TW200934066A - Linear motor system - Google Patents

Linear motor system Download PDF

Info

Publication number
TW200934066A
TW200934066A TW097136798A TW97136798A TW200934066A TW 200934066 A TW200934066 A TW 200934066A TW 097136798 A TW097136798 A TW 097136798A TW 97136798 A TW97136798 A TW 97136798A TW 200934066 A TW200934066 A TW 200934066A
Authority
TW
Taiwan
Prior art keywords
slider
linear motor
armature
pole
phase
Prior art date
Application number
TW097136798A
Other languages
Chinese (zh)
Other versions
TWI474582B (en
Inventor
Toshiyuki Aso
Hiroshi Kaneshige
Akie Tanaami
Original Assignee
Thk Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thk Co Ltd filed Critical Thk Co Ltd
Publication of TW200934066A publication Critical patent/TW200934066A/en
Application granted granted Critical
Publication of TWI474582B publication Critical patent/TWI474582B/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • H02P25/066Linear motors of the synchronous type of the stepping type

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Linear Motors (AREA)
  • Control Of Linear Motors (AREA)

Abstract

The present invention provides a novel linear motor system, in which two or more movers are provided for one stator so that the cogging effect of the entire linear motor can be reduced by the interaction between the two or more movers. The linear motor comprises a base having a magnetic field part in which a plurality of permanent magnets are so arranged that N poles and S poles are alternately formed; and a first and a second sliders, arranged in a longitudinal direction of the base, each having an armature having 3-phase coils wounded on a plurality of salient poles of the cores arranged opposite to the magnetic field part. A control device controls the current supplied to the armatures of the first and the second sliders in a manner that causes a substantially 90 degree phase shift of electrical angle between the current supplied to the armature of the first slider and the current supplied to the armature of the second slider.

