TW200931290A - Mask data generation method, mask fabrication method, exposure method, device fabrication method, and storage medium - Google Patents

Mask data generation method, mask fabrication method, exposure method, device fabrication method, and storage medium Download PDF

Info

Publication number
TW200931290A
TW200931290A TW097133456A TW97133456A TW200931290A TW 200931290 A TW200931290 A TW 200931290A TW 097133456 A TW097133456 A TW 097133456A TW 97133456 A TW97133456 A TW 97133456A TW 200931290 A TW200931290 A TW 200931290A
Authority
TW
Taiwan
Prior art keywords
pattern
mask
image
aerial image
peak portion
Prior art date
Application number
TW097133456A
Other languages
Chinese (zh)
Other versions
TWI371701B (en
Inventor
Miyoko Kawashima
Original Assignee
Canon Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Kk filed Critical Canon Kk
Publication of TW200931290A publication Critical patent/TW200931290A/en
Application granted granted Critical
Publication of TWI371701B publication Critical patent/TWI371701B/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/36Masks having proximity correction features; Preparation thereof, e.g. optical proximity correction [OPC] design processes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

The invention provides a generation method of generating data of a mask, comprising a calculation step of calculating an aerial image formed on an image plane of a projection optical system, an extraction step of extracting a two-dimensional image from the aerial image, a determination step of determining a main pattern of the mask based on the two-dimensional image, an extraction step of extracting, from the aerial image, a peak portion at which a light intensity takes a peak value in a region other than a region in which the main pattern is projected, a determination step of determining an assist pattern based on the light intensity of the peak portion, and a generation stop of inserting the assist pattern into a portion of the mask, which corresponds to the peak portion, thereby generating, as the data of the mask, pattern data including the assist pattern and the main pattern.

Description

200931290 九、發明說明 【發明所屬之技術領域】 本發明關於遮罩資料產生方法、遮罩製造方法、曝光 方法、裝置製造方法、及儲存媒體。 【先前技術】 相關技術說明 ◎ 曝光設備採用光微影(photolithography)製造半導 體記憶體或邏輯電路之類的微圖型( micropatterned )半 導體裝置。曝光設備藉投影光學系統,將形成於遮罩(光 罩)上的電路圖型,投影並轉印至一基板(例如晶圓)上 。隨著近日半導體裝置之微圖型的進步,曝光設備形成之 圖型所具有的線寬度須小於曝光波長(曝光之光波長)。 但是,在此種微圖型內,可能出現光繞射,故在晶圓上形 成之圖型_輪廊(圖型形狀)不夠完整,例如,圖型轉角變 0 圓,或圖型長度變短。 近年來,爲了降低在晶圓上形成之圖型形狀準確度劣 化,採用圖型形狀校正處理(所謂之光近似校正,Optical Proximity Correction,0PC)來設計遮罩圖型。〇PC 校正 依據規則基礎系統(rule-based system)或模式基礎系統 (model-based system),採用光模擬將遮罩圖型各元件 及其週邊元件之形狀的影響計入,以校正圖型形狀。 模式基礎系統採用光模擬將遮罩圖型變形,直到得到 所需之光影像爲止。也建議一種插入一小到無法分解之輔 -4- 200931290 助特徵的方法。 藉數値計算求出如何插入輔助圖型的技術發表如下: 日本專利公開號2004-221594 (專利參考1),及Robert Socha,Douglas Van Den Broeke, Stephen Hsu, J. Fung Chen, Tom Laidig,Noel Corcoran, and Will Conley,於 Proceedings of SPIE,U.S.A., SPIE press, 2005, vol.5838, PP180~193 發表之 “Contact Hole Reticle Optimization by Using Interference Mapping Lithoraphy ( IML ( TM )) ’’ 。這些技術藉數値計算取得干涉圖,因而得到在遮罩上造 成干涉的位置,及在遮罩上抵銷干涉之位置。在干涉圖上 之造成干涉位置,插入輔助圖型,以使通過將被轉印之主 圖型之曝光的光相位,與通過該輔助圖型之曝光的光相位 彼此相等。在干涉圖上之抵銷位置,插入輔助圖型,以使 通過主圖型之曝光的光相位與通過該輔助圖型之曝光的光 相位彼此相差1 8 0度。結果,將被移轉之主圖型與輔助圖 〇 型彼此干涉強烈,因而可成功的將主圖型曝光。前述干涉 圖表示影像平面上的光振幅(light amplitude ),該影像 平面之位置與遮罩平面有成像關係(imaging relation)。 主圖型爲存在於遮罩上之元件,並將被移轉至晶圓上。 電路圖型可粗略區分爲線圖型與接觸孔圖型。專利參 考1計算輔助圖型的假設以線圖型等於一維空間線,接觸 孔圖型等於不佔空間的點;因此無法計算主圖型之形狀。 爲克服此狀況,在此計算之後,主圖型須重新計算,例如 輔助圖型之位置、形狀、及大小。執行主圖型之光近似校 -5- 200931290 正的通則爲:不由近似空中影像計算規格,而是依據模式 基礎系統,自非近似空中影像計算規格。有鑒於此,專利 參考1須計算非近似空中影像很多次,以取得包含主圖型 與輔助圖型在內之遮罩圖型,需很長的計算時間。 並且,由於專利參考1在計算輔助圖型時,用線或點 假設主圖型,故不能準確估計主圖型與輔助圖型之間的光 近似效應的相互作用。後續得到的校正主圖型,對先得到 φ 之輔助圖型,造成光近似效應。因此,可能無法得到輔助 圖型的預估效果,或輔助圖型對所得到的遮罩圖型可能有 反效果。特別在使用線圖型作爲主圖型時,由於光近似校 正在其線邊緣部分及彎曲部分造成的形狀改變很大,輔助 圖型很困難插入。 【發明內容】 發明槪述 φ 本發明提供一種產生遮罩資料的方法,遮罩資料形成 高精準之微圖型。 依據本發明之第一面向,提供一種用電腦產生供曝光 設備使用之遮罩資料的方法;該曝光設備包含:以來自光 源之光照射該遮罩之照射光學系統,及將遮罩之圖型投影 於基板上之投影光學系統;該方法包含:一空中影像( a e r i a 1 i m a g e )計算步驟,依據與該照射光學系統在該投 影光學系統之光瞳平面(pupil plane)上形成的光強度分 佈相關之資訊、與該光源之光波長相關之資訊、在該投影 -6- 200931290 光學系統之該影像平面之一側的一數位孔徑(numerical aperture)相關之資訊、及將於該基板上形成之目標圖型 ,計算在該投影光學系統之影像平面上形成之空中影像; 一二維影像抽出步驟,自該空中影像計算步驟內所計算之 該空中影像中,抽出二維影像;一主圖型決定步驟,依據 該二維影像抽出步驟所抽出之該二維影像,決定該遮罩之 主圖型;一峰部分抽出步驟,自該空中影像計算步驟內所 0 計算之該空中影像,抽出一峰部分;該峰部分除了在該主 圖型投影於該影像平面之區域外,其光強度係在峰値;一 輔助圖型決定步驟,依據該峰部分抽出步驟所抽出之該峰 部分的該光強度,決定一輔助圖型;及一產生步驟,將該 輔助圖型決定步驟所決定之輔助圖型,插入該遮罩之一部 份,此部分與該峰部分抽出步驟內所抽出之峰部分對應; 藉以產生包含該輔助圖型及在該主圖型決定步驟內所決定 之主圖型的圖型資料,做爲該遮罩之該資料資料。 Q 依據本發明之第二面向,提供一種用電腦產生供曝光 設備使用之遮罩資料的方法;該曝光設備包含:以來自光 源之光照射該遮罩之照射光學系統,及將遮罩之圖型投影 於基板上之投影光學系統;該方法包含:第一空中影像計 算步驟,依據該照射光學系統在該投影光學系統之光瞳平 面上形成的光強度分佈相關資訊、來自該光源之光的波長 相關資訊、在該投影光學系統之該影像平面之一側的一數 位孔徑相關之資訊、及將於該基板上形成之目標圖型,計 算在該投影光學系統之影像平面上形成之空中影像;第一 200931290 二維影像抽出步驟,自該第一空中影像計算步驟內所計算 之該空中影像中,抽出二維影像;第一主圖型決定步驟, 依據該第一二維影像抽出步驟所抽出之該二維影像,決定 該遮罩之主圖型;第一峰部分抽出步驟,自該第一空中影 像計算步驟內所計算之該空中影像抽出一峰部分;該峰部 分除了在該主圖型投影於該影像平面之區域外,其光強度 係在峰値;第一輔助圖型決定步驟,依據該第一峰部分抽 Φ 出步驟所抽出之該峰部分的該光強度,決定一輔助圖型; 第二空中影像計算步驟,依據一圖型、與該照射光學系統 在該投影光學系統之該光瞳平面上形成的光強度分佈相關 資訊、與該光源之該光的波長相關的資訊、及在該投影光 學系統之該影像平面側的該數位孔徑相關之資訊,計算 在該投影光學系統之該影像平面上形成之空中影像,該圖 型包含於該第一主圖型決定步驟內所決定之該主圖型及在 該第一輔助圖型決定步驟所決定之該輔助圖型,該輔助圖 φ 型並插入該遮罩之與第一峰部分抽出步驟內所抽出之該峰 部分對應的部分;第二二維影像抽出步驟,自該第二空中 影像計算步驟內所計算之該空中影像中,抽出二維影像; 第二主圖型決定步驟,依據該第二二維影像抽出步驟所抽 出之二維影像,決定該遮罩之主圖型;第二峰部分抽出步 驟,自該第二空中影像計算步驟內所計算之該空中影像, 抽出一峰部分;該峰部分除了在該主圖型投影於該影像平 面之區域外,其光強度係在峰値;第二輔助圖型決定步驟 ,依據該第二峰部分抽出步驟所抽出之該峰部分的光強度 -8- 200931290 ,決定一輔助圖型;一產生步驟,將該第二輔助圖型決定 步驟所決定之該輔助圖型插入該遮罩之一部份,此部分與 該第二峰部分抽出步驟內所抽出之該峰部分對應;藉以產 生包含該輔助圖型及在該第二主圖型決定步驟內所決定之 該主圖型的圖型資料,做爲該遮罩之該資料。 依據本發明之第三面向,提供一遮罩製造方法,包含 :依據前述產生方法所產生之資料,製造遮罩。 ❹ 依據本發明之第四面向,提供一曝光方法,包含下列 步驟:以前述遮罩製造方法,製造遮罩;將該製造之遮罩 照射;及以該投影光學系統將該遮罩之一圖型的影像,投 影於一基板上。 依據本發明之第五面向,提供一裝置製造方法,包含 下列步驟:使用前述之曝光方法將基板曝光;及對曝光之 基板執行顯影程序(development process)。 依據本發明之第六面向,提供一儲存媒體,儲存之程 Q 式使電腦產生供曝光設備使用之遮罩資料;該曝光設備包 含:以光源之光照射該遮罩之照射光學系統,及將該遮罩 之圖型投影於基板上之投影光學系統;該媒體使電腦執行 下列步驟:一空中影像計算步驟,依據該照射光學系統在 該投影光學系統之光瞳平面上形成的光強度分佈相關資訊 、該光源之光之波長的相關資訊、在該投影光學系統之該 影像平面之一側的一數位孔徑相關資訊、及將於該基板上 形成之目標圖型,計算在該投影光學系統之影像平面上形 成之空中影像;一二維影像抽出步驟,自該空中影像計算 -9- 200931290 步驟內所計算之該空中影像中,抽出二維影像;一主圖型 決定步驟,依據該二維影像抽出步驟所抽出之該二維影像 ,決定該遮罩之主圖型;一峰部分抽出步驟,自該空中影 像計算步驟內所計算之該空中影像抽出一峰部分;該峰部 分除了在該主圖型投影於該影像平面之區域外,其光強度 係在峰値;一輔助圖型決定步驟,依據該峰部分抽出步驟 所抽出之該峰部分的該光強度,決定一輔助圖型;及一產 q 生步驟,將該輔助圖型決定步驟所決定之輔助圖型插入該 遮罩之一部份,此部分與該峰部分抽出步驟內所抽出之峰 部分對應;藉以產生包含該輔助圖型及在該主圖型決定步 驟內所決定之主圖型的圖型資料,做爲該遮罩之該資料。 依據本發明之第七面向,提供一儲存媒體,儲存之程 式使電腦產生供曝光設備使用之遮罩資料;該曝光設備包 含:以光源之光照射該遮罩之照射光學系統,及將該遮罩 之圖型投影於基板上之投影光學系統;該媒體使電腦執行 Q 下列步驟:第一空中影像計算步驟,依據該照射光學系統 在該投影光學系統之光瞳平面上形成的光強度分佈相關資 訊、該光源之光之波長得相關資訊、在該投影光學系統之 該影像平面之一側的一數位孔徑相關資訊、及將於該基板 上形成之目標圖型,計算在該投影光學系統之影像平面上 形成之空中影像;第一二維影像抽出步驟,自該第一空中 影像計算步驟內所計算之該空中影像中,抽出二維影像; 第一主圖型決定步驟,依據該第一二維影像抽出步驟所抽 出之該二維影像決定該遮罩之主圖型;第一峰部分抽出步 -10- 200931290 驟,自該第一空中影像計算步驟內所計算之該空中影像抽 出一峰部分;該峰部分除了在該主圖型投影於該影像平面 之區域外,其光強度係在峰値;第一輔助圖型決定步驟, 依據該第一峰部分抽出步驟所抽出之該峰部分的該光強度 ,決定一輔助圖型;第二空中影像計算步驟,依據一圖型 、與該照射光學系統在該投影光學系統之該光瞳平面上形 成的光強度分佈相關之資訊、與該光源之光的波長相關之 Q 資訊、及在該投影光學系統之該影像平面側的數位孔徑相 關之資訊,計算在該投影光學系統之該影像平面上形成之 空中影像;該圖型包含在該第一主圖型決定步驟內所決定 之主圖型及在該第一輔助圖型決定步驟內所決定之輔助圖 型,該輔助圖型並插入該遮罩之與第一峰部分抽出步驟內 所抽出之該峰部分對應的部分;第二二維影像抽出步驟, 自該第二空中影像計算步驟內所計算之空中影像中,抽出 二維影像;第二主圖型決定步驟,依據該第二二維影像抽 Q 出步驟所抽出之二維影像,決定該遮罩之主圖型;第一峰 部分抽出步驟,自該第二空中影像計算步驟內所計算之空 中影像,抽出一峰部分;該峰部分除了在該主圖型投影於 該影像平面之區域外,其光強度係在峰値;第二輔助圖型 決定步驟,依據該第峰部分抽出步驟所抽出之峰部分的光 強度,決定一輔助圖型;一產生步驟,將該第二輔助圖型 決定步驟所決定之輔助圖型插入該遮罩之一部份,此部分 與該第二峰部分抽出步驟內所抽出之峰部分對應;藉以產 生包含該輔助圖型及在該第二主圖型決定步驟內所決定之 -11 - 200931290 該主圖型的圖型資料’做爲該遮罩之該資料。 從下面參考附圖之實施例說明可清楚了解本發明之進 一步的特色。 【實施方式】 下面將參考附圖說明本發明之較佳實施例,在全部附 圖內,相同之標示號碼表示相同的元件,並且不再重複說 ❹ 明。 本發明運用於產生遮罩之資料(遮罩圖型),此遮罩 資料用於微機械(micromechanics)及製造各種裝置,例 如:積體電路(1C)及大型積體電路(LSI)之類之半導 體晶片,液晶板之類之顯示裝置,磁頭之類之偵測裝置, 及電荷耦合元件(CCD )之類之影像感應裝置。微機械在 此意指運用半導體積體電路製造技術於微結構之微米精密 機械系統的製造技術,或指機械系統本身。例如:本發明 〇 適用於產生遮罩資料(遮罩圖型),以使用於其投影光學 系統具有高數位孔徑(NA)之曝光設備,及在其投影光 學系統與晶圓間之空隙充滿液體的浸入式曝光設備( immersion exposure apparatus ) ° 本發明所發表之觀念可用數學模式化。因此,本發明 可用電腦系統內之軟體功能予以實現。 電腦系統內之軟體功能包含具有可執行之軟體編解碼 器的程式,並產生可形成高精準度之微圖型的遮罩資料。 軟體編解碼器由電腦系統之處理器(processor )執行。在 -12-200931290 IX. Description of the Invention [Technical Field] The present invention relates to a mask data generating method, a mask manufacturing method, an exposure method, a device manufacturing method, and a storage medium. [Prior Art] Description of Related Art ◎ The exposure apparatus uses photolithography to fabricate a micropatterned semiconductor device such as a semiconductor memory or a logic circuit. The exposure device projects and transfers the circuit pattern formed on the mask (mask) onto a substrate (e.g., a wafer) by a projection optical system. With the recent advancement in micropatterning of semiconductor devices, the pattern formed by the exposure apparatus must have a line width smaller than the exposure wavelength (the wavelength of the exposed light). However, in such a micropattern, light diffraction may occur, so the pattern formed on the wafer (the shape of the pattern) is not complete enough, for example, the pattern corner becomes 0 circle, or the pattern length becomes short. In recent years, in order to reduce the accuracy of pattern shape formed on a wafer, a pattern shape correction process (so-called optical proximity correction, Optical Proximity Correction, 0PC) is used to design a mask pattern. 〇PC correction is based on a rule-based system or a model-based system. Light simulation is used to calculate the influence of the shape of each component of the mask pattern and its surrounding components to correct the shape of the pattern. . The pattern base system uses light simulation to deform the mask pattern until the desired light image is obtained. A method of inserting a helper feature that is too small to be decomposed is also suggested. The technique for calculating how to insert an auxiliary pattern by borrowing 发表 is published as follows: Japanese Patent Publication No. 2004-221594 (Patent Reference 1), and Robert Socha, Douglas Van Den Broeke, Stephen Hsu, J. Fung Chen, Tom Laidig, Noel Corcoran, and Will Conley, "Contact Hole Reticle Optimization by Using Interference Mapping Lithoraphy (IML (TM))" by Proceedings of SPIE, USA, SPIE press, 2005, vol. 5838, PP 180~193.