TW200933905A - A multi-film, anti-reflection layer for a solar cell - Google Patents

A multi-film, anti-reflection layer for a solar cell Download PDF

Info

Publication number
TW200933905A
TW200933905A TW97102272A TW97102272A TW200933905A TW 200933905 A TW200933905 A TW 200933905A TW 97102272 A TW97102272 A TW 97102272A TW 97102272 A TW97102272 A TW 97102272A TW 200933905 A TW200933905 A TW 200933905A
Authority
TW
Taiwan
Prior art keywords
layer
solar cell
multilayer film
photovoltaic
cell according
Prior art date
Application number
TW97102272A
Other languages
Chinese (zh)
Inventor
Cheng-Fu Yang
Original Assignee
Cheng-Fu Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cheng-Fu Yang filed Critical Cheng-Fu Yang
Priority to TW97102272A priority Critical patent/TW200933905A/en
Publication of TW200933905A publication Critical patent/TW200933905A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

The present invention relates to a multi-film anti-reflection layer for a solar cell, which comprises a back contact metal layer, a photovoltaic functional layer, an anti-reflection layer and a front contact metal layer. Particularly, the anti-reflection layer is made of multi-films as a silicone base or by means of a thin film solar cell to promote light transmission rate for absorption of more light sources as well as promote the efficiency of the silicone base or thin film solar cell for reducing possible etching on the photovoltaic layer or processes for semiconductors related thereto, and further manufacturing simpler efficient structures of silicone bases or thin film solar cell.

