TW200933189A - Microscope apparatus and focal-depth enlarged image generation method used therefor - Google Patents

Microscope apparatus and focal-depth enlarged image generation method used therefor

Info

Publication number
TW200933189A
TW200933189A TW098100486A TW98100486A TW200933189A TW 200933189 A TW200933189 A TW 200933189A TW 098100486 A TW098100486 A TW 098100486A TW 98100486 A TW98100486 A TW 98100486A TW 200933189 A TW200933189 A TW 200933189A
Authority
TW
Taiwan
Prior art keywords
time
amount
image
exposure
focus
Prior art date
Application number
TW098100486A
Other languages
Chinese (zh)
Other versions
TWI482996B (en
Inventor
Go Ryu
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Publication of TW200933189A publication Critical patent/TW200933189A/en
Application granted granted Critical
Publication of TWI482996B publication Critical patent/TWI482996B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
    • G02B21/365Control or image processing arrangements for digital or video microscopes
    • G02B21/367Control or image processing arrangements for digital or video microscopes providing an output produced by processing a plurality of individual source images, e.g. image tiling, montage, composite images, depth sectioning, image comparison
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0075Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. increasing, the depth of field or depth of focus

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

A microscope apparatus comprises a focusing unit for changing the relative position between a specimen and the focus position of an object lens; and a setup unit for setting a plurality of import regions in the optical axis of the object lens, with a position at which a specimen is focused being established as a reference. It further comprises a control unit for obtaining a plurality of extended time exposure images by changing the relative positions from each respective start position to the end position of each of the plurality of import regions by means of the focusing unit under an import condition determined by desired exposure time and emission light volume; and an image generation unit for generating a focal-depth enlarged image by adding together the obtained plurality of extended time exposure images.

Description

200933189 六、發明說明: 【發明所屬技^^區威】 本發明係有關於一種進行標本之觀察或檢査的顯微鏡 裝置以及其焦點深度擴大影像生成方法。 5 ❹ 10 15 ❹ 20 C先前】 在半導體製造等之程序中,元件圖案之缺陷檢査或是 構造觀察等等,係廣泛使用光學顯微鏡。近年來,由於元 件圖案的細微化以及複雜化的急速進展,因而期望光學顯 微鏡之解析度的進一步提升。為此,係有使用開口數 NA(Numerical Aperture)較大之物鏡,以及使用波長較短之 光線’例如紫外光線作為照明光線。 在加大物鏡之NA,或是使照明光線之波長縮短的情況 下’焦點深度係會M。在此情況下,倘若具有標本的高 低差異比焦輯度从_分時1會有祕失焦模糊的 問題。為此,係有獲取高解析度且溧焦點深度之影像的需 求0 a Mi导材料,對波長 範圍不同之紫外光線,係具有不同的反射率與吸收率紫 外光線顯微鏡係利用此一特性而進行缺々 。a 析"。具體而言’例如使照明使用:=== 圍加以變化而觀察半導體元件,以 错由觀察元件材料之反 射率變化的影像像素值變化的檢測 x 々式,而可將元件材料 加以特疋。此等使用複數個波長範 圍之紫外光線的顯微鏡 係稱為複數波長紫外線顯微鏡。 3 200933189 在複數波長紫外線顯微鏡中,由於因應波長不同,焦 點深度係不相同,在長波長範圍之觀察影像之可以對焦的 部分,在短波長之觀察影像則可能失焦糢糊。為此,係有 將短波長範圍之焦點深度加以擴大的必要。 5 在習知技術中,將焦點深度加以擴大的方法係有各種 方法。舉例而言,在專利文獻1中,係揭示有關藉由將光 軸方向之不同位置上各對焦的複數個影像進行加算,使用 回復濾光片而對加算影像進行回復處理,而使對焦之i個 影像加以復原的技術。 10 在取得加算影像的方法上,係有在使焦點位置連續變 化的同時,將攝影裝置之受光部上所成像之影像加以累積 的方法。在此方法中,利用攝影裝置本身之光能量的累計 效果,可利用攝影裝置同時進行連續焦點變化之影像的輸 入與加算。 15 另一方面,由於在上述焦點位置連續變化的同時,以 攝影裝置之累計效果取得加算影像的方法係受限於裝入攝 影裝置之相機的動態範圍,因而容易產生亮度飽和之加算 影像。為了不產生免度飽和’雖然可將相機的曝光時間變 短或是將光源的照射光量變小,然而,在該情況下,則有 2〇 加算影像之S/N會惡化的問題點。 在專利文獻1之加算影像的取得方法中,倘若配合標 本之反射率較低部分來設定相機的曝光時間與光源的射出 光量,係可能產生反射率較高部分之加算影像的亮度飽和。 200933189 【專利文獻1】專利第3191928號公報 t發明内容】 發明所欲解決之課題 本發明的課題在於提供可獲得優良畫質之焦點深度擴 5 大影像的顯微鏡裝置以及焦點深度擴大影像生成方法。 用以解決課題之手段 本發明之顯微鏡裝置係包含有一光源部;一攝影部, 其係將以源自該光源部之光線所照射的標本加以攝影;一 對焦部’其係使物鏡之焦點位置與標本之相對位置進行變 1〇化;一設定部,其係以標本之對焦位置為基準,在該物鏡 之光轴方向上設定複數個擷取區域;一控制部,其係依據 所期望之曝光時間與射出光量所決定之擷取條件,藉由註 對焦部,使該相對位置由前述複數個擷取區域之各別開始 位置至結束位置為止進行變化,而取得複數個長時間曝光 15影像;以及一影像生成部,其係將所取得之前述複數個長 時間曝光影像進行加算,生成焦點深度擴大影像。 在上述顯微鏡裝置中,該設定部具有設定以標本之對 焦位置為基準之指定範圍的焦點深度擴大區域、以及用以 將該焦點深度擴大區域分割成複數個擷取區域之分割數目 20 的機構。 。 在上述顯微鏡裝置中,該設定部具有設定以標本之對 焦位置為基準之指定範圍的焦點深度擴大區域用於將該 焦點深度擴大區域分割成複數個擷取區域時之各操取區域 5 200933189 的開始位置與結束位置、以及各擷取區域的曝光時間與光 源部的射出光量的機構。 在上述顯微鏡裝置中,在對各擷取區域之曝光時間與 射出光量中之—者被設定的情況下,該控制部係在各擷取 5區域的中間位置,依據所設定之曝光時間與射出光量中之 一者’以及所期望之曝光時間與射出光量之另一者所決定 的棟取條件進行攝影,而取得長時間曝光影像,並將各操 取區域之曝光時間或射出光量之另一者調整成在所取得長 時間曝光影像之亮度不飽和範圍的最大値。 10 發明的效果 藉由本發明,可獲得畫質優良之焦點深度擴大影像。 【實方式;j 用以實施本發明之最佳形態 以下’將說明本發明之較佳實施形態。第1圖係顯示 15第1實施形態之顯微鏡裝置100的構成。 顯微鏡裝置100係由顯微鏡本體1〇1與光源裝置1〇2 以及控制裝置103所構成。顯微鏡本體1〇1係具有裝載標 本11之載物台12、物鏡13、安裝物鏡13之物鏡轉換頭14、 使載物台12移動之對焦機構15、架台16、投光管17、鏡 20 筒21、以及接目部22。 物鏡13係可拆卸式地安裝於物鏡轉換頭上,因應 物鏡轉換頭14的回轉動作而配置於載物台12。 載物台12係藉由未顯示於圖式之平面驅動機構二而可 6 200933189 、鏡13之練垂直的水平平面内自由地移動,並使標 的觀察也置對物鏡13進行變化。又載物台 由對焦機構15而可上下務m ,、 移動於垂直方向(物鏡13之光軸方 5200933189 VI. Description of the Invention: The present invention relates to a microscope apparatus for performing observation or inspection of a specimen and a method of generating a depth-expanded image. 5 ❹ 10 15 ❹ 20 C Previously, optical microscopy is widely used in semiconductor manufacturing and other procedures, such as defect inspection of component patterns or structural observation. In recent years, the resolution of optical microscopes has been further improved due to the miniaturization of the element patterns and the rapid progress of the complication. For this purpose, an objective lens having a larger number of NAs (Numerical Aperture) is used, and a light having a shorter wavelength, such as ultraviolet light, is used as the illumination light. When the NA of the objective lens is increased, or the wavelength of the illumination light is shortened, the depth of focus is M. In this case, if there is a difference between the height and the low of the specimen, the focal length will be less than the focal length. For this reason, there is a need for obtaining high-resolution and depth-of-focus images. The UV conductive material has different reflectance and absorption rates for different wavelengths of ultraviolet light. The ultraviolet light microscope system uses this characteristic. Missing. a analysis ". Specifically, for example, the illumination is used: === The semiconductor element is observed by changing, and the element material is characterized by the detection of the change in the image pixel value which is changed by the reflectance of the material of the observation element. Such microscopes using a plurality of wavelength ranges of ultraviolet light are referred to as complex wavelength ultraviolet microscopes. 3 200933189 In a complex-wavelength UV microscope, the depth of the focal point is different due to the different wavelengths. In the long-wavelength range, the image that can be focused on the observed image may be out of focus at short wavelengths. For this reason, it is necessary to expand the depth of focus in the short wavelength range. 5 In the prior art, there are various methods for expanding the depth of focus. For example, in Patent Document 1, it is disclosed that a plurality of images focused at different positions in the optical axis direction are added, and a recovery filter is used to restore the added image, thereby making the focus i A technique for recovering images. 10 In the method of obtaining the added image, there is a method of accumulating the image formed on the light receiving portion of the photographing device while continuously changing the focus position. In this method, by the cumulative effect of the light energy of the photographing device itself, it is possible to simultaneously perform the input and addition of the image of the continuous focus change by the photographing device. On the other hand, since the method of obtaining the added image by the cumulative effect of the photographing device is limited by the continuous effect of the above-mentioned focus position, the dynamic range of the camera incorporated in the photographing device is limited, so that the image of the saturation of the saturation is likely to occur. In order to prevent the saturation from being generated, the exposure time of the camera may be shortened or the amount of illumination light from the light source may be reduced. However, in this case, there is a problem that the S/N of the added image is deteriorated. In the method of obtaining an added image of Patent Document 1, if the exposure time of the camera and the amount of light emitted from the light source are set in accordance with the lower reflectance of the sample, the brightness of the added image having a higher reflectance may be saturated. OBJECT OF THE INVENTION PROBLEM TO BE SOLVED BY THE INVENTION An object of the present invention is to provide a microscope apparatus and a method of generating a depth-of-focus image which can achieve a high-definition focus image with excellent image quality. Means for Solving the Problem A microscope apparatus according to the present invention includes a light source unit, a photographing unit that photographs a specimen irradiated with light from the light source portion, and a focusing portion that focuses the focus of the objective lens The relative position of the specimen is changed; a setting portion is set with a plurality of capture regions in the optical axis direction of the objective lens based on the focus position of the specimen; a control portion is determined according to the desired The exposure time and the extraction condition determined by the amount of emitted light are changed by the focus-focusing unit so that the relative position is changed from the respective start position to the end position of the plurality of capture regions, thereby obtaining a plurality of long-time exposure images And an image generating unit that adds the acquired plurality of long-time exposure images to generate a depth-of-focus image. In the above microscope apparatus, the setting unit has a depth-expanding region for setting a predetermined range based on a focus position of the specimen, and a mechanism for dividing the focal depth-expanding region into the number of divisions 20 of the plurality of capturing regions. . In the above microscope apparatus, the setting unit has a focus depth enlarging area for setting a predetermined range based on the in-focus position of the specimen for dividing the focus depth enlarging area into a plurality of scooping areas, and each of the operation areas 5 200933189 A mechanism for starting and ending positions, and an exposure time of each of the captured regions and an amount of light emitted from the light source unit. In the above microscope apparatus, in the case where the exposure time and the amount of emitted light for each of the extraction regions are set, the control unit is positioned at an intermediate position of each of the five regions, and is based on the set exposure time and the emission. Photographing one of the amount of light and the desired exposure time and the amount of emitted light are taken to obtain a long-time exposure image, and the exposure time or the amount of emitted light of each operation area is another The person adjusts to the maximum 値 in the range of luminance unsaturation of the long-time exposure image obtained. Advantageous Effects of Invention According to the present invention, it is possible to obtain a focus depth-expanded image excellent in image quality. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, preferred embodiments of the present invention will be described. Fig. 1 is a view showing the configuration of a microscope apparatus 100 according to the first embodiment. The microscope device 100 is composed of a microscope main body 1〇1, a light source device 1〇2, and a control device 103. The microscope main body 1〇1 has a stage 12 on which the specimen 11 is loaded, an objective lens 13, an objective lens conversion head 14 on which the objective lens 13 is mounted, a focusing mechanism 15 for moving the stage 12, a gantry 16, a light projecting tube 17, and a mirror 20 cylinder. 21, and the access department 22. The objective lens 13 is detachably attached to the objective lens conversion head, and is disposed on the stage 12 in response to the turning operation of the objective lens conversion head 14. The stage 12 is freely movable in a horizontal plane perpendicular to the vertical direction of the mirror 13 by a plane drive mechanism 2 not shown in the drawings, and the target observation is also changed to the objective lens 13. Further, the stage is moved by the focusing mechanism 15 to move in the vertical direction (the optical axis of the objective lens 13)

