TW200939525A - Semiconductor lighting device - Google Patents

Semiconductor lighting device Download PDF

Info

Publication number
TW200939525A
TW200939525A TW97108099A TW97108099A TW200939525A TW 200939525 A TW200939525 A TW 200939525A TW 97108099 A TW97108099 A TW 97108099A TW 97108099 A TW97108099 A TW 97108099A TW 200939525 A TW200939525 A TW 200939525A
Authority
TW
Taiwan
Prior art keywords
layer
electrode
semiconductor layer
type semiconductor
light
Prior art date
Application number
TW97108099A
Other languages
Chinese (zh)
Inventor
Chih-Peng Hsu
Chih-Pang Ma
Wen-Jang Jiang
Original Assignee
Foxsemicon Integrated Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Foxsemicon Integrated Tech Inc filed Critical Foxsemicon Integrated Tech Inc
Priority to TW97108099A priority Critical patent/TW200939525A/en
Publication of TW200939525A publication Critical patent/TW200939525A/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

The present invention relates to a semiconductor lighting device. The semiconductor lighting device includes a substrate, a semiconductor lighting structure configured on the substrate, a first electrode and a second electrode. The semiconductor lighting structure includes a first type semiconductor layer, a second type semiconductor layer, and an active layer between the first and second type semiconductor layer. The first electrode and second electrode are electrically connected to the first and second type semiconductor layer respectively. The second electrode includes a light transmissive conductive layer, and a patterned metallic layer electrically contact with the light transmissive conductive layer. The first electrode includes an induction electrode and a first contact pad detached to the induction electrode.

