KR20130067518A - Catalyst for carbon-carbon coupling reactions using transition-metal silica nanoparticles - Google Patents

Catalyst for carbon-carbon coupling reactions using transition-metal silica nanoparticles Download PDF

Info

Publication number
KR20130067518A
KR20130067518A KR1020110134133A KR20110134133A KR20130067518A KR 20130067518 A KR20130067518 A KR 20130067518A KR 1020110134133 A KR1020110134133 A KR 1020110134133A KR 20110134133 A KR20110134133 A KR 20110134133A KR 20130067518 A KR20130067518 A KR 20130067518A
Authority
KR
South Korea
Prior art keywords
transition metal
silica
carbon
shell
reaction
Prior art date
Application number
KR1020110134133A
Other languages
Korean (ko)
Other versions
KR101358666B1 (en
Inventor
송현준
박지찬
김미종
김재영
박강현
김아람
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020110134133A priority Critical patent/KR101358666B1/en
Publication of KR20130067518A publication Critical patent/KR20130067518A/en
Application granted granted Critical
Publication of KR101358666B1 publication Critical patent/KR101358666B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • B01J35/61
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

PURPOSE: A transition metal-silica yoke-shell nano particle catalyst for a carbon-carbon coupling reaction, and a performing method of the carbon-carbon coupling reaction thereof are provided to improve a diffusivity and accessability of the reactants by empty spaces among the transition metal-silica and the pores in the silica shell. CONSTITUTION: A transition metal-silica yoke-shell nano particle catalyst for a carbon-carbon coupling reaction is surrounded by a silica shell that nano particles of VIII group-transition metal have pores, and has a form of nano particle structure which has empty spaces among the transition metal and the nano particles. The transition metal is an alloy of one or two metals selected among Pd, Ni, and Pt. The content of transition metal in the nano particle catalyst is 0.5-20wt%. The size of catalyst is 10-100 nm. The thickness of the empty space layer is 1-50 nm.

Description

탄소-탄소 짝지음 반응용 전이금속-실리카 나노입자 촉매 {CATALYST FOR CARBON-CARBON COUPLING REACTIONS USING TRANSITION-METAL SILICA NANOPARTICLES}CATALYST FOR CARBON-CARBON COUPLING REACTIONS USING TRANSITION-METAL SILICA NANOPARTICLES}

본 발명은 탄소-탄소 짝지음반응용 전이금속-실리카 나노입자 촉매 및 이를 이용한 탄소-탄소 짝지음 반응에 관한 것으로, 보다 상세하게는, VIII족 전이금속 나노입자가 기공을 가지는 실리카 껍질로 둘러싸여 있고 실리카 껍질과 전이금속 나노입자사이에는 빈 공간이 존재하는 나노입자 구조인, 전이금속-실리카 요크-쉘 나노입자 촉매 및 이를 이용한 탄소-탄소 짝지음 반응에 관한 것이다.The present invention relates to a transition metal-silica nanoparticle catalyst for carbon-carbon coupling reaction and a carbon-carbon coupling reaction using the same. More specifically, the Group VIII transition metal nanoparticles are surrounded by a silica shell having pores and are silica The present invention relates to a transition metal-silica yoke-shell nanoparticle catalyst having a void space between the shell and the transition metal nanoparticles, and a carbon-carbon coupling reaction using the same.

본 발명에 따르면, VIII족 전이금속인 팔라듐, 니켈, 백금 중에서 선택되는 전이금속-실리카 나노입자를 탄소-탄소 짝지음 반응에 적용하여 뛰어난 촉매활성을 유지하면서도 촉매의 회수와 재사용을 용이하게 할 수 있다.
According to the present invention, transition metal-silica nanoparticles selected from group VIII transition metals such as palladium, nickel, and platinum may be applied to a carbon-carbon coupling reaction, thereby facilitating recovery and reuse of catalysts while maintaining excellent catalytic activity. have.

아릴 할로겐화물들의 탄소-탄소 짝지음 반응은 화학, 의약학 및 생화학적 산업에의 다양한 응용을 위해 매우 중요하다. 이들 중 요오드화 아릴과 브롬화 아릴이 커플링 반응에 통상적으로 활용되었으나, 이들 물질보다는 염화 아릴이 가격이 저렴하여 경제적인 면에서 바람직한 면이 있다.Carbon-carbon pairing reactions of aryl halides are very important for various applications in the chemical, medicinal and biochemical industries. Among these, aryl iodide and aryl bromide have been commonly used in coupling reactions, but aryl chloride is cheaper than these materials, and thus, there is an economical aspect.

상기 탄소-탄소 짝지음 반응 촉매로서 VIII족 전이금속이 통상적으로 사용되고 있으며, 특히 팔라듐(Pd)을 활용한 균일상(homogeneous) 촉매는 이 분야의 큰 혁신을 가져왔다. 그러나 단일상 촉매의 경우, 값비싼 촉매의 재사용을 위한 촉매와 생성물간의 분리에 어려움이 있어 불균일화 반응에 관한 지속적인 연구가 진행되고 있으며, 많은 발전이 이루어지고 있다.Group VIII transition metals are commonly used as the carbon-carbon coupling catalyst, and particularly homogeneous catalysts utilizing palladium (Pd) have brought great innovation in this field. However, in the case of a single-phase catalyst, there is a difficulty in separation between the catalyst and the product for the reuse of expensive catalysts, and the continuous research on the disproportionation reaction is progressing, and many developments are made.

이러한 배경 하에서, 뛰어난 재사용성을 가지는 고활성 금속 촉매 시스템의 개발은, 특히 아릴 염화물과 같은 비활성 기질들의 짝지음 반응과 관련하여 상업적으로 뛰어난 가치를 가질 수 있다.Under this background, the development of highly active metal catalyst systems with excellent reusability can be of great commercial value, particularly with regard to the coupling reaction of inert substrates such as aryl chlorides.

일반적으로 불균일화 반응에 있어서 촉매 입자크기의 감소는, 표면에 노출된 활성 원자들의 수가 증가하고 해당 입자의 표면 대 부피 비율이 높아진다는 측면에서 상당한 반응성의 향상을 가져온다. 또한, 입자 주변에 특정 지지체 혹은 안정화 물질(stabilizer)이 존재하는 경우는, 나노규모 입자들의 불안정성에 의한 응집(aggreagation) 현상을 방지해 줌으로써 촉매입자 덩어리에 기인하는, 반응 중 활성 감소 문제가 해결될 수 있다.In general, the reduction in catalyst particle size in heterogeneous reactions results in a significant improvement in reactivity in that the number of active atoms exposed to the surface increases and the surface-to-volume ratio of the particles increases. In addition, when a specific support or stabilizer is present around the particles, the problem of reduced activity during the reaction, which is caused by the agglomeration of the catalyst particles, can be solved by preventing aggregation due to instability of the nanoscale particles. Can be.

상기 언급한 입자 크기와 지지체의 중요성은, 최근 많은 연구자들에 의해 증명되고 있고, 이에 따라 내부에 촉매로서 사용가능한 전이금속이 포함되며, 또한 상기 전이금속을 실리카가 둘러싸고 있는 형태인, 전이금속-실리카 코어-쉘 나노입자들이 제조되었으며, 이들을 다양한 고온 기상반응 및 용액상 반응에 응용할 수 있는 가능성이 보여지고 있다(Joo, S. H. et al., Nat. Mater., 8:126131, 2009).The above mentioned particle size and the importance of the support have been proved by many researchers in recent years, and thus include a transition metal usable as a catalyst therein, and also in the form in which the transition metal is surrounded by silica. Silica core-shell nanoparticles have been prepared and the possibility of applying them to various high temperature gas phase reactions and solution phase reactions has been shown (Joo, SH et al., Nat. Mater., 8: 126131, 2009).

이러한 전이금속-실리카 코어-쉘 구조체는, 나노 구조 내 금속입자가 실리카 쉘에 의해 매우 조밀하게 둘러싸여 입자 표면 활성 중심에서의 촉매반응이 제한될 뿐만 아니라, 실리카 쉘 자체는 반응물이 금속입자의 활성중심까지 확산되는 데에 장애물로 작용할 수 있다는 단점이 있다. 따라서 입자 표면 활성중심의 최대 이용성 확보와, 쉘 내에서의 반응물 확산 증대를 통한 촉매반응 속도 향상을 동시에 구현할 수 있는, 특성화된 전이금속-실리카 요크-쉘 나노입자가 새로이 연구개발 되어지고 있다.The transition metal-silica core-shell structure has a metal shell in the nanostructure that is very tightly surrounded by the silica shell to limit the catalytic reaction at the particle surface active center, as well as the silica shell itself is the active center of the metal particle. There is a disadvantage that it can act as an obstacle to spreading. Therefore, the specialized transition metal-silica yoke-shell nanoparticles that can simultaneously realize the maximum usability of the particle surface activity center and increase the catalytic reaction rate by increasing the diffusion of reactants in the shell have been newly researched and developed.

상기 전이금속-실리카 요크-쉘 나노입자라 함은 전이금속 나노입자가 기공을 가지는 실리카 껍질로 둘러싸여 있고 실리카 껍질과 금속 나노입자사이에는 빈 공간이 존재하는 나노입자를 말한다. 상기 요크-쉘 나노입자는 실리카 껍질과 금속 나노입자사이의 빈 공간에 의해 반응물이 직접 금속 표면에 용이하게 닿을 수 있는 구조를 지니고 있다 (도 1 참조).
The transition metal-silica yoke-shell nanoparticles refer to nanoparticles in which transition metal nanoparticles are surrounded by a silica shell having pores and an empty space exists between the silica shell and the metal nanoparticles. The yoke-shell nanoparticles have a structure in which the reactants can directly contact the metal surface by the empty space between the silica shell and the metal nanoparticles (see FIG. 1).

본 발명은 화학, 의약학 및 생화학적 산업에의 다양한 응용가능성이 있는 아릴 할로겐화물들의 탄소-탄소 짝지음 반응에 적합한 높은 활성을 지니며 또한 재사용이 용이한 비균일계 촉매를 제공하고, 이를 탄소-탄소 짝지음 반응에 이용하여 화학반응에 사용될 수 있는 유용한 여러 종류의 중간체들을 제공하는데 목적이 있다.
The present invention provides a highly homogeneous and easy to reuse non-uniform catalyst which is suitable for the carbon-carbon coupling reaction of aryl halides with various applications in the chemical, pharmaceutical and biochemical industries. It is an object of the present invention to provide a variety of useful intermediates that can be used for chemical reactions in carbon coupling reactions.

상기 목적을 달성하기 위하여 본 발명은 전이금속 나노입자가 기공을 가지는 실리카 껍질로 둘러싸여 있고 실리카 껍질과 금속 나노입자사이에는 빈 공간이 존재하는, 전이금속-실리카 요크-쉘 나노입자를 촉매로 이용하여 다양한 탄소-탄소 짝지음 반응에 이용함으로써 상기 짝지음 반응에 높은 활성을 가지며, 또한 촉매의 재사용을 용이하게 할 수 있다.In order to achieve the above object, the present invention uses a transition metal-silica yoke-shell nanoparticle as a catalyst, wherein the transition metal nanoparticle is surrounded by a silica shell having pores and an empty space exists between the silica shell and the metal nanoparticle. Use in various carbon-carbon coupling reactions has high activity in the coupling reaction and can also facilitate the reuse of catalysts.

상기 전이금속-실리카 요크-쉘 나노입자 촉매는 (a) 금속 이온 선구물질과 특정 계면활성제를 유기용매 하에서 고온으로 가열, 교반하여 금속 이온 전구체를 환원시킴과 동시에 계면활성제로 그 표면을 보호시킴으로써 안정한 금속 나노 입자를 형성하는 단계; (b) 상기 (a)단계에서 합성된 금속 나노입자를 분리 및 정제하는 단계; (c) 상기 (b)단계에서 정제된 금속 나노입자를 졸-겔 과정(sol-gel route)을 통해 실리카로 코팅하여 쉘을 형성시키는 단계; (d) 상기 (c)단계에서 형성된 금속-실리카 코어-쉘 나노입자의 실리카 층에 열적 반응, 또는 열적반응과 화학적 반응의 순차적 수행을 통해 기공을 형성시키는 단계;를 통해 제조될 수 있다.
The transition metal-silica yoke-shell nanoparticle catalyst is stable by (a) heating and stirring a metal ion precursor and a specific surfactant to an elevated temperature in an organic solvent to reduce the metal ion precursor and to protect the surface with a surfactant. Forming metal nanoparticles; (b) separating and purifying the metal nanoparticles synthesized in step (a); (c) coating the metal nanoparticles purified in step (b) with silica through a sol-gel route to form a shell; (d) forming pores by thermally reacting the silica layer of the metal-silica core-shell nanoparticles formed in step (c) or sequentially performing thermal and chemical reactions.