=麵標本η與物鏡13之焦點位置兩者的相對位置進 ,而進行對標本11之物鏡13的 ,裝置⑽相連接,並藉由控制聚置:: 作。再者’對焦機構15亦可取代載物台12,而使物鏡 13在垂直方向上下移動。 才又光官17係在内部具有未顯示於圖式之照明光學系統 10與觀察光學系統。在投光管17之上部,係設置有相機(對應 於攝影部)18。再者’投光管η之域連接^ na係安装有 光纖19,光纖19係與光源裝置1〇2之光量調整部2〇相 接。 投光管17内之照明光學系統係經由光纖丨9,而將自光 15量調整部2G所導人之光線經由物鏡13而作為照明光線來 照射標本11。再者,投光管17係與物鏡13相互動作,而 將以照明光學系統所照明之標本1;1的觀察像藉由觀察光學 系統而加以結像。相機18係將此觀察像加以攝影而生成觀 察影像’並將生成之觀察影像資料輸出至控制裝置1〇3。 2〇 鏡筒21係具有未顯示於圖式之結像鏡,並以載物台u 之下部所配置之未顯示於圖式的照明裝置所照射之可見光 為基礎,而與物鏡13相互動作,使標本U之可見觀察像 加以結像。此可見觀察像係經由接目部22而可目視觀察。 7 200933189 光源裝置102係具有未顯示於圖式之光源,以及用於 調整光源之光量的光量調整部21 〇在下文中,投光管π、 光纖19以及光源裝置102係統稱為光源部。 控制裝置(對應於設定部、控制部以及影像生成部)1〇3 5 係具有輸入影像資料以及使用者所設定之資料等等的輸入 部23、用以輸出控制資料之輸出部24、顯示GUI晝面等之 顯示部25、記憶部26、控制部27、以及用於生成焦點深度 擴大影像之影像生成部28。 輸入部23係由鍵盤、滑鼠、通訊裝置所構成,並經藉 10由顯示部25所顯示之GUI (Graphical User Interface)畫面而 進行各種設定資料等的輸入。 輸出部24係由通訊裝置、攜帶型記録媒體等等所構 成’而將包含觀察影像資料之各種觀察資料以及處理資料 等等輪出至外部。顯示部25係由液晶顯示器等所構成,而 15顯不觀察影像、設定資訊以及通知資訊。 記憶部26係由硬碟、ROM以及RAM等等所構成,除 將用於控制顯微鏡裝置1〇〇之控制程序加以記憶,並記憶 包含觀察影像資料之各種資料。 控制部27係用於控制顯微鏡裝置100之各部的動作, 20而對光源裝置102、相機18、載物台12等等進行控制。控 制部27係具有ΜΡϋ (演算處理裝置),並以MPU將記憶部 所》己隐之控制程序加以讀出而進行上述控制。再者,控 J部27係以對焦位置為基準,使載物台I]由該複數個棟 200933189 .㈣域之開始位置至結束位置為止連續地移動,而取得各 擷取區域之長時間曝光影像。 影像生成部28係將各擷取區域之長時間曝光影像進行 加算而生成焦點深度擴大影像。 5 再者,控制裝置103可由專門使用的裝置,亦或是一 般個人電腦等等所構成。舉例而言,個人電腦係具有依據 控制程序進行全體控制之MPU等的演算處理裝置、將演算 〇 處理指令作為操作記憶體而使用之主記憶體、將各程序或 處理結果之資料等等加以記憶之硬碟裝置等的記憶裝置、 10進行資料存取之介面部、用以取得操作者之指示的輸入装 置、用以顯示資訊之顯示裝置等等。 其次’將參照第2圖之流程圖而說明如以上所述構成 之顯微鏡裝置100的動作。在第2圖之流程圖中,係一併 顯示人為操作與控制裝置1〇3所進行的處理。 15 使用者係將標本11放置於載物台12上,將可見光照 射標本11,一邊經由接目部22目視觀察,一邊使載物台 U在物鏡的光軸方向上下移動,而進行標本η的對焦。接 著,將對焦位置作為Z轴方向的基準位置(Z==〇)而進行設 定(第2圖’步驟S11)。對焦等的操作亦可藉由控制部27 20 自動進行。 接著,使用者係在設定畫面中,設定z=〇之基準位置 的範圍作為焦點深度擴大區域(步驟S12),並進一步設 定焦點深度擴大區域的分割數目(步驟S13)。舉例而言,倘 9 200933189 若設定焦點深度擴大區域之範圍與分割數目,控制部27係 將焦點深度擴大區域依據所指定之分割數目加以分割並 將各擷取區域之開始位置、結束位置進行加算而保存於記 憶部26。 5 接著’在以所設定分割數目而界定之各擷取區域中, 設定相同之光源部的射出光量與相機曝光時間(步驟 S14)。舉例而言,在此步驟S14中,在Z = 〇的基準位置, 所期望之曝光時間被設定的情況下,係以所設定之曝光時 間進行連續攝影,而以使所攝影之影像不飽和的範圍將 10 射光出量設定為最大値。 接者’取得各揭取區域之長時間曝光影像(步驟S15)。 舉例而言,在步驟S15中,使載物台12由各擷取區域之開 始位置至結束位置為止連續地移動,在載物台移動中保持 相機18的曝光狀態而進行複數個長時間曝光影像的攝影。 15 接著,將各擷取區域之長時間曝光影像進行加算,而 生成1個加算影像(步驟S16)。對加算影像進行過濾處理, 而生成焦點深度擴大影像(步驟S17)。 第3圖係顯示在第i實施形態之顯微鏡裝置1〇〇中, 焦點深度擴大區域之擷取區域的設定以及揭取條件的設定 20畫面的一實例。此設定晝面係藉由控制部27之控制而顯示 於顯示部25。 顯微鏡裝置100的使用者係將相對於基準位置(z=:0) 之焦點深度擴大區域之z軸方向(垂直方向)的正方向與負 200933189 方向的距離、焦點深度擴大區域的分割數目進行設定。 第3圖所例示之實例係顯示將焦點深度擴大區域之距 離設定為「±2000 nm」,並將其焦點深度擴大區域之分割數 目設定為「8」的情況。 5 Ο 10 15 ❹ 20 倘若將焦點深度擴大區域之Z軸方向的距離與分割數 目設定為「8」,控制部27係將+2000 nm〜-2000 nm的範圍 分劄成8個擷取區域,並將各擷取區域之開始位置與結束 位置進行加算。在第3圖的實例中,第1個擷取區域的開 始位置係為「-2000」、結束位置係為「_15〇〇」、第2個擷取 區域的開始位置係為「-1500」、結束位置係為「_1〇〇〇」.·. 第4個擷取區域的開始位置係為「_5〇〇」、開始位置係為「〇」, 藉由控制部27進行設定,並儲存於記憶部26。 接著’在擷取條件的設定畫面_,設定各擷取區域的 曝光時間與光源部的射出光量。舉例而言,倘若設定擷取 區域號碼「1」之第1個擷取區域的曝光時間,係由開始位 置與結束位置計算出中間位置,並在該中間位置中,使光 源的射出光量進行變化,以該曝光時間進行連續攝影,而 求得影像不飽和的最大射出光量。接著,將該最大射出光 量與曝光時間設定為各擷取區域的射出光量與曝光時間 (擷取條件)。 第3圖係顯示在特定的位置或特定的擷取區域中以 「5 msec」之曝光時間時,最大射出光量為最大値之「3〇%」 的情況下,各擷取區域的擷取條件係自動設定為相同曝光 11 200933189 時間「5msec」與射出光量「3〇%」之情況的實例。 再者,在上述的説明中,係在設定曝光時間後,再決 定光源的射出光量,然而,亦可先決定光源的射出光量, 再以該射出光量進行連續攝影時所求得之影像不飽和最大 5 曝光時間,來設定其曝光時間。 此外,在將各擷取區域的擁取條件統一的情況下,由 於用於控制光源部之射出光量的控制、相機18之曝光時間 的控制資料亦為相同,而可縮短用於控制收發信資料所需 的時間。 10 第4圖係焦點深度擴大區域之擷取區域的説明圖。在 分割數目設定為「8」的情況下,如第4圖所示,以對焦位 置ZO為中心’在Z軸的正方向分割成4個擷取區域,在Z 轴的負方向亦分割成4個擷取區域(未顯示於圖中)。 倘若設定曝光時間與射出光量,控制部27係以由區域 15 A之Z轴方向的開始位置Z4至結束位置Z3為止的距離為 基準,而計算出載物台12之移動時間與曝光時間相等的移 動速度。接著,以計算出之移動速度,使載物台12由開始 位置Z4至結束位置Z3為止連續地移動’其間,使相機18 處於曝光狀態,而取得長時間曝光影像。所取得之擷取區 20 域A的長時間曝光影像係儲存於記憶部26内。 接著’控制部27係使載物台12由開始位置Z3至結束 位置Z2為止連績地移動,其間,使相機18處於曝光狀態, 而取得擷取區域B的長時間曝光影像。同様地,使載物台 12 200933189 5 ❹ 10 15 Ο 12由開始位置Ζ2至結束位置Ζ1為止連續地移動,其間, 使相機18處於曝光狀態,而取得擷取區域c的長時間曝光 影像。再者’使載物台12由開始位置Z1至結束位置2〇為 止連續地移動,其間,使相機18處於曝光狀態,而取得擷 取區域D的長時間曝光影像。對Z轴之負方向的擷取區域 亦進行同様的攝影。最後,將8個擷取區域的長時間曝光 影像進行加算,而生成1個加算影像,對此加算影像進行 過濾、處理,而生成焦點深度擴大影像。 上述之第1實施形態係將焦點深度擴大區域分割成複 數個擷取區域,取得各擷取區域的長時間曝光影像,將複 數個長時間曝光影像進行加算,而生成1個焦點深度擴大 影像。藉由此,與以焦點深度擴大區域全體來生成丨個焦 點深度擴大影像的情況相比較,由於可將各擷取區域的曝 光時間加長,或是將射出光量加大,因而可以生成未有亮 度飽和,且良好S/N之高畫質焦點深度擴大影像。 其次,將說明本發明之第2實施形態。此第2實施形 態係在各擷取區域的中間位置中,設定最適宜之曝光時間 與光源之射出光量。 第5圖係顯示在第2實施形態中,用於設定擷取區域 與擷取條件之GUI畫面的一實例。 第5圖的實例係顯示將焦點深度擴大區域的大小設定 為「±2000 nm」,分割數目設定為「8」的情況。倘若設定 焦點深度擴大區域的大小與分割數目,控制部27係計算出 13 20 200933189 各擷取區域的開始位置與結束位置’即,第1個擷取區域 的開始位置為「-2000」、結束位置為「-1500」,第2個擷取 區域的開始位置為「-1500」、結束位置為「-1000」· ·,該 等數値係顯示為第5圖之設定畫面的開始位置與結束位置。 5 接著,為了設定擷取條件’使用者所特定的擷取區域, 例如倘若選擇第1個擷取區域’而設定曝光時間與射出光 量中之一者,控制部27係使載物台12移動至第1個擷取 區域的中間位置為止,以所設定之曝光時間(或射出光量), 調整曝光時間與射出光量的另一者,而獲得不產生亮度飽 10和之長時間曝光影像。此長時間曝光影像係顯示為第5圖 之設定用顯示影像的部分。再者’使用者亦可以目視碟認 所攝影之長時間曝光影像’以不產生亮度飽和之範圍來調 整光源的射出光量或曝光時間。 倘若第1個擷取區域之擷取條件的設定結束,係進行 15 第2個、第3個.··擷取區域之梅取條件的設定。 再者’在上述説明中,雖然係先進行曝光時間的設定, 然而’亦可先設定光源的射出光量,再依據該射出光量來 決定曝光時間。此外,長時間曝光影像的擷取位置係為不 限制於擷取區域之中央位置的任意位置,而亦可使載物台 20 ^2由各揭取區域的開始位置至結束位置為止一邊移動,一 邊連續地曝光。 依據上述第2實施形態,由於可設定每一焦點深度擴 大區域之擷取區域的適宜曝光時間與射出光量,即使因應 14 200933189 • #、諫置’標本之反射率*同的情況下,亦可生成良好畫 質之焦點深度擴大影像。 九 一 其次,將說明本發明之第3實施形態。此第3實施形 態係在各擷取區域的曝光時間、光源之射出光量任意設定 5的情況下,使用加重係數來進行各擷取區域之長時間曝光 影像的校正。 於此’在前述所設定之畫面t,所設定第i個擁取區域 © 的開始位置為PStart〔i〕、結束位置為PEnd〔i〕、第i個擷 取區域之光源部的射出光量為L〔i〕、曝光時間為E⑴時, 10 係進行如下k値之加算。 k〔0 = | PEiid「i」-PStart ⑴ | / (L ⑴· E ⑴) 15 〇 接著,以第j個擷取區域的k値作為基準,將其他擷取 區域的k値加以規則化而計算出加重係數。倘若使第』個擷 取區域的加重係數sk〔j〕為「1」時、第i個擷取區域的加 重係數sk〔 i〕係使用k値而以下式表示。 sk〔i〕=k〔i〕/k〔j〕 將各擷取區域的長時間曝光影像與上述加重係數相 乘’並將相乘後的長時間曝光影像的影像資料進行加算, 而獲得1個加算影像。將該加算影像進行過濾處理,而生 20 成焦點深度擴大影像。 依據上述第3實施形態,將焦點深度擴大區域分割成 複數個棟取區域時,即使在各擷取區域的曝光時間與光源 部之射出光量不同的情況下,藉由將各擷取區域的長時間 15 200933189 曝光影像與加重係數相乘,而可獲得將不同擷取條件進行 校正之正確的長時間曝光影像。 其次,將說明本發明之第4實施形態。此第4實施形 態係使載物台12由焦點深度擴大區域全體的開始位置至結 5 束位置為止進行移動,而取得1個長時間曝光影像,以此 長時間曝光影像之亮度不飽和範圍來求得光源部的最大射 出光量,或是最大曝光時間。 在此第4實施形態中’舉例而言,使用者係在第5圖 的設定畫面中,設定所期望的曝光時間(最大曝光時間 10 Efull)。控制部27係以所設定之曝光時間,由焦點深度擴 大區域的開始位置至結束位置為止之移動結束的方式,來 控制載物台12的移動,而取得1個長時間曝光影像。接著, 在使長時間曝光影像不發生亮度飽和下,調整射出光量。 將如此長時間曝光影像的取得與射出光量的調整重覆進 15 行,而決定不發生亮度飽和之最大射出光量EFull。 接著,設定各擷取區域之光源的射出光量。舉例而言, 若將第i個擷取區域之相機18的曝光時間設為E〔i〕,則 此擷取區域之適宜的射出光量L〔i〕可以下式求得。 L〔i〕=LFull · EFull/E〔i〕 20 在上式中’係求得在曝光時間E〔i〕被設定時之適宜 的射出光量L〔 i〕,然而’在各擷取區域的射出光量E〔兔 〕被設定的情況下’亦可藉由上式計算出適宜的曝光時間。 再者’舉例而言’最大曝光時間EFull係可依使用者所 16 200933189 期望,依據在取得焦點深度擴大影像為止所需要之處理時 門來决定。倘若決定處理時間,將該時間設定為最大曝光 *τ在進行焦點深度擴大區域全體之長時間曝光影像 的攝’^時,決定影像不飽和之最大射出光量EFull。 5 ❹ 10 15 ❹ 上述之第4實施形態係設定所期望之最大曝光時間 T7T*? | ί U 進行焦點深度擴大區域全體之長時間曝光影像的攝 ^而由該攝影結果決定光源部之最大射出光量LFulb接 著,在各擷取區域的曝光時間(或射出光量)被設定後,控制 部27係可由最大曝光時間EFull與最大射出光量LFuil而 自動地设定各擷取區域的適宜曝光時間(或射出光量)。藉 此,可在短時間内進行各擷取區域之擷取條件的設定,並 獲得高畫質的焦點深度擴大影像。 其次,第6圖係顯示本發明第5實施形態之顯微鏡裝 置200的構成。此第5實施形態係照射不同波長之光線而 生成複數個焦點深度擴大影像,並以複數個焦點深度擴大 影像來置換1個彩色影像的R成分、G成分、B成分。在 下文中,與第1圖之顯微鏡裝置100相同的元件係鹎予相 同的元件符號,並省略其等之説明。 在第6圖中,光源裝置202係具有光量調整部32與坡 長選擇部31。光量調整部32係依據控制部27的控制而铜 整由未顯不於圖式之光源所放射之紫外光線的光量。波長 選擇部31係選擇依控制部27所指定之波長的紫外光線, 並輸出至光纖19。 17 20 200933189 倘若使用者將焦點深度擴大區域的範圍與分割數目以 及各區域的擷取條件進行設定,則可取得各擷取區域的長 時間曝光影像。此時,控制部27係對各擷取區域照射波長 不同之紫外光線,而取得3個長時間曝光影像。接著,將 5各擷取區域的長時間曝光影像進行加算,並實行過濾處 理,而生成3個波長的焦點深度擴大影像。再者,以予先 準備之1個彩色影像的R成分、G成分、B成分,來設定3 個波長之焦點深度擴大影像的影像資料。 藉此,不同波長之3個焦點深度擴大影像係以個彩色 10影像的R、G、B成分來表示。由於人類的眼睛容易辨別R、 G、B成分的差異,藉由同時觀看波長不同之3種類的焦點 深度擴大影像,可以目視直接辨別標本Π的缺陷等。 再者’在對標本11進行對焦的情況下,由於因應波長 焦點深度係不相同,而會有在長波長範圍内可對焦,卻在 15短波長範圍内無法對焦的情況。為此,在第5實施形態中, 係對各波長設定相同的焦點深度擴大區域,而可在全部波 長範圍内,皆生成可對焦的焦點深度擴大影像。 依據上述之第5實施形態,對標本照射波長不同的光 線’而生成複數個焦點深度擴大影像,藉由將該等複數個 20焦點深度擴大影像以1個彩色影像的R、G、B成分來表示, 而可同時確認波長不同之焦點深度擴大影像。藉此,舉例 而言,可以目視容易地進行半導體元件的缺陷檢査或構造 解析。 18 200933189 本發明係非限制於上述之實施形態,舉例而言,亦可 具有以下的構成。 在實施形態中,雖然係以分割數目為基準,而將各擷 取區域的大小設為相同,然而,各擷取區域的開始位置、 5 結束位置亦可依使用者加以任意設定。 【圖式簡單說明】 第1圖係顯示第1實施形態之顯微鏡裝置的構成。 © 第2圖係顯示第1實施形態之顯微鏡裝置之動作的$ 程圖。 10 第3圖係顯示設定畫面的一實例。 