Description

200934066 六、發明說明: 【發明所屬之技術領域】 本發明為關於將電力變換成為直線運動能量之線性馬 -達,特別是關於經由控制供給到線性馬達之電力,而減小在 • 線性馬達發生之齒槽效應轉矩(cogging)之線性馬達系統。 【先前技術】 線性馬達是使旋轉型馬達之定子(固定部)側和動子(可動 β 部)側直線狀延伸者,將電能直接變換成為直線推力。在線 性馬達之定子以交替形成Ν極和S極之磁極之方式,排列多 個之永久磁鐵。在定子上經由間隙配置動子。以使定子和動 子間之間隙保持一定之方式,利用線性導引器、軸承等之導 引裝置,導引動子之直線運動。 在動子設有與永久磁鐵相對向之磁性體芯子。芯子具有朝 _ 向磁場部突出之多個突極。在多個之突極捲繞U、V、W相之 三相線圈。在U、V、W相之三相線圈當有120度相位差之三 相交流電流流動時,在三相線圈產生移動磁場。永久磁鐵所 產生之磁場和三相線圈所產生之移動磁場互相作用,而使動 _ 子直線運動。 域使線圈所產生之磁場變強而設有訂。芯子因為由石夕 鋼等之磁性材料構成,所以即使在線圈沒有電流流動之狀 態’在芯子之突極和永久磁鐵間亦會產生爾生吸引力。當動 子沿著定子移動時,怒子之突極利用磁性吸^力被前方之永 97136798 200934066 久磁鐵吸引,或被後方之永久磁鐵拉回。因此,施加在動子 之磁性吸引力在永久磁鐵之每一個磁極間距週期性地變 化。該吸引力之週期性之變動稱為齒槽效應轉矩。即使在線 圈有電流流動,齒槽效應轉矩亦會殘留,而混亂地動作。 用來抵銷齒槽效應轉矩之對策,如圖u所示,已知者有 在動子芯子1之移動方向兩端設置由磁性體構成之補助磁 極2a、2b之線性馬達(參照專利文獻1和專利文獻2)。在 該線性馬射補助雜2a、2b之設置制來加強芯子工之 移動方向兩端之突搞1q 1u 2a、2b時,則通。假如未設置補助磁極 兩端突極la成兩端突極1a、lb之雖,而造成 ::f ba,之磁通比中央突極之磁通為弱。當兩端 犬極la、lb之磁通變弱時, ^ 通發生不平衡,所以產1絲/、中央犬極1C所產生之磁 ,之磁通,並消二效:轉矩。為能加強兩端突極 專利文獻1二::平=補助磁極2a、2b。 9 . 7 53427 號公報 專利文獻2·日本專利特開昭_ 【發明内容】 现厶報 C發明所欲解决之問題) 先刖技街線性馬達之齒槽效應 三相線圏構成之—個動子内之 =均疋在由芯子和 定子之長度方向設置二個以上之卜在對—個定子於 配置 時,則分別將採用齒槽效應轉矩對策之= 生馬達之情況 *7136798 動子排列和 200934066 在一個定子上,利用此種方式油 轉矩 ·· Κ崎㈣達匈之齒槽效應 因此,本發明之目岐提供㈣線性 個之動子内減小齒槽效應轉矩,而3、、、,不是在一 相互作用,而減小線性馬達全上之動子之 (解決問題之手段) 之齒槽效應轉矩。 ❹ 用以解決上述問題之t請專利 線性馬達系統,具備有:線性馬達,其~人項之發明是-種 排列多個永久磁鐵之磁場部,而、包含有:基座,具有 方式;和第-和第二滑動器,且.極# s極父替形成之 相對向之芯子之多個突極上,捲t破配置成與上述磁場部 柯噁有三相線圈 在上述基座之長度方向排列;上述第—和 ”同時 上述基座在上述長度方向相對地直線運動;和第控==動器對 使供給到上述第一滑動器之電拖的電流之f置,Μ 述第二滑動器之電樞的電流之相位,在 ::給到上 9。度之方式,控制供給到上述第一和上迷第=上偏移 樞的電流。 —β動器之電 申請專利範圍第2項之發日月其特徵是切 項之線性馬達系統中,使上述控職置包含有"1,圍第1 換器’對上述第一滑動器之電樞供給電力;第第-電力變 器’對上述第二滑動器之電抱供給電力;和二電力變換 自上游控制I置之指令,和來自用以檢測線性馬達之=據來 97136798 置和 6 200934066 速度至少一方之感測器之資訊,對上述第一和上述第二電力 變換器輸出縣指令,同時使輸㈣上述第—和上述第二電 力變換器之電屋指令之相位在電性角度實質上偏移⑽度。 - ㈣專利範園第3項之發明其特徵是在帽專利範圍第】 .或2項之線性馬達系統中,從上述第-滑動器之上述芯子之 上述長度方向的中央突極之中心、到上述第二滑動器之上述 1子之域長度方向財央突極之巾心之㈣,被設定為在 上述磁場部之極間之磁極間距之實質上之㈣⑽屮 倍(Ν :自然數)。 申請專利範圍第4項之發明是—種線性馬達系統,具備 有:線性馬達,其包含有:基座,具有排列多個永久磁鐵之 磁場部,而成為Ν極和S極交替形成之方式;和第一和第二 滑動器’具有在被配置成與上述磁場部相對向之芯子之多個 ❹突極上,捲繞有三相線圈之㈣,同時在上述基座之長度方 向排列;上述第-和上述第二滑動器對上述基座在上述長度 方向相對地纽運動;和控職置,用來㈣供給到上述第 一和上述第二滑動器之電樞的電流;而從上述第-滑動器之 _上就、子之上逃長度方向的中央突極之中心、、到上述第二滑 ' Μ之上述芯子之上述長度方向的中央突極之中心之距 離,被狀為在上述磁場部之N㈣極間之磁極間距之實 質上之l/4x(2N-l)倍(N:自然數卜 (發明效果) 97136798 7 200934066 依照申請專利範圍第1項之 動器之電拖供給電性角度實質上偏:::二和第二滑 使在第-和第二滑動器所產生之 作用。因此,第-和第二滑動器之:互 === 線性馬達全體之齒槽效應轉矩。 作用T以減小 二2項之發明時,因為利用-個控制器 ❹ :第-和第::,所以當與利用不同之控制器控 第一4器之電極之情況比較時,可以使控制裝置 依照申請專利範圍第3項之發明時,因為將第一和第二滑 動器之電樞配置成偏移磁極間距之實質上之1/4心㈣倍 (Ν :自然數)之相位,所以可以減小線性馬達全體之齒槽效 應轉矩。 依照中請專利範圍第4項之發明時,因為將第—和第二滑 動器之電樞配置成偏移磁極間距之實質上之 (Ν :自然數)之相位,所以可以減小線性馬達全體之齒槽效 應轉矩。 【實施方式】 以下根據附圖用來詳細地說明本發明之實施形態。圖1 表示本發明之一實施形態之線性馬達系統之構造圖。本發明 之線性馬達系統之構成包含有:線性馬達,沿著細長延伸之 基座4使台5直線運動;和祠服驅動器6,作為控制裝置而 97136798 8 200934066 控制線性馬達。 在線性馬達之基座4設有作為定子之由多個永久磁鐵構 成之磁場部。另外,在線性馬達之台5,在基座4之長度方 - 向並排地安裝有第—滑動器7和第二滑動器8。各個滑二器 ' 7、8具有作為動子之在&子捲繞三相線圈之電樞。第一和 第/月動器7、8之文裝間距被设疋為;^場部之磁極間距之 1/4x(2N-1)^(n :自錄)。依照此種方式使相位偏移,而 ❹配置第-滑動器7和第二滑動器8’利用第一和第二滑動器 7、8之相互作用,可以使線性馬達全體之齒槽效應轉矩減 小。 在台5安裝有線性標尺等之編碼器1〇,作為對台5進行 位置和速度檢測之感測器。編碼器10所產生之信號被輸出 到伺服驅動器6。伺服驅動器6之構成包含有:第一和第二 電力變換器11、12,用來將電力供給到第一和第二滑動器 ® 7、8 ;和控制器(C)14,根據來自電腦等之上述控制裝置之 位置指令’和來自編碼器10之信號,控制第一和第二電力 變換器(P卜P2)l卜12。如上述之方式,第一滑動器7和第 二滑動器8偏移磁場部之磁極間距r之l/4x(2N-l)倍(N : 自然數)之相位。控制器14以使相位偏移之第一和第二滑動 器7、8可以同步動作之方式,使輸出到第一電力變換器玉玉 之電壓指令之相位和輸出到第二電力變換器12之電壓指令 之相位’在電性角度偏移+90度或-90度。 97136798 9 200934066 在此處控制器14之電路被製作在一片之控制基板。二個 電力變換器11、12之電路之各個被製作在二片之電力基板 之各個。在伺服驅動器6組入有一片控制基板和二片電力基 ' 板。對於二片電力基板而共用一片控制基板,可以使伺服驅 - 動器6之構造簡化。 圖2表示線性馬達之立體圖(包含分割台%、北之剖視 圖),圖3表示前視圖。在細長延伸之基座4上設有作為線 ©性馬達之定子之磁場部24。在基座4組裝有可以在基座4 之長度方向滑動之第一和第二滑動器7、8。 各個滑動器7、8具有分割台5a、5b和被安裝在分割台 5a、5b之下面之電樞π、18。分割台5a、5b在第一滑動器 7和第二滑動器8可以使用共同之台5(參照圖丨),亦可以 使用分開之分割台5a、5b。在基座4上安裝有線性導引器 23用來導引第一和第二滑動器7、8之直線運動。分割台5a、 ® 5b女裝在線性導引器23之移動塊21之上面。在分割台5a、 5b下面之左右線性導引器23之間,吊下有作為線性馬達動 子之電樞17、18。如圖3之前視圖所示,在磁場部24和電 樞17、18間設有間隙g。線性導引器23與分割台5a、5b 之移動無關地,使該間隙g維持為一定。 基座4之構成包含有底壁部4a,和被設在底壁部4a寬度 方向兩侧之一對侧壁部4b。在底壁部4a之上面安裝磁場部 24。在侧壁部4b之上面安裝有線性導引器23之執道22。 97136798 10 200934066 在軌道22組裝有可滑動之移動塊21。在軌道22和移動塊 21間插入有可旋轉運動之多個球(未圖示)。在移動塊2丨< 有循環狀之球循環路徑,用來使多個球循環。當使移動$ 21對轨道22滑動時,使多個球在該等間轉動運動,或使多 個球在球循環路徑循環。因此,移動塊21對軌措〇〇 训返22可以順 利地滑動。 ❹ 在線性導引器23之移動塊21上面安裝有分割台5&、^ 分割台5a、5b,例如,由鋁等之非磁性材料構成。在八割 台5&、51)安裝有移動對象。在分割台5&、51;)安震有編^1 10用來檢測台5相對基座4之位置。編碼器1〇所檢測到 位置信號被發送到驅動線性馬達用之伺服驅動器6。伺服驅 動器6以依照來自上游控制器之位置指令使台5移動之方 式’而控制供給到電樞17、18之電流。 圖4表示沿著電樞17、18之移動方向之剖視圖。電樞17、 ❹ 18之構造與第一滑動器7和第二滑動器8相同。在分割台 5a、5b之下面’經由隔熱材料31安裝有電樞17、18。電插 17、18之構成包含有· 子32,由梦鋼等之磁性材料構成. 和三相線圈33,捲繞在芯子32之突極32a、32b、32c。芯 子32之構成包含有:基部板32d,安裝在台5之下面;和 梳齒狀之突極32a、32b、32c,從基部板32d突出到下方。 突極32a、32b、32c之個數為3之倍數’在本實施形態為3 個。突極32a、32b、32c在電極17、18之移動方向排列成 97136798 11 200934066 為保持一定之間距。在三個突極32a、32b、32c之各個捲繞 u相、v相和w相之任一個之線圈33a、33b、33c。在三相 線圈33使具有120度之相位差之三相交流電流流動。在將 三相線圈33捲繞在突極32a、32b、32c之後,以樹脂密封 三相線圈33。200934066 VI. Description of the Invention: [Technical Field] The present invention relates to a linear horse-to-light that converts electric power into linear motion energy, particularly with respect to power supplied to a linear motor via control, which is reduced in the occurrence of a linear motor Linear motor system for cogging torque. [Prior Art] The linear motor is such that the stator (fixed portion) side and the mover (movable β portion) side of the rotary motor are linearly extended, and the electric energy is directly converted into a linear thrust. The stator of the linear motor arranges a plurality of permanent magnets in such a manner as to alternately form the magnetic poles of the drain and the S pole. The mover is arranged on the stator via a gap. In order to keep the gap between the stator and the stator constant, the linear motion of the mover is guided by a guide device such as a linear guide or a bearing. The mover is provided with a magnetic core opposite to the permanent magnet. The core has a plurality of salient poles that protrude toward the magnetic field portion. The three-phase coils of the U, V, and W phases are wound in a plurality of salient poles. When the three-phase coils of the U, V, and W phases flow with a three-phase alternating current having a phase difference of 120 degrees, a moving magnetic field is generated in the three-phase coil. The magnetic field generated by the permanent magnet interacts with the moving magnetic field generated by the three-phase coil to linearly move the moving element. The field is made strong by the magnetic field generated by the coil. Since the core is made of a magnetic material such as Shixia Steel, even if there is no current flowing in the coil, the attraction between the sharp and permanent magnets of the core is generated. When the mover moves along the stator, the spurt of the anger is attracted by the permanent magnet of the front, or pulled back by the permanent magnet at the rear. Therefore, the magnetic attraction force applied to the mover periodically changes at each magnetic pole pitch of the permanent magnet. The periodic variation of the attraction is called the cogging torque. Even if there is current flowing in the coil, the cogging torque will remain and will act in a chaotic manner. The countermeasure for offsetting the cogging torque, as shown in Fig. u, is a linear motor in which the auxiliary magnetic poles 2a, 2b composed of magnetic bodies are disposed at both ends of the moving direction of the mover core 1 (refer to the patent) Document 1 and Patent Document 2). When the linear horse-radiation auxiliary 2a, 2b is installed to reinforce the protrusions 1q 1u 2a and 2b at both ends of the moving direction of the core work, it is turned on. If the auxiliary poles of the auxiliary magnetic poles are not provided as the salient poles 1a and 1b of the both ends, the flux of ::f ba is weaker than the magnetic flux of the central salient pole. When the magnetic fluxes of the dog poles and lbs at both ends become weak, the Tongtong is unbalanced, so the magnetic flux generated by 1 wire/, the central dog pole 1C is generated, and the effect is eliminated: torque. In order to be able to strengthen the terminals at both ends, Patent Document 12:: Flat = auxiliary magnetic poles 2a, 2b. 9.73 53427 Patent Document 2: Japanese Patent Laid-Open _ [Summary of the Invention] The problem to be solved by the C invention is now known as the cogging effect of the three-phase wire of the linear motor of the 刖TECH street. If there is more than two in the length direction of the core and the stator, when the pair of stators are arranged, the countermeasures for the cogging torque will be adopted respectively = the condition of the motor *7136798 Arrangement and 200934066 on a stator, using this way oil torque · Mizaki (four) to the Hungarian cogging effect Therefore, the object of the present invention provides (four) linear cokes to reduce the cogging torque, and 3,,,,,, not the cogging torque that reduces the interaction of the mover (the means of solving the problem).