Description

200939525 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種半導體發光元件,尤其係一種具有較 佳發光效率之半導體發光二極體元件。 【先前技術】 採用半導體發光元件製作之發光二極體(LED,Light Emitting Diode)以其亮度高、工作電壓低、功耗小、易與積 體電路匹配、驅動簡單、壽命長等優點,從而可作為光源 〇 而廣泛應用於照明領域,可參見Joseph Bielecki等人於23rd IEEE SEMI-THERM Symposium 中之 Thermal Considerations for LED Components in an Automotive Lamp 一文。 參見圖1及圖2,一種典型發光二極體600包括絕緣基 底610、形成於絕緣基底610上之半導體發光結構620、N 電極(N-electrode)630 以及 P 電極(P-electrode)640。該半導 ❾體發光結構620包括N型半導體膚(N-type Semiconductor Layer)621、P 型半導體層(p-type Semiconductor Layer)623 以及位於N型半導體層621與P型半導體層623之間之活 性層(Active layer)622。該N型半導體層621具有一未被活 性層622和P型半導體層623覆蓋之暴露部分,N電極630 為一 N接觸墊(N-contactPad)且設置於該暴露部分上。該P 電極640為一 p接觸塾(p_c〇ntact Pad),其設置於p型半導 體層623上且與N電極630成對角設置。然而,由於P型 半導體層623通常具有相對較高之阻抗,致使電流橫向擴 7 200939525 散效果差,電流易集中於P電極640附近向下通過活性層 622,因此降低活性層622之面積使用率,進而導致其發光 效率相對較差,尤其係對大尺寸晶粒之影響更大。 參見圖3及圖4,為改善上述因活性層之面積使用率低 而導致之發光效率差之問題,先前技術還揭露一種具有氧 化銦錫(Indium Tin Oxide,ITO)層之發光二極體700。該發 光二極體700包括絕緣基底710、形成於絕緣基底710上之 秦半導體發光結構720、N電極730、P電極740以及氧化銦 ❹ 錫層750。該半導體發光結構包括N型半導體層721、P型 半導體層723以及位於N型半導體層721和P型半導體層 723之間之活性層722。該氧化銦錫層750設置於P型半導 體層723上並位於P型半導體層723之遠離該活性層722 之一側,該N電極730設置於N型半導體層721之暴露部 分;該P電極740設置於氧化銦錫層750上。該發光二極 體700可藉由氧化銦錫層750從一定程度上改善電流分散 ❹之特性,然而由於N型半導體層721本身同樣存在内電阻, 再加上N電極730本身之面積較小,因此電流不能有效地 於N型半導體層721中均勻擴散,一定程度上影響了發光 二極體700之發光效率。 有鑒於此,提供一種具有較佳發光效率之半導體發光 元件實為必要。 【發明内容】 以下將以具體實施例說明一種具有較佳發光效率之半 導體發光元件。 200939525 Ο …一種半導體料元件,其包括基底、形成於基底上之 半導體發光結構、以及極性相反之第一電極和第二電極, 該半導體發光結構包括—第_型半導體詹、—第二型半導 體層、、以及—位於第—型半導體層與—第二型半導體層之 間之活性層,㈣—電極和第二電極分別與第—型半導 層和第二型半物層形成電連接,該第二電極包括一透光 導電層和-與透光導電層電接觸之圖案化金屬導電層,該 第電極^括相互分離之一感應電極以及一第一接觸塾。 與先前技術相比,該半導體發光元件被通入電流後, 其相互分離之感應電極和第—接觸塾可感應形成低電阻之 等電位通道’從而有助於電子於第—型半導體層内部橫向 擴散並均勻地流至活性層’該半導體發光元件充分利用了 活性層之最大面積,從而具有更佳之發光效率。 【實施方式】 以下將結合附圖對本發明實施例作進一步詳細說明。 © 參見圖5及圖6,本發明實施例提供之半導體發光元件 1〇,其為-種發光二極體。該半導體發光元件1〇包括:一 基底11,-位於基底u上之半導體發光結構12,以及極 性相反之第一電極13及第二電極14。 該基底11為絕緣基底,其材質可為藍寶石(Sapphire)、 碳化石夕(SiC)等絕緣材料。 该半導體發光結構12包括_ N型半導體層m、一 p 型半導體層123、位於N型半導體層121肖p型半導體層 123之間之活性層122。該N型半導體層i2i、活性層122 9 200939525 及P型半導體層123之基材可為m_v族化合物或π_νι族 化合物。該Ν型半導體層121形成於基底u上並具有一未 被活性層122、P型半導體層123及第二電極14覆蓋且環 繞活性層122 型半導體層123之暴露部分。當然,該 半導體發光結構12亦可為—雙層遙晶結構,該雙層蠢晶結 構由一 N型半導體層和—p型半導體層構成。 該第一電極13形成(例如沉積)於N型半導體層121之 ❹暴路4为以與N型半導體層121形成電接觸。該第一電極 13包括感應電極131以及位於該感應電極131 一側之接觸 墊(Contact Pad)132。該感應電極131之形狀可為直條形、 梯形、圓形、糖圓形等。該接觸墊132與感應電極131相 互刀離而互不接觸,該接觸塾用於與外部電路形成電 連接’如打線連接。如圖5所示,本實施例中該感應電極 131為直條形電極,該接觸墊132位於該感應電極i3i之縱 向延長線上。 © 該第二電極w與P型半導體層123形成電接觸,其包 括一透光導電層142及一與透光導電層142電接觸之圖案 化金屬導電層144。 該透光‘電層142形成(例如沉積)於p型半導體層123 上,其與P型半導體層123形成歐姆接觸(〇hmic c〇ntact)。 該透光導電層142之材料可為透明之金屬摻雜之金屬氧化 物,如銦摻雜—氧化錫(Sn〇.In)、錫摻雜三氧化二鎵 (GkO^Sn)、錫摻雜銀銦氧化物(AgIn〇2:Sn)、銦錫氧化物 (In2〇3:Sn)、辞摻雜三氧化二銦(In2〇3:Zn)、銻摻雜二氧化錫 200939525 (Sn〇2:Sb)、或鋁摻雜氧化鋅(ZnO:Al)等。 &圖案化金屬導電層144形成(例如沉積)於透光導電 層142之遠離p型半導體層123之一側。該圖案化金屬導 電層144通常係由非透光之金屬或金屬合金材料製成的, 其包括與外部電路形成電連接之接觸墊1442以及從接觸墊 1442延伸出來之延長臂1444。如圖5所示,該梳狀之圖案 ,金屬導電層144包括兩個接觸墊1442和三個直條形延長 ❹臂1444 ;其中,該兩個接觸墊1442由一延長臂1444相連 通,另外兩個延長臂1444沿一與位於相鄰兩個接觸墊 1442 ,間之延長臂1444之延作方向基本垂直之方向延伸且位於 第電極13之感應電極131之兩側。該接觸墊1442用於 與外部電路形成電連接,如打線連接。 圖5中示出該透光導電層142之一區域元1422到圖案 化金屬導電層144之最小橫向(亦即,與透光導電層142之 厚度方向基本垂直之方向)距離d。該透光導電層142係由 ❹大量之區域元1422構成的,該區域元1422於透光導電層 142之立體結構中則為一微小之立體結構。 由於透光導電層142之微觀結構通常為柱狀晶域,長 距離之電流沿該柱狀晶域之徑向擴散會因其内大量之晶界 及缺陷之存在而可能被截斷’因而該最小橫向距離d設定 為小於等於300微米可大大降低橫向電流遭截斷之可能 性。另外,經實驗證明’當該透光導電層142之到圖案化 金屬導電層144之最小橫向距離d小於等於300微米之所 有區域元142之面積總和達到透光導電層142所處區域之 11 200939525 面積之娜’即可使該铸體發光元件ig獲得較佳之發光 :文率。可理解的係’該具有最小橫向距離」小於等於3〇〇 微米之所有區域兀142之面積總和與透光導電層⑷所處 區域之面積之比值越大,該半導體發光元件1()之發光效率 就會相對更佳。 田然’於保證半導體發光元彳1〇之發光效率之前提 下’還可適當變更第二電極14之直條形延長臂MM之寬 ❹度。例如,於半導體發光㈣1G之晶粒尺寸較大時,可適 當增加直條形延長臂1444之寬度以保證最小橫向距離㈠、 於等於300微米以達到較佳之發光效率。 由於N型半導體層12ι之内電阻遠低於?