第4圖係焦點深度擴大區域之擷取區域的說明圖 第5圖係顯示第2實施形態之設定畫面的一實例 第6圖係顯示第5實施形態之顯微鏡裝置的構成 【主要元件符號說明】 11 標本 17a 光纖連接器 12 載物台 18 相機 13 物鏡 19 光纖 14 物鏡轉換頭 20 光量調整部 15 對焦機構 21 ΛΑ. Mr 鏡茼 16 架台 22 接目部 17 投光管 23 輸入部 19 200933189 24 輸出部 S11 z=o位置的設定 25 顯示部 S12 焦點深度擴大區域的設 26 27 記憶部 控制部 S13 定 焦點深度擴大區域分割 數目的設定 28 影像生成部 S14 在各擁取區域設定相同 31 波長選擇部 的光源射出光量與相 32 光量調整部 機曝光時間 100、 200顯微鏡裝置 S15 取得各操取區域的長時 101 顯微鏡本體 間曝光影像 102、 202光源裝置 S16 加算各擷取區域的長時 103 控制裝置 S17 間曝光影像 對加算影像進行過濾處 理 20= the relative position of the face specimen η and the focus position of the objective lens 13 is entered, and the device (10) of the objective lens 13 of the specimen 11 is connected and controlled by the polymerization:. Further, the focus mechanism 15 can also move the objective lens 13 up and down in the vertical direction instead of the stage 12. The luminosity 17 system internally has an illumination optical system 10 and an observation optical system which are not shown in the drawings. A camera (corresponding to the photographing unit) 18 is provided above the light projecting tube 17. Further, the field of the light pipe η is connected to the optical fiber 19, and the optical fiber 19 is connected to the light amount adjusting unit 2 of the light source device 1〇2. The illumination optical system in the light projecting tube 17 illuminates the specimen 11 as illumination light through the objective lens 13 via the optical fiber cassette 9 through the optical fiber cassette 9. Further, the light projecting tube 17 and the objective lens 13 interact with each other, and the observation image of the specimen 1; 1 illuminated by the illumination optical system is imaged by the observation optical system. The camera 18 takes this observation image to generate an observation image ’ and outputs the generated observation image data to the control device 1〇3. The second lens barrel 21 has an image forming mirror that is not shown in the drawing, and is operated by the objective lens 13 based on the visible light that is not illuminated by the illumination device disposed on the lower portion of the stage u. The visible observation image of the specimen U is imaged. This visible observation image is visually observed through the eye portion 22. 7 200933189 The light source device 102 has a light source not shown in the drawings, and a light amount adjusting portion 21 for adjusting the amount of light of the light source. Hereinafter, the light projecting tube π, the optical fiber 19, and the light source device 102 are referred to as a light source portion. The control device (corresponding to the setting unit, the control unit, and the image generating unit) 1〇3 5 is an input unit 23 having input image data and data set by the user, an output unit 24 for outputting control data, and a display GUI. The display unit 25 such as a face, the storage unit 26, the control unit 27, and the image generation unit 28 for generating a focus depth-enhanced image. The input unit 23 is composed of a keyboard, a mouse, and a communication device, and inputs various setting materials and the like by a GUI (Graphical User Interface) screen displayed on the display unit 25. The output unit 24 is constituted by a communication device, a portable recording medium, or the like, and rotates various observation materials and processing data including the observed image data to the outside. The display unit 25 is constituted by a liquid crystal display or the like, and 15 displays no image, setting information, and notification information. The memory unit 26 is composed of a hard disk, a ROM, a RAM, and the like, and is memorized by a control program for controlling the microscope device 1 and memorizes various materials including observation image data. The control unit 27 controls the operation of each unit of the microscope apparatus 100, and controls the light source unit 102, the camera 18, the stage 12, and the like. The control unit 27 has ΜΡϋ (calculation processing means), and the MPU reads the control program of the memory unit to perform the above control. Further, the control J unit 27 continuously moves the stage I] from the start position to the end position of the plurality of buildings 200933189 (4) based on the focus position, and obtains long-time exposure of each capture area. image. The image generating unit 28 adds the long-time exposure images of the respective captured areas to generate a depth-of-depth image. Further, the control device 103 may be constituted by a dedicated device or a general personal computer or the like. For example, the personal computer has an arithmetic processing device such as an MPU that performs overall control according to a control program, a main memory that uses an arithmetic processing command as an operation memory, and memorizes data of each program or processing result. A memory device such as a hard disk device, 10 a face for data access, an input device for obtaining an operator's instruction, a display device for displaying information, and the like. Next, the operation of the microscope apparatus 100 configured as described above will be described with reference to the flowchart of Fig. 2. In the flowchart of Fig. 2, the processing performed by the human operation and control device 1〇3 is displayed together. 15 The user places the specimen 11 on the stage 12, irradiates the specimen 11 with visible light, and moves the specimen U up and down in the optical axis direction of the objective lens while visually observing the eyepiece 22, thereby performing the specimen η. Focus. Then, the focus position is set as the reference position (Z == 〇) in the Z-axis direction (Fig. 2' step S11). The operation of focusing or the like can also be automatically performed by the control unit 270. Next, the user sets a range of the reference position of z = 作为 as the focus depth expansion area on the setting screen (step S12), and further sets the number of divisions of the depth of focus expansion area (step S13). For example, if 9 200933189 sets the range of the depth of focus expansion area and the number of divisions, the control unit 27 divides the depth of focus expansion area according to the number of divisions specified and adds the start position and the end position of each capture area. It is stored in the memory unit 26. 5 Next, the amount of light emitted from the same light source unit and the exposure time of the camera are set in each of the captured areas defined by the set number of divisions (step S14). For example, in this step S14, in the case where the desired exposure time is set at the reference position of Z = 〇, continuous shooting is performed with the set exposure time, so that the captured image is not saturated. The range sets the amount of 10 shots to the maximum 値. The receiver' takes a long-time exposure image of each of the stripping areas (step S15). For example, in step S15, the stage 12 is continuously moved from the start position to the end position of each of the capture areas, and the exposure state of the camera 18 is held while the stage is moving to perform a plurality of long-time exposure images. Photography. 15 Next, the long-time exposure images of the respective capture regions are added to generate one additional image (step S16). The addition image is subjected to filtering processing to generate a focus depth enlarged image (step S17). Fig. 3 is a view showing an example of the setting of the capturing area of the focus depth expansion area and the setting of the removal condition 20 in the microscope apparatus 1A of the i-th embodiment. This setting screen is displayed on the display unit 25 under the control of the control unit 27. The user of the microscope apparatus 100 sets the distance between the positive direction of the z-axis direction (vertical direction) of the focal depth expansion region of the reference position (z=:0) and the negative 200933189 direction, and the number of divisions of the depth-depth-expanded region. . The example illustrated in Fig. 3 shows a case where the distance of the depth of focus expansion region is set to "±2000 nm" and the number of divisions of the depth of focus expansion region is set to "8". 