본 발명에 따르면, 전이금속-실리카 요크-쉘 나노입자 촉매는 그 중심 금속입자와 기공을 가지는 실리카 껍질 사이의 빈 공간에 의해 전이금속의 입자표면이 완전히 노출되어 있고, 실리카 껍질 내에 기공들과 전이금속-실리카 사이의 빈 공간들에 기인하여 반응물들의 확산성 및 접근성이 상당히 향상될 수 있다.According to the present invention, in the transition metal-silica yoke-shell nanoparticle catalyst, the particle surface of the transition metal is completely exposed by the void space between the central metal particle and the silica shell having pores, and the pores and the transition in the silica shell are Due to the void spaces between the metal and silica, the diffusivity and accessibility of the reactants can be significantly improved.

이러한 구조적 특성으로부터, 아릴할라이드의 탄소-탄소 짝지음 반응에서 뛰어난 반응성을 보여줌과 동시에 불균일계 반응에서의 촉매 재사용성이 용이하며, 실리카 껍질내에 전이금속이 내포됨으로써 전이금속이 안정한 상태로 촉매의 활성을 지속할 수 있어 촉매의 내구성이 강화될 수 있다. 또한 담체로서 열적으로 안정한 실리카의 사용을 통한 촉매의 열적 안정성을 강화하여 고온 반응에서 촉매의 안정성이 강화되는 촉매를 제공할 수 있다.
From these structural properties, it shows excellent reactivity in the carbon-carbon coupling reaction of aryl halides, and facilitates catalyst reuse in heterogeneous reactions. It can be continued so that the durability of the catalyst can be enhanced. In addition, it is possible to provide a catalyst which enhances the stability of the catalyst in a high temperature reaction by enhancing the thermal stability of the catalyst through the use of thermally stable silica as a carrier.

도 1은 본 발명에 따른, 팔라듐-실리카 요크-쉘 나노입자의 합성과정을 나타낸 것이다.
도 2는 본 발명에 따른, 팔라듐-실리카 요크-쉘 나노입자의 투과전자현미경 사진을 나타낸 것이다.
도 3은 본 발명에 따른, 팔라듐-실리카 요크-쉘 나노입자의 X-선 회절 스펙트럼을 나타낸 것이다.
도 4는 본 발명에 따른, 백금-실리카 요크-쉘 나노입자의 투과전자현미경 사진을 나타낸 것이다.
도 5는 본 발명에 따른, 백금-실리카 요크-쉘 나노입자의 X-선 회절 스펙트럼을 나타낸 것이다.
1 shows the synthesis of palladium-silica yoke-shell nanoparticles according to the present invention.
Figure 2 shows a transmission electron micrograph of the palladium-silica yoke-shell nanoparticles, according to the present invention.
Figure 3 shows the X-ray diffraction spectrum of the palladium-silica yoke-shell nanoparticles, according to the present invention.
Figure 4 shows a transmission electron micrograph of the platinum-silica yoke-shell nanoparticles, according to the present invention.
Figure 5 shows the X-ray diffraction spectrum of the platinum-silica yoke-shell nanoparticles, according to the present invention.

본 발명은 VIII족 전이금속 나노입자가 기공을 가지는 실리카(SiO2) 껍질에 둘러싸여 있고 상기 실리카 껍질과 상기 전이금속 나노입자사이에는 빈 공간이 존재하는 나노입자 구조의 형태를 가지는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매에 관한 것이다.Group VIII transition metal nanoparticles are surrounded by a silica (SiO2) shell with pores and have a form of nanoparticle structure in which an empty space exists between the silica shell and the transition metal nanoparticles. The present invention relates to a transition metal-silica yoke-shell nanoparticle catalyst for reaction.

상기 전이금속은 탄소-탄소 짝지음 반응의 종류나 반응조건 등에 따라 달라질 수 있으나, Pd, Ni 또는 Pt 중에서 선택되는 어느 하나, 또는 둘 이상의 합금이 될 수 있으며, 바람직하게는 Pd 또는 Pt 중 어느 하나가 될 수 있다.The transition metal may vary depending on the type of carbon-carbon coupling reaction or reaction conditions, but may be any one selected from Pd, Ni, or Pt, or two or more alloys, preferably Pd or Pt. Can be

또한 본 발명은 (a) VII족 전이금속 이온 선구물질과 계면활성제를 용매 하에서 가열, 교반하여 전이금속 이온 전구체를 환원시켜 전이금속 나노입자를 형성하는 단계; (b) 상기 전이금속 나노입자를 졸-겔 과정(sol-gel route)을 통해 실리카로 코팅함으로써 쉘을 형성시켜 전이금속-실리카 코어-쉘 나노 입자를 제조하는 단계; (c) 상기 (b)단계에서 형성된 전이금속-실리카 코어-쉘 나노입자의 수열반응을 통해 기공과 빈 공간을 형성시키는 단계;를 통해 제조되는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매를 제공함을 제2의 특징으로 한다.In addition, the present invention (a) heating and stirring the Group VII transition metal ion precursor and the surfactant in a solvent to reduce the transition metal ion precursor to form a transition metal nanoparticles; (b) preparing a transition metal-silica core-shell nanoparticle by forming a shell by coating the transition metal nanoparticle with silica through a sol-gel route; (c) forming pores and empty spaces through hydrothermal reaction of the transition metal-silica core-shell nanoparticles formed in step (b); prepared through the transition metal-silica yoke for carbon-carbon coupling reaction A second feature is to provide a shell nanoparticle catalyst.

또한 본 발명은 (a) VII족 전이금속 이온 선구물질과 계면활성제를 용매 하에서 가열, 교반하여 전이금속 이온 전구체를 환원시켜 전이금속 나노입자를 형성하는 단계; (b) 상기 전이금속 나노입자를 졸-겔 과정(sol-gel route)을 통해 실리카로 코팅함으로써 쉘을 형성시켜 전이금속-실리카 코어-쉘 나노 입자를 제조하는 단계; (c) 상기 (b)단계에서 형성된 전이금속-실리카 코어-쉘 나노입자의 열처리반응을 통해 기공과 빈 공간을 형성시키는 단계;를 통해 제조되는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매를 제공함을 제3의 특징으로 한다. In addition, the present invention (a) heating and stirring the Group VII transition metal ion precursor and the surfactant in a solvent to reduce the transition metal ion precursor to form a transition metal nanoparticles; (b) preparing a transition metal-silica core-shell nanoparticle by forming a shell by coating the transition metal nanoparticle with silica through a sol-gel route; (c) forming pores and void spaces by heat treatment of the transition metal-silica core-shell nanoparticles formed in step (b); prepared through the transition metal-silica yoke for carbon-carbon pairing reaction A third feature is to provide a shell nanoparticle catalyst.

또한 본 발명은 (a) VII족 전이금속 이온 전구체 물질과 계면활성제를 유기용매 하에서 80 - 350℃ 범위의 고온으로 가열, 교반하여 전이금속 이온 전구체를 환원시킴과 동시에 계면활성제로 그 표면을 보호시킴으로써 안정한 전이금속 나노입자를 형성하는 단계; (b) 상기 (a)단계에서 합성된 전이금속 나노입자를 분리 및 정제하는 단계; (c) 상기 (b)단계에서 정제된 금속 나노입자를 졸-겔 과정(sol-gel route)을 통해 실리카로 코팅함으로써 쉘을 형성시켜 전이금속-실리카 코어-쉘 나노 입자를 제조하는 단계; (d) 상기 (c)단계에서 형성된 전이금속-실리카 코어-쉘 나노입자의 열처리 반응을 통해 기공과 빈 공간을 형성시키는 단계;를 통해 제조되는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매를 제공함을 제4의 특징으로 한다.In addition, the present invention (a) by heating and stirring the Group VII transition metal ion precursor material and the surfactant at a high temperature in the range of 80 to 350 ℃ under an organic solvent to reduce the transition metal ion precursor and at the same time protect the surface with a surfactant Forming stable transition metal nanoparticles; (b) separating and purifying the transition metal nanoparticles synthesized in step (a); (c) preparing a transition metal-silica core-shell nanoparticle by forming a shell by coating the metal nanoparticle purified in step (b) with silica through a sol-gel route; (d) forming pores and empty spaces by heat treatment of the transition metal-silica core-shell nanoparticles formed in step (c); and the transition metal-silica yoke for carbon-carbon coupling reaction It is a fourth feature to provide a shell nanoparticle catalyst.

상기 (a) 단계의 금속 이온 선구물질은 Pd, Ni, Pt 중에서 선택되는 수용성 또는 비수용성 염으로서 고온가열에 의해 금속으로 환원될 수 있는 것이면 어느 것이나 가능하다. 또는 Pd, Ni, Pt에서 선택되는 하나를 사용하거나, 또는 두 가지 이상의 염을 함께 사용하여 합금 나노입자를 제조할 수 있다. 또한 계면활성제로서는 분자구조 내에 일단은 비극성 부분을 가지며 다른 일단은 극성부분을 가지는 통상의 계면활성제를 사용할 수 있다. 본 발명에서 사용가능한 계면활성제로서는 분자 내 한쪽 말단에 치환기를 가지거나 가지지 않을 수 있는 탄소수 6-20의 지방족 알킬기를 포함하며, 다른 말단은 아민기, 카르복실 산 기, 암모늄기, 알코올기 등의 극성 관능기를 가지는 화합물을 사용할 수 있다.The metal ion precursor of step (a) may be any water-soluble or non-aqueous salt selected from Pd, Ni, and Pt as long as it can be reduced to metal by high temperature heating. Alternatively, alloy nanoparticles may be prepared using one selected from Pd, Ni, and Pt, or two or more salts together. Moreover, as surfactant, the normal surfactant which has one nonpolar part and the other polar part in a molecular structure can be used. Surfactants usable in the present invention include aliphatic alkyl groups having 6 to 20 carbon atoms, which may or may not have a substituent at one end in the molecule, and the other ends are polar such as amine groups, carboxylic acid groups, ammonium groups, alcohol groups, etc. The compound which has a functional group can be used.

상기 (a) 단계의 가열단계의 온도는 금속 염의 환원을 위하여 80 oC 이상 350 oC 미만의 온도에서 이루어질 수 있고, 용매의 환류 온도에 의하여 좌우된다. 올레일아민을 용매로 이용한 경우에는 바람직하게 200 oC- 300 oC 가 최적의 조건일 수 있다. 상기 환원공정은 단순한 가열만에 의해 이루어질 수도 있고, NaBH4, 히드라진, 알데히드 등의 환원제의 사용에 의해서도 환원이 이루어 질 수 있다.The temperature of the heating step of step (a) may be made at a temperature of 80 oC or less than 350 oC for the reduction of the metal salt, depending on the reflux temperature of the solvent. In the case where oleylamine is used as the solvent, 200 oC-300 oC may be optimal. The reduction process may be achieved by simple heating, or may be reduced by the use of a reducing agent such as NaBH 4, hydrazine, aldehyde, or the like.

본 발명의 (a)단계는 (Kim, S.-W. et al , Nano . Lett . 3:1289-1291, 2003 )에 기재된 방법을 참조하면 보다 용이하게 이루어질 수 있다.Step (a) of the present invention is (Kim, S.-W. et Al , Nano . Lett . 3: 1289-1291, 2003).

본 발명에서, 상기 합성된 전이금속 나노입자를 분리 및 정제하는 단계는 필터, 원심분리, 세척 등의 통상의 분리, 또는 정제단계가 사용될 수 있으며, 경우에 따라 분리단계나 정제단계를 거치지 않고 다음단계인 금속 나노입자를 졸-겔 과정(sol-gel route)을 통해 실리카로 코팅하는 단계를 실시할 수 있다. 또한 반응조건, 또는 경제적 관점에 따라 분리단계나 정제단계 중 일부만이 실시될 수 있다.In the present invention, the step of separating and purifying the synthesized transition metal nanoparticles may be used as a conventional separation, or purification step, such as filter, centrifugation, washing, and if necessary, without passing through the separation step or purification step The step of coating the metal nanoparticles with silica through a sol-gel route may be carried out. In addition, only a part of the separation step or the purification step may be performed depending on the reaction conditions or the economic viewpoint.