型半導體層 123’且N型半導體層121之㈣阻與透光導電層142相 近’因此當半導體發光元件1G被通人電流後,電子可由接 觸墊132流入N型半導體層121,此時於n型半導體層 =面因為有感應電極131之存在,而於接觸墊132曰㈣BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor light emitting element, and more particularly to a semiconductor light emitting diode element having better luminous efficiency. [Prior Art] A light-emitting diode (LED) made of a semiconductor light-emitting element has the advantages of high brightness, low operating voltage, low power consumption, easy matching with an integrated circuit, simple driving, and long life. It can be widely used as a light source in the field of illumination, see Joseph Bielecki et al., 23rd IEEE SEMI-THERM Symposium, Thermal Considerations for LED Components in an Automotive Lamp. Referring to FIGS. 1 and 2, a typical light emitting diode 600 includes an insulating substrate 610, a semiconductor light emitting structure 620 formed on an insulating substrate 610, an N-electrode 630, and a P-electrode 640. The semiconductor light emitting structure 620 includes an N-type semiconductor layer 621, a p-type semiconductor layer 623, and an N-type semiconductor layer 621 and a P-type semiconductor layer 623. Active layer 622. The N-type semiconductor layer 621 has an exposed portion which is not covered by the active layer 622 and the P-type semiconductor layer 623. The N-electrode 630 is an N-contact pad and is disposed on the exposed portion. The P electrode 640 is a p-contact 塾 (p_c〇ntact Pad) which is disposed on the p-type semiconductor layer 623 and disposed at an angle opposite to the N electrode 630. However, since the P-type semiconductor layer 623 generally has a relatively high impedance, causing the current to spread laterally, the current is easily spread, and the current tends to concentrate near the P electrode 640 and downward through the active layer 622, thereby reducing the area utilization rate of the active layer 622. In turn, the luminous efficiency is relatively poor, especially for large-sized grains. Referring to FIG. 3 and FIG. 4 , in order to improve the above-mentioned problem that the light-emitting efficiency is low due to the low area utilization rate of the active layer, the prior art also discloses a light-emitting diode 700 having an Indium Tin Oxide (ITO) layer. . The light emitting diode 700 includes an insulating substrate 710, a Qin semiconductor light emitting structure 720 formed on the insulating substrate 710, an N electrode 730, a P electrode 740, and an indium tin oxide layer 750. The semiconductor light emitting structure includes an N-type semiconductor layer 721, a P-type semiconductor layer 723, and an active layer 722 between the N-type semiconductor layer 721 and the P-type semiconductor layer 723. The indium tin oxide layer 750 is disposed on the P-type semiconductor layer 723 and located on a side of the P-type semiconductor layer 723 away from the active layer 722. The N-electrode 730 is disposed on the exposed portion of the N-type semiconductor layer 721; the P-electrode 740 It is disposed on the indium tin oxide layer 750. The light-emitting diode 700 can improve the characteristics of the current dispersion enthalpy to some extent by the indium tin oxide layer 750. However, since the N-type semiconductor layer 721 itself also has an internal resistance, and the area of the N-electrode 730 itself is small, Therefore, the current cannot be uniformly diffused uniformly in the N-type semiconductor layer 721, which affects the luminous efficiency of the light-emitting diode 700 to some extent. In view of the above, it is necessary to provide a semiconductor light-emitting element having better luminous efficiency. SUMMARY OF THE INVENTION A semiconductor light-emitting element having a preferred luminous efficiency will be described below with reference to specific embodiments. 