5 Ο 10 15 ❹ 20 If the distance in the Z-axis direction and the number of divisions in the focus depth expansion area are set to "8", the control unit 27 divides the range of +2000 nm to -2000 nm into eight capture areas. The start position and end position of each capture area are added. In the example of FIG. 3, the start position of the first capture area is "-2000", the end position is "_15", and the start position of the second capture area is "-1500". The end position is "_1〇〇〇". The start position of the fourth capture area is "_5〇〇", and the start position is "〇", which is set by the control unit 27 and stored in the memory. Part 26. Next, the exposure time of each of the capture areas and the amount of light emitted from the light source unit are set in the setting screen _ of the capture condition. For example, if the exposure time of the first capture area of the capture area number "1" is set, the intermediate position is calculated from the start position and the end position, and the amount of light emitted from the light source is changed in the intermediate position. The continuous exposure is performed with the exposure time, and the maximum amount of emitted light of the image is not saturated. Next, the maximum amount of emitted light and the exposure time are set as the amount of light emitted from each of the extraction regions and the exposure time (take condition). Fig. 3 shows the reading conditions of each captured area when the maximum amount of emitted light is "3〇%" when the exposure time is "5 msec" at a specific position or a specific extraction area. An example in which the same exposure 11 200933189 time "5 msec" and the amount of emitted light "3〇%" is automatically set is set. In the above description, after the exposure time is set, the amount of light emitted from the light source is determined. However, the amount of light emitted from the light source may be determined first, and the image obtained by continuous shooting with the amount of emitted light may be unsaturated. Maximum 5 exposure time to set its exposure time. Further, when the acquisition conditions of the respective capture regions are unified, since the control data for controlling the amount of light emitted from the light source portion and the exposure time of the camera 18 are also the same, the data for controlling the transmission and reception can be shortened. The time required. 10 Figure 4 is an explanatory diagram of the captured area of the depth-expanded area. When the number of divisions is set to "8", as shown in Fig. 4, the center of the focus position ZO is divided into four capture regions in the positive direction of the Z axis, and is divided into four in the negative direction of the Z axis. A capture area (not shown in the figure). When the exposure time and the amount of emitted light are set, the control unit 27 calculates the movement time of the stage 12 equal to the exposure time based on the distance from the start position Z4 to the end position Z3 in the Z-axis direction of the region 15A. Moving speed. Next, at the calculated moving speed, the stage 12 is continuously moved from the start position Z4 to the end position Z3, and the camera 18 is exposed to obtain a long-time exposure image. The long-time exposure image of the acquired area 20 field A is stored in the memory unit 26. Next, the control unit 27 moves the stage 12 from the start position Z3 to the end position Z2 while the camera 18 is in the exposure state, and acquires the long-time exposure image of the capture area B. Simultaneously, the stage 12 200933189 5 ❹ 10 15 Ο 12 is continuously moved from the start position Ζ2 to the end position Ζ1, during which the camera 18 is exposed to obtain a long-time exposure image of the capture area c. Further, the stage 12 is continuously moved from the start position Z1 to the end position 2, during which the camera 18 is exposed, and a long-time exposure image of the capture area D is obtained. The same area is also taken for the capture area in the negative direction of the Z-axis. Finally, the long-exposure images of the eight captured regions are added to generate an additional image, and the added image is filtered and processed to generate a depth-expanded image. In the first embodiment described above, the focus depth expansion area is divided into a plurality of capture areas, long-time exposure images of the respective capture areas are acquired, and a plurality of long-time exposure images are added to generate one focus depth-expanded image. Thereby, compared with the case where the focus depth-expanded image is generated by the entire depth-expanded region, the exposure time of each of the captured regions can be lengthened, or the amount of emitted light can be increased, thereby generating the non-brightness. Saturated, and good S/N high image quality depth-expanded image. Next, a second embodiment of the present invention will be described. In the second embodiment, the optimum exposure time and the amount of light emitted from the light source are set in the intermediate position of each of the extraction regions. Fig. 5 is a view showing an example of a GUI screen for setting a capture area and a capture condition in the second embodiment. The example of Fig. 5 shows a case where the size of the depth of focus expansion area is set to "±2000 nm" and the number of divisions is set to "8". When the size and the number of divisions of the depth-of-focus expansion region are set, the control unit 27 calculates the start position and the end position of each of the captured regions of 13 20 200933189, that is, the start position of the first capture region is "-2000" and ends. The position is "-1500", the start position of the second capture area is "-1500", and the end position is "-1000" · ·. These numbers are displayed as the start position and end of the setting screen of Fig. 5. position. 5, the control unit 27 moves the stage 12 in order to set one of the exposure time and the amount of emitted light, for example, if the first capture area is selected, for example, by setting the capture condition 'user-specific capture area'. The other of the exposure time (or the amount of light emitted) is adjusted to the middle of the first capture area, and the exposure time and the amount of light emitted are adjusted to obtain a long-time exposure image in which the brightness is not generated. This long-time exposure image is displayed as part of the display image for setting in Figure 5. Further, the user can also visually recognize the long-exposure image to be photographed, and adjust the amount of light emitted from the light source or the exposure time in a range where the brightness is not saturated. If the setting of the extraction condition of the first extraction area is completed, the setting of the second and third .... Further, in the above description, although the exposure time is set first, the amount of light emitted from the light source may be set first, and the exposure time may be determined based on the amount of the emitted light. Further, the capturing position of the long-time exposure image is not limited to an arbitrary position at the center position of the capturing area, but the stage 20^2 may be moved from the start position to the end position of each of the peeling areas. Exposure continuously on one side. According to the second embodiment described above, since the appropriate exposure time and the amount of emitted light in the extraction region of each of the depth-of-focus expansion regions can be set, even if the reflectance of the specimen is the same as that of the 14 200933189 • #, Produce a good image quality and deepen the image. Nineth Next, a third embodiment of the present invention will be described. In the third embodiment, when the exposure time of each of the capturing regions and the amount of light emitted from the light source are arbitrarily set to 5, the long-exposure image of each of the captured regions is corrected using the emphasis coefficient. Here, in the screen t set as described above, the start position of the i-th grip area © is set to PStart[i], the end position is PEnd[i], and the amount of light emitted from the light source unit of the i-th capture area is When L[i] and the exposure time is E(1), 10 is added as follows. k[0 = | PEiid "i"-PStart (1) | / (L (1)· E (1)) 15 Next, the k値 of the other captured area is regularized by using k値 of the jth extraction area as a reference. Calculate the weighting factor. When the weighting factor sk[j] of the ith capturing region is "1", the weighting factor sk[i] of the i-th capturing region is expressed by the following equation using k 。. Sk[i]=k[i]/k[j] multiply the long-time exposure image of each captured area by the above-mentioned emphasis coefficient' and add the image data of the long-time exposure image after multiplication to obtain 1 Add an image. The added image is filtered, and the image is enlarged to a depth of focus. According to the third embodiment, when the focus depth expansion region is divided into a plurality of building regions, even when the exposure time of each of the capturing regions is different from the amount of light emitted from the light source portion, the length of each of the