상기 분리단계는 구체적으로, 원심분리를 통해 생성물 입자를 침전시켜 용매 및 잔여 유기물로부터 해당 입자만을 분리하는 방법에 의해 실시 될 수 있고, 정제단계는 구체적으로, 분리과정에서 얻어진 생성물 입자 침전물을 소수성 용매에 분산시킴으로써 잔여 유기물 등의 불순물을 제거하는 방법에 의해 실시될 수 있다.Specifically, the separation step may be carried out by the method of precipitating the product particles through centrifugation to separate only the particles from the solvent and the remaining organic matter. It can be carried out by a method of removing impurities such as residual organic matter by dispersing in.

본 발명에서, 전이금속-실리카 코어-쉘 나노 입자를 제조하는 단계에 해당하는, 금속 나노입자를 졸-겔 과정(sol-gel route)을 통해 실리카로 코팅하여 쉘을 형성시키는 단계는 일반적으로 잘 알려진 실리카 합성법 중 하나인, 물-오일 마이크로에멀젼(water-in-oil microemulsion) 방법을 통해 성공적으로 실리카 코팅이 이루어질 수 있다. 상기 실리카 형성 반응은 반응 중에 마이크로에멀젼계를 이루고, 열처리단계 이후 실리카 망 내에 불규칙적 기공을 형성시키기 위해, 분자내 한쪽말단에 치환기를 가지거나 가지지 않을 수 있는 탄소수 6-20의 지방족 알킬기를 포함하며, 다른 말단은 실록산기, 암모늄기, 알코올기 등의 극성 관능기를 가지는 화학식의 화합물을 사용할 수 있다. 팔라듐-실리카 요크-쉘 나노입자의 제조를 예로 들면 Igepal CO-630이라는 물질이 실리카 전구체인 octadecyl trimethoxysilane(C18TMS)이라는 긴 탄소사슬 알킬 실록산(alkyl siloxane)과 함께 첨가된다.In the present invention, the step of forming the shell by coating the metal nanoparticles with silica through a sol-gel route, which corresponds to the step of preparing the transition metal-silica core-shell nanoparticles, is generally well One of the known silica synthesis methods, silica coating can be successfully achieved through the water-in-oil microemulsion method. The silica forming reaction comprises a microemulsion system during the reaction, and includes an aliphatic alkyl group having 6 to 20 carbon atoms, which may or may not have a substituent at one end of the molecule, to form irregular pores in the silica network after the heat treatment step, The other terminal can use the compound of the formula which has polar functional groups, such as a siloxane group, an ammonium group, and an alcohol group. In the production of palladium-silica yoke-shell nanoparticles, for example, a material called Igepal CO-630 is added with a long carbon chain alkyl siloxane called octadecyl trimethoxysilane (C18TMS), a silica precursor.

상기 전이금속-실리카 코어-쉘 나노 입자를 제조하는 단계는 Park. J. C. et al, ChemCatChem, 3:755-760, 2011; Yi, D. K. et al , J. Am . Chem . Soc. 127:4990-4991, 2005 에 기재된 방법을 참조하면 보다 용이하게 이루어질 수 있다.The step of preparing the transition metal-silica core-shell nanoparticles is Park. JC et al , Chem Cat Chem , 3: 755-760, 2011; Yi, DK meat al , J. Am . Chem . Soc . 127: 4990-4991, 2005, which may be more readily referred to.

본 발명에서, 전이금속-실리카 코어-쉘 나노입자를 기공을 형성시켜, 전이금속-실리카 요크-쉘 나노입자를 제조하는 단계는 그 전단계에서 형성된, 금속-실리카 코어-쉘 나노입자의 실리카 층을 수열반응, 또는 열처리 반응에 의해 실리카와 전이금속 사이에 기공 또는 빈 공간을 형성시키는 것에 의해 달성될 수 있다.In the present invention, the step of forming the transition metal-silica core-shell nanoparticles to form pores, so as to prepare the transition metal-silica yoke-shell nanoparticles, the silica layer of the metal-silica core-shell nanoparticles formed in the previous step It can be achieved by forming pores or void spaces between the silica and the transition metal by hydrothermal reaction or heat treatment.

상기 수열반응은 중성 또는 염기성 조건에서의 실리카의 부분적 용해에 의해 이루어지며, 상기 염기성 조건은 pH 8-11 의 조건이 바람직하다. pH가 너무 큰 경우 용해가 급격해지고 pH가 작게 되면 부분적 용해가 용이하게 일어나지 않게 될 수 있다.The hydrothermal reaction is carried out by partial dissolution of silica in neutral or basic conditions, and the basic conditions are preferably pH 8-11. If the pH is too high, the dissolution becomes drastic and if the pH is low, partial dissolution may not easily occur.

또한 상기 열처리 반응은 수소기체 분위기 하에서 200 - 1000℃ 범위, 바람직하게는 250 - 800℃ 범위의 고온 열처리인 것이 적당하며, 열처리 과정을 수행함으로써 구조 내 존재하는 계면활성제나 기공형성원 등과 같은 잔여 유기물들을 제거될 수 있다.In addition, the heat treatment reaction is preferably a high temperature heat treatment in the range of 200-1000 ℃, preferably 250-800 ℃ in a hydrogen gas atmosphere, the residual organic material such as surfactants or pore-forming source in the structure by performing the heat treatment process Can be removed.

상기 기공 형성 과정은 수열반응에서 실리카의 부분적 용해와 고온 열처리 반응 중 어느 하나의 단독 공정만으로 이루어질 수도 있고, 순차적으로 병행함으로써 이루어질 수도 있다.The pore forming process may be performed by only one of the partial dissolution of silica and the high temperature heat treatment reaction in the hydrothermal reaction, or may be performed by sequentially in parallel.

일반적으로 수열반응과 열처리 반응을 함께 병행하여 제조된 전이금속-실리카 요크-쉘 나노입자가 나노 구조내 존재할 수 있는 불순물이 제거되어 촉매의 활성 등에서 유리한 면을 보여줄 수 있다.In general, the transition metal-silica yoke-shell nanoparticles prepared in parallel with the hydrothermal reaction and the heat treatment may remove impurities that may exist in the nanostructure, thereby showing an advantageous aspect in the activity of the catalyst.

또한 본 발명은 상기 수열반응 또는 열처리 반응의 이전, 또는 그 이후에 상기 전이금속 나노입자를 화학적 반응에 의해 에칭하는 방법을 추가할 수 있다. 또한 상기 화학적 반응에 의한 에칭방법은 수열반응과 동시에 이루어질 수도 있다.In another aspect, the present invention may add a method for etching the transition metal nanoparticles by a chemical reaction before or after the hydrothermal reaction or heat treatment reaction. In addition, the etching method by the chemical reaction may be performed simultaneously with the hydrothermal reaction.

상기 전이금속 나노입자를 화학적 반응에 의해 에칭하는 방법은 구체적으로 화학반응에 의해 금속나노입자를 용해시킴에 의해서 일어날 수 있다. 예를 들면 KCN 및 산과 같이 상기 전이금속과 화학반응을 하여 수용액상태에서 용해될 수 있는 염을 형성할 수 있는 물질을 투입함에 의해 금속나노입자의 에칭에 의해 크기가 작아지게 됨으로써, 기공과 빈 공간의 형성이 이루어 질 수 있다.The method of etching the transition metal nanoparticles by chemical reaction may be specifically caused by dissolving metal nanoparticles by chemical reaction. For example, by introducing a substance capable of chemically reacting with the transition metal such as KCN and an acid to form a salt that can be dissolved in an aqueous solution, the size is reduced by etching of the metal nanoparticles, thereby resulting in porosity and void space. The formation of can be done.

또한 금속나노입자가 두 가지 이상의 금속 합금으로 이루어졌을 경우 에칭되는 성향이 강한 어느 한 쪽 금속만을 에칭함으로써 금속 나노입자의 크기를 줄일 수 있다. 예를 들면 백금 실리카 요크-쉘 나노입자 촉매는 니켈-백금 나노합금을 사용하여 금속실리카 코어-쉘 나노입자를 제조한 후 상기 니켈 금속만을 에칭하여 제거함으로써 백금 실리카 요크-쉘 나노입자 촉매를 제조할 수 있다.In addition, when the metal nanoparticles are made of two or more metal alloys, the size of the metal nanoparticles may be reduced by etching only one metal having a strong tendency to be etched. For example, a platinum silica yoke-shell nanoparticle catalyst may be prepared by preparing a silica silica core-shell nanoparticle using a nickel-platinum nanoalloy and then etching and removing only the nickel metal. Can be.

상기 금속합금 나노입자의 에칭은 어느 한쪽의 금속을 완전히 제거할 수 도 있고, 또는 부분적으로 제거할 수 도 있다. 어느 한쪽 금속의 완전한 제거 또는 부분적 제거는 반응의 공정조건, 조촉매의 기능성 여부, 또는 원하는 화학 반응의 종류에 따라 조절될 수 있으며, 이는 결국 금속 실리카 요크-쉘 나노입자 촉매내 금속나노입자의 구성성분이 조절될 수 있음을 의미한다.The etching of the metal alloy nanoparticles may completely remove either metal or partially remove the metal alloy. The complete or partial removal of either metal can be controlled according to the process conditions of the reaction, the functionality of the promoter, or the type of chemical reaction desired, which in turn constitutes the metal nanoparticles in the metal silica yoke-shell nanoparticle catalyst. It means that the ingredients can be adjusted.

상기 화학적반응에 에칭도 수열 반응 또는 열처리 반응과 함께 순차적으로 수행될 수 있으며, 이를 통해 잔여 유기물들도 제거될 수 있고 기공형성을 더욱 활성화시킬 수 있어, 실리카와 전이금속 사이의 기공 또는 빈 공간의 크기를 조절할 수 있다.Etching may also be performed sequentially with the hydrothermal reaction or the heat treatment reaction, thereby removing residual organic matter and further activating the pore formation, so that the pore or void space between the silica and the transition metal You can adjust the size.

상기 열처리를 거친 금속-실리카 요크-쉘 나노입자의 상세구조는 투과전자현미경(Transmission electron microscopy, TEM) 장비를 통해 관찰 가능하며, X 선회절 장비를 이용하여 그 중심 금속의 결정형태를 확인할 수 있다.The detailed structure of the heat-treated metal-silica yoke-shell nanoparticles can be observed through a transmission electron microscopy (TEM) apparatus, and the crystal form of the central metal can be confirmed using an X-ray diffraction apparatus. .

본 발명에서 얻어지는 촉매의 크기는 5 nm 에서 300 nm 의 범위가 될 수 있으며, 바람직하게는 10 nm에서 100 nm 가 될 수 있다. 촉매의 크기는 바깥 껍질인 실리카의 크기에 의해 결정되어지며, 이는 반응시 반응 조건에 의해 조절될 수 있다. 예컨대 원료인 실리콘 전구체의 농도 또는 반응시간의 증가에 의해 촉매의 크기가 조절되어 질 수 있다.The size of the catalyst obtained in the present invention can range from 5 nm to 300 nm, preferably from 10 nm to 100 nm. The size of the catalyst is determined by the size of the outer shell of silica, which can be controlled by the reaction conditions in the reaction. For example, the size of the catalyst may be controlled by increasing the concentration or reaction time of the silicon precursor as a raw material.

또한 상기 전이금속 나노입자의 크기는 상기 금속 나노입자의 크기는 1 - 200 nm의 크기를 가질 수 있으며, 바람직하게는 2 - 50 nm 의 크기를 가질 수 있다. 상기 전이금속 나노입자의 크기도 반응 시 반응조건에 의해 조절될 수 있다. 예컨대 원료로서 팔라듐을 사용하는 경우, 전구체의 농도 또는 반응 온도에 의해 마찬가지로 전이금속의 크기가 조절될 수 있다.In addition, the size of the transition metal nanoparticles may have a size of the metal nanoparticles of 1-200 nm, preferably may have a size of 2-50 nm. The size of the transition metal nanoparticles can also be controlled by the reaction conditions during the reaction. For example, when using palladium as a raw material, the size of the transition metal can likewise be controlled by the concentration of the precursor or the reaction temperature.

