TW200934581A - Method for preparing ketone compound - Google Patents

Method for preparing ketone compound

Info

Publication number
TW200934581A
TW200934581A TW097142484A TW97142484A TW200934581A TW 200934581 A TW200934581 A TW 200934581A TW 097142484 A TW097142484 A TW 097142484A TW 97142484 A TW97142484 A TW 97142484A TW 200934581 A TW200934581 A TW 200934581A
Authority
TW
Taiwan
Prior art keywords
catalyst
compound
polyoxoacid
anion
items
Prior art date
Application number
TW097142484A
Other languages
Chinese (zh)
Inventor
Masayoshi Murakami
Junichi Nishimoto
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW200934581A publication Critical patent/TW200934581A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J27/19Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/03Catalysts comprising molecular sieves not having base-exchange properties
    • B01J29/0308Mesoporous materials not having base exchange properties, e.g. Si-MCM-41
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention provides a more efficient method for preparing ketones from alkenes, oxygen and water. The said method is characterized by reacting alkenes with oxygen and water in the presence of a catalyst containing palladium source, polyoxy anions and titanium ion source, and an effective amount of protons.

Description

200934581 六、發明說明: 【發明所屬之技術領域】 本發明係有關使用分子態氧將烯烴_氧化而製造其相 對應之酮類之方法、及適合使用於此方法之觸媒。 【先前技術】 有關將烯烴類直接氡化而製造酮類彳匕合物之方法,至 今已知者有使用PdCU-CuCl2觸媒製造之瓦克(Wacker) 法。然而,在此瓦克法中,有因氣而造成裝置腐蝕及產生 氯化物產物等之問題。並且’隨著原料烯烴之碳數增加, ,有反應速度顯著降低、以及與内部烯烴之反應性低等問 題、在工業上除了製造乙醛和丙酮等低級酮類化合 物外並不使用。此外’石井等人提出將載持於活性碳上之BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a corresponding ketone by oxidizing an olefin using molecular oxygen, and a catalyst suitable for use in the method. [Prior Art] A method for producing a ketone composition by directly deuterating an olefin is known from the Wacker method using a PdCU-CuCl2 catalyst. However, in this WACKER method, there is a problem that the device is corroded due to gas and a chloride product is generated. Further, as the carbon number of the raw material olefin increases, there is a problem that the reaction rate is remarkably lowered and the reactivity with the internal olefin is low, and industrially, it is not used except for producing a lower ketone compound such as acetaldehyde or acetone. In addition, 'Ishii et al. proposed to be carried on activated carbon.