値 Calculate the interferogram, thus obtaining the position that causes interference on the mask, and the position where the interference is offset on the mask. The interference pattern is inserted on the interferogram, and the auxiliary pattern is inserted so that the pass will be transferred. The phase of the light of the exposure of the main pattern is equal to the phase of the light exposed by the auxiliary pattern. At the offset position on the interferogram, an auxiliary pattern is inserted so that the phase of the light passing through the exposure of the main pattern is passed. The optical phases of the exposure pattern of the auxiliary pattern are different from each other by 180 degrees. As a result, the main pattern to be transferred and the auxiliary pattern are strongly interfered with each other, so that the master can be successfully The above-mentioned interferogram represents the light amplitude on the image plane, and the position of the image plane has an imaging relation with the mask plane. The main pattern is the component existing on the mask and will be Transfer to the wafer. The circuit pattern can be roughly divided into line pattern and contact hole pattern. Patent Reference 1 The assumption of calculating the auxiliary pattern is equal to the one-dimensional space line, and the contact hole pattern is equal to the space-free Point; therefore, the shape of the main pattern cannot be calculated. To overcome this situation, after this calculation, the main pattern must be recalculated, such as the position, shape, and size of the auxiliary pattern. - 200931290 The general rule is: not to calculate the specification of the aerial image, but to calculate the specification from the non-approximate aerial image based on the model basic system. In view of this, the patent reference 1 must calculate the non-approximate aerial image many times to obtain the main image. The mask pattern of the type and the auxiliary pattern requires a long calculation time. Moreover, since the patent reference 1 calculates the auxiliary pattern, the main pattern is assumed by line or point. Therefore, the interaction between the light approximation effect between the main pattern and the auxiliary pattern cannot be accurately estimated. The subsequent corrected main pattern will first obtain the auxiliary pattern of φ, resulting in an optical approximation effect. Therefore, the auxiliary map may not be obtained. The type of predictive effect, or the auxiliary pattern, may have the opposite effect on the resulting mask pattern. In particular, when the line pattern is used as the main pattern, the auxiliary pattern is difficult to insert because the light approximation is greatly changed in shape due to the edge portion and the curved portion of the line. SUMMARY OF THE INVENTION The present invention provides a method of generating mask data, which forms a highly accurate micropattern. According to a first aspect of the present invention, there is provided a method of generating a mask material for use in an exposure apparatus by a computer; the exposure apparatus comprising: an illumination optical system for illuminating the mask with light from a light source, and a pattern of the mask a projection optical system projected on a substrate; the method comprising: an aerial image (aeria 1 image) calculation step, according to a light intensity distribution formed on a pupil plane of the projection optical system Information relating to the wavelength of the light of the light source, information relating to a numerical aperture on one side of the image plane of the projection -6-200931290 optical system, and a target to be formed on the substrate a pattern for calculating an aerial image formed on an image plane of the projection optical system; a two-dimensional image extraction step of extracting a two-dimensional image from the aerial image calculated in the aerial image calculation step; Step, according to the two-dimensional image extracted by the two-dimensional image extraction step, determining a main pattern of the mask; a peak portion Extracting step, extracting a peak portion from the aerial image calculated by the aerial image calculation step; the peak portion is in addition to the region where the main pattern is projected on the image plane, and the light intensity is at a peak; a pattern determining step of determining an auxiliary pattern according to the light intensity of the peak portion extracted by the peak portion extraction step; and a generating step of inserting the auxiliary pattern determined by the auxiliary pattern determining step into the mask a portion of the cover corresponding to the peak portion extracted in the peak portion extraction step; thereby generating pattern data including the auxiliary pattern and the main pattern determined in the main pattern determining step, The material for the mask. Q According to a second aspect of the present invention, there is provided a method of generating a mask material for use in an exposure apparatus by a computer; the exposure apparatus comprising: an illumination optical system for illuminating the mask with light from a light source, and a mask a projection optical system projected on a substrate; the method comprising: a first aerial image calculation step, according to information related to light intensity distribution formed on a pupil plane of the projection optical system, and light from the light source Wavelength-related information, information related to a digital aperture on one side of the image plane of the projection optical system, and a target pattern formed on the substrate, and calculating an aerial image formed on an image plane of the projection optical system a first 200931290 two-dimensional image extraction step of extracting a two-dimensional image from the aerial image calculated in the first aerial image calculation step; a first main pattern determining step, according to the first two-dimensional image extraction step Extracting the two-dimensional image to determine a main pattern of the mask; a first peak portion extraction step from the first aerial image meter Calculating a peak portion of the aerial image calculated in the step; the peak portion is in a peak region except that the main pattern is projected on the image plane; the first auxiliary pattern determining step is performed according to the first a peak portion is extracted by the light intensity of the peak portion extracted by the step, and an auxiliary pattern is determined; the second aerial image calculation step is performed according to a pattern and the aperture of the illumination optical system in the projection optical system. Calculating information related to the light intensity distribution formed on the plane, information related to the wavelength of the light of the light source, and information related to the digital aperture on the image plane side of the projection optical system, and calculating the image in the projection optical system An aerial image formed on a plane, the pattern including the main pattern determined in the first main pattern determining step and the auxiliary pattern determined in the first auxiliary pattern determining step, the auxiliary pattern φ And inserting a portion of the mask corresponding to the peak portion extracted in the first peak portion extraction step; a second two-dimensional image extraction step, calculating a step from the second aerial image Extracting the two-dimensional image from the aerial image calculated in the step; the second main pattern determining step determines the main pattern of the mask according to the two-dimensional image extracted by the second two-dimensional image extraction step; a peak portion extraction step of extracting a peak portion from the aerial image calculated in the second aerial image calculation step; the peak portion is in a peak intensity except that the main pattern is projected on the image plane a second auxiliary pattern determining step of determining an auxiliary pattern according to the light intensity of the peak portion extracted by the second peak portion extraction step -8-200931290; a generating step, the second auxiliary pattern determining step Determining the auxiliary pattern into a portion of the mask, the portion corresponding to the peak portion extracted in the second peak portion extraction step; thereby generating the auxiliary pattern and the second main pattern Determining the pattern data of the main pattern determined in the step as the material of the mask. According to a third aspect of the present invention, a mask manufacturing method is provided, comprising: fabricating a mask in accordance with data generated by the foregoing generation method. According to a fourth aspect of the present invention, there is provided an exposure method comprising the steps of: fabricating a mask by the mask manufacturing method; irradiating the manufactured mask; and forming the mask with the projection optical system The type of image is projected onto a substrate. According to a fifth aspect of the present invention, there is provided a device manufacturing method comprising the steps of: exposing a substrate using the exposure method described above; and performing a development process on the exposed substrate. According to the sixth aspect of the present invention, a storage medium is provided, and the storage method Q causes the computer to generate mask data for use by the exposure device; the exposure device includes: an illumination optical system that illuminates the mask with light of the light source, and The pattern of the mask is projected onto a projection optical system on the substrate; the medium causes the computer to perform the following steps: an aerial image calculation step, according to the light intensity distribution formed by the illumination optical system on the pupil plane of the projection optical system Information, information about the wavelength of the light of the light source, information on a digital aperture on one side of the image plane of the projection optical system, and a target pattern formed on the substrate, calculated in the projection optical system An aerial image formed on the image plane; a two-dimensional image extraction step of extracting the two-dimensional image from the aerial image calculated in the aerial image calculation -9-200931290; a main pattern determining step according to the two-dimensional image The two-dimensional image extracted by the image extraction step determines the main pattern of the mask; a peak portion extraction step from the aerial image The aerial image calculated in the calculating step extracts a peak portion; the peak portion is in the peak region except for the region where the main pattern is projected on the image plane; an auxiliary pattern determining step is performed according to the peak portion Extracting the light intensity of the peak portion extracted by the step, determining an auxiliary pattern; and a step of producing the auxiliary pattern, the auxiliary pattern determined by the auxiliary pattern determining step is inserted into a part of the mask, the portion Corresponding to the peak portion extracted in the peak portion extraction step; thereby generating pattern data including the auxiliary pattern and the main pattern determined in the main pattern determining step as the material of the mask. According to a seventh aspect of the present invention, a storage medium is provided, and the stored program causes the computer to generate mask data for use by the exposure device; the exposure device includes: an illumination optical system that illuminates the mask with light of the light source, and the mask a projection optical system projected onto the substrate; the medium causes the computer to perform Q: the first aerial image calculation step is based on the light intensity distribution formed by the illumination optical system on the pupil plane of the projection optical system Information, information about the wavelength of the light of the light source, information on a digital aperture on one side of the image plane of the projection optical system, and a target pattern formed on the substrate, calculated in the projection optical system An aerial image formed on the image plane; a first two-dimensional image extraction step of extracting the two-dimensional image from the aerial image calculated in the first aerial image calculation step; the first main pattern determining step, according to the first The two-dimensional image extracted by the two-dimensional image