Description

200933905 九、發明說明: 【發明所屬之技術領域】 本發明係有關於-種應用於太陽能電池之多層膜抗 反射層’尤其是指-種藉由該抗反射層係採多層膜模式設 計,而可降低投射入太陽能電池之光線的反射量使該太 陽能電池具備較佳之電能轉換效率’同時此方式之製作較 為方便、容易,且所需之成本亦較低。 【先前技術】 按’隨著綠色地球觀念的普遍化,使得太陽能產業徽 然成為目前工商業的潮流,同時投入太陽能產業的業者也 越來越多;其中,太陽能電池因具有使用方便、無廢棄物、 無污染…等特色,因此太陽能電池也被積極研發以應用在 各行各業的能源供給裝置。 太陽能電池的種類繁多,如第五圖所示為目前所見之 矽基太陽能電池(3) ’其具有一背電極(31)、一 p_N半導 體結構之光伏打作用層(32)、一前電極(33)及一抗反射層 (34);而第六圖所示者為一薄膜太陽能電池(4),該薄膜 太陽能電池(4)係具有一基板(41)、一背電極(42)、一含 銅、銦、硒、鎵之化合物半導體層(431)及一含硫及鎘或 硒及鋅之化合物半導體層(432)所組成之光伏打作用層 (43)、一前電極(44)以及一抗反射層(45)。而不論是;ε夕基 太陽能電池(3)或是薄膜太陽能電池(4),其均是利用該光 伏打作用層(32)、(43)將光能轉換為電能,並由背電極 (31)、(42)及前電極(33)、(44)間輸出電能。 目前提升矽基太陽能電池效率的製程技術主要使用 的方法為沉積效率較好抗反射層與製作表面微結構化和 5 200933905 奇電%微結構’以藉此來達到增加光能轉化為電能之效 率。其中,表面微結構化係對光伏打作用層分別以半導體 製程製作與直接浸泡蝕刻液形成,中途施以回火製作 結構等製程來提昇太陽能電池效率。而表面微結構化與效 率較好抗反射層的目的為增加表面受光面積、入射光二次 折射、增加入射光的行徑長度來提升太陽能電池入光量, 絲衫减理對光反射柯高達·。,因此沉積抗反射 層與製作表面微結構乃用來吸收更多光源。 〇 由於上述之梦基太陽能電池(3)或是薄膜太陽能電池 (4)產生電能之效率的高低與入射光間具有絕對之正比關 係,因此,如果能夠增加入射光的吸收效率便可提升太陽 能電池的發電效能。 然而,綜觀目前用來提升太陽能電池之轉換效率的蝕 刻方式及半導體製程均相當費時、費工,且所需之費用亦 較高,較不符合產業之普遍利用性。 【發明内容】 ❹ 今,發明人即是鑒於上述現有之太陽能電池在實際實 施上仍具有多處之缺失’於是乃一本孜孜不倦之精神,並 藉由其豐富之專業知識及多年之實務經驗所輔佐,而加以 改善,並據此研創出本發明。 本發明之應用於太陽能電池之多層膜抗反射層的主 要目的,係在提供一種使用多層膜來當作矽基或薄膜太陽 能電池的抗反射層,以提升透光率達到吸收更多光源,提 高矽基或薄膜太陽能電池的效率,可減少對光伏打作用層 蝕刻等相關之半導體製程,而減少製造更複雜的矽基或薄 膜太陽能電池效率結構,即能提高生產石夕基或薄膜太陽能 6 200933905 電池之效能。 本發明之應用於太陽能電池之多層膜抗反射層的目 的與功效係由以下之技術所實現: 其主要是令太陽能電池之抗反射層採多層膜設計’該 多層膜主要的材料與結構為二氧化矽【Si〇2】和二氧化錄 【Zr〇2】的奈米薄膜,層數可以2〜7層,且不同層數效果 不同’而每一層之厚度皆只有20〜30 nm,又該多層膜成長 的方式為用物理沉積法。 【實施方式】 為令本發明所運用之技術内容、發明目的及其達成之 功效有更完整且清楚的揭露,茲於下詳細說明之,並請一 併參閱所揭之圖式及圖號: 首先,請參閱第一、二圖所示,其係本發明之其一實 施例;在本實施例中該太陽能電池係為一矽基太陽能電池 (1),該矽基太陽能電池(1)的結構係包括一背電極【back contact metal layer】(11)、一光伏打作用層(12)、一 抗反射層(13)、以及一前電極【front contact metal layer】 (14)。 該背電極(11),其係為將矽基太陽能電池(1)所產生 之電能以最少損失輸出,且該背電極(丨丨)係選用鎳(Ni)、 金(Au)、銀(Ag)、鈦(Ti)、鈀(Pd)、鋁(A1)、鉬(Mo)..·等 金屬材質; 該光伏打作用層(12),係設於背電極(丨丨)之上方,該 光伏打作用層(12)由一 P型半導體層(121)及一 N型半導 體層(122)建構而成,以當陽光照射該發基太陽能電池(1) 時,陽光的能量將使P型半導體層(121)及N型半導體層 200933905 (122)内的正、負電荷分離,且正電荷及負電荷並分別往 背電極(11)及前電極(14)的方向移動、聚集,當前、背電 極(14)、(11)接上負載後,便有電流流出,以對負載作功; 該抗反射層(13),係設於光伏打作用層(12)的上方, 並為一由二氧化石夕【Si〇2】和二氧化鍅【Zr〇2】的奈米薄 膜(131)、(132)以物理沉積法方式【包含濺鍍機 sputter 及電子搶e-gun等】層積疊置成長而成一多層膜結構,其 層數可以2〜7層【請一併參第三圖】,且不同層數效果不 〇 同,而每一層之厚度皆只有20〜30 nm ; 該前電極(14),係形成於光伏打作用層(12)的上方, 係為將石夕基太陽能電池(1)所產生之電能以最少損失輸 出,且該前電極(14)係選用鎳(Ni)、金(Au)、銀(Ag)、鈦 - (Ti)、鈀(Pd)、鋁(A1)、鉬(Mo).·.等金屬材質。 請再參閱第四圖所示,其係本發明之其二實施例;在 ' 本實施例中該太陽能電池係為一薄膜太陽能電池(2),該 薄膜太陽能電池(2)的結構係包括一基板(21)、一背電極 0 【back contact metal layer】(22)、一 光伏打作用層 (23)、一抗反射層(24)、以及一前電極【front contact metal layer】 (25)。 該基板(21),可選用金屬、玻璃、不鏽鋼或有機軟硬 板…等; 該背電極(22),係設於基板(21)的上方,其係為將薄 膜太陽能電池(2)所產生之電能以最少損失輸出,且該背 電極(22)係選用鎳(Ni)、金(Au)、銀(Ag)、鈦(Ti)、把 (Pd)、鋁(A1)、鉬(Mo)…等金屬材質; 該光伏打作用層(23) ’係設於背電極(22)之上方,並 8 200933905 由主吸收層(main absorber layer)(231)及透光緩衝層 (buffer window layer)(232)建構而成’其中該主吸收層 (231)係為含硒、銦、銅三元素之化合物半導體【CuInSe2, CIS】’或為含銅、姻、磁、錄四元素之化合物半導體 【CuInGaSe2 ’ CIGS】’其係用於提高光子吸收性,以提高 薄膜太陽能電池(2)之轉換效率;而該透光緩衝層(232)係 為一含硫及録或砸及鋅之化合物半導體,其形成於主吸收 層(231)之上’用於緩衝、保護主吸收層(231)之表面; Ο 該抗反射層(24) ’係設於光伏打作用層(23)的上方, 並為一由二氧化矽【Si〇2】和二氧化鍅【Zr〇2】的奈米薄 膜(241)、(242)以物理沉積法方式【包含濺鍍機sputter 及電子搶e-gun等】層積疊置成長而成一多層膜結構,其 層數可以2〜7層【請一併參第三圖】,且不同層數效果不 同’而每一層之厚度皆只有2〇〜30 nm ; 該前電極(25),係形成於光伏打作用層(23)的上方, 係為將薄膜太陽能電池(2 )所產生之電能以最少損失輸 〇 出’且該前電極(25)係選用鎳(Ni)、金(Au)、銀(Ag)、鈦 (Τι)、鈀(Pd)、鋁(A1)、鉬(Mo)…等金屬材質。 由於本發明將上述之矽基太陽能電池(1)或薄膜太陽 能電池(2)之抗反射層(13)、(24)採用二氧化矽【si〇2】 和一氧化錯【Zr〇2】的奈米薄膜(131)、(241)、(132)、 (242)相互沉積疊置成長方式而形成多層膜之設置,可提 升矽基太陽能電池(1)或薄膜太陽能電池(2)之透光率達 到98%,以吸收更多光源,同時並可降低矽基太陽能電池 (1)或薄膜太陽能電池(2)之表面對光的反射率,以相對增 加光的利用率,而達到提高矽基太陽能電池(1)或薄膜太 9 200933905 陽能電池(2)的電能產生效率。 再者’因該矽基太陽能電池(1)或薄膜太陽能電池(2) 之抗反射層(13)、(24)係採用物理沉積方式成長成多層膜 架構’並利用此一多層膜架構提升矽基太陽能電池(1)或 薄膜太1%此電池(2)之抗反射效率,因此將本發明及現有 之矽基或薄膜太陽能電池(1)、(2)、(3)、(4)在同樣基礎 的光伏打作用層(12)、(23)、(32)、(43)的比較之下,本 發明有施以多層膜結構的矽基太陽能電池(丨)之抗反射層 (13)或薄膜太陽能電池(2)之抗反射層(24)能夠有較高之 透光率,比現有未施以多層膜結構的矽基太陽能電池(3) 或薄膜太陽能電池(4)能夠達到產生效率的提升,可減少 對光伏打作用層蝕刻等相關之半導體製程,減少製造更複 雜的矽基或薄膜太陽能電池(1)、(2)效率結構,即能提高 生產石夕基或薄膜太陽能電池(1)、(2)之效能。 經由以上的實施說明,可知本發明之太陽能電池之多 層膜抗反射層至少具有如下所列之各項優點: L本發明因在太陽能電池上設有以多層膜所形成之抗反 射層’故可提升太陽能電池之透光率,達到吸收更多光 源,同時並可降低太陽能電池之表面對光的反射率,以 相對增加光的利用率,使太陽能電池的電能產生效率因 此提高。 2.本發明之太陽能電池的抗反射層因係採用物理沉積方 式成長成多層膜架構,因此可減少對光伏打作用層蝕刻 等相關之半導體製程,而能提高太陽能電池的生產製造 效能。 綜上所述,本發明實施例確能達到所預期之使用功 10 200933905 效,又其所揭露之具體構造,不僅未曾見諸於同類產品 中,亦未曾公開於申請前,誠已完全符合專利法之規定與 要求,爰依法提出發明專利之申請,懇請惠予審查,並賜 准專利,則實感德便。200933905 IX. Description of the Invention: [Technical Field] The present invention relates to a multilayer film antireflection layer applied to a solar cell, in particular, a multilayer film mode design by the antireflection layer The reflection amount of the light projected into the solar cell can be reduced to make the solar cell have better electric energy conversion efficiency. At the same time, the production method is convenient and easy, and the required cost is also low. [Previous technology] According to the generalization of the concept of green earth, the solar energy industry has become the current trend of industry and commerce, and more and more operators are investing in the solar energy industry. Among them, solar cells are easy to use and have no waste. With no features such as pollution, solar cells have also been actively developed to be applied to energy supply devices in various industries. There are many types of solar cells. As shown in the fifth figure, the cerium-based solar cell (3) currently seen has a back electrode (31), a photovoltaic layer (32) of a p_N semiconductor structure, and a front electrode ( 33) and an anti-reflection layer (34); and the sixth figure shows a thin film solar cell (4) having a substrate (41), a back electrode (42), and a a compound semiconductor layer (431) containing copper, indium, selenium, gallium, and a photovoltaic layer (43) composed of a compound semiconductor layer (432) containing sulfur and cadmium or selenium and zinc, and a front electrode (44) and An anti-reflective layer (45). Whether it is; ε 基 太阳能 solar cell (3) or thin film solar cell (4), which utilizes the photovoltaic active layer (32), (43) to convert light energy into electrical energy, and by the back electrode (31) ), (42) and front electrodes (33), (44) output electrical energy. At present, the main methods used in the process technology for improving the efficiency of bismuth-based solar cells are better deposition efficiency, anti-reflection layer and surface microstructure, and the efficiency of converting light energy into electrical energy. . Among them, the surface microstructured system is formed by a semiconductor process and a direct immersion etching solution, and a tempering structure is used to improve the efficiency of the solar cell. The purpose of surface microstructure and efficiency is better. The purpose of the anti-reflection layer is to increase the surface light-receiving area, the secondary refraction of the incident light, and increase the length of the incident light to increase the amount of light entering the solar cell. The silk-shirt reduction is light-reflecting. Therefore, depositing an anti-reflective layer and making a surface microstructure is used to absorb more light sources. 〇Because the above-mentioned dream-based solar cell (3) or thin film solar cell (4) has an absolute proportional relationship between the efficiency of generating electric energy and incident light, the solar cell can be improved if the absorption efficiency of incident light can be increased. Power generation efficiency. However, it is quite time-consuming and labor-intensive to look at the etching methods and semiconductor processes currently used to improve the conversion efficiency of solar cells, and the cost is relatively high, which is less in line with the general availability of the industry. SUMMARY OF THE INVENTION Nowadays, the inventor is in view of the fact that the above-mentioned existing solar cells still have multiple defects in practical implementation, so it is a tireless spirit, and with its rich professional knowledge and years of practical experience. The invention was assisted and improved, and the present invention was developed based on this. The main purpose of the multi-layer film anti-reflection layer of the present invention applied to a solar cell is to provide an anti-reflection layer using a multilayer film as a bismuth-based or thin film solar cell to increase the transmittance to absorb more light sources and improve The efficiency of bismuth-based or thin-film solar cells can reduce the related semiconductor processes such as photovoltaic layer etching, and reduce the manufacturing efficiency of more complex bismuth-based or thin-film solar cells, which can improve the production of Shihji or thin film solar energy 6 200933905 Battery performance. The purpose and function of the multi-layer film anti-reflection layer applied to the solar cell of the present invention are achieved by the following technologies: The main purpose is to design the anti-reflection layer of the solar cell by using a multi-layer film. The main material and structure of the multi-layer film are two. The nano-film of yttrium oxide [Si〇2] and zirconia [Zr〇2] can be 2~7 layers, and the effect of different layers is different, and the thickness of each layer is only 20~30 nm. The way in which the multilayer film is grown is by physical deposition. [Embodiment] For a more complete and clear disclosure of the technical content, the purpose of the invention and the effects thereof achieved by the present invention, the following is a detailed description, and please refer to the drawings and drawings: First, please refer to the first and second figures, which is an embodiment of the present invention; in the embodiment, the solar cell is a silicon-based solar cell (1), and the germanium-based solar cell (1) The structure includes a back contact metal layer (11), a photovoltaic layer (12), an anti-reflection layer (13), and a front contact metal layer (14). The back electrode (11) is configured to output the electric energy generated by the germanium-based solar cell (1) with a minimum loss, and the back electrode is made of nickel (Ni), gold (Au), silver (Ag). Metal material such as titanium (Ti), palladium (Pd), aluminum (A1), molybdenum (Mo), etc.; the photovoltaic active layer (12) is disposed above the back electrode (丨丨), The photovoltaic active layer (12) is constructed by a P-type semiconductor layer (121) and an N-type semiconductor layer (122), so that when sunlight illuminates the hair-based solar cell (1), the energy of the sunlight will make the P-type The positive and negative charges in the semiconductor layer (121) and the N-type semiconductor layer 200933905 (122) are separated, and the positive and negative charges are respectively moved and concentrated in the direction of the back electrode (11) and the front electrode (14), current, After the back electrodes (14) and (11) are connected to the load, current flows out to work on the load; the anti-reflection layer (13) is disposed above the photovoltaic active layer (12) and is a Nanocrystalline films (131) and (132) of sulphur dioxide [Si〇2] and cerium oxide [Zr〇2] are physically deposited [including sputter and electric Grab e-gun, etc.] Stacking and stacking to form a multi-layer film structure, the number of layers can be 2~7 layers [please refer to the third picture together], and the effect of different layers is different, and the thickness of each layer is Only 20~30 nm; the front electrode (14) is formed above the photovoltaic active layer (12) for outputting the electrical energy generated by the Shihua solar cell (1) with minimal loss, and the front electrode (14) Metal materials such as nickel (Ni), gold (Au), silver (Ag), titanium-(Ti), palladium (Pd), aluminum (A1), and molybdenum (Mo). Please refer to the fourth embodiment, which is the second embodiment of the present invention; in the embodiment, the solar cell is a thin film solar cell (2), and the structure of the thin film solar cell (2) includes a A substrate (21), a back electrode 0 (22), a photovoltaic layer (23), an anti-reflection layer (24), and a front contact metal layer (25). The substrate (21) may be made of metal, glass, stainless steel or organic soft and hard plates, etc.; the back electrode (22) is disposed above the substrate (21), which is produced by the thin film solar cell (2). The electric energy is output with the least loss, and the back electrode (22) is selected from nickel (Ni), gold (Au), silver (Ag), titanium (Ti), p (Pd), aluminum (A1), molybdenum (Mo). a metal material; the photovoltaic layer (23) is disposed above the back electrode (22), and 8 200933905 is composed of a main absorber layer (231) and a buffer window layer. (232) Constructed as 'the main absorption layer (231) is a compound semiconductor containing three elements of selenium, indium and copper [CuInSe2, CIS]' or a compound semiconductor containing copper, marriage, magnetism and recording four elements [ CuInGaSe2 'CIGS】 is used to improve the photon absorption to improve the conversion efficiency of the thin film solar cell (2); and the light transmissive buffer layer (232) is a compound semiconductor containing sulfur and recording or bismuth and zinc. It is formed on the main absorbing layer (231) for buffering and protecting the surface of the main absorbing layer (231); The anti-reflective layer (24) is disposed above the photovoltaic active layer (23) and is a nano film (241) composed of cerium oxide [Si〇2] and cerium oxide [Zr〇2], (242) by physical deposition method [including sputter sputter and electron grab e-gun, etc.] stacked to form a multilayer film structure, the number of layers can be 2 to 7 layers [please refer to the third figure] And the effect of different layers is different' and the thickness of each layer is only 2〇~30 nm; the front electrode (25) is formed above the photovoltaic active layer (23), which is a thin film solar cell (2) The generated electric energy is output with a minimum loss' and the front electrode (25) is selected from nickel (Ni), gold (Au), silver (Ag), titanium (Τι), palladium (Pd), aluminum (A1), Molybdenum (Mo)... and other metal materials. Since the anti-reflection layer (13), (24) of the above-mentioned bismuth-based solar cell (1) or thin film solar cell (2) is made of cerium oxide [si〇2] and oxidized [Zr〇2] The nano film (131), (241), (132), (242) are deposited in a stacked manner to form a multilayer film, which can enhance the light transmission of the germanium-based solar cell (1) or the thin film solar cell (2). The rate reaches 98% to absorb more light sources, and at the same time, the reflectivity of the surface of the bismuth-based solar cell (1) or the thin film solar cell (2) can be reduced, so as to increase the utilization of light, thereby increasing the enthalpy. Solar cell (1) or film too 9 200933905 The energy generation efficiency of the solar cell (2). Furthermore, 'the anti-reflection layers (13) and (24) of the bismuth-based solar cell (1) or the thin-film solar cell (2) are grown into a multilayer film structure by physical deposition and are enhanced by using this multilayer film structure. The anti-reflection efficiency of the germanium-based solar cell (1) or the film is too 1% of the cell (2), so the present invention and the existing germanium-based or thin-film solar cells (1), (2), (3), (4) The invention has an antireflection layer of a germanium-based solar cell (丨) having a multilayer film structure under comparison of the same basic photovoltaic active layers (12), (23), (32), (43). Or the anti-reflective layer (24) of the thin film solar cell (2) can have a higher transmittance, which can be achieved than the conventional germanium-based solar cells (3) or thin-film solar cells (4) which are not subjected to a multilayer film structure. Increased efficiency can reduce the related semiconductor process such as photovoltaic layer etching, reduce the manufacturing of more complex bismuth-based or thin-film solar cells (1), (2) efficiency structure, which can improve the production of Shi Xiji or thin film solar cells (1), (2) effectiveness. Through the above description, it can be seen that the multilayer film antireflection layer of the solar cell of the present invention has at least the following advantages: L. The present invention is provided with an antireflection layer formed of a multilayer film on a solar cell. The light transmittance of the solar cell is increased to absorb more light sources, and at the same time, the reflectance of the surface of the solar cell to light can be reduced, so as to increase the utilization of light, so that the power generation efficiency of the solar cell is improved. 2. The anti-reflection layer of the solar cell of the present invention is grown into a multilayer film structure by physical deposition, thereby reducing the related semiconductor processes such as photovoltaic layer etching, and improving the manufacturing efficiency of the solar cell. In summary, the embodiment of the present invention can achieve the expected use of the work 10 200933905 effect, and the specific structure disclosed therein has not been seen in the same product, nor has it been disclosed before the application, and has completely complied with the patent. The provisions and requirements of the law, the application for invention patents in accordance with the law, and the application for review, and the grant of patents, are really sensible.

11 200933905 【圖式簡單說明】 第一圖:本發明應用於太陽能電池之多層膜抗反射層 的其一實施例剖面示意圖 第二圖:本發明應用於太陽能電池之多層膜抗反射層 的其一實施例另一方向的剖面示意圖 ―第三圖:本發明應用於太陽能電池之多層膜抗反射層 的抗反射層示意圖11 200933905 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic cross-sectional view showing an embodiment of a multilayer film antireflection layer applied to a solar cell. FIG. 2 is a view showing an antireflection layer applied to a multilayer film of a solar cell. Cross-sectional view of the other embodiment of the embodiment - FIG. 3 is a schematic view showing the anti-reflection layer of the anti-reflection layer of the multilayer film applied to the solar cell of the present invention

第四圖:本發明應用於太陽能電池之多層膜抗反射層 的其實施例剖面示意圖 第五圖:現有矽基太陽能電池構造示意圖 第六圖:現有薄膜太陽能電池構造示意圖 【主要元件符號說明】 <現 有> (3) 矽基太陽能電池 (31) 背電極 (32) 光伏打作用 '層 (33) 前電極 (34) 抗反射層 (4) 薄膜太陽能電池 (41) 基板 (42) 背電極 (43) 光伏打作用層 (44) 前電極 (431) 含銅、姻、涵、 鎵之化合物半導體層 (432) 含硫及鎘或硒及鋅之化合物半導體層 (45) 抗反射層 <本發明> (1) 矽基太陽能電池 (11) 背電極 (12) 光伏打作用層 (121) Ρ型半導體層 (122) Ν型半導體層 (13) 抗反射層 (131) 奈米薄膜 (132) 奈米薄膜 Ο 12 200933905 (14) 前電極 (2) 薄膜太陽能電池 (21) 基板 (22) 背電極 (23) 光伏打作用層 (231) 主吸收層 (232) 透光緩衝層 (24) 抗反射層 (241) 奈米薄膜 (242) 奈米薄膜 (25) 前電極FIG. 4 is a cross-sectional view showing an embodiment of a multilayer film anti-reflection layer applied to a solar cell. FIG. 5 is a schematic view showing the structure of a conventional silicon-based solar cell. FIG. ; Existing> (3) Silicon-based solar cells (31) Back electrode (32) Photovoltaic functioning layer (33) Front electrode (34) Anti-reflection layer (4) Thin film solar cell (41) Substrate (42) Back electrode (43) Photovoltaic active layer (44) Front electrode (431) Compound semiconductor layer containing copper, marriage, culvert, gallium (432) Compound semiconductor layer containing sulfur and cadmium or selenium and zinc (45) Antireflection layer < The present invention > (1) 矽-based solar cell (11) back electrode (12) photovoltaic active layer (121) Ρ-type semiconductor layer (122) Ν-type semiconductor layer (13) anti-reflection layer (131) nano film ( 132) Nano film Ο 12 200933905 (14) Front electrode (2) Thin film solar cell (21) Substrate (22) Back electrode (23) Photovoltaic active layer (231) Main absorption layer (232) Light-transmissive buffer layer (24 Anti-reflective layer (241) Nano film (242) Nano film (25) Front electrode

〇 13〇 13

Claims (1)

200933905 十、申請專利範圍: 1· 一種應用於太陽能電池之多層膜抗反射層,係包括: 一背電極; 一光伏打作用層,設於背電極之上方,該光伏打 作用層由一 P型半導體層及一 N型半導體層建構而 成; 一抗反射層,設於光伏打作用層的上方; 一前電極,係形成於光伏打作用層的上方;其特 徵在: 該抗反射層係由二氧化矽和二氧化锆的奈米薄 膜以物理沉積法方式成長的多層膜結構。 2·如申請專利範圍第1項所述應用於太陽能電池之多層 膜抗反射層,其中,該抗反射層之奈米薄膜的層數為 2〜7層。 3. 如申請專利範圍第2項所述應用於太陽能電池之多層 膜抗反射層,其中,每一層奈米薄膜之厚度為20〜30 nm ° 4. 一種應用於太陽能電池之多層膜抗反射層,係包括: 一基板; 一背電極,設於基板的上方; 一光伏打作用層,設於背電極之上方,並由主吸 收層及透光緩衝層建構而成,透光緩衝層形成於主吸 收層之上; 一抗反射層,設於光伏打作用層的上方; 一前電極,係形成於光伏打作用層的上方;其特 14 200933905 徵在: 該抗反射層係由二氧化矽和二氧化锆的奈米薄 膜以物理沉積法方式成長的多層膜結構。 5. 如申請專利範圍第4項所述應用於太陽能電池之多層 膜抗反射層,其中,該主吸收層為含硒、銦、銅三元 素之化合物半導體。 6. 如申請專利範圍第4項所述應用於太陽能電池之多層 膜抗反射層,其中,該主吸收層為含銅、銦、硒、鎵 四元素之化合物半導體。 7. 如申請專利範圍第4項所述應用於太陽能電池之多層 膜抗反射層,其中,該透光緩衝層係為一含硫及锡之 化合物半導體。 8. 如申請專利範圍第4項所述應用於太陽能電池之多層 膜抗反射層,其中,該透光緩衝層係為一含砸及鋅之 化合物半導體。 9. 如申請專利範圍第4項所述應用於太陽能電池之多層 膜抗反射層,其中,該抗反射層之奈米薄膜的層數為 2〜7層。 10. 如申請專利範圍第9項所述應用於太陽能電池之多 層膜抗反射層,其中,每一層奈米薄膜之厚度為 20〜30 nm。 15200933905 X. Patent application scope: 1. A multilayer film anti-reflection layer applied to a solar cell, comprising: a back electrode; a photovoltaic layer, disposed above the back electrode, the photovoltaic layer consisting of a P-type a semiconductor layer and an N-type semiconductor layer are constructed; an anti-reflection layer is disposed above the photovoltaic active layer; a front electrode is formed above the photovoltaic active layer; and the feature is: the anti-reflective layer is A multilayer film structure in which a nano film of cerium oxide and zirconium dioxide is grown by physical deposition. 2. The multilayer film antireflection layer applied to a solar cell according to the first aspect of the invention, wherein the anti-reflection layer has a number of layers of 2 to 7 layers. 3. The multilayer film antireflection layer applied to a solar cell according to claim 2, wherein each layer of the nano film has a thickness of 20 to 30 nm. 4. A multilayer film antireflection layer applied to a solar cell The system includes: a substrate; a back electrode disposed above the substrate; a photovoltaic active layer disposed above the back electrode and constructed by the main absorption layer and the light-transmissive buffer layer, the light-transmissive buffer layer being formed on Above the main absorption layer; an anti-reflection layer, disposed above the photovoltaic layer; a front electrode formed above the photovoltaic layer; its special 14 200933905 sign: the anti-reflection layer is made of cerium oxide A multilayer film structure in which a nano film of zirconium dioxide is grown by physical deposition. 5. The multilayer film antireflection layer applied to a solar cell according to the fourth aspect of the invention, wherein the main absorption layer is a compound semiconductor containing selenium, indium or copper trioxide. 6. The multilayer film antireflection layer applied to a solar cell according to claim 4, wherein the main absorption layer is a compound semiconductor containing four elements of copper, indium, selenium and gallium. 7. The multilayer film antireflection layer applied to a solar cell according to claim 4, wherein the light transmissive buffer layer is a compound semiconductor containing sulfur and tin. 8. The multilayer film antireflection layer applied to a solar cell according to claim 4, wherein the light transmissive buffer layer is a compound semiconductor containing antimony and zinc. 9. The multilayer film antireflection layer applied to a solar cell according to claim 4, wherein the anti-reflection layer has a number of layers of 2 to 7 layers. 10. The multi-layer film anti-reflection layer applied to a solar cell according to claim 9, wherein each layer of the nano film has a thickness of 20 to 30 nm. 15
TW97102272A 2008-01-21 2008-01-21 A multi-film, anti-reflection layer for a solar cell TW200933905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97102272A TW200933905A (en) 2008-01-21 2008-01-21 A multi-film, anti-reflection layer for a solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97102272A TW200933905A (en) 2008-01-21 2008-01-21 A multi-film, anti-reflection layer for a solar cell

Publications (1)

Publication Number Publication Date
TW200933905A true TW200933905A (en) 2009-08-01

Family

ID=44866097

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97102272A TW200933905A (en) 2008-01-21 2008-01-21 A multi-film, anti-reflection layer for a solar cell

Country Status (1)

Country Link
TW (1) TW200933905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872148A (en) * 2012-12-14 2014-06-18 郑金祥 Surface coating structure and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103872148A (en) * 2012-12-14 2014-06-18 郑金祥 Surface coating structure and manufacturing method thereof
TWI488320B (en) * 2012-12-14 2015-06-11 Univ Nat Cheng Kung Surface coating structure and production method thereof
CN103872148B (en) * 2012-12-14 2016-02-24 郑金祥 Surface coating structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US20090165845A1 (en) Back contact module for solar cell
TW200941748A (en) Solar cell
KR20120063324A (en) Bifacial solar cell
TWI382545B (en) A stacked-layered thin film solar cell with a photoconductive layer having band gradient and a manufacturing method thereof
TWI483406B (en) Photovoltaic cell
KR101219835B1 (en) Solar cell apparatus and method of fabricating the same
CN219628267U (en) Solar laminated battery, battery assembly and photovoltaic system
JP2013509707A (en) Solar cell and manufacturing method thereof
CN206460967U (en) A kind of cadmium telluride diaphragm solar battery
JP2012038783A (en) Photoelectric conversion element
JP2011054971A (en) Solar cell
CN101866969B (en) Solar cell
TW200933905A (en) A multi-film, anti-reflection layer for a solar cell
CN211828772U (en) Laminated solar cell
KR101455832B1 (en) Thin film solar cell and Method of fabricating the same
KR101765924B1 (en) Solar cell apparatus and method of fabricating the same
TW201228000A (en) Device structure for high efficiency CdTe thin-film solar cell
KR101373250B1 (en) Thin film solar cell and method of fabricating the same
CN102097509A (en) Design of five-layered structure of tandem thin-film amorphous silicon solar cell
TW200941736A (en) Thin film solar cell and manufacturing method thereof
US20100154882A1 (en) Solar cell
CN116723713A (en) Self-trapping perovskite solar cell and preparation method and application thereof
TWI435464B (en) Thin-film solar cell and manufacturing method thereof
TWI475704B (en) Thin film solar cell and manufacturing method thereof
KR101484622B1 (en) Thin-film type solar cell having a current collecting electrode and fabricating method thereof