Pd(0Ac)2/錮㈣酸鹽⑽qV)做為觸媒成分,在氧氣環境 下t打之環⑽之瓦克型氧化反應之報告(專利文獻1), ❹ 但是此方法在反應選擇性和觸媒系之調製法上ϋ不能令人 滿意。 [專利文獻1]日本㈣平u、226418號公報 【發明内容】 (發明欲解決的課題) 本發明係提供—種可更有效率地由烯烴類製造酮類化 合物之觸媒、及使用棚媒之_化合物之製造方法。 (解決課題的手段) 本發明係有關一種在含有鈀源、多氧陰離子化合物及 鈥離子源之觸媒(以下稱為本發明之觸媒)以及有效量之質 3 320752 200934581 子存在下,將稀煙化合物與分子態氧及水反應而製酮類化 合物之方法(稱為本發明之反應或製造方法)° (發明的效果) 根據本發明’在本發明之觸媒存在下’可有效率地由 烯烴類製造酮類。 【實施方式】 在本發明中可使用之鈀源可舉例如:鈀金屬、鈀化合 物及此等之混合物。 把化合物之例子可例示如:把之有機酸鹽或纪之含氧 酸鹽等鈀鹽、氧化鈀及硫化鈀等。此外,可舉例如:此等 鹽或氧化物、硫化物之有機錯合物或無機錯合物、以及此 等之混合物等。 ❹ 把之有機酸鹽之例子可舉例如:乙酸纪及氰化纪。纪 之含氧酸鹽之例子可舉例如:硝酸鈀及硫酸鈀。此等鹽、 氧化物、及硫化物之有機錯合物或無機錯合物之例子可舉 例如·硝酸四胺鈀(π)、雙(乙醯丙酮)鈀等。此外,亦可 為下列所述之含有鈀做為雜多元酸之相對陽離子之雜多元 s夂把鹽。絶鹽以不含氣之把鹽為佳(亦即,把之鹽酸鹽除 外),具體而言,以鈀之有機酸鹽或鈀之含氧酸 乙酸鈀較佳。 巧1主u 在本發明之觸媒及反應中所使用之多氧酸陰離子 容易將經還原之纪予以氧化成氧化型之⑽ 2 Λ-,且由此所生成之還原型多氧酸陰離子可交J 被乳等再氧化成多氧酸陰離子與其相對騎子組成之多 320752 4 200934581 酸陰離子化合物者即 丌為显夕备 並…、特別限定。多氧酸陰離子亦 可使用本身已知之多氧酸陰離子化合物,例如;:有 自及Ta j :使用β 殷;本认田々匕 卞碍取砰,,且肀選出之一種以上之金 屬疋素的異夕氧酸陰離子化合物。此 架構造中含有例如 使用在 AS'Ge、B、Se、及 Te 等所 、、且、之種以上之雜原子的雜多氧酸陰離子化合 物。多氧酸陰離子以含。之異多氧酸陰離子及含有卜 Mo之雜多氧酸陰離子為佳。 多氧酸陰離子之具體例可舉例如:[ρμ〇(ι2·4〇]3_、 [PMo】2-;U)4()](3+B)-、[ρυΒ〇4()](3+1〇-(前述式中,^ 表示 〇 至 12之整數)、[PWaM〇bVc〇4f (前述式中,a、b、c分別表 示滿足a + b + c=12之ϊ以上之整數)、[p2M〇i8nWn〇62r、 [P2M㈤-nV„〇62](6+n)-、出^〇62]_-(前述式中,n 表示 〇 至 1 8 之整數)、[P2WxM〇yVz〇4。] (3 + C)(前述式中,x、y、z 分別 表示滿足x + y + z=18之1以上之整數 [SMo]2-BV»〇4t)](3+m)-、[SW12-BV„〇4()](3+m)-(前述式中,m 表示 〇 至 12 之整數)、[SWaM〇bVc〇4CI](3+c)-(前述式中,a、b、c 分別表 示滿足 a + b + c=12 之 1 以上之整數)、[S2Mc)18_nWn()62]6-、 [S2M〇18-nVn〇62](6+n)—、[S2W18-nVn〇62](6+n)—(前述式中,n 表示 〇 至 18 之整數)、[S2WxM〇yVz〇4«»](3+c)-(前述式中,x、y、ζ 分別 表示滿足x + y + z=18之1以上之整數)等雜多氧酸陰離 子;及[M〇2〇7]2、[M〇6〇19]2、[M〇7〇24]6、[M〇8〇26]6-、[M〇5V〇19]3 — 等雜多氧酸陰離子。此等之中尤以[S2M〇18〇62;T、 320752 5 200934581 [PM〇12-mWn〇40]3_(式中,m 表示 0 至 12 之整數)、[M〇7〇24]G_ 為 , 佳。 在本發明中可使用之多氧酸陰離子化合物之相對陽離 子之例子可舉例如:氫離子、構成溴化鯨蠟基三曱基銨等 四級敍離子之鯨墙基三曱基銨離子等之四級銨離子;除了 四級銨離子以外之,例如,NH/之銨離子;構成氯化録犧基 吡啶鏽鹽等吡啶鹽之鯨蠟基吡啶鏽離子等之吡啶鏽鹽離 子;驗金屬離子(例如:納、鉀、铯、鐘等之離子);驗土 ® 金屬離子(例如:鈹、鎂、鈣等之離子)及此等之混合物。 多氧酸陰離子化合物之例子可舉例如:具有H4[S2M〇18〇62]、 H3[PM〇12〇4G]、H3[PM〇6We〇4。]、和(NH4)6[M〇7〇24]所示之組成式 者等。前述多氧酸陰離子化合物亦可含有結晶水。 可使用之多氧酸陰離子化合物之量係視多氧酸陰離子 化合物之種類、以及與其反應之烯烴類之種類及濃度而 定。一般而言,多氧酸陰離子化合物之使用量為:鈀每1 φ 莫耳,通常使用0. 001莫耳以上(較佳為0. 005莫耳以上、 更佳為0. 01莫耳以上、再更佳為0. 05莫耳以上)之量,其 上限為鈀每1莫耳,通常為500莫耳、較佳為100莫耳、 更佳為10莫耳、再更佳為5莫耳。 鈦離子源只要是在反應液相中可提供有效量之鈦離子 之鈦化合物即可,並無特別限定。具體而言可例示如:硫 酸鈦、硫酸氧鈦等。此外,鈦化合物可例示如:上述各種 化合物之氨(a匪ine)錯合物、胺錯合物、氰錯合物等有機 或無機錯合物類。此等之中尤其適合使用硫酸鈦、硫酸氧 6 320752 200934581 鈦作為本發明反應方法中之良好的鈦離子源。 • 可使用之鈦離子源之量係視多氧酸陰離子化合物之種 類、以及與其反應之烯烴類之種類及濃度而定,^存在於 反應系統之液相中之鈦離子係多氧酸陰離子化合物^丨莫 耳,通常使用0.1莫耳以上(較佳為〇· 5莫耳以上),其上 限係多氧酸陰離子化合物每1莫耳,通常為莫耳較 佳為100莫耳、更佳為10莫耳、再更佳為i莫耳、。乂 在本發明之觸媒中加入中孔(mes〇p〇r〇us)矽酸鹽可進 一步提高觸媒活性。在本說明書中,所謂中孔矽酸:係指 具有孔徑2nm至5〇nm細孔之規則性中孔體。中孔矽酸鹽二 構造係依據 IZA(International Zeolite AssoCiatiQn, 國際沸石協會)之定義。關於M41S(例如:MCM-41或MCM-48 等)之形式’可參照 Studies in Surface Science and Catalysis 148(2004)53 。 中孔石夕酸鹽之例子可舉例如在其骨架中含有僅由氧化 〇 石夕組成之中孔質氧化矽,或含有自Al、Ti、Zr、Ga、Fe、 B、V、Nb、Cr、Mo、Μη、Co及Sn所成群組中選出之至少1 種元素之金屬矽酸鹽。 中孔氧化矽之例子可例示如:MCM-41、MCM-48、 FSM-16、SBA-15 及 SBA-16CD. Zhao 等人,Science 279 (1998) 548;Zhao 等人,J. Ara· Chem. Soc. 120(1998)6024) 等SBA型、HMS等孔徑2nni至50nm之規則性中孔體。 中孔矽酸鹽較典型地可經由在四級銨鹽(例如:氯化十 二烧基三曱基銨及溴化鯨蠟基三曱基銨(USP5,098,684, 7 320752 200934581Pd(0Ac)2/锢(tetra) acid salt (10) qV) as a catalyst component, a report of a Wacker oxidation reaction of a ring (10) in an oxygen atmosphere (Patent Document 1), ❹ However, this method is selective in reaction and The modulation method of the catalyst system is not satisfactory. [Patent Document 1] Japanese Patent Application Publication No. Hei. No. 226,418, the disclosure of the present invention. The present invention provides a catalyst for producing ketone compounds from olefins more efficiently and using a shed medium. The method of manufacturing the compound. (Means for Solving the Problems) The present invention relates to a catalyst containing a palladium source, a polyoxoanion compound, and a cerium ion source (hereinafter referred to as a catalyst of the present invention) and an effective amount of 3 320752 200934581 A method for reacting a dilute smoke compound with molecular oxygen and water to form a ketone compound (referred to as a reaction or a production method of the present invention) ° (Effect of the invention) According to the present invention, 'in the presence of a catalyst of the present invention' is effective The ketones are produced from olefins. [Embodiment] The palladium source which can be used in the present invention may, for example, be a palladium metal, a palladium compound or a mixture thereof. Examples of the compound include, for example, a palladium salt such as an organic acid salt or an oxyacid salt, palladium oxide or palladium sulfide. Further, for example, such salts or oxides, organic complexes or inorganic complexes of sulfides, and mixtures thereof and the like can be mentioned.例子 Examples of the organic acid salt include, for example, acetic acid and cyanide. Examples of the oxyacid salt include palladium nitrate and palladium sulfate. Examples of the organic complex or inorganic complex of such a salt, an oxide, and a sulfide include, for example, tetraamine palladium nitrate (π), bis(acetonitrile) palladium, and the like. Further, it may be a heteropoly s 夂 夂 salt containing palladium as a relative cation of a heteropoly acid as described below. The salt is preferably a salt containing no gas (i.e., other than the hydrochloride), and specifically, an organic acid salt of palladium or palladium oxyacid palladium acetate is preferred. The polyoxoacid anion used in the catalyst and reaction of the present invention is easily oxidized to the oxidized form (10) 2 Λ-, and the reduced polyoxoate anion formed thereby Cross J is reoxidized to a polyoxoate anion by a milk or the