200939525 Ο ... a semiconductor material element comprising a substrate, a semiconductor light emitting structure formed on the substrate, and a first electrode and a second electrode having opposite polarities, the semiconductor light emitting structure comprising - a semiconductor semiconductor, a second type semiconductor a layer, and an active layer between the first-type semiconductor layer and the second-type semiconductor layer, and the (four)-electrode and the second electrode are electrically connected to the first-type semiconductor layer and the second-type semiconductor layer, respectively. The second electrode comprises a light-transmissive conductive layer and a patterned metal conductive layer in electrical contact with the light-transmissive conductive layer, the first electrode comprising a sensing electrode separated from each other and a first contact. Compared with the prior art, after the semiconductor light-emitting element is energized, the sensing electrodes and the first contact yoke separated from each other can induce a low-resistance equipotential path to contribute to electrons in the lateral direction of the first-type semiconductor layer. Diffusion and uniform flow to the active layer' The semiconductor light-emitting element makes full use of the largest area of the active layer, thereby providing better luminous efficiency. [Embodiment] Hereinafter, embodiments of the present invention will be further described in detail with reference to the accompanying drawings. Referring to FIG. 5 and FIG. 6, a semiconductor light emitting device according to an embodiment of the present invention is a light emitting diode. The semiconductor light emitting element 1A includes a substrate 11, a semiconductor light emitting structure 12 on the substrate u, and a first electrode 13 and a second electrode 14 which are opposite in polarity. The substrate 11 is an insulating substrate and may be made of an insulating material such as sapphire or carbon carbide (SiC). The semiconductor light emitting structure 12 includes an _N-type semiconductor layer m, a p-type semiconductor layer 123, and an active layer 122 between the NAND-type semiconductor layers 123 of the N-type semiconductor layer 121. The substrate of the N-type semiconductor layer i2i, the active layer 122 9 200939525 and the P-type semiconductor layer 123 may be an m_v compound or a π_νι compound. The germanium-type semiconductor layer 121 is formed on the substrate u and has an exposed portion which is not covered by the active layer 122, the p-type semiconductor layer 123 and the second electrode 14 and surrounds the active layer 122-type semiconductor layer 123. Of course, the semiconductor light emitting structure 12 can also be a double-layered remote crystal structure composed of an N-type semiconductor layer and a p-type semiconductor layer. The first electrode 13 is formed (e.g., deposited) on the n-type semiconductor layer 121 to form an electrical contact with the N-type semiconductor layer 121. The first electrode 13 includes a sensing electrode 131 and a contact pad 132 on the side of the sensing electrode 131. The shape of the sensing electrode 131 may be a straight strip shape, a trapezoidal shape, a circular shape, a sugar circle shape or the like. The contact pads 132 are spaced apart from each other by the sensing electrodes 131 and are not in contact with each other, and the contact pads are used to form an electrical connection with an external circuit such as a wire bonding. As shown in FIG. 5, in the embodiment, the sensing electrode 131 is a straight strip electrode, and the contact pad 132 is located on a longitudinal extension line of the sensing electrode i3i. The second electrode w is in electrical contact with the P-type semiconductor layer 123 and includes a light-transmissive conductive layer 142 and a patterned metal conductive layer 144 in electrical contact with the light-transmissive conductive layer 142. The light transmissive 'electric layer 142 is formed (eg, deposited) on the p-type semiconductor layer 123, which forms an ohmic contact with the p-type semiconductor layer 123. The material of the transparent conductive layer 142 may be a transparent metal doped metal oxide such as indium doped-tin oxide (Sn〇.In), tin-doped gallium oxide (GkO^Sn), tin doped. Silver indium oxide (AgIn〇2:Sn), indium tin oxide (In2〇3:Sn), undoped indium trioxide (In2〇3:Zn), antimony