본 발명에서 전이금속과 실리카 껍질사이의 빈 공간층의 두께는 0.5 nm 에서 200 nm 의 범위가 될 수 있으며 바람직하게는 1 nm 에서 50 nm 가 될 수 있다. 상기 빈공간의 크기는 열처리 단계 또는 이의 전,후로 부가될 수 있는 화학반응인, 실리카 또는 전이금속의 에칭단계에 의해 결정되어지며, 이는 열처리 시 반응조건, 또는 에칭시 반응조건에 의해 조절될 수 있다. 예컨대 열처리의 온도가 높거나 에칭시 반응시간의 증가에 의해 빈 공간의 크기가 커질 수 있다.In the present invention, the thickness of the empty space layer between the transition metal and the silica shell may be in the range of 0.5 nm to 200 nm, preferably 1 nm to 50 nm. The size of the void space is determined by the etching step of silica or transition metal, which is a chemical reaction that can be added before or after the heat treatment step, and can be controlled by the reaction conditions during the heat treatment, or the reaction conditions during the etching. have. For example, the size of the empty space may increase due to a high temperature of the heat treatment or an increase in reaction time during etching.

본 발명에서 나노입자 촉매의 전이금속의 함량은 전체 촉매량 대비 0.1 - 90 wt%의 범위를 가질 수 있으며, 바람직하게는 0.5 - 20 wt%의 범위를 가질 수 있다. 전이금속의 함량이 적으면 촉매활성이 좋지 않고 함량이 많은 경우 경제성이 좋지 않게 된다.In the present invention, the content of the transition metal of the nanoparticle catalyst may have a range of 0.1 to 90 wt% with respect to the total amount of the catalyst, and may preferably have a range of 0.5 to 20 wt%. When the content of the transition metal is small, the catalytic activity is not good, and when the content is high, the economic efficiency is not good.

본 발명에서 강조하는 상기 나노입자의 다공성 정도는 기공 내 질소 흡탈착(N2 adsorption-desorption) 방법을 통해 수치로 확인 가능하다. 본 발명에서 얻어지는 촉매의 기공표면적은 50 - 400 m2g-1이고, 전체 기공부피는 0.20 - 1.0 cm3g-1 이며, 전이금속-실리카 코어-쉘 나노입자의 기공부피보다 20 - 50%의 증가분을 가질 수 있다.The degree of porosity of the nanoparticles highlighted in the present invention can be confirmed numerically through a method of nitrogen adsorption-desorption in pores. The pore surface area of the catalyst obtained in the present invention is 50-400 m2g-1, the total pore volume is 0.20-1.0 cm3g-1, and has an increase of 20-50% over the pore volume of the transition metal-silica core-shell nanoparticles. Can be.

본 발명은 상기 전이금속-실리카 요크-쉘 나노입자 촉매를 탄소-탄소 짝지음 반응 사용하여 유용한 유기화학적 중간체를 제공함을 제5의 특징으로 한다. 상기 탄소-탄소 짝지음 반응은 스즈키 커플링(Suzuki coupling), 헥 반응(Heck reaction), 소노가시라 반응(Sonogashira reaction), 울만 커플링 반응, 또는 슈틸레 커플링 반응을 포함할 수 있으며, 바람직하게는 스즈키 커플링(Suzuki coupling), 헥 반응(Heck reaction)에 유용할 수 있다.The fifth aspect of the present invention provides a useful organic chemical intermediate using the transition metal-silica yoke-shell nanoparticle catalyst as a carbon-carbon coupling reaction. The carbon-carbon coupling reaction may include a Suzuki coupling, a Heck reaction, a Sonogashira reaction, a Ulman coupling reaction, or a Stille coupling reaction. May be useful for Suzuki coupling, Heck reaction.

예를들면, 본 발명에서 사용되는 전이금속-실리카 요크-쉘 나노입자 촉매를 스즈키 반응에 사용하는 경우에는 염화아릴과 같은 커플링반응이 수월하지 않은 반응물도 높은 활성을 보이는 장점을 가진다.For example, when the transition metal-silica yoke-shell nanoparticle catalyst used in the present invention is used in the Suzuki reaction, a reactant which is not easily coupled with an aryl chloride has an advantage of showing high activity.

일반적으로, 스즈키 반응에 있어 염화아릴과 같은 반응물들은 염소(Cl) 치환기의 낮은 이탈성으로 인해 짝지음 반응이 수월하게 일어나지 않는다는 문제점이 있다. 그러나 본 발명에 따른 팔라듐-실리카 요크-쉘 나노촉매는 염화벤젠과 페닐붕소산과의 반응에서도 3시간 안에 생성물로 완전히 전환되는 결과를 보여주어 산업적으로 유용한 특성을 나타내었다.In general, reactants such as aryl chloride in the Suzuki reaction have a problem that the coupling reaction does not occur easily due to the low detachment of the chlorine (Cl) substituent. However, the palladium-silica yoke-shell nanocatalyst according to the present invention showed the result of being completely converted to the product within 3 hours even in the reaction between benzene chloride and phenylboronic acid, showing industrially useful properties.

이렇게 팔라듐-실리카 요크-쉘 나노입자가 뛰어난 촉매성을 나타낼 수 있는 반응 기질들로는 전자주개 혹은 전자받개 등의 다양한 치환기들을 보유하는 염화벤젠류까지도 확장될 수 있다.The reaction substrates capable of exhibiting excellent catalytic properties of the palladium-silica yoke-shell nanoparticles can be extended to benzene chlorides having various substituents such as electron donors or electron acceptors.

본 발명에 있어서 전이금속-실리카 요크-쉘 나노촉매는, 반응기질 대 전이금속의 몰비가 1000:1인 조건에서 10회 이상의 반응을 반복적으로 수행하여도 초기 활성을 그대로 유지하는 놀라운 특징을 보여줄 수 있다. 이때, 재사용성 확인을 위해 반복되는 촉매 분리 과정에서의 촉매 손실을 최소화하기 위하여 MCFs (siliceous mesostructured cellular foams)라는 특정 지지체를 도입하여 촉매의 유실을 방지할 수 있다.In the present invention, the transition metal-silica yoke-shell nanocatalyst may show an amazing feature of maintaining the initial activity even after repeated 10 or more reactions under the condition that the molar ratio of the reactive metal to the transition metal is 1000: 1. have. In this case, in order to minimize the catalyst loss in the repeated catalyst separation process to confirm reusability, a specific support called MCFs (siliceous mesostructured cellular foams) can be introduced to prevent the loss of the catalyst.

상기 전이금속-실리카 요크-쉘 나노 촉매의 고 활성은 구체적으로 다공성 실리카 층을 통한 반응기질들의 빠른 확산과 팔라듐 표면이 완전히 노출되는 속이 빈 구조에 기인하며, 또한 고온 열처리 과정에 의해 큰 기공들과 보다 깨끗한 금속 표면이 형성된다는 점이 주된 요인이라 판단된다.
The high activity of the transition metal-silica yoke-shell nanocatalyst is due in particular to the rapid diffusion of the reactive materials through the porous silica layer and the hollow structure to which the palladium surface is completely exposed, and also due to the high temperature heat treatment, It is considered that a cleaner metal surface is formed as a main factor.

실시예Example

이하, 실시예를 통하여 본 발명 과정의 세부 사항을 설명하고자 한다. 이는 본 발명에 관련한 대표적 예시로서, 이것만으로 본 발명의 적용 범위를 결코 제한할 수 없음을 밝히는 바이다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT It is to be understood that this is by way of example only and not to be construed as limiting the scope of the invention in any way whatsoever.

실시예Example 1: 팔라듐 나노입자에 실리카 코팅 및 수열 반응을 통한 팔라듐-실리카 요크-쉘 나노입자의 제조 1: Preparation of palladium-silica yoke-shell nanoparticles by silica coating and hydrothermal reaction on palladium nanoparticles

필라듐 아세틸아세토네이트 (palladium(Ⅱ) acetylacetonate, Pd(acac)2) 91mg(0.30mmol)과 트리옥틸포스핀(Trioctylphosphine (TOP)) 1.0 ml (2.25 mmol)을 올레일아민 10 ml (oleylamine, 알드리치사, 70%) 하에서 혼합하였다. 이 세 가지 물질의 혼합물을 230℃까지 20분간 가열하였고, 동일 온도에서 40분간 추가적으로 에이징(aging) 과정을 거쳤다. 이렇게 합성된 팔라듐 나노입자 생성물을 에탄올 용매 하에서 원심분리를 통해 분리, 정제한 후 사이클로헥산(cyclohexane)에 재분산 하였다. 상기 팔라듐 나노입자는 Son, S. U. et al, Nano . Lett ., 4:1147-1151, 2004 의 문헌을 참조하여 용이하게 제조될 수 있다.91 mg (0.30 mmol) of palladium (II) acetylacetonate (Pd (acac) 2) and 1.0 ml (2.25 mmol) of trioctylphosphine (TOP) were added to 10 ml of oleylamine (oleylamine, Aldrich). 4, 70%). The mixture of these three materials was heated to 230 ° C. for 20 minutes and further aged for 40 minutes at the same temperature. The synthesized palladium nanoparticle product was separated and purified through centrifugation under ethanol solvent and then redispersed in cyclohexane. The palladium nanoparticles are Son, SU et al , Nano . Lett . , 4: 1147-1151, 2004.

사이클로헥산 25 ml, igepal CO-630 (시그마 알드리치사, CAS Number: 68412-54-4 Polyoxyethylene (9) nonylphenylether, branched) 8.0 mL, 암모니아수용액 (28% in water) 0.8 ml 의 혼합물을 20 분간 상온에서 교반한 후, 상기 시클로헥산에 분산된 팔라듐 나노입자 용액 25 ml (팔라듐 금속 기준으로 6 mM 농도) 를 첨가하여 30 초간 교반하였다.A mixture of 25 ml of cyclohexane, 8.0 ml of igepal CO-630 (Sigma Aldrich, CAS Number: 68412-54-4 Polyoxyethylene (9) nonylphenylether, branched), 0.8 ml of aqueous ammonia solution (28% in water) at room temperature for 20 minutes After stirring, 25 ml of a palladium nanoparticle solution (6 mM concentration based on palladium metal) dispersed in the cyclohexane was added and stirred for 30 seconds.

상기 반응 혼합물에 TMOS (Tetramethyl orthosilicate) 1.2 ml와 C18TMS (Octadecyl trimethoxysilane) 1.2 ml를 동시에 첨가하고 상온에서 1시간 동안 교반하여, 팔라듐-실리카 코어-쉘 나노입자 생성물이 생성되도록 반응시키고, 이를 메탄올 용매 하에서 원심분리 함으로써 침전시켰다.1.2 ml of tetramethyl orthosilicate (TMOS) and 1.2 ml of C18TMS (Octadecyl trimethoxysilane) were simultaneously added to the reaction mixture and stirred at room temperature for 1 hour to react to produce palladium-silica core-shell nanoparticle product, which was then reacted under methanol solvent. Precipitate by centrifugation.

생성물 침전은 에탄올 용매 하에서 반복 정제되었다. 최종 정제된 팔라듐-실리카 코어-쉘 나노 입자는 증류수 20 ml에 분산되어 110℃에서 12시간 동안 수열반응을 거쳤고, 그 생성물을 물과 에탄올 하에서 원심분리를 통해 다시 정제하였다. 얻어진 생성물 침전을 건조시켜 분쇄하고 가루형태로 얻었다.The product precipitate was repeatedly purified under ethanol solvent. The final purified palladium-silica core-shell nanoparticles were dispersed in 20 ml of distilled water and subjected to hydrothermal reaction at 110 ° C. for 12 hours, and the product was purified again by centrifugation under water and ethanol. The obtained product precipitate was dried and ground to obtain a powder form.