capturing regions is increased. Time 15 200933189 The exposure image is multiplied by the emphasis coefficient to obtain the correct long-time exposure image that corrects the different capture conditions. Next, a fourth embodiment of the present invention will be described. In the fourth embodiment, the stage 12 is moved from the start position of the entire focus depth expansion region to the end position of the bundle 5, and one long-time exposure image is acquired, thereby exposing the luminance unsaturation range of the image for a long time. The maximum amount of light emitted from the light source unit or the maximum exposure time is obtained. In the fourth embodiment, for example, the user sets a desired exposure time (maximum exposure time 10 Efull) on the setting screen of Fig. 5. The control unit 27 controls the movement of the stage 12 so as to obtain one long-time exposure image so that the movement from the start position to the end position of the focus depth expansion region is completed with the set exposure time. Next, the amount of emitted light is adjusted without causing the long-time exposure image to be saturated with brightness. The acquisition of such a long-time exposure image and the adjustment of the amount of emitted light are repeated in 15 lines, and the maximum amount of emitted light EFull at which luminance saturation does not occur is determined. Next, the amount of light emitted from the light source in each of the extraction regions is set. For example, if the exposure time of the camera 18 of the i-th capture area is E[i], the appropriate amount of emitted light L[i] of the captured area can be obtained by the following equation. L[i]=LFull · EFull/E[i] 20 In the above formula, 'the appropriate amount of emitted light L[i] when the exposure time E[i] is set is obtained, but 'in each of the extraction regions When the amount of emitted light E [rabbit] is set, 'the appropriate exposure time can also be calculated by the above formula. Further, 'for example, the maximum exposure time EFull can be determined according to the user's request, 2009 33189, based on the processing time required to obtain the focus depth to expand the image. If the processing time is determined, the time is set to the maximum exposure *τ. When the exposure of the long-time exposure image of the entire depth-of-focus expansion area is performed, the maximum amount of emitted light EFull of the image is not saturated. 5 ❹ 10 15 ❹ In the fourth embodiment described above, the desired maximum exposure time T7T* is set. | ί U The long-exposure image of the entire depth-of-focus expansion area is captured, and the maximum emission of the light source unit is determined by the imaging result. Light quantity LFulb Next, after the exposure time (or the amount of emitted light) in each of the extraction areas is set, the control unit 27 can automatically set the appropriate exposure time of each of the captured areas by the maximum exposure time EFull and the maximum amount of emitted light LFuil (or The amount of light emitted). As a result, the capture conditions of each capture area can be set in a short time, and a high-definition focus depth-expanded image can be obtained. Next, Fig. 6 shows the configuration of a microscope apparatus 200 according to a fifth embodiment of the present invention. In the fifth embodiment, light rays of different wavelengths are irradiated to generate a plurality of focus depth-expanded images, and the R component, the G component, and the B component of one color image are replaced by a plurality of focus depth-expanded images. Hereinafter, the same components as those of the microscope device 100 of Fig. 1 will be denoted by the same reference numerals, and their description will be omitted. In Fig. 6, the light source device 202 has a light amount adjusting portion 32 and a gradient selecting portion 31. The light amount adjusting unit 32 controls the amount of light of the ultraviolet light emitted from the light source that is not displayed by the light source according to the control of the control unit 27. The wavelength selecting unit 31 selects the ultraviolet ray of the wavelength specified by the control unit 27 and outputs it to the optical fiber 19. 17 20 200933189 If the user sets the range of the depth of focus expansion area and the number of divisions and the capture conditions of each area, a long-time exposure image of each captured area can be obtained. At this time, the control unit 27 irradiates the respective extraction regions with ultraviolet rays having different wavelengths to obtain three long-time exposure images. Next, the long-time exposure images of the respective captured regions are added, and filtering processing is performed to generate focal depth-expanded images of three wavelengths. Further, the image data of the depth-expanded image of the three wavelengths is set by the R component, the G component, and the B component of one color image prepared in advance. Thereby, the three focus depth-expanded images of different wavelengths are represented by the R, G, and B components of the color 10 image. Since the human eye can easily distinguish the difference of the R, G, and B components, it is possible to directly discriminate the defect of the specimen by visually observing the three types of focal depths of the different wavelengths. Furthermore, in the case of focusing on the specimen 11, since the depth of focus is different depending on the wavelength, there is a case where the focus can be focused in a long wavelength range, but the focus cannot be in a range of 15 short wavelengths. Therefore, in the fifth embodiment, the same depth-of-focus expansion region is set for each wavelength, and a focus-focus-expanded image that can be focused can be generated over the entire wavelength range. According to the fifth embodiment described above, a plurality of focus depth-enhanced images are generated by irradiating the specimen with light rays having different wavelengths, and the plurality of 20-depth depth-expanded images are represented by R, G, and B components of one color image. Indicates that the focus depth-expanded image with different wavelengths can be confirmed at the same time. Thereby, for example, defect inspection or structural analysis of the semiconductor element can be easily performed visually. 18 200933189 The present invention is not limited to the above-described embodiments, and may have the following configurations by way of example. In the embodiment, the size of each of the captured regions is set to be the same based on the number of divisions. However, the start position and the end position of each of the captured regions may be arbitrarily set by the user. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a view showing the configuration of a microscope apparatus according to a first embodiment. © Fig. 2 is a view showing the operation of the microscope apparatus of the first embodiment. 10 Figure 3 shows an example of the setting screen. 4 is an illustration of a capture area of a focus depth expansion area. FIG. 5 is a view showing an example of a setting screen of the second embodiment. FIG. 6 is a view showing a configuration of a microscope apparatus according to a fifth embodiment. 11 specimen 17a fiber optic connector 12 stage 18 camera 13 objective lens 19 fiber 14 objective lens conversion head 20 light amount adjustment section 15 focusing mechanism 21 Mr. Mr mirror 16 gantry 22 connection part 17 light pipe 23 input part 19 200933189 24 output Setting S11 z=o position setting 25 Display unit S12 Setting of focus depth expansion area 26 27 Memory unit control unit S13 Setting of the number of divisions of the depth of focus expansion area 28 The image generation unit S14 sets the same 31 wavelength selection unit for each acquisition area. Light source emission amount and phase 32 Light amount adjustment unit exposure time 100, 200 Microscope device S15 Obtaining the length of each operation area 101 Microscope main body exposure image 102, 202 Light source device S16 Adding the length of each capture area 103 Control device S17 exposure image filtering processing of added images 20