请 The patented linear motor system for solving the above problems is provided with a linear motor, and the invention of the human body is a magnetic field portion in which a plurality of permanent magnets are arranged, and includes: a base having a mode; The first and second sliders, and the poles are formed by a plurality of salient poles of the opposite core, and the volume t is broken and arranged to have a three-phase coil in the longitudinal direction of the base Arranging; said first and/or "at the same time, said base is relatively linearly moved in said longitudinal direction; and said first control == pair of actuators is arranged to bias the current supplied to said first slider by said second sliding The phase of the current of the armature of the device is controlled to the current of the first and upper offsets of the upper and lower offsets in the manner of :9. The electric application patent range of the beta actuator is 2nd. The item is characterized by a linear motor system in which the above-mentioned control position includes a "1, and the first converter is supplied with electric power to the armature of the first slider; the first-electric power is changed 'Power supply to the above-mentioned second slider; and two power changes The first instruction and the second power converter output the county command from the upstream control I command, and the information from the sensor for detecting at least one of the linear motor = 97136798 and the 6 200934066 speed The phase of the electric house command of the above-mentioned first and second electric power converters is substantially offset by (10) degrees from the electrical angle. - (4) The invention of the third item of the patent garden is characterized by the scope of the cap patent. Or a linear motor system of the second item, the center of the central salient pole in the longitudinal direction of the core of the first slider, and the length of the first sub-field of the second slider The heart (4) is set to be substantially (four) (10) 屮 times (Ν: natural number) of the magnetic pole pitch between the poles of the magnetic field portion. The invention of claim 4 is a linear motor system having: linear a motor comprising: a base having a magnetic field portion in which a plurality of permanent magnets are arranged, and a manner in which a drain pole and an S pole are alternately formed; and the first and second sliders ' have a configuration opposite to the magnetic field portion a plurality of three-phase coils are wound around the plurality of protrusions of the core, and are arranged in the longitudinal direction of the base; the first and second sliders move the base relative to the base in the length direction And a control device for (4) supplying current to the armatures of the first and second sliders; and from the upper side of the first slider, the center of the central salient pole in the longitudinal direction And a distance from the center of the central salient pole in the longitudinal direction of the core of the second sliding Μ is substantially 1/4x (2N- of the magnetic pole pitch between the N (four) poles of the magnetic field portion l) times (N: natural number (invention effect) 97136798 7 200934066 The electrical towing power supply angle of the actuator according to the first application of the patent scope is substantially biased::: two and the second slip in the first and the The effect of the two sliders. Therefore, the first and second sliders: mutual === cogging torque of the entire linear motor. When the effect T is to reduce the invention of the second and second items, since the controller ❹: the first and the ::: are utilized, the control can be made when compared with the case where the electrodes of the first 4 are controlled by different controllers. According to the invention of claim 3, since the armatures of the first and second sliders are arranged to offset the phase of the magnetic pole pitch by substantially 1/4 (four) times (Ν: natural number), The cogging torque of the entire linear motor can be reduced. According to the invention of the fourth aspect of the patent application, since the armatures of the first and second sliders are arranged to offset the phase of the magnetic pole pitch (Ν: natural number), the linear motor can be reduced. Cogging torque. [Embodiment] Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Fig. 1 is a view showing the construction of a linear motor system according to an embodiment of the present invention. The linear motor system of the present invention comprises: a linear motor that linearly moves the stage 5 along the elongated base 4; and a servo drive 6 as a control device to control the linear motor 97136798 8 200934066. A magnetic field portion composed of a plurality of permanent magnets as a stator is provided on the base 4 of the linear motor. Further, on the stage 5 of the linear motor, the first slider 7 and the second slider 8 are mounted side by side in the length direction of the base 4. Each of the sliders '7, 8 has an armature that acts as a mover in the & sub-wound three-phase coil. The spacing between the first and fourth/month actuators 7, 8 is set to 1/4 x (2N - 1) ^ (n: self-recording) of the magnetic pole spacing of the field portion. In this way, the phase is shifted, and the first slider 7 and the second slider 8' use the interaction of the first and second sliders 7, 8 to make the cogging torque of the entire linear motor Reduced. An encoder 1 such as a linear scale is attached to the stage 5 as a sensor for detecting the position and speed of the stage 5. The signal generated by the encoder 10 is output to the servo driver 6. The servo driver 6 is composed of: first and second power converters 11, 12 for supplying electric power to the first and second sliders 7, 8; and controller (C) 14, according to a computer or the like The position command of the above control device and the signal from the encoder 10 control the first and second power converters (Pb). In the above manner, the first slider 7 and the second slider 8 are offset from the phase of the magnetic pole pitch r of the magnetic field portion by 1/4x (2N - 1) times (N : natural number). The controller 14 causes the phase of the voltage command output to the first power converter and the output to the second power converter 12 in such a manner that the phase-shifted first and second sliders 7, 8 can operate in synchronization. The phase of the voltage command is offset by +90 degrees or -90 degrees from the electrical angle. 97136798 9 200934066 Here the circuit of the controller 14 is fabricated on a control substrate. Each of the circuits of the two power converters 11, 12 is fabricated in each of two power substrates. In the servo driver 6, a control substrate and two power base plates are incorporated. The configuration of the servo driver 6 can be simplified by sharing one control substrate for two power substrates. Fig. 2 is a perspective view of a linear motor (including a split table %, a north cross-sectional view), and Fig. 3 is a front view. A magnetic field portion 24 as a stator of the wire-like motor is provided on the elongated base 4 . The base 4 is assembled with first and second sliders 7, 8 which are slidable in the longitudinal direction of the base 4. Each of the sliders 7, 8 has divided stages 5a, 5b and armatures π, 18 mounted under the divided stages 5a, 5b. The dividing table 5a, 5b can use the common table 5 (see Fig. 在) in the first slider 7 and the second slider 8, and separate dividing tables 5a, 5b can also be used. A linear guide 23 is mounted on the base 4 for guiding the linear motion of the first and second sliders 7, 8. The dividing table 5a, ® 5b is worn over the moving block 21 of the linear guide 23. Between the left and right linear guides 23 below the dividing stages 5a, 5b, armatures 17, 18 as linear motor movers are suspended. As shown in the front view of Fig. 3, a gap g is provided between the field portion 24 and the armatures 17, 18. The linear guide 23 maintains the gap g constant regardless of the movement of the dividing stages 5a and 5b. The base 4 has a bottom wall portion 4a and a pair of side wall portions 4b provided on both sides in the width direction of the bottom wall portion 4a. A magnetic field portion 24 is attached to the upper surface of the bottom wall portion 4a. An obstruction 22 of the linear guide 23 is mounted on the upper side of the side wall portion 4b. 97136798 10 200934066 A slidable moving block 21 is assembled on the track 22. A plurality of balls (not shown) that are rotatably movable are inserted between the track 22 and the moving block 21. In the moving block 2丨< has a cyclical ball circulation path for circulating a plurality of balls. When the movement $21 is made to slide the track 22, the plurality of balls are caused to rotate in the space, or the plurality of balls are cycled in the ball circulation path. Therefore, the moving block 21 can smoothly slide the track 22 back.分割 The split table 5&, the split table 5a, 5b is mounted on the moving block 21 of the linear guide 23, and is made of, for example, a non-magnetic material such as aluminum. A moving object is installed in the eight cutting stations 5&, 51). At the split table 5&, 51;) An Zhen has a code for detecting the position of the table 5 relative to the base 4. The position signal detected by the encoder 1 is transmitted to the servo driver 6 for driving the linear motor. The servo driver 6 controls the current supplied to the armatures 17, 18 in a manner of moving the stage 5 in accordance with a position command from the upstream controller. Figure 4 shows a cross-sectional view along the direction of movement of the armatures 17, 18. The configurations of the armatures 17, ❹ 18 are the same as those of the first slider 7 and the second slider 8. The armatures 17, 18 are attached to the lower surface of the dividing stages 5a, 5b via the heat insulating material 31. The electric plugs 17 and 18 are configured to include a sub-32, which is made of a magnetic material such as Menggang. The three-phase coil 33 is wound around the salient poles 32a, 32b, and 32c of the core 32. The core 32 is composed of a base plate 32d which is attached to the lower surface of the table 5, and comb-shaped projecting poles 32a, 32b, 32c projecting from the base plate 32d to the lower side. The number of the salient poles 32a, 32b, and 32c is a multiple of 3', which is three in the present embodiment. The salient poles 32a, 32b, 32c are arranged in the moving direction of the electrodes 17, 18 to be 97136798 11 200934066 in order to maintain a certain distance therebetween. The coils 33a, 33b, and 33c of any one of the u phase, the v phase, and the w phase are wound around each of the three salient poles 32a, 32b, and 32c. A three-phase alternating current having a phase difference of 120 degrees is caused to flow in the three-phase coil 33. After the three-phase coil 33 is wound around the salient poles 32a, 32b, and 32c, the three-phase coil 33 is sealed with a resin.