얻어진 분말을 수소기체 분위기 하에서 4시간 동안 500℃ 열처리함으로써 최종 팔라듐-실리카 요크-쉘 나노입자를 수득하였다. 팔라듐-실리카 요크-쉘 나노입자의 경우, 중심 팔라듐 입자는 투과전자현미경상에서 평균 3.5 nm 의 크기를 나타내며, X선 회절실험을 통해 fcc (face-centered cubic) 의 결정형태를 가지는 것으로 확인된다. (도 2,3)The resulting powder was heat-treated at 500 ° C. for 4 hours under a hydrogen gas atmosphere to obtain final palladium-silica yoke-shell nanoparticles. In the case of the palladium-silica yoke-shell nanoparticles, the central palladium particles exhibit an average size of 3.5 nm on a transmission electron microscope, and are confirmed to have a crystal form of fcc (face-centered cubic) through X-ray diffraction. (Figures 2 and 3)

상기 팔라듐-실리카 요크-쉘 나노입자에서 전체 성분에 대한 주요 팔라듐 성분의 함량은 ICP-AES(Inductive Coupled Plasma-Atomic Emission Spectrometry) 장비 분석 결과 1.5 wt %로 나타났고, 금속입자 표면에 일산화탄소 기체를 흡착시키는 방법을 통해 계산된 중심 팔라듐 입자만의 표면적은 약 179 m2g-1으로 추정된다. 동일 방법에 의해 계산된 평균 팔라듐 입자의 크기는 2.8 nm로서, 앞서 언급한 투과전자현미경 상에서 얻어진 3.5 nm 라는 수치와 비교 가능하고, 이로써 열처리 과정을 통한 잔여 계면활성제와 유기화합물의 제거가 효과적으로 수행되었고 촉매 반응 시 확산되는 반응물들이 중심 팔라듐 입자의 표면에 완전히 접근 가능함을 보여준다.In the palladium-silica yoke-shell nanoparticles, the content of the main palladium component was 1.5 wt% based on the analysis of Inductive Coupled Plasma-Atomic Emission Spectrometry (ICP-AES), and adsorption of carbon monoxide gas on the surface of metal particles The surface area of only the central palladium particles calculated by the method is estimated to be about 179 m 2 g −1. The average palladium particle size calculated by the same method is 2.8 nm, which is comparable to the value of 3.5 nm obtained on the above-mentioned transmission electron microscope, which effectively removes residual surfactant and organic compounds through heat treatment. It shows that the reactants that diffuse during the catalysis are fully accessible to the surface of the central palladium particles.

본 발명에서 강조하는 상기 나노입자의 다공성 정도는 기공 내 질소 흡탈착(N2 adsorption-desorption) 방법을 통해 확인되었다.The degree of porosity of the nanoparticles highlighted in the present invention was confirmed through a nitrogen adsorption-desorption method in the pores.

BET (Brunauer-Emmett-Teller) 방법으로 계산된 팔라듐-실리카 (SiO2) 요크-쉘 나노입자 (Pd@pSiO2)의 기공표면적과 전체 기공부피는 각각 145 m2g-1, 0.57 cm3g-1 이며, 여기서 전체 기공부피는 팔라듐-실리카 코어-쉘 나노입자의 경우 (0.40 cm3 g-1)보다 40% 증가된 수치로서, 다공성 형성과정이 효과적으로 수행되었음을 입증해준다.
The pore surface area and total pore volume of palladium-silica (SiO2) yoke-shell nanoparticles (Pd @ pSiO2) calculated by the Brunauer-Emmett-Teller (BET) method are 145 m2g-1 and 0.57 cm3g-1, respectively, Pore volume is a 40% increase over (0.40 cm3 g-1) for palladium-silica core-shell nanoparticles, demonstrating that the porosity-forming process was performed effectively.

실시예Example 2: 백금 나노입자에 실리카 코팅 및 선택적 산 에칭을 통한 백금-실리카 요크-쉘 나노입자의 제조 2: Preparation of Platinum-Silica York-Shell Nanoparticles by Silica Coating and Selective Acid Etching on Platinum Nanoparticles

백금 아세틸아세토네이트 (platinum(II) acetylacetonate, Pt(acac)2) 0.20g (0.5mmol)과 니켈 아세틸아세토네이트 (nickel(II) acetylacetonate, Ni(acac)2) 0.64g(2.5mmol)을 벤질에테르 20ml (benzyl ether, 알드리치사, 99%) 하에서 혼합하였다. 상기 혼합물에 올레일아민(oleylamine, 알드리치사, 70%) 2ml 와 올레산 (oleic acid, 알드리치사, 90%) 2ml를 첨가한 후, 질소분위기 하에서 270°C 까지 20분 간 가열하였고, 동일 온도에서 40분간 추가적으로 에이징(aging) 과정을 거쳤다. 이렇게 합성된 니켈-백금 합금 나노입자 생성물을 에탄올 용매 하에서 원심분리를 통해 분리, 정제한 후 사이클로헥산(cyclohexane)에 재분산시켰다. 상기 니켈-백금 합금 나노입자는 Park, J. C. et al ., Langmuir, 26:16469-16473, 2010의 문헌을 참조하여 용이하게 제조될 수 있다.Benzyl ether 0.20 g (0.5 mmol) of platinum acetylacetonate (Pt (acac) 2) and 0.64 g (2.5 mmol) of nickel (II) acetylacetonate (Ni (acac) 2) The mixture was mixed under 20 ml (benzyl ether, Aldrich, 99%). 2 ml of oleylamine (oleicamine, Aldrich, 70%) and 2 ml of oleic acid (oleic acid, Aldrich, 90%) were added to the mixture, and then heated to 270 ° C for 20 minutes under nitrogen atmosphere. An additional 40 minutes of aging was performed. The nickel-platinum alloy nanoparticles thus synthesized were separated and purified by centrifugation under ethanol solvent and then redispersed in cyclohexane. The nickel-platinum alloy nanoparticles are Park, JC et al . , Langmuir , 26: 16469-16473, 2010, which may be readily prepared.

사이클로헥산 25 ml, igepal CO-630 (시그마 알드리치사, CAS Number: 68412-54-4 Polyoxyethylene (9) nonylphenylether, branched) 8.0 mL, 암모니아수용액 (28% in water) 0.8 ml의 혼합물을 20분간 상온에서 교반한 후, 사이클로헥산에 분산된 니켈-백금 합금 나노입자 용액 25ml (백금 선구물질에 대해 10mM)를 첨가하여 30초간 교반하였다.A mixture of 25 ml of cyclohexane, 8.0 ml of igepal CO-630 (Sigma Aldrich, CAS Number: 68412-54-4 Polyoxyethylene (9) nonylphenylether, branched), 0.8 ml of aqueous ammonia solution (28% in water) at room temperature for 20 minutes After stirring, 25 ml of a solution of nickel-platinum alloy nanoparticles dispersed in cyclohexane (10 mM for the platinum precursor) was added and stirred for 30 seconds.

상기 반응 혼합물에 TMOS (tetramethyl orthosilicate) 1.0 ml와 C18TMS (octadecyltrimethoxysilane) 1ml를 동시에 첨가하고 상온에서 1시간 동안 교반하여 니켈-백금 합금-실리카 코어-쉘 나노입자 생성물이 생성되도록 반응시키고, 이를 메탄올 용매 하에서 원심분리 함으로써 침전시켰다.1.0 ml of tetramethyl orthosilicate (TMOS) and 1 ml of C18TMS (octadecyltrimethoxysilane) were simultaneously added to the reaction mixture and stirred at room temperature for 1 hour to produce a nickel-platinum alloy-silica core-shell nanoparticle product. Precipitate by centrifugation.

생성물 침전은 에탄올 용매 하에서 반복 정제되었다. 최종 정제된 니켈-백금 합금-실리카 코어-쉘 나노 입자를 에탄올 30mL에 분산시키고 염산 20ml (HCl, 35wt% 수용액) 과 혼합하여 110°C에서 12시간 동안 수열반응을 시켰고, 그 생성물을 물과 에탄올 하에서 원심분리를 통해 다시 정제하였다. 얻어진 생성물 침전을 건조시켜 분쇄하고 가루형태로 얻었다.The product precipitate was repeatedly purified under ethanol solvent. The final purified nickel-platinum alloy-silica core-shell nanoparticles were dispersed in 30 mL of ethanol and mixed with 20 ml of hydrochloric acid (HCl, 35 wt% aqueous solution), followed by hydrothermal reaction at 110 ° C. for 12 hours. Purification again via centrifugation under. The obtained product precipitate was dried and ground to obtain a powder form.

또한 이를 수소기체 분위기 하에서 4시간 동안 500°C 열처리함으로써 최종적으로 니켈이 제거된, 백금-실리카 요크-쉘 나노입자를 수득하였다. 백금-실리카 요크-쉘 나노입자의 경우, 중심 백금 입자는 투과전자현미경상에서 평균 4.5 nm의 크기를 나타내며, 실리카 껍질의 두께는 투과전자현미경상에서 평균 5.6 nm의 크기를 나타낸다. X선 회절실험을 통해 중심 백금입자는 fcc (face-centered cubic)의 결정형태를 가지는 것으로 확인된다. (도 4,5)
Also, this was heat-treated at 500 ° C. for 4 hours under a hydrogen gas atmosphere to obtain platinum-silica yoke-shell nanoparticles from which nickel was finally removed. In the case of platinum-silica yoke-shell nanoparticles, the central platinum particles exhibited an average size of 4.5 nm on the transmission electron microscope and the thickness of the silica shells averaged 5.6 nm on the transmission electron microscope. X-ray diffraction experiments confirmed that the central platinum particles had a crystalline form of face-centered cubic (fcc). (Figs. 4, 5)

실시예Example 3: 브롬화벤젠 및  3: benzene bromide and 페닐붕소산을Phenylboronic acid 반응물로 한 스즈키( Suzuki made with reactants ( SuzukiSuzuki ) 커플링 촉매 반응Coupling catalyst reaction

본 실시예에서는 팔라듐-실리카(SiO2) 요크-쉘 나노입자를 스즈키 반응에 촉매로 사용하기 위해 브롬화벤젠과 페닐붕소산의 반응에 활용하였다. 보다 상세하게는, 팔라듐-실리카 요크-쉘 나노입자 2.0 mg (0.28 μmol), 브롬화벤젠 1.0ml (9.4 mmol), 페닐붕소산 (phenylboronic acid) 1.5g (12 mmol), DMF (dimethylformamide) 10 ml, 증류수 0.50 ml, 탄산세슘 (Cs2CO3) 6.1g(19 mmol) 등이 스테인레스 스틸 반응기에서 가열 및 교반을 통해 혼합되었다. 200℃에서 1시간 동안 반응시킨 후, 촉매를 원심분리하였다. 반응 수득율은 수소 핵자기공명 스펙트럼을 이용하여 계산하였다 (표 1). 얻어진 결과는 표 1과 같다.
In this example, palladium-silica (SiO 2) yoke-shell nanoparticles were used for the reaction of benzene bromide and phenylboronic acid to be used as a catalyst in the Suzuki reaction. More specifically, 2.0 mg (0.28 μmol) of palladium-silica yoke-shell nanoparticles, 1.0 ml (9.4 mmol) of benzene bromide, 1.5 g (12 mmol) of phenylboronic acid, 10 ml of dimethylformamide (DMF), 0.50 ml of distilled water, 6.1 g (19 mmol) of cesium carbonate (Cs2CO3) and the like were mixed by heating and stirring in a stainless steel reactor. After reacting at 200 ° C. for 1 hour, the catalyst was centrifuged. Reaction yield was calculated using hydrogen nuclear magnetic resonance spectra (Table 1). The obtained results are shown in Table 1.

Figure pat00001
Figure pat00001

[a] 수소 핵자기공명 스펙트럼을 이용한 정량. [b] 용매로 NMP/H2O (20:1) 혼합물을 사용하였음. [c] 팔라듐 나노입자를 촉매로 이용함. [d] 열처리전 팔라듐-실리카 요크-쉘 나노입자를 촉매로 이용함. [e] 팔라듐-실리카 코어-쉘 나노입자를 촉매로 이용함. 괄호 안의 수득율은 생성물의 분리 후 측정한 값임.[a] Quantification using hydrogen nuclear magnetic resonance spectra. [b] NMP / H 2 O (20: 1) mixture was used as the solvent. [c] using palladium nanoparticles as catalyst. [d] Palladium-silica yoke-shell nanoparticles were used as a catalyst before heat treatment. [e] Palladium-silica core-shell nanoparticles used as catalyst. Yields in parentheses are the values measured after separation of the product.