Claims (1)

200933189 、 七、申請專利範圍: 1· 一種顯微鏡裝置,其包含: —光源部; 一攝影攝影部,其係將以源自該光源部之光線所照 射的標本加以攝影攝影; 一對焦部’其係使物鏡之焦點位置與標本之相對位 置進行變化; © 一設定部,其係以標本之對焦位置為基準,在該物 鏡之光軸方向上設定複數個擷取區域; 一控制部’其係依據所期望之曝光時間與射出光量 所決疋之摘取條件,藉由該對焦部,使該相對位置由前 述複數個擷取區域之各別開始位置至結束位置為止進 行變化’而取得複數個長時間曝光影像;以及 一影像生成部,其係將所取得之前述複數個長時間 ^ 曝光影像進行加算,生成焦點深度擴大影像。 2. 如申請專利範圍第1項之顯微鏡裝置,其中,該設定部 具有設定以標本之對焦位置為基準之指定範圍的焦點 深度擴大區域、以及用以將該焦點深度擴大區域分割成 複數個擷取區域之分割數目的機構。 3. 如申請專利範圍第1項之顯微鏡裝置,其中’該設定部 具有設定以標本之對焦位置為基準之指定範圍的焦點 深度擴大區域、用於將該焦點深度擴大區域分割成複數 個擷取區域時之各擷取區域的開始位置與結束位置、以 21 200933189 及各棵取區域的曝光時間與光源部的射出光量的機構。 4·如申請專利範圍第1、2或3項之顯微鏡裝置,其中, 在對各擷取區域之曝光時間與射出光量中之一者被設 定的情況下,該控制部係在各擷取區域的中間位置,依 據所設定之曝光時間與射出光量中之一者,以及所期望 之曝光時間與射出光量之另一者所決定的擷取條件進 行攝影攝影,而取得長時間曝光影像,並將各擷取區域 之曝光時間或射出光量之另一者的値調整成在所取得 長時間曝光影像之亮度不飽和範圍的最大値。 5. 如申請專利範圍第1、2或3項之顯微鏡裝置,其中, 在對複數個擷取區域之曝光時間與射出光量中之一者 被設疋的情況下,該控制部係依據所設定之曝光時間與 射出光量中之一者,以及所期望之曝光時間與射出光量 之另一者所決定的擷取條件,使該相對位置由該焦點深 度擴大區域全體之開始位置至結束位置為止進行變 化,而取得長時間曝光影像,並將前述複數個擷取區域 之曝光時間與射出光量之另一者的値調整成在所取得 長時間曝光影像之亮度不飽和範圍的最大値。 6. 如申請專利範圍第i、2或3項之顯微鏡裝置,其中, 在對擷取區域之曝光時間被設定的情況下,該控制部係 依據所設定之曝光時間與所期望之射出光量所決定的 擷取條件,使該相對位置由該擷取區域之開始位置至妗 束位置為止進行變化,而取得長時間曝光影像,並將該 擷取區域之射出光量的値調整成在所取得長時間曝^ 22 200933189 影像之亮度不飽和範圍之射出光量的最大値。 7. 如申請專利範圍第1、2或3項之顯微鏡裝置,其中, 在對擷取區域之射出光量被設定的情況下,該控制部係 依據所設定之射出光量與所期望之曝光時間所決定的 擷取條件,使該相對位置由該擷取區域之開始位置至結 束位置為止進行變化,而取得長時間曝光影像,並將該 擷取區域之曝光時間調整成在所取得長時間曝光影像 之亮度不飽和範圍之曝光時間的最大値。 8. 如申請專利範圍第1項之顯微鏡裝置,該控制部在取得 前述複數個擷取區域之長時間曝光影像時,係以第i個 揭取區域之開始位置與結束位置的差,及曝光時間與射 出光量相乘所得之値的比k為基準,求得將其他摘取區 域之k値規則化所得之値作為各擷取區域的加重係數, 並將各擷取區域之該加重係數與各擷取區域之長時間 曝光影像㈣,㈣各娜區域之長時_光影像規則 化。 9. 如申請專利範圍第1項之顯微鏡裝置,其中, 該光源部係對標本照射波長相異之複數個光線, 該影像生成部係將照射波長相異之複數個光線後 之前述複數個鱗間曝光影像進行加算,而生成複數個 焦點深度擴大騎,賴线—個具有以前述複數個焦 點j未度擴大影像為r、G、B成分之彩色影像。 10. -種顯微鏡裝置之焦點深度擴大影像生成方法其包含 23 200933189 下列步驟: 以標本之對焦位置為基準,在該物鏡之光軸方向上 設定複數個擷取區域; 依據所期望之曝光時間與射出光量所決定之擷取 條件,藉由對焦部,使該物鏡之對焦位置與標本的相對 位置由前述複數個擷取區域之各別開始位置至結束位 置為止進行變化,而取得複數個長時間曝光影像;以及 將所取得之前述複數個長時間曝光影像進行加 算,生成焦點深度擴大影像。 11.如申請專利範圍第10項之顯微鏡裝置之焦點深度擴大 影像生成方法,其係加以設定標本之對焦位置為基準之 指定範圍的焦點深度擴大區域、以及用以將該焦點深度 擴大區域分割成複數個擷取區域之分割數目。 12·如申請專利範圍第⑴或11項之顯微鏡裝置之焦點深度 擴大影像生成方法,其中, 在對複數個擷取區域之曝光時間與光源部之射出 光量中之一者被設定的情況下,依據所設定之曝光時間 與射出光量中之一者,以及所期望之曝光時間與射出光 量之另一者所決定的擷取條件,藉由該對焦部,使該相 對位置由前述複數個擷取區域之各別開始位置至結束 位置為止進行變化,而取得長時間曝光影像, 將複數個擷取區域之曝光時間或射出光量調整成 在所取得長時間曝光影像之亮度不飽和範圍之曝露時 24 200933189 間或射出光量的最大値。 13·如申請專利範圍第10或11項之顯微鏡裝置之焦點深度 擴大影像生成方法,其中, 在對各擷取區域之曝光時間與射出光量中之一者 被設定的情況下,在各擷取區域的中間位置,依據所設 定之曝光時間與射出光量中之一者,以及所期望之曝光 時間與射出光量之另一者所決定的擷取條件進行攝影 〇 攝影’而取得長時間曝光影像,並將各擷取區域之曝光 時間或射出光量之另一者調整成在所取得長時間曝光 影像之亮度不飽和範圍的最大値。 14.如申請專利範圍第10或u項之顯微鏡裝置之焦點深度 * 擴大影像生成方法,其中, 在對複數個擷取區域之曝光時間與射出光量中之 一者被設定的情況下,依據所設定之曝光時間與射出光 量中之一者,以及所期望之曝光時間與射出光量之另一 者所決定的擷取條件,藉由該對焦部,使該相對位置由 該焦點深度擴大區域全體之開始位置至結束位置為止 進行變化,而取得-個長時間曝光影像,並將前述複數 個擷取區域之曝光時間與射出光量之另一者的値調整 成在所取得長時間曝光影像之亮度不飽和範圍的最大 値0 25200933189, VII, the scope of application for patents: 1. A microscope device comprising: - a light source portion; a photographic imaging portion that photographicly photographs a specimen illuminated by light from the light source portion; The focus position of the objective lens is changed from the relative position of the specimen; © a setting portion, which is based on the focus position of the specimen, and a plurality of capture regions are set in the optical axis direction of the objective lens; According to the desired extraction time and the extraction condition determined by the amount of emitted light, the focus unit changes the relative position from the respective start position to the end position of the plurality of capture regions to obtain a plurality of a long-time exposure image; and an image generation unit that adds the acquired plurality of long-time exposure images to generate a depth-of-focus image. 2. The microscope apparatus according to claim 1, wherein the setting unit has a focus depth expansion area for setting a predetermined range based on a focus position of the specimen, and dividing the focus depth expansion area into plural numbers. The mechanism that takes the number of divisions of the area. 3. The microscope device of claim 1, wherein the setting portion has a focus depth expansion region that sets a specified range based on a focus position of the specimen, and is used to divide the focus depth expansion region into a plurality of captures. The start position and the end position of each of the capture regions in the region, and the mechanism for the exposure time of the light source portion and the exposure time of 21 200933189 and each of the regions. 4. The microscope apparatus according to claim 1, 2 or 3, wherein, in a case where one of an exposure time and an amount of emitted light is set for each of the extraction regions, the control portion is in each of the extraction regions In the middle position, according to one of the set exposure time and the amount of emitted light, and the desired exposure time and the amount of emitted light, the photographing condition is taken to obtain a long-time exposure image, and The 曝光 of the other of the exposure time or the amount of emitted light of each of the captured areas is adjusted to the maximum 値 of the luminance unsaturation range of the acquired long-time exposure image. 5. The microscope apparatus according to claim 1, 2 or 3, wherein, in the case where one of the exposure time and the amount of emitted light in the plurality of extraction regions is set, the control unit is set according to One of the exposure time and the amount of emitted light, and the extraction condition determined by the other of the desired exposure time and the amount of emitted light, the relative position is made from the start position to the end position of the entire focus depth expansion region The change is made to obtain a long-time exposure image, and the 曝光 of the exposure time and the amount of emitted light of the plurality of capture regions is adjusted to be the maximum 値 of the luminance unsaturation range of the acquired long-time exposure image. 