在第一和第二分割台5a、5b之下面亦可以安裝有包夾電 樞17、18之一對補助芯子34。補助芯子34由一般構造用 壓延鋼、矽鋼等之磁性材料構成,用來減小電柩17、Μ單 獨之齒槽效應轉矩。 圖5表示安裝在基座4上面之磁場部24。磁場部24由薄 板狀之磁|ra 40和在磁輕4〇上排成一行之多個永久磁鐵 構成。永久_ 41為高保磁力讀磁鐵等之稀土類磁鐵。 在板狀之永久磁鐵41之上面侧形成N極或s極之一方在 背面侧形成另外之-方。以在長度方向交替形成n極和$ 極之方式’將多個之永久磁鐵41排列在磁麵4〇上。利 著等將永久磁鐵41固定在磁輛40。 磁輛40由-般構造用壓延鋼、石夕鋼等之場性 磁軛40形成在細長之板上。固定在磁扼 成。 υ <水久磁鐵41 被蓋板42覆蓋。蓋板42亦利用接著等固定到磁輕4〇。固 定有永久磁鐵41和蓋板42之磁軛40利用螺栓“等之固^ 手段,安装到基座4。磁場部24被單元化 疋 對應於基座4 之長度將單元化之多個之磁場部24安裝在基座4。— 97136798 12 200934066 磁場部24之基座4利用螺栓44等之固定手段,固定到未圖 示之固定盤等。 圖6表示磁場部24之俯視圖。在本實施形態中,永久磁 •鐵41之平面形狀形成平行四邊形。從N極永久磁鐵41a之 • 中心到N極永久磁鐵41a之中心之距離,成為磁場部24之 N極-N極間之磁極間距r。當然’磁場部之n極〜N極間之 磁極間距r為N極-S極間之磁極間距r 1之2倍,但等於s ❹ 極_S極間之磁極間距。 圖7表示發生在第一電樞17之齒槽效應轉矩。當使由磁 性材料構成之芯子32在磁場部24之永久磁鐵μ上移動 時’在永久磁鐵41和芯子32間產生磁性吸引力。在磁性吸 引力中,發生在第一電樞17之移動方向之成分與齒槽效應 轉矩有關。與第一電樞17之移動方向正交之成分(垂直方向 之吸引力)由線性導引器23接受,與齒槽效應轉矩無關。 ® 在三相線圈33沒有電流流動之狀態,當使第一電樞17 對磁場部24直線移動時,芯子32之突極32a、32b、32c 被移動方向前方之永久磁鐵41吸引、或被後方之永久磁鐵 41吸引。該吸引力之週期變動即為齒槽效應轉矩。 圖7之圖形表示使第一電樞17於電性角度從-180度移動 到0度(N極-N極間磁極間距之1/2)時,發生在各個突極 32a、32b、32c之齒槽效應轉矩力。發生在U、V和W相突 極32a、32c、32b之齒槽效應轉矩力,與在U、V和W相三 97136798 13 200934066 相線圈流動之電流同樣地’描繪偏移120度相位之正弦曲線 之波形。假如三個正弦曲線之振幅相同時,三個突極32a、 32b、32c之齒槽效應轉矩力加總之芯子全體之齒槽效應轉^ - 矩力,則與第一電樞17之位置無關地經常成為零。亦即, -不發生齒槽效應轉矩。 但是,中央W相之突極32b為磁阻最低,磁通容易通過。 當使U、V和W相之突極之齒槽效應轉矩力進行比較時,中 © 央之W相之突極32b之齒槽效應轉矩力最大,兩端之突極 32a、32c之齒槽效應轉矩力變小。因此,芯子全體之齒样 效應轉矩力,與中央W相之突極32b之齒槽效應轉矩力同步 地產生。假如可以在第二電樞18產生抵銷W相突極32b齒 槽效應轉矩力之齒槽效應轉矩力時,可以使線性馬達全體之 齒槽效應轉矩力減小。亦即,第二滑動器8之電樞ι8產生 之齒槽效應轉矩力之波形之相位、和第一滑動器7之電枢 ® 17產生之齒槽效應轉矩力之波形之相位,假如電性角度偏 移90度時’因為具有使兩者之齒槽效應轉矩力互相抵銷之 作用,所以可以減小線性馬達全體之齒槽效應轉矩力。 圖8表示將第一滑動器7產生之齒槽效應轉矩力之波形、 和第二滑動器8產生之齒槽效應轉矩力之波形組合後之線 性馬達全體之齒槽效應轉矩力波形。第二滑動器8之第二電 樞18產生之齒槽效應轉矩力波形,相對於第一滑動器7之 第一電樞17產生之齒槽效應轉矩力波形,在電性角度偏移 97136798 14 200934066 90度之相位’成為第一滑動器7之電樞17所產生之齒槽效 應轉矩力波形之反相者。因此,將料波形加總之線性馬達 全體之齒槽效應轉矩力之波形,與第-和第二電枢17、18 - 之電性角度無關地經常成為零。 - 圖9表示第—滑動器7和第二滑動器8之位置關係。要使 第一滑動器7之第一電樞17產生之齒槽效應轉矩力波形之 相位’相對於第二滑動器8之第二電樞18產生之齒槽效應 β轉矩力波形之相位,電性角度偏移⑽度時,可以將從第一 '骨動器7之芯子32之中央突極32b之中心、到第二滑動器 8之心子32之中央突極32b之中心之距離’設定在磁場部 之N極一N極間之磁極間距r之實質上之ΐ/4χ(2Ν-1)倍(N : 自然數)。亦即,可以設定在磁極間距7之1/4之奇數倍。 與此相反地,假如設定在偶數倍時,第二滑動器8之第二電 樞18所產生之齒槽效應轉矩力比第一滑動器7之第一電樞 6 17所產生之齒槽效應轉矩力強。 另外,依照實際之齒槽效應轉矩之發生狀況、或各個滑動 器7、8之安裝空間’可以使從第一滑動器7之中央突極32b . 之中心、到第二滑動器8之中央突極32b之中心之距離r, 稍微偏離磁極間距之l/4x奇數倍。實質上在磁極間距之1/4 X奇數倍亦包含此種情況° 圖10表示使用有d一q座標系之伺服驅動器6之控制之全 體構造。其基本構造包含有被設置成與第一和第二電樞 97136798 15 200934066 PI 器 樞 17 18(在圖中以馬達表示)對應之第-和第二電力變換器 以 P2和用以控制第-和第二電力變換器P卜P2之控制 第和第一電力變換器PI、P2是用來將電力供給到電 17 18之電壓型PWM變流器等。控制器之構成包含有用 進行電流控制之q軸電流控制器5卜用以運算電流指入 之推力電流變換3| 飞 命用以進行速度控制之速度控制 53 ’和用以進行位置控制之位置控制器 ❹和位置檢測器56共用編碼器1〇。 逆又檢以55 控制系統由位置控制迴路、 之二個迴路槿志义 X控制迴路、電流控制迴路 之一個迴路構成。位置控 叫 路、電流控制迴路依序為次要迴路路為主娜,而速度控制瘦 ㈣控制器54根據從塊繼所⑼之位置指令值 和來自位置檢測器56之位置回讀值以偏差,運 Μ紅令值ω ^速度控制器53根據迷度指令值心、 醫和來自速度檢測器55之速度回饋值ι之偏差,運算推力指令 匕。推力電流變換器52根據推力指令^運算⑼電流指 令軸電流控制器59運算與以同方向之電流成分之 • d軸電流指令。。在同步馬達’因為確立由磁鐵產生之d 軸磁通,所以控制成d軸電流指令丨、通常為〇 肖量旋轉器· 3相2相變換器6G根據來自相G位檢測器6ι 之電性角信號將第-電樞17之三相回饋電流值^ 卜^變換成為^電^和——^軸電流控制 97136798 16 200934066 器:取:轴電流指令〜和d轴電流R偏差,運算d 軸電壓之才曰令值W q轴電流控制器51取(1軸電流指令γ、和 Q軸電流iq之偏差,運算q軸電壓之指令:曰:二 ' 旋轉器· 2相3相變換器63根據該等之電壓指令ν%、ν' - 和電性角信號,輸出三相電壓指令v*u、、V* ^第一 向量旋轉器· 2相3相變換器64根據該等之電壓指令v* = V%和電性角信號0 re,輸出相對於第一向量旋轉器· 2相3 ©相變換器63所輸出之三相電壓指令,在電性角度偏移^ 度或-90度相位之三相電壓指令v*u、V*v、匕。具體來說, 以Θ—Θ删。或θ—Θ-9(Γ代人電性角…料三相電壓指 令。U相、V相、W相之電壓指令V*u、V*v、v'因為互相偏 移120度之相位,所以U相間、V相間、W相間之相位變成 在電性角偏移+90度或-90度之相位。第一和第二電力變換 器11、12根據該等之電壓指令對輸出電壓進行pwM控制, ® 最後控制在第一和第二電枢17、18流動之電流。 如上述之方式’可以對第一和第二電極17、is供給電性 角度偏移90度相位之三相交流電流。如圖9所示,將從第 一滑動器7之芯子32之中央突極32b之中心、到第二滑動 器8之芯子32之中央突極32b之中心之距離,設定在磁場 部之N極-N極間之磁極間距之實質上之倍(N : 自然數)。經由對第一和第二電樞17、18供給電性角度偏移 9G度相位之三相交流電流’可以使保持此種間距之第一滑 97136798 200934066 動器7和第二滑動器8同步地直線運動。 另外,/發㈣^於上㈣施形態,在㈣更本發明 要曰之範圍可以實現各種之實施形態。例如,亦可以設置 一組之以—個為-組之突極亦即設置合計六個之突極。在 此種If况ϋ為中央突極成為二個,所以中央突極之中心成 為-個中央突極之中心。在設置合計九個突極之情況,從端 部起之第5個突極成為中央突極。 β 3外’利用第-滑動器和第二滑動器之相互作用,可以滅 小線性馬達全體之齒槽效應轉矩,所以亦可以在電樞之兩側 不設置用以減小各個滑動器單體之齒槽效應轉矩之補助怒 子。另外’除了第一和第二滑動器外,亦可以設置第三或第 四滑動器。 另外,在上述實施形態中是使第一和第二滑動器直線運 ❹動,而使基座被固定,但是因為第一和第二滑動器對基座之 直線運動為相對運動,所以亦可以使基座進行直線運動,而 使第和第一滑動器被固定。 本說明書根據2007年9月28日提出之日本專利特願 2007-256320。其内容全部被包含在本案。 【圖式簡單說明】 圖1是本發明之—實施形態之線性馬達系統之構造圖。 圖2是線性馬達之立體圖(一部份之台之剖視圖)。 圖3是線性馬達之前視圖。 97136798 18 200934066 圖4是沿著電樞之移動方向之剖視圖。 圖5是安裝在基座上面之磁場部之立體圖。 圖6是單元化之磁場部之俯視圖。 -圖7之圖形表示在第一電樞產生之齒槽效應轉矩。 圖8之圖形表示線性馬達全體之齒槽效應轉矩力之波形。 圖9是概略圖,用來表示第一滑動器和第二滑動器之位置 關係。 © 圖10是伺服驅動器之控制之全體構造圖。 圖11是先前技術之安裝有補助磁極之線性馬達之概略 圖。 【主要元件符號說明】 1 芯子 la、lb、lc 突極 2a、2b 輔助磁極 4 基座 4a 底壁部 4b 侧壁部 5 台 5a、5b 分割台 6 伺服驅動器(控制裝置) 7 第一滑動器 8 第二滑動器 97136798 19 200934066 10 編碼器(感測器) 11 第一電力變換器(PI) 12 第二電力變換器(P2) - 14 控制器(C) . 17 第一電枢 18 第二電樞 21 移動塊 ❹ 22 執道 23 線性導引器 24 磁場部 31 隔熱材料 32 芯子 32a、32b、32c 突極 32b 中央突極 ® 32d 基部板 33 三相線圈 33a、33b、33c 線圈 34 補助芯子 40 磁輛 41 ' 41a 永久磁鐵 42 蓋板 43、44 螺栓 97136798 20 200934066 51 q軸電流控制器 52 推力電流變換器 53 速度控制器 - 54 位置控制器 • 55 速度檢測器 56 位置檢測器 59 d軸電流控制器 ❹ 60 向量旋轉器· 3相2相變換器 61 相位檢測器 63 第一向量旋轉器.2相3相變換器 64 第二向量旋轉器· 2相3相變換器 g 間隙 τ 磁極間距 τ 1 磁極間距 ❹ 97136798 21A pair of auxiliary cores 34 of the armature arms 17, 18 may be attached to the lower side of the first and second divided stages 5a, 5b. The auxiliary core 34 is made of a magnetic material such as rolled steel or niobium steel for general construction, and is used to reduce the cogging torque of the electric raft 17 and the cymbal. FIG. 5 shows the magnetic field portion 24 mounted on the base 4. The field portion 24 is composed of a thin plate-shaped magnet |ra 40 and a plurality of permanent magnets arranged in a line on the magnetic light. Permanent _ 41 is a rare earth magnet such as a high-capacity magnetic reading magnet. One of the N poles or the s poles is formed on the upper side of the plate-shaped permanent magnet 41, and the other side is formed on the back side. A plurality of permanent magnets 41 are arranged on the magnetic surface 4A in such a manner that n poles and a pole are alternately formed in the longitudinal direction. The permanent magnet 41 is fixed to the magnetic vehicle 40 by the same. The magnetic vehicle 40 is formed on the elongated plate by a field yoke 40 of a rolled steel, a stone or the like by a general structure. Fixed in the magnetic field. υ < The water-long magnet 41 is covered by the cover 42. The cover 42 is also fixed to the magnetic light 4 by means of the following. The yoke 40 to which the permanent magnet 41 and the cover 42 are fixed is attached to the susceptor 4 by means of a bolt or the like. The magnetic field portion 24 is unitized, and a plurality of magnetic fields are unitized corresponding to the length of the susceptor 4. The base portion 4 is attached to the base 4. - 97136798 12 200934066 The base 4 of the field portion 24 is fixed to a fixed disk or the like (not shown) by means of a fixing means such as a bolt 44. Fig. 6 is a plan view showing the field portion 24. In the middle, the planar shape of the permanent magnetic iron 41 forms a parallelogram. The distance from the center of the N-pole permanent magnet 41a to the center of the N-pole permanent magnet 41a becomes the magnetic pole pitch r between the N-pole of the magnetic field portion 24. Of course, the magnetic pole pitch r between the n pole and the N pole of the magnetic field portion is twice the magnetic pole pitch r 1 between the N pole and the S pole, but is equal to the magnetic pole pitch between the s ❹ _S poles. The cogging torque of an armature 17. When the core 32 made of a magnetic material is moved over the permanent magnet μ of the field portion 24, a magnetic attraction force is generated between the permanent magnet 41 and the core 32. In the force, the component and the cogging effect occur in the moving direction of the first armature 17 Torque related. The component orthogonal to the moving direction of the first armature 17 (the attraction force in the vertical direction) is received by the linear guide 23 regardless of the cogging torque. ® No current flows in the three-phase coil 33. In the state, when the first armature 17 is linearly moved to the field portion 24, the salient poles 32a, 32b, 32c of the core 32 are attracted by the permanent magnet 41 in the forward direction of movement or are attracted by the rear permanent magnet 41. The period variation is the cogging torque. The graph of Fig. 7 shows that when the first armature 17 is moved from -180 degrees to 0 degrees (1/2 of the magnetic pole pitch between the N pole and the N pole), The cogging torque force occurring at each of the salient poles 32a, 32b, 32c. The cogging torque force occurring at the U, V and W phase salient poles 32a, 32c, 32b, and the phase in U, V and W 97136798 13 200934066 The current flowing through the phase coil likewise 'depicts the sinusoidal waveform shifted by 120 degrees. If the amplitudes of the three sinusoids are the same, the cogging torque of the three salient poles 32a, 32b, 32c plus In short, the cogging effect of the entire core turns - the moment force, regardless of the position of the first armature 17 It often becomes zero. That is, - cogging torque does not occur. However, the central W phase of the salient pole 32b has the lowest magnetic resistance and the magnetic flux easily passes. When the U, V and W phases are sharply cogging When the torque force is compared, the cogging torque force of the salient pole 32b of the middle phase of the center is the largest, and the cogging torque force of the salient poles 32a and 32c of the both ends becomes small. Therefore, the entire core The tooth-like effect torque force is generated in synchronization with the cogging torque force of the central W-phase salient pole 32b. If the second armature 18 can be generated to offset the cogging torque force of the W-phase salient pole 32b In the case of the groove effect torque force, the cogging torque force of the entire linear motor can be reduced. That is, the phase of the waveform of the cogging torque force generated by the armature ι8 of the second slider 8 and the waveform of the cogging torque force generated by the armature of the first slider 7 are, if When the electrical angle is shifted by 90 degrees, the cogging torque force of the entire linear motor can be reduced because it has the effect of offsetting the cogging torque forces of the two. 8 shows the cogging torque force waveform of the entire linear motor after combining the waveform of the cogging torque force generated by the first slider 7 and the cogging torque force generated by the second slider 8. . The cogging torque force waveform generated by the second armature 18 of the second slider 8 is offset with respect to the cogging torque force waveform generated by the first armature 17 of the first slider 7 at an electrical angle 97136798 14 200934066 The phase of 90 degrees ' becomes the inverse of the cogging torque force waveform generated by the armature 17 of the first slider 7. Therefore, the waveform of the cogging torque force of the entire linear motor in which the material waveform is added is often zero regardless of the electrical angles of the first and second armatures 17, 18. - Fig. 9 shows the positional relationship between the first slider 7 and the second slider 8. The phase of the cogging torque force waveform generated by the first armature 17 of the first slider 7 is relative to the phase of the cogging effect β torque force waveform generated by the second armature 18 of the second slider 8. When the electrical angle is shifted by (10) degrees, the distance from the center of the central salient pole 32b of the core 32 of the first 'bone actuator 7 to the center of the central salient pole 32b of the core 32 of the second slider 8 may be 'Set the magnetic pole pitch r between the N pole and the N pole of the magnetic field portion to 实质上 / 4 χ (2 Ν - 1) times (N : natural number). That is, it can be set to an odd multiple of 1/4 of the magnetic pole pitch 7. Conversely, if set to an even multiple, the second armature 18 of the second slider 8 produces a cogging torque force that is higher than that of the first armature 6 17 of the first slider 7. The effect torque is strong. Further, the occurrence of the actual cogging torque or the installation space of each of the sliders 7, 8 can be made from the center of the central salient pole 32b of the first slider 7 to the center of the second slider 8. The distance r from the center of the salient pole 32b is slightly offset from the odd-numbered multiple of 1/4 x of the magnetic pole pitch. This is also the case in the case of an odd multiple of 1/4 X of the magnetic pole pitch. Fig. 10 shows the overall configuration of the control using the servo driver 6 having the d-q coordinate system. The basic configuration includes first and second power converters corresponding to the first and second armatures 97136798 15 200934066 PI hub 17 18 (represented by the motor in the figure) to P2 and to control the first And the control of the second power converter Pb2 and the first power converters PI, P2 are voltage type PWM converters for supplying electric power to the electric power 17, and the like. The controller consists of a q-axis current controller for current control, a thrust current conversion for calculating current input, a speed control for speed control, and a position control for position control. The encoder and position detector 56 share the encoder 1〇. The reverse control 55 control system consists of a position control loop, two loops, a X-control loop, and a loop of a current control loop. The position control call path and the current control circuit are sequentially the secondary circuit path, and the speed control thin (four) controller 54 deviates according to the position command value from the block relay (9) and the position read value from the position detector 56. The speed command value ω ^ speed controller 53 calculates the thrust command 根据 based on the deviation between the ambiguity command value heart rate and the speed feedback value ι from the speed detector 55. The thrust current converter 52 operates (9) the current command shaft current controller 59 to calculate the d-axis current command of the current component in the same direction according to the thrust command. . In the synchronous motor 'because the d-axis magnetic flux generated by the magnet is established, it is controlled to the d-axis current command 丨, usually the 旋转 量 rotator · 3-phase 2-phase converter 6G according to the electrical property from the phase G-position detector 6 ι The angular signal converts the three-phase feedback current value of the first armature 17 into ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ The value of the voltage is obtained by the W q-axis current controller 51 (the deviation of the 1-axis current command γ, and the Q-axis current iq, and the command for calculating the q-axis voltage: 曰: two' rotator · 2-phase 3-phase converter 63 Outputting a three-phase voltage command v*u, V* according to the voltage commands ν%, ν' - and the electrical angle signal, the first vector rotator, the 2-phase 3-phase converter 64, according to the voltage commands v* = V% and electrical angle signal 0 re, output relative to the first vector rotator · 2 phase 3 © phase converter 63 output three-phase voltage command, electrical angle offset ^ -90 degrees Phase three-phase voltage command v*u, V*v, 匕. Specifically, Θ Θ 。 。 or θ Θ -9 (Γ generation electrical angle ... material three-phase voltage finger The voltage commands V*u, V*v, and v' of the U phase, the V phase, and the W phase are shifted by 120 degrees from each other, so the phase between the U phase, the V phase, and the W phase becomes the electrical angular offset + a phase of 90 degrees or -90 degrees. The first and second power converters 11, 12 perform pwM control of the output voltage according to the voltage commands, and finally control the current flowing in the first and second armatures 17, 18 As described above, the first and second electrodes 17, and can be supplied with a three-phase alternating current whose electrical angle is shifted by 90 degrees. As shown in FIG. 9, the core 32 of the first slider 7 will be used. The distance from the center of the central salient pole 32b to the center of the central salient pole 32b of the core 32 of the second slider 8 is set to be substantially equal to the magnetic pole pitch between the N pole and the N pole of the magnetic field portion (N: natural By supplying the three-phase alternating current 'the electrical angular offset of 9G degrees to the first and second armatures 17, 18, the first slip 97136798 2009 34066 7 and the second slider can be maintained. 8 Synchronous linear motion. In addition, / hair (four) ^ in the upper (four) application form, in (4) more than the scope of the invention can be achieved For example, it is also possible to provide a set of the salient poles of a group, that is, a total of six salient poles. In this case, the central salient pole becomes two, so the central salient pole The center becomes the center of a central salient pole. When a total of nine salient poles are provided, the fifth salient pole from the end becomes a central salient pole. The β 3 outer 'utilizes the first slider and the second slider The interaction can eliminate the cogging torque of the small linear motor. Therefore, it is also possible to provide no auxiliary anger to reduce the cogging torque of each slider unit on both sides of the armature. Further, in addition to the first and second sliders, a third or fourth slider may be provided. In addition, in the above embodiment, the first and second sliders are linearly moved to fix the base, but since the linear motion of the first and second sliders to the base is relative motion, The base is moved linearly so that the first and first sliders are fixed. This specification is based on Japanese Patent Application No. 2007-256320 filed on September 28, 2007. Its contents are all included in this case. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a configuration diagram of a linear motor system according to an embodiment of the present invention. Figure 2 is a perspective view of a linear motor (a cross-sectional view of a portion of the table). Figure 3 is a front view of the linear motor. 97136798 18 200934066 Figure 4 is a cross-sectional view along the direction of movement of the armature. Fig. 5 is a perspective view of a magnetic field portion mounted on a base. Fig. 6 is a plan view of a unitized magnetic field portion. - The graph of Figure 7 shows the cogging torque generated at the first armature. The graph of Fig. 8 shows the waveform of the cogging torque force of the entire linear motor. Figure 9 is a schematic view showing the positional relationship between the first slider and the second slider. © Fig. 10 is a view showing the overall configuration of the control of the servo driver. Figure 11 is a schematic view of a prior art linear motor mounted with a supplemental magnetic pole. [Main component symbol description] 1 core la, lb, lc salient pole 2a, 2b auxiliary magnetic pole 4 base 4a bottom wall portion 4b side wall portion 5 table 5a, 5b split table 6 servo driver (control device) 7 first sliding 8 second slider 97136798 19 200934066 10 encoder (sensor) 11 first power converter (PI) 12 second power converter (P2) - 14 controller (C) . 17 first armature 18 Two armatures 21 Moving blocks ❹ 22 Orbital 23 Linear guides 24 Magnetic field parts 31 Thermal insulation material 32 Cores 32a, 32b, 32c Bumps 32b Central salient poles® 32d Base plate 33 Three-phase coils 33a, 33b, 33c Coils 34 Auxiliary core 40 Magnetic 41 ' 41a Permanent magnet 42 Cover 43, 44 Bolt 97136798 20 200934066 51 q-axis current controller 52 Thrust current converter 53 Speed controller - 54 Position controller • 55 Speed detector 56 Position detection 59 d-axis current controller ❹ 60 vector rotator · 3-phase 2-phase converter 61 phase detector 63 first vector rotator 2-phase 3-phase converter 64 second vector rotator · 2-phase 3-phase converter g gap τ pole spacing τ 1 pole spacing ❹ 97136798 21

Claims (1)

200934066 七、申請專利範φ ·· 一種線性馬達系統,具備有: 線性馬達,包含 部,而成^極和多财纽鐵之磁場 動器,且右η 桎乂替形成之方式,·以及第-和第二滑 2 配置成與上述磁場部相對向之芯子之多個突 極上,捲繞有三j日始 排列…二 樞’同時在上述基座之長度方向 ❹ "一和上述第二滑動器對上述基座在上述長产 方向相對地直線運動;和 土产在上达長度 控制|置’M使對上述第—滑動器之電樞所供給之電流之 目位和對上述第二滑動器之電插所供給 =度實質上偏移9。度之方式,控制供給到二 上述第二滑動器之電樞的電流。 丈第和 ❹ 2.如申請專利範圍第1項之線性馬達系統,其中 上述控制裝置包含有: 二=變換器’對上述第一滑動器之電樞供給電力; 第-電力變換器,對上述第二滑動器 控制器,根據來自上游控制裝置之指令,以及電力,和 測線性馬達之位置和速度自用以檢 χ咏 乂方之感測器之資ΙΗ,斟卜 第;第電力變換器輸_令’同時使輸出到 角度實質上偏移90二度電力變換器之電壓指令之相位在電性 3.如申請專利範圍第!或2項之線性馬達系統其中, 97136798 22 200934066 從上述第-滑動11之上述芯子之上述長度方向的中央突 極之中心、到上述第二滑動器之上述芯子之上述長度方向的 中央突極之中心之距離,被設定為在上述磁場部之N極巧 極間之磁極間距之實質上之1/4><(2!^1)倍(^ :自然數)。 4. 一種線性馬達系統,其具備有: /線性馬達,包含有:基座’具有制多個永久磁鐵之磁場200934066 VII. Application for patent φ ·· A linear motor system with: linear motor, including the part, the magnetic field of the pole and the multi-core iron, and the right η 桎乂 formation method, · and - and the second slide 2 is disposed on the plurality of salient poles of the core opposite to the magnetic field portion, and is wound with three j-days arranged at the same time... two pivots simultaneously in the longitudinal direction of the base ❹ " one and the second a slider relatively linearly moving the pedestal in the long-term direction; and an indigenous product in the upper length control|setting 'M to make a position of the current supplied to the armature of the first slider and to the second sliding The electrical plug supply of the device is substantially offset by 9. In a manner, the current supplied to the armature of the second slider is controlled. 2. The linear motor system of claim 1, wherein the control device comprises: a second converter: supplying power to the armature of the first slider; a first power converter, The second slider controller, according to the instruction from the upstream control device, and the power, and the position and speed of the linear motor are used to check the resources of the sensor, the power converter loses _Let' at the same time make the output to the angle is substantially offset by the phase of the voltage command of the second power converter of the second power converter. 3. As claimed in the patent scope! Or two linear motor systems, wherein: 97136798 22 200934066, from the center of the central salient pole in the longitudinal direction of the core of the first slide 11 to the center of the longitudinal direction of the core of the second slider The distance between the centers of the poles is set to be substantially 1/4 of the magnetic pole pitch between the N poles of the magnetic field portion < (2!^1) times (^: natural number). 4. A linear motor system comprising: / a linear motor comprising: a base having a magnetic field of a plurality of permanent magnets 成為N極和S極交替形成之方式;和第一和第二滑動 器具有在被配置成與上述磁場部相對向之芯子之多個突極 上,捲錄古_ 、有三相線圈之電樞,同時在上述基座之長度方向排 圮第一和上述第二滑動器對上述基座在上述長度方 向相對地直線運動;和 裝置,用來控制供給到上述第一和上述第二滑動器之 電樞的電流; ° 和/上述第一滑動器之上述芯子之上述長度方向的中央 中到上述第二滑動器之上述芯子之上述長度方向 的中央突極之中心之距離,被設定為在上述磁場部之1^極4 極間之礤極間距之實質上之l/4x(2N-l)倍(N :自然數)。 97136798 23Forming an alternating manner of the N pole and the S pole; and the first and second sliders have an armature with a three-phase coil on a plurality of salient poles of the core disposed opposite to the magnetic field portion Simultaneously arranging the first and second sliders in the longitudinal direction of the base to relatively linearly move the base in the longitudinal direction; and means for controlling supply to the first and second sliders The current of the armature; and the distance from the center of the longitudinal direction of the core of the first slider to the center of the central salient pole of the core of the second slider in the longitudinal direction is set to The substantially 1/4x (2N-l) times (N: natural number) of the pupil pitch between the poles 4 and 4 of the magnetic field portion. 97136798 23
TW97136798A 2007-09-28 2008-09-25 Linear motor system TWI474582B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007256320 2007-09-28

Publications (2)

Publication Number Publication Date
TW200934066A true TW200934066A (en) 2009-08-01
TWI474582B TWI474582B (en) 2015-02-21

Family

ID=40511203

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97136798A TWI474582B (en) 2007-09-28 2008-09-25 Linear motor system

Country Status (3)

Country Link
JP (1) JP5427037B2 (en)
TW (1) TWI474582B (en)
WO (1) WO2009041316A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788097A (en) * 2016-12-30 2017-05-31 东南大学 A kind of asymmetric permanent-magnetism linear motor trailer system for urban track traffic

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102185558B (en) * 2011-05-23 2013-03-20 桂林电子科技大学 Control method and device for eliminating system buffeting during sliding mode control of linear motor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000278931A (en) * 1999-03-19 2000-10-06 Yaskawa Electric Corp Linear motor
JP2004297977A (en) * 2003-03-28 2004-10-21 Mitsubishi Electric Corp Linear motor
JP2005295678A (en) * 2004-03-31 2005-10-20 Yaskawa Electric Corp Linear drive system
JP2006025476A (en) * 2004-07-06 2006-01-26 Fanuc Ltd Linear driver
JP2006034017A (en) * 2004-07-16 2006-02-02 Shin Etsu Chem Co Ltd Linear motor for machine tool

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106788097A (en) * 2016-12-30 2017-05-31 东南大学 A kind of asymmetric permanent-magnetism linear motor trailer system for urban track traffic

Also Published As

Publication number Publication date
JPWO2009041316A1 (en) 2011-01-27
WO2009041316A1 (en) 2009-04-02
JP5427037B2 (en) 2014-02-26
TWI474582B (en) 2015-02-21

Similar Documents

Publication Publication Date Title
Compter Electro-dynamic planar motor
Huang et al. Detent force, thrust, and normal force of the short-primary double-sided permanent magnet linear synchronous motor with slot-shift structure
JP5956993B2 (en) Linear motor
WO2010024190A1 (en) Linear synchronous motor control method and control device
JPH0461588B2 (en)
TW201136107A (en) Linear motor
JP5224372B2 (en) Magnetic pole position detection method for permanent magnet synchronous motor
JP2009219199A (en) Linear motor
JP3894297B2 (en) Linear actuator
TW200934066A (en) Linear motor system
US8729745B2 (en) Multiple-phase linear switched reluctance motor
Dababneh et al. Chopper control of a bipolar stepper motor
CN107925336A (en) Transverse magnetic flux linear electric machine
WO2005027323A1 (en) Linear motor
JP2650438B2 (en) Pulse motor
Shi et al. Commutation force ripple reduction in a novel linear brushless DC actuator based on predictive current control
US8692426B2 (en) Direct current motor incorporating thermal control
JP4106571B2 (en) Linear motor
JP2781912B2 (en) Linear motor
Janardanan Special electrical machines
JP2526819B2 (en) Linear motor
JP2650367B2 (en) Pulse motor
JP2650442B2 (en) Pulse motor
Kim et al. Dynamic simulation of the transverse flux machine using linear model and finite element method
JPH07108086B2 (en) Linear motion motor