상기 스즈키 반응의 최적화 조건을 살펴보면, 팔라듐-실리카 요크-쉘 나노입자가 0.1 mol%의 팔라듐 함량으로 첨가되었을 때 상온에서 6시간 만에 100%의 수율을 보인 것을 기준으로(표 Ⅰ- entry 1), 반응 활성을 극대화시키기 위해 촉매량, 반응온도 및 용매 등이 조절되어 반응을 실시하였다(표 Ⅰ). 상기 최적화 과정으로부터, 200 ℃에서 0.003 mol%의 팔라듐이 존재하고 용매로는 DMF (dimethylformamide)와 물, 염기 첨가제로 탄산세슘(Cs2CO3)이 사용될 때, 본 발명물이 적용되기에 가장 적합한 조건임이 확인된다(표 Ⅰ- entry 5). 또한 상기 최적조건에서, 팔라듐 촉매 1몰(mol)에 대해 시간당 소모되는 브롬화벤젠(bromobenzene)의 몰수인, 평균 전이 주파수(TOF, turnover frequency)는 33000 h-1로 계산될 수 있었다.Looking at the optimization conditions of the Suzuki reaction, when the palladium-silica yoke-shell nanoparticles were added with a 0.1 mol% palladium content, the yield of 100% in 6 hours at room temperature (Table I-entry 1) In order to maximize the reaction activity, the catalyst amount, the reaction temperature and the solvent were adjusted to perform the reaction (Table I). From the optimization process, when 0.003 mol% of palladium is present at 200 ° C and DMF (dimethylformamide), water and base additives are used as cesium carbonate (Cs2CO3), it is confirmed that the present invention is the most suitable condition for application. (Table I- entry 5). In addition, under the optimum conditions, an average transition frequency (TOF, turnover frequency), which is the number of moles of bromobenzene consumed per hour for one mole of palladium catalyst, could be calculated as 33000 h −1.

팔라듐 나노입자(표 Ⅰ- entry 8), 열처리 전 팔라듐-실리카 요크-쉘 나노입자(표 Ⅰ- entry 9) 그리고 팔라듐-실리카 코어-쉘 나노입자(표 Ⅰ- entry 10)에 대해 동일 조건에서 반응성 비교 실험을 수행한 결과, 생성물 수율이 열처리 전 팔라듐-실리카 요크-쉘 나노입자(72%) > 코어-쉘 나노입자(40%) > 팔라듐 나노입자(35%) 의 순으로 높게 나타나며, 열처리 과정까지 거친 최종 팔라듐-실리카 요크-쉘 나노입자의 경우 동일 조건에서 100%의 수율을 보이는 것으로부터(표 Ⅰ- entry 5) 팔라듐-실리카 요크-쉘 나노입자의 구조적 특성에 의한 뛰어난 반응성이 직접적으로 입증된다고 볼 수 있다.
Reactive under the same conditions for palladium nanoparticles (Table I-entry 8), palladium-silica yoke-shell nanoparticles (Table I-entry 9) and palladium-silica core-shell nanoparticles (Table I-entry 10) prior to heat treatment As a result of the comparative experiment, the product yield was higher in the order of palladium-silica yoke-shell nanoparticles (72%)> core-shell nanoparticles (40%)> palladium nanoparticles (35%) before heat treatment. The final reactivity of the palladium-silica yoke-shell nanoparticles with roughly 100% yield under the same conditions (Table I-entry 5) directly demonstrates the excellent reactivity by the structural properties of the palladium-silica yoke-shell nanoparticles. It can be seen.

실시예Example 4: 다양한 치환체를 가진  4: with various substituents 아릴할로겐과Arylhalogen and 아릴붕소산을Arylboronic acid 반응물로 한 스즈키( Suzuki made with reactants ( SuzukiSuzuki ) 커플링 촉매 반응Coupling catalyst reaction

상기 표 Ⅰ에서 최적화된 반응 조건은 다양한 치환기를 갖는 기질들에 대해서도 적용해 볼 수 있었다(표 Ⅱ 참조).The optimized reaction conditions in Table I could be applied to substrates with various substituents (see Table II).

팔라듐-실리카 요크-쉘 나노입자 2.0 mg (0.28μmol), 아릴할로겐 1.0ml (9.4 mmol), 아릴붕소산 (phenylboronic acid) 1.5g (12 mmol), DMF (dimethylformamide) 10 ml, 증류수 0.50 ml, 탄산세슘 (Cs2CO3) 6.1g (19 mmol) 등이 스테인레스 스틸 반응기에서 가열 및 교반을 통해 혼합되었다. 200℃에서 1시간 동안 반응시킨 후, 촉매를 원심분리하였다. 반응 수득율은 컬럼크로마토그래피로 분리하여 측정하였다 (표2).Palladium-silica yoke-shell nanoparticles 2.0 mg (0.28 μmol), arylhalogen 1.0 ml (9.4 mmol), arylboronic acid 1.5 g (12 mmol), DMF (dimethylformamide) 10 ml, distilled water 0.50 ml, carbonic acid 6.1 g (19 mmol) of cesium (Cs 2 CO 3) and the like were mixed by heating and stirring in a stainless steel reactor. After reacting at 200 ° C. for 1 hour, the catalyst was centrifuged. The reaction yield was measured by column chromatography (Table 2).

일반적으로, 스즈키 반응에 있어 염화벤젠류의 기질들은 염소(Cl) 치환기의 낮은 이탈성으로 인해 짝지음 반응이 수월하게 일어나지 않는다는 문제점이 있다. 그러나 본 발명에 따른 팔라듐-실리카 요크-쉘 나노촉매는 염화벤젠과 페닐붕소산과의 반응에서도 3시간 안에 생성물로 완전히 전환되는 결과를 보이며(표 Ⅱ - entry 1), 이렇게 팔라듐-실리카 요크-쉘 나노입자가 뛰어난 촉매성을 나타낼 수 있는 반응 기질들로는 전자주개 혹은 전자받개 등의 다양한 치환기들을 보유하는 염화벤젠류까지도 확장될 수 있다(표 Ⅱ entry 2-7).
In general, the substrates of benzene chlorides in the Suzuki reaction have a problem that the coupling reaction does not occur easily due to the low detachment of the chlorine (Cl) substituent. However, the palladium-silica yoke-shell nanocatalyst according to the present invention shows the result of being completely converted to the product within 3 hours even in the reaction between benzene chloride and phenylboronic acid (Table II-entry 1), and thus the palladium-silica yoke-shell nano Reaction substrates that can exhibit excellent catalytic properties can be extended to benzene chlorides with various substituents such as electron donors or electron acceptors (Table II, entry 2-7).

Figure pat00002
Figure pat00002

실시예Example 5: 촉매의 재사용 실험 5: Reuse Experiment of Catalyst

촉매의 재사용 실험은 실시예 1의 엔트리 5와 같은 조건에서 0.001 Pd mol%, 요오드화벤젠과 페닐붕소산의 반응을 10회 이상 반복적으로 수행하여 활성평가를 진행하였다. 촉매의 재사용 실험시 촉매유실을 방지하기 위해 MCFs (siliceous mesostructured cellular foams)지지체를 도입하여 촉매의 유실을 방지하여 실험하였다.In the catalyst reuse experiment, the reaction of 0.001 Pd mol%, benzene iodide and phenylboronic acid was repeatedly performed 10 times or more under the same conditions as in Example 5, and the activity was evaluated. In order to prevent catalyst loss during the catalyst reuse experiment, MCFs (siliceous mesostructured cellular foams) support was introduced to prevent catalyst loss.

MCFs (siliceous mesostructured cellular foams)지지체는 Schmidt-Winkel, P. et al , Chem . Mater . 12: 686-696, 2000 에 따라 제조되었으며, 그 내용은 다음과 같다. Pluronic P123 8g (Poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol), EO20PO70EO20, 알드리치사)을 증류수 257.6 ml 및 염산 42.4 ml와 함께 상온에서 한 시간 동안 교반하여 용해시키고, 메시틸렌 (mesitylene, 98%, 알드리치사) 14.2 ml와 불화 암모니아 (NH4F, 98+%, 알드리치사) 0.092 g을 첨가하였다. 상기 혼합물을 50℃까지 가열하고 한 시간 동안 에이징(aging)시킨 후, TEOS (tetraethylorthosilicate, 98%, 알드리치사) 19.2 ml를 첨가하고 동일 온도에서 20시간 동안 교반하여 반응시켰다. 생성물 슬러리를 110 ℃에서 24시간 동안 최종 에이징 시키고, 에탄올 용매 하에서 원심분리를 통해 정제한 후, 건조시킨 생성물을 500 ℃에서 8시간 동안 소성시켜 MCFs를 수득하였다.MCFs (siliceous mesostructured cellular foams) supports are described in Schmidt-Winkel, P. et. al , Chem . Mater . 12: 686-696, 2000, the contents of which are as follows. 8 g of Pluronic P123 (Poly (ethylene glycol) -block-poly (propylene glycol) -block-poly (ethylene glycol), EO20PO70EO20, Aldrich) was dissolved in 257.6 ml of distilled water and 42.4 ml of hydrochloric acid by stirring at room temperature for 1 hour. 14.2 ml of mesitylene (mesitylene, 98%, Aldrich) and 0.092 g of ammonia fluoride (NH 4 F, 98 +%, Aldrich) were added. The mixture was heated to 50 ° C. and aged for one hour, after which 19.2 ml of TEOS (tetraethylorthosilicate, 98%, Aldrich) was added and stirred at the same temperature for 20 hours to react. The product slurry was finally aged at 110 ° C. for 24 hours, purified through centrifugation under ethanol solvent, and the dried product was calcined at 500 ° C. for 8 hours to obtain MCFs.

상기 MCFs를 촉매유실 방지용 지지체로 하여 촉매를 투입하고 스즈키 커플링 반응을 진행하였다. 반응후 생성물은 methylene chloride 용매로 추출하고 촉매 및 지지체는 원심분리한 후 아세톤과 에탄올로 3회 세척한 후 다시 반응을 되풀이하여 진행하였다. 그 결과 촉매를 10회 재사용하여 사용하더라도 촉매의 활성이 변하지 않음을 보여주었다.
The catalyst was introduced using the MCFs as a support for preventing catalyst loss, and the Suzuki coupling reaction was performed. After the reaction, the product was extracted with methylene chloride solvent, the catalyst and the support were centrifuged, washed three times with acetone and ethanol, and then the reaction was repeated again. The results show that the activity of the catalyst does not change even if the catalyst is reused 10 times.

실시예Example 6: 백금-실리카 요크-쉘 나노입자를 촉매로, 요오드화벤젠 및  6: platinum-silica yoke-shell nanoparticles as catalyst, benzene iodide and 페닐붕소산을Phenylboronic acid 반응물로 한 스즈키( Suzuki made with reactants ( SuzukiSuzuki ) 짝지음 촉매 반응Coupling Catalysis

본 실시예에서는 백금-실리카(SiO2) 요크-쉘 나노입자를 스즈키 반응에 촉매로 사용하기 위해 요오드화벤젠과 페닐붕소산의 반응에 활용하였다. 보다 상세하게는, 백금-실리카 요크-쉘 나노입자 23 mg (24.6 μmol), 요오드화벤젠 0.029 ml (0.2 mmol), 페닐붕소산 (phenylboronic acid) 31 mg (0.26 mmol), DMF (dimethylformamide) 2 ml, 증류수 8 ml, 탄산세슘 (Cs2CO3) 0.33 g (1 mmol) 등이 스테인레스 스틸 반응기에서 가열 및 교반을 통해 혼합되었다. 50-200℃에서 18-24시간 동안 반응시킨 후, 촉매를 원심분리하였다. 반응 수득율은 수소 핵자기공명 스펙트럼을 이용하여 계산하였다 (표 3). 반응 조건 및 얻어진 결과는 표 3과 같다.
In this example, platinum-silica (SiO 2) yoke-shell nanoparticles were used for the reaction of benzene iodide and phenylboronic acid to be used as a catalyst in the Suzuki reaction. More specifically, 23 mg (24.6 μmol) of platinum-silica yoke-shell nanoparticles, 0.029 ml (0.2 mmol) of benzene iodide, 31 mg (0.26 mmol) of phenylboronic acid, 2 ml of dimethylformamide (DMF), 8 ml of distilled water, 0.33 g (1 mmol) of cesium carbonate (Cs2CO3) and the like were mixed by heating and stirring in a stainless steel reactor. After reacting at 50-200 ° C. for 18-24 hours, the catalyst was centrifuged. Reaction yield was calculated using hydrogen nuclear magnetic resonance spectra (Table 3). The reaction conditions and the results obtained are shown in Table 3.