doped tin dioxide 200939525 (Sn〇2 :Sb), or aluminum-doped zinc oxide (ZnO: Al) or the like. & The patterned metal conductive layer 144 is formed (e.g., deposited) on one side of the light-transmitting conductive layer 142 away from the p-type semiconductor layer 123. The patterned metal conductive layer 144 is typically formed of a non-transmissive metal or metal alloy material that includes a contact pad 1442 that is electrically coupled to an external circuit and an elongated arm 1444 that extends from the contact pad 1442. As shown in FIG. 5, the comb-like pattern, the metal conductive layer 144 includes two contact pads 1442 and three straight strip-shaped extension arms 1444; wherein the two contact pads 1442 are connected by an extension arm 1444, and The two extension arms 1444 extend in a direction substantially perpendicular to the direction of extension of the extension arm 1444 between the adjacent two contact pads 1442 and are located on opposite sides of the sensing electrode 131 of the first electrode 13. The contact pad 1442 is used to form an electrical connection with an external circuit, such as a wire bond. The distance d between the region element 1422 of one of the light-transmissive conductive layers 142 and the minimum lateral direction of the patterned metal conductive layer 144 (i.e., the direction substantially perpendicular to the thickness direction of the light-transmitting conductive layer 142) is shown in FIG. The light-transmissive conductive layer 142 is composed of a plurality of area elements 1422, and the area element 1422 is a minute three-dimensional structure in the three-dimensional structure of the light-transmitting conductive layer 142. Since the microstructure of the light-transmissive conductive layer 142 is generally a columnar crystal domain, the radial diffusion of a long-distance current along the columnar crystal domain may be truncated due to the presence of a large number of grain boundaries and defects therein. Setting the lateral distance d to be less than or equal to 300 micrometers greatly reduces the possibility of lateral current being cut off. In addition, it has been experimentally proved that the sum of the area of all the area elements 142 of the light-transmissive conductive layer 142 to the patterned metal conductive layer 144 having a minimum lateral distance d of less than or equal to 300 μm reaches the area where the light-transmitting conductive layer 142 is located 11 200939525 The area of the 'a' can make the casting light-emitting element ig obtain better illumination: the rate. It can be understood that the ratio of the sum of the area of all the regions 142 having the smallest lateral distance of 3 μm or less and the area of the region where the light-transmitting conductive layer (4) is located is larger, and the light emission of the semiconductor light-emitting element 1 () The efficiency will be relatively better. The field width of the straight-length extension arm MM of the second electrode 14 can be appropriately changed before the light-emitting efficiency of the semiconductor light-emitting element is ensured. For example, when the crystal size of the semiconductor light-emitting (4) 1G is large, the width of the straight-line extension arm 1444 can be appropriately increased to ensure a minimum lateral distance (1) equal to 300 μm to achieve better luminous efficiency. Since the resistance inside the N-type semiconductor layer 12 is much lower than? The semiconductor layer 123' and the (4) resistance of the N-type semiconductor layer 121 are close to the light-transmitting conductive layer 142. Therefore, when the semiconductor light-emitting element 1G is subjected to a current, electrons may flow from the contact pad 132 into the N-type semiconductor layer 121, at this time. Type semiconductor layer = surface because of the presence of the sensing electrode 131, and in the contact pad 132 (four)