6. The microscope device of claim i, 2 or 3, wherein, in the case where the exposure time for the extraction region is set, the control portion is based on the set exposure time and the desired amount of emitted light The determined extraction condition is such that the relative position is changed from the start position to the end position of the capture area, and a long-time exposure image is obtained, and the amount of light emitted from the extraction area is adjusted to be obtained Time exposure ^ 22 200933189 The maximum 射 of the amount of light emitted by the brightness of the image in the unsaturated range. 7. The microscope device of claim 1, wherein the control unit is configured to determine the amount of emitted light and the desired exposure time in the case where the amount of light emitted from the extraction region is set. Determining the capture condition so that the relative position is changed from the start position to the end position of the capture area, thereby obtaining a long-time exposure image, and adjusting the exposure time of the capture area to the long-time exposure image obtained The maximum exposure time of the brightness unsaturation range. 8. The microscope device according to claim 1, wherein the control unit obtains a difference between a start position and an end position of the i-th stripping area and an exposure when acquiring the long-time exposure image of the plurality of capture regions The ratio k of the time obtained by multiplying the time and the amount of emitted light is used as a reference, and the enthalpy obtained by regularizing the k値 of the other extracted regions is obtained as the weighting coefficient of each of the captured regions, and the weighting coefficient of each of the captured regions is Long-time exposure images of each captured area (4), (4) Long-term _ light image regularization of each area. 9. The microscope device of claim 1, wherein the light source portion irradiates the specimen with a plurality of rays having different wavelengths, and the image generation portion irradiates the plurality of rays after the plurality of rays having different wavelengths. The exposure image is added to generate a plurality of focus depth-enhanced rides, and the ray line has a color image having the plurality of focus j unexpanded images as r, G, and B components. 10. The focus depth expansion image generation method of the microscope device includes 23 200933189. The following steps: setting a plurality of capture regions in the optical axis direction of the objective lens based on the focus position of the specimen; according to the desired exposure time and The capturing condition determined by the amount of emitted light is changed by the focusing unit so that the relative position of the focusing position of the objective lens and the specimen is changed from the respective starting position to the ending position of the plurality of capturing regions, thereby obtaining a plurality of long periods of time Exposing the image; and adding the obtained plurality of long-time exposure images to generate a depth-of-focus image. 11. The method according to claim 10, wherein the focus depth-expanded image generating method of the microscope device is configured to set a focus depth expansion region of a specified range in which the focus position of the specimen is a reference, and to divide the focus depth expansion region into The number of divisions of the multiple capture regions. 12. The method of generating a focus depth-enhanced image of a microscope apparatus according to the invention of claim 1 or 11, wherein, in the case where one of an exposure time of the plurality of extraction regions and an amount of light emitted from the light source portion is set, According to one of the set exposure time and the amount of emitted light, and the extraction condition determined by the other of the desired exposure time and the amount of emitted light, the relative position is captured by the plurality of the focus units When the respective start position to the end position of the area are changed, the long-time exposure image is obtained, and the exposure time or the amount of emitted light of the plurality of capture areas is adjusted to be exposed to the luminance unsaturation range of the obtained long-time exposure image. The maximum amount of light emitted between 200933189. 13. The method of generating a focus depth-enhanced image of a microscope apparatus according to claim 10 or 11, wherein in the case where one of an exposure time and an amount of emitted light is set for each of the extraction regions, each of the extractions is performed The middle position of the area is obtained by taking a long-time exposure image according to one of the set exposure time and the amount of emitted light, and the desired exposure time and the extraction condition determined by the other one of the emitted light amounts. The other of the exposure time or the amount of emitted light of each of the captured regions is adjusted to be the maximum 亮度 in the range of luminance unsaturation of the long-time exposure image obtained. 14. The method according to claim 10, wherein the focus depth of the microscope device is an enlarged image generation method, wherein, in the case where one of the exposure time and the amount of emitted light of the plurality of extraction regions is set, The capture condition determined by the other of the set exposure time and the amount of emitted light, and the desired exposure time and the amount of emitted light, the relative position is made by the focus depth expansion area Changing from the start position to the end position, obtaining a long-time exposure image, and adjusting the exposure time of the plurality of capture regions and the amount of the emitted light amount to the brightness of the long-time exposure image obtained Maximum saturation of the range 値0 25
TW098100486A 2008-01-10 2009-01-08 The focus depth of the microscope device and the microscope device is enlarged TWI482996B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008002697A JP5090188B2 (en) 2008-01-10 2008-01-10 Microscope equipment