백금-실리카 요크-쉘 나노입자를 이용하여 요오드화 벤젠과 페닐붕소산의 스즈키 짝지음반응을 실행한 결과.Suzuki pairing reaction between benzene iodide and phenylboronic acid was carried out using platinum-silica yoke-shell nanoparticles.

Figure pat00003
Figure pat00003
EntryEntry Cat
(mol%)
Cat
(mol%)
Temp
(oC)
Temp
(oC)
Time
(h)
Time
(h)
BaseBase SolventSolvent Conv.
(%)
Conv.
(%)
1One 1212 5050 1818 Cs2CO3(2eq)Cs2CO3 (2eq) EtOH:H2O 10:0.5EtOH: H2O 10: 0.5 00 22 1212 5050 1818 Cs2CO3(2eq)Cs2CO3 (2eq) DMF:H2O 5:0.5DMF: H2O 5: 0.5 00 33 1212 200200 1818 Cs2CO3(2eq)Cs2CO3 (2eq) DMF:H2O 5:0.5DMF: H2O 5: 0.5 4949 44 2424 200200 3636 Cs2CO3(5eq)Cs2CO3 (5eq) DFM:H2O 2:8DFM: H2O 2: 8 100100

백금의 경우 팔라듐보다 매우 낮은 수율을 보였으나, 촉매의 사용량과 반응시간을 늘렸을 때 100% 의 변환수율을 얻을 수 있었다. 상기 최적화 과정으로부터, 200 ℃에서 24 mol%의 백금이 존재하고 용매로는 DMF (dimethylformamide)와 물, 염기 첨가제로 탄산세슘(Cs2CO3)이 사용될 때 100%의 수율이 얻어졌다 (표 3- entry 4). 따라서 백금-실리카 요크-쉘 나노입자 촉매도 스즈키 반응에 활성을 보임을 알 수 있다.
In the case of platinum, the yield was much lower than that of palladium, but the conversion yield of 100% was obtained when the catalyst usage and reaction time were increased. From the optimization process, 100% yield was obtained when 24 mol% of platinum was present at 200 ° C., and DMF (dimethylformamide), water, and cesium carbonate (Cs2CO3) were used as base additives (Table 3-entry 4). ). Therefore, it can be seen that the platinum-silica yoke-shell nanoparticle catalyst is also active in the Suzuki reaction.

실시예Example 7: 요오드화벤젠 및  7: benzene iodide and 페닐아세틸렌을Phenylacetylene 반응물로 한  As a reactant 소노가시라Sonogashira (Sonogashira) 짝지음 촉매 반응 (Sonogashira) Coupling Catalysis

본 실시예에서는 팔라듐-실리카(SiO2) 요크-쉘 나노입자를 소노가시라 반응에 촉매로 사용하기 위해 요오드화벤젠과 페닐아세틸렌의 반응에 활용하였다. 보다 상세하게는, 팔라듐-실리카 요크-쉘 나노입자 23.6 mg (3.33 μmol), 요오드화벤젠 37 μl (0.33 mmol), 페닐아세틸렌 (phenylacetylene) 73 μl (0.67 mmol), DMF (dimethylformamide) 4 ml, 탄산칼륨 (K2CO3) 92 mg (0.67 mmol) 등이 스테인레스 스틸 반응기에서 가열 및 교반을 통해 혼합되었다. 125℃에서 6시간 동안 반응시켰다. 반응 수득율은 수소 핵자기공명 스펙트럼을 이용하여 계산하였다 (표 4). 얻어진 결과는 표 4와 같다.
In this example, palladium-silica (SiO 2) yoke-shell nanoparticles were used in the reaction of benzene iodide and phenylacetylene to be used as a catalyst in the sonogashira reaction. More specifically, 23.6 mg (3.33 μmol) of palladium-silica yoke-shell nanoparticles, 37 μl (0.33 mmol) of benzene iodide, 73 μl (0.67 mmol) of phenylacetylene, 4 ml of DMF (dimethylformamide), potassium carbonate 92 mg (0.67 mmol) and the like (K 2 CO 3) were mixed by heating and stirring in a stainless steel reactor. The reaction was carried out at 125 ° C. for 6 hours. Reaction yield was calculated using hydrogen nuclear magnetic resonance spectra (Table 4). The obtained results are shown in Table 4.

팔라듐-실리카 요크-쉘 나노입자를 이용하여 요오드화벤젠과 페닐아세틸렌의 소노가시라 짝지음 반응을 실행한 결과Sonogashi pairing reaction of benzene iodide with phenylacetylene using palladium-silica yoke-shell nanoparticles

Figure pat00004
Figure pat00004
EntryEntry Pd cat.(mol%)Pd cat. (Mol%) substrate기판 Temp.(℃)Temp. (℃) Time(h)Time (h) Conv.(%)Conv. (%) 1One 5mol%5mol% iodobenzeneiodobenzene 125125 66 100100 22 5mol%5mol% chlorobenzenechlorobenzene 125125 66 100100

실시예Example 8: 요오드화벤젠 및  8: benzene iodide and 부틸아크릴레이트를Butyl acrylate 반응물로 한 헥 ( 1 heck as reactant ( HeckHeck ) 짝지음 촉매 반응Coupling Catalysis

본 실시예에서는 팔라듐-실리카(SiO2) 요크-쉘 나노입자를 헥 반응에 촉매로 사용하기 위해 요오드화벤젠과 부틸아크릴레이트의 반응에 활용하였다. 보다 상세하게는, 팔라듐-실리카 요크-쉘 나노입자 118 mg (16.7 μmol), 요오드화벤젠 37 μl (0.33 mmol), 부틸아크릴레이트 (butyl acrylate) 57 μl (0.4 mmol), DMF (dimethylformamide) 3.3 ml, 증류수 6.6 ml, 트리에틸아민 (Triethylamine) 0.14 ml (1 mmol) 등이 스테인레스 스틸 반응기에서 가열 및 교반을 통해 혼합되었다. 140℃에서 6시간 동안 반응시켰다. 반응 수득율은 수소 핵자기공명 스펙트럼을 이용하여 계산하였다. 얻어진 결과는 표 5와 같다.
In this example, palladium-silica (SiO 2) yoke-shell nanoparticles were used for the reaction of benzene iodide and butyl acrylate to be used as a catalyst in the hex reaction. More specifically, 118 mg (16.7 μmol) of palladium-silica yoke-shell nanoparticles, 37 μl (0.33 mmol) of benzene iodide, 57 μl (0.4 mmol) of butyl acrylate, 3.3 ml of dimethylformamide (DMF), 6.6 ml of distilled water, 0.14 ml (1 mmol) of triethylamine and the like were mixed by heating and stirring in a stainless steel reactor. The reaction was carried out at 140 ° C. for 6 hours. Reaction yield was calculated using hydrogen nuclear magnetic resonance spectra. The obtained results are shown in Table 5.

팔라듐-실리카 요크-쉘 나노입자를 이용하여 요오드화벤젠과 부틸아크릴레이트의 헥 짝지음 반응을 실행한 결과.Results of hexing reaction of benzene iodide and butyl acrylate using palladium-silica yoke-shell nanoparticles.

Figure pat00005
Figure pat00005
EntryEntry Pd cat.
(mol%)
Pd cat.
(mol%)
substrate기판 Temp.(℃)Temp. (℃) Time(h)Time (h) basebase Conv.(%)Conv. (%)
1One 5mol%5mol% iodobenzeneiodobenzene 140140 66 Et3NEt3N 8686 22 1mol%1mol% iodobenzeneiodobenzene 140140 66 Et3NEt3N 8080 33 5mol%5mol% iodobenzeneiodobenzene 140140 22 Et3NEt3N 8383

이상으로, 본 발명 내용의 특정 예를 상세히 기술하였는 바, 당 업계에서 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다.As described above, specific examples of the contents of the present invention have been described in detail, and for those skilled in the art, these specific descriptions are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious.

Claims (19)

VIII족 전이금속 나노입자가 기공을 가지는 실리카(SiO2) 껍질에 둘러싸여 있고 상기 실리카 껍질과 상기 전이금속 나노입자사이에는 빈 공간이 존재하는 나노입자구조의 형태를 가지는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
Group VIII transition metal nanoparticles are surrounded by porous silica (SiO2) shells and have a form of nanoparticle structure in which an empty space exists between the silica shell and the transition metal nanoparticles. Metal-Silica York-Shell Nanoparticle Catalyst
제1항에 있어서, 상기 전이금속은 Pd, Ni 또는 Pt 중에서 선택되는 어느 하나, 또는 둘 이상의 합금인 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
The transition metal-silica yoke-shell nanoparticle catalyst of claim 1, wherein the transition metal is any one selected from Pd, Ni, or Pt, or two or more alloys.
제1항에 있어서, 상기 전이금속은 Pd 또는 Pt인 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
The transition metal-silica yoke-shell nanoparticle catalyst for carbon-carbon coupling reaction of claim 1, wherein the transition metal is Pd or Pt.
제1항에 있어서, 상기 나노입자 촉매의 전이금속의 함량은 전체 촉매량 대비 0.5-20 wt%의 범위인 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매The transition metal-silica yoke-shell nanoparticle catalyst of claim 1, wherein the transition metal content of the nanoparticle catalyst is in the range of 0.5-20 wt% based on the total amount of the catalyst. 제1항에 있어서, 상기 촉매의 크기는 10 nm에서 100 nm의 범위인 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
The transition metal-silica yoke-shell nanoparticle catalyst for carbon-carbon coupling reaction of claim 1, wherein the catalyst has a size in the range of 10 nm to 100 nm.
제1항에 있어서, 상기 전이금속 나노입자의 크기는 2 nm에서 50 nm의 범위인 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
The method of claim 1, wherein the size of the transition metal nanoparticles range from 2 nm to 50 nm, transition metal-silica yoke-shell nanoparticle catalyst for carbon-carbon coupling reaction
제1항에 있어서, 상기 빈 공간층의 두께는 1 nm에서 50 nm의 범위인 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
The transition metal-silica yoke-shell nanoparticle catalyst for carbon-carbon coupling reaction of claim 1, wherein the hollow space layer has a thickness in a range of 1 nm to 50 nm.
(a) VII족 전이금속 이온 선구물질과 계면활성제를 용매 하에서 가열, 교반하여 전이금속 이온 전구체를 환원시켜 전이금속 나노입자를 형성하는 단계; (b) 상기 전이금속 나노입자를 졸-겔 과정(sol-gel route)을 통해 실리카로 코팅함으로써 쉘을 형성시켜 전이금속-실리카 코어-쉘 나노 입자를 제조하는 단계; (c) 상기 (b)단계에서 형성된 전이금속-실리카 코어-쉘 나노입자의 수열반응을 통해 기공과 빈 공간을 형성시키는 단계;를 통해 제조되는 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
(a) heating and stirring a Group VII transition metal ion precursor and a surfactant under a solvent to reduce the transition metal ion precursor to form a transition metal nanoparticle; (b) preparing a transition metal-silica core-shell nanoparticle by forming a shell by coating the transition metal nanoparticle with silica through a sol-gel route; (c) forming pores and empty spaces through hydrothermal reaction of the transition metal-silica core-shell nanoparticles formed in step (b); and the transition for the carbon-carbon coupling reaction Metal-Silica York-Shell Nanoparticle Catalyst
(a) VII족 전이금속 이온 선구물질과 계면활성제를 용매 하에서 가열, 교반하여 전이금속 이온 전구체를 환원시켜 전이금속 나노입자를 형성하는 단계; (b) 상기 전이금속 나노입자를 졸-겔 과정(sol-gel route)을 통해 실리카로 코팅함으로써 쉘을 형성시켜 전이금속-실리카 코어-쉘 나노 입자를 제조하는 단계; (c) 상기 (b)단계에서 형성된 전이금속-실리카 코어-쉘 나노입자의 열처리반응을 통해 기공과 빈 공간을 형성시키는 단계;를 통해 제조되는 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
(a) heating and stirring a Group VII transition metal ion precursor and a surfactant under a solvent to reduce the transition metal ion precursor to form a transition metal nanoparticle; (b) preparing a transition metal-silica core-shell nanoparticle by forming a shell by coating the transition metal nanoparticle with silica through a sol-gel route; (C) forming the pores and the empty space through the heat treatment of the transition metal-silica core-shell nanoparticles formed in step (b); characterized in that prepared through, carbon-carbon coupling reaction transition Metal-Silica York-Shell Nanoparticle Catalyst
(a) VII족 전이금속 이온 전구체 물질과 계면활성제를 유기용매 하에서 80 - 350℃ 범위의 고온으로 가열, 교반하여 전이금속 이온 전구체를 환원시킴과 동시에 계면활성제로 그 표면을 보호시킴으로써 안정한 전이금속 나노입자를 형성하는 단계; (b) 상기 (a)단계에서 합성된 전이금속 나노입자를 분리 및 정제하는 단계; (c) 상기 (b)단계에서 정제된 금속 나노입자를 졸-겔 과정(sol-gel route)을 통해 실리카로 코팅함으로써 쉘을 형성시켜 전이금속-실리카 코어-쉘 나노 입자를 제조하는 단계; (d) 상기 (c)단계에서 형성된 전이금속-실리카 코어-쉘 나노입자의 열처리 반응을 통해 기공과 빈 공간을 형성시키는 단계;를 통해 제조되는 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
(a) Group VII transition metal ion precursor materials and surfactants are heated and stirred in an organic solvent at a high temperature in the range of 80 to 350 ° C. to reduce the transition metal ion precursors and at the same time protect the surface with surfactants to ensure stable transition metal nano Forming particles; (b) separating and purifying the transition metal nanoparticles synthesized in step (a); (c) preparing a transition metal-silica core-shell nanoparticle by forming a shell by coating the metal nanoparticle purified in step (b) with silica through a sol-gel route; (d) forming pores and empty spaces through a heat treatment reaction of the transition metal-silica core-shell nanoparticles formed in step (c); a transition for a carbon-carbon coupling reaction Metal-Silica York-Shell Nanoparticle Catalyst
제 8항 내지 제10항 중 어느 한 항에 있어서, 상기 (a) 단계의 전이금속은 Pd, Ni 또는 Pt 중에서 선택되는 어느 하나, 또는 둘 이상의 합금인 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
The carbon-carbon coupling reaction according to any one of claims 8 to 10, wherein the transition metal of step (a) is any one selected from Pd, Ni or Pt, or two or more alloys. Transition Metal-Silica York-Shell Nanoparticle Catalyst
제 9항 또는 제10항에 있어서, 상기 전이금속-실리카 코어-쉘 나노입자의 열처리 반응의 반응조건은 수소기체 분위기 하에서 250 - 800℃ 범위의 고온 열처리인 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
The carbon-carbon coupling according to claim 9 or 10, wherein the reaction condition of the heat treatment reaction of the transition metal-silica core-shell nanoparticles is a high temperature heat treatment in the range of 250-800 ° C under a hydrogen gas atmosphere. Transition Metal-Silica York-Shell Nanoparticle Catalyst for Reaction
제 9항 또는 제10항에 있어서, 상기 전이금속-실리카 코어-쉘 나노입자의 열처리 반응이전에, 또는 그 이후에 수열반응 단계를 추가로 포함하는 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
The carbon-carbon coupling reaction according to claim 9 or 10, further comprising a hydrothermal reaction step before or after the heat treatment reaction of the transition metal-silica core-shell nanoparticles. Transition Metal-Silica York-Shell Nanoparticle Catalyst
제 8항에 있어서, 상기 수열반응은 실리카를 중성 혹은 염기성 반응조건에서 부분적으로 용해함으로써 빈 공간을 형성하는 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
9. The transition metal-silica yoke-shell nanoparticle catalyst for carbon-carbon coupling reaction according to claim 8, wherein the hydrothermal reaction forms an empty space by partially dissolving the silica under neutral or basic reaction conditions.
제 8항 내지 제10항 중 어느 한 항에 있어서, 상기 전이금속-실리카 코어-쉘 나노입자의 수열반응이나 열처리 반응의 이전 또는 이후에 상기 전이금속 나노입자를 부분적으로 용해하여 제거함으로써 빈 공간을 형성하는 단계;를 추가로 포함하는 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
The method of claim 8, wherein the empty space is removed by partially dissolving and removing the transition metal nanoparticles before or after hydrothermal reaction or heat treatment of the transition metal-silica core-shell nanoparticles. Forming, further comprising; transition metal-silica yoke-shell nanoparticle catalyst for carbon-carbon coupling reaction
제1항에 있어서, 상기 촉매의 기공표면적은 50-400 m2g-1이고, 전체 기공부피는 0.2 - 1.0 cm3g-1 인 것을 특징으로 하는, 탄소-탄소 짝지음 반응용 전이금속-실리카 요크-쉘 나노입자 촉매
The transition metal-silica yoke-shell for carbon-carbon coupling reaction according to claim 1, wherein the pore surface area of the catalyst is 50-400 m2g-1, and the total pore volume is 0.2-1.0 cm3g-1. Nanoparticle Catalyst
제1항 내지 제10항에 기재된 전이금속-실리카 요크-쉘 나노입자 촉매를 이용하여 탄소-탄소 짝지음 반응을 수행하는 방법
A method for carrying out the carbon-carbon coupling reaction using the transition metal-silica yoke-shell nanoparticle catalyst according to claim 1.
제17항에 있어서, 상기 탄소-탄소 짝지음 반응은 스즈키 커플링(Suzuki coupling), 헥 반응(Heck reaction), 소노가시라 반응, 울만 커플링 반응, 또는 슈틸레 커플링 반응 중에서 선택되는 어느 하나인 것을 특징으로 하는 방법
The method of claim 17, wherein the carbon-carbon coupling reaction is any one selected from Suzuki coupling, Heck reaction, Sonogashira reaction, Ulman coupling reaction, or Stille coupling reaction. Method characterized by
제18항에 있어서, 상기 탄소-탄소 짝지음 반응은 스즈키 커플링(Suzuki coupling), 소노가시라 반응, 또는 헥 반응(Heck reaction) 중에 선택되는 어느 하나인 것을 특징으로 하는 방법The method of claim 18, wherein the carbon-carbon coupling reaction is any one selected from Suzuki coupling, Sonogashira reaction, or Heck reaction.
KR1020110134133A 2011-12-14 2011-12-14 Catalyst for carbon-carbon coupling reactions using transition-metal silica nanoparticles KR101358666B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110134133A KR101358666B1 (en) 2011-12-14 2011-12-14 Catalyst for carbon-carbon coupling reactions using transition-metal silica nanoparticles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110134133A KR101358666B1 (en) 2011-12-14 2011-12-14 Catalyst for carbon-carbon coupling reactions using transition-metal silica nanoparticles

Publications (2)

Publication Number Publication Date
KR20130067518A true KR20130067518A (en) 2013-06-25
KR101358666B1 KR101358666B1 (en) 2014-02-11

Family

ID=48863327

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110134133A KR101358666B1 (en) 2011-12-14 2011-12-14 Catalyst for carbon-carbon coupling reactions using transition-metal silica nanoparticles

Country Status (1)

Country Link
KR (1) KR101358666B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476905B1 (en) * 2013-01-31 2014-12-26 건국대학교 산학협력단 Yolk­shell structured materials prepared by gas phase process and the preparation method thereof
WO2015080519A1 (en) * 2013-11-29 2015-06-04 주식회사 엘지화학 Yolk-shell particles, catalyst, and preparation method therefor
KR20160120830A (en) * 2015-04-08 2016-10-19 공주대학교 산학협력단 Encapsulated copper particle having oxidation resistance and preperating method of the same
KR101865386B1 (en) * 2015-10-22 2018-06-07 울산과학기술원 Manufacturing method of silica containing solid for furifying nucleic acid and silica containing solid thereof, furifying method of nucleic acid using the same silica containing solid

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476905B1 (en) * 2013-01-31 2014-12-26 건국대학교 산학협력단 Yolk­shell structured materials prepared by gas phase process and the preparation method thereof
WO2015080519A1 (en) * 2013-11-29 2015-06-04 주식회사 엘지화학 Yolk-shell particles, catalyst, and preparation method therefor
KR20150063002A (en) * 2013-11-29 2015-06-08 주식회사 엘지화학 Yolk-shell particle, catalyst comprising the same and manufacturing method thereof
CN105517699A (en) * 2013-11-29 2016-04-20 Lg化学株式会社 Yolk-shell particles, catalyst, and preparation method therefor
US10518246B2 (en) 2013-11-29 2019-12-31 Lg Chem, Ltd. Yolk-shell particles, catalyst, and preparation method therefor
KR20160120830A (en) * 2015-04-08 2016-10-19 공주대학교 산학협력단 Encapsulated copper particle having oxidation resistance and preperating method of the same
KR101865386B1 (en) * 2015-10-22 2018-06-07 울산과학기술원 Manufacturing method of silica containing solid for furifying nucleic acid and silica containing solid thereof, furifying method of nucleic acid using the same silica containing solid

Also Published As

Publication number Publication date
KR101358666B1 (en) 2014-02-11

Similar Documents

Publication Publication Date Title
Wan et al. Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid
Corma et al. Supported gold nanoparticles as catalysts for organic reactions
Zhou et al. Porous silica-encapsulated and magnetically recoverable Rh NPs: a highly efficient, stable and green catalyst for catalytic transfer hydrogenation with “slow-release” of stoichiometric hydrazine in water
Du et al. Highly dispersed Pt in MIL-101: An efficient catalyst for the hydrogenation of nitroarenes
CN111282590B (en) Metal monatomic-loaded nitrogen-doped porous graphene composite catalyst and preparation method thereof
Tan et al. Phosphotungstic acid loaded on hydrophilic ionic liquid modified SBA-15 for selective oxidation of alcohols with aqueous H2O2
JP5643197B2 (en) Heterogeneous copper nanocatalyst and method for producing the same
Alizadeh et al. A biguanide/Pd-decorated SBA-15 hybrid nanocomposite: Synthesis, characterization and catalytic application
CN101733162A (en) Organic metal framework supported palladium, preparation method and application thereof
KR101358666B1 (en) Catalyst for carbon-carbon coupling reactions using transition-metal silica nanoparticles
WO2008118097A1 (en) Palladium catalysts
Cao et al. Synthesis of palladium nanocatalysts with cucurbit [n] uril as both a protecting agent and a support for Suzuki and Heck reactions
Jeong et al. Synthesis and catalytic behavior of tetrakis (4-carboxyphenyl) porphyrin-periodic mesoporous organosilica
KR101759774B1 (en) A method for preparing core-shell copper nanoparticlesimmobilized on activated carbonandthe preparation of chalcogenide compoundusing them as a catalyst
Rezaei et al. Selective oxidation of toluene to benzaldehyde by H2O2 with mesoporous silica KIT-6 supported VOHPO4 0.5 H2O catalyst
Qi et al. Solvent-free aerobic oxidation of alcohols over palladium supported on MCM-41
Ma et al. Gold nanoparticles supported on the periodic mesoporous organosilica SBA-15 as an efficient and reusable catalyst for selective oxidation of silanes to silanols
Sun et al. A Shell‐by‐Shell Approach for Synthesis of Mesoporous Multi‐Shelled Hollow MOFs for Catalytic Applications
Kim et al. Synthesis of Pd/SiO 2 nanobeads for use in Suzuki coupling reactions by reverse micelle sol–gel process
CN111545239B (en) Solid catalyst for glycerol oxidation and preparation method thereof
Lakshminarayana et al. Switching of support materials for the hydrogenation of nitroarenes: A review
Zhang et al. Superstable magnetic nanoreactors with high efficiency for Suzuki-coupling reactions
Kim et al. Suzuki coupling reaction using hybrid Pd nanoparticles
Beigbaghlou et al. Introducing of a New Bio-inspired Hierarchical Porous Silica as an Inorganic Host for Ni–Pd Alloy Nanoparticles for the Synthesis of Aminobiphenyls from the One-Pot Suzuki–Miyaura Coupling-Nitro Reduction
KR102245940B1 (en) Iron-nickel alloy nanoparticles, preparation method thereof and carbon monoxide production method using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20161227

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180102

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190107

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20200106

Year of fee payment: 7