like and its relative rider is composed of 320752 4 200934581 The acid anion compound is a preparation and is particularly limited. The polyoxoacid anion may also be a polyoxoacid anion compound known per se, for example;: self- and Ta j: using β-infranin; this is a sputum, and more than one metal strontium is selected. Isooxy acid anion compound. The shelf structure contains, for example, a heteropolyoxy acid anion compound which is used in a hetero atom such as AS'Ge, B, Se, or Te. The polyoxoacid anion is contained. Preferably, the polyoxoic acid anion and the heteropolyoxy acid anion containing Mo are preferred. Specific examples of the polyoxoacid anion include, for example, [ρμ〇(ι2·4〇]3_, [PMo]2-; U)4()](3+B)-, [ρυΒ〇4()](3) +1〇- (in the above formula, ^ represents an integer from 〇 to 12), [PWaM〇bVc〇4f (in the above formula, a, b, and c respectively represent integers satisfying a + b + c = 12 or more) [p2M〇i8nWn〇62r, [P2M(五)-nV„〇62](6+n)-, 出^〇62]_- (in the above formula, n represents an integer from 〇 to 18), [P2WxM〇yVz〇 4. (3 + C) (in the above formula, x, y, and z respectively represent integers satisfying x + y + z = 18 or more [SMo] 2-BV » 〇 4t)] (3 + m) - [SW12-BV„〇4()](3+m)-(in the above formula, m represents an integer from 〇 to 12), [SWaM〇bVc〇4CI](3+c)- (in the above formula, a , b, c respectively represent an integer satisfying a + b + c = 12 or more, [S2Mc) 18_nWn () 62] 6-, [S2M 〇 18-nVn 〇 62] (6 + n) -, [S2W18 -nVn〇62](6+n)—(in the above formula, n represents an integer from 〇 to 18), [S2WxM〇yVz〇4«»](3+c)- (in the above formula, x, y, ζ Each of the heteropolyoxoacid anions satisfying an integer of 1 or more of x + y + z = 18; and [M〇2〇7]2, [M〇6〇19]2, [M 7〇24] 6, [M〇8〇26] 6 - [M〇5V〇19] 3 - oxo heteropoly acid anion and the like. Among them, [S2M〇18〇62; T, 320752 5 200934581 [PM〇12-mWn〇40]3_ (where m represents an integer from 0 to 12), [M〇7〇24]G_ is , good. Examples of the relative cation of the polyoxoacid anion compound which can be used in the present invention include, for example, a hydrogen ion, a whale wall-based trimethylammonium ion which constitutes a four-stage sulfide such as brominated cetyltrimethylammonium chloride. a quaternary ammonium ion; in addition to a quaternary ammonium ion, for example, an NH/ammonium ion; a pyridine rust salt ion of a cetylpyridinium rust ion or the like which constitutes a pyridinium salt such as a chlorinated salt of a chlorinated pyridine; (eg, ions of sodium, potassium, strontium, bell, etc.); soil testing® metal ions (eg ions of strontium, magnesium, calcium, etc.) and mixtures of such. Examples of the polyoxoacid anion compound include, for example, H4 [S2M〇18〇62], H3[PM〇12〇4G], and H3[PM〇6We〇4. ], and the composition formula shown by (NH4)6[M〇7〇24]. The polyoxoacid anion compound may also contain water of crystallization. The amount of the polyoxoacid anion compound which can be used depends on the kind of the polyoxoacid anion compound and the kind and concentration of the olefin to be reacted therewith.摩尔摩尔以上,优选为0. 01摩尔或以上,优选的0. More than 0. More preferably, the amount is more than 0.05 moles, and the upper limit is palladium per 1 mole, usually 500 moles, preferably 100 moles, more preferably 10 moles, and even more preferably 5 moles. . The titanium ion source is not particularly limited as long as it is a titanium compound which can provide an effective amount of titanium ions in the reaction liquid phase. Specifically, for example, titanium sulfate, titanium oxysulfate, or the like can be exemplified. Further, the titanium compound may, for example, be an organic or inorganic complex such as an ammonia complex, an amine complex or a cyanide complex of the above various compounds. Among these, it is particularly suitable to use titanium sulfate, sulfuric acid 6 320752 200934581 titanium as a good source of titanium ions in the reaction process of the present invention. • The amount of titanium ion source that can be used depends on the type of polyoxoacid anion compound and the type and concentration of the olefins reacted with it, and the titanium ion-based polyoxoacid anion compound present in the liquid phase of the reaction system. ^丨莫耳, usually used above 0.1 mol (preferably 〇 · 5 mol or more), the upper limit of the polyoxoacid anion compound per 1 mol, usually Mo Mo is preferably 100 Mo, more preferably 10 moles, and even better is i.加入 Adding mesoporous (mes〇p〇r〇us) citrate to the catalyst of the present invention further enhances the activity of the catalyst. In the present specification, the term "mesoporous acid" means a regular mesoporous body having pores having a pore diameter of 2 nm to 5 Å. The mesoporous silicate structure is based on the definition of IZA (International Zeolite Asso CiatiQn). For the form of M41S (for example, MCM-41 or MCM-48, etc.), refer to Studies in Surface Science and Catalysis 148 (2004) 53. Examples of the mesoporous acid salt include, for example, a mesoporous cerium oxide composed only of cerium oxide in the skeleton, or containing Al, Ti, Zr, Ga, Fe, B, V, Nb, Cr. a metal citrate of at least one element selected from the group consisting of Mo, Μη, Co, and Sn. Examples of mesoporous cerium oxides are exemplified by MCM-41, MCM-48, FSM-16, SBA-15, and SBA-16CD. Zhao et al., Science 279 (1998) 548; Zhao et al., J. Ara Chem Soc. 120 (1998) 6024) A regular mesoporous body having a pore size of 2 nni to 50 nm such as SBA type or HMS. Mesoporous citrate is typically via a quaternary ammonium salt (eg, decyl tridecyl ammonium chloride and cetyl trimethyl ammonium bromide (USP 5,098,684, 7 320752 200934581)