extraction step determines the main pattern of the mask; the first peak portion is extracted step-10-200931290 Extracting a peak portion from the aerial image calculated in the first aerial image calculation step; the peak portion is in a peak region except for the region where the main pattern is projected on the image plane; the first auxiliary map a determining step of determining an auxiliary pattern according to the light intensity of the peak portion extracted by the first peak portion extraction step; and a second aerial image calculating step according to a pattern and the projection optical system at the projection optical The information related to the light intensity distribution formed on the pupil plane of the system, the Q information related to the wavelength of the light of the light source, and the information related to the digital aperture on the image plane side of the projection optical system are calculated in the projection An aerial image formed on the image plane of the optical system; the pattern includes a main pattern determined in the first main pattern determining step and an auxiliary pattern determined in the first auxiliary pattern determining step, The auxiliary pattern is inserted into a portion of the mask corresponding to the peak portion extracted in the first peak portion extraction step; the second two-dimensional image extraction step is from the first Extracting the two-dimensional image from the aerial image calculated in the aerial image calculation step; the second main pattern determining step determines the main image of the mask according to the two-dimensional image extracted by the second two-dimensional image extraction step a first peak portion extraction step of extracting a peak portion from the aerial image calculated in the second aerial image calculation step; the peak portion is a light intensity system other than the region in which the main pattern is projected on the image plane In the second auxiliary pattern determining step, determining an auxiliary pattern according to the light intensity of the peak portion extracted by the extraction step of the peak portion; and a generating step, determining the second auxiliary pattern determining step Inserting an auxiliary pattern into a portion of the mask, the portion corresponding to the peak portion extracted in the second peak portion extraction step; thereby generating the auxiliary pattern and determining in the second main pattern determining step -11 - 200931290 The pattern data of the main pattern is used as the material of the mask. Further features of the present invention will become apparent from the following description of the embodiments of the drawing. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following, the preferred embodiments of the present invention will be described with reference to the accompanying drawings, The present invention is applied to a mask-generating material (mask pattern) for use in micromechanics and in manufacturing various devices such as an integrated circuit (1C) and a large integrated circuit (LSI). A semiconductor wafer, a display device such as a liquid crystal panel, a detecting device such as a magnetic head, and an image sensing device such as a charge coupled device (CCD). Micromechanics here refers to the manufacturing technology of micro-precision mechanical systems using micro-structured semiconductor circuit manufacturing technology, or the mechanical system itself. For example, the present invention is suitable for generating mask data (mask pattern) for use in an exposure apparatus having a high numerical aperture (NA) of its projection optical system, and filling a liquid gap between its projection optical system and the wafer. Immersion exposure apparatus ° The concepts disclosed in the present invention can be mathematically modeled. Thus, the present invention can be implemented with software functions within a computer system. The software functions in the computer system include programs with executable software codecs and generate mask data that can form high-definition micro-patterns. The software codec is executed by a processor of a computer system. At -12-

❹ 200931290 軟體編碼作業期間,編解碼器或相關資料紀 平台內;但是’軟體編解碼器經常被儲存於 載入適當之電腦系統。軟體編解碼器可被當 組,留置於至少一供電腦讀取之記錄媒體上 容以前述編解碼器形式說明,可以是一或數 圖1之示意方塊圖展示處理設備1之結 備執行依據本發明之一面向之產生方法。此 產生遮罩資料。處理設備1可以一般電腦精 所示,包含:匯流線10,控制單元2 0,顯 存單元40,輸入單元50,及媒體界面60。 匯流線1〇將控制單元20,顯示單元 40,輸入單元50,及媒體界面60互連。 控制單元20由一中央處理器(CPU ) (GPU )、數位訊號處理器(DSP )、或微 並包含一快取記憶(cache memory)以便暫 由輸入單元50輸入遮罩資料產生程式401 控制單元20據以啓動,並執行存於儲存單j 料產生程式401。控制單元20使用儲存單7 料,執行有關遮罩資料產生方法(後面將說 處理。 顯示單元30可由CRT顯示器或液晶顯 顯示裝置構成;顯示單元30可顯示與執行 程式401有關的資訊(諸如後面將說明之近 二維影像410,及遮罩資料408 )。 ί錄儲存於電腦 ‘其他位置或被 ‘作一或數個模 .。本發明之內 個軟體產品。 i構,此處理設 ,產生方法用於 I成;並如圖1 示單元30,儲 3〇,儲存單元 、圖形處理器 電腦等構成, 存。使用者經 的啓動指令, Ϊ; 40之遮罩資 £ 40所存之資 明之)的數學 示器等之類的 遮罩資料產生 似空中影像的 200931290 儲存單元40可由記憶體或硬碟(hard disk)構成; 儲存單元40儲存之遮罩資料產生程式401來自與媒體界 面60連接的儲存媒體70。 儲存單元40儲存圖型資料402、有效光源資訊403、 NA 資訊 404、又資訊 405、像差資訊(aberration information) 406、及光阻資訊(resist information) 407 ,以供做執行遮罩資料產生程式40 1時之輸入資訊集。儲 Q 存單元40並儲存遮罩資料408,以在遮罩資料產生程式 40 1執行後,供做資訊輸出。儲存單元40亦儲存近似空 中影像409、近似空中影像之二維影像410及被變形之圖 型資料(主圖型及輔助(補助)圖型)411,作爲執行遮 罩資料產生程式40 1期間之暫存資料集。 遮罩資料產生程式401被用來產生遮罩資料40 8,以 表示如曝光設備所用之遮罩圖型,或光空間調變器( spatial light modulator, SLM)之圖型形成單元所形成之 φ 圖型。在此情況下,圖型元素由多角形構成,並由一組多 角形構成整個遮罩圖型。 圖型資料402爲有關圖型設計之資料,例如,設計積 體電路(將在晶圓上形成之必要圖型,後面將稱之爲設計 圖型或目標圖型)。 有效光源資訊403係關於在曝光設備之投影光學系統 之光瞳平面上形成的偏極化(polarization )及光強度分 佈(有效光源)。 NA資訊404係關於在曝光設備之投影光學系統之的 -14- 200931290 影像平面側的數位孔徑(ΝΑ )。 入資訊40 5係關於曝光設備之光源所發射之光(曝光 用的光)的波長。 像差資訊406係關於曝光設備之投影光學系統的像差 〇 光阻資訊4 0 7係關於施加於晶圓上之光阻。 遮罩資料408表示執行遮罩資料產生程式401所產生 0 之真實遮罩的圖型。 近似空中影像409係在執行遮罩資料產生程式401期 間產生’表示在晶圓表面的主繞射光束之間的干涉,所形 成的近似空中影像的分佈。 二維影像4 1 0係在執行遮罩資料產生程式4 0 1期間產 生,等於依據參考片値(slice value)切割近似空中影像 409所得之二維影像。 被變形之圖型資料411包含藉執行遮罩資料產生程式 Q 401而變形之主圖型及藉執行遮罩資料產生程式401而插 入之輔助圖型。 圖型資料402、遮罩資料408及被變形之圖型資料 411包含:有關主圖型及輔助圖型之如位置、大小、形狀 、透光度(transmittance )及相位等的資訊集。圖型資料 4〇2、遮罩資料40 8及被變形之圖型資料411亦包含:主 圖型及輔助圖型都不存在(背景)區域的透光度及相位等 的資訊集。 輸入單元50包含:如鍵盤及滑鼠等。使用者經輸入 -15- 200931290 單元50可輸入’如有關遮罩資料產生程式401等之輸入 資訊集。 媒體界面包含,如軟碟(floppy disc)驅動程式 、CD-ROM驅動程式及USB介面等,並可連接至儲存媒 體70。儲存媒體70包含:如軟碟、CD-ROM及USB記憶 體等,並提供遮罩資料產生程式401及處理設備1所執行 之其他程式。 0 下面參考圖2說明處理設備1之控制單元20執行遮 罩資料產生程式,產生遮罩資料的流程。 控制單元20在步驟S102’依據一資訊集(圖型資料 、有效光源資訊、NA資訊、λ資訊、像差資訊、及光阻 資訊),計算近似空中影像(即目標圖型之似空中影像) 。請注意該輸入的資訊集(圖型資料、有效光源資訊、 Ν Α資訊、λ資訊、像差資訊、及光阻資訊)由使用者經 輸入單元50輸入,並存於儲存單元40。 φ 在步驟s 1 02計算近似空中影像而非計算精確空中影 像’有兩個理由。首先,計算近似空中影像比計算精確空 中影像所費時間短許多;第二,近似空中影像增強圖型同 調性(pattern coherency) ’因此清楚顯示光近似效果。 各種近似空中影像計算方法已經有舊例發表,例如專 利參考1所發表者,近似空中影像可藉干涉圖變形計算。 在此情況下,對TCC (傳輸交叉係數,transmission cross coefficient)執行奇異値(singular value)分解。令 λ;爲 第i個本徵値(eigenvalue) ,d>i(f,g)爲第i個本徵函 -16- 200931290 數(eigenfunction )。請注意(f,g )是投影光學系統之光 瞳平面上的座標;TCC表示有效光源的同調性(依據遮罩 表面之距離的同調性程度)。依據專利參考1,干渉圖e (x,y )是數個本徵函數之總和,表示如下: N, e(x, y) = Σ ΤλΓρφ^ί, g)] ...(1) 〇 其中FT爲傅立葉轉換,:NT通常爲1。 在專利參考1內,以點及線取代各遮罩圖型元素,並 與干涉圖做捲積(convolution)演算,求得整個遮罩之干 涉圖;因此,干涉圖e ( x,y )呈現簡單的同調性。 但是,干涉圖e ( x,y )未將遮罩的圖型(如輪廓)計 入。當使用干涉圖計算近似空中影像時,必須求得將遮罩 圖型計入的干涉圖e'(x,y)。 爲達到此目的,對TCC執行奇異値(singular value © )分解。令λί爲第i個本徵値(eigenvalue) * Φ s ( f,g )爲第i個本徵函數(eigenfunction),及a(f,g)爲分 佈於遮罩圖型上之繞射光。然後用下式求得計入遮罩圖型 的干涉圖e'(x,y): Ν' _ e’(X, y) = HFT[a(f, g)CE>i(f, g)] . · . (2) i=l 使用關係式(2 )所示的干涉圖e' ( x,y ),產生近似 空中影像。 -17- 200931290 下面說明不對TCC做奇異値(本徵値)分解之近似 空中影像計算法。半導體曝光設備內之遮罩圖型及晶圓圖 型具有部分同調影像關係,該部分同調影像需要有效光源 資訊以決定遮罩表面的同調性。同調性在此意指依據遮罩 表面上的距離的同調程度。 有效光源之同調性被納入前述TCC內。該TCC 一般 由投影光學系統之光瞳平面定義,並表示該有效光源、投 Φ 影光學系統之光瞳函數、及投影光學系統之光瞳函數的共 軛複數(complex conjugate)彼此重疊的區域。TCC用四 維函數表示如下: TCC(f', g,,f" , g")= JJs(f, g)P(f + f' , g + g- )p*(f + f" , g + g" )dfdg .-.(3) 其中(f,g)爲光瞳平面上的座標,s(f,g)爲描述有 效光源之函數,P(f,g)爲光瞳函數。請注意*表示共軛複 G 數,積分範圍自-〇〇到〇〇。投影光學系統之像差、照射光 學系統之偏極化、光阻資訊等可被納入光瞳函數P(f,g)。 在此規格內,光瞳函數一詞經常包含所需的偏極化、像差 及光阻。 使用TCC描述空中影像之函數I(x,y),以TCC的四 次積分如下: y) = J J J J TCC(f', g', f" , g" )a(f, g)a*(f' , g') ⑷ x exp{- ί2π[(ί'-f" )x + (g'-g" )y]}df' dg' df" dg" -18- 200931290 其中,a(f,g)爲說明該遮罩之函數的傅立葉轉換函數, 說明該遮罩之函數即爲說明該遮罩上的頻譜分佈(繞射光 分佈)之函數。請注意*表示共軛複數,積分範圍自 到00。關係式(4 )之詳細說明請參考M. Born及E. Wo If 之 “Principles of Optics”,England, Cambridge University Press, 1 999, 7th ( extend ) edition,第 554-632 頁。❹ 200931290 During the software coding operation, the codec or related data is in the platform; however, the 'software codec is often stored in the appropriate computer system. The software codec can be set as a group, and is placed on at least one recording medium for reading by the computer, and is described by the foregoing codec. It can be one or several schematic diagrams of FIG. 1 to show the execution basis of the processing device 1. One of the methods of the present invention is directed to a method of production. This produces mask data. The processing device 1 can be shown as a general computer, comprising: a bus line 10, a control unit 20, a memory unit 40, an input unit 50, and a media interface 60. The bus line 1 interconnects the control unit 20, the display unit 40, the input unit 50, and the media interface 60. The control unit 20 is controlled by a central processing unit (CPU), a digital signal processor (DSP), or a micro memory and includes a cache memory for temporarily inputting the mask data generating program 401 by the input unit 50. 20 is started up and executed in the storage slip generation program 401. The control unit 20 performs a method related to the mask data generation using the storage sheet 7 (the processing will be described later. The display unit 30 may be constituted by a CRT display or a liquid crystal display device; the display unit 30 may display information related to the execution program 401 (such as the latter) The near two-dimensional image 410 and the mask data 408 will be described. The ί recording is stored in the computer 'other locations or 'made as one or several modules.' The software product of the present invention. I structure, this processing device, The production method is used for I; and as shown in Figure 1, the unit 30, the storage unit, the storage unit, the graphics processor computer, etc., and the user's startup command, Ϊ; 40 masking capital 40 The mask data of the mathematics indicator or the like of the present invention generates an aerial image-like 200931290. The storage unit 40 may be constituted by a memory or a hard disk; the mask data generating program 401 stored by the storage unit 40 is derived from the media interface 60. Connected storage medium 70. The storage unit 40 stores the graphic data 402, the effective light source information 403, the NA information 404, the information 405, the aberration information 406, and the resist information 407 for performing the mask data generation program. 