Publications (2)

Publication Number Publication Date
TW200933189A true TW200933189A (en) 2009-08-01
TWI482996B TWI482996B (en) 2015-05-01

Family

ID=40850403

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098100486A TWI482996B (en) 2008-01-10 2009-01-08 The focus depth of the microscope device and the microscope device is enlarged

Country Status (4)

Country Link
US (1) US7663079B2 (en)
JP (1) JP5090188B2 (en)
CN (1) CN101482649B (en)
TW (1) TWI482996B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5090188B2 (en) * 2008-01-10 2012-12-05 オリンパス株式会社 Microscope equipment
JP5672688B2 (en) * 2009-10-23 2015-02-18 ソニー株式会社 Focusing device, focusing method, focusing program, and microscope
WO2011119678A2 (en) 2010-03-23 2011-09-29 California Institute Of Technology Super resolution optofluidic microscopes for 2d and 3d imaging
US9643184B2 (en) * 2010-10-26 2017-05-09 California Institute Of Technology e-Petri dishes, devices, and systems having a light detector for sampling a sequence of sub-pixel shifted projection images
JP2013542468A (en) 2010-10-26 2013-11-21 カリフォルニア インスティチュート オブ テクノロジー Scanning projection lensless microscope system
US9569664B2 (en) * 2010-10-26 2017-02-14 California Institute Of Technology Methods for rapid distinction between debris and growing cells
CN103534627A (en) 2011-03-03 2014-01-22 加州理工学院 Light guided pixel
JP6136085B2 (en) * 2011-10-05 2017-05-31 ソニー株式会社 Image acquisition apparatus, image acquisition method, and computer program
JP5942390B2 (en) * 2011-11-15 2016-06-29 ソニー株式会社 Image acquisition apparatus, image acquisition method, and image acquisition program
JP6069825B2 (en) * 2011-11-18 2017-02-01 ソニー株式会社 Image acquisition apparatus, image acquisition method, and image acquisition program
DE102013003900A1 (en) * 2012-03-28 2013-10-02 Carl Zeiss Microscopy Gmbh Light microscope and method for image acquisition with a light microscope
JP6325816B2 (en) * 2013-12-27 2018-05-16 株式会社キーエンス Magnification observation apparatus, magnification image observation method, magnification image observation program, and computer-readable recording medium
JP2016051168A (en) * 2014-08-29 2016-04-11 キヤノン株式会社 Image acquisition device and control method therefor
US10393997B2 (en) * 2015-02-18 2019-08-27 Abbott Laboratories Methods, systems and devices for automatically focusing a microscope on a substrate
CN106017872B (en) * 2016-07-04 2018-08-28 华中科技大学 The monitoring alarm system and method for computed tomography (SPECT) system is sliced suitable for microoptic
JP2017058704A (en) * 2017-01-04 2017-03-23 ソニー株式会社 Image acquisition device, image acquisition method, and computer program
JP2018116309A (en) * 2018-04-12 2018-07-26 ソニー株式会社 Image acquisition device, image acquisition method, and microscope
JP2019204009A (en) * 2018-05-24 2019-11-28 オリンパス株式会社 Microscope system
CN110996002B (en) * 2019-12-16 2021-08-24 深圳市瑞图生物技术有限公司 Microscope focusing method, device, computer equipment and storage medium

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3905619C2 (en) 1988-02-23 2000-04-13 Olympus Optical Co Image input / output device
JP3191928B2 (en) * 1988-02-23 2001-07-23 オリンパス光学工業株式会社 Image input / output device
JP2907465B2 (en) * 1989-11-24 1999-06-21 オリンパス光学工業株式会社 Image input / output device
JP3992302B2 (en) * 1995-05-23 2007-10-17 オリンパス株式会社 Image input / output device
JP3722535B2 (en) * 1996-02-06 2005-11-30 オリンパス株式会社 Scanning confocal microscope and measuring method using this microscope
JP4136011B2 (en) * 1996-04-30 2008-08-20 オリンパス株式会社 Depth of focus extension device
JPH11177873A (en) * 1997-12-16 1999-07-02 Denso Corp High-speed focusing electronic camera
US6917377B2 (en) * 2000-02-04 2005-07-12 Olympus Optical Co., Ltd. Microscope system
US6502324B2 (en) * 2000-12-12 2003-01-07 International Business Machines Corporation Method of alignment between sheet materials, method of alignment, substrate assembling method and aligning apparatus
JP2002267943A (en) * 2001-03-08 2002-09-18 Olympus Optical Co Ltd Photomicrographic apparatus
JP3942861B2 (en) * 2001-10-23 2007-07-11 独立行政法人科学技術振興機構 Imaging optical device
JP2004347454A (en) * 2003-05-22 2004-12-09 Mitsubishi Rayon Co Ltd Shading compensation method
US7394943B2 (en) * 2004-06-30 2008-07-01 Applera Corporation Methods, software, and apparatus for focusing an optical system using computer image analysis
CN1882031B (en) * 2005-06-15 2013-03-20 Ffei有限公司 Method and equipment for forming multi-focusing images
JP4648173B2 (en) * 2005-12-01 2011-03-09 オリンパス株式会社 Microscope digital camera, control method and program for microscope digital camera
CN101078806A (en) * 2006-05-26 2007-11-28 汪雪君 Stereo picture pick-up and visualization system
CN2919282Y (en) * 2006-07-03 2007-07-04 北京华旗资讯数码科技有限公司 Combined type microscope
JP4933878B2 (en) * 2006-11-07 2012-05-16 オリンパス株式会社 Microscope equipment
JP5090188B2 (en) * 2008-01-10 2012-12-05 オリンパス株式会社 Microscope equipment

Also Published As

Publication number Publication date
CN101482649B (en) 2013-06-05
US7663079B2 (en) 2010-02-16
JP2009163155A (en) 2009-07-23
CN101482649A (en) 2009-07-15
US20090180179A1 (en) 2009-07-16
JP5090188B2 (en) 2012-12-05
TWI482996B (en) 2015-05-01

Similar Documents

Publication Publication Date Title
TW200933189A (en) Microscope apparatus and focal-depth enlarged image generation method used therefor
JP4136011B2 (en) Depth of focus extension device
JP6061816B2 (en) IMAGING DEVICE, IMAGING DEVICE CONTROL METHOD, PROGRAM, AND STORAGE MEDIUM
JP5943785B2 (en) IMAGING DEVICE, IMAGING SYSTEM, IMAGE PROCESSING DEVICE, AND IMAGING DEVICE CONTROL METHOD
US20120105612A1 (en) Imaging apparatus, endoscope apparatus, and image generation method
CN111308690B (en) Optical field electronic endoscopic equipment and imaging method thereof
JP5644468B2 (en) IMAGING DEVICE AND IMAGING DEVICE CONTROL PROGRAM
JP2014158070A (en) Image processing apparatus, image pickup apparatus, image processing method, image processing program, and storage medium
US10613313B2 (en) Microscopy system, microscopy method, and computer-readable recording medium
JP2007114742A (en) Observation apparatus
JP6418770B2 (en) Image processing apparatus, imaging apparatus, image processing method, program, and storage medium
WO2017163427A1 (en) Microscopic observation system, microscopic observation method, and microscopic observation program
JP2010091669A (en) Imaging device
JP2009175661A (en) Biological-specimen observation apparatus
JP2011237713A (en) Imaging device and imaging method
US10721413B2 (en) Microscopy system, microscopy method, and computer readable recording medium
JP4504644B2 (en) Microscope image imaging apparatus and microscope image imaging method
US11050931B2 (en) Control device and control method
JP6628617B2 (en) Image processing apparatus and image processing method
JP2012108263A (en) Image calculation unit and image calculation program
JP2003195146A (en) Optical equipment
JP2013104919A (en) Virtual slide creating device
JP2015155952A (en) Imaging apparatus, control method of imaging apparatus, program, and storage medium
JP2015207885A (en) Display equipment, display method and imaging equipment
JP2007248625A (en) Range-finding device and digital camera

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees