(data base)等0 作為酸解離指數(pKa)為5.0以上之具有2個以上叛基之 098104943 23 200944582 有機酸,例如可舉出表1中所記載之有機酸。就表1中所記 載之pKa值而言,於具有2個羧基之有機酸中表示第2個羧 基之pKa值,而於具有3個以上羧基之有機酸中表示第3 個叛基之pKa值。 098104943 24 200944582 [表1] 具有2個以上羧基之有機酸 pKa 順丁烯二酸 5. 83 丙二酸 5. 28 鄰苯二曱酸 5. 41 丁二酸 5. 64 苯基丁二酸 5. 55 擰檬酸 6.40 2-曱基丙二酸 5. 76 2-乙基丙二酸 5.81 2-異丙基丙二酸 5. 88 2, 2-二甲基丙二酸 5. 73 2 -乙基-2_甲基丙二酸 6. 55 2, 2-二乙基丙二酸 7. 42 2, 2-二異丙基丙二酸 8. 85 間羥基苯曱酸 9. 96 對羥基苯曱酸 9. 46 1,2-環己烷二曱酸(反式體) 6.06 1, 2-環己烷二甲酸(順式體) 6. 74 1,2-環戊烷二曱酸(反式體) 5. 99 1,2-環戊烷二曱酸(順式體) 6. 57 1,2-環辛烷二曱酸(反式體) 6. 24 1,2-環辛烷二甲酸(順式體) 7. 34 1,2-環庚烷二曱酸(反式體) 6. 18 1,2-環庚烷二甲酸(順式體) 7. 60 2, 3-二甲基丁二酸 6. 00 2, 3-二乙基丁二酸 6.46 2-乙基-3-甲基丁二酸 6. 10 四甲基丁二酸 7.41 2, 3-二-第三丁基丁二酸 10. 26 3, 3-二曱基戊二酸 6.45 3, 3-二乙基戊二酸 7.42 3-異丙基-3-甲基戊二酸 6. 92 3-第三丁基-3 -曱基戊二酸 7.49 3, 3-二異丙基戊二酸 7. 68 3-曱基-3_乙基戊二酸 6. 70 3, 3-二丙基戊二酸 7.48 2-乙基- 2- (1-乙基丙基)戍二酸 7. 31 環己基-1,1-二乙酸 7. 08 2-甲基環己基-1, 1-二乙酸 6. 89 環戊基-1, 1-二乙酸 6. 77 3-曱基-3-苯基戊二酸 6. 17 3-乙基-3 -苯基戊二酸 6. 95 25 098104943 200944582 於表1中所記載之具有2個以上羧基之有機酸中,更佳為 順丁烯二酸、丙二酸、檸檬酸’特佳為順丁烯二酸。此種有 機酸不僅具有較佳PKa i,而且其分子構造上之立體位阻 (sterichindrance)較小,因此對藉由研磨而溶出至化學機 械研磨用水系分散體中之銅,、鈦等之金屬離子具有較高 的配位能力’從而可防止金屬之析出。 上述(B1)有機酸之含㈣相對於化學機械研磨用水系分 散體之總質量,較佳為〇.謝〜3Q質量%,更佳為㈣〜 2.0質量%。若上述⑽有機酸之含量未滿上述範圍,則會 引起銅膜上產生許多刮痕等表面缺陷。另—方面,若上述⑻) 有機酸之含量超過上述_,則會引起二氧切粒子之凝 聚’而有損保存穩定性。 1. 3 ( C1)非離子性界面活性劑 本實施形態德學機械研㈣㈣分散射含有⑼非 離子性界面活性劑。藉由添加(⑴非離子性界面活性劑,可 控制對層間絕緣膜之研磨速度。即,可抑制對低介電常數絕 緣膜之研磨速度,並提高對TEGS膜等上覆層之研磨速度。 作為上述(C1)非離子性界面活性劑,可舉出乙炔二醇環 氧乙烷加成物、乙炔醇等具有至少丨個乙炔基之非離子性界 面活性劑、聚矽氧界面活性劑、烷基醚系界面活性劑、聚乙 烯醇、環糊精、聚乙烯曱醚及羥基乙基纖維素等。上述 非離子性界面活_可單獨使用丨種,亦可將2種以上加以 098104943 26 200944582 併用。 該等之中,較佳為具有至少1個乙炔基之非離子性界面活 性劑’更佳為由下述通式(1)所表示之非離子性界面活性劑。 [化3]The method described in Physical Chemistry vol. 68, number6, pagel560 (1964), (b) the method using a potentiometric automatic titrator (COM-980Win, etc.) manufactured by Hiranuma Sangyo Co., Ltd., etc. c) Chemical Handbook compiled by Sakamoto Chemical Society (Revised 3rd Edition, issued on June 25, 1984), the acid dissociation index described in Maruzen Co., Ltd., (d) pKaBASE manufactured by Compudrug Co., Ltd., etc. The data base or the like is 0. The organic acid having the acid dissociation index (pKa) of 5.0 or more and having two or more rebel bases is 098104943 23 200944582 organic acid, and examples thereof include the organic acids described in Table 1. The pKa value shown in Table 1 indicates the pKa value of the second carboxyl group in the organic acid having two carboxyl groups, and the pKa value of the third rebel group in the organic acid having three or more carboxyl groups. . 098104943 24 200944582 [Table 1] Organic acid pKa maleic acid having more than 2 carboxyl groups 5. 83 Malonic acid 5. 28 phthalic acid 5. 41 succinic acid 5. 64 phenyl succinic acid 5 55 citric acid 6.40 2-mercaptomalonic acid 5. 76 2-ethylmalonic acid 5.81 2-isopropylmalonic acid 5. 88 2, 2-dimethylmalonic acid 5. 73 2 - Ethyl-2-methylmalonic acid 6. 55 2, 2-diethylmalonic acid 7.42 2, 2-diisopropylmalonic acid 8.85-hydroxybenzoic acid 9.96 p-hydroxyl Benzoic acid 9.46 1,2-cyclohexanedicarboxylic acid (trans isomer) 6.06 1, 2-cyclohexanedicarboxylic acid (cis isomer) 6. 74 1,2-cyclopentanedioic acid ( Trans-body) 5. 99 1,2-cyclopentanedioic acid (cis isomer) 6. 57 1,2-cyclooctane dicarboxylic acid (trans-form) 6. 24 1,2-cyclooctane Dicarboxylic acid (cis isomer) 7. 34 1,2-cycloheptanedioic acid (trans isomer) 6. 18 1,2-cycloheptanedicarboxylic acid (cis isomer) 7. 60 2, 3-two Methyl succinic acid 6. 00 2, 3-diethyl succinic acid 6.46 2-ethyl-3-methyl succinic acid 6. 10 Tetramethyl succinic acid 7.41 2, 3-di-third butyl Butyric acid 10.26 3, 3-dimercaptoglutaric acid 6.45 3, 3-diethylglutaric acid 7.42 3-isopropyl-3-methylglutaric acid 6. 92 3-tert-butyl-3-mercaptoglutaric acid 7.49 3, 3-diisopropyl Glutaric acid 7. 68 3-mercapto-3-ethylglutaric acid 6. 70 3, 3-dipropylglutaric acid 7.48 2-ethyl-2-(1-ethylpropyl)sebacic acid 7. 31 cyclohexyl-1,1-diacetic acid 7. 08 2-methylcyclohexyl-1, 1-diacetic acid 6. 89 cyclopentyl-1, 1-diacetic acid 6. 77 3-mercapto-3 -Phenylglutaric acid 6. 17 3-ethyl-3-phenylpentanedioic acid 6. 95 25 098104943 200944582 Among the organic acids having two or more carboxyl groups described in Table 1, more preferably butylene Diacid, malonic acid, and citric acid are particularly preferred as maleic acid. Such an organic acid not only has a preferable PKa i but also has a small steric steric hindrance in molecular structure, and thus is eluted into a chemical mechanical polishing aqueous dispersion by copper, titanium, or the like. The ions have a high coordination ability' to prevent precipitation of metals. The content of the above (B1) organic acid (iv) relative to the total mass of the chemical mechanical polishing water dispersion is preferably 〇. Xie~3Q% by mass, more preferably (4) to 2.0% by mass. If the content of the above (10) organic acid is less than the above range, surface defects such as many scratches are generated on the copper film. On the other hand, if the content of the above (8)) organic acid exceeds the above _, the condensation of the dioxo prior particles is caused, and the storage stability is impaired. 1. 3 (C1) Nonionic Surfactant In the present embodiment, the German (4) (4) partial scattering contains (9) a nonionic surfactant. By adding (1) a nonionic surfactant, the polishing rate of the interlayer insulating film can be controlled. That is, the polishing rate to the low dielectric constant insulating film can be suppressed, and the polishing rate of the upper cladding layer such as the TEGS film can be improved. Examples of the (C1) nonionic surfactant include an acetylene glycol ethylene oxide adduct, a nonionic surfactant having at least one ethynyl group such as acetylene alcohol, and a polyoxon surfactant. An alkyl ether-based surfactant, polyvinyl alcohol, cyclodextrin, polyvinyl decyl ether, hydroxyethyl cellulose, etc. The above-mentioned nonionic interface can be used alone or in combination of two or more kinds 098104943 26 In the case of the above, a nonionic surfactant having at least one ethynyl group is preferred, and a nonionic surfactant represented by the following formula (1) is more preferred.

O-iCHzCHaOJirH CH3-CH(CH3)-CHz-C(CH3)-CsC-C(CH3)-CH2-CH(CH3)-CH3 …(1)O-iCHzCHaOJirH CH3-CH(CH3)-CHz-C(CH3)-CsC-C(CH3)-CH2-CH(CH3)-CH3 (1)

0-(CH2CH2〇)terH (式中’m及η分別獨立為1以上之整數,滿足m + n各j ❹ 上述通式(1)中’藉由控制表示環氧乙烷之加成莫耳數之 m及η,而可調整親水親油平衡(HLB,Hydr〇ph丨丨e_L丨p〇ph丄j e0-(CH2CH2〇)terH (wherein 'm and η are each independently an integer of 1 or more, satisfying m + n each j ❹ In the above formula (1), 'addition of ethylene oxide by control' The number of m and η, and the hydrophilic and lipophilic balance can be adjusted (HLB, Hydr〇ph丨丨e_L丨p〇ph丄je

Balance)。上述通式(i)中,m及n較佳為20Sm + ng5〇 , 更佳為 20$in + nS40。 作為由上述通式(1)所表示之非離子性界面活性劑之市售 品,例如可舉出 surfynol 440(HLB 值=8)、Surf^w 465CHLB 值= i3)、Surfynol 485CHLB 值= 17)(以上均由 Air © Products Japan 公司製造)。 上述(ci)非離子性界面活性劑之HLB值較佳為5〜2〇,更 佳為8〜17。若HLB值小於5,則對水之溶解度過小,而不 . 適於使用。 通常’若於化學機械研磨用水系分散體中使㈣或斜之含 量較多的二氧切粒子,則即便藉由研磨後之清洗操作,源 自二氧化石夕粒子之鈉或卸亦會殘留於被研磨物表面,而導致 裝置之電氣特性惡化。_亦依賴於_子性界面活性劑之 098104943 27 200944582 值,但可_上述(G1)_子性界面蹄 向··比起離子性界面活性劑 u如下傾 易吸附於具有相對較莴踣皮 性之低介電倾絕_之表心 後同疏水 碎而自二氧切粒伟果可抑制研㈣程中被破 出之鈉離子或鉀離子吸附於低介雷 常數絕緣膜,可藉由清洗而容 ' J令易地自被研磨物表面除去納& 進而,所_之非離子 r 生界面活性劑之分子極性較小, 因此可藉由清洗操作而容易 Γ較] 去,故而亦不會殘留於被研磨 物表面而使裝置之電氣特性惡化。 上述(ci)非離子性界面活 研磨用水系分㈣线質4,^3η4_對於化學機械 較佳為0.001〜1.0質量%,更 佳為0.005〜0.5質量%。若( 里文 Α)非離子性界面活性劑之含量 處於上述範_,料同料足錢之研糾歧良好之被 研磨面。 1.4 (D1)水溶性高分子 本實施形態之化學機械研磨用水系分散體可含有⑽具 有5萬以上且5GG萬以下之重量平均分子量的水溶性高分 子。雖然已知曉於化學機械研磨用水系分散體中添加水溶性 尚分子之技術’但由減小對低介電常數絕緣膜所產生的研磨 壓力之觀點而言,本案發明具有如下特徵:使用重量平均分 子里大於通吊所使用之水溶性高分子的水溶性高分子。 上述(D1)水溶性高分子之重量平均分子量,例如可應用藉 由凝朦滲透層析儀(GPC,Gel Permeation Chromatography) 098104943 28 200944582 測^之聚乙二醇換算之重量平均分子量㈤。上述⑽水溶 性高分子之重量平均分子量(黯)為5萬以上且_萬以下即 可,較佳為20萬以上且50〇萬以下,更佳為2〇萬以上且 150萬以下m平均分子量處於上述範_,則可一面 大幅減小研磨摩擦、一面增大對層間絕緣膜(上覆層)之研磨 速度。又,可抑制金屬_碟化或金職腐似⑽r〇si〇n), 從而可對金屬膜進行穩定研磨。若重量平均分子量小於上述 ❹下限貞1減】、研磨摩擦或抑制金屬膜淺碟化及金屬膜腐餘之 效果較差。又,若重量平均分子量大於上述上限,則會產生 如下問題:化學機械研磨用水系分散體之穩定性惡化,又, 水系分散體之黏度過度上升,而對研磨液供給裝置造成負擔 等。特別是若上述(D1)水溶性高分子之重量平均分子量超過 500萬,則會在長期保管水系分散體時因研磨粒成分之凝聚 而引起析出,又,會隨著保管溫度之些微變化而析出水溶性 ❹高分子,從而難以獲得穩定之研磨特性》 如上所述,一般認為,若於化學機械研磨用水系分散體中 使用鈉或鉀之含量較多的研磨粒,則即便藉由研磨後之清洗 . 操作,源自研磨粒之納或鉀亦會殘留於被研磨物表面,而導 致裝置之電氣特性惡化,故而避免使用。然而,藉由添加上 述(D1)水溶性高分子,可由水溶性高分子包覆二氧化矽粒 子’因此可抑制二氧化石夕粒子之納或鉀溶出。進而,上述(D1) 水溶性高分子亦可吸附殘留於被研磨面表面之鈉或鉀。結果 098104943 29 200944582 亦可在研磨後進行簡單的清洗操作而自被研磨面除去納或 钟,從而可結束研磨操作而不會使襄置之電氣特性惡化。 作為上述⑽水溶性高分子,例如可舉出聚丙稀酸及盆 鹽、聚甲基丙稀酸及其鹽、聚乙稀醇、聚乙稀料咬嗣、聚-丙烯醯胺等。該等水溶性高分子中,較佳為重複單元中且有’ 叛基之聚甲基丙稀酸及其鹽、聚丙烯酸及其鹽、或者 衍生物。由不對研磨粒之穩定性造成影響之方面而言,更佳 為聚丙烯酸及聚甲基丙騎酸可賦予本實施形態之 化學機械研磨用水系分散體適當黏性,因此特佳。 上述(D1)水溶性高分子之含量係相對於化學機械研磨用 水系分散體之總質量’較佳為〇 〇〇1〜1〇質量%以下,更佳 為0.01〜0.5質《。若⑽水溶性高分子之含量未滿上述 範圍,則看不到對低介電常數層間絕緣膜之研磨速度之提 高。另一方面’ 水溶性高分子之含量超過上述範圍, 則會引起二氧化矽粒子之凝聚。 〇 進而’上述(B)有機酸之含量相對於上述⑽水溶性高分 子之含量的比率’較佳為1 : 1〜1 : 40,更佳為! : 4叫·· 30。藉由上述⑻有機酸之含量相對於上述⑽水溶性高分 子之含量的比率處於上述範圍内,而可更可靠地同時滿足適 ' 度之研磨逮度及良好之被研磨面的平坦性。 - 1. 5氧化劑 本實施形態之化學機械研磨用水系分散體視需要可含有 098104943 30 200944582 氧化劑。作為氧化劑,例如可舉出過硫酸鎿、、^ 氧化氫、硝酸鐵、硝酸二録鈽、硫酸鐵、矣、鉀過 鹽、過械鉀及過乙酸等。該等氧化财 人乳酸及其 者將2種以上加以組合使用…該等氡化劑中用= 化力、與保護膜之相容性及择作交县庚楚 ^ ^ η“ 齡易度等,則特佳為過硫酸 銨、過硫酸鉀及過氧化氫。 之化量係相對於化學機械,磨用水系分散體 之、、息質篁,較佳為〇. 05〜5質量%,更佳為 ν υ. Do〜3質量% 〇 於氧化劑之含量未滿上述範圍之情形時,則會無法確保充分 之研,,另一方面’若超過上述範圍,則有銅膜等金屬 膜之腐#或淺碟化變大之虞。 1. 6 pH 值 本實施形態之化學機械研磨用水系分散 6〜12 ’更佳為7〜11.5,特佳為8〜n。Balance). In the above formula (i), m and n are preferably 20Sm + ng5〇, more preferably 20$in + nS40. Examples of the commercially available product of the nonionic surfactant represented by the above formula (1) include surfynol 440 (HLB value = 8), Surf^w 465 CHLB value = i3, and Surfynol 485 CHLB value = 17). (The above are all manufactured by Air © Products Japan). The HIB value of the above (ci) nonionic surfactant is preferably 5 to 2 Å, more preferably 8 to 17. If the HLB value is less than 5, the solubility in water is too small, and it is not suitable for use. Generally, if the amount of (4) or obliquely oxidized dioxin particles in the chemical mechanical polishing aqueous dispersion is large, the sodium or unloading from the cerium oxide particles may remain even after the polishing operation. On the surface of the object to be polished, the electrical characteristics of the device are deteriorated. _ also depends on the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The lower dielectric dip is the same as the hydrophobic granules, and the dioxo granules can inhibit the sodium or potassium ions that are broken in the process (4) from being adsorbed on the low dielectric constant insulating film. The cleaning is easy to remove the nano surface from the surface of the object to be polished. Further, the nonionic r-surfactant has a smaller molecular polarity, so that it can be easily removed by the cleaning operation. It does not remain on the surface of the object to be polished, and the electrical characteristics of the device deteriorate. The above (ci) non-ionic interface-grinding water component (4) is preferably 0.001 to 1.0% by mass, more preferably 0.005 to 0.5% by mass, based on chemical mechanical means. If the content of the nonionic surfactant is in the above-mentioned range, it is expected that the surface of the non-ionic surfactant is well-corrected. 1.4 (D1) Water-soluble polymer The chemical mechanical polishing aqueous dispersion of the present embodiment may contain (10) a water-soluble polymer having a weight average molecular weight of 50,000 or more and 5 GG or less. Although the technique of adding a water-soluble molecule to a chemical mechanical polishing aqueous dispersion is known, the present invention has the following features: from the viewpoint of reducing the polishing pressure generated on the low dielectric constant insulating film: The water-soluble polymer in the molecule is larger than the water-soluble polymer used in the hanging. The weight average molecular weight of the above (D1) water-soluble polymer can be, for example, a weight average molecular weight (e.g.) in terms of polyethylene glycol converted by a gel permeation chromatography (GPC, Gel Permeation Chromatography) 098104943 28 200944582. The weight average molecular weight (黯) of the above (10) water-soluble polymer may be 50,000 or more and 10,000 or less, preferably 200,000 or more and 500,000 or less, more preferably 2,000,000 or more and 1.5 million or less m average molecular weight. In the above-described manner, the polishing speed of the interlayer insulating film (overcoat layer) can be increased while greatly reducing the polishing friction. Further, it is possible to suppress the metal-disc or the gold-based corrosion (10)r〇si〇n), thereby stably grinding the metal film. If the weight average molecular weight is less than the above ❹ lower limit 贞 1 minus, the grinding friction or the suppression of the metal film shallow dish and the metal film rot are less effective. Further, when the weight average molecular weight is more than the above upper limit, there is a problem in that the stability of the chemical mechanical polishing aqueous dispersion is deteriorated, and the viscosity of the aqueous dispersion is excessively increased to cause a burden on the polishing liquid supply device. In particular, when the weight average molecular weight of the (D1) water-soluble polymer exceeds 5,000,000, precipitation occurs due to aggregation of the abrasive component when the aqueous dispersion is stored for a long period of time, and precipitation occurs with slight change in storage temperature. Water-soluble bismuth polymer makes it difficult to obtain stable polishing characteristics. As described above, it is considered that if the abrasive grains having a large content of sodium or potassium are used in the chemical mechanical polishing aqueous dispersion, even after grinding Cleaning. Operation, the sodium or potassium derived from the abrasive grains may remain on the surface of the object to be polished, and the electrical characteristics of the device may deteriorate, so it is avoided. However, by adding the above-mentioned (D1) water-soluble polymer, the cerium oxide particles can be coated with the water-soluble polymer, so that the sodium or potassium elution of the cerium dioxide particles can be suppressed. Further, the (D1) water-soluble polymer may adsorb sodium or potassium remaining on the surface of the surface to be polished. Result 098104943 29 200944582 It is also possible to perform a simple cleaning operation after grinding to remove the nano or clock from the surface to be polished, so that the polishing operation can be ended without deteriorating the electrical characteristics of the device. Examples of the (10) water-soluble polymer include polyacrylic acid and pot salts, polymethyl methic acid and salts thereof, polyethylene glycol, polyethylene occlusion, and poly-acrylamide. Among these water-soluble polymers, preferred are repeating units and have a retinal polymethyl acrylate acid and a salt thereof, polyacrylic acid and salts thereof, or derivatives. In view of the fact that the stability of the abrasive grains is not affected, it is more preferable that the polyacrylic acid and the polymethylpropionic acid can impart appropriate viscosity to the chemical mechanical polishing aqueous dispersion of the present embodiment. The content of the (D1) water-soluble polymer is preferably 〇1 to 1% by mass or less, more preferably 0.01 to 0.5% by mass based on the total mass of the aqueous dispersion for chemical mechanical polishing. If the content of the (10) water-soluble polymer is less than the above range, the improvement of the polishing rate of the low dielectric constant interlayer insulating film is not observed. On the other hand, when the content of the water-soluble polymer exceeds the above range, aggregation of the cerium oxide particles is caused. Further, the ratio of the content of the above (B) organic acid to the content of the above (10) water-soluble polymer is preferably 1:1 to 1:40, more preferably! : 4 is called · 30. By the ratio of the content of the above (8) organic acid to the content of the above (10) water-soluble polymer, it is within the above range, and it is possible to more reliably satisfy the appropriate degree of polishing and the flatness of the surface to be polished. - 1. 5 Oxidant The chemical mechanical polishing aqueous dispersion of the present embodiment may contain 098104943 30 200944582 oxidizing agent as needed. Examples of the oxidizing agent include barium persulfate, hydrogen peroxide, iron nitrate, nitric acid nitrate, iron sulfate, barium, potassium salt, potassium peroxide, and peracetic acid. These oxidized lactic acid lactic acid and its combination are used in combination of two or more kinds of such hydrating agents, such as chemical power, compatibility with a protective film, and selection of the county, Geng Chu ^ ^ η "Ease of use, etc. , particularly preferably ammonium persulfate, potassium persulfate, and hydrogen peroxide. The amount is based on chemical mechanical, abrasive water dispersion, and sputum, preferably 〇. 05~5 mass%, more If it is less than the above range, the amount of the oxidizing agent may not be sufficient. On the other hand, if it exceeds the above range, there is a corrosion of a metal film such as a copper film. #或浅碟化大虞。 1. 6 pH The chemical mechanical polishing of the present embodiment is dispersed in water for 6 to 12', more preferably 7 to 11.5, and particularly preferably 8 to n.