Zeolite, 18, 408-416(1997))) ' 一級胺(例如:.正十二胺 (Science Vol· 267,865)或嵌段共聚物(Science Vol. 269. 1242))等模板存在下,將正矽酸四乙酯等矽酸烷氧化物予 以水解而合成。可依Beck等人之方法,Nature 359,710 (1992)調製Si-MCM-41等中孔矽酸鹽。此外,hms之調製 亦可依照 Peter T. Tanev 等人之方法(Science,vol. 267, φZeolite, 18, 408-416 (1997))) 'in the presence of a template such as a primary amine (for example: n-dodecylamine (Science Vol 267, 865) or block copolymer (Science Vol. 269. 1242)), The decanoic acid alkoxide such as tetraethyl orthosilicate is hydrolyzed to synthesize. A mesoporous silicate such as Si-MCM-41 can be prepared according to the method of Beck et al., Nature 359, 710 (1992). In addition, the modulation of hms can also be in accordance with the method of Peter T. Tanev et al. (Science, vol. 267, φ

Ρ· 865)合成。並且,可使用沉降氧化矽及膠體狀氧化矽等 氧化矽做為矽源、及使用液體玻璃等矽酸鈉進行例如水熱 ,合成,接著使用曱苯、甲醇或丙酮等適當的溶劑洗淨”,、' 藉此去除模板、或經由在約300至8〇〇t之溫度進行 或經煅燒後再洗淨而合成。 在此荨中孔石夕酸鹽中,較宜使用由贿吸 式所計算出之每單位重量之比表面積大者。以 每lg具有200 i 2000m2之比表面積者為佳 夕酉夂鹽 每lg具有400至2_ω2之比表面積者更佳。孔石夕酸鹽 關於細孔之形狀及規則性,只要存 中孔體即可,並無特別限定。需要時,亦可在=定義之 物及多氧酸陰離子化合物之前或之後載持纪化合 為錠劑形狀、球面形狀、 圓筒狀形狀^孔錢鹽成形 鈀源、多氧酸陰離子化合 可個別地添加至反應系統中。例如.將^及中孔石夕酸鹽 離子化合物載持在中孔㈣鹽上後,將^、或多氣酸陰 =至反應财。或者,切練源、=分,地添 或欽離子齡时喊㈣地簡在化合物、 夂|上’而形 200934581 . 成載持觸媒。 , 本發明之觸媒較典型地係經由將鈀源之溶液或懸浮 液、多氧酸陰離子化合物之溶液或懸浮液、或鈦離子源之 溶液或懸浮液、或是含有該等全部之溶液或懸浮液含浸於 中孔矽酸鹽中而製造。例如:調製適當溶劑之鈀源溶液後, 在該等中添加中孔矽酸鹽,接著攪拌所得之混合液,同時 或之後在該等中添加觸媒之剩餘成分,使此等成分互相接 觸而得到混合物。通常,將所得之固形物過濾或使溶劑蒸 ® 發,而得到固體之本發明觸媒。需要時,也可組合此等。 或者,調製適當溶劑之鈀源及多氧酸陰離子化合物之溶液 或懸浮液,並在所得之混合物中加入中孔矽酸鹽使該等互 相接觸,然後將此混合物如上述實施過濾、蒸發、或乾燥 等同樣處理即可調製。 可溶解鈀源、多氧酸陰離子化合物、或鈦離子源之適 當的溶劑之例子可舉例如:水、曱醇或乙醇等醇類;丙酮 Φ 等酮類;以及乙腈等腈類。 載持於中孔矽酸鹽上之鈀之量係視載體及其量而變 動,通常為中孔矽酸鹽之0. 001至40重量%,且以0. 01至 30重量%為佳、以0. 1至20重量%更佳。 在本發明反應中,適合使用之烯烴化合物較典型者為 經取代或未取代之環烯烴。未取代環烯烴可舉例如具有約 4至20個碳之環烯烴,例如:環丁烯、環戊烯、環己烯、 環庚烯、環辛烯、環癸烯、環十二烯、環十八烯等。較宜 使用之環烯烴為環己烯,從環己烯可有效率地製造環己 9 320752 200934581 •酮。經取代之環烯烴可舉例如:上述未取代環稀烴之 *位置及任何個數之氫經取代基取代者。取代基之例子可舉 例如·'氯、氟、漠、蛾等鹵素原子、經基、幾基、氛基: 醯基、硝基、胺基、環烷基、芳基、雜環基等。 " 在本發明之反應中,分子態氧可使用純氧或空氣,或 經由將此等之氣體以氮氣或氦氣等惰性氣體稀釋而做為含 有分子態氧之氣體使用。使用之氧氣量依所要氧化之烯= ❾化σ物之種類及量、以及所使用之溶劑中之氧溶解度等而 調整。通常,分子態氧係烯烴化合物每丨莫耳,使用'1莫 耳至約100莫耳(較佳為約2莫耳至約5〇莫耳、更佳為約 5莫耳至約20莫耳)之量。或者,氧氣分壓較佳在〇 〇1至 l〇MPa之範圍,更佳為在〇.〇5至5脱&之範圍。 水量較典型地係烯烴化合物每〗莫耳,為丨至卯 耳,以約5至約1000莫耳為佳、以約1〇至約2〇〇莫耳更 本發明之反應通常在液相中進行,通常將惰性产 劑做為反應溶劑使用。惰性有機溶劑之例子可舉例如:二 化合物(例如··乙腈、丙腈、笨甲腈等),醇類(例如:月 =醇、、異丙醇等)等極性有機溶#卜以使用極性有機溶劑為 使用以乙腈更佳。此外,上述溶劑可單獨使用,亦可混: 在本發明之反應中,質子可由多氧酸陰離子化合 、亦可由質子酸之形式添加於反應中。質子酸可例舉如. 無機酸、有機酸、或固體酸。無機酸之例子可舉例如:硫 320752 200934581 . 酸、硝酸、鹽酸、碟酸、蝴酸等。右 •羧酸、及石黃酸。此外,在任―情 ^之例子可舉例如: 亦可具有1個或複數個齒素原子^ ’在該等有機殘基中 甲酸、脂祕鱗(例如乙駿)、脂^^之例子可舉例如: 酸)、芳香族叛酸(例如苯曱酸二、緩酸(例如環已燒緩 酸(例如:曱項酸或乙項酸)、芳西欠可舉例* :燒基石夤 曱苯確酸或萘確酸)等。固體質子'對 貝卞&之例子可舉例如: © 石,酸型離子交換樹腊等)、酸性彿石等 質子之有效量係因所使用之稀經化合 劑量及種類而異,宜適當調整。例如.丄 *在反應含有水相; 進行時,質子酸之形式添加 貝子使水相中之貝子底度較佳成為⑽至胸/ 為10至1m〇i/L,質子亦可以質子酸之形式添加。當反岸 在由水及有機溶劑所形成之均勾液相中進行時,當所添^ ❾之質子酸及多氧酸陰離子化合物以陽離子之形式含有質子 日夺,假設所含之所有質子皆游離,則可添加質子酸使均勾 液相中之質子濃度較佳成為in 1GnK)i/L,更佳是成為 1(Γ3 至 lmol/L。 本發明之反應通常在〇至200。(〕(較佳為1〇至15〇。〇、 更佳為30至100 C)之溫度範圍中進行。反應通常在〇 〇1 至lOMPa(絕對壓力)(較佳為〇. 〇5至7MPa(絕對壓力)、更 佳為0. 1至5MPa(絕對壓力))。反應可以批式、半批式、 連續式、或該等之組合等方式進行。觸媒可採用漿液法或 II 320752 200934581 固定床法。 , 可收集含有生成物之反應溶液、或反應氣體而分離出 酮類化合物。所生成之酮類化合物通常經由蒸館、相分離 等而分離。酮類之例子可舉例如:環戊酮、環己酮、環十 二烷酮等。 以下,使用實施例更詳細說明本發明。再者,本發明 並不受以下之實施例所限定。 (實施例1) ® (OMCM-41之合成 以Na2Si〇3/Si〇2=0.124:l之莫耳比使用偏矽酸鈉 (Na2Si〇3)及Aerosi 1 200(日本Aerosi 1股份有限公司之註 冊商標)作為氧化石夕源,依文獻(Carvalho等人,Zeol ites, 18,408,1997)調製MCM-41。使用氫氧化四甲銨(TMAOH) 做為礦化劑,使用溴化鯨蠟基三甲基銨(CTMABr)做為模 板。將 Na2Si〇3(6. 3g)及 Aerosi 1 200(25g)懸浮於 TMAOH(26%) ❹ (13. 12g)中’將此懸浮物與溶解於水(l〇43g)之CTMABr (35. 79g)在不鏽鋼高壓蚤(lOOOmL)中混合而調製反應膠。 以加熱速度17. 5K/h加熱至105°C後,在此溫度維持48 小時。過濾分離所得之固體,以水洗淨,並在減壓下、8〇 °C乾燥3小時,最後在氮氣流中於530°C煅燒1小時,接 著在同溫度下於空氣流中煅燒5小時。 (2) 10 重量%之 Pd(〇Ac)2/MCM-41 之調製: 使 Pd(OAc)2(0. l〇g)溶於丙酮(10mL),添加 MCM-41 (lg)。在室溫攪拌1小時後,在353K進行乾燥,而以幾乎 12 320752 200934581 •'定量的收率得到[10重量%之Pd(0Ac)2/MCM-41]。 • (3)將環己烯氧化成環己酮 在玻璃管中加入環己烯(4麵〇1)、乙腈/離子交換水 (4. 3mL/0_ 7raL)、96 重量%之硫酸(40mg)、10 重量% Pd (0Ac)2/MCM-41 (90mg)、(NH4)6[M〇7〇24] · 4H2〇(7mg,Nacalai tesque 股份有限公司)及 Ti(S〇4)2 · 4H2〇(2mg,Nacalai tesque股份有限公司),然後將其插入具有120mL容量之 高壓釜中,導入氮氣3MPa及加壓空氣2MPa,於323K反應 〇 2小時,而得到環己酮。再者,以肉眼確認Ti(S〇4)2 . 4H2〇 完全溶於反應溶劑中。結果如表1所示。 (比較例1)使用不含鈦化合物之觸媒將環己烯氧化成環己 酮 在實施例1中,除了不使用Ti(S〇4)2 · 4H2〇以外,其 餘與實施例1進行完全同樣的操作。結果如表1所示。 (實施例2) 在玻璃管中加入環己烯(6mmol)、乙腈/離子交換水 (4. 3mL/0. 7mL)、96 重量%之硫酸(8mg)、10 重量% Pd(OAc)2 /MCM-41(90mg)、H3[PM〇6W6〇4〇](266mg,曰本無機化學工業 股份有限公司)及Ti(S〇4)2 · 4H2〇(28mg),然後將其插入具 有120mL容量之高壓釜中,導入氮氣3MPa及加壓空氣 2MPa,於323K反應2小時,而得到環己酮。結果如表1所 示。 (實施例3) 在實施例 2 中,除了使用 TiOS〇4.nH2〇(14mg,Nacalai 13 320752 200934581 • tesque股份有限公司),取代Ti(s〇4)2· 4H2〇以外,其餘與 , 實施例2進行完全同樣的操作。再者,以肉眼確認TiOSCh · nH2〇完全溶於反應溶劑中。結果如表1所示。 (比較例2) 在實施例2中,除了不使用Ti(s〇4)2· 4H2〇以外,其 餘與實施例2進行完全同樣的操作。結果如表1所示。 (實施例4)使用不含MCM-41之觸媒將環己烯氧化成環己酮 在玻璃管中加入環己烯(6mmo 1)、乙腈/離子交換水 (4· 3mL/0. 7mL)、96 重篁%之疏酸(gmg)、pd(〇Ac)2(7mg)、 H3[PM〇6W6〇4〇](266mg)及 Ti(S〇4)2 · 4H2〇(28mg),然後將其插 入具有120mL容量之高壓爸中,導入氮氣3MPa及加壓空氣 2MPa,於323K反應2小時’而得到環己酮。結果如表1所 示。 (比較例3) 在實施例4中,除了不使用Ti(s〇4)2 · 4h2〇以外,其 φ 餘與實施例4進行完全同樣的操作。結果如表1所示。 (實施例5) 將環己烯(6麵〇1)、乙腈/離子交換水(4. 3inL/ 0. 7mL)、96 重量%之硫酸(0. 〇4g)、Pd(0Ac)2(5mg)、(NH〇6 [M〇7〇24] · 4H2〇(33mg)、TiOS〇4 · nH2〇(7mg)及 MCM-41 (88mg) 裝入具有120mL之容量之高壓釜中,導入氮氣3MPa及加壓 空氣2MPa,於323K反應2小時’而得到環己酮。結果如 表1所示。 (實施例6)(含有[S^ouO62]4-之溶液之調製) 14 320752 200934581 . 將H2M〇〇4懸浮於水(l〇mL)中,缓缓加入96重量%之硫 t I (2此)。然後添加乙猜(5〇mL) ’加熱回流30分鐘。冷卻 至至溫,收集分離成兩層之上層。從質量分析及光譜確 認[S^oisO62]4—之生成。之後,將所得之溶液標記成 [S2M〇18〇62]4_溶液。 (實施例7) 將環己烯(10mm〇l)、離子交換水(〇. 7mL)、96重量%之 硫酸(0. 04g)、Pd(〇Ac)2(5mg)、實施例6中所調製之 ❹[S2M〇18〇62]4-溶液(4. 3mL)及 TiOS〇4 · nM(30mg)裝入具有 120mL容量之高壓釜中,導入氮氣3MPa及加壓空氣2MPa, 於323K反應2小時,而得到環己酮。結果如表1所示。 (實施例8) 將環己烯(lOmmol)、乙腈/離子交換水(4.3mL/ 0· 7mL)、96 重量。/。之硫酸(0. 〇4g)、Pd(0Ac)2(4mg)、 H3[PM〇i2〇4〇](244mg,曰本無機化學工業股份有限公司)及 φ TiOS〇4.nH2〇(15mg)裝入具有120mL容量之高壓釜中,導入 氮氣3MPa及加壓空氣2MPa,於323K反應2小時,而得到 環己酮。結果如表1所示。 (比較例4) 在實施例8中’除了不使用TiOS〇4.nH2〇以外,其餘與 實施例8進行完全同樣的操作。結果如表1所示。 15 320752 200934581 [表l] 多氧酸陰離子 Ti源 MCM-41 轉化率 (%) 選擇率 (%) T0F 實施例1 (NH4)e[M〇7〇24] Ti(S〇4)2 有 74 94 47 比較例1 (NH4)6 [ M〇7〇24 ] — 有 45 91 26 實施例2 H3[PM〇6W6〇«] Ti(S〇4)2 有 77 96 72 實施例3 H3[PM〇6W6〇4〇] TiOS〇4 有 70 96 65 比較例2 H3[PM〇6W6〇4〇] — 有 50 94 45 實施例4 H3[PM〇6We〇4〇] Ti(S〇4>2 無 58 96 55 比較例3 H3[PM〇eW6〇4〇] — 無 26 95 24 實施例5 (NH4)6[M〇7〇24] TiOS〇4 有 43 93 64 實施例7 [S2M018062]4 TiOS〇4 無 47 94 107 實施例8 H3 [ PM012040 ] TiOS〇4 無 23 96 60 比較例4 H3[PM〇12〇40] — 無 6 94 15 轉化率(%):環己烯之轉化率 選擇率(%):生成物中之環己烯之選擇率 T0F(周轉頻率,turnover frequency):表示每單位時間、單位莫耳Pd所 生成之環己酮之莫耳數 【圖式簡單說明】 無。 【主要元件符號說明】 無0 16 320752Ρ· 865) Synthesis. Further, cerium oxide such as precipitated cerium oxide or colloidal cerium oxide can be used as a cerium source, and sodium citrate such as liquid glass can be used for, for example, hydrothermal synthesis, followed by washing with a suitable solvent such as toluene, methanol or acetone. , or 'by removing the template, or by heating at a temperature of about 300 to 8 〇〇t or after calcination and then washing. In this 荨中孔石酸, it is better to use a bribe Calculate the larger specific surface area per unit weight. It is better to have a specific surface area of 200 i 2000 m 2 per lg for the galvanic salt having a specific surface area of 400 to 2 ω 2 per lg. The shape and the regularity are not particularly limited as long as the mesopores are present, and if necessary, the tablets may be combined into a tablet shape or a spherical shape before or after the definition of the substance and the polyoxoanion compound. The cylindrical shape, the pore salt forming palladium source, and the polyoxoacid anion compound may be separately added to the reaction system. For example, after the mesoporous oxalate ionic compound is supported on the mesoporous (tetra) salt, ^, or more gas and acid = to the reaction. Those who cut the source, the = point, the earth or the ionic age, shouted (four) the ground in the compound, 夂|上' and the shape 200934581. The carrier is supported. The catalyst of the present invention is typically via palladium. A solution or suspension of the source, a solution or suspension of the polyoxoacid anion compound, or a solution or suspension of the source of titanium ions, or a solution or suspension containing all of the solution is impregnated in the mesoporous silicate. For example, after preparing a palladium source solution of a suitable solvent, adding a mesoporous citrate to the same, and then stirring the resulting mixture, or simultaneously adding the remaining components of the catalyst to the components, thereby bringing the components into contact with each other. A mixture is obtained. Usually, the obtained solid matter is filtered or the solvent is evaporated to obtain a solid catalyst of the present invention. If necessary, these may be combined. Alternatively, a palladium source and a polyoxoacid anion compound may be prepared in a suitable solvent. A solution or suspension, and a mesoporous citrate is added to the resulting mixture to bring the two into contact with each other, and then the mixture is subjected to the same treatment as described above by filtration, evaporation, or drying. Examples of a suitable solvent for dissolving a palladium source, a polyoxoacid anion compound, or a titanium ion source include alcohols such as water, decyl alcohol or ethanol; ketones such as acetone Φ; and nitriles such as acetonitrile. 1 至30重量百分比的优选为0. 1。 The amount of 0. 01 to 30% by weight, preferably 0. 01 to 30% by weight, with 0.1% by weight. More preferably, it is 20% by weight. In the reaction of the present invention, the olefin compound which is suitably used is typically a substituted or unsubstituted cycloolefin. The unsubstituted cyclic olefin may, for example, be a cyclic olefin having about 4 to 20 carbons, for example. : cyclobutene, cyclopentene, cyclohexene, cycloheptene, cyclooctene, cyclodecene, cyclododecene, cyclooctadecene, etc. The cycloolefin which is preferably used is cyclohexene, from cyclohexane The olefin can efficiently produce cyclohexane 9 320752 200934581 • ketone. The substituted cyclic olefin may, for example, be a *position of the above unsubstituted cycloaliphatic hydrocarbon and any number of hydrogens substituted with a substituent. Examples of the substituent include, for example, a halogen atom such as chlorine, fluorine, molybdenum or moth, a thiol group, a aryl group, an aryl group, a fluorenyl group, a nitro group, an amine group, a cycloalkyl group, an aryl group or a heterocyclic group. " In the reaction of the present invention, molecular oxygen may be used as a gas containing molecular oxygen by using pure oxygen or air or by diluting such gases with an inert gas such as nitrogen or helium. The amount of oxygen used is adjusted depending on the type and amount of the olefin to be oxidized, the amount of oxygen in the solvent to be used, and the solubility of oxygen in the solvent to be used. Generally, the molecular oxygenated olefinic compound is used in an amount of from 1 mole to about 100 moles per mole of olefinic compound, preferably from about 2 moles to about 5 moles, more preferably from about 5 moles to about 20 moles. The amount. Alternatively, the partial pressure of oxygen is preferably in the range of 〇1 to l〇MPa, more preferably in the range of 〇.〇5 to 5 脱& The amount of water is typically olefinic compound per mole, from 丨 to 卯, preferably from about 5 to about 1000 moles, and from about 1 Torr to about 2 Torr. The reaction of the present invention is usually in the liquid phase. The inert preparation is usually used as a reaction solvent. Examples of the inert organic solvent include, for example, a di-compound (e.g., acetonitrile, propionitrile, benzoic acid, etc.), a polar organic solvent such as an alcohol (e.g., month = alcohol, isopropanol, etc.) to use a polar group. The organic solvent is preferably used with acetonitrile. Further, the above solvent may be used singly or in combination: In the reaction of the present invention, protons may be anionically synthesized by polyoxo acid or may be added to the reaction in the form of a protonic acid. The protic acid may, for example, be an inorganic acid, an organic acid or a solid acid. Examples of the inorganic acid include sulfur 320752 200934581. Acid, nitric acid, hydrochloric acid, acid acid, ceradic acid and the like. Right • Carboxylic acid, and rhein. In addition, in the case of the case, for example, there may be one or a plurality of dentate atoms. 'Examples of formic acid, lipid secrets (for example, jun), and lipids in the organic residues may be exemplified. Such as: acid), aromatic tickic acid (such as benzoic acid, slow acid (such as ring has burned acid (such as: acid or ethyl acid), aryl owe can be exemplified *: burning base stone benzene Acid or naphthalene acid, etc. Examples of solid protons for Belle & for example: © stone, acid-type ion exchange tree wax, etc., acidic pro-stones, etc. The dosage and type may vary and should be adjusted appropriately. For example, 丄* in the reaction contains an aqueous phase; when it is carried out, the addition of shellfish in the form of protonic acid makes the bottom of the shell in the aqueous phase preferably (10) to chest/10 to 1 m〇i/L, and the proton can also be in the form of protonic acid. Add to. When the anti-shore is carried out in a homogeneous liquid phase formed by water and an organic solvent, when the protonic acid and the polyoxoacid anion compound are added in the form of a cation, the protons are assumed to be in the form of a cation, assuming all the protons contained therein are If it is free, protonic acid may be added so that the proton concentration in the homogenate liquid phase is preferably in 1GnK)i/L, more preferably 1 (Γ3 to 1 mol/L. The reaction of the present invention is usually in the range of 〇 to 200. It is preferably carried out in a temperature range of from 1 to 15 Torr, more preferably from 30 to 100 C. The reaction is usually from 〇〇1 to 10 MPa (absolute pressure) (preferably 〇. 〇5 to 7 MPa (absolute) Pressure), more preferably from 0.1 to 5 MPa (absolute pressure). The reaction can be carried out in batch, semi-batch, continuous, or a combination of the above. The catalyst can be used in a slurry method or II 320752 200934581 fixed bed. A ketone compound may be isolated by collecting a reaction solution containing a product or a reaction gas, and the ketone compound to be produced is usually separated by steaming, phase separation, etc. Examples of the ketone may, for example, be cyclopentanone. , cyclohexanone, cyclododecanone, etc. Hereinafter, examples are used The present invention will be described in more detail. Further, the present invention is not limited by the following examples. (Example 1) ® (The synthesis of OMCM-41 is carried out using a molar ratio of Na2Si〇3/Si〇2=0.124:1 Sodium metasilicate (Na2Si〇3) and Aerosi 1 200 (registered trademark of Japan Aerosi 1 Co., Ltd.) were used as the source of oxidized stone, and MCM-41 was prepared according to the literature (Carvalho et al., Zeol ites, 18, 408, 1997). Tetramethylammonium hydroxide (TMAOH) was used as a mineralizer, and cetyl cetyltrimethylammonium (CTMABr) was used as a template. Na2Si〇3 (6.3 g) and Aerosi 1 200 (25 g) were suspended. In TMAOH (26%) ❹ (13. 12g), the suspension was mixed with CTMABr (35.79 g) dissolved in water (13 g) in a stainless steel high pressure crucible (100 mL) to prepare a reaction gel. After the temperature of 17. 5K / h was heated to 105 ° C, the temperature was maintained for 48 hours. The solid obtained was separated by filtration, washed with water, dried under reduced pressure at 8 ° C for 3 hours, and finally in a stream of nitrogen. Calcination at 530 ° C for 1 hour, followed by calcination in a stream of air at the same temperature for 5 hours. (2) Preparation of 10% by weight of Pd(〇Ac) 2 /MCM-41: Pd(OAc) 2 (0. L〇g Dissolved in acetone (10 mL), added MCM-41 (lg). After stirring at room temperature for 1 hour, it was dried at 353 K, and obtained in a yield of almost 12 320752 200934581 • '[10% by weight of Pd (0Ac) ) 2/MCM-41]. • (3) Oxidation of cyclohexene to cyclohexanone. Add cyclohexene (4-sided 〇1), acetonitrile/ion exchanged water (4.3 mL/0_7raL), 96% by weight of sulfuric acid (40 mg) to a glass tube. 10% by weight Pd (0Ac)2/MCM-41 (90mg), (NH4)6[M〇7〇24] · 4H2〇 (7mg, Nacalai tesque Co., Ltd.) and Ti(S〇4)2 · 4H2 〇 (2 mg, Nacalai tesque Co., Ltd.), which was then inserted into an autoclave having a capacity of 120 mL, introduced with nitrogen gas 3 MPa and pressurized air 2 MPa, and reacted at 323 K for 2 hours to obtain cyclohexanone. Further, it was confirmed with the naked eye that Ti(S〇4)2.4H2〇 was completely dissolved in the reaction solvent. The results are shown in Table 1. (Comparative Example 1) Oxidation of cyclohexene to cyclohexanone using a catalyst containing no titanium compound In Example 1, except that Ti(S〇4)2·4H2〇 was not used, the same was carried out as in Example 1. The same operation. The results are shown in Table 1. (Example 2) Cyclohexene (6 mmol), acetonitrile/ion exchanged water (4.3 mL/0.7 mL), 96% by weight of sulfuric acid (8 mg), and 10% by weight of Pd(OAc)2 were added to a glass tube. MCM-41 (90 mg), H3 [PM〇6W6〇4〇] (266 mg, Sakamoto Inorganic Chemical Co., Ltd.) and Ti(S〇4)2 · 4H2〇 (28 mg), which were then inserted into a capacity of 120 mL. In the autoclave, nitrogen gas of 3 MPa and pressurized air of 2 MPa were introduced, and the mixture was reacted at 323 K for 2 hours to obtain cyclohexanone. The results are shown in Table 1. (Example 3) In Example 2, except that TiOS〇4.nH2〇 (14 mg, Nacalai 13 320752 200934581 • tesque Co., Ltd.) was used instead of Ti(s〇4)2·4H2〇, Example 2 performs exactly the same operation. Further, it was confirmed with the naked eye that the TIMSCh·nH2〇 was completely dissolved in the reaction solvent. The results are shown in Table 1. (Comparative Example 2) In the second embodiment, the same operation as in the second embodiment was carried out except that Ti(s〇4)2·4H2〇 was not used. The results are shown in Table 1. (Example 4) Oxidation of cyclohexene to cyclohexanone using a catalyst containing no MCM-41. Add cyclohexene (6 mmo 1), acetonitrile/ion exchanged water (4.3 mL/0.7 mL) to a glass tube. , 96% 疏% acid (gmg), pd(〇Ac)2 (7mg), H3[PM〇6W6〇4〇] (266mg) and Ti(S〇4)2 · 4H2〇 (28mg), then This was inserted into a high pressure dad having a capacity of 120 mL, and nitrogen gas 3 MPa and pressurized air 2 MPa were introduced, and reacted at 323 K for 2 hours to obtain cyclohexanone. The results are shown in Table 1. (Comparative Example 3) In the fourth embodiment, the same operation as in the fourth embodiment was carried out except that Ti(s〇4) 2 · 4h2〇 was not used. The results are shown in Table 1. (Example 5) Cyclohexene (6-facet 〇1), acetonitrile/ion-exchanged water (4.3 inL/0.7 mL), 96% by weight of sulfuric acid (0. 4 g), Pd(0Ac) 2 (5 mg) ), (NH〇6 [M〇7〇24] · 4H2〇 (33mg), TGS〇4 · nH2〇 (7mg) and MCM-41 (88mg) were charged into an autoclave with a capacity of 120mL, and nitrogen gas was introduced into 3MPa. And the pressurized air was 2 MPa, and reacted at 323 K for 2 hours to obtain cyclohexanone. The results are shown in Table 1. (Example 6) (Preparation of a solution containing [S^ouO62]4-) 14 320752 200934581. H2M 〇〇4 was suspended in water (10 mL), slowly added 96% by weight of sulfur t I (2). Then add B guess (5 〇 mL) 'heated reflux for 30 minutes. Cool to warm, collect and separate The upper layer was formed into two layers. The mass analysis and the spectroscopy confirmed [S^oisO62] 4 -. After that, the obtained solution was labeled as [S2M〇18〇62]4_ solution. (Example 7) Cyclohexene (10 mm 〇 l), ion-exchanged water (〇. 7 mL), 96% by weight of sulfuric acid (0.04 g), Pd (〇Ac) 2 (5 mg), and yttrium prepared in Example 6 [S2M〇18〇62 ] 4-solution (4.3 mL) and TiOS〇4 · nM (30 mg) were charged with a high pressure of 120 mL capacity Into, nitrogen gas 3 MPa and pressurized air 2 MPa were introduced and reacted at 323 K for 2 hours to obtain cyclohexanone. The results are shown in Table 1. (Example 8) Cyclohexene (10 mmol), acetonitrile / ion exchange water (4.3) mL/0·7mL), 96% by weight of sulfuric acid (0. 〇4g), Pd(0Ac)2(4mg), H3[PM〇i2〇4〇](244mg, Sakamoto Inorganic Chemical Industry Co., Ltd. And φ TiOS 〇 4.nH2 〇 (15 mg) was placed in an autoclave having a capacity of 120 mL, and nitrogen gas of 3 MPa and pressurized air of 2 MPa were introduced, and reacted at 323 K for 2 hours to obtain cyclohexanone. The results are shown in Table 1. (Comparative Example 4) The same operation as in Example 8 was carried out except that the use of TUS 〇 4.nH2 不 was not carried out in Example 8. The results are shown in Table 1. 15 320752 200934581 [Table 1] Polyoxyacid Anion Ti source MCM-41 Conversion (%) Selectivity (%) T0F Example 1 (NH4)e[M〇7〇24] Ti(S〇4)2 has 74 94 47 Comparative Example 1 (NH4)6 [ M〇7〇24 ] — There are 45 91 26 Example 2 H3[PM〇6W6〇«] Ti(S〇4)2 Yes 77 96 72 Example 3 H3[PM〇6W6〇4〇] TiOS〇4 has 70 96 65 Comparative Example 2 H3[PM〇6W6〇4〇] — with 50 94 45 Example 4 H3[PM〇6We〇4〇] Ti(S〇4>2 No 58 96 55 Comparative Example 3 H3[PM〇eW6〇4〇] — No 26 95 24 Example 5 (NH4) 6 [M〇 7〇24] TiOS〇4 has 43 93 64 Example 7 [S2M018062]4 TiOS〇4 No 47 94 107 Example 8 H3 [PM012040] TiOS〇4 No 23 96 60 Comparative Example 4 H3[PM〇12〇40] — no 6 94 15 conversion rate (%): conversion rate of cyclohexene (%): selectivity of cyclohexene in the product T0F (turnover frequency): means unit per unit time, unit mole The number of moles of cyclohexanone produced by Pd [simple description of the schema] None. [Main component symbol description] None 0 16 320752

Claims (1)

200934581 ‘ 七、申請專利範圍: •種觸媒,其係為含有㈣、、乡氧酸陰離子化合物及欽 離子源。 :申”月專利|巳圍第1項之觸媒’其中,前述鈀源係不含 氣之趣》源者。 3.如申請專利範圍第!項之觸媒,其中,前独源係乙酸 鈀者。 ❿4·如申^專利範圍第1項至第3項中任-項之觸媒,其 中則述多氧酸陰離子化合物係含有鉬之多氧酸陰離 化合物者。 5·如申^專利範圍第i項至第3項中任一項之觸媒,其 中别述多氧酸陰離子化合物係含有鉬及鎢之多氧酸陰 離子化合物者。 π 6·如申請專利範圍第1項至第3項中任-項之觸媒,其 _ 中,刖述多氧酸陰離子化合物係(ΝΗ4)6[Μ〇7〇24]者。 • *申請專利範圍第1項至第3項中任—項之觸媒,其 中,刖述多氧酸陰離子化合物係Η3[ρΜ〇ΐ21〇4&](式中, m表示0至12之整數)者。 8.如申請專利範圍第1項至第3項中任一項之觸媒,其 9中,前述多氧酸陰離子化合物係[s2M〇18〇62r者。’、 申π專利範圍第1項至第8項中任一項之觸媒,其 中,則述鈦離子源係硫酸鈦、或硫酸氧鈦者。 〇·如申請專利範圍第1項至第9項中任-項之觸媒,其 中,尚含有中孔矽酸鹽者。 一 320752 17 200934581 前述鈀源係載 π.如申請專利範圍第10項之觸媒,其中 持於前述中孔矽酸鹽者。 12. 如申請專利範圍第1()項或第u項之觸媒,其中,前述 中孔石夕酸鹽係、中孔氧化石夕或在其骨架中含有自Μ、 Tl、Zr、Ga、Fe、B、v、Nb、cr、M〇、Mn、Cc^Snm 成群組中選出之至少i種元素之金屬石夕酸越者。 13. 如申請專利範圍第u項或第12項之觸媒,其中,前述 中孔矽酸鹽係M41S、FBS-16、HMS、或SBA者。 如申請專利範圍第η項或第12項之觸媒’其中,前述 中孔石夕酸鹽係前述中孔石夕酸鹽每lg具有獅至2議2 之表面積之中孔矽酸鹽者。 .種酮類化合物之製造方法,其係在申請專利範圍第】 項至第14項中任—項之觸媒及有效量之質子存在下, 將烯烴化合物與分子態氧及水反應。 16.如申請專利第15項之_^合物之製造方法,其 中’前述質子源係硫酸者。 •如申W專利Ιϋΐΐ第15項或第16項之喃化合物之製造 法其中,剧述反應係在含有極性有機溶劑及水之液 相中進行’且前述液相巾係含有有效量之鈦離子者。 .如申請專利範圍第17項之酮類化合物之製造方法,其 中,前述極性有機溶劑係乙腈者。 19Hi利範圍第15項至第18項中任—項之酮類化合 勿之衣造方法,其中,前述烯烴化合物係環己烯,前述 _類化合物係環己酮者。 320752 200934581 四、指定代表圖:本案無圖式。 (一) 本案指定代表圖為:第( )圖。 (二) 本代表圖之元件符號簡單說明:200934581 ‘ VII. Patent application scope: • A kind of catalyst, which contains (4), oxyacid anion compounds and ion source. : Shen "month patent | 触 第 第 第 第 第 ' ' ' ' 第 第 第 第 第 第 第 第 第 第 第 第 第 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. Palladium. ❿4· The catalyst of any of the items in items 1 to 3 of the patent scope, wherein the polyoxoacid anion compound is a compound containing molybdenum polyoxoacid anion compound. The catalyst according to any one of the items (i) to (3), wherein the polyoxoacid anion compound contains a polyoxoacid anion compound of molybdenum and tungsten. π 6 · as claimed in the first to the first The catalyst of any of the three items, in which _, the description of the polyoxoacid anion compound system (ΝΗ4)6 [Μ〇7〇24]. * * Patent application range 1 to 3 - The catalyst of the item, wherein the polyoxoacid anion compound system Η3[ρΜ〇ΐ21〇4&] (where m represents an integer from 0 to 12) is as described in the first to third claims. In the catalyst of any one of the items, the above-mentioned polyoxoacid anion compound is [s2M〇18〇62r.], and the application of the π patent range is in items 1 to 8. The catalyst of the item, wherein the titanium ion source is titanium sulfate or titanyl sulfate. 〇 · The catalyst of any one of the first to the ninth paragraphs of the patent application, wherein the medium pore 尚Acidic acid. A. 320752 17 200934581 The aforementioned palladium source is supported by π. The catalyst of claim 10, wherein the catalyst is held in the aforementioned mesoporous acid. 12. If the scope of claim 1 () or a catalyst of the u-term, wherein the mesoporous acid salt, mesoporous oxide oxide or the skeleton thereof contains self-twisting, Tl, Zr, Ga, Fe, B, v, Nb, cr, M, The cerium of the at least one element selected from the group consisting of Mn and Cc^Snm is 13. The catalyst according to the scope of item or item 12 of the patent application, wherein the aforementioned mesoporous silicate is M41S , FBS-16, HMS, or SBA. For example, the catalyst of the scope of the patent range n or 12], the aforementioned mesoporous acid salt is the aforementioned mesoporous acid salt per lg has lion to 2 2 of the surface area of the pore strontium sulphate. The method for the production of ketone compounds, which is in the scope of the patent application range of items 1-4 to 14 And an effective amount of protons, the olefin compound is reacted with molecular oxygen and water. 16. The method for producing a compound according to claim 15 wherein the 'proton source is sulfuric acid. The method for producing a compound according to Item 15 or Item 16, wherein the reaction is carried out in a liquid phase containing a polar organic solvent and water, and the liquid phase contains an effective amount of titanium ions. The method for producing a ketone compound according to the seventh aspect of the invention, wherein the polar organic solvent is acetonitrile, wherein the method for producing a ketone compound according to any one of items 15 to 18, wherein The olefin compound is cyclohexene, and the aforementioned compound is cyclohexanone. 320752 200934581 IV. Designated representative map: There is no schema in this case. (1) The representative representative of the case is: ( ). (2) A brief description of the symbol of the representative figure: 五、本案若有化學式時,請揭示最能顯示發明特徵的化學式: 本案無化學式。5. If there is a chemical formula in this case, please disclose the chemical formula that best shows the characteristics of the invention: There is no chemical formula in this case. 320752320752
TW097142484A 2007-11-07 2008-11-04 Method for preparing ketone compound TW200934581A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007289340 2007-11-07
JP2008056060 2008-03-06

Publications (1)

Publication Number Publication Date
TW200934581A true TW200934581A (en) 2009-08-16

Family

ID=40625833

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097142484A TW200934581A (en) 2007-11-07 2008-11-04 Method for preparing ketone compound

Country Status (3)

Country Link
JP (1) JP2009233651A (en)
TW (1) TW200934581A (en)
WO (1) WO2009060947A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITBS20130115A1 (en) * 2013-07-31 2015-02-01 Omb Saleri S P A ELEMENT AND CATALYTIC SYSTEM, PROCESS OF MANUFACTURE OF SUCH ELEMENT

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56108783A (en) * 1979-12-31 1981-08-28 Du Pont Manufacture of furan by oxidation of butadiene
JPS6075447A (en) * 1983-09-30 1985-04-27 Mitsubishi Gas Chem Co Inc Production of carbonic acid ester
JPH0551344A (en) * 1991-02-01 1993-03-02 Idemitsu Kosan Co Ltd Production of carbonyl compound
JPH0691170A (en) * 1992-09-10 1994-04-05 Nippon Petrochem Co Ltd Insoluble salt of heteropolyacid carrying palladium and production of unsaturated cyclic ketone using the same
GB9810928D0 (en) * 1998-05-22 1998-07-22 Bp Chem Int Ltd Catalyst and process
US6596896B2 (en) * 2000-03-03 2003-07-22 Teijin Limited Process for producing aromatic carbonate
JP2001334149A (en) * 2000-05-26 2001-12-04 Showa Denko Kk Catalyst useful for producing acetic acid, method of producing the same and method of producing acetic acid using the catalyst
JP2002265410A (en) * 2001-03-13 2002-09-18 Daicel Chem Ind Ltd Method for manufacturing ketone
DE102006001482A1 (en) * 2006-01-11 2007-07-12 Sumitomo Chemical Co., Ltd. Catalyst and process for producing a ketone using the same

Also Published As

Publication number Publication date
WO2009060947A1 (en) 2009-05-14
JP2009233651A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
Corma et al. Supported gold nanoparticles as catalysts for organic reactions
Wang et al. New strategies for the preparation of sinter‐resistant metal‐nanoparticle‐based catalysts
JP4967665B2 (en) Method for producing cycloalkanone
Evtushok et al. Highly efficient catalysts based on divanadium-substituted polyoxometalate and N-doped carbon nanotubes for selective oxidation of alkylphenols
García-García et al. MOF catalysis in relation to their homogeneous counterparts and conventional solid catalysts
KR20160080379A (en) Rh-C3N4 Heterogeneous catalyst for acetic acid synthesis by carbonylation reaction
KR20120109603A (en) Process for making titanium-mww zeolite
CN107754794A (en) Catalyst for producing hydrogen peroxide by direct synthesis
CN104557630B (en) A kind of preparation method of dimethyl sulfoxide
KR20140063799A (en) Catalyst for h202 synthesis and method for preparing such catalyst
TWI500607B (en) Direct epoxidation process
Li et al. Syntheses, structures and catalytic properties of Evans–Showell-type polyoxometalate-based 3D metal–organic complexes constructed from the semi-rigid bis (pyridylformyl) piperazine ligand and transition metals
Sun et al. Highly selective oxidation of styrene to styrene oxide over a tetraphenylporphyrin-bridged silsesquioxane-based hybrid porous polymer
JP6037209B2 (en) Method for producing tetrahydrofuran compound, hydrogenation catalyst and method for producing the same
TW200934581A (en) Method for preparing ketone compound
Panda et al. The journey from porous materials to metal-organic frameworks and their catalytic applications: a review
JP4816505B2 (en) Method for producing ketone compound
JP2008207155A (en) Manufacturing method of ketone compound
KR20130067518A (en) Catalyst for carbon-carbon coupling reactions using transition-metal silica nanoparticles
JP5014775B2 (en) Heteropolyoxometalate compound and method for producing the same
JP2008207156A5 (en)
Gomes et al. Post-synthetic modification of crystal-like periodic mesoporous phenylene-silica with ferrocenyl groups
KR20180090001A (en) Method for heterogeneous catalyst and method for the synthesis of compounds using the same
WO2007126139A1 (en) Method for producing epoxy compound
KR20110115136A (en) Method for producing propylene oxide using a noble metal catalyst supported on silylated active carbon