❹應妹⑶之間感應形成—條電阻更低之等電位通道,從 而有助於電子A接觸墊132流向感應電極131,進而於N 型半導體層m内橫向擴散,從而電子可均勾流入活性層 1^22’使得該半導體發光元件1〇充分利用了活性層⑵之 最大面積,而具有更佳之發光效率。 綜上所述’本發明確已符合發明專利之要件,遂依法 ,出專射請。惟’以上所述者僅為本發明之較佳實施方 式:自不能以此限制本案之t請專利範圍。舉凡熟悉本案 技藝之人士援依本發明之精神所作之等效修飾或變化,皆 12 200939525 應涵蓋於以下申請專利範圍内。 【圖式簡單說明】 圖1係一種典型之發光二極體之主視示意圖。 圖2係圖1所示發光二極體之俯視示意圖。 圖3係另一種典型之發光二極體俯視示意圖。 圖4係圖3所示發光二極體之主視示意圖。 圖5係本發明實施例半導體發光元件之俯視示意圖。 • 圖6係圖5所示半導體發光元件沿剖線VI-VI之剖面 ◎ 示意圖。 【主要元件符號說明】 半導體發光元件 10 基底 11 第一電極 13 第二電極 14 感應電極 131 接觸墊 132 、 1442 透光導電層 142 圖案化金屬導電層 144 延長臂 1444 區域元 1422 發光二極體 600 、 700 絕緣基底 610、710 半導體發光結構 620、720、12 N電極 630 ' 730 P電極 640 、 740 N型半導體層 621 、 721 、 121 13 200939525 Ρ型半導體層 623 、 723 、 123 活性層 622 、 722 、 122 氧化銦錫層 750 Ο ❹ 14❹ Yingmei (3) induces an equipotential path with a lower resistance, which helps the electron A contact pad 132 to flow to the sensing electrode 131, and then laterally diffuses in the N-type semiconductor layer m, so that electrons can be hooked into the active The layer 1 22' makes the semiconductor light-emitting element 1 〇 make full use of the maximum area of the active layer (2), and has better luminous efficiency. In summary, the invention has indeed met the requirements of the invention patent, and the law has been specially issued. However, the above description is only a preferred embodiment of the present invention: it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by those skilled in the art in light of the spirit of the invention are intended to be included in the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a front view of a typical light emitting diode. 2 is a top plan view of the light emitting diode shown in FIG. 1. Figure 3 is a top plan view of another typical light emitting diode. 4 is a front elevational view of the light emitting diode shown in FIG. 3. Fig. 5 is a top plan view showing a semiconductor light emitting device according to an embodiment of the present invention. • Fig. 6 is a schematic cross-sectional view of the semiconductor light emitting device shown in Fig. 5 taken along line VI-VI. [Description of main component symbols] Semiconductor light-emitting element 10 Substrate 11 First electrode 13 Second electrode 14 Inductive electrode 131 Contact pad 132, 1442 Light-transmissive conductive layer 142 Patterned metal conductive layer 144 Extension arm 1444 Area element 1422 Light-emitting diode 600 700 insulating substrate 610, 710 semiconductor light emitting structure 620, 720, 12 N electrode 630 ' 730 P electrode 640, 740 N type semiconductor layer 621, 721, 121 13 200939525 Ρ type semiconductor layer 623, 723, 123 active layer 622, 722 , 122 indium tin oxide layer 750 Ο ❹ 14

Claims (1)

200939525 十、申請專利範圍: .1. 一種半導體發光元件,其包括基底、形成於基底上之半導 .體發光結構、以及極性相反之第一電極和第二電極,該半 導體發光結構包括一第一型半導體層、一第二型半導體 層、以及一位於第一型半導體層與一第二型半導體層之間 之活性層,該第一電極和第二電極分別與第一型半導體層 和第二型半導體層形成電連接,該第二電極包括一透光導 ❹電層和一與透光導電層電接觸之圖案化金屬導電層,其改 進在於:該第-電極包括相互分離之一感應電極以及 一接觸墊。 2. 如申請專利範圍第i項所述之半導體發光元件,其中,該 基底為絕緣基底,該第一型半導體層形成於該基底上,^ 第二型半導體層及活性層局部覆蓋該第一型半導體層,該 第-型半導體層具有-未被第二型半導體層及活性層覆蓋 之暴露部分,1¾第-電極位元於該I露部分且與第— ❹導體層形成歐姆接觸’該第二電極之透光導電層形成於第 -型半導體層上,該圖案化金屬導電層位於透光導電芦 遠離第二型半導體層之一側。 θ 3、 ·如申請專利_第i項所述之半導體發光元件,其中,該 感應電極之形狀為直條形、梯形、圓形或橢圓形。 4·如申請專利範圍第3項所述之半導體發光元件,其中,該 感應電極之形狀為直條形,該第一接觸塾位於感應電極: 縱向延長線上。 5.如申凊專利範圍第i項所述之半導體發光元件,其中,該 15 200939525 透光導電層與第二划I .,, —1 +導體層形成歐姆接觸。 ’如申5青專利範圍第^ 圓安^ w β 弟5項所述之半導體發光元件,其中,該 圖案化金屬導電層包缸笛 ,,^ θ匕括第二接觸墊以及從該第二接觸墊延 伸出來之延長臂。 I如申凊專利範圍第1項所述之半導體發光元件,其争,該 、、光V電層之到圖案化金屬導電層之最小橫向距離小於等 於300冑米之區域 < 面積總和為透光導電層所處區域之面 0積之80%及以上。 8.如申請專利範圍第1項所述之半導體發光元件,其中,該 型半導體層為N型半導體層,該第二型半導體層為p 组半導體層。200939525 X. Patent application scope: .1. A semiconductor light emitting device comprising a substrate, a semiconductor body light emitting structure formed on the substrate, and a first electrode and a second electrode having opposite polarities, the semiconductor light emitting structure comprising a first a first type semiconductor layer, a second type semiconductor layer, and an active layer between the first type semiconductor layer and a second type semiconductor layer, the first electrode and the second electrode respectively and the first type semiconductor layer and The second type semiconductor layer forms an electrical connection, and the second electrode comprises a light-transmissive conductive layer and a patterned metal conductive layer in electrical contact with the light-transmissive conductive layer, wherein the first electrode comprises one of the mutual inductances Electrode and a contact pad. 2. The semiconductor light-emitting device of claim 1, wherein the substrate is an insulating substrate, the first semiconductor layer is formed on the substrate, and the second semiconductor layer and the active layer partially cover the first a semiconductor layer having an exposed portion not covered by the second semiconductor layer and the active layer, wherein the first electrode portion forms an ohmic contact with the first germanium conductor layer The light-transmissive conductive layer of the second electrode is formed on the first-type semiconductor layer, and the patterned metal conductive layer is located on a side of the light-transmitting conductive reed away from the second-type semiconductor layer. The semiconductor light-emitting device of claim 4, wherein the sensing electrode has a shape of a straight strip, a trapezoid, a circle or an ellipse. 4. The semiconductor light-emitting device of claim 3, wherein the sensing electrode has a straight strip shape, and the first contact ridge is located on the sensing electrode: a longitudinal extension line. 5. The semiconductor light-emitting device of claim 1, wherein the light-transmissive conductive layer of the 15 200939525 forms an ohmic contact with the second conductive layer. a semiconductor light-emitting element according to the fifth aspect of the invention, wherein the patterned metal conductive layer comprises a cylinder, and the second contact pad and the second An extension arm that extends out of the contact pad. The semiconductor light-emitting device of claim 1, wherein the minimum lateral distance from the optical V-electrode layer to the patterned metal conductive layer is less than or equal to 300 mils. 80% or more of the surface area of the region where the photoconductive layer is located. 8. The semiconductor light emitting device according to claim 1, wherein the semiconductor layer is an N-type semiconductor layer, and the second semiconductor layer is a p-type semiconductor layer. 1616
TW97108099A 2008-03-07 2008-03-07 Semiconductor lighting device TW200939525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97108099A TW200939525A (en) 2008-03-07 2008-03-07 Semiconductor lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97108099A TW200939525A (en) 2008-03-07 2008-03-07 Semiconductor lighting device

Publications (1)

Publication Number Publication Date
TW200939525A true TW200939525A (en) 2009-09-16

Family

ID=44867730

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97108099A TW200939525A (en) 2008-03-07 2008-03-07 Semiconductor lighting device

Country Status (1)

Country Link
TW (1) TW200939525A (en)

Similar Documents

Publication Publication Date Title
US7652296B2 (en) Light emitting device with high light extraction efficiency
JP6485019B2 (en) Semiconductor light emitting device
TW201631794A (en) Light emitting diode chip
KR101007140B1 (en) Light emitting device
TWI514612B (en) Radiation-emitting chip comprising at least one semiconductor body
CN103378244A (en) Light emitting diode device and manufacturing method thereof
JP2015153928A (en) Semiconductor light emitting element
JP2008218440A (en) GaN-BASED LED ELEMENT AND LIGHT-EMITTING APPARATUS
JP3068914U (en) Flip-chip light emitting device
TW201828496A (en) Light-Emitting Diode Device
JP5336202B2 (en) Semiconductor light emitting device
TWI569471B (en) Semiconductor light emitting structure and manufacturing method thereof
TW201505211A (en) Light-emitting element
CN105742439B (en) Semiconductor light emitting structure
US20130161669A1 (en) Light-emitting diode with current diffusion structure and a method for fabricating the same
CN102738331A (en) Vertical light-emitting diode structure and method for manufacturing the same
WO2016152397A1 (en) Nitride semiconductor light emitting element
JP2008226866A (en) Gallium nitride based light-emitting diode element and light-emitting device
TW200939525A (en) Semiconductor lighting device
CN103594589B (en) A kind of light-emitting diode
TW201336110A (en) Ultraviolet light emitting device
CN103117332B (en) Photoelectric cell
JP6189525B2 (en) Nitride semiconductor light emitting device
CN103606604B (en) A kind of manufacture method of light-emitting diode
CN102610722B (en) Light emitting diode device and manufacturing method thereof