體之pH值較佳為 若pH值未滿6, 則會無法輯存在於二氧切粒子表面0㈣基間之氫 鍵’而引起二氧化石夕粒子之凝聚。另一方面,若pH值大於 12,則會由於鹼性過強而引起晶圓之缺陷。作為用以調整 pH值之方法,例如可藉由添加以氫氧化鉀、氨、乙二胺、 四甲基氫氧化銨(TMAH ’ Tetramethyl amm〇niumhydroxide) 等鹼性鹽為代表之pH值調整劑來調整邱值。 1.7化學機械研剌水系分散體之製造方法 本實施形態之化學機械研磨用水系分散體可藉由如下方 098104943 31 200944582 式製備;純水中直接添加(A)二氧化石夕粒子、(B1)有機酸、 及=他添加劑’並加以混合、㈣。可直接使用以如上方式 獲得之化學機械时系分散體,亦可製備以高濃度含有 各成分(料縮)之化學韻研剌水彡分舰,於使用時稀 釋成所需》農度而使用。 亦可製傷包含上述成分之任一種的複數種液體(例 如’兩種或三種液體)’並於使用時將該等加以混合使用。 於該it形時’亦可混合複數種液體而製備出化學機械研磨用 尺系刀散體後4將其供給至化學機械研磨裝置,亦可將複 數種液體分祕給至化學機械研磨裝置,於平台上形成化學 機械研磨用水系分散體。 作為具體例’可舉“含有水及(.氧化雜子之水系 分散體即㈣⑴、収含有水及(B1)有機酸之液體⑼所 組成’並混合該等液體而用於製備上述化學機械研磨用水系 分散體之套組(kit)。 至於上述液體⑴及(II)中之各成分之濃度,若混合該等 液體而最終製備之化學機械研磨用水系分散體中之各成分 的濃度為上述範圍内,則並無特別限定。例如,製備以比化 學機械研磨时系分散體之濃度更高之濃度含有各成分的 液體(I)及(II),並於使㈣視需要稀釋液體⑴及(⑴將 該等混合’而製備各成分之濃度處於上述範圍的化學機械研 磨用水系分散體。具體而言,將上述液體⑴及(⑴以i: i 098104943 32 200944582 之重量比混合之情形時’製備濃度為化學機械研磨用水系分 散體之濃度2倍的液體(I)及(π)即可。又,亦可製備濃度 . 為化學機械研磨用水系分散體之濃度2倍以上的液體(I)及 - (11),將該等以1 : 1之重量比混合之後,用水稀釋直至各 成分處於上述範圍内。如上所述,藉由分別製備液體G)及 液體(II),而可提高化學機械研磨用水系分散體之保存穩定 性。 ❹ 於使用上述套組之情形時’若於研磨時形成上述化學機械 研磨用水系分散體,則液體(1)與液體(11)之混合方法及時 序並無特別限定。例如,可混合液體(1)與液體(11)而製備 上述化學機械研磨用水系分散體後,再將其供給至化學機械 研磨裝置,亦可將液體(I)與液體(π)獨立供給至化學機械 研磨裝置,於平台上進行混合。或者,可將液體(1)與液體 (II)獨立供給至化學機械研磨裝置,於裝置内進行管線混 ❹合’亦可於化學機械研磨裝置中設置混合槽(tank),於混合 槽内進行混合。又,於進行管線混合時,為了獲得更均勻之 化學機械研磨用水系分散體,可使用管線型混合機(line . mixer# ° - 2·第2化學機械研磨用水系分散體 本發明之第2化學機械研磨用水系分散體,係含有(A)二 氧化碎粒子及(B2)胺基酸並用以對銅膜進行研磨者,且上述 (A)二氧化矽粒子具有「根據利用BET法所測定之比表面積 098104943 33 200944582 測定之錢醇基*而計算的魏醇基密度為 1.0〜3. 0個/nm。」之化學性質。 夕π興槐Am益m 先’就構成本實施形態 之化子機械研㈣料分散體之各成分加以說明。 2. 1 (A)二氧化石夕粒子 本實施«德學_研_料分 矽粒子。就⑷二氧化石夕粒子 有(A)一氧化 研磨用水系分散财所使狀(A)_t上述第1化學機械 略說明。 吏用之⑴一氧化石夕粒子相同,故省 ❹ 2. 2 (B2)胺基酸 ❹ 本實施形態之化學機械研磨用水系分散體含有⑽胺基 I。上述⑽胺級較佳為選自甘贿、丙胺酸及組胺酸中 之至少1種胺基酸。該等胺基酸具有容易與銅離子形成配位 鍵之性質,從而與被研磨面之銅膜之表面形成配位鍵。藉 此’可抑制銅膜之表面粗糙且維持較高之平坦性,並且,提 高與銅及雜子之親和性,並促進對_之研磨速度。又, 該等胺基酸可容易與藉由銅膜之研磨而溶出至衆料令之銅 離子配位,從而可防止銅之析出。結果可抑制銅膜上產生刮 痕等研磨缺b。進而,該等胺基酸可自研磨後之被研磨物表 面尚效地捕抓不必要之金屬,從而可自被研磨物表面有效除 去不必要之金屬。又,於併用後述(D2)水溶性高分子之情形 時’雖然亦依賴於其種類或添加量,但由於(£)2)水溶性高分 子吸附於銅臈表面,而阻礙研磨並使研磨速度下降。於此種 098104943 34 200944582 情形時,亦具有如下效果:藉由併用上述(B2)胺基酸,不論 是否添加水溶性高分子,均可增大銅膜之研磨速度。又亦 可藉由含有上述(B2)胺基酸’而阻礙於研磨過程中被破碎而 自一氧化矽粒子溶出之鈉離子或鉀離子吸附於銅膜表面,從 而可促進在/容液中之游離’結果亦可有效自被研磨物表面除 去0 ❹ ❹ 上述(B2)胺基酸之含量係相對於化學機械研磨用水系分 散體之總質量’較佳為G·咖〜3.0質量%,更佳為〇.〇1〜 2. 〇質量/。若上述(B2)胺基酸含量未滿上述範圍,則有銅 膜上產生淺碟化之虞。另—方面,若上述(B2)胺基酸含量超 過上述範圍’則有二氧化雜子產生凝聚之虞。 2· 3 (C2)陰離子性界面活性劑 本實施形態之化學機械研磨用水系分散體可含有(C2)陰 ,子性界面雜劑。通常認為,若於化學機械研磨用水系分 政=中使用鈉或钾之含量較多的研磨粒,則即便藉由研磨後 之β洗操作,源自研磨粒之鈉或鉀亦會殘留於被研磨物表 面二導致裝置之電氣特性惡化,故而避免其使用。然而, 般為上述(C2)陰離子性界面活性劑與銅及銅離子之親 和性^,且_離子或娜子之陽離子相比更能 吸附於鋼,從而倾表^因此,可纽地抑制於研磨過^ 中被破碎而自二氧切粒子溶出之祕子或㈣子等 於被研磨物表面。因此,即便為使用在二氧切粒子中殘存 098104943 35 200944582 有鈉等驗金屬作為雜暂The pH of the body is preferably such that if the pH is less than 6, the hydrogen bond between the 0 (tetra) groups on the surface of the dioxygen particles cannot be collected to cause agglomeration of the particles. On the other hand, if the pH is more than 12, the wafer is defective due to excessive alkalinity. As a method for adjusting the pH, for example, a pH adjuster represented by an alkaline salt such as potassium hydroxide, ammonia, ethylenediamine or tetramethylammonium hydroxide (TMAH 'Tetramethyl amm〇niumhydroxide) may be added. To adjust the value of Qiu. 1.7 Method for Producing Chemical Mechanical Grinding Water Dispersion The chemical mechanical polishing aqueous dispersion of the present embodiment can be prepared by the following formula: 098104943 31 200944582; direct addition of (A) SiO2 particles in pure water, (B1) Organic acid, and = other additives 'and mix, (four). The chemical mechanical time dispersion obtained in the above manner can be used as it is, or the chemical rhyme sputum water-containing sub-ship containing the components (flare) at a high concentration can be prepared and diluted to the required degree of agricultural use at the time of use. . A plurality of liquids (e.g., 'two or three liquids') containing any of the above components may be damaged and used in combination at the time of use. In the case of the IT shape, a plurality of liquids may be mixed to prepare a chemical mechanical polishing ruler blade, and then supplied to the chemical mechanical polishing device, or a plurality of liquids may be secretly supplied to the chemical mechanical polishing device. A chemical mechanical polishing aqueous dispersion is formed on the platform. As a specific example, 'the composition of water (and (4) (1), the liquid containing water and (B1) organic acid (9) is mixed and the liquid is mixed and used for the preparation of the above chemical mechanical polishing. a kit of water-based dispersions. The concentration of each component in the chemical mechanical polishing aqueous dispersion prepared by mixing the liquids with respect to the concentrations of the components in the liquids (1) and (II) is The range is not particularly limited. For example, the liquid (I) and (II) containing the respective components are prepared at a concentration higher than the concentration of the dispersion at the time of chemical mechanical polishing, and (4) the liquid (1) is diluted as needed. ((1) Mixing these to prepare a chemical mechanical polishing aqueous dispersion having a concentration of each component in the above range. Specifically, when the liquid (1) and ((1) are mixed in a weight ratio of i: i 098104943 32 200944582) 'Prepare the liquid (I) and (π) at a concentration twice that of the chemical mechanical polishing aqueous dispersion. Alternatively, the concentration can be prepared. The chemical mechanical polishing aqueous dispersion is twice the concentration. The above liquids (I) and - (11) are mixed in a weight ratio of 1:1, and then diluted with water until the respective components are in the above range. As described above, liquid G) and liquid (II) are separately prepared. Moreover, the storage stability of the chemical mechanical polishing aqueous dispersion can be improved. ❹ When the above-mentioned kit is used, 'If the above-mentioned chemical mechanical polishing aqueous dispersion is formed during grinding, the liquid (1) and the liquid (11) The mixing method and the timing are not particularly limited. For example, the liquid chemical (1) and the liquid (11) may be mixed to prepare the chemical mechanical polishing aqueous dispersion, and then supplied to the chemical mechanical polishing device, or the liquid may be used. (I) independently supplied to the chemical mechanical polishing device with the liquid (π), and mixed on the platform. Alternatively, the liquid (1) and the liquid (II) can be independently supplied to the chemical mechanical polishing device, and the pipeline can be mixed in the device. It is also possible to provide a mixing tank in the chemical mechanical polishing apparatus to mix in the mixing tank, and to obtain a more uniform chemical mechanical polishing water dispersion in the pipeline mixing. A line type mixer (line. mixer# ° - 2) second chemical mechanical polishing water-based dispersion The second chemical mechanical polishing aqueous dispersion of the present invention contains (A) oxidized granules and (B2) The amino acid is used to polish the copper film, and the (A) cerium oxide particle has a "the density of the thiol group of 1.0 based on the phenolic group* determined by the specific surface area of 098104943 33 200944582 measured by the BET method. The chemical properties of ~3. 0 / nm." 夕 槐 槐 槐 益 益 益 先 先 先 先 先 先 先 先 先 先 先 先 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. Shi Xi particles this implementation of the "German _ research _ material 矽 particles. (4) The cerium oxide particles of the (4) oxidized water-based dispersing agent (A)_t The above-mentioned first chemical machine is abbreviated. (1) The oxidized stone particles are the same, so the ❹ 2. 2 (B2) amino acid ❹ The chemical mechanical polishing aqueous dispersion of the present embodiment contains (10) the amine group I. The above (10) amine grade is preferably at least one amino acid selected from the group consisting of a bribe, an alanine and a histidine. These amino acids have a property of easily forming a coordinate bond with copper ions, thereby forming a coordinate bond with the surface of the copper film on the surface to be polished. By this, the surface roughness of the copper film can be suppressed and the flatness can be maintained high, and the affinity with copper and impurities can be improved, and the polishing speed of the film can be promoted. Further, the amino acids can be easily coordinated to the copper ions which are eluted by the polishing of the copper film to prevent the precipitation of copper. As a result, it is possible to suppress the occurrence of scratches such as scratches on the copper film. Further, the amino acid can effectively capture unnecessary metals from the surface of the object to be polished after grinding, thereby effectively removing unnecessary metals from the surface of the object to be polished. In addition, in the case of using (D2) a water-soluble polymer described later, 'depending on the type or amount of addition, the water-soluble polymer is adsorbed on the surface of the copper mat, and the polishing speed is hindered. decline. In the case of such 098104943 34 200944582, it is also effective to increase the polishing rate of the copper film by using the above (B2) amino acid in combination with or without the addition of the water-soluble polymer. Further, by containing the above (B2) amino acid, the sodium ion or potassium ion which is prevented from being broken by the grinding process and eluted from the cerium oxide particles can be adsorbed on the surface of the copper film, thereby promoting the in-liquid phase. The free 'results can also be effectively removed from the surface of the object to be polished. ❹ ❹ The content of the above (B2) amino acid is preferably from G·咖 to 3.0% by mass relative to the total mass of the chemical mechanical polishing aqueous dispersion. Good for 〇.〇1~ 2. 〇Quality/. If the content of the above (B2) amino acid is less than the above range, a shallow disc is formed on the copper film. On the other hand, if the (B2) amino acid content exceeds the above range, there is a tendency for the dioxins to agglomerate. 2· 3 (C2) Anionic surfactant The chemical mechanical polishing aqueous dispersion of the present embodiment may contain (C2) an anionic interfacial impurity. It is generally considered that if the abrasive grains having a large content of sodium or potassium are used in the chemical mechanical polishing, the sodium or potassium derived from the abrasive grains may remain in the pressed particles even after the β washing operation after the polishing. The surface of the abrasive causes the electrical characteristics of the device to deteriorate, so that its use is avoided. However, the affinity of the above (C2) anionic surfactant to copper and copper ions is generally better than that of cations of ionic or ionic ions, so that it can be adsorbed on steel, thereby inhibiting The secret or the (four) sub-sludge that is broken and eluted from the dioxo particles is equal to the surface of the object to be polished. Therefore, even if it is used in the dioxin-cut particles, 098104943 35 200944582 has a metal such as sodium as a miscellaneous

_之石夕酸鹼水溶液(水玻璃)的化學機 械研磨用水系分散骷,+ H 亦可在研磨後進行簡單的清洗操作而 ^被研磨面除麵⑽,㈣可崎化學機械研磨而不會過 度污染銅佈線。 又,一 又 述(C2)陰離子性界面活性劑可吸附於二挛 夕粒子表面等’而提高粒子之分散穩定性。結果可增強相 子之保存穩定性,並可大幅抑㈣測由凝聚之粒子所引起之 刮痕數。_ The chemical mechanical polishing of the aqueous solution of water and alkali (water glass) is dispersed in water, + H can also be cleaned after grinding, and the surface is removed by the polished surface (10), (4) Excessive contamination of copper wiring. Further, it is also described that (C2) an anionic surfactant can be adsorbed on the surface of the particles of the Dioxin particles to improve the dispersion stability of the particles. As a result, the preservation stability of the phase can be enhanced, and the number of scratches caused by the agglomerated particles can be greatly suppressed.

述(C2)陰離子性界面活性狀含量仙對於化學機械 研磨用水系分散體之總質量,較佳為G.刚質量%, 更佳為^娜〜以質化若上述⑽陰離子性界面活性 劑之s篁未滿上述㈣,則銅臈表面之保護作用減弱而進行 腐姓或過度仙’結果有引錢魏或雜之虞。另-方 面,若上述(⑵陰離子性界面活性劑之含量超過上述範圍, 則有時賴表面之健_變得轉,而紐獅充分之研 磨速度,從而產生銅殘留(銅殘潰)。又,有二氧化石夕粒子產 生凝聚之虞,並產生激烈起泡等實用上之弊病。 本實施形態中所使用之(⑵陰離子性界面活性劑,較佳為 具有選自縣、_基、磷酸基、以及該等官能基之銨鹽及 金屬孤中之至41種g能基。作為此種(⑵陰離子性界面活 性劑,可舉出脂肪酸鹽、烧基硫酸鹽、燒基醚硫酸醋鹽、烧 基醋麟鹽、烧基苯確酸鹽、直鏈燒基苯續酸鹽、心績酸 098104943 36 200944582 基脂肪酸醋鹽、烧基聚氧乙稀硫酸鹽、烧基填酸鹽、單烧基 鱗酸知鹽、萘4酸鹽、α_烯烴項酸鹽、烧烴續酸鹽及稀基 ,丁二酸鹽等。該等之中’更佳狀基苯賴鹽、直鏈烧基苯 •增酉文鹽、蔡石頁酸鹽、稀基丁二酸鹽。該等陰離子性界面活性 劑可單獨使用1種,或者將2種以上加以組合使用。 作為上述稀基Τ二酸鹽,特佳為由下述通式⑵所表示之 化合物。 ❹ [化4]The (C2) anionic interface activity content is preferably a total mass of the chemical mechanical polishing aqueous dispersion, preferably G. 9% by mass, more preferably 娜 〜 to 质化, if the above (10) anionic surfactant If s篁 is not above (4), then the protective effect of the surface of the matte is weakened and the rot or excessive sage is carried out. On the other hand, when the content of the (2) anionic surfactant exceeds the above range, the surface of the surface may become a turn, and the lion's full polishing rate may cause copper residue (copper residue). There is a practical disadvantage in that the cerium dioxide particles are agglomerated and cause intense foaming. (2) The anionic surfactant preferably has a selected from the group consisting of a county, a base, and a phosphoric acid. The base, and the ammonium salt of the functional group and the metal solute to 41 g energy groups. As such ((2) anionic surfactant, fatty acid salt, alkyl sulfate, alkyl ether sulfate , sulphuric acid vinegar salt, benzoic acid benzoate, linear alkyl benzoate, heart acid 098104943 36 200944582 base fatty acid vinegar, burnt polyoxyethylene sulphate, burnt base acid, single Pyridinium salt, naphthalene 4 acid salt, α-olefin acid salt, pyrocarbonic acid salt and dilute base, succinate salt, etc. Among these, 'better-like phenyl lysine salt, linear burnt Benzene • Zengwenwen salt, Cai Shi page acid salt, dilute succinate salt. These anionic interfaces Agent may be used alone, or in combination of two or more of them. Examples of the group Τ dilute acid salt, particularly preferably a compound represented by the following formula by ⑵. ❹ The [Chemical Formula 4]

…(2) 參 上述通式(2)中,R1及R2分別獨立為氫原子、金屬原子、 或者經取代絲經取代域基。R1A R2為絲之情形時, 較佳為炭數1〜8之經取代或未峰代之烧基。又,Ri、R2 子時’較佳為驗金屬原子’更佳為納或鉀岬表示 :取代或未經取代之烯基或者磺酸基卜卿。為烯基 於美2為魏2〜8之經取代或未經取代之縣。R3為續 二眭3X)時’X為氫離子、錢離子或金屬離子。X為金屬 X較佳為納離子或卸離子。 作為由上述通式⑵所表示之化合物之·商品名,可舉 098104943 37 200944582 出R中具有磺酸基(-soa)之商品名「Newc〇129卜M」(可自 曰本乳化劑股份有限公§3購買)、商品名「NeweQl 292_pG」 (可由日本乳化劑股份有限公司講買)、商品名「peiex ta(可 自花王股份有限公司購買)、及屬於縣丁二酸二卸之商品 名「Lateoud ASK」(可自花王股份有限公司購買)等。 由上述通式⑵所絲之化合物係韻於銅社表面,保 護其不受過度制或腐麵之效果特別高^此,可獲得平滑 之被研磨面。 根據本案發明者等人之研究可明白,上述(C2)陰離子性界 面活性劑之最有效的組合,係屬概絲侦鹽之十二院美 苯續酸録與屬於縣丁二酸鹽之縣T二酸二_的組合。 2. 4 (D2)水溶性高分子 本實施形態之化學機械研磨用水系分散體,較佳為 (D2)重量平均分子量為1萬以上且⑽萬以下之具有作為路 易斯驗之性質的水溶性高分子。上述(D2)水雜高分子且 如下效果4於具有作為路㈣驗之性f,因而料吸附、(配 位鍵結)於銅膜之表面,並可抑制峨之淺碟化及腐餘產生。 上述⑽水溶性高分子錄為具麵自錢雜環及 子性官能基中之至少1種分子構造。又,料陽離子性官能 基’較佳為祕。上述錢轉及陽離子料祕具有作為 路易斯驗之性質,因此具有如下效果: ''' 結)於銅膜之表面’並抑制銅膜之淺碟化二^吸附(配位鍵 久瑪蚀產生。又, 098104943 38 200944582 於清洗步驟中可容易除去’因此不會污染被研磨物, 上述⑽水溶性高分子更佳為以錢㈣騎複^ 均聚物、或者含有含氮單體作為重複單元之共料 : 氣單體’例如可舉出卜乙烯基鱗_、(甲基) ·、、、/ N-經甲基丙婦醯胺、N_2,乙基丙稀醯胺、丙稀驢基味:: N’N--甲基胺基丙基丙烯醯胺及其之二乙基硫酸鹽 二甲基丙稀醯胺、N-異丙基丙_胺、卜乙婦基乙^胺,甲 基丙烯酸Ν,Ν-二甲基胺基乙醋及其之二乙基硫酸 : Ν-乙烯基甲醢胺,等單體之中,特佳為分子構造中 乙—卜乙烯㈣二 由衣上之氮原子而容易與銅離子形成配位鍵,從而提高愈銅 及銅離子之親和性,可㈣於銅狀表面而進行適度保謹。 於上述(D2)水溶性高分子為含有含氮單體作為重複單元 之共聚物之情形時’無需全部單體為含氮單體,含有上述人 氮單體中之至少1種即心作材與含氮單體進行妓聚八^ 單體’例如可舉出丙烯酸、甲基丙烯酸、丙烯酸甲醋、;基 丙烯酸甲酯、乙婦基乙趟、二乙稀苯、乙酸乙稀醋、苯乙烯 等0 上述(D2)水溶性高分子較佳為具有陽離子性官能基之均 聚物或共聚物。例如,可為含有由下述通式⑷或下述通式 (5)所表不之重複單兀之至少一者的均聚物或共聚物(以 下,亦稱作「特定聚合物」)。 098104943 39 200944582 [化5](2) In the above formula (2), R1 and R2 each independently represent a hydrogen atom, a metal atom, or a substituted filament-substituted domain group. When R1A R2 is a wire, it is preferably a substituted or unpeaked alkyl group having a carbon number of 1 to 8. Further, in the case of Ri and R2, it is preferred that the metal atom is more preferably "nano or potassium" to represent a substituted or unsubstituted alkenyl group or a sulfonic acid group. It is a substituted or unsubstituted county of alkenyl to mei 2 as Wei 2~8. When R3 is continued 2眭3X), 'X is a hydrogen ion, a money ion or a metal ion. X is a metal X is preferably a nano ion or an unloading ion. The trade name of the compound represented by the above formula (2) is 098104943 37 200944582. The trade name "Newc〇129 Bu M" having a sulfonic acid group (-soa) in R (available from 曰 Emulsifiers Limited) §3 purchase), the trade name "NeweQl 292_pG" (available from Japan Emulsifier Co., Ltd.), the trade name "peiex ta (available from Kaowang Co., Ltd.), and the product name of the county succinic acid "Lateoud ASK" (available from Kao Corporation) and so on. The compound of the above formula (2) is rhythmic to the surface of the copper, and the effect of protecting it from excessive or rotted surface is particularly high, and a smooth polished surface can be obtained. According to the research of the inventors of the present invention, it can be understood that the most effective combination of the above (C2) anionic surfactant is the county of the succinic acid salt of the 12th hospital of the sage. A combination of T diacids. 2. (D2) Water-soluble polymer The chemical mechanical polishing aqueous dispersion of the present embodiment preferably has a (D2) weight average molecular weight of 10,000 or more and (10) or less and has a water solubility as a Lewis test. molecule. The above-mentioned (D2) water-hybrid polymer has the following effect 4 as having the property f as a path (four), so that the material is adsorbed and (coordinatingly bonded) on the surface of the copper film, and the shallow disc formation and the spoilage of the crucible can be suppressed. . The above (10) water-soluble polymer is recorded as at least one molecular structure of a surface-derived heterocyclic ring and a sub-functional group. Further, the cationic functional group ' is preferably secret. The above-mentioned money conversion and cationic material have the property of being tested as a Lewis, and therefore have the following effects: '''junction) on the surface of the copper film' and inhibiting the shallow-disc absorption of the copper film (coordination bond kumba eclipse generation). Further, 098104943 38 200944582 can be easily removed in the cleaning step, so that it does not contaminate the object to be polished. The above (10) water-soluble polymer is preferably a carbon (tetra) riding homopolymer or a nitrogen-containing monomer as a repeating unit. In common, the gas monomer can be exemplified by vinyl scales, (meth), , , / N-methyl methacrylate, N 2 , ethyl acrylamide, acrylonitrile. :: N'N--Methylaminopropyl acrylamide and its diethyl sulphate dimethyl propyl amide, N-isopropyl propyl amine, Ethyl amide, A Acrylic acid ruthenium, ruthenium-dimethylaminoethyl vinegar and its diethyl sulphate: Ν-vinyl carbamide, among other monomers, especially in the molecular structure of B-vinyl (IV) The nitrogen atom easily forms a coordination bond with the copper ion, thereby improving the affinity between the copper and the copper ion, and (4) performing moderate protection on the copper surface. When the (D2) water-soluble polymer is a copolymer containing a nitrogen-containing monomer as a repeating unit, it is not necessary that all of the monomers are nitrogen-containing monomers, and at least one of the above-mentioned human nitrogen monomers is used as a core material. Examples of the polymerization of the monomer with a nitrogen-containing monomer include acrylic acid, methacrylic acid, methyl acrylate, methyl acrylate, ethyl acetophenone, diethyl benzene, ethyl acetate, and benzene. The above-mentioned (D2) water-soluble polymer is preferably a homopolymer or a copolymer having a cationic functional group. For example, it may be represented by the following formula (4) or the following formula (5). A homopolymer or a copolymer (hereinafter also referred to as "specific polymer") of at least one of the single oximes is repeated. 098104943 39 200944582 [Chemical 5]

[化6][Chemical 6]

(5) 〇 (上述通式(4)及上述通式(5)中,R1表示氫原子或者碳數 1〜6之經取代或未經取代之烷基,R2表示經取代或未經取 代之亞甲基或者碳數2〜8之經取代或未經取代之伸烷美, 觸立表线原子或者雜_之經㈣或 未經取代之烷基,A表不單鍵或去〜π i 子 ❹ ^ 、 —或者表示陰離(5) 〇 (In the above formula (4) and the above formula (5), R1 represents a hydrogen atom or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and R2 represents a substituted or unsubstituted group. A methylene group or a substituted or unsubstituted alkylene group having a carbon number of 2 to 8 or a substituted alkyl group or a non-substituted alkyl group, and A represents a single bond or a ~π i sub ❹ ^ , — or indicate an overcast

之A 由上述通式(4)及上述通式(5)所表示 表示m更佳Ha為,二之重複單元中、“ 氧化矽粒子會 .一 I發生沈澱的情 散等再分散 定聚合物或其他成分之含量的關係,使二氣有時有由於與特 性下降,於長時間保存時,二ϋ ^ _化石夕粒子之穩定 形。於此種情形時,在使用前必須進行超立 化處理,而使作業上之負擔増加 '皮刀 098104943 40 200944582 抗衡陰離子(counter ani〇n)(M-)較佳為齒化物離子、有 機陰離子、無機陰離子。更佳為氫氧化物離子、氯化物離子、 * /臭化物離子、NH3之共輛驗NIL·-、烧基硫酸離子、過氯酸離 • 子、硫酸氳離子、乙酸離子、烷基苯磺酸離子。尤佳為氯化 物離子、烷基硫酸離子、硫酸氫離子、乙酸離子、烷基苯磺 酸離子。藉由使用有機陰離子,可避免被研磨物之金屬污 染,由研磨結束後可容易除去之觀點而言,尤佳為烷基硫酸 ❹離子。 進而,特定聚合物更佳為含有由下述通式(6)所表示之重 複單元之共聚物。又’含有由下述通式⑻所表示之重複單 元之共聚物,可為由上述通式(4)及上述通式(5)所表示之重 複單70與由下述通式⑹所表示之重複單錢行| 成的聚合物’亦可為由上述通式⑷及上述通式⑸所表:之 重複單元與由下述通式⑻所絲之重鮮元之嵌段共聚 [化7]A is represented by the above formula (4) and the above formula (5), and it is more preferable that Ha is Ha, and in the repeating unit of the second, "the cerium oxide particles may precipitate. Or the relationship between the content of other components, such that the second gas sometimes has a stable shape due to a decrease in characteristics and a long-term storage. In this case, it must be super-living before use. Processing, and the burden on the work is added to the 'knife 098104943 40 200944582 Counter anion (M-) is preferably a tooth ion, an organic anion, an inorganic anion. More preferably hydroxide ion, chloride Ion, * / stinky ion, NH3, a total of NIL · -, alkyl sulfate, perchloric acid, sulphate, acetate, alkyl benzene sulfonate, especially chloride ion, alkane Sulfate ion, hydrogen sulfate ion, acetate ion, alkylbenzenesulfonate ion. By using an organic anion, metal contamination of the object to be polished can be avoided, and from the viewpoint of easy removal after polishing, an alkyl group is preferred. Barium sulfate ion Further, the specific polymer is more preferably a copolymer containing a repeating unit represented by the following formula (6), and a copolymer containing a repeating unit represented by the following formula (8), which may be a formula (4) and the repeating unit 70 represented by the above formula (5) and the repeating unit represented by the following formula (6) may be formed by the above formula (4) and the above formula (5). Table: The repeating unit of the repeating unit and the block copolymerized by the heavy formula of the following formula (8) [Chemical 7]

1〜6之經取代 (上述通式(6)中’ R6表示氫原子或者碳數 或未經取代之烷基)。 於特定聚合物為含有由上料式⑷所麵之重複單元及 098104943 41 200944582 由上述通式⑸所表示之重複單元的共聚物時,若 通式⑷所表示之重複單元之料數料η, Μ 式⑸所麵之重複單元之財數設為㈣彳即便莫耳述通 =10/0〜G/1G之比率’亦可獲得充分之性能,於較佳為則 〜9、更佳為1〇/〇〜2/8、特佳為9/1〜3/7 獲得良好之結果。 ?之比率時’可 另外’由上述通式⑷所表示之重複單元及由上述通式Substitution of 1 to 6 (In the above formula (6), R6 represents a hydrogen atom or a carbon number or an unsubstituted alkyl group). When the specific polymer is a copolymer containing a repeating unit of the formula (4) and a repeating unit represented by the above formula (5): 098104943 41 200944582, if the number of the repeating units represented by the formula (4) is η,财 The fiscal unit of the repeating unit of the formula (5) is set to (4), and even if the ratio of the molars = 10/0 to G/1G', sufficient performance can be obtained, preferably -9, more preferably 1 〇/〇~2/8, especially good 9/1~3/7 Good results. ? In the case of ratio, the repeating unit represented by the above formula (4) and the above formula

==重複單元之含量,可根據具有胺基之單體的添加量 入I 和1而計算,又’亦可藉由使用酸或驗對特定聚 合物進行滴定而測定。= = The content of the repeating unit can be calculated from the addition amount of the monomer having an amine group to I and 1, and can also be determined by titrating a specific polymer using an acid or an assay.

_於特定聚合物為含有由上述通式⑷或上料式⑸所j :之重複單元及由上述通式⑻所表示之重複單元的共料 時’若將由上述通式⑹所表示之重複單元之莫耳數設』 q,且將由上料式⑷或上料式⑸所表μ重複單元$ 莫耳數設為p,則莫耳比q/p為9/1〜1/9之範圍内時,? 獲得特別良好之結果。 ' 特定聚合物之胺基含量,係於根據軍體之添加量而計為 時’可為 〇〜0. 100 mol/g,較佳為 〇· _〜〇. 〇1〇 m〇i/g 更佳為 〇. 002〜0. 006 mol/g。 特定聚合物之陽離子性官能基含量,於根據單體之添加量 而計算時,可為0〜〇.1GGmQl/g,較佳為q._5〜〇 〇1〇 mol/g ’ 更佳為 〇. 〇〇2〜〇. Q06 mol/g。 098104943 42 200944582 上述(D2)水溶性高分子之重量平均分子量,例如可應用藉 由凝膠滲透層析儀(GPC,Gel Permeation Chromatography) • 而測定的聚乙二醇換算之重量平均分子量(Mw)。上述(D2) • 水溶性高分子之重量平均分子量(Mw)為1萬以上且150萬以 下,較佳為4萬以上且120萬以下。若重量平均分子量處於 上述範圍内,則可減小研磨摩擦,並可抑制銅膜之淺碟化或 腐蝕。又,可對銅膜進行穩定研磨。若重量平均分子量未滿 ❹1萬,則由於研磨摩擦之減小效果較小,因此無法抑制銅膜 之淺碟化或腐蝕。另一方面,若重量平均分子量超過^ ,因凝聚之二氧化 會產生如下問題: 萬,則有損害二氧化矽粒子之分散穩定性, 石夕粒子而使銅膜上之刮痕增加之虞。又,名 化學機械研剌料分散體之減過度上㈣_供給裝 置造成負荷等。進而,對微細佈線圖案進行研磨時,圖案上 明顯產生銅殘留,故不實用。If the specific polymer is a comon containing a repeating unit of the above formula (4) or the above formula (5) and a repeating unit represented by the above formula (8), the repeating unit represented by the above formula (6) The number of moirs is set to q, and the μ repeating unit of the superfluous type (4) or the loading type (5) is set to p, and the molar ratio q/p is in the range of 9/1 to 1/9. At the time, ? obtained particularly good results. The content of the amine group of the specific polymer is 〇~0. 100 mol/g, preferably 〇· _~〇. 〇1〇m〇i/g, based on the amount of addition of the military body. More preferably 〇. 002~0. 006 mol/g. The content of the cationic functional group of the specific polymer may be 0 to GG.1 GGmQl/g, preferably q._5 to 〇〇1 〇mol/g', more preferably 计算, based on the amount of the monomer added. 〇〇2~〇. Q06 mol/g. 098104943 42 200944582 The weight average molecular weight of the above (D2) water-soluble polymer, for example, a polyethylene glycol equivalent weight average molecular weight (Mw) measured by gel permeation chromatography (GPC, Gel Permeation Chromatography) . (D2) The weight average molecular weight (Mw) of the water-soluble polymer is 10,000 or more and 1.5 million or less, preferably 40,000 or more and 1.2,000,000 or less. If the weight average molecular weight is within the above range, the polishing friction can be reduced, and the dishing or corrosion of the copper film can be suppressed. Further, the copper film can be stably polished. If the weight average molecular weight is less than 10,000, the effect of reducing the polishing friction is small, so that the dishing or corrosion of the copper film cannot be suppressed. On the other hand, when the weight average molecular weight exceeds ^, the oxidation due to agglomeration causes the following problems: In general, the dispersion stability of the cerium oxide particles is impaired, and the scratches on the copper film are increased by the stone particles. In addition, the name of the chemical mechanical sputum dispersion is excessively reduced (4) _ supply device causes load. Further, when the fine wiring pattern is polished, copper remains in the pattern, which is not practical.

丁 双不琰π贗迷度之下降。Ding double does not 琰 赝 赝 赝 decline.

則即便藉由研磨後之清洗操作,源自 098104943 43 200944582 研磨粒之鈉或鉀亦會殘留於被研磨物表面,而導致裝置之電 氣特性惡化,故避免其使用。然而,上述(D2)水溶性高分子 具有作為路易斯驗之性質,因此可高效地配位於被研磨面之 銅膜之表面。藉此,可有效地保護銅膜之表面,而抑制鈉或 鉀吸附於銅膜之表面,可藉由清洗而容易地自銅膜之表面除 去鈉或鉀。進而,上述水溶性高分子可藉由清洗操作而容易 除去,故而亦不會殘留於銅膜之表面而使裝置之電氣特性惡 化。 2.5具有含氮雜環及叛基之有機酸 本實施形態之化學機械研磨用水系分散體可含有具有含 氮雜環及羧基之有機酸。上述具有含氮雜環及羧基之有機 酸,可藉由與上述(B2)胺基酸併用,而提高⑶幻胺基酸之效 果。作為具有含氮雜環及叛基之有機酸,例如可舉出含有具 有至少1個氮原子之雜六員環之有機酸、含有由雜五員環所 構成之雜化合物之有機酸等。更具體而言,可舉出喧哪唆 酸、喹啉酸、喹啉-8-羧酸、吡啶羧酸、黃尿酸(xanthurenic acid)、犬尿喹酸(kynurenic acid)、菸鹼酸及鄰胺苯曱酸 等。 上述具有含氮雜環及竣基之有機酸之含量係相對於化學 機械研磨用水系分散體之總質量,較佳為0.001〜3 〇質量 % ’更佳為0_ 01〜2· 0質量%。若具有含氮雜環及羧基之有機 酸之含量未滿上述範圍,則有於銅膜上引起淺碟化之虞。另 098104943 44 200944582 一方面’若財含氮雜環及·之有機酸之含量超過上述範 圍’則有二氧化石夕粒子產生凝聚之虞。 2.6氧化劑 Φ ❹ 本實施形態之僻频研㈣㈣分制視需要可含有 氧化劑。作為氧化劑,例如可舉㈣硫酸錢、過硫酸卸、過 氧化氫、_鐵、顧二朗、硫酸鐵、臭氧、次氯酸及其 鹽、過蛾酸鉀及過乙酸等。該等氧化劑可單獨使用i種,或 者,2種以上加讀合㈣用。又,財氧化狀中,若考 慮氧化力、與賴社相容性及齡容以等 硫酸録、過硫酸鉀及過氧化氫, :為過 千罝係相對於化學 機械研磨用水系分散體之總質量,較佳為US質量%, mr議。氧化劑之含量未滿上述範圍之情形 時,會無法獲得對銅膜之充分之研磨速度 過上述範圍,則有於銅膜上㈣淺碟化 2. 7 pH 值 本實施形態之化學機械研磨用水系分散體 6〜12,更佳為7〜11.5,特佳氧值牧1為 ' ”、'〜11。若pH值未滿6, 則會無法切斷存在於二氧化錄子表面之石夕烧醇基間之氣 鍵,從而引起二氧化石夕粒子之凝聚。另一方面,若pH值大 於12,則會因鹼性過強而弓丨起曰 PH值之方法,例如缺陷。作為用以調整 J精由添加以氫氧化鉀乙、 麵(四甲基氫氧倾為代表之PH值調整調 09810404^ 45 200944582 整pH值。 8用途 本實施形態之化學機械研磨用水系分散體,可較佳地用於 在表面上具有鋼膜之被處理體(例如,半導體裝置)之化學機 械研磨。即’若本實施形態之化學機械研磨用水系分散 體’則藉由含有⑽胺基酸,而可抑制銅膜之表面粗糙並維 持較南之平坦性,並且提高油及_子之親和性,從而可 m膜之研磨速度。藉此,即便在普通研磨壓力條件 亦不會在_及低介電常數絕_上叫缺陷,並可對 表面之銅膜進行高速且選擇性研磨。又,若利用本實施形態 之化學機械研磨用水系分散體,則 P目_二一 〜4日日圓之金屬巧染。 更具體“,本實施形態之化學機械研相水系分散體, 在例如藉由金屬鑲嵌法製造使: ?丨%常數絕緣膜作為絕 緣膜且使用鋼或銅合金作為佈 中,可癃田认, 刊种〈牛導體裝置的步驟 ;_化學機械將障壁金相上之銅膜 之步驟(第1研磨處理步驟)。 、 、'于' 於本發明中,所謂「_」細由鋼或鋼 作為銅合金中之銅含量,較 ° $成之膜’ 乂住為95質量%以上。 2.9化學機械研磨用水系分散體之製 本實施形H之化學機柄磨 式製備:於純水中直接添加(A)==可藉由如下方 及其他添加劑,並加以現合 μ子、⑽胺基酸 098104943 ❿ ❹ 槐拌。可直接使用以上述方式 46 200944582 獲得之化學機械研磨用水系分散體,亦可製備以高濃度含有 各成分(經濃縮)之化學機械研磨用水系分散體,於使用時稀 -釋成所需濃度後使用。 .又,亦可製備包含上述成分之任一種的複數種液體(例 如’兩種或三種液體)’並於使用時將該等加以混合而使用。 於該情形時,可將複數種液體加以混合而製備化學機械研磨 用水系分散體之後,再將其供給至化學機械研磨裝置,亦可 β 將複數種液體分別供給至化學機械研磨裝置,於平台上形成 化學機械研磨用水系分散體。 作為具體例,可舉出由含有水及(Α)二氧化矽粒子之水系 分散體的液體(I)、以及含有水及(Β2)胺基酸之液體(π)構 成’且用以將該等液體混合而製備上述化學機械研磨用水系 分散體的套組。 上述液體(I)及(II)中之各成分的濃度,若將該等液體混 ❹合而最終製備之化學機械研磨用水系分散體中之各成分之 濃度為上述範圍内,則並無特別限定。例如,製備以比化學 機械研磨用水系分散體之濃度更高的濃度含有各成分之液 -體(I)及(II),於使用時視需要稀釋液體及(11),將該等 混合,而製備各成分之濃度處於上述範圍之化學機械研磨用 水系分散體。具體而言,於將上述液體(1)與(11)以1 : i 之重量比混合之情形時’製備濃度為化學機械研磨用水系分 散體之濃度2倍的液體(I)及(11)即可。又,亦可製備濃度 098104943 47 200944582 為化學機械研磨用水系分散體之濃度2倍以上的液體⑴及 (I)再將該等以1 . 1之重量比混合之後,用水稀釋直至 各成分成為上述範圍内。如上所述,藉由分別製備液體⑴ =體(II),而可提高化學機械研磨用水系分散體之保存穩 於使用上述套組之情形時,若於研磨時形成上述化學機械 研磨用水系分散體,則賴(I)與液體(II)之混合方法及4 序並無特職定。例如,可將賴(I)與㈣(II)混合而製 備上述化學軸研㈣水系分散體之後,再將其供給至化學 機械研磨裝置,料將賴⑴舰體(⑴獨立供給至化: 機械研磨t置,再於平台上進行混合。或者,亦可將液體^ 與液體(II)獨立供給至化學機械研磨裝置,於裝置内進行管 線混合,亦可於化學機械研磨襞置中設置混合槽,於混合槽 内進打混合。又,於進行管線混合時,為了獲得更均勻之化 學機械研磨用水系分散體,亦可使用管線型混合機等。 3.化學機械研磨方法 使用圖式針對本實施形態之化學機械研磨方法之具體例 加以詳細說明。 3· 1被處理體 圖8表示本實施形態之化學機械研磨方法中所使用之被 處理體200。 (ο首先’藉由塗佈法或電漿化學氣相沈積(CVD,Chemical 098104943 48 200944582Even if the sodium or potassium from the abrasive grains is left on the surface of the object to be polished by the cleaning operation after the grinding, the electrical characteristics of the device are deteriorated, so that the use thereof is avoided. However, the above (D2) water-soluble polymer has a property as a Lewis test, and therefore can be efficiently placed on the surface of the copper film on the surface to be polished. Thereby, the surface of the copper film can be effectively protected, and sodium or potassium can be inhibited from adsorbing on the surface of the copper film, and sodium or potassium can be easily removed from the surface of the copper film by washing. Further, since the water-soluble polymer can be easily removed by a cleaning operation, it does not remain on the surface of the copper film, and the electrical characteristics of the device are deteriorated. 2.5 Organic acid having a nitrogen-containing heterocyclic ring and a thiol group The chemical mechanical polishing aqueous dispersion of the present embodiment may contain an organic acid having a nitrogen-containing hetero ring and a carboxyl group. The above organic acid having a nitrogen-containing heterocyclic ring and a carboxyl group can be used in combination with the above (B2) amino acid to enhance the effect of the (3) phantom amino acid. Examples of the organic acid having a nitrogen-containing heterocyclic ring and a thiol group include an organic acid containing a heterocyclic ring having at least one nitrogen atom, and an organic acid containing a hetero compound composed of a heterocyclic ring. More specifically, citric acid, quinolinic acid, quinoline-8-carboxylic acid, pyridinecarboxylic acid, xanthurenic acid, kynurenic acid, nicotinic acid, and ophthalmic acid may be mentioned. Aminobenzoic acid and the like. The content of the organic acid having a nitrogen-containing heterocyclic ring and a mercapto group is preferably 0.001 to 3 〇% by mass, more preferably 0 to 01 to 20.0% by mass, based on the total mass of the chemical mechanical polishing aqueous dispersion. If the content of the organic acid having a nitrogen-containing hetero ring and a carboxyl group is less than the above range, it may cause a dishing on the copper film. Another 098104943 44 200944582 On the one hand, if the content of the nitrogen-containing heterocyclic ring and the organic acid exceeds the above range, there is a cohesion of the particles of the cerium dioxide. 2.6 Oxidizer Φ ❹ The quaternary system of the present embodiment (4) (4) may contain an oxidizing agent as needed. Examples of the oxidizing agent include (IV) sulfuric acid money, hydrogen peroxide removal, hydrogen peroxide, _ iron, Gu Erlang, iron sulfate, ozone, hypochlorous acid and salts thereof, potassium molybdate and peracetic acid. These oxidizing agents may be used singly or in combination of two or more kinds. In addition, in the case of the oxidizing power, considering the oxidizing power, the compatibility with the lysine, and the age, the sulphuric acid, potassium persulfate, and hydrogen peroxide are used as the dispersion of the hydrazine system relative to the chemical mechanical polishing water dispersion. The total mass is preferably US mass%, mr. When the content of the oxidizing agent is less than the above range, the sufficient polishing rate for the copper film may not be obtained in the above range, and it may be on the copper film. (4) Shallow dishing 2. 7 pH The chemical mechanical polishing water system of the present embodiment The dispersion is 6 to 12, more preferably 7 to 11.5, and the special oxygen value is 1 ', '~11. If the pH is less than 6, the stone present on the surface of the dioxide can not be cut off. The gas bond between the alcohol groups causes the agglomeration of the particles of the cerium dioxide. On the other hand, if the pH is greater than 12, the method of causing the pH value due to excessive alkalinity, such as defects, is used. The adjustment of J fine is added by potassium hydroxide B, the surface (the pH value represented by tetramethylhydrogen oxide is adjusted to adjust the pH value of 09810404^45 200944582. 8 use of the chemical mechanical polishing water dispersion of this embodiment, can be compared It is preferably used for chemical mechanical polishing of a processed object (for example, a semiconductor device) having a steel film on its surface. That is, if the chemical mechanical polishing aqueous dispersion of the present embodiment contains (10) an amino acid, Can suppress the surface roughness of the copper film and maintain the southerly Flatness, and improve the affinity of the oil and the y, so that the grinding speed of the film can be m. Therefore, even under ordinary grinding pressure conditions, the defect is not called at the _ and the low dielectric constant, and the surface can be The copper film is subjected to high-speed and selective polishing. Further, when the chemical mechanical polishing aqueous dispersion of the present embodiment is used, the metal of the P-_2 to 4 Japanese yen is dyed. More specifically, the chemistry of this embodiment The mechanically studied aqueous dispersion is produced by, for example, a damascene method using: ?% constant insulating film as an insulating film and using steel or a copper alloy as a cloth, which can be recognized by Kawada, and a step of "a bovine conductor device"; _Chemical machinery step of the copper film on the barrier metallurgy (the first polishing treatment step). , , and in the present invention, the so-called "_" is made of steel or steel as the copper content of the copper alloy. The film of the film is more than 95% by mass. 2.9 The process of chemical mechanical polishing water dispersion The present embodiment is a chemical machine handle grinding preparation: directly added in pure water (A) == can be as follows And other additives, and add them together (10) Amino acid 098104943 ❿ 槐 Mixing. The chemical mechanical polishing aqueous dispersion obtained in the above manner 46 200944582 can be directly used, and the chemical mechanical polishing aqueous dispersion containing the components (concentrated) at a high concentration can also be prepared. And used at the time of dilution to release into a desired concentration. Further, a plurality of liquids (for example, 'two or three liquids') containing any of the above components may be prepared and mixed at the time of use. In this case, a plurality of liquids may be mixed to prepare a chemical mechanical polishing aqueous dispersion, and then supplied to a chemical mechanical polishing apparatus, or a plurality of liquids may be separately supplied to the chemical mechanical polishing apparatus. A chemical mechanical polishing aqueous dispersion is formed on the platform. Specific examples include a liquid (I) containing an aqueous dispersion of water and (cerium) cerium oxide particles, and a liquid (π) containing water and (Β2) amino acid, and The above-described chemical mechanical polishing aqueous dispersion is prepared by mixing the liquids. The concentration of each component in the liquids (I) and (II) is not particularly high if the concentration of each component in the chemical mechanical polishing aqueous dispersion finally prepared by mixing the liquids is within the above range. limited. For example, preparing liquid-body (I) and (II) containing each component at a concentration higher than that of the chemical mechanical polishing aqueous dispersion, and if necessary, diluting the liquid and (11) as needed, and mixing the same. Further, a chemical mechanical polishing aqueous dispersion having a concentration of each component in the above range was prepared. Specifically, when the liquids (1) and (11) are mixed in a weight ratio of 1:1, the liquids (I) and (11) having a concentration twice the concentration of the chemical mechanical polishing aqueous dispersion are prepared. Just fine. Further, it is also possible to prepare a liquid having a concentration of 098104943 47 200944582 which is twice or more the concentration of the chemical mechanical polishing aqueous dispersion (1) and (I), and then mixing them in a weight ratio of 1.1, and then diluting with water until each component becomes the above. Within the scope. As described above, by separately preparing the liquid (1) = the body (II), it is possible to improve the storage of the chemical mechanical polishing aqueous dispersion in the case where the above-mentioned kit is used, and if the above-mentioned chemical mechanical polishing water dispersion is formed during the polishing, For the body, the method of mixing (I) and liquid (II) and the order of 4 are not specified. For example, the above chemical axis (4) aqueous dispersion can be prepared by mixing the lanthanide (I) with (4) (II), and then supplying it to the chemical mechanical polishing device, and the slag (1) hull ((1) is independently supplied to the chemical: mechanical Grinding t, and then mixing on the platform. Alternatively, the liquid and liquid (II) can be independently supplied to the chemical mechanical polishing device, the pipeline can be mixed in the device, or the mixing tank can be set in the chemical mechanical polishing device. In order to obtain a more uniform chemical mechanical polishing aqueous dispersion, a pipeline type mixer or the like may be used in the mixing of the pipelines. 3. The chemical mechanical polishing method uses a pattern for the present invention. Specific examples of the chemical mechanical polishing method according to the embodiment will be described in detail. 3. 1 Object to be processed Fig. 8 shows the object to be processed 200 used in the chemical mechanical polishing method of the present embodiment. (Firstly, 'by coating method or Plasma chemical vapor deposition (CVD, Chemical 098104943 48 200944582

Vapor Deposition)法形成低介電常數絕緣膜4〇。作為低介 電常數絕緣Μ 40,可舉出無機絕緣膜及有機絕緣膜。作為The Vapor Deposition method forms a low dielectric constant insulating film. Examples of the low dielectric constant insulating crucible 40 include an inorganic insulating film and an organic insulating film. As

• 無機絕緣膜’例如可舉出SiOF膜(k=3. 5〜3 7)、含Si-H ,之⑽2膜(k=2.8〜3·0)等。作為有機絕緣膜,可舉出含碳 之Si〇2膜(k=2. 7〜2. 9)、含甲基之咖膜(k=2. 7〜2. 9)、 聚醯亞胺系膜(k = 3.〇〜3.5)、聚對二甲苯(降以⑹系膜 (卜”,、鐵氟龍⑽雜冊細系膜㈣』 ⑵於低介電常數絕緣膜40上,藉由⑽法或熱氧化法形 成絕緣膜5G。作為絕緣膜5〇,例如可舉出畐膜等。 (3)進行钱刻以使低介電常數絕緣膜4〇及絕緣膜5〇連 通,而形成佈線用凹部6〇。 ⑷藉由CVD法,以覆蓋絕緣膜5〇之表面及佈線用凹部 60之底#及内壁面之方式形成障壁金屬膜μ。由與銅膜之 接著性及對於崎之概障雜優異之觀點而言,障壁金屬 膜70較佳為Ta或TaN,但並不限定於此,可為Ti、加、The inorganic insulating film ′ is, for example, a SiOF film (k = 3.5 to 3 7), a Si-H-containing film, a (10) 2 film (k = 2.8 to 3.0), and the like. Examples of the organic insulating film include a carbon-containing Si〇2 film (k=2.7 to 2.9), a methyl-containing coffee film (k=2.7 to 2.9), and a polyimide-based system. Membrane (k = 3.〇~3.5), parylene (reduced to (6) mesangial (Bu), Teflon (10) miscellaneous film (4)" (2) on low dielectric constant insulating film 40, by (10) The insulating film 5G is formed by a method or a thermal oxidation method. For example, a ruthenium film or the like is exemplified as the insulating film 5 。. (3) The low dielectric constant insulating film 4 〇 and the insulating film 5 are connected to each other to form a film. (4) The barrier metal film μ is formed by the CVD method so as to cover the surface of the insulating film 5 and the bottom # and the inner wall surface of the wiring recess 60. The adhesion to the copper film and the From the viewpoint of excellent barrier properties, the barrier metal film 70 is preferably Ta or TaN, but is not limited thereto, and may be Ti, plus,

Co、Μη、Ru 等。 ()藉由在Ρ早壁金屬膜7〇之上堆積銅而形成銅膜別而獲 • 得被處理體200。 3 · 2化學機械研磨方法 3· 2· 1第1步驟 首先,為了將堆積於被處理體200之障壁金屬膜7〇上的 098104943 49 200944582 銅膜80除去’使用上述第2化學機械研磨用水系分散體進 行化學機械研磨。藉由化學機械研磨,對銅膜8〇持續研磨 直至障壁金屬膜70露出為止。通常,必須確認障壁金屬膜 70露出之後才停止研磨。然而,相對於對銅膜之研磨速度 非常高’相反地,上述第2化學機械研磨用水系分散體幾乎 不研磨障壁金屬膜。因此,如圖9所示,於障壁金屬膜70Co, Μη, Ru, etc. () The object to be processed 200 is obtained by depositing copper on the surface of the early-wall metal film 7〇 to form a copper film. 3·2 chemical mechanical polishing method 3·2·1 First step First, in order to remove the 098104943 49 200944582 copper film 80 deposited on the barrier metal film 7 of the object to be processed 200, the second chemical mechanical polishing water system is used. The dispersion is subjected to chemical mechanical polishing. The copper film 8 is continuously polished by chemical mechanical polishing until the barrier metal film 70 is exposed. Usually, it is necessary to confirm that the barrier metal film 70 is exposed before stopping the grinding. However, the polishing rate with respect to the copper film is extremely high. On the contrary, the second chemical mechanical polishing aqueous dispersion hardly polishes the barrier metal film. Therefore, as shown in FIG. 9, the barrier metal film 70

露出之時刻無法進行化學機械研磨,因此可使化學機械研磨 自動停止(selfstop)。 於第1步驟中,可使用市售之化學機械研磨裝置。作為市 售之化學機械研磨裝置’例如可舉出荏原製作所公司製造之 型式「EPO-112」、「EP〇-222」; Lapmaster SFT 公司製造之 5=•式 LGP 510」 LGP-552」,Appl ied Material 公司製造 之型式「Mirra」等。Chemical mechanical polishing is not possible at the time of exposure, so chemical mechanical polishing can be automatically stopped (selfstop). In the first step, a commercially available chemical mechanical polishing device can be used. As a commercially available chemical mechanical polishing apparatus, for example, "EPO-112" and "EP〇-222" manufactured by Ebara Seisakusho Co., Ltd.; 5=•LGP 510" LGP-552 manufactured by Lapmaster SFT Co., Ltd., Appl The type "Mirra" manufactured by ied Material Company.

第1步狀較佳研磨條件應可減所❹之化學機械 磨裝置來適當設定,例如使用「腦_112」作為化學機械 磨裝置時’可設為下述條件。 平口疑轉數,較佳為3〇〜12〇 _,更佳為仙〜⑽犷 磨碩方疋轉數,較佳為3〇〜12() _,更佳為⑽^ .平台旋轉數/磨頭旋轉數比;較佳為0. 5〜2,更佳為〇 〜1. 5 " 100〜150 •研磨壓力;較佳為gf/cm2 60〜200 gf/cm2,更佳為 098104943 50 200944582 .化學機械研磨用水系分散體供給速度;較佳為50〜400 mL/分鐘,更佳為1〇〇〜300 mL/分鐘 如上所述,於第1步驟中,可獲得平坦性優異之被研磨 面’並且可使化學機械研磨自動停止而不會對銅膜進行過度 研磨’因此可減小對下層之絕緣膜50或低介電常數絕緣膜 40所造成之負荷。 3· 2. 2第2步驟The preferred polishing conditions in the first step should be appropriately set in accordance with the chemical mechanical polishing device. For example, when "brain_112" is used as the chemical mechanical polishing device, the following conditions can be employed. The number of rotations of the flat mouth is preferably 3〇~12〇_, more preferably 仙~(10) 犷 硕 硕 ,, preferably 3〇~12() _, more preferably (10)^. Platform rotation number / The number of rotations of the grinding head is preferably 0. 5~2, more preferably 〇~1. 5 " 100~150 • Grinding pressure; preferably gf/cm2 60~200 gf/cm2, more preferably 098104943 50 200944582. Chemical mechanical polishing water dispersion supply speed; preferably 50 to 400 mL/min, more preferably 1 to 300 mL/min, as described above, in the first step, excellent flatness can be obtained. The abrasive surface is 'and the chemical mechanical polishing can be automatically stopped without excessively grinding the copper film'. Therefore, the load on the lower insulating film 50 or the low dielectric constant insulating film 40 can be reduced. 3· 2. 2 Step 2

繼而,使用上述第1化學機械研磨用水系分散體,同時對 障壁金屬膜70及銅膜8〇進行化學機械研磨。如圖1〇所示, 即便絕緣膜5G露出之後,亦可再繼續進行化學機械研磨而 除去、’邑緣膜5G。如圖11所示,於低介電常數絕緣膜4〇露 夺J停止化學機械研磨,由此可獲得半導體裝置9〇。 於第2步驟中,可使用上捧第i步驟中所示的市售之化學 機械研磨裝置。 麻之較佳研賴件應可㈣所❹之化學機械研 磨^置時適田Μ ’例如使用「EP(M12」作為化學機械研 磨裝置時’可設為下述條件。 .磨頭^數較佳為3G〜12G ΓΡΠ1 ’更佳為40〜100 rpm .平4轤:’較佳為3〇〜HP™,更佳為40〜100rpm 磨顯轉數比;較佳為Q.5〜2,更佳為〇.7 •研磨麗力;較佳為 098104943 60〜200 gf/cm2,更佳為 100〜150 51 200944582 gf/cm2 .化學機械研磨用水系分散體供給速度;較佳為5〇〜3〇〇 mL/分鐘’更佳為1〇〇〜200 mL/分鐘 4.實施例 以下,藉由實施例說明本發明,但本發明並不受該等實施 例任何限定。 4·1二氧化矽粒子分散體之製作 用水將3號水玻璃(二氧化矽濃度為24質量%)稀釋,而製 ❹ 得之水溶液中,先以6小時一點一 值調整為7. 2的活性矽酸水溶液, 粒控成長至26 nm。 '點地添加10倍量之將pH 再使二氧化矽粒子之平均 ❹Then, the first chemical mechanical polishing aqueous dispersion is used, and the barrier metal film 70 and the copper film 8 are chemically polished. As shown in Fig. 1A, even after the insulating film 5G is exposed, chemical mechanical polishing can be continued to remove the film 5G. As shown in Fig. 11, the low dielectric constant insulating film 4 is exposed to stop the chemical mechanical polishing, whereby the semiconductor device 9 can be obtained. In the second step, a commercially available chemical mechanical polishing apparatus shown in the step i can be used. The best research and development of the hemp should be possible. (4) The chemical mechanical polishing to be applied to the 适 适 适 Μ ' For example, when using "EP (M12) as a chemical mechanical polishing device", the following conditions can be used. Preferably, it is 3G~12G ΓΡΠ1 'better 40~100 rpm. Flat 4轳: 'preferably 3〇~HPTM, more preferably 40~100rpm grinding ratio; preferably Q.5~2, More preferably 〇.7 • Grinding Lili; preferably 098104943 60~200 gf/cm2, more preferably 100~150 51 200944582 gf/cm2. Chemical mechanical polishing water dispersion supply speed; preferably 5〇~ 3 〇〇 mL / min ' more preferably 1 〇〇 ~ 200 mL / min 4. EXAMPLES Hereinafter, the present invention will be described by way of examples, but the present invention is not limited by the examples. The active citric acid aqueous solution was adjusted to a pH of 7.2 in an aqueous solution of the sputum of the sulphuric acid. , the particle control grows to 26 nm. 'Add 10 times the amount of pH and then average the cerium oxide particles.

098104943 成氧化石夕/農度為3. 0質量%之稀釋^夕酸納水溶液。使該稀 釋矽酸鈉水溶液通過氫型陽離子交換樹脂層,而製成除去了 大部分_子之PH值為3. 1之活性械水溶f其後,立 即在授掉下添加10質量%之氫氧化鉀水溶液而將pH值調整 為7· 2,進而繼續加熱使之彿騰,並熱熟化3小時。於所獲 52 200944582 氧化矽粒子分散體A。 使用0. 1 N氫氧化鈉水溶液將所獲得之二氧化矽粒子分散 . 體A於PH4〜9之範圍進行滴定,根據其滴定值與BET比表 • 面積之值計算矽烷醇基密度,結果為2. 0個/nm2。 藉由離心分離自二氧化矽粒子分散體A回收二氧化矽粒 子’用稀氫氟酸溶解所回收之二氧化矽粒子,並使用 ICP_MS(珀金埃爾默公司製造,型號「ELAN DRC PLUS」)測 ❹定鈉及鉀。進而,使用離子層析儀(DI0NEX公司製造,型號 「ics-iooo」)測定銨離子。結果鈉含量:88 ppm,鉀含量: 5500 ppm,銨離子含量:5 ppm。 利用離子交換水將二氧化矽粒子分散體A稀釋成〇.〇1%, 並將滴載1滴稀釋液於網眼尺寸(mesh sjze)為“爪之 具有Cu粒(grit)之膠棉(c〇n〇di〇n)膜上,在室溫下進行乾 燥。如此,於Cii粒上以不破壞粒子形狀之方式製備觀察用 ❹之樣品後,使用穿透式電子顯微鏡(日立高新技術(胞_ High-Technologies)公司製造’「h_765〇」)以拍攝倍率 20000倍拍攝粒子之圖像,測定5〇個膠 長徑及短徑,並計算其平均值嘯據長徑之平均⑽臟) 及短徑之平均值(Rmin),計算其比率(Rnmx/Rrain),結果為 1」。 根據利用BET法所駭之比表面積而計算的平均粒裡為 26 mn。另外,利用BET法測定膠體二氣化石夕粒子之表面積 098104943 53 200944582 時係使用測定對二氧化石夕粒子分散體 回收之二氧化石夕粒子所得之值。 们農縮乾固而 門、驗1±化=刀散體B〜D、F、1係—面控制熱熟化之時 間驗性化合物之種類及添加量等,一 方法而獲得者。 上通相冋之 二氧切粒子分散體E仙如下方式製作 ==製造之高純度膠— 〇 二刀:農度為20質量% ’ pH值為7· 4 ’平均二次粒徑為66 _ kg及離子交換水14〇kg投入到4〇l高壓綠加 ill _下'3小時、〇·5ΜΡ&之加壓下進行水 ”、、處。繼而,於沸點7代下將含有上述二氧切粒子之 ❹ 分散體水溶液進行減壓濃縮,而獲得二氧化石夕濃度以固體成 分濃度計為20質量%、平均二次粒徑為62nm、pH值為Η 之;;氧切粒子分賴E。使敎1 N氫氧化财溶液將所 獲得之二氧化錄子分散體E於PH4〜9之範圍進行滴定, 康’、滴疋值與贿比表面積之值計算梦燒醇基密度,結果 為 1 · 5 個 /ηπ]2。 々二氧化石夕粒子分散體G係使用以四乙氧基石夕炫為原料之 /合膠凝膠法(soI—Gel method)並藉由眾所周知之方法製作 而成。 一氧化矽粒子分散體H係藉由與上述二氧化矽粒子分散 體A之製作方法相同之方法獲得分散體之後,再進行水熱處 098104943 54 200944582 理(製作上述二氧化矽粒子分散體時,進行更長時間之高壓 蚤處理,並進行梦烧醇縮合)所製作而成。 . 二氧化矽粒子分散體I係以如下方式製作。首先,將扶桑 化學工業公司製造之高純度膠體二氧化矽(料號:PL-2 ;固 體成分濃度為20質量%,pH值為7.4,平均二次粒徑為66 nm)35 kg分散至離子交換水140 kg中,而獲得二氧化矽濃 度以固體成分濃度計為20質量%、平均二次粒徑為62 nm、 〇 pH值為7. 5之二氧化矽粒子分散體I。使用0. 1 N氫氧化鈉 水溶液將所獲得之二氧化矽粒子分散體I於PH4〜9之範圍 進行滴定,根據其滴定值與BET比表面積之值計算矽烷醇基 密度,結果為3. 8個/nm2。 表2中匯總了所製作之二氧化矽粒子分散體A〜J之物性 值。098104943 The oxidized stone eve/farm ratio is 3.0% by mass of the diluted cerium acid aqueous solution. The diluted sodium citrate aqueous solution was passed through a hydrogen-type cation exchange resin layer, and the active material water-soluble f having a pH value of 3.1 was removed, and immediately 10% by mass of hydrogen was added under the transfer. The potassium hydroxide aqueous solution was adjusted to pH 7.2, and the heating was continued to make it fermented and heat-cured for 3 hours. Obtained 52 200944582 cerium oxide particle dispersion A. The obtained cerium oxide particles were dispersed using a 0.1 N aqueous sodium hydroxide solution. The bulk A was titrated in the range of pH 4 to 9, and the sterol group density was calculated from the titration value and the BET ratio table area value. 2. 0 / nm2. The cerium oxide particles recovered from the cerium oxide particle dispersion A by centrifugation are dissolved in dilute hydrofluoric acid, and the cerium oxide particles recovered by using ICP_MS (Perkin Elmer, model "ELAN DRC PLUS") are used. ) Measure sodium and potassium. Further, ammonium ions were measured using an ion chromatograph (manufactured by DIOXEX, model "ics-iooo"). Results Sodium content: 88 ppm, potassium content: 5500 ppm, ammonium ion content: 5 ppm. The cerium oxide particle dispersion A is diluted to 〇.〇1% by ion-exchanged water, and one drop of the diluted solution is applied dropwise to the mesh size (mesh sjze) as "claw" with a g-grain (grit) C〇n〇di〇n) The film was dried at room temperature. Thus, a sample of the observation crucible was prepared on the Cii pellet in such a manner that the shape of the crucible was not destroyed, and a transmission electron microscope (Hitachi Hi-Tech ( _ High-Technologies) manufactures 'h_765〇') to capture images of particles at a magnification of 20,000 times, measure 5 long and short diameters of rubber, and calculate the average value of the long diameter (10). And the average value of the short diameter (Rmin), calculate the ratio (Rnmx/Rrain), and the result is 1". The average grain calculated based on the specific surface area measured by the BET method was 26 mn. Further, the surface area of the colloidal gasified fossil particles was measured by the BET method. 098104943 53 200944582 The value obtained by measuring the cerium oxide particles recovered from the dispersion of the cerium dioxide particles was used. We have obtained the method of obtaining a method and a method of controlling the type and amount of time-sensitive compounds for thermal curing. The bismuth-cut particle dispersion E 上 制作 = = ================================================================================== 1 kg of kg and ion-exchanged water are put into 4〇l high-pressure green plus ill _ under '3 hours, 〇·5ΜΡ& under pressure to carry out water", and then, at the boiling point of 7 generations, will contain the above-mentioned dioxin After dicing the particles, the aqueous dispersion solution was concentrated under reduced pressure to obtain a concentration of cerium dioxide of 20% by mass in terms of solid content concentration, an average secondary particle diameter of 62 nm, and a pH value of Η; The 二1 N hydrogen storage solution was used to titrate the obtained oxidized recording agent dispersion E in the range of pH 4 to 9, and the value of the sputum value and the brittle specific surface area was calculated. 1 · 5 / η π] 2. 々 々 々 夕 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 粒子 而 而 而 而 而 而 而 而 而 而The cerium oxide particle dispersion H is produced by the same method as the above-described cerium oxide particle dispersion A. After the dispersion is obtained by the method, it is produced by hydrothermal treatment at 098104943 54 200944582 (when the above-mentioned cerium oxide particle dispersion is prepared, and subjected to a high pressure enthalpy treatment for a longer period of time and subjected to a dream alcohol condensation). The cerium particle dispersion I was produced in the following manner. First, a high-purity colloidal cerium oxide manufactured by Fuso Chemical Industry Co., Ltd. (part No.: PL-2; solid content concentration: 20% by mass, pH 7.4, average twice The sputum of the sulphuric acid concentration of the sulphuric acid concentration of the sulphuric acid is 20% by mass, the average secondary particle size is 62 nm, and the 〇 pH value is 7.5. The cerium oxide particle dispersion I. The obtained cerium oxide particle dispersion I was titrated in the range of pH 4 to 9 using a 0.1 N aqueous sodium hydroxide solution, and the stanol was calculated based on the titration value and the BET specific surface area value. The base density was found to be 3.8/nm 2. The physical property values of the prepared cerium oxide particle dispersions A to J are summarized in Table 2.

098104943 55 200944582098104943 55 200944582

Rraax/Rmin T—Η (N1 CD t—H H T-H 卜 r-H F "'4 F-H 銨離子濃度 (ppm) 5 C^J oo 2190 1 C<l o- oo LO 1 LO 鉀濃度 (ppm) 5500 3280 7000 OO 1 7600 T·^ V LO 1 in 鈉濃度 (ppm) §§ 1-H t— CO 寸 oo t-H 1 〇 CO (ΝΪ V 11250 1 矽烷醇基密度 (個/nm2) 05 1—H 卜 i—Η CM oi LO t-H oi οα OO CD oo CO C3 oa 平均粒徑 (nm) LO 寸 OO LO OO CO § LO CO Csl <NI CO CO <NI pH值 <=> oo ai OO ai <=> LO 卜· 10.2 οα 卜· C=3 CD 1' H LO CO 二氧化矽濃度(重量%) o <NI CO C5 oo (NI CD oi CO c=> s CD LO CO cz> in 1 ( o oo Cv3 CZ5 «〇 <N1 c=> oo CM 二氧化矽粒子分散體 CQ 〇 O SC H-H l~~JRraax/Rmin T—Η (N1 CD t—HH TH 卜rH F "'4 FH ammonium ion concentration (ppm) 5 C^J oo 2190 1 C<l o- oo LO 1 LO Potassium concentration (ppm) 5500 3280 7000 OO 1 7600 T·^ V LO 1 in Sodium concentration (ppm) §§ 1-H t—CO oo oo tH 1 〇CO (ΝΪ V 11250 1 stanol density (units/nm2) 05 1—H 卜i —Η CM oi LO tH oi οα OO CD oo CO C3 oa Average particle size (nm) LO OO LO OO CO § LO CO Csl <NI CO CO <NI pH <=> oo ai OO ai &lt ;=> LO Bu· 10.2 οα Bu·C=3 CD 1' H LO CO cerium oxide concentration (% by weight) o <NI CO C5 oo (NI CD oi CO c=> s CD LO CO cz> In 1 ( o oo Cv3 CZ5 «〇<N1 c=> oo CM cerium oxide particle dispersion CQ 〇O SC HH l~~J

9S ο 96S-60 200944582 4.2水溶性高分子之合成 4·2·1聚乙烯吡咯啶酮水溶液之製備 ,於燒瓶内添加N-乙烯基-2-吡咯啶_ 6〇 g、水24〇 g、1〇 •質«之亞硫酸納水溶液0.3 §及10 #量%之過氧化氫第三 丁基水溶液〇. 3 g,在6(rc氮氣環境下授拌5小時,藉此生 絲乙烯料㈣⑽)。利用凝膠渗透層析儀(東曹(T〇s〇h) 1製4,裝置型號「HLC-8120」,管柱型號「tsk-gEL· ® α M」’洗提液為NaC1水溶液/乙腈)’對所獲得之聚乙稀《比 咯啶酮(K30)進行測定,結果聚乙二醇換算之重量平均分子 里(Mw)為4萬。又,根據單體之添加量而計算之胺基量為〇 ra〇l/g ’陽離子性官能基量為〇 mol/g。 又’藉由適當調整上述成分之添加量、反應溫度及反應時 間,而生成聚乙烯吡咯啶酮(K60)及聚乙烯吡咯啶酮(K9〇)。 另外,藉由與上述相同之方法,對所獲得之聚乙烯吡咯啶酮 ❹(Κ60)及聚乙烯吡咯啶_(Κ90)之重量平均分子量(Mw)進行 測定,結果分別為70萬、120萬。根據單體之添加量而計 算之胺基量為0 mol/g,陽離子性官能基量為〇 m〇1/g。 " 4. 2. 2乙烯基吡咯啶_/甲基丙烯酸二乙基胺基甲酯共聚物 . 於安裝有回流冷卻器、滴液漏斗、溫度計、氮氣置換用玻 璃管及攪拌裝置之燒瓶内,放入甲基丙浠酸二乙基胺基甲醋 70質量份、丙烯酸十六烷酯5質量份、甲基丙烯酸十八烷 酯10質量份、N-乙烯基吡咯啶酮1〇質量份、甲基丙烯酸丁 098104943 57 200944582 酯5質量份及異丙醇loo質量份,添加偶氮二異丁腈(Aibn, aZ〇biSiS〇butyr〇nitrile)0.3 質量份,在氮氣流下、6〇〇c 下聚合反應15小時。繼而,相對於丨莫耳之曱基丙烯酸二 乙基胺基乙酯,添加〇. 35倍莫耳數之硫酸二乙酯,在氮氣 流下、50 C下回流加熱1〇小時,而合成乙烯基^比洛唆 曱基丙稀酸·一乙基胺基曱酉旨共聚物。 利用凝膠滲透層析儀(東曹公司製造,裝置型號 「HLC-8120」,管柱型號「TSK-GEL α-Μ」,洗提液為NaCl 水溶液/乙腈),對所獲得之共聚物進行測定,結果聚乙二醇 換算之重量平均分子量(Mw)為10萬。又,根據單體之添加 量而計算之胺基量為0.001 mol/g,陽離子性官能基量為 0·0006 mol/g。 文,藉由適當調整上述成分之添加量、反應溫度及反應時 間,而合成重量平均分子量分別為40萬、180萬之乙烯基 吡咯啶酮/甲基丙烯酸二乙基胺基曱酯共聚物》 4.2.3乙烯基吡咯啶酮/二曱基胺基丙基丙烯醯胺共聚物 於安裝有回流冷卻器、滴液漏斗、溫度計、氮氣置換用玻 璃管及攪拌裝置之燒瓶内,添加水、2, 2’ -偶氮二(2-甲基丙 脒)二鹽酸鹽(和光純藥工業公司製造,商品名「V-50」)0.6 質量份,並升溫至70°C。繼而,放入N-乙稀基η比洛咬酮70 質量份、ΜΑΡΑΑ(Ν,Ν-二甲基胺基丙基丙烯醯胺)3〇質量 份,在氮氣流下、75 C下聚合反應5小時。繼而,添加2,2’ - 098104943 58 200944582 偶氮二(2-曱基丙脒)二鹽酸鹽(和光純藥工業公司製造商 品名「V-50」)〇· 2質量份,在氮氣流下、7(rc下回流加熱6 小時,而獲得含有11質量%之乙烯基吡咯啶酮/二曱基胺基 • 丙基丙烯醯胺共聚物的水分散體。聚合產率為99%。 繼而,相對於1莫耳之2.2,_偶氮二(2_甲基丙肺)二鹽酸 鹽(和光純藥工業公司製造’商品名「V-50」),添加〇. 30 倍莫耳數之硫酸二乙酯,在氮氣流下、5〇°c下回流加熱1〇 〇 小時,而使一部分胺基陽離子化。 利用凝膠滲透層析儀(東曹公司製造,裝置型號 「HLC-8120」,管柱型號「TSK_GEL α_Μ」,洗提液為NaCl 水溶液/乙腈)’對所獲得之共聚物進行測定,結果聚乙二醇 換算之重量平均分子量(Mw)為60萬。又,根據單體之添加 量而計算之胺基量為0.0010 mol/g,陽離子性官能基量為 0.0006 mol/g。 ® 4·2·4乙烯基吡咯啶酮/乙酸乙烯酯共聚物 乙烯基吡咯啶酮/乙酸乙烯酯共聚物係使用商品名 「PVP/VA Copolymer W-735C分子量為 32, 000,乙烯基吡咯 _ 啶酮:乙酸乙烯酯=70 : 30)」(ISP Japan公司製造)。 . 4. 2.5羥基乙基纖維素 羥基乙基纖維素係使用大赛璐(Daicel)化學公司製造之 商品名「Daicel HEC SP900」(分子量為140萬)。 4.2.6聚丙烯酸 098104943 59 200944582 於添加有離子交換水1〇〇〇 g及5質量%過硫酸銨水溶液i g之内容積為2L之容器中,一面在70。〇回流下攪拌,一面 以8小時均等地滴加2〇質量%之丙烯酸水溶液500 g。滴加 結束後,再於回流下保持2小時,由此獲得含有聚丙烯酸之 水溶液。利用凝膠滲透層析儀(東曹公司製造’裝置型號 「HLC-8120」,管柱型號rTSK_GEIj α_Μ」,洗提液為Nan 水溶液/乙腈),對所獲得之聚丙烯酸進行測定,結果聚乙二 醇換算之重量平均分子量(MW)為1〇〇萬。 又,適當調整上述成分之添加量、反應溫度及反應時間, 藉此獲得重量平均分子量(Mw)為20萬之聚丙烯酸。 4. 3化學機械研磨用水系分散體之製備 將離子交換水50質量份 '換算為二氧化矽而含有5質量 份之二氧化矽粒子分散體A ’放入聚乙烯製瓶内,於其中添 加丙二酸1質量份、喹哪啶酸0.2質量份、乙炔二醇型非離 子系界面活性劑(商品名「Surfynol 465」,Air Pr〇duct公 司製造)〇. 1質量份、及換算為聚合物而相當於〇. 05質量份 之量的聚丙烯酸水溶液(重量平均分子量為2〇萬),進而添 加10質量%之51氧化钟水溶液’而將化學機械研磨用水系分 散體之pH值調整為10.0。繼而’添加換算為過氧化氮而相 當於0. 05質量份之量的30質量%之過氧化氫水,並搜掉^ 分鐘。最後,添加離子交換水使總成分之合計量為質量 份之後,藉由孔徑為5 Am之過濾器(filter)進行過:歲由 098104943 60 200944582 此獲得pH值為10. 0之化學機械研磨用水系分散體si。 藉由離心分離自化學機械研磨用水系分散體81回收二氧 •化帅子,使㈣氫氟酸溶解所时之二氧化雜子,並使 -用ICP-MS(拍金埃爾默公司製造,型號「EUN聽腫」) 測定鈉及舒。進而,使用離子層析儀(Μ〇祖公司製造型 號「ICS-1000」)測定録離子。結果為納含量:88卿,钟 含量:5500卯m,銨離子含量:5 PPm。根據該結果可知, ©即便自化學機械研磨用水系分散體回收二氧化♦粒子,亦可 對一氧化矽粒子中所含之鈉、鉀及銨離子進行定量 ,並可獲 得與二氧化矽粒子分散體相同之結果。 除了將一氧化矽粒子分散體、有機酸、其他添加劑之種類 及含量變更為如表3〜表8巾所記載以外,以與上述化學機 械研磨用水系分散體S1相同之方式製作化學機械研磨用水 系分散體S2〜S4卜 ❹ $外,於表3〜表8中,「Surfynol 」及「Surfynol 」 均為Ai= Product公司製造之2 4 7, 9_四甲基+癸炔 4’ 7 一醇-一聚氧乙烯醚(乙炔二醇型非離子系界面活性劑) '之商〇口名’聚氧乙稀加成莫耳數各不相同。「Emulgen 104P」 •係化王A司製造之聚氧乙烯月桂鱗(貌基醚型非離子系界面 活性劑)之商品名。 將所獲知之化學機械研磨用水系分散體^〜如放入議 cc之玻璃&内’在25〇c下靜置保管6個月,再目測確認有 098104943 61 200944582 無沈澱。將結果示於表3〜表8。於表3〜表8中,將確認 無粒子沈澱及濃淡差之情形評價為「〇」,將僅確認有濃淡 差之情形評價為「△」,將粒子之沈澱及濃淡差均可確認之 情形為「X」。 4. 4實驗例1 4. 4.1無圖案基板之研磨評價 於化學機械研磨裝置(荏原製作所公司製造,型式 「EP0112」)上安裝多孔質聚胺基曱酸酯製研磨墊堍9S ο 96S-60 200944582 4.2 Synthesis of water-soluble polymer 4. 2·1 Preparation of aqueous solution of polyvinylpyrrolidone, adding N-vinyl-2-pyrrolidine _ 6〇g, water 24〇g, 1〇•Quality «Sodium sulfite aqueous solution 0.3 § and 10 #% by weight of hydrogen peroxide in the third butyl aqueous solution 3. 3 g, in 6 (rc gas environment for 5 hours, whereby raw silk vinyl (4) (10)) . Using gel permeation chromatography (Tongshao (T〇s〇h) 1 system 4, device model "HLC-8120", column type "tsk-gEL· ® α M"' eluent is NaC1 aqueous solution / acetonitrile The measurement of the obtained polyethylene "birolidinone (K30), the weight average molecular weight (Mw) in terms of polyethylene glycol was 40,000. Further, the amount of the amine group calculated based on the amount of the monomer added was 〇 ra〇l / g '. The amount of the cationic functional group was 〇 mol / g. Further, polyvinylpyrrolidone (K60) and polyvinylpyrrolidone (K9®) are produced by appropriately adjusting the amount of the above components, the reaction temperature, and the reaction time. Further, the weight average molecular weight (Mw) of the obtained polyvinylpyrrolidone oxime (Κ60) and polyvinylpyrrolidine _(Κ90) was measured by the same method as above, and the results were 700,000 and 1.2 million, respectively. . The amount of the amine group calculated based on the amount of the monomer added was 0 mol/g, and the amount of the cationic functional group was 〇 m〇1/g. " 4. 2. 2 vinyl pyrrolidine _ / diethylaminomethyl methacrylate copolymer. In a flask equipped with a reflux cooler, a dropping funnel, a thermometer, a glass tube for nitrogen replacement, and a stirring device 70 parts by mass of diethylaminomethyl methacrylate, 5 parts by mass of cetyl acrylate, 10 parts by mass of octadecyl methacrylate, and 1 part by mass of N-vinylpyrrolidone , butyl methacrylate 098104943 57 200944582 ester 5 parts by mass and isopropyl alcohol loo parts by mass, adding azobisisobutyronitrile (Aibn, aZ〇biSiS〇butyr〇nitrile) 0.3 parts by mass, under nitrogen flow, 6〇〇c The polymerization was carried out for 15 hours. Then, compared with the diethylaminoethyl acrylate of 丨mol, 〇. 35 times the molar number of diethyl sulfate, and heated under reflux at 50 C for 1 hr under a nitrogen stream to synthesize a vinyl group. ^Bilopyryl acrylic acid monoethylamine based copolymer. Using a gel permeation chromatography (manufactured by Tosoh Corporation, device model "HLC-8120", column type "TSK-GEL α-Μ", the eluent is NaCl aqueous solution / acetonitrile), the obtained copolymer was subjected to As a result, the weight average molecular weight (Mw) in terms of polyethylene glycol was 100,000. Further, the amount of the amine group calculated based on the amount of the monomer added was 0.001 mol/g, and the amount of the cationic functional group was 0.0006 mol/g. By appropriately adjusting the amount of the above components, the reaction temperature and the reaction time, a vinylpyrrolidone/diethylamino methacrylate copolymer having a weight average molecular weight of 400,000 and 1.8 million, respectively, was synthesized. 4.2.3 Vinyl pyrrolidone/didecylaminopropyl acrylamide copolymer is added to a flask equipped with a reflux cooler, a dropping funnel, a thermometer, a glass tube for nitrogen replacement, and a stirring device, and water is added. 2'-Azobis(2-methylpropionamidine) dihydrochloride (manufactured by Wako Pure Chemical Industries, Ltd., trade name "V-50") 0.6 parts by mass, and heated to 70 °C. Then, 70 parts by mass of N-ethylene η pirone, hydrazine (hydrazine, hydrazine-dimethylaminopropyl propylene decylamine), 3 parts by mass, and polymerization under a nitrogen stream at 75 C were placed. hour. Then, 2,2' - 098104943 58 200944582 azobis(2-mercaptopropene) dihydrochloride (trade name "V-50" manufactured by Wako Pure Chemical Industries, Ltd.) was added in an amount of 2 parts by mass under a nitrogen stream. 7 (r) was heated under reflux for 6 hours to obtain an aqueous dispersion containing 11% by mass of a vinylpyrrolidone/didecylaminopropyl acrylamide copolymer. The polymerization yield was 99%. 〇 30 30 , , , , , 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 Diethyl sulfate was heated under reflux at 5 ° C for 1 hour to cationize a part of the amine group. Using a gel permeation chromatography instrument (manufactured by Tosoh Corporation, device model "HLC-8120", The column type "TSK_GEL α_Μ", the eluent is NaCl aqueous solution / acetonitrile)' The obtained copolymer was measured, and the weight average molecular weight (Mw) in terms of polyethylene glycol was 600,000. The amount of the amine group calculated by adding the amount is 0.0010 mol/g, and the amount of the cationic functional group is 0.0006 mol/g. ® 4·2·4 vinylpyrrolidone/vinyl acetate copolymer vinyl pyrrolidone/vinyl acetate copolymer using the trade name “PVP/VA Copolymer W-735C with a molecular weight of 32,000, vinylpyrrole _ ketone: vinyl acetate = 70 : 30)" (manufactured by ISP Japan). 4. 2.5 Hydroxyethyl Cellulose The hydroxyethyl cellulose was sold under the trade name "Daicel HEC SP900" (molecular weight: 1.4 million) manufactured by Daicel Chemical Co., Ltd. 4.2.6 Polyacrylic acid 098104943 59 200944582 In a container having an internal volume of 1 liter of ion-exchanged water and 5% by mass of an aqueous ammonium persulfate solution ig, 70 is added. While stirring under reflux, 500 g of an aqueous solution of 2% by mass of acrylic acid was added dropwise uniformly over 8 hours. After completion of the dropwise addition, the mixture was kept under reflux for 2 hours, whereby an aqueous solution containing polyacrylic acid was obtained. Using a gel permeation chromatograph (manufactured by Tosoh Corporation, model number "HLC-8120", column type rTSK_GEIj α_Μ", the eluent was Nan aqueous solution / acetonitrile), and the obtained polyacrylic acid was measured. The weight average molecular weight (MW) in terms of diol is 10,000. Moreover, the amount of addition of the above components, the reaction temperature, and the reaction time were appropriately adjusted, whereby polyacrylic acid having a weight average molecular weight (Mw) of 200,000 was obtained. 4. 3 Preparation of Chemical Mechanical Polishing Water-Based Dispersion 50 parts by mass of ion-exchanged water was converted into cerium oxide and 5 parts by mass of cerium oxide particle dispersion A was placed in a polyethylene bottle and added thereto. 1 part by mass of malonic acid, 0.2 parts by mass of quinaldine, and a nonionic surfactant of acetylene glycol type (trade name "Surfynol 465", manufactured by Air Pr〇duct) 1. 1 part by mass, and converted into polymerization The amount of the polyacrylic acid aqueous solution (weight average molecular weight is 20,000) in an amount of 0.05 parts by mass, and further adding 10% by mass of 51 oxidized bell aqueous solution' to adjust the pH of the chemical mechanical polishing aqueous dispersion to 10.0. Then, 30% by mass of hydrogen peroxide water, which was converted to nitrogen peroxide and equivalent to 0.05 parts by mass, was added and was searched for ^ minutes. Finally, after adding ion-exchanged water to make the total amount of the total components as a part by mass, it is carried out by a filter having a pore size of 5 Am: 097104943 60 200944582 This obtains a chemical mechanical polishing water having a pH of 1.00. Is the dispersion si. The oxidative deuteration is recovered by centrifugation from the chemical mechanical polishing aqueous dispersion 81, and the (4) hydrofluoric acid is dissolved in the dioxins, and the ICP-MS (manufactured by Philippine Elmer) is used. , Model "EUN Hearing") Determination of sodium and sputum. Further, the ion to be recorded was measured using an ion chromatography (manufactured by Tosoh Corporation, "ICS-1000"). The result was nano content: 88 qing, bell content: 5500 卯m, ammonium ion content: 5 PPm. According to the results, it is understood that the sodium, potassium and ammonium ions contained in the cerium oxide particles can be quantified even if the oxidized particles are recovered from the chemical mechanical polishing aqueous dispersion, and the cerium oxide particles can be dispersed. The same result. The chemical mechanical polishing water is produced in the same manner as the chemical mechanical polishing aqueous dispersion S1 except that the type and content of the cerium oxide particle dispersion, the organic acid, and other additives are changed as described in Tables 3 to 8 In the case of the dispersions S2 to S4, in addition, in Tables 3 to 8, "Surfynol" and "Surfynol" are both Ai = 2 4 7, 9_tetramethyl + decyne 4' 7 manufactured by the company. Alcohol-polyoxyethylene ether (acetylene glycol type nonionic surfactant) 'The name of the name of the trade name' polyoxyethylene addition moles varies. "Emulgen 104P" • The trade name of the polyoxyethylene laurel scale (formyl ether type nonionic surfactant) manufactured by King A. The obtained chemical mechanical polishing aqueous dispersion was placed in a glass & amp of cc and stored at 25 ° C for 6 months, and visually confirmed that there was no precipitation of 098104943 61 200944582. The results are shown in Tables 3 to 8. In Tables 3 to 8, it was confirmed that the case of no particle precipitation and the difference in density was evaluated as "〇", and the case where only the difference in density was confirmed as "△" was evaluated, and the precipitation of the particles and the difference in the darkness were confirmed. It is "X". 4. 4 Experimental Example 1 4. Evaluation of the polishing of the non-patterned substrate. The porous polyamine phthalate polishing pad was attached to the chemical mechanical polishing device (manufactured by Ebara Seisakusho Co., Ltd., type "EP0112").

Haas公司製造’料號「咖⑽」),—面供給化學機械研磨& 用水系分散體S1〜S12之任一種,一面根據下述研磨條件對 下述各種研磨速度測定用基板進行1分鐘研磨處理,並藉由 下述方法評價研磨速度及晶圓污染。將其結果一併示於表 〜表4。 3 4· 4· la研磨速度之測定 (1)研磨速度測定用基板 積層有膜厚為15,000埃(Angstrom)之銅膜的附有赦备 化膜之8英吋矽基板。 ·、、、虱 積層有膜厚為2, 〇〇〇埃之鈕膜之附有熱氧化膜之 矽基板。 央寸 積層有膜厚為l〇,GGG埃之低介電常數絕賴 駘士打^13公司製造,商品名「Black Diamond」)之8英崎 矽基板。 τ 098104943 200944582 •積層有膜厚為10,000埃之電漿增強正矽酸乙酯 (PETE0S , plasma-enhanced Tetraethylorthosilicate)膜 . 之8英吋矽基板。 . (2)研磨條件 •磨頭旋轉數:70 rpm •磨頭負重:200 gf/cm2 •工作台(table)旋轉數:70 rpm © •化學機械研磨水系分散體之供給速度:200 mL/分鐘 此時之化學機械研磨用水系分散體之供給速度,係指總供 給液之供給量的合計除以每單位時間所得之值。 (3)研磨速度之計算方法 使用導電式膜厚測定器(KLA-Tencor公司製造,型式 「OmniMapRS75」)’對銅膜及鈕膜測定研磨處理後之膜厚, 並根據藉由化學機械研磨而減少之膜厚及研磨時間來計算 ®研磨速度。 使用光干擾式膜厚測定器(Nanometrics.日本公司製造, 型式「Nanospec 6100」),對PETE0S膜及低介電常數絕緣 - 膜測定研磨處理後之膜厚,並根據藉由化學機械研磨而減少 - 之膜厚及研磨時間來計算研磨速度。 4. 4· lb晶圓污染 以與上述「4.4. la研磨速度之測定」相同之方式,對 PETE0S膜及低介電常數絕緣膜進行研磨處理。關於pETE〇s 098104943 63 200944582 膜,係對基板進行氣相分解處理,於表面上滴加稀氫氟酸而 溶解表面氧化膜之後,利用ICP-MS(珀金埃爾默公司製造, 型號「ELAN DRC PLUS」)對該溶解之液體進行定量。關於低 介電常數絕緣膜,係於基板表面上滴加超純水,萃取低介電 常數絕緣膜表面之殘留金屬後,利用Ϊ C P _ M s (橫河分析系統 (Yokogawa Analytical Systems)公司製造,型號「Agilent 7500s」)對萃取液進行定量。晶圓污染較佳為3. 〇以挪/咖2 以下,更佳為2. 5 atom/cm2以下。 4. 4· 2附有圖案之晶圓之研磨評價 於化學機械研磨裝置(荏原製作所公司製造型 「EP0112」)上安裝多孔質聚胺基f酸§旨製研磨_ = Haas公司製造’料號「㈣⑼」),—面供給化學機a 用水系分散體S1〜S12之任一種,一面根據下述研磨條件= 下述附有圖案之晶圓進行研磨處理,並藉由下述方法評迅、、, 坦性及缺陷之有無。將其結果一併示於表3〜表4。坪價平 (1)附有圖案之晶圓 使用如下測試用基板:於矽基板上堆積1000埃之 膜’於其上依序積層侧埃之低介電常數絕緣膜夕 Diamond膜)、進而積層5〇〇埃之pETE〇s膜後ack 「SEMATECH 854」遮罩圖案加卫,再於其上依序積層壤行 埃之纽膜、圆埃之銅籽晶膜及丨咖埃之錄鋼膜。咖 (2)第1研磨處理步驟之研磨條件 098104943 64 200944582 •作為第1研磨處理步驟用之化學機槭研磨用水系分散 體’係使用將「CMS7401」、「CMS7452」(均為jsr(股)製'造)、 • 離子交換水及4質量%過硫酸銨水溶液以質量比i :丨.2 : 4 之比例混合而成者。 .磨頭旋轉數:70 rpm .磨頭負重:200 gf/cm2 •工作台旋轉數:7 0 rpm ❹ .化學機械研磨水系分散體之供給速度:2〇〇 mL/分鐘 此時之化學機械研磨用水系分散體之供給速度,係指總供 給液之供給量的合計除以每單位時間所得之值。 .研磨時間:2. 75分鐘 (3)第2研磨處理步驟之研磨條件 .作為第2研磨處理步驟用之水系分散體,使用化學機械 研磨用水系分散體〜S12。 ❹ .磨頭旋轉數:70 rpm •磨頭負重:200 gf/cm2 .工作台旋轉數:70 rpm . .化學機械研磨水系分散體之供給速度:200 mL/分鐘 • 此時之化學機械研磨用水系分散體之供給速度,係指總供 給液之供給量的合計除以每單位時間所得之值。 .研磨時間.自被研磨面除去PETEOS膜之時刻起,進而將 研磨30秒之時刻設為研磨終點,表3〜表4中記载為「附 098104943 65 200944582 有圖案之基板之研磨時間」。 4.4. 2a平坦性評價 型式 使用局解析度輪廉儀(KLA_Tencor公司製造, HRP24〇ETCH」)’對第2研磨處理步職之附 、 圓之被研磨面’剛定鋼佈線寬度c線,L)/絕緣媒寬:日日 S)分別為⑽"ra之銅佈線部分之:,’ (nm)。另外’於制佈線上表面為上凸高於基準錄化量 表面)時,淺碟务I k絕緣祺上 Ο 咖,更佳為—2〜2〇· 為^〜3〇 一對第2研磨處理步驟後的附有 圖案之晶圓之被研磨面,測 定銅佈線M.L)/崎载度(間隙 ,S)分別為9 β11^1 之圖衆μ姐Α β >、货細佈線長度連續1000 之部分的磨#量 (nm)。另外,认〜 於麵佈線上表面為上凸高於基準面(絕緣膜上 ❹ 表)時磨餘量以負號表示。磨姓量較佳為-5〜30nm’更 佳為-2〜2〇 nm。 關於第 面 ^磨處理步驟後的附有圖案之晶圓之被研磨 「使用觸針式輪廓儀(KLA-Tencor公司製造,裂式 HRP240 j 1 Λ 1〇〇 佈線圖案部分之尖型凹槽進行評 價。另外,董+曰 、 阳圓之絕緣膜、或形成於障壁金屬膜與佈線部 =、之、、、邑緣臈、或障壁金屬膜之凹口,評價尖型凹 § 1凹槽越小,表示佈線部之平坦化性能越優異。尖 型凹槽較佳為〇〜 nm,更佳為〇〜25 nm。 098104943 66 200944582 4. 4. 2b刮痕評價 使用缺陷檢查裝置(KLA-Tencor公司製造,型式 「2351」),對第2研磨處理步驟後的附有圖案之晶圓之被 研磨面測定研磨傷痕(刮痕)之數量。於表3〜表4中,對每 一片晶圓之刮痕個數附以「個/晶圓」之單位來標記。刮痕 個數較佳為未滿100個/晶圓。The Haas company manufactures the "material number "Cai (10)"), and supplies the chemical mechanical polishing & water-based dispersions S1 to S12, and grinds the following various polishing rate measurement substrates for one minute according to the following polishing conditions. The treatment was carried out, and the polishing speed and wafer contamination were evaluated by the following methods. The results are shown together in Tables - Table 4. 3 4·4· Measurement of la polishing rate (1) Substrate for polishing rate measurement An 8-inch substrate with a coating film having a film thickness of 15,000 angstroms (Angstrom) was laminated. ·, , , 虱 The laminate has a ruthenium substrate with a film thickness of 2 and a thermal oxide film attached to the button film of 〇〇〇. The film thickness of the film is l〇, and the low dielectric constant of GGG is based on the 8-inch 矽 substrate manufactured by the company, which is manufactured by the company, under the trade name “Black Diamond”. τ 098104943 200944582 • A plasma-enhanced Tetraethylorthosilicate film (PETE0S) with a film thickness of 10,000 angstroms. (2) Grinding conditions • Grinding head rotation number: 70 rpm • Grinding head load: 200 gf/cm2 • Table rotation: 70 rpm © • Chemical mechanical grinding water dispersion speed: 200 mL/min The supply rate of the chemical mechanical polishing aqueous dispersion at this time is the total of the supply amount of the total supply liquid divided by the value obtained per unit time. (3) Calculation method of the polishing rate The thickness of the copper film and the button film after the polishing treatment was measured using a conductive film thickness measuring device (manufactured by KLA-Tencor Co., Ltd., type "OmniMap RS75"), and by chemical mechanical polishing. Reduce the film thickness and grinding time to calculate the grinding speed. The film thickness after the polishing treatment was measured for the PETE0S film and the low dielectric constant insulating film using a light interference type film thickness measuring device (manufactured by Nanometrics Co., Ltd., type "Nanospec 6100"), and was reduced by chemical mechanical polishing. - The film thickness and the grinding time are used to calculate the polishing rate. 4. 4 lb wafer contamination The PETE0S film and the low dielectric constant insulating film were polished in the same manner as in the above "4.4. la polishing rate measurement". About pETE〇s 098104943 63 200944582 Membrane, which is subjected to gas phase decomposition treatment on a substrate, and is diluted with hydrofluoric acid on the surface to dissolve the surface oxide film, and then used by ICP-MS (Perkin Elmer, model "ELAN" DRC PLUS") quantifies the dissolved liquid. For the low dielectric constant insulating film, ultrapure water is dropped on the surface of the substrate, and the residual metal on the surface of the low dielectric constant insulating film is extracted, and then Ϊ CP _ M s (manufactured by Yokogawa Analytical Systems Co., Ltd.) , model "Agilent 7500s") to quantify the extract. The wafer contamination is preferably 3. 〇 挪 / coffee 2 or less, more preferably 2. 5 atom / cm 2 or less. 4. 4· 2 Grinding evaluation of patterned wafers. Installation of porous polyamine-based f acid on a chemical mechanical polishing device ("EP0112" manufactured by Ebara Seisakusho Co., Ltd.) § Grinding _ = Haas company's part number "(4) (9)"), the surface-feeding chemical machine a, any of the water-based dispersions S1 to S12, is subjected to a polishing treatment according to the following polishing conditions = the following patterned wafer, and is evaluated by the following method. , the presence of frankness and defects. The results are shown together in Tables 3 to 4. Ping Ping Ping (1) The patterned wafer is used as a test substrate: a film of 1000 angstroms deposited on a tantalum substrate, on which a low dielectric constant insulating film (Diamond film) is laminated, and then laminated 5 〇〇 之 p p p p 「 SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM SEM . Coffee (2) Polishing conditions of the first polishing treatment step 098104943 64 200944582 • The chemical machine maple polishing water dispersion used as the first polishing treatment step uses "CMS7401" and "CMS7452" (both jsr) The system is made of a mixture of ion-exchanged water and a 4 mass% ammonium persulfate aqueous solution in a mass ratio of i: 丨.2:4. Number of rotations of the grinding head: 70 rpm. Weight of the grinding head: 200 gf/cm2 • Number of rotations of the table: 70 rpm ❹ Supply speed of chemical mechanical polishing water dispersion: 2 〇〇mL/min Chemical mechanical polishing at this time The supply rate of the water-based dispersion refers to the total amount of the supply of the total supply liquid divided by the value obtained per unit time. Grinding time: 2.75 minutes (3) Polishing conditions of the second polishing treatment step. As the aqueous dispersion for the second polishing treatment step, the chemical mechanical polishing aqueous dispersion ~S12 was used. ❹. Number of grinding head rotation: 70 rpm • Grinding head load: 200 gf/cm2. Table rotation: 70 rpm. Supply speed of chemical mechanical grinding water dispersion: 200 mL/min • Chemical mechanical polishing water at this time The supply rate of the dispersion is the total of the supply amount of the total supply liquid divided by the value obtained per unit time. Grinding time: The time from the time when the PETEOS film was removed from the surface to be polished, and the time of polishing for 30 seconds was used as the polishing end point, and the polishing time of the substrate having the pattern of 098104943 65 200944582 was described in Tables 3 to 4. 4.4. 2a flatness evaluation type using the local resolution roundness instrument (manufactured by KLA_Tencor, HRP24〇ETCH)) 'attached to the second grinding treatment step, the rounded surface to be polished' is just fixed steel wiring width c line, L ) / Insulation medium width: day S) is the (10) "ra copper wiring part:, ' (nm). In addition, when the upper surface of the wiring is convexly higher than the surface of the reference recording amount, the shallow-disc I k insulating 祺 Ο ,, preferably - 2 〜 2 〇 · for ^ 〜 3 〇 a pair of second grinding After the processing step, the polished surface of the patterned wafer is measured, and the copper wiring ML)/sand carrier (gap, S) is 9 β11^1, respectively, and the length of the fine wiring is continuous. Milling part of the amount of 1000 (nm). In addition, the amount of wear is indicated by a negative sign when the upper surface of the surface wiring is convex higher than the reference surface (the upper surface of the insulating film). The grinding amount is preferably -5 to 30 nm', more preferably -2 to 2 Å nm. The pattern-attached wafer after the first surface grinding process is ground. "Using a stylus profiler (KLA-Tencor, Inc., cracked HRP240 j 1 Λ 1〇〇 wiring pattern portion of the sharp groove) In addition, the insulating film of Dong + 曰, Yang Yuan, or the notch formed in the barrier metal film and the wiring portion =, , , , 邑 臈, or the barrier metal film, the evaluation of the tip concave § 1 groove Small, indicating that the planarization performance of the wiring portion is excellent. The pointed groove is preferably 〇~nm, more preferably 〇25 nm. 098104943 66 200944582 4. 4. 2b Scratch evaluation using defect inspection device (KLA-Tencor The company manufactures the type "2351"), and measures the number of polishing scratches (scratches) on the polished surface of the patterned wafer after the second polishing process. In Tables 3 to 4, for each wafer The number of scratches is marked with the unit of "piece/wafer". The number of scratches is preferably less than 100/wafer.

098104943 67 200944582 〔co<l 9 fi4098104943 67 200944582 [co<l 9 fi4

9S -9S -

0.9H 和^一一' °°.o s s§ 擧曾备°龄 OS_0si§j_f so.o oz.o _¥-蕾:0.9H and ^一一' °°.o s s§ 举曾°° OS_0si§j_f so.o oz.o _¥-lei:

°0I o 009°0I o 009

OS ooe 00卜 -•l 2 -.0 9.0 ΓΖ -OS ooe 00 Bu -•l 2 -.0 9.0 ΓΖ -

0Z 2 S8 9.0 .激11:楚pii「 ^^'516^0 so.o0Z 2 S8 9.0 .激11:楚pii" ^^'516^0 so.o

…0'·'_: ;§iWOT W1Q:SS: so.o 0Γ0 "6 o tl-...0'·'_: ;§iWOT W1Q:SS: so.o 0Γ0 "6 o tl-

OS § 089 69° .2 -•ο 9·0 6·1 9卜OS § 089 69° .2 -•ο 9·0 6·1 9

SISI

ZIZI

8Z H—駟 ms8Z H—驷 ms

£S£S

2S 0Έ T· 0·ι ^'^'sli^o2S 0Έ T· 0·ι ^'^'sli^o

SOO 0$SOO 0$

_iqIH: •o_sib_o.o_T -1,:¾¾ 0Γ0 0Γ0 "6 〇 0- si_iqIH: •o_sib_o.o_T -1,:3⁄43⁄4 0Γ0 0Γ0 "6 〇 0- si

OH §OH §

SO s -Ό 6·1 99 01 61 - ο 9.卜 0Ί—馨$r 猶#^ιέβSO s -Ό 6·1 99 01 61 - ο 9. Bu 0Ί-馨$r 犹#^ιέβ

OS $s :0sj§i. 0Γ0OS $s :0sj§i. 0Γ0

οε° WWΕε° WW

S.OI o 009 006 06 0- 卜9Ό 60.1 9ι·0 Α·0 οο.ιS.OI o 009 006 06 0- Bu 9Ό 60.1 9ι·0 Α·0 οο.ι

UU

Zl 01 91 - SM^hw :J°0 i2p: °:si,0_si,f :s.9'iss· sod 2Ό¥-餐: "6 o 09寸 0S9 OSl 009 69 ·0 S2/0 s 00.0 0.3 ε卜Zl 01 91 - SM^hw :J°0 i2p: °:si,0_si,f :s.9'iss· sod 2Ό¥-meal: "6 o 09 inch0S9 OSl 009 69 ·0 S2/0 s 00.0 0.3 ε

SI 01 81 09 009SI 01 81 09 009

II

ISIS

V °l ^^sli^a 5 $s :isio .0si,§i· 0Γ0V °l ^^sli^a 5 $s :isio .0si,§i· 0Γ0

SOO o.s 〇SOO o.s 〇

OS ss 001OS ss 001

00S 69 Ό s.0 ero S.0 6Ί 99 5100S 69 Ό s.0 ero S.0 6Ί 99 51

OS ο ......_觀繁 8«)? ,::::1. 1 i (%Ϊ5Ϊ"t"^&. 霖 瑤 soaLaD-,OS ο ......_观繁 8«)? ,::::1. 1 i (%Ϊ5Ϊ"t"^&. Lin Yao soaLaD-,

S00STSAIIS00STSAII

5f s 31W5f s 31W

sl/6=s 3SS is£i$ iss fs—岭 θ f游if雲 i/势 ifri si_ 01〇/8§忘}涨於困吨 ΜΜ"·^Φ (困吨/舉)媒-Sl/6=s 3SS is£i$ iss fs—ridge θ f swim if cloud i/potential ifri si_ 01〇/8§ forget} rises in sleepy tons ΜΜ"·^Φ (sleepy tons/lift) media -

Gw te围 萑峯¾ 瓣雜·> ε寸6寸0S60 200944582 比較例6 (M I—H c=> LO Η ΙΟ c> 轉咬酸 S <=> I g <r> g c=> Ο O’ 呀 1, s s C3 過氧化氫 〇 to CTS 〇 S § CD 05 CO <=> CO 〇 CO <=> 05 OO 05 0〇 c^a S m 比較例5 CO ◦ ltJ 磁 Ί ο 寧 1 CD 愛 g o S <=> 1 < g O S <=> o C5 X s m S 〇〇 g 〇 § 1〇 CO cJ 05 CO Ο CO 〇 <=> 2ί· LO tn ο 卜 in s 1 比較例4 S CO 〇 LO 卜· 檸槪 ο f—^ 1 | 另 G? f CD g o 1 i s o’ $ 〇 LT5 <=> X c> 另 1 § S CO 〇 ΙΛ 〇· CO 00 ο CO eg 〇 CO Ci 03 r-H r-H CO 沿 比較例3 1 順丁稀二酸 m ο 轉咬酸 S 潜 1,000,000 CD o s I 1 s <=> $ 窜 CD r·^ Ο m 05 〇 s CVI ΙΛ § LT3 10.00 〇 oo ο Ο oi g LO in c=> CO 比較例2 88 ο Ο CO 1 1 1 1 $ m- 错 CD Ο in od 〇 1 i 〇 § S ΙΛ g oi CO ο m C3 〇4 銘 oo CM to 比較例1 &5 〇 ΙΛ 卜· 1 1 o o s o CM 〇 1 Eraul 卿 104P o o iBf 〇· ΙΛ C> 〇 1 i S tn ο ο <>i <=> CO 卜 G5 oo ο 2 s § 1化學機械研磨用水系分散體 1 綠體 1 φί m «Wul 含量(質量%) m w /•—N φί 4〇 .ΙΙΚ.Ι φ>1 tt^lf ηβη Ns-/ dH 4〇 HOC iiS? •Krj $1 4〇 V8B( a w 論 ΡρΊ «Η *4〇 si f Cu研磨触(埃/減) 1 1 1 BD研磨姐(埃/賴) PEIE0S研磨碰(埃/細 Cu/Ta研磨速度比 Cu/PETBOS研磨速度比 BD/PETB0S研磨速度比 Blade Diamond 膜 PETEOS膜 附有圖案之基板之研磨時間(秒) m =t 31 MS Jj ^ ㈣ 磨餘量(nm) L/S=9/l um r·^ 1% 3f 刮痕(個/晶圓) 二氧僻粒子 有機酸 水漆性高分子 界面活性劑 氧化劑 晶圓污染(atans/cm2) 平坦性洲 部f峯围W 辜围单秘 69-6SIS60 200944582 4. 4. 3實驗例1之評價結果 根據研磨速度測定用基板之研磨試驗之結果可知,實施例 1〜6之化學機械研磨用水系分散體中,相較於對鋼骐、钽 膜、PETEGS膜之研磨速度’可更充分抑制對低介電常數= 緣膜之研磨速度,並且不會產生晶圓污染。根據附有圖案之 晶圓之研磨試驗之結果可知’實施例丨〜6之化學機械研磨 用水系分散體中,被研磨面之平坦性優異,亦可將刮痕之個 數抑制為較低。又,可知實施例丨〜6之化學機械研磨用水 系分散體之二氧化矽粒子的保存穩定性均優異。 相對於此,比較例!中所使用之S7係與自實施例3中所 使用之S3去除相當於有機酸之成分的組成相當。若對實施 例3與比較例丨之結果進行比較,則任一種之二氧化矽粒子 之保存穩定性均良好。另一方面,研磨速度測定用基板之研 磨試驗中’相較於比較例1,實施例3對銅膜及障壁金屬膜 之研磨速度明顯增加。又,於附有圖案之晶圓之研磨試驗 中’相較於比較例1,實施例3銅膜上之到痕大幅減少。以 上結果表現出使用有機酸之優越性。 比較例2中所使用之S8不含有有機酸、水溶性高分子及 界面活性劑,因此於研磨速度測定用基板之研磨試驗中,對 低介電常數絕緣膜之研磨速度明顯增加。 比較例3中所使用之S9不含有二氧化矽粒子,因此任一 研磨速度測定用基板中均無法獲得實用性之研磨速度。 098104943 70 200944582 比較例4中所使用之副含有具有4·2個—之石夕烧醇基 密度的二氧切粒子分散體G,因此二氧化雜子之保存轉 .定性不佳。於研磨速度収絲板之研賴驗中,可確認對 .障壁金屬膜之研磨賴增加之_。另—方面,可確 :一超過對銅膜及: 之傾向。於附有圖案之晶圓之研磨試驗 β 广 隸子q生複數條顺及㈣凹槽, ❹而無法獲知良好之被研磨面。 =5中所使用之S11係含有具有〇8 基在度的一氧化石夕粒子分散體H,因此 醇 穩定性不佳。於研磨速度測定用基板^石夕粒子之保存 產生晶圓污染1附有圖案之晶圓之=、驗中,可確認 凝聚之二氧化石夕而產生複數條刮痕。π驗中’可碟認因 比較例6中所使用之S12係含 ❹基密度的二氧切粒子分散體卜但藉由.、8個/⑽2之錢醇 或濃度之平衡’而可使二氧化石夕粒子穩八建到添加劑之種類 圖案之晶圓之研磨試驗中, 广弋化。然而,於附有 無法獲得良好之被研磨面/、卩㈣型凹槽之產生 ,從而 如上所述可知,若利用實施例1〜 系分散體Hi、對低介f常細 化學顧研磨用水 時滿足對鋼膜、起膜及PETE0S膜"、之研磨逮度’並可同 特性。又,可知若利用實施 门研磨逮度及高平垣化 098104943 3 6之化學機械研磨用水系 200944582 分散體,則可實現高品質化學機械研磨,而不會在金屬膜或 低介電常數絕緣膜中引起缺陷,並且可減小晶圓之金屬污 染。 4. 5實驗例2 4. 5.1無圖案基板之研磨評價 於化學機械研磨裝置(荏原製作所公司製造,型式 「EP0112」)上安裝多孔質聚胺基曱酸酯製研磨墊(Nitta Haas公司製造,料號「IC1000」),一面供給化學機械研磨 用水系分散體S13〜S41之任一種,一面根據下述研磨條件 對下述各種研磨速度測定用基板進行1分鐘研磨處理,並藉 由下述方法評價研磨速度及晶圓污染。將其結果一併示於表 5〜表8。 4. 5. la研磨速度之測定 (1) 研磨速度測定用基板 •積層有膜厚為15, 000埃之銅膜之附有熱氧化膜之8英吋 矽基板。 •積層有膜厚為2, 000埃之钽膜之附有熱氧化膜之8英吋 矽基板。 (2) 研磨條件 •磨頭旋轉數:70 rpm •磨頭負重:200 gf/cm2 •工作台旋轉數:70 rpm 098104943 72 200944582 化學機械研磨水系分散體之供給速度:2〇〇 mL/分鐘 此時之化學機械研磨用水系分散體之供給速度,係指總供 . 給液之供給量的合計除以每單位時間所得之值。 - (3)研磨速度之計算方法 使用導電式膜厚測定器(KLA_Tenc〇r公司製造,塑式Gw te 萑 peak 3⁄4 瓣··gt; ε inch 6 inch 0S60 200944582 Comparative Example 6 (MI-H c=> LO Η ΙΟ c> Turning acid S <=> I g <r> gc= > Ο O' 呀1, ss C3 Hydrogen peroxide 〇 to CTS 〇S § CD 05 CO <=> CO 〇CO <=> 05 OO 05 0〇c^a S m Comparative Example 5 CO ◦ ltJ Ί 宁 1 CD Love go S <=> 1 < g OS <=> o C5 X sm S 〇〇g 〇§ 1〇CO cJ 05 CO Ο CO 〇<=> 2ί · LO tn ο 卜 in s 1 Comparative Example 4 S CO 〇LO 卜 · 槪 槪 f f—^ 1 | Another G? f CD go 1 is o' $ 〇LT5 <=> X c> Another 1 § S CO 〇ΙΛ 〇· CO 00 ο CO eg 〇CO Ci 03 rH rH CO along Comparative Example 3 1 cis-succinic acid m ο 咬 酸 S S- 1,000,000 CD os I 1 s <=> $ 窜CD r· ^ Ο m 05 〇s CVI ΙΛ § LT3 10.00 〇oo ο Ο oi g LO in c=> CO Comparative Example 2 88 ο Ο CO 1 1 1 1 $ m- 错 CD Ο in od 〇1 i 〇§ S ΙΛ g oi CO ο m C3 〇4 Ming oo CM to Comparative Example 1 &5 〇ΙΛ Bu· 1 1 ooso CM 〇1 Eraul 卿104P oo iBf 〇· ΙΛ C> 〇1 i S tn ο ο <>i <=> CO Bu G5 oo ο 2 s § 1 Chemical mechanical polishing water dispersion 1 Green body 1 φί m «Wul content (% by mass) mw / •—N φί 4〇.ΙΙΚ.Ι φ>1 tt^lf ηβη Ns-/ dH 4〇HOC iiS? •Krj $1 4〇V8B( aw ΡρΊ «Η *4〇si f Cu grinding touch (A/min 1 1 1 BD Grinding Sister (Ai/Lai) PEIE0S Grinding Touch (Angstrom/fine Cu/Ta grinding speed is better than Cu/PETBOS grinding speed than BD/PETB0S grinding speed than Blade Diamond film PETEOS film with patterned substrate grinding time) (seconds) m =t 31 MS Jj ^ (4) Grinding allowance (nm) L/S=9/l um r·^ 1% 3f Scratch (piece/wafer) Dioxygenated organic acid lacquer polymer Surfactant oxidant wafer contamination (atans/cm2) Flatness of the continent f peaks W 辜 单 69 69-6SIS60 200944582 4. 4. 3 Evaluation results of the experimental example 1 The results of the polishing test of the substrate for the measurement of the polishing rate It can be seen that in the chemical mechanical polishing aqueous dispersions of Examples 1 to 6, the polishing rate of the steel ruthenium, the ruthenium film, and the PETEGS film can be more sufficiently suppressed against the low dielectric constant = the edge film. Speed, and will not produce wafer contamination. As a result of the polishing test of the patterned wafer, it is understood that the chemical mechanical polishing aqueous dispersion of Examples 丨 to 6 has excellent flatness of the surface to be polished, and the number of scratches can be kept low. Further, it was found that the cerium oxide particles of the chemical mechanical polishing aqueous dispersion of Examples 1-6 were excellent in storage stability. In contrast, the comparison example! The S7 system used in the above was equivalent to the composition of the component corresponding to the organic acid removed from S3 used in Example 3. When the results of Example 3 and Comparative Example were compared, the storage stability of any of the cerium oxide particles was good. On the other hand, in the polishing test of the substrate for polishing rate measurement, the polishing rate of the copper film and the barrier metal film was remarkably increased as compared with Comparative Example 1. Further, in the polishing test of the patterned wafer, the trace on the copper film of Example 3 was significantly reduced as compared with Comparative Example 1. The above results show the superiority of using organic acids. Since S8 used in Comparative Example 2 does not contain an organic acid, a water-soluble polymer, and a surfactant, the polishing rate of the low dielectric constant insulating film is remarkably increased in the polishing test of the substrate for polishing rate measurement. Since S9 used in Comparative Example 3 does not contain cerium oxide particles, a practical polishing rate cannot be obtained in any substrate for measuring the polishing rate. 098104943 70 200944582 The sub-group used in Comparative Example 4 contains the dioxo-particle dispersion G having a density of 4·2, and thus the storage of the dioxins is not qualitatively good. In the investigation of the polishing speed of the wire receiving plate, it was confirmed that the polishing of the barrier metal film was increased. On the other hand, it can be confirmed: a tendency to exceed the copper film and: Grinding test on patterned wafers β 广 子 子 生 生 ( ( ( ( ( ( ( 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The S11 used in =5 contains a dispersion of the oxidized cerium particle having a 〇8 basis, and thus the alcohol stability is poor. Preservation of the polishing rate measurement substrate ^Shixi particles The occurrence of wafer contamination 1 with a patterned wafer = during inspection, it was confirmed that a plurality of scratches were formed on the agglomerated silica. In the π test, the S12 system used in Comparative Example 6 is a dioxoparticle dispersion containing a sulfhydryl density, but can be made by a balance of 8 or (10) 2 of the alcohol or concentration. The oxidized stone cerium particles are steadily built into the grinding test of the wafer of the additive type pattern, which is widely used. However, it is known that the groove of the surface to be polished and the type of the crucible (four) is not obtained, and as described above, when the water of the embodiment 1 to the dispersion of Hi is used, Meet the steel film, film and PETE0S film, "grinding degree" and the same characteristics. Moreover, it can be seen that high-quality chemical mechanical polishing can be achieved without using a metal film or a low dielectric constant insulating film by performing a door grinding degree and a chemical mechanical polishing water system 200944582 dispersion of 098104943 3 6 . Causes defects and reduces metal contamination of the wafer. 4. 5 Experimental Example 2 4. 5.1 Polishing Evaluation of Non-patterned Substrate A porous polyamine phthalate polishing pad (manufactured by Nitta Haas Co., Ltd.) was attached to a chemical mechanical polishing device (manufactured by Ebara Seisakusho Co., Ltd., model "EP0112"). In the case of the chemical mechanical polishing aqueous dispersions S13 to S41, one of the following polishing rate measurement substrates is subjected to one-minute polishing treatment according to the following polishing conditions, and the following method is used. Evaluation of polishing speed and wafer contamination. The results are shown together in Tables 5 to 8. 4. 5. Measurement of la polishing speed (1) Substrate for polishing rate measurement • An 8-inch tantalum substrate with a thermal oxide film on a copper film with a film thickness of 15,000 angstroms was laminated. • An 8-inch tantalum substrate with a thermal oxide film on the tantalum film with a film thickness of 2,000 angstroms. (2) Grinding conditions • Grinding head rotation number: 70 rpm • Grinding head load: 200 gf/cm2 • Table rotation number: 70 rpm 098104943 72 200944582 Chemical mechanical grinding water dispersion supply speed: 2〇〇mL/min The supply speed of the chemical mechanical polishing aqueous dispersion is the total of the supply of the liquid supply divided by the value obtained per unit time. - (3) Calculation method of polishing speed Using a conductive film thickness measuring device (manufactured by KLA_Tenc〇r Co., Ltd., plastic type)

OmniMap RS75」)’對鋼膜及鈕膜測定研磨處理後之膜厚, 並根據藉由化學機械研磨而減少之膜厚及研磨時間來計算 © 研磨速度。 4. 5. lb晶圓污染 以與上述「4. 5. la研磨速度之測定」相同之方式,對銅 膜進行研磨處理。繼而,於試料表面上滴加超純水,萃取銅 膜表面上之殘留金屬後,利用ICP_MS(橫河分析系統公司製 造,型號「Agilent 7500s」)對其萃取液進行定量。晶圓污 染較佳為3.0 atom/cm2以下,更佳為2.5 at⑽/cm2以 4. 5.2附有圖案之晶圓之研磨評價 於化學機械研磨裝置(荏原製作所公司製造,型式 「EP0112」)上安裝多孔質聚胺基曱酸酯製研磨墊 Haas公司製造,料號「ici〇〇〇」),一面供給化學機械研磨 用水系分散體S13〜S41之任一種,一面對下述附有圖案之 晶圓,除了將於被研磨面上檢測出鈕膜之時刻作為研磨終點 以外,與上述「4.5.1a研磨速度之測定」之研磨條件相同 地進行研磨處理,並藉由下述方法評價平坦性及缺陷之有 098104943 73 200944582 無。將其結果一併示於表5〜表8。 (1)附有圖案之晶圓 使用如下測試用基板:於石夕基板上堆積1000埃之氮化石夕 膜’於其上依序積層4500埃之低介電常數絕緣膜(Biack Diamond膜)、進而積層500埃之PETEOS膜後,進行 「SEMATECH 854」遮罩圖案加工,再於其上依序積層250 埃之组膜、1000埃之銅軒晶膜及1QQQQ埃之鑛銅膜。OmniMap RS75")' The steel film and the button film were measured for the film thickness after the polishing treatment, and the film thickness and the polishing time were reduced by chemical mechanical polishing to calculate the polishing rate. 4. 5. lb wafer contamination The copper film was polished in the same manner as described in "4. 5. la polishing rate" above. Then, ultrapure water was added to the surface of the sample to extract residual metal on the surface of the copper film, and then the extract was quantified by ICP_MS (manufactured by Yokogawa Analytical Systems, model "Agilent 7500s"). The wafer contamination is preferably 3.0 atom/cm2 or less, more preferably 2.5 at (10)/cm2. 4. 5.2 The polishing of the patterned wafer is mounted on a chemical mechanical polishing apparatus (manufactured by Ebara Seisakusho Co., Ltd., type "EP0112"). The porous polyamine phthalate polishing pad manufactured by Haas Co., Ltd., material number "ici", is supplied to any of the chemical mechanical polishing aqueous dispersions S13 to S41, and is patterned as follows. The wafer was polished in the same manner as the polishing conditions of "4.5.1a polishing rate measurement" except that the button film was detected on the surface to be polished, and the flatness was evaluated by the following method. And the defects are 098104943 73 200944582 None. The results are shown together in Tables 5 to 8. (1) The wafer with the pattern is as follows: a low dielectric constant insulating film (Biack Diamond film) having a thickness of 4,500 angstroms deposited thereon on a stone lining film of 1000 angstroms on a stone substrate. Then, a PETEOS film of 500 angstroms was laminated, and a "SEMATECH 854" mask pattern was processed, and a 250 angstrom film, a 1000 angstrom copper film, and a 1QQQQ Ai copper film were sequentially laminated thereon.

G 4. 5. 2a平坦性評價 使用尚解析度輪庵儀(KLA-Tencor公司製造,型式 「HRP240ETCH」)’對研磨處理步驟後的附有圖案之晶圓之 =研磨面’測定銅佈線寬度(線,L)/絕緣膜寬度(間隙,s) 刀别為1GG 〃m/iGQ 之銅佈線部分之淺碟化量(⑽)。另 外,於鋼佈線上表面為上凸高於基準面(絕緣膜上表面)時, 淺碟化里以負號表示。淺碟化量較佳為_5〜3G⑽ 一2 〜20nm。 马 ❹ 佈Sr:處理步驟後的附有圖案之晶圓之被研磨面,測定銅 !=(線’L)/絕緣膜寬度(間隙,_為9 — 線長度連續麵一分的磨-量 表面)時,聽量上表㈣上凸高於基準面(絕緣膜上 佳為—2〜2〇⑽。負絲不。磨姓量較佳為-5〜30咖’更 4· 5. 2b腐餘評價 098104943 74 200944582 使用缺陷檢查裝置(KLA-Tencor(股)製造,型式r2351」), 對研磨處理步驟後的附有圖案之晶圓之被研磨面的1 CD1X1 • cm之銅區域,評價10 nm2〜100 rnn2大小之缺陷數量。於表 5〜8中’〇表示腐蝕數為0〜10個而最佳之狀態。△表示 11個〜100個而猶差之狀態。X表示存在1〇1個以上之腐餘 之狀態,而判斷為研磨性能不良。 4. 5.2c微細佈線圖案上之銅殘留評價 ❹ 使用超高解析場發射型掃描電子顯微鏡「S-48〇〇(日立高 新技術公司製造)」,對研磨處理步驟後的附有圖案之晶圓之 被研磨面上,寬度為〇·18 之佈線部及寬度為〇18以爪 之絕緣部(長度均為16 mm)交替連接的圖案沿著與長度方 向垂直之方向連續h25 mm之部分,評價寬度為〇\8 _ 之孤立佈線部之CU殘留(銅殘渣)之有無。將鋼殘留之評價 結果示於表5〜8。表中之評價項目%殘留」表示上述圖 ❹案上之Cu殘渣,「〇」表示完全消除Cu雜而處於最佳之 狀態。「△」表示一部分圖案中存在^殘渣而稍差之狀態。 「X」表示所有圖案中產生CU雜且研磨性能不良。 098104943 75 2 8 5 44 09 200 si 一香遨w383^38 1¾ 3 0〇〇·0 ΑΊ ΓΟ ooocvico coo.o dsl SMlnug oro is .1G 4. 5. 2a flatness evaluation Using a resolution rim (KLA-Tencor, model "HRP240ETCH") 'Measure the copper wiring width for the patterned wafer = polishing surface after the polishing process step (Line, L) / Insulation film width (gap, s) The blade is the amount of shallow disc ((10)) of the copper wiring portion of 1GG 〃m/iGQ. In addition, when the upper surface of the steel wiring is convex higher than the reference surface (the upper surface of the insulating film), the shallow dish is indicated by a minus sign. The amount of shallow disc formation is preferably _5 to 3G (10) to 2 to 20 nm. Ma Wei cloth Sr: the polished surface of the patterned wafer after the processing step, measuring copper! = (line 'L) / insulating film width (gap, _ is 9 - the length of the line length of the grinding surface - the amount When the surface is on the upper surface of the table (4), the protrusion is higher than the reference surface (the insulation film is preferably -2~2〇(10). The negative wire is not. The grinding name is preferably -5~30 coffee' more 4. 5. 2b Corrosion evaluation 098104943 74 200944582 Using a defect inspection device (manufactured by KLA-Tencor Co., Ltd., type r2351), evaluation of the copper area of 1 CD1X1 • cm of the polished surface of the patterned wafer after the polishing process The number of defects in the size of 10 nm2 to 100 rnn2. In Tables 5 to 8, '〇 indicates the number of corrosions is 0 to 10 and the best state. △ indicates 11 to 100 and the state of hysteresis. X indicates the presence of 1〇. It is judged that the polishing performance is poor in one or more states of the rot. 4. Evaluation of copper residue on the 5.2c fine wiring pattern ❹ Ultra-high-resolution field emission scanning electron microscope "S-48〇〇 (Hitachi High-Tech Co., Ltd.) Manufactured), the width of the surface to be polished of the patterned wafer after the polishing process is 〇·18 The wiring portion and the pattern in which the width of the 〇18 is alternately connected by the insulating portion of the claw (the length is 16 mm) is h25 mm continuous in the direction perpendicular to the longitudinal direction, and the isolated wiring portion having the width 〇\8 _ is evaluated. The presence or absence of the CU residue (copper residue). The evaluation results of the steel residue are shown in Tables 5 to 8. The residual value of the evaluation item in the table indicates the Cu residue on the above-mentioned figure, and "〇" indicates that Cu is completely eliminated. The optimum state is "△", which indicates that some of the patterns have a slight residue and are inferior. "X" indicates that CU is mixed in all the patterns and the polishing performance is poor. 098104943 75 2 8 5 44 09 200 si A fragrant w383^ 38 13⁄4 3 0〇〇·0 ΑΊ ΓΟ ooocvico coo.o dsl SMlnug oro is .1

ft叫-'z 二—HI 0.6 ΊϋΤ 00005 A.o 31 〇 IOI 01Ft called-'z two-HI 0.6 ΊϋΤ 00005 A.o 31 〇 IOI 01

SS ο 00 ·Ι l 靈)票 00000 卜 0ΙΌ 2 〇 TT —3 000*11 K0SS ο 00 ·Ι l Ling) Ticket 00000 Bu 0ΙΌ 2 〇 TT —3 000*11 K0

SI 〇 Μ 01SI 〇 Μ 01

6IS ο 00 ·ι6IS ο 00 ·ι

S.I (os)s^ 泠>发10鉍 00000卜 01 dsI U9b0lnug oro «·0 〇 TT Ί5Τ ooood roS.I (os)s^ 泠>#10铋 00000卜 01 dsI U9b0lnug oro «·0 〇 TT Ί5Τ ooood ro

ZI 〇 d,ZI 〇 d,

OOIS a S.0 ε·οOOIS a S.0 ε·ο

SO ffr-^vs^莒 n-f«:-to 000(=09 s.o 80.0 1¾SO ffr-^vs^莒 n-f«:-to 000(=09 s.o 80.0 13⁄4

S.Z irrtoS.Z irrto

〇 TT TFT oosoo 00ΌTT TT TFT oosoo 00Ό

SI οι 〇 oSI οι 〇 o

f-IS 00.0 智绪ψ s.o 韶f e.o CO.0 (I)票 ¥。爱10鉍 000运 coo.o §00 0 ΖΌ 10.6 §9° i/0 zz οι 〇f-IS 00.0 智绪ψ s.o 韶f e.o CO.0 (I) Ticket ¥. Love 10铋 000运 coo.o §00 0 ΖΌ 10.6 §9° i/0 zz οι 〇

9 IS « 〇〇·0 s.o «·0 ^^i-ilo 〇 霞)票 曾备0鉍 000每 coo.o dsl sbolnlua so.o 3Ό9 IS « 〇〇·0 s.o «·0 ^^i-ilo 〇 霞) Tickets Once prepared 0铋 000 per coo.o dsl sbolnlua so.o 3Ό

〇 TT ooood 00,0 S3 〇TT TT ooood 00,0 S3 〇

9L9L

SISSIS

V ς·0 Ζ·Ι 激^'i·'^' zo (雪擧 000运 so_o soo寸oCAJJns 0.0 z.oV ς·0 Ζ·Ι 激^'i·'^' zo (雪举千运 so_o soo inch oCAJJns 0.0 z.o

〇 TT 1 寸o oz 〇 d—〇 TT 1 inch o oz 〇 d—

HSHS

V S.0 (s)s^! ¥5鉍 000<=々 90.0 ihs §·0 1¾ Ί 00.6 000*6 9.0 81 〇 colsV S.0 (s)s^! ¥5铋 000<=々 90.0 ihs §·0 13⁄4 Ί 00.6 000*6 9.0 81 〇 cols

V S.0 ;.t-ί (5學 ϊ-t-to鉍 000<=呀 900V S.0 ;.t-ί (5 studies ϊ-t-to铋 000<=呀 900

Lnoo^IO&pns §·0 1¾ •l 〇 ΤΓ 000ΞLnoo^IO&pns §·0 13⁄4 •l 〇 ΤΓ 000Ξ

Ln.o oz 〇 ΙΟΙ οι $φ (£)ΐ<« Μ (%¾)¾ § (%«WI)«M<* $ (%ίϋ)»Η<« $ ΐφ^ίΜ. 漿* (%sl i !)¥♦ i (%¾ 鉍)«w伞 〔s<〕Ln.o oz 〇ΙΟΙ οι $φ (£)ΐ<« Μ (%3⁄4)3⁄4 § (%«WI)«M<* $ (%ίϋ)»Η<« $ ΐφ^ίΜ. Pulp* (%sl i !)¥♦ i (%3⁄4 铋)«w umbrella [s<]

IdHdl (黎Φ/姊)铡^饑电5 f/姊奮«5— ςω3/5Ι1Ι04->Β)^4ί@π·δ 日yj00l/001=s/1 (luu)sfsi — I/6=s/1 (苣)ΐ#®? SB斂塚 W 0$ §SI860 200944582 〔9ί S3 ¥ cn> CM 00 ο CO c=> 甘胺酸 〇 苯基丙胺酸 ◦ 〇 聚乙稀”比*各 啶酮(Κ60) 700, 000 CO ο ci Μ + S d ί Μ 卜 愛 0.002 過硫麟 ΙΛ <Μ· 产·< ai 〇 11,500 〇 LO in 〇 〇 ίΚ oo <NJ 00 Ρ^, Ο ο f1 Η 丙胺酸 OO ®κ 壤 ^Η CD C> 喹淋酸 〇 聚乙烯吡咯 啶酮(Κ30) 40, 000 ο Η ο Ί 4- S 〇 過硫酸敍 Ο cvi o 03 〇 10,300 CO LO C> S oo 〇 〇 實施例21 1 c3 00 LO D- Ο 丙胺酸 〇〇 〇· 蘋果酸 Ο ο °t琳酸 S 〇 聚乙烯'比各 啶酮(Κ90) § C5 〇 C<l ο ο* # Ί 七 S 〇' X) C<l <Ξ> <=> <=> 〇 12,000 CO 〇· S oo 〇 〇 實施例20 | CD <NJ CO LT5 呀 O’ 甘胺酸 CM 色胺酸 ιη ο ο 啥琳酸 LO 〇 <=> 聚乙稀**比洛 咬酮(Κ60) CD g g 卜 ο *·*Η «=> >1 Η S <=> I 1 1-^ <=> χ> oa <=> oo oo 〇 〇 〇 Οί 〇] CO C=J 00 〇 〇 05 1—^ 军 LO <M GO g r Ή 甘胺酸 LO 聚乙烯"比'各 啶酮(Κ60) CD g g 卜 ο C5 lEmulgen 104P| 〇 F—4 〇 jlD CO <=ί 卜 od 〇 10,000 οα 03 Ο CO 〇 〇 οό Ϊ 呀 03 tn in <=> 1甘胺酸j cr> Τ«·Η |丙胺酸 (Μ 〇· 1 1 X) $ 〇· Ψ i4 s Ο* CD ai 〇 10,000 CO CD 另 〇 〇 卜 Ϊ CO <>3 OQ ιο <=> 甘胺酸 Ο 丙胺酸 <>] Ο t若 5¾ ¢- jjm S 1¾ *9 400, 000 S C) 1 過氧化氫 ci Ψ 4: i4 s C=> 〇 ο in of C=) o 〇 < 實施例16 oa CM 00 o ο ΟΟ c> 組胺酸 CO C5 CO ο 啥琳酸 t>3 〇 聚乙稀"比1各 咬網(K60) o g g 卜 ο flu 呀 Ο τ··Η 1 1 〇 。_ 過硫酸兹 ΙΟ m od 〇 g o 05 (>3 卜 ο <=) 〇 〇 丨化學機械研磨用水系分散體 1 綠體 1 含量(質量%) 1 戥 Jttil 鄉 含量(質量%) 1 骤 «Ufeil /<—V 衣 BihJ •ρΊ $Βΐ »Ν *4〇 駿 Φ>1 «Η 截 鄉 重量平均分子量 /•"Ν »Ν $〇ΐ Φ4 ·4〇 戡 .10.1 含量(質量%) UIBT 戰 • ΙΜ·· 鄉 Μ Μ 戡 .»>· φ| NwX Μ m .10.1 Q ®W Sw/ Φ4 4〇 趣 tef 灌 诈 Cu研磨速度(埃/分鐘) Ta研磨速度(埃/分鐘) ΐ 1 15 锯 ϊΗ: 困 ε 目Ξ w \ 御§ •0 — 磨蚀量(nm) L/S=9/l //m 銅殘留 二氧化珍粒子 胺基酸 其他有機酸 水溶性高分子 界面活性劑 氧化劑 其他添加劑 平坦 性評價 胃粜围背 围晋^·峯圈单秘 LL"6SIS60 200944582 scos 9.0 :,0.: (09e®^-§^。爱10龄IdHdl (黎Φ/姊)铡^Hunger 5 f/姊奋«5— ςω3/5Ι1Ι04->Β)^4ί@π·δ 日yj00l/001=s/1 (luu)sfsi — I/6= s/1 (苣)ΐ#®? SB 冢 冢 W 0$ §SI860 200944582 〔9ί S3 ¥ cn> CM 00 ο CO c=> Glycolate phenylalanine ◦ 〇 〇 ” 比啶 Κ Κ Κ ) ) ) 0.00 0.00 0.00 0.00 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 1,500 ο f1 Η alanine OO ® κ Η C CD C 喹 〇 〇 〇 〇 ) ) ) ) ) ) S S S S S S vi vi vi vi vi vi vi vi vi vi vi vi vi , , , , , , , , , , , , , , , , , , , , , , , , , , , , , S oo 〇〇Example 21 1 c3 00 LO D- Ο 丙 丙 苹果 苹果 苹果 苹果 琳 琳 琳 琳 琳 琳 琳 琳 琳 琳 ' ' ' ' ' ' ' ' ' 5 5 & & & & & & & & & & & & & & & & & & & & &七 七 S 〇 ' X) C<l <Ξ><=><=> 〇12,000 CO 〇· S oo 〇〇Example 20 | CD <NJ CO LT5 呀 O' Glycine CM Tryptophan ιη ο ο 啥 酸 LO LO 〇 <=> Polyethylene 比 洛 咬 Κ Κ Κ Κ ) ) ) ) ) ) ) ) * * * * * * * * * * * * * * * * = * = = = = = * 1 Η S <=> I 1 1-^ <=>χ> oa <=> oo oo 〇〇〇Οί 〇] CO C=J 00 〇〇05 1—^ Army LO <M GO gr 甘 Glycine LO Polyethylene "比' each ketone (Κ60) CD gg ο C5 lEmulgen 104P| 〇F—4 〇jlD CO <= ί 卜 〇 10,000 οα 03 Ο CO 〇〇οό Ϊ呀03 tn in <=> 1glycine j cr> Τ«·Η | alanine (Μ 〇· 1 1 X) $ 〇· Ψ i4 s Ο* CD ai 〇10,000 CO CD CO <>3 OQ ιο <=> Glycolate alanine <>] Ο t if 53⁄4 ¢- jjm S 13⁄4 *9 400, 000 SC) 1 Hydrogen peroxide ci Ψ 4: i4 s C=> 〇ο in of C=) o 〇< Example 16 oa CM 00 o ο ΟΟ c> Histamine CO C5 CO ο 啥 酸 acid t> 3 〇 Polyethylene " (K60) ogg Bu ο flu Ο τ··Η 1 1 〇. _ Persulfate ΙΟ m od 〇go 05 (>3 οο <=) 〇〇丨Chemical mechanical polishing water dispersion 1 Green body 1 Content (% by mass) 1 戥Jttil Township content (% by mass) 1 «Ufeil /<-V Clothing BihJ •ρΊ $Βΐ »Ν *4〇骏Φ>1 «Η Intermediary Weight Average Molecular Weight/•"Ν »Ν $〇ΐ Φ4 ·4〇戡.10.1 Content (% by mass ) UIBT Battle • ΙΜ·· 乡Μ Μ 戡.»>· φ| NwX Μ m .10.1 Q ®W Sw/ Φ4 4 te tf 灌 Cu Cu grinding speed (A / min) Ta grinding speed (A / min ) ΐ 1 15 Saw ϊΗ: ε ε 目 Ξ w \ 御§ • 0 — abrasion amount (nm) L / S = 9 / l / m / copper residual oxidized precious particles amino acid other organic acid water-soluble polymer interface Activity agent oxidizer other additives flatness evaluation stomach cramps circumference circumference Jin ^· peak circle single secret LL"6SIS60 200944582 scos 9.0 :,0.: (09e®^-§^. love 10 years old

00°00A 0ΙΌ οοε 〇 ~51 ~ ~Γδ~ 9.0 09 01 II f4s s00°00A 0ΙΌ οοε 〇 ~51 ~ ~Γδ~ 9.0 09 01 II f4s s

Ln.o 激'1:«::11「 so 000*000*1 兹^ici^i 0Γ0 s.o lJJKt^Ln.o 激'1:«::11" so 000*000*1 iz ^ici^i 0Γ0 s.o lJJKt^

01 ITM MH TT 寸·0 91 bl 01 ess Ζ·Ι ;蓄«:. 601 ITM MH TT inch · 0 91 bl 01 ess Ζ·Ι ; Saving «:. 6

II

VV

Lo.o 〇〇_0 coooSO :!ii!ii(r;iii!ii;:i:iiiM:i::ι(οεχϊ:ν:^:字*:iows'R.)K^:f«-:(o^ s.o^li'lixw#. 〇〇0_0 ιΛ:οο:Γο:ίίφίίοο;_ 1¾Lo.o 〇〇_0 coooSO :!ii!ii(r;iii!ii;:i:iiiM:i::ι(οεχϊ:ν:^:word*:iows'R.)K^:f«- :(o^ so^li'lixw#. 〇〇0_0 ιΛ:οο:Γο: ίίφίίοο;_ 13⁄4

w.6 TT 尋 s s— 〇 09— © s 05 〇 ~^~ ~Π~ •l 2 01 8卜 ooi香馨玉W.6 TT Looking for s s— 〇 09— © s 05 〇 ~^~ ~Π~ •l 2 01 8 Bu ooi Xiang Xinyu

Icos ln.o :v... ocosIcos ln.o :v... ocos

V s.o SO _0 90 ,0 8!30>_...............:§ii=lii-i::::l(ocox)K^:no:^:(‘os)ii^i^:>«:ilo·^ s.o *>iiiw'l:H^i#: s.o .¾.¾¾ 1¾ iV so SO _0 90 ,0 8!30>_...............:§ii=lii-i::::l(ocox)K^:no:^:( 'os)ii^i^:>«:ilo·^ so *>iiiw'l:H^i#: so .3⁄4.3⁄43⁄4 13⁄4 i

iN w TT 000*1 ~δ~ "w d— ro oco— 〇 tjco- o 0.1 01 1)51 ;,,,iw*i 0 .•wii^iis. .............iiMi i (¾¾¾^iN w TT 000*1 ~δ~ "wd— ro oco— 〇tjco- o 0.1 01 1)51 ;,,,iw*i 0 .•wii^iis. ........... ..iiMi i (3⁄43⁄43⁄4^

I (%¥!&«;)_♦ is«fI (%¥!&«;)_♦ is«f

(~e3/SUK4B)^!H:aBS S ~s l/6=S/l| 3^0 蓄±1, 日¾00I/00I=S/1 助屮 (旨)ΐφ¥· w 围 S4& 圍菅7案围单秘 e寸—〇 2,845944 ο 20(~e3/SUK4B)^!H:aBS S ~sl/6=S/l| 3^0 Save ±1, day 3⁄400I/00I=S/1 屮 旨 旨 旨 ¥ ¥ ¥ ¥ S 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 7 case circumference single secret e inch - 〇 2,845944 ο 20

001 f# 窠 qJA s S.0 «·0 0〇〇·0 :0..0 ,w#:t>:. s一暫,絮滅裳'1:(001 f# 窠 qJA s S.0 «·0 0〇〇·0 :0..0 ,w#:t>:. s a moment, smashing the skirt '1:(

s-ϊ—I S.8 〇 osoos-ϊ—I S.8 〇 osoo

0Z i/0 oco 〇0Z i/0 oco 〇

I 0.9I 0.9

Ln.o :激'li^iHii! S0.0 ^:^:^:納 so-0 i::0g;:'g:z,(sisisi^:^!^:#^:^: s.o LO:oo:T,is,B, 『0 S.6 〇Ln.o : 激'li^iHii! S0.0 ^:^:^: nano so-0 i::0g;:'g:z,(sisisi^:^!^:#^:^: so LO: Oo:T,is,B, 『0 S.6 〇

OS i s οε 〇 d— 915«^OS i s οε 〇 d— 915«^

6COS ri T. 00.0 Ι0·0 s.o ‘激,#:制‘ ❹ 〔8啭〕 so.o !,I:o:g!pr; g.o6COS ri T. 00.0 Ι0·0 s.o ‘激,#:制‘ ❹[8啭] so.o !,I:o:g!pr; g.o

0.1—I 0.6 〇 00=90.1—I 0.6 〇 00=9

•IS 08 s oocos S.0ΊΓ•IS 08 s oocos S.0ΊΓ

•I iois 激^:^:^:•I iois 激^:^:^:

90.0 .......ijii.w......... C8i!,s.^;s, W 10 ·090.0 .......ijii.w......... C8i!,s.^;s, W 10 ·0

TfJJx-碱窗 •0 00000 01 s.o oco οι olo zcos ο •ί 00.0 10.0TfJJx-alkali window • 0 00000 01 s.o oco οι olo zcos ο •ί 00.0 10.0

Jor 激奪^: (Qex)®^^吞爱to齡 oro wo.w ON :^:ww!w ood 〇 000*9 9.0 s 01- 〇Jor screams ^: (Qex)®^^ 吞到到龄 oro wo.w ON :^:ww!w ood 〇 000*9 9.0 s 01- 〇

6L COI f#^i3 ο •ο 饀鸽> Ί 0Γ0 s.o gi3i,......8y5,^iii#,toi, 20 Ts:rc:3a>,I3:s:w: oco 0.6 〇 if oco •0 09 (%¥Ι)¥ 咖I ........,勸臧φί ........... 親« (%£)¥♦ (%¥1)啉伞 ..........鴕*!_ (%s)*土 i-fsw....................ϊδι (%!鉍)¥命 ...........w*: § (%£)¥♦6L COI f#^i3 ο •ο 饀 & & Γ 0Γ0 so gi3i,...8y5,^iii#,toi, 20 Ts:rc:3a>,I3:s:w: oco 0.6 〇if oco • 0 09 (%¥Ι)¥ 咖 I........, advise 臧ί........... Pro « (%£)¥♦ (%¥1) olin umbrella. .........鸵*!_ (%s)*土i-fsw....................ϊδι (%!铋)¥命...........w*: § (%£)¥♦

ssdA (缴令/姊 (53/1«|-|->|0)涨4一困晻 一yj00l/001=s/1 ειΙ)«Ν^#^ =yJl/6=s/HJI (mu)»H^«5l £ 寸 6SS60 200944582 4. 5.3實驗例2之評價結果 根據研磨速度測定用基板}研磨試驗之結果可知,實施例 7〜23之化學贼研剌水系分散體巾,對賴之研磨速度 為8,剛埃/分鐘以上,相對於此,對障壁金屬膜之研磨速 度為1〜3埃/分鐘,因此對銅膜之研磨選擇性優異。又,亦 確認幾乎無晶®污染。根據时圖案之晶圓之研磨試驗之結 果可*實施例7〜23之化學機械研磨用水系分散體中,被 研磨面之平坦性優異,亦確認未產生雜或峨留。又,可 知實施例7〜23之化學機械研磨用水系分散體之二氧化石夕 粒子的保存穩定性均優異。 相對於此’比較例7中所使用之S3〇不含有相當於胺基酸 之成分’因此於研磨速度測定用基板之研磨試驗中,對銅膜 之研磨速度減小,為1,000埃/分鐘,而無法實用。 比較例8中戶斤使用之观不含有相當於胺基酸之成分,因 此於研磨速度測定用基板之研磨試驗中,對麵之研磨速度 減小’為200埃/分鐘,而無法實用。 比車乂例9中所使用之S32含有順丁烯二酸來替代胺基酸, 因此於研磨速度測定用基板之研磨試驗中,對銅膜之研磨速 度減小,為2, 000埃/分鐘,而無法實用。 比較例10中所使用之S33不含有二氧化石夕粒子,因此於 研磨速度測定用基板之研磨試驗中,對銅膜之研磨速度減 小,為420埃/分鐘,而無法實用。 098104943 80 200944582 比較例11中所使用之S34不含有二氧化石夕粒子,因此於 研磨速度/収肖基板之研磨試驗_,對銅膜之研磨速度減 小’為50埃/分鐘,而無法實用。 比較例12中所使用之咖不含有相當於胺基酸之成分, 因此於研磨速度収隸板之研磨試财,對細之研磨迷 度減小,為3 0 0埃/分鐘,而無法實用 又,於附有圖案之ssdA (payment/姊(53/1«|-|->|0) goes up 4 sleepy dark one yj00l/001=s/1 ειΙ)«Ν^#^ =yJl/6=s/HJI (mu )»H^«5l £ inch 6SS60 200944582 4. 5.3 Evaluation results of the experimental example 2 According to the results of the polishing test substrate, the results of the polishing test, the chemical thieves and water dispersions of Examples 7 to 23 were used. The polishing rate is 8 or less, and the polishing rate of the barrier metal film is 1 to 3 Å/min. Therefore, the polishing selectivity to the copper film is excellent. Also, it is confirmed that there is almost no crystal contamination. The results of the polishing test of the wafer according to the time pattern were as follows. * In the chemical mechanical polishing aqueous dispersion of Examples 7 to 23, the flatness of the surface to be polished was excellent, and it was confirmed that no impurities or sequestration occurred. Further, it is understood that the sulfur dioxide particles of the chemical mechanical polishing aqueous dispersion of Examples 7 to 23 are excellent in storage stability. In contrast, in the polishing test of the substrate for polishing rate measurement, the polishing rate of the copper film used in the polishing rate measurement substrate was reduced to 1,000 Å in the polishing test of S3 使用 used in Comparative Example 7. Minutes, but not practical. In the polishing test of the substrate for polishing rate measurement, the polishing rate of the opposite surface was reduced to 200 Å/min, which was not practical, since the composition used in Comparative Example 8 did not contain a component corresponding to an amino acid. In the polishing test of the substrate for polishing rate measurement, the polishing rate of the copper film was reduced to 2,000 angstroms/minute, in which S32 used in Example 9 contained maleic acid instead of amino acid. And can't be practical. Since S33 used in Comparative Example 10 does not contain the cerium oxide particles, the polishing rate of the copper film in the polishing test for the polishing rate measurement substrate was reduced to 420 Å/min, which was not practical. 098104943 80 200944582 S34 used in Comparative Example 11 does not contain silica dioxide particles, so the polishing rate of the polishing rate/the substrate is reduced to '50 angstroms per minute. . The coffee used in Comparative Example 12 does not contain a component corresponding to an amino acid. Therefore, the polishing test at the polishing rate of the sheet is reduced to a fineness of 300 Å/min, which is not practical. Also, with a pattern

晶圓之研磨試驗中,無法抑制淺碟化。進而,由於不含有水 溶性高分子’因此抑制銅佈_狀效果亦較小,可綠認產 生腐蚀。 比較例13中所使狀⑽含有具有4. 2個/⑽2之魏醇 基密度的二氧切粒子分散體G,但藉由達到添加劑之種類 或濃度之平衡’而可使二氧切粒子穩定化'然而,於研磨 速度測定用基板之研磨試驗中,對銅膜之研磨速度為7咖 埃/分鐘,料充分,另-方面,雜膜之研磨速度増加, 為30埃/分鐘,而可確認研磨選擇性下降。於附有圖 圓之研磨試驗中,可確認產±淺碟化、純、餘、鋼殘阳 無法獲得良好之被研磨面。 比較例Μ中所使用之S37含有具有4 2個Μ之 化雜子分散體G,但藉由達到添加劑心類 或浪度之平衡’而可使二氧切粒子敎化。然而, 研磨試驗中,對銅膜之研磨速度為6: 埃刀童❿不充分。於附有圖案之晶圓之研磨試驗中In the polishing test of the wafer, the shallow dish cannot be suppressed. Further, since the water-soluble polymer is not contained, the effect of suppressing the copper cloth is small, and the green color can be corroded. The shape (10) obtained in Comparative Example 13 contained the dioxoparticle dispersion G having a density of 4.2/(10) 2 of the thiol group, but the dioxin-cut particles were stabilized by achieving the balance of the kind or concentration of the additive. However, in the polishing test of the substrate for measuring the polishing rate, the polishing rate of the copper film was 7 gal/min, and the material was sufficient. On the other hand, the polishing rate of the impurity film was increased to 30 Å/min. It was confirmed that the polishing selectivity was lowered. In the grinding test with the figure circle, it can be confirmed that the production of ±short disc, pure, residual, and steel residual yang cannot obtain a good surface to be polished. The S37 used in the comparative example contains a heterogene dispersion G having 42 ruthenium, but the dioxin-cut particles can be deuterated by achieving an equilibrium of the additive core or the degree of turbulence. However, in the grinding test, the polishing rate of the copper film was 6: Angola was insufficient. In the grinding test of patterned wafers

•J 098104943 200944582 確認產生銅殘留,無法獲得良好之被研磨面。 比較例15中所使用之幻8含有具有0.8個/nm2之矽烷醇 基密度的二氧化矽粒子分散體H,因此二氧化矽粒子之保存 穩定性不佳。於研磨速度測定用基板之研磨試驗中,對銅膜 之研磨速度為8,_埃/分鐘,而比較充分,但對组膜之研 磨速度增加,為1〇埃/分鐘,而可確認研磨選擇性下降。 © 比較例16中所使用之S39含有具有〇. 8個/nm2之矽烷醇 基密度的二氧化矽粒子分散體Η,但藉由達到添加劑之種類 或濃度之平衡,而可使二氧化矽粒子穩定化。然而,於研磨 速度測以基板之研磨試驗巾,對細之研磨速度為6, _ 埃/分鐘,而不充分,可確認產生晶圓污染。於附有圖案之 晶圓之研磨試驗中,可確認產生淺碟化、腐#、銅殘留,而 無法獲得良好之被研磨面。 ❹ 比較例17中所使用之S40含有具有& 8個/^之石夕燒醇 基密度的二氧切粒子分散體1,但藉由達到添加劑之^類 或濃度之平衡’而可使二氧化絲子穩定化。然而,於研磨 速度測定用基板之研賴驗中,對銅膜之研磨速度減小,為 280埃/分鐘’另—方面,對城之研磨速度明顯増加,為 820埃/分鐘,而可確認研磨選擇性惡化。 比較例18中所使用之S41含有草酸"比賴酸、啥如 來替代胺基酸,因此於研磨速度敎用基板之研磨試驗中 對组膜之研磨速度增加,為2〇埃/分鐘,而可確認研磨選孝 098104943 82 200944582 之晶圓之研磨試驗中,可確認產生淺碟 腐㈣㈣得良敎制磨面。 如上所述,若利用實施例7〜 高研磨速度分 樹普 ❹ 會在金屬臈或低介冑化學機械研磨而不 圓之金屬污^ 絕緣膜上引起缺陷,並且可減小晶 【圖式簡單說明】 圖1係用以說明尖型凹槽產生過程之剖面圖。 圖2係用以說明尖型凹槽產生過程之剖面圖。 圖3係用以說明尖型凹槽產生過程之剖面圖。 圖4係用以說明尖型凹槽產生過程之剖面圖。 圖5係示意性表示二氧切粒子之長鼓練之概念圖。 圖6係示紐表示二氧切粒子之長巍練之概念圖。 圖7係示綠表示二氧切好之長鼓練之概念圖。 圖8係表林實施形態之化學顧研磨方法巾所使用之 被處理體的剖面圖。 圖9係用以說明本實施形態之化學機械研磨方法之研磨 步驟的剖面圖。 圖10係用以說明本實施形態之化學機械研磨方法之研磨 步驟的剖面圖。 098104943 83 200944582 圖11係用以說明本實施形態之化學機械研磨方法之研磨 步驛的剖面圖。 【主要元件符號說明】 10 12 14 16 20 22 24 26 28 30a ' 30b 40 50 60 70 80 90 100 200 a ' c ' e b、d、f 基體 絕緣膜 障壁金屬膜 由銅或銅合金所構成之膜 佈線用凹部 含有微細佈線之區域 不含有微細佈線之區域 微細之傷痕 尖型凹槽 30c二氧化矽粒子 低介電常數絕緣膜 絕緣膜(上覆層) 佈線用凹部 障壁金屬膜 銅膜 半導體裝置 被處理體 被處理體 二氧化矽粒子之長徑 二氧化矽粒子之短徑 098104943 84• J 098104943 200944582 It was confirmed that copper residue was generated and a good polished surface could not be obtained. The phantom 8 used in Comparative Example 15 contained the cerium oxide particle dispersion H having a decyl alcohol group density of 0.8 / nm 2 , and thus the storage stability of the cerium oxide particles was poor. In the polishing test of the substrate for polishing rate measurement, the polishing rate of the copper film was 8 Å/min, which was relatively sufficient, but the polishing rate of the film was increased to 1 Å/min, and the polishing selection was confirmed. Sexual decline. © S39 used in Comparative Example 16 contains a cerium oxide particle dispersion 〇 having a density of 矽. 8 / nm 2 of decyl alcohol, but cerium oxide particles can be obtained by achieving the balance of the kind or concentration of the additive. Stabilized. However, in the polishing test roll of the substrate at the polishing rate, the polishing rate for the fineness was 6, Å / min, which was insufficient, and wafer contamination was confirmed. In the polishing test of the patterned wafer, it was confirmed that the shallow disc, the rot #, and the copper remained, and a good polished surface could not be obtained. S S40 used in Comparative Example 17 contains the dioxoparticle dispersion 1 having a density of 8 angstroms, but can be obtained by achieving the balance of the additive or concentration of the additive. The oxidation wire is stabilized. However, in the study of the substrate for measuring the polishing rate, the polishing rate of the copper film was reduced to 280 angstroms per minute, and the polishing rate of the steel was significantly increased to 820 angstroms/minute. The grinding selectivity deteriorates. The S41 used in Comparative Example 18 contains oxalic acid " lysine, for example, instead of the amino acid, so the polishing rate of the film in the polishing test for the polishing rate of the substrate is increased to 2 Å/min. It can be confirmed that in the grinding test of the wafer of the grinding selection 098104943 82 200944582, it is confirmed that the shallow dish rot (4) (4) has a good grinding surface. As described above, if the use of Example 7 to high polishing rate is used to cause defects in metal germanium or low dielectric chemical mechanical polishing without round metal contamination, and the crystal can be reduced. Description Figure 1 is a cross-sectional view showing the process of forming a pointed groove. Figure 2 is a cross-sectional view showing the process of forming a pointed groove. Figure 3 is a cross-sectional view showing the process of forming a pointed groove. Figure 4 is a cross-sectional view for explaining the process of forming a pointed groove. Fig. 5 is a conceptual diagram schematically showing the long drumming of the diced particles. Figure 6 is a conceptual diagram showing the long practice of dioxin particles. Fig. 7 is a conceptual diagram showing the green drum indicating the long-cutting of the dioxotomy. Fig. 8 is a cross-sectional view showing the object to be treated used in the chemical polishing method of the embodiment of the table. Fig. 9 is a cross-sectional view for explaining a polishing step of the chemical mechanical polishing method of the embodiment. Fig. 10 is a cross-sectional view for explaining a polishing step of the chemical mechanical polishing method of the embodiment. 098104943 83 200944582 Fig. 11 is a cross-sectional view for explaining a polishing step of the chemical mechanical polishing method of the embodiment. [Main component symbol description] 10 12 14 16 20 22 24 26 28 30a ' 30b 40 50 60 70 80 90 100 200 a ' c ' eb, d, f base insulating film barrier metal film made of copper or copper alloy The recessed portion for the wiring includes a region where the fine wiring is not included in the region of the fine wiring, and the flaw is sharp. The recessed groove 30c, the cerium oxide particle, the low dielectric constant insulating film, the insulating film (overlying layer), the recessed portion of the wiring, the metal film, the copper film semiconductor device Short diameter of long-path cerium oxide particles of treated body cerium oxide particles 098104943 84

Claims (1)

200944582 七、申請專利範圍: 1. 一種化學機械研磨用水系分散體,其係含有(A)二氧化 . 矽粒子、及(B1)有機酸者, • 上述(A)二氧化矽粒子具有下述化學性質: 根據利用BET法所測定之比表面積及藉由滴定所測定之 石夕烧醇基量而計算的石夕烧醇基密度為1.0〜3. 0個/nm2。 2. 如申請專利範圍第1項之化學機械研磨用水系分散 © 體,其中,上述(B1)有機酸係具有2個以上羧基之有機酸。 3. 如申請專利範圍第2項之化學機械研磨用水系分散 體,其中,上述具有2個以上羧基之有機酸在25°C下之酸 解離指數pKa(其中,於具有2個羧基之有機酸中以第2個 羧基之pKa為指標,於具有3個以上羧基之有機酸中以第3 個羧基之pKa為指標)為5. 0以上。 4. 如申請專利範圍第^ 2項之化學機械研磨用水系分散 ® 體,其中,上述具有2個以上羧基之有機酸係選自順丁烯二 酸、丙二酸及擰檬酸中之至少1種。 5. 如申請專利範圍第1項之化學機械研磨用水系分散 〃體,其中,進而含有(C1)非離子性界面活性劑。 - 6.如申請專利範圍第5項之化學機械研磨用水系分散 體,其中,上述(C1)非離子性界面活性劑具有至少1個乙炔 基。 7.如申請專利範圍第5項之化學機械研磨用水系分散 098104943 85 200944582 體,其中,上述(ci)非離子性界面活性劑係由下述通式(l) 所表示之化合物, [化8] CH3-CH(CH3)-CH2 -c(ch3)- 0-(CH2i 0-(CH2CH2〇)s-H !)-CsC-C(CH3)~CH2-CH(CH3)-CH3 :CH2〇kH …⑴200944582 VII. Patent application scope: 1. A chemical mechanical polishing aqueous dispersion containing (A) dioxide, cerium particles, and (B1) organic acid, • The above (A) cerium oxide particles have the following The chemical density: The density of the base of the base is 1.0 to 3. 0 / nm2, based on the specific surface area measured by the BET method and the amount of the base. 2. The chemical mechanical polishing water according to the first aspect of the patent application is a dispersion, wherein the (B1) organic acid is an organic acid having two or more carboxyl groups. 3. The chemical mechanical polishing aqueous dispersion according to claim 2, wherein the organic acid having two or more carboxyl groups has an acid dissociation index pKa at 25 ° C (wherein an organic acid having two carboxyl groups) 0以上。 The pKa of the second carboxyl group as an index, in the organic acid having three or more carboxyl groups, the pKa of the third carboxyl group is used as an index) is 5.0 or more. 4. The chemical mechanical polishing water dispersion product according to the second aspect of the patent application, wherein the organic acid having two or more carboxyl groups is at least selected from the group consisting of maleic acid, malonic acid and citric acid. 1 species. 5. The chemical mechanical polishing water according to the first aspect of the patent application is a dispersion of a hydrazine, which further contains (C1) a nonionic surfactant. 6. The chemical mechanical polishing aqueous dispersion according to claim 5, wherein the (C1) nonionic surfactant has at least one acetylene group. 7. The chemical mechanical polishing water dispersion according to claim 5, wherein the (ci) nonionic surfactant is a compound represented by the following formula (1), [Chem. 8] CH3-CH(CH3)-CH2 -c(ch3)- 0-(CH2i 0-(CH2CH2〇)sH !)-CsC-C(CH3)~CH2-CH(CH3)-CH3 :CH2〇kH (1) (式中,m及n分別獨立為1以上之整數,滿足m + n$50)。 8·如申請專利範圍第1項之化學機械研磨用水系分散 體’其中,進而含有(D1)具有5萬以上且500萬以下之重量 平均分子量的水溶性高分子。 9. 如申請專利範圍第8項之化學機械研磨用水系分散 體,其中,上述(D1)水溶性高分子係聚羧酸。(In the formula, m and n are each independently an integer of 1 or more, and satisfy m + n$50). 8. The chemical mechanical polishing aqueous dispersion according to the first aspect of the invention, further comprising (D1) a water-soluble polymer having a weight average molecular weight of 50,000 or more and 5,000,000 or less. 9. The chemical mechanical polishing aqueous dispersion according to the eighth aspect of the invention, wherein the (D1) water-soluble polymer is a polycarboxylic acid. 10. 如申請專利範圍第9項之化學機械研磨用水系分散 體,其中,上述聚羧酸係聚(曱基)丙烯酸。 11·如U利_第8項之化學機械研磨用水系分散 體’其中,上述(D1)水溶性高分子之含量係相對於化學機械 研磨用水系分散體之總質量為〇.嶋質量%〜1·0質量%。 12. 如申請專利範圍第] 力1項之化學機械研磨用水系分散 體,其中,上述(Α)二氧化石夕 /被子之長徑(Rmax)與短徑(Rmin) 之比率〇?1^又/跔111)為丨 ^ min; 1 · 5 〇 13. 如申請專利範圍第 $ 1項之化學機械研磨用水系分散 098104943 86 200944582 體 ,其中,上述(A)二氧化矽輪工―A 梦粒子之根據利用BET法所測定 之比表面積而計算的平均粒徑為1G⑽〜⑽⑽。 14.如申請專利範圍第1頂夕 闽币1項之化學機械研磨用水系分散 體,其中,pH值為6〜12。 15. 如申請專利範圍第1項之化學機械研磨用水系分散 體’其中’進而上述(A)二氧化石夕粒子具有下述化學性質, 根據利用ICP發光分析法或ICP質量分析法之元素分析、 ❹及利用離子層析法之銨離子之定量分析所測定的鈉、鉀及銨 離子之含量係滿足以下關係,鈉含量:5〜5〇〇 ppm,選自鉀 及銨離子中之至少1種之含量:1〇〇〜20000 ppm。 16. —種化學機械研磨用水系分散體,其係含有(A)二氧化 矽粒子及(B2)胺基酸,並用於對銅膜進行研磨者, 上述(A)二氧化矽粒子具有下述化學性質, 根據利用BET法所測定之比表面積及藉由滴定所測定之 ® 矽烷醇基量而計算的矽烷醇基密度為1. 0〜3. 0個/nm2。 17.如申請專利範圍第16項之化學機械研磨用水系分散 體,其中,上述(B2)胺基酸係選自甘胺酸、丙胺酸及組胺酸 中之至少1種。 18. 如申請專利範圍第16項之化學機械研磨用水系分散 體,其中,進而含有具有含氮雜環及羧基之有機酸。 19. 如申請專利範圍第16項之化學機械研磨用水系分散 體,其中,進而含有(C2)陰離子性界面活性劑。 098104943 87 200944582 20. 如申請專利範圍第19項之化學機械研磨用水系分散 體’其中’上述(C2)陰離子性界面活性劑具有選自緩基、續 酸基、磷酸基、以及該等官能基之銨鹽及金屬鹽中之至少1 種官能基。 21. 如申請專利範圍第19項之化學機械研磨用水系分散 體’其中,上述(C2)陰離子性界面活性劑係選自烷基硫酸 鹽、烷基醚硫酸酯鹽、烷基醚羧酸鹽、烷基苯磺酸鹽、α — 磺酸基脂肪酸酯鹽、烷基聚氧乙烯硫酸鹽、烷基磷酸鹽、單 ❹ 烷基磷酸酯鹽、萘磺酸鹽、烯烴磺酸鹽、烷烴磺酸鹽及 烯基丁二酸鹽中之1種。 22·如申請專利範圍第19項之化學機械研磨用水系分散 體’其用以對銅膜進行研磨’其中,上述(C2)陰離子性界面 活性劑係由下述通式(2)所表示之化合物, [化9]10. The chemical mechanical polishing aqueous dispersion according to the ninth aspect of the invention, wherein the polycarboxylic acid poly(indenyl)acrylic acid. 11. The chemical mechanical polishing aqueous dispersion according to the eighth item, wherein the content of the (D1) water-soluble polymer is 〇.嶋% by mass relative to the total mass of the chemical mechanical polishing aqueous dispersion. 1·0 mass%. 12. For the chemical mechanical polishing aqueous dispersion according to the scope of the patent application, wherein the ratio of the long diameter (Rmax) to the short diameter (Rmin) of the above (Α) dioxide is 〇?1^ And /跔111) is 丨^ min; 1 · 5 〇13. The chemical mechanical polishing water dispersion of the patent scope No. 1 is disperse 098104943 86 200944582 body, wherein the above (A) ruthenium dioxide work-A dream The average particle diameter of the particles calculated based on the specific surface area measured by the BET method is 1 G (10) to (10) (10). 14. A chemical mechanical polishing aqueous dispersion according to the first application of the patent scope 1st, wherein the pH is 6 to 12. 15. The chemical mechanical polishing aqueous dispersion according to the first application of the patent scope, wherein the (A) cerium oxide particles have the following chemical properties, according to elemental analysis by ICP luminescence analysis or ICP mass spectrometry The content of sodium, potassium and ammonium ions determined by quantitative analysis of ammonium ions by ion chromatography satisfies the following relationship: sodium content: 5 to 5 ppm, selected from at least 1 of potassium and ammonium ions Species content: 1〇〇~20000 ppm. 16. A chemical mechanical polishing aqueous dispersion comprising (A) cerium oxide particles and (B2) amino acid and used for polishing a copper film, wherein the (A) cerium oxide particles have the following 0〜3. 0个/nm2。 The sulphate base density is 1. 0~3. 0 / nm2. The chemical mechanical polishing aqueous dispersion according to claim 16, wherein the (B2) amino acid is at least one selected from the group consisting of glycine, alanine and histidine. 18. The chemical mechanical polishing aqueous dispersion according to claim 16, which further comprises an organic acid having a nitrogen-containing heterocyclic ring and a carboxyl group. 19. The chemical mechanical polishing aqueous dispersion according to claim 16, wherein the (C2) anionic surfactant is further contained. 098104943 87 200944582 20. The chemical mechanical polishing aqueous dispersion according to claim 19, wherein the above (C2) anionic surfactant has a selected from the group consisting of a slow group, a repeating acid group, a phosphoric acid group, and the functional groups. At least one of the ammonium salt and the metal salt. 21. The chemical mechanical polishing aqueous dispersion according to claim 19, wherein the (C2) anionic surfactant is selected from the group consisting of alkyl sulfates, alkyl ether sulfates, and alkyl ether carboxylates. Alkylbenzenesulfonate, α-sulfonate fatty acid ester salt, alkyl polyoxyethylene sulfate, alkyl phosphate, monodecyl phosphate salt, naphthalenesulfonate, olefin sulfonate, alkane One of a sulfonate and an alkenyl succinate. 22. The chemical mechanical polishing aqueous dispersion according to claim 19, which is used for grinding a copper film, wherein the (C2) anionic surfactant is represented by the following general formula (2). Compound, [Chemical 9] (上述通式(2)中,R1及R2分別獨立表示氫原子、金廣原 子或者經取代或未經取代之烷基,R3表示經取代或未經取代 之烯基或者磺酸基(-SOd),其中,X表示氫離子、錢離子或 098104943 88 200944582 金屬離子) 23. 如申請專利範圍第16項之化學機械研磨用 體’其中,進而含有(D2)重量平均分子量為i萬以上且刀 萬以下之具有作為路易斯驗之性質的水溶性高分+ 50 24. 如申請專利範圍第23項之化學機械研磨。 ❹ 參 :二上述⑽水溶性高分子係具有選自含氮雜環IS 離子性s忐基中之至少丨種分子構造。 25. 如申請專利範圍第23項之化學機械研磨 體,其中,上述⑽水溶性高分子係以含⑽ ^散 之均聚物、或者含有含氮單體作為重複單元之;聚物单疋 26. 如申請專利範圍第2 4物。 體,其中,上述含氮單财編n子機械研相水系分散 '、選自乙稀基°比洛唆鲷、(甲其 丙烯醯胺、N-羥甲基丙烯醯胺 土 ) 烯醯基咮啉、N卜一甲美_ &基乙基丙烯醯胺、丙 W,N -甲基胺基丙基丙_胺 酸鹽、N,N-二甲基丙烯醯胺 之一乙基硫 乙醯胺、甲基丙稀酸N,N—二甲其異丙基丙_胺、N-乙稀基 酸鹽、及N-乙稀基甲_中之^^基種乙醋及其之二乙基硫 27. 如申請專利範圍第 體,其中,上糊二氧化之化學機械研磨用水系分散 之比率(RmaX/RminM [〇〜! 5之長#(Rmax)與短徑(Μη) 28. 如申請專利範圍第16 體,其中,上述(A)二氣 之化學機械研磨用水系分散 098104943 _ ^子之根據利用BET法所測定 89 200944582 之比表面積而計算的平均粒徑為1〇 nm〜1〇〇 nm。 29·如申清專利範圍第ι6項之化學機械研磨用水系分散 體,其中,pH值為6〜12。 30. 如申請專利範圍第16項之化學機械研磨用水系分散 體’其中’進而上述(A)二氧化矽粒子具有下述化學性質, 根據利用ICP發光分析法或lcp質量分析法之元素分析、 及利用離子層析法之銨離子之定量分析所測定的鈉、鉀及銨 離子之含量滿足以下關係:鈉含量:5〜500 ppm,選自卸及 錄離子中之至少1種之含量:100〜20000 ppm。 31. —種化學機械研磨方法,其特徵在於:使用申請專利 範圍第1項之化學機械研磨用水系分散體,對具有選自金屬 膜、障壁金屬膜及絕緣臈中之至少1種的半導體裝置之被研 磨面進行研磨。 098104943 90(In the above formula (2), R1 and R2 each independently represent a hydrogen atom, a gold atom or a substituted or unsubstituted alkyl group, and R3 represents a substituted or unsubstituted alkenyl group or a sulfonic acid group (-SOd). Wherein, X represents hydrogen ion, money ion or 098104943 88 200944582 metal ion) 23. The chemical mechanical polishing body of claim 16 which further contains (D2) a weight average molecular weight of i million or more and a knife A water-soluble high score of 10,000 or less having a property as a Lewis test + 50 24. Chemical mechanical polishing as in claim 23 of the patent application. Further, the above (10) water-soluble polymer has at least one molecular structure selected from the group consisting of nitrogen-containing heterocyclic IS ionic sulfonium groups. 25. The chemical mechanical polishing body according to claim 23, wherein the (10) water-soluble polymer contains a (10)-dispersed homopolymer or a nitrogen-containing monomer as a repeating unit; the polymer unit 26 For example, the scope of patent application is 24. Body, wherein the above-mentioned nitrogen-containing monolithic n-machine mechanical phase water dispersion ', is selected from the group consisting of ethylene, piroxime, (methacrylamide, N-methylol propylene amine) olefin Porphyrin, N-Baijiamei _ &-ethyl ethinamide, propane W, N-methylaminopropyl propyl-amine, one of N,N-dimethyl decylamine, ethyl sulphide Acetamide, methyl acrylate N, N-dimethyl isopropyl propyl amide, N-ethylene dibasic acid salt, and N-ethylene thiophene ketone Diethyl sulphate 27. As in the scope of the patent application, the ratio of the dispersion of the chemical mechanical polishing water in the upper paste dioxide (RmaX/RminM [〇~! 5的长#(Rmax) and short diameter (Μη) 28 According to the 16th aspect of the patent application, wherein the above-mentioned (A) chemical mechanical polishing water dispersion 098104943 _ ^ is calculated according to the specific surface area measured by the BET method 89 200944582 is 1 〇 nm ~1〇〇nm. 29·For example, the chemical mechanical polishing water dispersion of the scope of the patent scope is in the range of 6 to 12. 30. The mechanical polishing aqueous dispersion 'where' further the above (A) cerium oxide particles have the following chemical properties, according to elemental analysis by ICP luminescence analysis or lcp mass spectrometry, and quantification of ammonium ions by ion chromatography The content of the sodium, potassium and ammonium ions determined by the analysis satisfies the following relationship: sodium content: 5 to 500 ppm, at least one selected from the group consisting of unloading and recording ions: 100 to 20000 ppm. 31. A method of polishing a surface of a semiconductor device having at least one selected from the group consisting of a metal film, a barrier metal film, and an insulating germanium by using a chemical mechanical polishing aqueous dispersion according to the first aspect of the invention. 098104943 90
TW098104943A 2008-02-18 2009-02-17 Chemical machinery grinding water dispersions and chemical mechanical grinding methods TWI463000B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2008036683 2008-02-18
JP2008147777 2008-06-05
JP2008156269 2008-06-16
JP2008159430 2008-06-18
JP2008160711 2008-06-19
JP2008173445 2008-07-02
JP2008177752 2008-07-08

Publications (2)

Publication Number Publication Date
TW200944582A true TW200944582A (en) 2009-11-01
TWI463000B TWI463000B (en) 2014-12-01

Family

ID=40985351

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098104943A TWI463000B (en) 2008-02-18 2009-02-17 Chemical machinery grinding water dispersions and chemical mechanical grinding methods

Country Status (3)

Country Link
KR (1) KR20100123678A (en)
TW (1) TWI463000B (en)
WO (1) WO2009104465A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612236A (en) * 2013-09-30 2016-05-25 福吉米株式会社 Polishing composition and production method therefor
CN107396639A (en) * 2015-02-10 2017-11-24 福吉米株式会社 Composition for polishing
TWI617655B (en) * 2013-09-30 2018-03-11 Fujimi Inc Polishing composition and manufacturing method thereof
CN109312213A (en) * 2016-06-06 2019-02-05 富士胶片株式会社 Lapping liquid, chemical and mechanical grinding method
TWI718998B (en) * 2014-10-22 2021-02-21 日商福吉米股份有限公司 Polishing composition

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288666A (en) * 2010-08-04 2011-12-21 年四辉 Method for measuring content of total organic acid
JP5983978B2 (en) * 2011-03-03 2016-09-06 日立化成株式会社 CMP polishing slurry, CMP polishing solution and polishing method
WO2013073025A1 (en) * 2011-11-16 2013-05-23 日産化学工業株式会社 Polishing liquid composition for semiconductor wafers
JP6564638B2 (en) * 2015-07-15 2019-08-21 株式会社フジミインコーポレーテッド Polishing composition, magnetic disk substrate manufacturing method, and magnetic disk substrate
WO2019189610A1 (en) * 2018-03-30 2019-10-03 日揮触媒化成株式会社 Silica particle dispersion, polishing composition, and method for manufacturing silica particle dispersion
KR20210130145A (en) 2019-02-21 2021-10-29 미쯔비시 케미컬 주식회사 Silica particles and their manufacturing method, silica sol, polishing composition, polishing method, semiconductor wafer manufacturing method, and semiconductor device manufacturing method
JP7225898B2 (en) * 2019-02-21 2023-02-21 三菱ケミカル株式会社 Method for producing silica particles, method for producing silica sol, and method for polishing

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136909A (en) * 1984-12-04 1986-06-24 Mitsubishi Chem Ind Ltd Aqueous dispersion liquid composition of anhydrous silicon acid
JP2714411B2 (en) * 1988-12-12 1998-02-16 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー Composition for fine polishing of wafers
JP3441142B2 (en) * 1994-02-04 2003-08-25 日産化学工業株式会社 Polishing method for semiconductor wafer
ATE307859T1 (en) * 1999-12-17 2005-11-15 Cabot Microelectronics Corp METHOD FOR POLISHING OR PLANARIZING A SUBSTRATE
JP3804009B2 (en) * 2001-10-01 2006-08-02 触媒化成工業株式会社 Silica particle dispersion for polishing, method for producing the same, and abrasive
JP4781693B2 (en) * 2004-06-14 2011-09-28 花王株式会社 Method for reducing nano scratch on magnetic disk substrate
TWI363796B (en) * 2004-06-14 2012-05-11 Kao Corp Polishing composition
JP2006100538A (en) * 2004-09-29 2006-04-13 Fuji Photo Film Co Ltd Polishing composition and polishing method using the same
JP2006231436A (en) * 2005-02-23 2006-09-07 Tokyo Seimitsu Co Ltd Polishing slurry and polishing method
JP2007088424A (en) * 2005-08-24 2007-04-05 Jsr Corp Aqueous dispersing element for chemical mechanical polishing, kit for preparing the same aqueous dispersing element, chemical mechanical polishing method and manufacturing method for semiconductor device
WO2007072918A1 (en) * 2005-12-21 2007-06-28 Asahi Glass Company, Limited Polishing composition, polishing method, and method for forming copper wiring for semiconductor integrated circuit
JP2007207908A (en) * 2006-01-31 2007-08-16 Fujifilm Corp Polishing agent for barrier layer
JP2007214155A (en) * 2006-02-07 2007-08-23 Fujifilm Corp Polishing fluid for barrier, and chemical mechanical polishing method
CN101410956B (en) * 2006-04-03 2010-09-08 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method
JP2008004621A (en) * 2006-06-20 2008-01-10 Toshiba Corp SLURRY FOR USE IN Cu FILM CMP, POLISHING METHOD, AND MANUFACTURING METHOD OF SEMICONDUCTOR DEVICE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105612236A (en) * 2013-09-30 2016-05-25 福吉米株式会社 Polishing composition and production method therefor
TWI617655B (en) * 2013-09-30 2018-03-11 Fujimi Inc Polishing composition and manufacturing method thereof
US9944838B2 (en) 2013-09-30 2018-04-17 Fujimi Incorporated Polishing composition and method for producing same
US10227518B2 (en) 2013-09-30 2019-03-12 Fujimi Incorporated Polishing composition and method for producing same
TWI718998B (en) * 2014-10-22 2021-02-21 日商福吉米股份有限公司 Polishing composition
CN107396639A (en) * 2015-02-10 2017-11-24 福吉米株式会社 Composition for polishing
CN109312213A (en) * 2016-06-06 2019-02-05 富士胶片株式会社 Lapping liquid, chemical and mechanical grinding method

Also Published As

Publication number Publication date
KR20100123678A (en) 2010-11-24
TWI463000B (en) 2014-12-01
WO2009104465A1 (en) 2009-08-27

Similar Documents

Publication Publication Date Title
TW200944582A (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
TWI463001B (en) Chemical machinery grinding water dispersions and chemical mechanical grinding methods
TWI573862B (en) Chemical machinery grinding water dispersions and chemical mechanical grinding methods
KR101469994B1 (en) Chemical mechanical polishing aqueous dispersion preparation set, method of preparing chemical mechanical polishing aqueous dispersion, chemical mechanical polishing aqueous dispersion, and chemical mechanical polishing method
TWI286157B (en) Bicine/tricine containing composition and method for chemical-mechanical planarization
TWI343945B (en) Slurry for metal polishing and polishing method of polished film
JP2020077840A (en) Tungsten chemical mechanical polishing to reduce oxide erosion
KR20150036070A (en) Gst cmp slurries
TW200911972A (en) Aqueous dispersion for chemical mechanical polishing and method for preparing the same, kit for preparing aqueous dispersion for chemical mechanical polishing, and chemical mechanical polishing method for semiconductor device
TW200936738A (en) Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP2006519499A (en) Modular barrier removal polishing slurry
JP5333744B2 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and chemical mechanical polishing aqueous dispersion manufacturing method
JP2005158867A (en) Set for adjusting water-based dispersing element for chemical-mechanical polishing
JP2006287207A (en) Water system dispersing element for chemical-mechanical polishing and chemical-mechanical polishing method, and kit for preparing water system dispersing element for chemical-mechanical polishing
JPWO2011093195A1 (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method using the same, and chemical mechanical polishing aqueous dispersion preparation kit
JP2010161201A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method using the same, and method of manufacturing chemical mechanical polishing aqueous dispersion
JP5413566B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2010016344A (en) Aqueous dispersing element for chemical mechanical polishing, manufacturing method thereof, and chemical mechanical polishing method
JP2009224771A (en) Aqueous dispersion for chemical mechanical polishing and method of manufacturing the same, and chemical mechanical polishing method
JP2005223260A (en) Metal abrasive water-based dispersing element containing abrasive grains
JP5333741B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP5333740B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2010034497A (en) Aqueous dispersion for chemo-mechanical polishing and manufacturing method thereof, and chemo-mechanical polishing method
JP5333743B2 (en) Chemical mechanical polishing aqueous dispersion, method for producing the same, and chemical mechanical polishing method
JP2010028079A (en) Aqueous dispersion for chemical mechanical polishing, manufacturing method of the same, and chemical mechanical polishing method