40 1 hour input information set. The storage unit 40 stores the mask data 408 for outputting information after the mask data generating program 40 1 is executed. The storage unit 40 also stores the approximate aerial image 409, the two-dimensional image 410 of the approximate aerial image, and the deformed graphic data (the main pattern and the auxiliary (subsidy) pattern) 411 as the execution of the mask data generating program 40 1 . Temporary data set. The mask data generation program 401 is used to generate the mask data 40 8 to indicate the mask pattern used by the exposure device or the pattern formed by the pattern forming unit of the spatial light modulator (SLM). Graphic type. In this case, the graphic elements are composed of polygons, and a set of polygons constitutes the entire mask pattern. Pattern data 402 is information about the pattern design, for example, designing an integrated circuit (the necessary pattern to be formed on the wafer, which will be referred to as a design pattern or a target pattern later). The effective light source information 403 is about polarization and light intensity distribution (effective light source) formed on the pupil plane of the projection optical system of the exposure apparatus. The NA information 404 is about the digital aperture (ΝΑ) on the image plane side of the -14- 200931290 projection optical system of the exposure device. The information 40 5 is the wavelength of light (light for exposure) emitted by the light source of the exposure device. The aberration information 406 is related to the aberration of the projection optical system of the exposure apparatus. 〇 The photoresist information 407 relates to the photoresist applied to the wafer. The mask data 408 represents a pattern of a real mask generated by the mask data generation program 401. The approximate aerial image 409 is a distribution of approximate aerial images formed by the interference between the main diffracted beams representing the surface of the wafer during the execution of the mask data generation program 401. The two-dimensional image 4 1 0 is generated during the execution of the mask data generation program 410, and is equal to the two-dimensional image obtained by cutting the approximate aerial image 409 according to the slice value. The deformed pattern data 411 includes a main pattern deformed by executing the mask data generating program Q 401 and an auxiliary pattern inserted by executing the mask data generating program 401. The pattern data 402, the mask data 408, and the deformed pattern data 411 include information sets such as position, size, shape, transmittance, and phase of the main pattern and the auxiliary pattern. The pattern data 4〇2, the mask data 40 8 and the deformed pattern data 411 also include information sets such as transmittance and phase of the (background) region where the main pattern and the auxiliary pattern are not present. The input unit 50 includes: a keyboard, a mouse, and the like. The user can input the input information set such as the mask data generation program 401 by inputting -15-200931290 unit 50. The media interface includes, for example, a floppy disc driver, a CD-ROM driver, a USB interface, and the like, and can be connected to the storage medium 70. The storage medium 70 includes, for example, a floppy disk, a CD-ROM, a USB memory, etc., and provides a mask data generating program 401 and other programs executed by the processing device 1. 0 Next, a flow of generating a mask data by the control unit 20 of the processing device 1 executing a mask data generating program will be described with reference to FIG. The control unit 20 calculates an approximate aerial image (ie, an aerial image of the target image) according to an information set (pattern data, effective light source information, NA information, lambda information, aberration information, and photoresist information) in step S102'. . Please note that the input information set (pattern data, effective light source information, Α information, λ information, aberration information, and photoresist information) is input by the user via the input unit 50 and stored in the storage unit 40. There are two reasons why φ calculates an approximate aerial image in step s 1 02 instead of calculating a precise aerial image. First, the calculation of an approximate aerial image is much shorter than the time taken to calculate a precise aerial image; second, the approximate aerial image enhancement pattern coherency' thus clearly shows the light approximation. Various approximate aerial image calculation methods have been published, for example, those published in Patent Reference 1, and approximate aerial images can be calculated by interferogram deformation. In this case, a singular value decomposition is performed on the TCC (transmission cross coefficient). Let λ; be the ith eigenvalue, and d>i(f,g) be the ith eigenfunction -16- 200931290 (eigenfunction). Note that (f, g) is the coordinate on the pupil plane of the projection optics; TCC indicates the coherence of the effective source (the degree of homology depending on the distance of the mask surface). According to Patent Reference 1, the dry graph e (x, y) is the sum of several eigenfunctions, expressed as follows: N, e(x, y) = Σ ΤλΓρφ^ί, g)] (1) FT is a Fourier transform: NT is usually 1. In Patent Reference 1, each mask pattern element is replaced by a point and a line, and a convolution calculus is performed with the interferogram to obtain an interferogram of the entire mask; therefore, the interferogram e (x, y) is presented. Simple coherence. However, the interferogram e ( x, y ) does not count the mask's pattern (such as the outline). When using an interferogram to calculate an approximate aerial image, the interferogram e'(x, y) in which the mask pattern is included must be obtained. To achieve this, a singular value © decomposition is performed on the TCC. Let λί be the ith eigenvalue * Φ s ( f, g ) be the ith eigenfunction, and a(f, g) be the diffracted light distributed over the mask pattern. Then use the following formula to find the interferogram e'(x, y) that is included in the mask pattern: Ν' _ e'(X, y) = HFT[a(f, g)CE>i(f, g) (2) i=l Use the interferogram e' ( x, y ) shown in relation (2) to generate an approximate aerial image. -17- 200931290 The following is an approximate aerial image calculation method that does not make a singular (intrinsic) decomposition of TCC. The mask pattern and wafer pattern in the semiconductor exposure device have a partially coherent image relationship, and the portion of the coherent image requires effective light source information to determine the homology of the mask surface. Coherence here means the degree of homology depending on the distance on the surface of the mask. The homology of the effective source is incorporated into the aforementioned TCC. The TCC is generally defined by the pupil plane of the projection optical system and represents the region where the effective source, the pupil function of the Φ optical system, and the complex conjugate of the pupil function of the projection optical system overlap each other. TCC is expressed as a four-dimensional function as follows: TCC(f', g,,f" , g")= JJs(f, g)P(f + f' , g + g- )p*(f + f" , g + g" )dfdg .-.(3) where (f, g) is the coordinate on the pupil plane, s(f, g) is a function describing the effective light source, and P(f, g) is the pupil function. Please note that * indicates a conjugate complex G number, and the integral range is from -〇〇 to 〇〇. The aberration of the projection optical system, the polarization of the illumination optical system, the photoresist information, and the like can be incorporated into the pupil function P(f, g). Within this specification, the term pupil function often contains the required polarization, aberrations, and photoresist. Use TCC to describe the function I(x,y) of the aerial image, and the four points of the TCC are as follows: y) = JJJJ TCC(f', g', f" , g" )a(f, g)a*(f ' , g') (4) x exp{- ί2π[(ί'-f" )x + (g'-g" )y]}df' dg' df"dg" -18- 200931290 where a(f,g To illustrate the Fourier transform function of the mask function, the function of the mask is a function of the spectral distribution (diffracted light distribution) on the mask. Please note that * indicates a conjugate complex number with a range of points from 00. For a detailed description of relation (4), please refer to M. Born and E. Wo If, "Principles of Optics", England, Cambridge University Press, 1 999, 7th (extend) edition, pages 554-632.

假設關係式(4)係直接用電腦計算,此時,使用不 連續變數,關係式(4 )可改寫爲: y) = Σ a(f,' 5' ) βχρ[- ί2π(ί' x + g' y)] ...(5) f.,g. x F'1[wf,gI(f,1, g" )a*(f" , gH )] 其中F·1表示反傅立葉轉換。針對固定座標(f',g|), Wf,,g,(f",g")定義如下:Assume that relation (4) is calculated directly by computer. In this case, using discontinuous variables, relation (4) can be rewritten as: y) = Σ a(f,' 5' ) βχρ[- ί2π(ί' x + g' y)] ... (5) f., g. x F'1[wf,gI(f,1, g")a*(f" , gH )] where F·1 represents the inverse Fourier transform. For fixed coordinates (f', g|), Wf,, g, (f", g") are defined as follows:

Wf,,g. = TCC(f、g’,f”,g”) ...(6)Wf,,g. = TCC(f,g',f",g") ...(6)

由於此處(f',g')爲固定,Wf.,g.(f",g")是二維函數且 將被當做此規格內之二維傳輸交叉係數(TCC )。在電腦 計算內,每當執行加法循環(addition loop)而有(f’,g· )改變時,就重新計算二維TCCSince (f', g') is fixed here, Wf., g.(f", g") is a two-dimensional function and will be treated as a two-dimensional transmission crossover coefficient (TCC) within this specification. In computer calculations, the two-dimensional TCC is recalculated whenever an addition loop is performed and (f', g· ) is changed.

Wr,g’(f",g")。在關係式(5 )內,不須如關係式(3 ) 以四維函數描述TCC,只須計算雙循環。因此’藉使用二 維傳輸交叉係數’可縮短計算時間及減少計算量(防止電 腦記憶體之資料容量成長)。 關係式(5 )可重寫成: -19- 200931290 Ι(Χ, Υ) = Yf, gl(x, y) ... (7) Μ· 1’,8’(17)定義成:Wr,g’(f",g"). In relation (5), it is not necessary to describe the TCC as a four-dimensional function as in relation (3), and only two cycles are calculated. Therefore, 'by using the two-dimensional transmission cross coefficient' can shorten the calculation time and reduce the amount of calculation (to prevent the data capacity growth of the computer memory). The relation (5) can be rewritten as: -19- 200931290 Ι(Χ, Υ) = Yf, gl(x, y) ... (7) Μ· 1’,8’(17) is defined as:

Yf,,g,(x, y) = a(f·, g') exp[- ΐ2π(Γ x + g· y)】 x F_1k.,g.(f",g")a、f",g")] …(8 使用關係式(7 )之空中影像計算法將被稱爲空中影 像分解法’各座標(f’,g')所定義之Yf,,g,(x,y)將被稱爲 一函數,用以描述此說明書內之空中影像的一個元素(空 中影像元素)。 下面將詳細說明關係式(3 )與關係式(6 )之間的差 異。有效光源的中心假設在該光瞳座標系統的原點。TCC 被定義爲在一區域內的總和,該區域內移動投影光學系統 之光瞳函數P(f,g)座標(f’,g')所得之函數、移動函數 p(f,g)之共軛複數函數p*(f,g)座標(f”,g")所得之函數、 及描述有效光源之函數彼此重疊。p*(f,g)將經常被稱爲投 影光學系統之光瞳函數P(f,g)的共輒複數函數。 關係式(6)之Wr,g_(f",g")在p(f,g)被移動一指定量 (f',g')時定義。\\^^(丨",§")被定義成在有效光源與光瞳 函數彼此重疊區域,及有效光源與P*(f,g)被移動(f",g" )所得之函數彼此重疊之區域的總和。Yf,,g,(x, y) = a(f·, g') exp[- ΐ2π(Γ x + g· y)] x F_1k.,g.(f",g")a,f", g")] ...(8 The aerial imagery method using relation (7) will be called Yf, g, (x, y) defined by the coordinates (f', g') of the aerial image decomposition method It is called a function to describe an element (airborne image element) of the aerial image in this specification. The difference between relation (3) and relation (6) will be explained in detail below. The center of the effective light source is assumed to be The origin of the pupil coordinate system. The TCC is defined as the sum of the movements of the pupil system P(f, g) coordinates (f', g') in the region, and the movement The function of the conjugate complex function p*(f,g) of the function p(f,g) and the function describing the effective source overlap with each other. p*(f,g) will often be A conjugate complex function called the pupil function P(f, g) of the projection optical system. Wr, g_(f", g") of relation (6) is shifted by a specified amount in p(f, g) ( f', g') is defined. \\^^(丨",§") is defined as having Light source and the pupil function overlap each other regions, and the effective light source and P * (f, g) is moved (f ", g ") obtained from the sum function of the overlapping area with one another.

Yf_,g’(x,y)亦在P(f,g)被移動一指定量(f,,g|)時定義 。|^,(厂4”)與描述遮罩上之頻譜振幅(繞射光振幅)之 函數的共軛複數函數a*(f",g")相乘,並將乘積作反傅立葉 -20- 200931290 轉換。反傅立葉轉換所得之函數,再乘以描述對應於光瞳 函數移位之斜入射效應(oblique incidence effect )的函 數exp[-i2n(f'x + g'y)],與位於座標(f',g')之繞射光振幅 a(f’,g’),得到 Yn(x,y)。描述遮罩上之繞射光振幅之函 數的共軛複數函數,於後面將以遮罩之繞射光分佈之共軛 複數函數稱之。 下面將說明描述斜入射效應的函數 0 exp[-i2n(f'x + g'y)]。令0爲在光軸與平面波行進方向之間 的角度,該平面波行進方向以exp[_i2n(f’x + g'y)]描述。然 後,由於sin2 0 = ( NA/又)(f,2,g'2),平面波行進方向 相對光軸傾斜,故此函數描述斜入射效應。 exp[-i2n(rx + g'y)]亦可解釋成一個函數,用以描述平面波 行進方向是一連接光瞳平面上之座標(f|,g·)與光軸與影 像平面交叉之點的一條線。由於在光瞳平面之座標(f’,g, )的繞射光振幅a(r,g·)爲常數,以在座標(f,,g,)的繞射 Q 光振幅a(f',g]相乘,相當於乘—個常數。 下面說明空中影像的近似。描述近似空中影像之函數 JappiXy)定義如下: M' 工app(X’ y) ® Σ Yf,,g,(X' y) · (9) ms*l * * * ' ' s円注思座標(f ’,g1 )共有m個組合,M1爲等於或小於 M之整數,如果 ,而可得到 Μ· = Μ ’近似空中影像對應於關係式(7 ) -21 - 200931290 完美的空中影像;如果M,=l,近似空中影像爲Yf),Q(x,y) ,如下面的關係式: 1 Ι3ΡΡ(χ/ y) « Yf.,g.(X/ y) =, g" )a*(f" , g" )] ...(10) —y〇,〇(x,y) 其中a(0,0)爲常數,爲描述有效光源之函數與 © 光瞳平面之共軛複數函數之間的捲積積分(convolution integral )。傅立葉轉換與反傅立葉轉換經常交換運用, 因此’把描述有效光源之函數與光瞳函數或其共軛複數函 數之間的捲積積分,乘以繞射光分佈或其共軛複數函數, 所得之積再予以傅立葉轉換或反傅立葉轉換,得到 Y〇,〇(x,y)。 在此方式內’使用關係式(9)或關係式(10),假 設整數Μ 1等於或小於M,近似空中影像以將一或二或數 個空中影像元素Yf’,g,(X,y)相加所得的函數定義之。下面 的實施例使用假設關係式(9)內M'=l之空中影像元素 Yf’’g,(x,y)(關係式(ίο )),以計算近似空中影像;但 亦可用關係式(2 )計算近似空中影像。 下面將詳細說明近似空中影像的物理意義。在同調成 像中’可決定點影像分佈函數(描述點影像之強度分佈的 函數)°可在點影像分佈函數設定一正位置作爲開放部分 ,及設定一負位置作爲光屏蔽部分(或相位爲18〇。之開放 部分)’藉以製造佛氏透鏡(Fresnei iens)。如果使用 -22- 200931290 此製造的佛氏透鏡當作遮罩,做同調照射,可藉 被隔離之接觸孔。 佛氏透鏡依據點影像分佈函數之同調照射定 是’點影像分佈函數不能在部分同調照射內計算 爲在影像平面上之振幅無法在部分同調成像中計 ’在影像平面上之振幅在本徵値分解法內近似之 但是,前述使用二維傳輸交叉係數之計算法 0 分解法的物理意義不同。首先,點影像分佈函數 應特性(調變轉換函數)之傅立葉轉換表示;同 頻率響應特性用光瞳函數與有效光源(即光瞳函 之間的捲積積分表示;非同調照射之頻率響應特 之光瞳函數自相關(autocorrelation)表示。假 備執行同調性σ = 1之非同調照射,非同調照射 應特性以光瞳函數之有效光源表示。 有鑑於此,部分同調照射之頻率響應特性以 〇 與有效光源之間的捲積積分近似之;換言之,以 W0,Q(f",g")近似頻率響應特性。只需將WG,Q(f”,, 葉轉換,就可得到部分同調照射的點影像分佈函 如此計算所得之點影像分佈函數,決定遮罩之開 光屏蔽部分,則可藉與佛氏透鏡相同效果之曝光 隔離之接觸孔。 只須計算點影像分佈函數與遮罩函數之間的 ,及依據所得結果決定遮罩圖型,就可改善任意 的影像效果。依據關係式(1 0 ),將繞射光分佈 曝光形成 義之。但 ,這是因 算。因此 〇 與本徵値 用頻率響 調照射之 數自身) 性爲熟知 設曝光設 之頻率響 光瞳函數 广)做傅立 數。依據 放部分及 ,形成被 捲積積分 遮罩圖型 與 -23- 200931290 w0,Q(f",g")的乘積作傅立葉轉換’就可得到Y〇,〇(x,y)。 繞射光分佈是遮覃函數的傅立葉轉換’ We,Q(f",g")是點影 像分佈函數的傅立葉轉換。因此’ 是依據指定公 式,在遮罩函數與點影像分佈函數之間的捲積積分。 依據前述說明’求就相當於計算點影像分佈 函數與部份同調成像之遮罩函數的捲積積分。 如前面所述,w〇,〇(f",g")近似部份同調照射內之頻率 0 響應特性。除WG,G(f",g")之外之W f.,g,(f",g")可以是在部 份同調照射內,近似該頻率響應特性所省略的未成形頻率 響應特性。除Y〇,〇(x,y)之外之^4,(17)則爲在計算點影 像分佈函數與部分同調照射之遮罩圖型函數的捲積積分時 所省略的成分。因此,當關係式(9)內之M'被設定爲大 於1時,近似準確度會改善。 傳統干涉圖可藉解析四維TCC之本徵値取得,故空 中影像計算需要將本徵函數之絕對値平方,並將結果相加 Q 。但是,如關係式(7 )所示之以空中影像解析法計算空 中影像,只須把空中影像元素相加,不須將空中影像元素 之絕對値平方。空中影像解析法及奇異値(本徵値)解析 法使用不同單位的物理量,因此有完全不同的特色。 在步驟S104內,自步驟S102所計算近之似空中影像 抽出二維影像;精確的說,藉設定一參考片値(I。),抽 出近似空中影像之剖面s e c t i ο η )的二維影像。例如,如 果圖型資料爲透光圖型,自近似空中影像中,抽出強度値 等於或高於預定値(可以是任意設定的臨限値)的部分, -24- 200931290 作爲該二維影像。如果圖型資料爲光屏蔽 中影像中,抽出強度値等於或低於預定値 定的臨限値)的部分,作爲該二維影像。 在步驟S106,控制單元20比較在步 的二維影像與目標圖型,以判定二維影像 差異是否落入預設之容許値內。用來比較 圖型的參數(評量値)可以是線寬或圖^ 0 常態化影像對數斜率,Normalized Image 強度峰値。如果控制單元20在步驟S 1 06 目標圖型間之差異落於預設之容許値外, 決定會讓二維影像與目標圖型間之差異落 內的主圖型。 更精確的說,在步驟S108,控制單元 像,將主圖型之形狀變形而決定一新主圖 第一至第四實施例,將解釋在步驟S108 Q 細過程。 在步驟S 1 1 0,使用在步驟S 1 0 8中所 做爲圖型資料,控制單元20從使用者輸 訊、NA資訊、λ資訊、像差資訊、及光 似空中影像,然後程序回到步驟S 1 04。重 S 1 1 〇之程序作業,直到二維影像與目標 入預設之容許値內爲止。 如果控制單元20在步驟S 1 06判定二 型間之差異落入預設之容許値內,就在步 圖型,自近似空 (可以是任意設 驟S104所抽出 與目標圖型間之 二維影像與目標 组長度,NILS ( Log Slop),或 判定二維影像與 在步驟S108就 入預設之容許値 :20依據二維影 型。後面說明之 決定主圖型的詳 變形之該主圖型 入之有效光源資 阻資訊計算該近 :複步驟S 1 0 4至 圖型間之差異落 維影像與目標圖 驟S 112內決定 -25- 200931290 輔助圖型。首先,由在步驟S110所計算的近似空 (即該已變形主圖型之近似空中影像)中,抽出將 圖型插入的位置(輔助圖型插入位置)。輔助圖型 置爲一峰部分,該峰部分係在光強度爲峰値(本地 或本地最小値)既不超過參考片値(I。)又不重疊 型之區域內(即在被目標圖型投影之區域以外的區 請注意,真正的輔助圖型插入位置是遮罩上與峰部 Q 之部分。然後依據光強度之該峰部分決定輔助圖型 ,及將輔助圖型插入該峰部分。在後面說明之第一 實施例,將解釋在步驟S 1 1 2決定輔助圖型的詳細纪 在步驟S114中,控制單元20產生包含在步尾 中決定之主圖型及與在步驟S112中所決定者(插 相同之輔助圖型的資料,作爲遮罩資料。 在此方式中,該遮罩資料產生程式(遮罩資料 )執行該空中影像計算步驟、二維影像抽取步驟、 φ 決定步驟、峰部分抽取步驟、輔助圖型決定步驟、 步驟。 請注意’輔助圖型插入經常會被主圖型改變該 效應。當此現象發生時,只須於產生遮罩資料時把 與輔助圖型間之該光近似效應考慮進去,如圖3所 參考圖3’在步驟S116中,控制單元20把 S108中決定之主圖型與在步驟S112中決定之輔助 加所得之圖型’當做圖型資料使用,藉以計算該近 影像。輸入資訊集除了該圖型資料以外,還有使用 中影像 把輔助 插入位 最大値 該主圖 域)。 分對應 之大小 至第四 !程。 聚 S 1 08 入者) 產生法 主圖型 及產生 光近似 主圖型 不 。 在步驟 圖型相 似空中 者輸入 -26- 200931290 之效光源資訊、να資訊、λ資訊、像差資訊、及光阻資 訊。 在步驟S118中,控制單元20自步驟S116中所計算 之近似空中影像抽取二維影像。 在步驟S120中,控制單元20比較在步驟S118中抽 取之二維影像與目標圖型,以判定該二維影像與目標圖型 間之差是否落入預設容許値之內。 Q 如果控制單元2 0在步驟S 1 2 0判定二維影像與目標圖 型間之差異落於該容許値外,處理就回到步驟s 1 。然 後,控制單元20就決定會讓該二維影像與目標圖型間之 差異落入預設容許値內的主圖型。 如果控制單元20在步驟S120中判定該二維影像與目 標圖型間之差異落入該容許値內,處理就前進至步驟 S114。在步驟S114中,控制單元20把在步驟S108中所 決定之主圖型及與在步驟S112中所決定者相同之輔助圖 〇 型相加,產生一圖型,當做圖型資料。 在圖3所示之流程內,首先執行對應於步驟S102之 第一空中影像計算步驟,對應於步驟S1 04之第一二維影 像抽出步驟,及對應於步驟S108之第一主圖型決定步驟 。其次執行對應於步驟S112之第一峰部分抽取步驟及第 一輔助圖型決定步驟,對應於步驟S116之第二空中影像 計算步驟,對應於步驟S118之第二二維影像抽出步驟。 最後執行對應於步驟S 1 0 8之第二主圖型決定步驟,對應 於步驟S112之第二峰部分抽取步驟及第二輔助圖型決定 -27- 200931290 步驟,及對應於步驟s 1 1 4之產生步驟。 藉使用圖2及3所示之程序所產生之遮 遮罩來做曝光處理,並將所產生之資料輸至 ,可在基板上形成高精準度的微圖型。換言 罩資料有可形成高精準度之微圖型的可能性 罩圖型可包含除前述遮罩資料產生程式所產 之圖型。 0 在下面第一至第四實施例中,將詳細說 資料產生程式產生遮罩資料的程序,且解釋 的遮罩資料。請注意λ是曝光之光的波長, 射光學系統之影像平面之側的數値孔徑,σ 學系統導引至遮罩表面之照射光的數値孔徑 系統之標的平面(object plane )側之數値孔 由於該曝光之光的波長λ及曝光設備內 統的數値孔徑可設定各種値,故宜將遮罩圖 ❾ /ΝΑ)常態化。例如,若又=248nm,ΝΑ = < 10 Onm之圖型,經前述方法常態化後爲0.29 態化稱作k 1轉換。 遮罩表面上之圖型大小因投影光學系統 晶圓表面上之圖型大小不同。爲了能簡單說 施例內之投影光學系統的放大,乘以遮罩表 小,將遮罩表面上之圖型大小與在晶圓表面 間的比値設定爲1:1。藉此設定,在遮罩表 及在晶圓表面上之座標系統的比値亦成爲1: 罩資料,製作 EB繪圖設備 之,產生的遮 。該產生之遮 生的圖型以外 明藉執行遮罩 此程序所產生 NA是在該投 是在自照射光 與該投影光學 徑之比。 之投影光學系 型大小以(λ ).7 3,大小爲 。後面將此常 的放大而與在 明,藉後面實 面上之圖型大 上之圖型大小 面之座標系統 1 ° -28- 200931290 第一實施例 第一實施例假設之狀況爲,曝光設備使用之投影光學 系統之NA爲0.73 (對應於NA資訊)及曝光之光的波長 爲248nm (對應於;I資訊)。此外,投影光學系統假設沒 有像差(對應於像差資訊),且不考慮在晶圓上施加光阻 (對應於光阻資訊)。照射光未予以偏極化。 0 目標圖型(圖型資料)係如圖4所示之被隔離的線圖 型,線寬爲120nm,線長爲2400nm。在圖4中,被隔離 的線圖型爲光屏蔽圖型(即透光度爲零),且在被隔離的 線圖型不存在之區域(背景)的透光度爲1。在整個區域 內的相位均爲零。圖4之圖表展示依據第一實施例之目標 圖型(圖型資料)。 有效光源使用如圖5所示之四極照射(對應於有效光 源資訊)。在圖5中,白色之圓圏線指示σ=1,而四個白 Φ 區指示光照射部分。請注意,圖5之圖表展示依據第一實 施例之有效光源。圖5只是有效光源之例子,本發明並非 特別限制於此。 圖6Α所示之近似空中影像係由該目標圖型及前述輸 入資訊集(有效光源資訊、ΝΑ資訊、λ資訊、像差資訊 、及光阻資訊),使用關係式(10)計算。在圖6Α中, 目標圖型以重疊於近似空中影像的實線表示。 在圖6Α所示之近似空中影像中,被隔離的線圖型似 有圓弧形邊緣,且目標圖型之光屏蔽部分,若與目標圖型 -29- 200931290 相比,是短的。 圖6 B所示之近似空中影像係藉執行前述 生程序40 1,將主圖型變形而計算。在圖6B 空中影像中,目標圖型內部之強度分佈,以重 之實線指示,且爲近乎均勻的。 圖7A展示,沿者參考片値(I。)〇·95 I。】 割該圖6 Α之近似空中影像所得之二維影像( 0 。同樣的,圖7B展示,沿者參考片値(U) 1.05 I。切割該圖6B之近似空中影像所得之二 面影像)。在圖7A及7B中,該目標圖型以 維影像上之實線指示。該參考片値(I。)在後 限値。 與目標圖型之差異(例如,形狀改變、傾 度値或強度峰値、及對數斜率)可由圖7A及 近似空中影像的二維影像計算出來。主圖型可 〇 決定(變形)。 下面將詳細解釋主圖型之決定(變形)。 8A所示’把目標圖型及圖型資料(開始時之 目標圖型相同)切割,並用相同的切割數切割 目標圖型及二維影像的切割元素彼此比較,並 差異將圖型資料變形(校正)。請注意目標圖 。圖型資料可因消除不必要元素或增加新元素 當圖型資料之切割元素被依據目標圖型與 之差異變形時,就得到圖8 B所示之圖型資料 遮罩資料產 所示之近似 疊於其上面 泛1 .05 I。切 剖面影像) 0.95 1〇 及 維影像(剖 重疊於該二 面亦稱爲臨 斜程度、強 7B所示之 依據該差異 首先,如圖 圖型資料與 二維影像。 依據二者之 型並未變形 而切割。 二維影像間 。然後用該 -30- 200931290 變形之圖型資料作爲新圖型資料,計算近似空中影像。重 覆相同之程序,直到目標圖型與二維影像之間的差異落於 容許値之內止。如前面所述,圖6B所示之近似空中影像 是由圖8B所示之圖型資料計算來的。 其次插入輔助圖型。自圖6B所示之近似空中影像中 抽出,在不重疊目標圖型之區域(即在被該主圖型投影之 區域以外之區域)內,其光強度爲峰値的峰部分。如果目 Q 標圖型爲光屏蔽圖型,就計算在其光強度等於或高於臨限 値之區域內’且比背景暗的峰部分,並將正方形的輔助圖 型插入此峰部分。當使用線圖型時,只須藉一維偵測就可 將該峰部分抽出。在此情況下,只須至少沿著與該線圖型 縱方向垂直的方向,及與該線圖型縱方向平行的方向偵測 ’就可抽出該峰部分。插入該輔助圖型之位置可爲在比該 背景更暗之區域內之峰部分的重心位置。但是,如果使用 某一大小的線圖型,主圖型之強度會影響遠離該近似空中 〇 影像中之主圖型的位置。然後,即使在主圖型不覆蓋之區 域’由於干涉之故,該峰部分也覆蓋成一強度尖峰,以致 峰部分之偵測變困難。在此情況下,計算峰位置(部分) 的方法也可藉計算近似空中影像之光強度分佈的二次微分 値(正値或負値)(如沿著兩正交軸方向的二次微分總和 (拉普拉斯算子))。圖38展示該強度分布的二次微分 (拉普拉斯算子)地圖。沿著特定方向之一次微分(梯度 ’ gradient)會有雜訊,且很難處理。因此,形狀複雜及 某種大小的線圖型’用強度分布之二次微分計算法來計算 -31 - 200931290 峰部分比較有效。 輔助圖型之一側的線寬尺寸,須小到不 確的說,當使用光屏蔽圖型時,一側的尺寸 背景之光強度與該主圖型之光強度之最小値 背景之光強度與不重疊於該目標圖型之區域 値間之差異的比値。在使用線圖型時’輔助 尺寸約爲其寬方向之線圖型尺寸的1/3至 u 序及主圖型之大小而定。在使用透光圖型時 通常大於該等値。在第一實施例中,輔助圖 —側的尺寸爲40nm。 當輔助圖型如前述般插入該被變形主圖 如圖9所示之圖型資料。如此產生圖9所示 作爲遮罩資料。要確認(評量)自該遮罩資 是否在晶圓表面形成所要的空中影像。 遮罩資料評量非藉計算近似空中影像, 〇 算空中影像。圖10展示之該空中影像之二 圖9所示之圖型資料(遮罩資料)精確計算 10,該二維影像爲均勻的,且其長度未被縮 圖型。 爲了比較,計算目標圖型本身,及將典 分散之條型)插入目標圖型本身的空中影像 計算之空中影像如圖11 A本身所示,將寬g 圖型(分散之條型)插入目標圖型之半間 12 0nxn )處所得的圖型如圖12A所示。圖1 致被分解。精 計算係依據該 間的差異及該 之光強度最小 圖型之一側的 1/2,依曝光程 ,一側的尺寸 型在寬方向之 型時,就得到 之圖型資料, 料製成的遮罩 而是藉精確計 維影像,係自 所得。參考圖 短,接近該主 型輔助圖型( .。對目標圖型 f 40nm之輔助 距(pitch )( 1B展示的二維 -32- 200931290 影像’來自圖11A所示之目標圖型本身計算之空中影像 。圖12B展示的二維影像’來自圖12A所示將分散之條 型插入目標圖型所得之圖型之空中影像。 對自圖8B、9、11A'及12八所示之圖型資料計算所 得之空中影像的二維影像’做量化評量。更精確的說,藉 改變圖型資料之失焦計算空中影像’故而計算線寬。在此 實施例內’假設各圖內以橫軸爲X-軸,縱軸爲y-軸,計 算線寬之位置在二維影像之中央(x = 〇,y = 0)、距離中央 在 y=1200的 70%處(x = 〇,y=84〇)、及距離中央在 y=1200 的 90% 處(x=〇, y=1080)。 圖13展示之線寬’由依據圖8B所示之圖型資料之空 中影像之二維影像計算所得。圖14展示之線寬,由依據 圖9所示之圖型資料之空中影像之二維影像計算所得。圖 15展示之線寬’由依據圖11A所示之圖型資料之空中影 像之二維影像計算所得。圖16展示之線寬,由依據圖 12A所示之圖型資料之空中影像之二維影像計算所得。在 圖13至16中,橫軸表示失焦(Vm),縱軸則表示線寬 CD ( nm)。請注意尺寸的單位爲nm。 參考圖15,在依據圖〗1A所示之目標圖型之空中影 像的二維影像中,距離中央9 0 %之位置的線寬很小,相 對聚焦之線寬改變很大。 參考圖16,依據圖12A所示將分散之條型插入目標 圖型所得之圖型之空中影像的二維影像中’相對聚焦之線 寬改變比較溫和,但在距離中央70%及90%位置的線寬 -33- 200931290 變化較大。 參考圖13,在依據圖8B所示之被變形主 空中影像之—維影像中,在距離中央70%及 線寬變化較小。 參考圖14’在依據圖9所示之將輔助圖 形主圖型資料所得之圖型之空中影像的二維影 離中央70%及90%位置的線寬變化最小,且 φ 線寬改變較溫和。 在此方式中,前述遮罩資料產生程式401 罩資料(圖型資料)的影像績效,優於藉加入 術所產生之分散條型而得到的遮罩資料。因此 準度的隔離線圖型。 輔助圖型的大小,可依據峰部分的光強度 大小)改變’而非令其維持不變。更精確的影 第i個輔助圖型之一側的長度,而a。爲參考 Q 兩種改變第i個輔助圖型之一側的長度ai的 17所示。請注意,圖17是解釋改變輔助圖型 法的示意圖。 第一種方法依據峰部分之光強度之比例, 輔助圖型之一側的長度ai,如下面的式子所示 a± = a0 X 7ΪΓ : 針對透光圖型 Si = a〇 X - Ιχ : 針對光屏蔽圖型 圖型資料之 9 0 %位置的 型插入被變 像中,在距 相對聚焦之 所產生之遮 依據習知技 可形成高精 (該峰値的 ί,令ai爲 尺寸,可有 方法,如圖 之大小之方 改變第i個 -34- …(11) 200931290 其中Ii是在第i個輔助圖型之位置的光強度値,而Iback 是該背景之透光率。 圖1 8 A展示之圖型資料係圖9所示之圖型資料(遮 罩資料)中的輔助圖型大小經第一方法變更者。 第二種方法依據峰部分之光強度之反比,改變第i個 輔助圖型之一側的長度ai,如下面的式子所示: ai = X >/ϊ7ϊ7 : 針對透光圓型 ❹ __ ai = X λ/1 /(Iback —工i): 針對光屏蔽圖型 ...(12) 在第二種方法中,先決定上限長度,於ai > a一limit 時,再設定 ai 圖18B展示之圖型資料係圖9所示之圖型資料(遮罩 資料)中的輔助圖型大小經第二方法變更者。 〇 在第一種方法中’插入輔助圖型後之近似空中影像分 佈與插入輔助圖型之前的改變不顯著。因此,真正因有插 入輔助圖型’對無插入輔助圖型的改變不顯著,且影像績 效的改變(如聚焦深度之增加)小。 在第二種方法中’插入輔助圖型後之近似空中影像分 佈與插入輔助圖型之前的改變顯著。因此,第二種方法有 助於改變近似空中影像分佈,故適用於任意操作近似空中 影像。 例如’第二種方法在同調性低之位置插入較大的輔助 -35- 200931290 圖型,可增加對主圖型的影響。換言之,可藉在同調性低 之位置插入較大的輔助圖型來加強同調性。也可能加強影 像績效的改變,例如增加聚焦的深度。 即使在同調性低之位置插入較大的輔助圖型,只要決 定低於臨限,輔助圖型就無法分解的上限大小,就永遠不 會不當分解。事實上,比其低,輔助圖型就永遠無法分解 的上限大小依輔助圖型插入位置的近似空中影像強度而定 Φ 。因此,各輔助圖型之大小可依據其插入位置之該強度計 算。請注意圖型形狀與未插入輔助圖型時相比,確實改變 顯著。若圖型形狀或其同類者被過度校正,可再次校正, 第三實施例將說明之。 第二實施例 第二實施例假設狀況,曝光設備使用之投影光學系統 之NA爲0.75 (對應於NA資訊),而曝光的光之波長爲 Q 193nm (對應於又資訊)。此外,投影光學系統假設無像 差(對應於像差資訊),且不考慮加在晶圓上的光阻(對 應於光阻資訊)。照射光未被偏極化。 目標圖型(圖型資料)爲如圖19所示之接觸孔圖型 ,寬度爲120nm,且以100nm(kl轉換値=0.39)之半間 距排列成陣列。在圖1 9中,接觸孔圖型爲透光圖型(透 光率爲1),且無接觸孔圖型之區域(背景)的透光率爲 零。在整個區域內之相位爲零。圖19之圖表展示依據實 施例二的目標圖型(圖型資料)。 -36- 200931290 使用四極照射之有效光源(對應於有效光源資訊)如 圖20所示。在圖20中,白圓圈線指示σ=1,四個白區指 示光照射部分。請注意圖20之圖表展示依據實施例二的 有效光源。 圖21Α所示之近似空中影像,係由該目標圖型及前 述資訊集(有效光源資訊、ΝΑ資訊、λ資訊、像差資訊 、及光阻資訊)以關係式(10)計算之。在圖21Α中, 該目標圖型以重疊於近似空中影像上的實線指示。 在圖2 1 Α所示之近似空中影像內,各接觸孔圖型的 光強度峰値不同。 圖2 1 B所示之近似空中影像藉執行前述遮罩資料產生 程式40 1,將主圖型變形以計算之。在圖2 1 B所示之近似 空中影像內,各接觸孔圖型的光強度峰値近乎一致。 下面將詳細解釋主圖型之決定(變形)。雖然因接觸 孔圖型之形狀不複雜,只有改變主圖型之大小與位置而未 切割之,亦可以如實施例——般切割目標圖型而決定(變 形)主圖型。 圖型資料之變形(校正)係依據目標圖型與該近似空 中影像之二維影像間之差異。請注意該目標圖型未被變形 。然後把變形之圖型資料當作新圖型資料,計算該近似空 中影像。一再重複該相同程序,直到該目標圖型與該二維 影像間之差異落於該容許値內止。圖2 1 B所示之近似空中 影像可由如此得到的圖型資料計算之。 並且,自圖21B所示之該近似空中影像之一維影像中 -37- 200931290 ’抽出其光強度在不重疊目標圖型之區域(即主圖型投影 區域以外之區域)爲峰値的峰部分。如果各目標圖型是透 光圖型’就計算在其光強度等於或低於該臨限値且較背景 更亮之區域的峰部分,且將一正方形輔助圖型插入此峰部 分。在使用接觸孔圖型時,只須藉二維偵測將該峰部分抽 出。該輔助圖型插入之位置可以是在比背景更亮之區域內 之該峰部分的重心位置。即使在使用接觸孔圖型時,藉計 0 算該近似空中影像之該光強度分佈的二次微分(例如拉普 拉斯算子)値,就可容易算出該峰位置(部分)。圖39 展示該強度分佈之二次微分(拉普拉斯算子)地圖。並且 ,即使在使用某種大小的接觸孔圖型時,主圖型之強度對 近似空中影像中之遠離主圖型位置有影響。然後,該峰部 分會重疊到即使在不重疊該主圖型之區域內卻因干涉造成 的強度尖峰上,所以峰部分之偵測變得困難。 該輔助圖型之一側的尺寸的線寬需小到不會被分解。 φ 更精確的說,在使用透光圖型時,一側之尺寸的計算係依 據該主圖型光強度之最大値與不重疊目標圖型之區域之光 強度的最大値間的比値計算之。在使用接觸孔圖型時,輔 助圖型之一側的尺寸約爲該接觸孔圖型之線寬的60%至 80%,依曝光程序及主圖型之大小而定。在第二實施例內 ,輔助圖型之一側的尺寸爲75nm。 在前述輔助圖型插入被變形之主圖型時,可得到如圖 22所示之圖型資料。如圖22所示之圖型資料就如此產生 作爲遮罩資料。確認(評量)自該遮罩資料製造之遮罩是 -38-Yf_,g'(x,y) is also defined when P(f,g) is shifted by a specified amount (f,,g|). |^, (factor 4) is multiplied by a conjugate complex function a*(f",g") that describes the spectral amplitude (diffractive light amplitude) on the mask, and the product is inverse FT--20- 200931290 Conversion. The function obtained by inverse Fourier transform, multiplied by a function exp[-i2n(f'x + g'y)] describing the oblique incidence effect corresponding to the displacement of the pupil function, and at coordinates ( f', g') diffracted light amplitude a(f', g'), yielding Yn(x, y). A conjugate complex function describing the amplitude of the diffracted light on the mask, which will be masked later The conjugate complex function of the diffracted light distribution is called. The function 0 exp[-i2n(f'x + g'y)] describing the oblique incidence effect will be explained below. Let 0 be the angle between the optical axis and the traveling direction of the plane wave. The plane wave traveling direction is described by exp[_i2n(f'x + g'y)]. Then, since sin2 0 = (NA/又)(f, 2, g'2), the plane wave traveling direction is inclined with respect to the optical axis, Therefore, the function describes the oblique incidence effect. exp[-i2n(rx + g'y)] can also be interpreted as a function to describe the plane wave traveling direction is a coordinate on the plane connecting the pupils. f|, g·) a line connecting the point where the optical axis intersects the image plane. Since the diffracted light amplitude a(r, g·) at the coordinates of the pupil plane (f', g, ) is constant, at coordinates The diffracted Q-light amplitude a(f',g] of (f,,g,) is multiplied by a multiplication-constant. The following is an approximation of the aerial image. The function describing the approximate aerial image, JappiXy, is defined as follows: M' Worker app(X' y) ® Σ Yf,,g,(X' y) · (9) ms*l * * * ' ' s円The coordinates (f ',g1 ) have a total of m combinations, M1 is equal to Or less than the integer of M, if, can get Μ · = Μ 'Approximate aerial image corresponds to the relationship (7) -21 - 200931290 perfect aerial image; if M, = l, approximate aerial image is Yf), Q ( x,y) , as the following relation: 1 Ι3ΡΡ(χ/ y) « Yf.,g.(X/ y) =, g")a*(f" , g" )] ...(10) —y〇,〇(x,y) where a(0,0) is a constant, which is the convolution integral between the function of the effective source and the conjugate complex function of the © pupil plane. Fourier transform and Anti-Fourier transforms are often exchanged and used, so 'describe there The convolution integral between the function of the light source and the pupil function or its conjugate complex function, multiplied by the diffracted light distribution or its conjugate complex function, and the resulting product is then subjected to Fourier transform or inverse Fourier transform to obtain Y〇,〇( x, y). In this way, 'using relation (9) or relation (10), assuming that the integer Μ 1 is equal to or smaller than M, approximate the aerial image to have one or two or several aerial image elements Yf', g, (X, y Add the resulting function definition. The following embodiment uses the aerial image elements Yf''g, (x, y) (relationship (ίο)) of M'=l in the hypothetical relation (9) to calculate an approximate aerial image; 2) Calculate approximate aerial imagery. The physical meaning of the approximate aerial image will be described in detail below. In coherent imaging, the image distribution function (a function describing the intensity distribution of the point image) can be determined. A positive position can be set as the open part in the point image distribution function, and a negative position can be set as the light shielding part (or the phase is 18). 〇. The open part) 'to make a Fresnei iens. If the Foucault lens manufactured by -22-200931290 is used as a mask, the contact hole can be isolated by coherent illumination. The Froh lens is based on the homologous illumination of the point image distribution function. The 'point image distribution function cannot be calculated in the partial coherent illumination. The amplitude on the image plane cannot be counted in the partial coherence imaging. The amplitude on the image plane is intrinsic. In the decomposition method, the physical meaning of the above-mentioned calculation method using the two-dimensional transmission cross coefficient is different. First, the point image distribution function should be characterized by the Fourier transform representation of the characteristic (modulation conversion function); the same frequency response characteristic is represented by the pupil function and the effective source (ie, the convolution integral between the pupil functions; the frequency response of the non-coherent illumination The optical 瞳 function is represented by autocorrelation. It is assumed to perform non-coherent illumination with homology σ = 1. The non-coherent illumination should be characterized by the effective light source of the pupil function. In view of this, the frequency response characteristics of partial coherent illumination are The convolution integral between 〇 and the effective light source is approximated; in other words, the frequency response characteristic is approximated by W0, Q(f", g". By simply converting WG, Q(f", and leaves, partial homology is obtained. The point image distribution function of the illuminating point image distribution function determines the opening shielding portion of the mask, and the contact hole can be exposed by the same effect as the Foucault lens. It is only necessary to calculate the point image distribution function and the mask function. Between the other, and based on the results obtained to determine the mask pattern, you can improve the arbitrary image effect. According to the relationship (10), the diffracted light distribution exposure shape Chengyizhi. However, this is because of the calculation. Therefore, the number of the 响 〇 and the intrinsic frequency of the frequency 照射 自身 自身 自身 自身 自身 自身 自身 自身 自身 自身 自身 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅 傅The product of the convolution integral mask and the product of -23- 200931290 w0,Q(f",g") is used as the Fourier transform to obtain Y〇,〇(x,y). The diffracted light distribution is a concealing function. Fourier transform ' We,Q(f",g") is the Fourier transform of the point image distribution function. Therefore ' is the convolution integral between the mask function and the point image distribution function according to the specified formula. It is equivalent to calculating the convolution integral of the point image distribution function and the mask function of the partial coherent imaging. As mentioned above, w〇, 〇(f", g") approximates the frequency 0 response characteristic of the coherent illumination. W f., g, (f", g" other than WG, G(f", g") may be an unformed frequency response characteristic that is omitted in the partial coherent illumination, similar to the frequency response characteristic. In addition to Y〇, 〇(x,y) other than ^4, (17) is in the calculation The component that is omitted when the point image distribution function and the mask pattern function of the partial coherent illumination are convolved. Therefore, when M' in the relation (9) is set to be larger than 1, the approximate accuracy is improved. The interferogram can be obtained by analyzing the intrinsic 四 of the four-dimensional TCC, so the aerial image calculation needs to square the absolute eigenfunction of the eigenfunction and add the result to Q. However, as shown in relation (7), the aerial image analysis method is used. To calculate aerial images, you only need to add the aerial image elements without the absolute square of the aerial image elements. The aerial image analysis method and the singularity (intrinsic 解析) analytical method use different physical quantities of different units, and thus have completely different characteristics. In step S104, the two-dimensional image is extracted from the near-air image calculated in step S102; precisely, by setting a reference slice (I.), a two-dimensional image of the approximate aerial image profile s e c t i ο η is extracted. For example, if the pattern data is a light transmission pattern, from the approximate aerial image, the extracted intensity 値 is equal to or higher than the predetermined 値 (which may be an arbitrarily set threshold ,), -24- 200931290 as the two-dimensional image. If the pattern data is in the image in the light shield, the portion whose intensity 値 is equal to or lower than the predetermined threshold , is taken as the two-dimensional image. In step S106, the control unit 20 compares the two-dimensional image of the step and the target pattern to determine whether the difference of the two-dimensional image falls within the preset tolerance. The parameter used to compare the pattern (measurement 値) can be the line width or the graph ^ 0 normalized image log slope, Normalized Image intensity peak 値. If the difference between the target patterns of the control unit 20 in step S1 06 falls within the preset allowable range, the main pattern that determines the difference between the two-dimensional image and the target pattern is determined. More precisely, in step S108, the control unit deforms the shape of the main pattern to determine a new main picture. The first to fourth embodiments will explain the detailed process at step S108. In step S1 1 0, using the pattern data made in step S108, the control unit 20 transmits information from the user, NA information, lambda information, aberration information, and light-like aerial image, and then returns the program. Go to step S1 04. Repeat the program of S 1 1 〇 until the 2D image and the target enter the preset allowable range. If the control unit 20 determines in step S106 that the difference between the two types falls within the preset tolerance, it is in the step pattern, and is self-approximate (may be a two-dimensional extraction between the target pattern and the target pattern S104). The image and target group length, NILS (Log Slop), or the determination of the two-dimensional image and the preset allowable 値 in step S108: 20 according to the two-dimensional image. The main figure that determines the detailed deformation of the main pattern will be described later. The effective light source resistance information of the type is calculated: the difference between the step S 1 0 4 and the pattern is determined by the falling image and the target figure S 112 is determined by the -25- 200931290 auxiliary pattern. First, by the step S110 In the approximate space calculated (that is, the approximate aerial image of the deformed main pattern), the position where the pattern is inserted (the auxiliary pattern insertion position) is extracted. The auxiliary pattern is set as a peak portion, and the peak portion is at the light intensity. The peak (local or local minimum 値) is neither in the area of the reference slice (I.) nor the overlap type (ie, in the area outside the area projected by the target pattern, please note that the true auxiliary pattern insertion position is Part of the mask and peak Q Then, the auxiliary pattern is determined according to the peak portion of the light intensity, and the auxiliary pattern is inserted into the peak portion. In the first embodiment to be described later, the detailed step of determining the auxiliary pattern in step S1 1 2 will be explained. In S114, the control unit 20 generates the main pattern selected in the step and the data of the auxiliary pattern selected in step S112 (the same auxiliary pattern is inserted as the mask data. In this manner, the mask data The generation program (mask data) performs the aerial image calculation step, the two-dimensional image extraction step, the φ determination step, the peak portion extraction step, the auxiliary pattern determination step, and the step. Please note that the auxiliary pattern insertion is often performed by the main pattern. The effect is changed. When this phenomenon occurs, the light approximation effect between the auxiliary pattern and the auxiliary pattern is only taken into account when the mask data is generated, as shown in FIG. 3 with reference to FIG. 3', in step S116, the control unit 20 sets the S108. The main pattern determined in the middle and the pattern obtained by the auxiliary addition determined in step S112 are used as pattern data to calculate the near image. In addition to the pattern information, the input information set is In the image in use, the auxiliary insertion bit is maximized in the main image field. The corresponding size is equal to the fourth!. Poly S 1 08 Incoming) Generates the main pattern and produces the light approximation main pattern No. In the step pattern Similar airborne input -26- 200931290 effect light source information, να information, lambda information, aberration information, and photoresist information. In step S118, control unit 20 extracts a two-dimensional image from the approximate aerial image calculated in step S116. In step S120, the control unit 20 compares the two-dimensional image extracted with the target pattern in step S118 to determine whether the difference between the two-dimensional image and the target pattern falls within the preset tolerance. Q If the control unit 20 determines in step S120 that the difference between the two-dimensional image and the target pattern falls outside the allowable threshold, the process returns to step s1. Then, the control unit 20 determines the main pattern that will cause the difference between the two-dimensional image and the target pattern to fall within the preset tolerance. If the control unit 20 determines in step S120 that the difference between the two-dimensional image and the target pattern falls within the allowable frame, the process proceeds to step S114. In step S114, the control unit 20 adds the main pattern determined in step S108 and the auxiliary pattern type which is the same as the one determined in step S112, to generate a pattern as the pattern data. In the flow shown in FIG. 3, the first aerial image calculation step corresponding to step S102 is first performed, the first two-dimensional image extraction step corresponding to step S104, and the first main pattern determination step corresponding to step S108. . Next, the first peak portion extracting step and the first auxiliary pattern determining step corresponding to step S112 are performed, corresponding to the second aerial image calculating step of step S116, corresponding to the second two-dimensional image extracting step of step S118. Finally, a second main pattern determining step corresponding to step S1 0 8 is performed, corresponding to the second peak portion extracting step and the second auxiliary pattern determining step -27-200931290 of step S112, and corresponding to step s 1 1 4 The steps of production. By using the mask generated by the procedure shown in Figures 2 and 3 for exposure processing and outputting the generated data, a high-precision micro-pattern can be formed on the substrate. In other words, the cover data has the possibility of forming a high-precision micro-pattern. The cover pattern can include a pattern produced by the above-mentioned mask data generation program. In the following first to fourth embodiments, the data generating program will be described in detail as a program for masking data, and the mask data to be interpreted. Note that λ is the wavelength of the exposed light, the number of apertures on the side of the image plane of the optical system, and the number of the object plane side of the number of aperture systems that the σ system directs to the surface of the mask. Since the pupil can set various flaws due to the wavelength λ of the exposed light and the number of apertures of the exposure apparatus, it is preferable to normalize the mask pattern ΝΑ /ΝΑ. For example, if the pattern of = 248 nm, ΝΑ = < 10 Onm is normalized by the aforementioned method, it is 0.29 state called k 1 conversion. The size of the pattern on the surface of the mask varies depending on the size of the pattern on the surface of the projection optics. To make it easy to simply zoom in on the projection optics in the example, multiply the mask size to set the pattern size on the surface of the mask to 1:1 between the wafer surface. By this setting, the comparison between the mask table and the coordinate system on the wafer surface is also 1: mask data, and the EB plotting device is produced to produce the mask. In addition to the generated mask, the NA generated by the program is the ratio of the self-illuminated light to the projected optical path. The projection optical system has a size of (λ).7 3 and a size of . The coordinate system of the first embodiment of the first embodiment is an enlarged view of the first embodiment of the first embodiment. The NA of the projection optical system used is 0.73 (corresponding to NA information) and the wavelength of the exposed light is 248 nm (corresponding to; I information). In addition, the projection optical system assumes that there is no aberration (corresponding to aberration information), and does not consider applying a photoresist (corresponding to photoresist information) on the wafer. The illumination light is not polarized. 0 The target pattern (pattern data) is the isolated line pattern as shown in Figure 4, with a line width of 120 nm and a line length of 2400 nm. In Fig. 4, the isolated line pattern is a light-shielding pattern (i.e., the transmittance is zero), and the transmittance in the region where the isolated line pattern does not exist (background) has a transmittance of 1. The phase is zero throughout the entire area. The graph of Fig. 4 shows the target pattern (pattern data) according to the first embodiment. The effective source uses quadrupole illumination as shown in Figure 5 (corresponding to effective source information). In Fig. 5, the white circle line indicates σ = 1, and the four white Φ areas indicate the light irradiation portion. Note that the graph of Fig. 5 shows an effective light source according to the first embodiment. Fig. 5 is only an example of an effective light source, and the present invention is not particularly limited thereto. The approximate aerial image shown in Fig. 6 is calculated from the target pattern and the aforementioned input information set (effective light source information, ΝΑ information, λ information, aberration information, and photoresist information) using the relation (10). In Figure 6Α, the target pattern is represented by a solid line that overlaps the approximate aerial image. In the approximate aerial image shown in Fig. 6Α, the isolated line pattern appears to have a circular arc edge, and the light shielding portion of the target pattern is short compared to the target pattern -29-200931290. The approximate aerial image shown in Fig. 6B is calculated by performing the aforementioned process 40 1, deforming the main pattern. In the aerial image of Figure 6B, the intensity distribution inside the target pattern is indicated by the solid line and is nearly uniform. Fig. 7A shows that the edge reference sheet (I.) 〇 95 I. 】 Cut the two-dimensional image obtained from the approximate aerial image of Figure 6 (0. Similarly, Figure 7B shows the edge reference film (U) 1.05 I. The two-sided image obtained by cutting the approximate aerial image of Figure 6B) . In Figures 7A and 7B, the target pattern is indicated by a solid line on the dimensional image. The reference slice (I.) is limited to the latter. The difference from the target pattern (for example, shape change, tilt 强度 or intensity peak 値, and log slope) can be calculated from the 2D image of Figure 7A and the approximate aerial image. The main pattern can be determined (deformed). The decision (deformation) of the main pattern will be explained in detail below. 8A shows 'cutting the target pattern and the pattern data (the same target pattern at the beginning), and cutting the target pattern and the cutting elements of the 2D image with the same number of cuts, and the difference deforms the pattern data ( Correction). Please pay attention to the target map. The pattern data can be eliminated by eliminating unnecessary elements or adding new elements. When the cutting elements of the pattern data are deformed according to the target pattern, the approximate data shown in the pattern data mask shown in Fig. 8B is obtained. Stacked on top of it 1.05 I. Cut section image) 0.95 1〇 and dimension image (cross-section overlapped on the two sides, also known as the degree of tilt, strong 7B according to the difference first, as shown in the figure type data and two-dimensional image. According to the two types Cut without deformation. Between 2D images. Then use the -30-200931290 deformed pattern data as the new pattern data to calculate the approximate aerial image. Repeat the same procedure until the target pattern and the 2D image The difference falls within the allowable enthalpy. As mentioned earlier, the approximate aerial image shown in Fig. 6B is calculated from the pattern data shown in Fig. 8B. Next, the auxiliary pattern is inserted. Approximate aerial from Fig. 6B Extracted from the image, in the region where the target pattern is not overlapped (that is, in the region outside the region projected by the main pattern), the light intensity is the peak portion of the peak. If the target Q pattern is a light-shielding pattern , calculate the peak portion in the region where the light intensity is equal to or higher than the threshold 且 and is darker than the background, and insert the square auxiliary pattern into the peak portion. When using the line pattern, only one dimension is required. Detection can be the peak In this case, the peak portion can be extracted only by detecting at least in a direction perpendicular to the longitudinal direction of the line pattern and in a direction parallel to the longitudinal direction of the line pattern. Inserting the auxiliary pattern The position may be the position of the center of gravity of the peak portion in a region darker than the background. However, if a line pattern of a certain size is used, the intensity of the main pattern affects the main pattern away from the approximate aerial image. Then, even in the area where the main pattern is not covered, the peak portion is covered with an intensity spike due to interference, so that the detection of the peak portion becomes difficult. In this case, the method of calculating the peak position (partial) It is also possible to calculate the second derivative 値 (positive or negative 値) of the light intensity distribution of the approximate aerial image (such as the quadratic differential sum (Laplace operator) along the two orthogonal axes). Figure 38 shows The second derivative (Laplacian) map of the intensity distribution. A differential (gradient 'gradient) along a particular direction has noise and is difficult to process. Therefore, a complex shape and a certain size of the line graph Type 'strong' The second derivative of the distribution is calculated to calculate -31 - 200931290. The peak portion is more effective. The line width dimension on one side of the auxiliary pattern must be small to be inaccurate. When using the light shielding pattern, the size background of one side The ratio of the light intensity to the minimum light intensity of the main pattern and the difference between the light intensity of the background and the area that does not overlap the target pattern. When using the line pattern, the auxiliary size is about its width. The 1/3 to u order of the line pattern size and the size of the main pattern are usually larger than the 値 when using the light transmission pattern. In the first embodiment, the size of the auxiliary pattern side is 40 nm. When the auxiliary pattern is inserted as described above, the pattern data of the deformed main image as shown in Fig. 9 is generated. Thus, the mask data shown in Fig. 9 is generated. It is confirmed (evaluated) whether the mask material is on the wafer surface. Form the desired aerial image. Mask data evaluation does not calculate the approximate aerial image, and calculates the aerial image. Figure 2 shows the second image of the aerial image. The pattern data (mask data) shown in Figure 9 is accurately calculated 10, the two-dimensional image is uniform, and its length is not reduced. For comparison, the calculation of the target pattern itself, and the aerial image of the image pattern itself inserted into the target pattern itself is shown in Figure 11 A itself, and the wide g pattern (scattered strip) is inserted into the target. The pattern obtained at halfway between the patterns (12 0nxn) is shown in Fig. 12A. Figure 1 is broken down. The fine calculation system is based on the difference between the two and the 1/2 of the light intensity minimum pattern, according to the exposure process, and the size of one side is in the width direction, and the pattern data is obtained. The mask is derived from accurate imagery. The reference picture is short, close to the main auxiliary pattern (.. for the target pattern f 40nm of the pitch (1B shows the 2D-32-200931290 image 'from the target pattern itself shown in Figure 11A) Aerial image. The two-dimensional image shown in Fig. 12B is an aerial image of the pattern obtained by inserting the scattered strip into the target pattern as shown in Fig. 12A. The pattern shown in Figs. 8B, 9, 11A' and 128 The two-dimensional image of the aerial image obtained by the data is 'quantitatively evaluated. More precisely, the aerial image is calculated by changing the out-of-focus image of the pattern data'. Therefore, in this embodiment, it is assumed that each figure is horizontal. The axis is the X-axis and the vertical axis is the y-axis. The position of the calculated line width is in the center of the 2D image (x = 〇, y = 0), and the center of the distance is 70% at y=1200 (x = 〇, y =84〇), and the distance from the center is 90% of y=1200 (x=〇, y=1080). Figure 13 shows the line width 'by the two-dimensional image of the aerial image according to the pattern data shown in Figure 8B. Calculated. The line width shown in Figure 14 is calculated from the two-dimensional image of the aerial image according to the pattern data shown in Figure 9. The line width of the display 15 is calculated from the two-dimensional image of the aerial image according to the pattern data shown in Fig. 11A. The line width shown in Fig. 16 is a two-dimensional image of the aerial image according to the pattern data shown in Fig. 12A. In Figures 13 to 16, the horizontal axis represents out-of-focus (Vm), and the vertical axis represents line width CD (nm). Note that the unit of size is nm. Referring to Figure 15, in accordance with Figure 1A In the two-dimensional image of the aerial image of the target pattern, the line width from the center of 90% is small, and the line width relative to the focus changes greatly. Referring to Fig. 16, the scattered strip is inserted into the target according to Fig. 12A. In the two-dimensional image of the aerial image of the pattern obtained by the pattern, the line width of the relative focus is relatively mild, but the line width from the center 70% and 90% is -33-200931290. Referring to Figure 13, According to the dimensional image of the deformed main aerial image shown in Fig. 8B, 70% of the distance from the center and the line width change little. Referring to Fig. 14', the image obtained by the auxiliary pattern main pattern data according to Fig. 9 is obtained. The two-dimensional image of the aerial image is separated from the center by 70% and 90% of the line width The minimum is φ, and the line width change is milder. In this mode, the image performance of the mask data generation program 401 mask data (pattern data) is better than the mask obtained by adding the dispersion strip generated by the operation. Therefore, the accuracy of the isolation line pattern. The size of the auxiliary pattern can be changed according to the light intensity of the peak part, instead of keeping it unchanged. More accurate shadow on the side of the i-aux auxiliary pattern The length, and a. is shown by reference to the length of the reference A, which changes the length ai of one side of the i-th auxiliary pattern. 17. Note that FIG. 17 is a schematic diagram explaining the change of the auxiliary pattern method. The first method is based on the ratio of the light intensity of the peak portion, the length ai of one side of the auxiliary pattern, as shown in the following equation: a± = a0 X 7ΪΓ : for the light transmission pattern Si = a〇X - Ιχ : The type insertion of the 90% position of the light-shielding pattern data is transformed, and the mask generated by the relative focus can be high-precision (the peak is ί, the ai is the size, There may be a method of changing the i-th-34- ... (11) 200931290 in the size of the figure, where Ii is the light intensity 値 at the position of the i-th auxiliary pattern, and Iback is the transmittance of the background. The pattern data of the 1 8 A display is the size of the auxiliary pattern in the pattern data (mask data) shown in Fig. 9. The second method is changed according to the inverse ratio of the light intensity of the peak portion. The length ai of one of the i auxiliary patterns is as shown in the following equation: ai = X > / ϊ7ϊ7 : for the transparent circle ❹ __ ai = X λ/1 / (Iback - I): Light Shielding Pattern...(12) In the second method, first determine the upper limit length, and then set ai in ai > a-limit. Figure 18 The pattern data displayed by B is the size of the auxiliary pattern in the pattern data (mask data) shown in Fig. 9. The second method is changed. 〇 In the first method, the approximate aerial image after inserting the auxiliary pattern The change before the distribution and insertion of the auxiliary pattern is not significant. Therefore, the change of the insertion-assisted pattern is not significant for the insertion-independent pattern, and the change in image performance (such as the increase in depth of focus) is small. In the method, the change of the approximate aerial image distribution after inserting the auxiliary pattern and the insertion of the auxiliary pattern are significant. Therefore, the second method helps to change the approximate aerial image distribution, so it is suitable for any operation to approximate the aerial image. For example The second method inserts a larger auxiliary-35-200931290 pattern at a low coherence position, which can increase the influence on the main pattern. In other words, it can be enhanced by inserting a larger auxiliary pattern at a position with low coherence. Coherence. It is also possible to enhance changes in image performance, such as increasing the depth of focus. Even if a larger auxiliary pattern is inserted at a low coherence position, the decision is lower than The upper limit of the auxiliary pattern that cannot be decomposed will never be improperly decomposed. In fact, the lower limit of the auxiliary pattern that can never be decomposed is determined by the approximate aerial image intensity of the auxiliary pattern insertion position. Therefore, the size of each auxiliary pattern can be calculated according to the intensity of the insertion position. Please note that the shape of the pattern does change significantly compared to when the auxiliary pattern is not inserted. If the shape of the pattern or its kind is overcorrected, Correction, the third embodiment will be explained. Second Embodiment The second embodiment assumes that the NA of the projection optical system used by the exposure apparatus is 0.75 (corresponding to NA information), and the wavelength of the exposed light is Q 193 nm ( Corresponds to information). In addition, the projection optical system assumes no aberration (corresponding to aberration information) and does not consider the photoresist applied to the wafer (corresponding to photoresist information). The illumination light is not polarized. The target pattern (pattern data) is a contact hole pattern as shown in Fig. 19, having a width of 120 nm, and arranged in an array at a half pitch of 100 nm (kl conversion 値 = 0.39). In Fig. 19, the contact hole pattern is a light transmission pattern (transmittance is 1), and the light transmittance of the region (background) having no contact hole pattern is zero. The phase is zero throughout the entire area. The graph of Fig. 19 shows the target pattern (pattern data) according to the second embodiment. -36- 200931290 The effective light source (corresponding to the effective light source information) using quadrupole illumination is shown in Figure 20. In Fig. 20, a white circle line indicates σ = 1, and four white areas indicate a light irradiation portion. Please note that the graph of Figure 20 shows an effective source of light in accordance with embodiment two. The approximate aerial image shown in Fig. 21 is calculated from the target pattern and the aforementioned information set (effective light source information, ΝΑ information, λ information, aberration information, and photoresist information) by the relation (10). In Figure 21, the target pattern is indicated by a solid line that overlaps the approximate aerial image. In the approximate aerial image shown in Fig. 2 1 , the light intensity peaks of the contact hole patterns are different. The approximate aerial image shown in Fig. 2 1B is obtained by executing the aforementioned mask data generating program 40 1, and deforming the main pattern to calculate. In the approximate aerial image shown in Figure 2 1 B, the light intensity peaks of the contact hole patterns are nearly identical. The decision (deformation) of the main pattern will be explained in detail below. Although the shape of the contact hole pattern is not complicated, only the size and position of the main pattern are changed without being cut, and the main pattern can be determined (deformed) by cutting the target pattern as in the embodiment. The deformation (correction) of the pattern data is based on the difference between the target pattern and the two-dimensional image of the approximate aerial image. Please note that the target pattern is not deformed. Then, the deformed pattern data is taken as the new pattern data, and the approximate aerial image is calculated. The same procedure is repeated again and again until the difference between the target pattern and the two-dimensional image falls within the tolerance. The approximate aerial image shown in Figure 2 1 B can be calculated from the pattern data thus obtained. Further, from the one-dimensional image of the approximate aerial image shown in FIG. 21B, -37-200931290' extracts a peak whose peak intensity is in a region where the target pattern is not overlapped (ie, a region other than the main pattern projection region). section. If each target pattern is a transmissive pattern, a peak portion of a region whose light intensity is equal to or lower than the threshold and brighter than the background is calculated, and a square auxiliary pattern is inserted into the peak portion. When using the contact hole pattern, the peak portion is extracted only by two-dimensional detection. The position at which the auxiliary pattern is inserted may be the position of the center of gravity of the peak portion in an area brighter than the background. Even when the contact hole pattern is used, the peak position (partial) can be easily calculated by counting the second derivative of the light intensity distribution (for example, the Laplacian) of the approximate aerial image. Figure 39 shows a second derivative (Laplacian) map of the intensity distribution. Moreover, even when a contact hole pattern of a certain size is used, the intensity of the main pattern has an effect on the position away from the main pattern in the approximate aerial image. Then, the peak portion is superimposed on the intensity peak caused by the interference even in the region where the main pattern is not overlapped, so that the detection of the peak portion becomes difficult. The line width of the dimension on one side of the auxiliary pattern needs to be small so as not to be decomposed. φ More precisely, when using the transmission pattern, the calculation of the size of one side is based on the ratio of the maximum 値 of the light intensity of the main pattern to the maximum 値 of the light intensity of the area of the non-overlapping target pattern. It. When using the contact hole pattern, the size of one side of the auxiliary pattern is about 60% to 80% of the line width of the contact pattern, depending on the exposure procedure and the size of the main pattern. In the second embodiment, the size of one side of the auxiliary pattern is 75 nm. When the aforementioned auxiliary pattern is inserted into the deformed main pattern, the pattern data as shown in Fig. 22 can be obtained. The pattern data shown in Fig. 22 is thus generated as a mask material. Confirm (evaluate) the mask made from the mask material is -38-

200931290 否可在晶圓表面上形成所要的空中影像。 圖23展示之近似空中影像之二維影像由圖22所 圖型資料(遮罩資料)精確計算所得。圖24B展示之 空中影像之二維影像由圖24A所示之目標圖型本身 計算所得。比較圖23與圖24B,發現圖23所示之二 像相較圖24B所示之二維影像,各接觸孔更爲一致均 橢圓失真較小。 對自圖22及14A所示之圖型資料計算所得之空4 像的二位影像,做量化評量。更精確的說,藉改變圖型 料之失焦計算空中影像,故而計算線寬(孔直徑)。右 實施例中,在二維影像中央之被隔離之接觸孔圖型CH 在接觸孔分佈之孔陣列邊緣的接觸孔圖型CH2、及在?I 列中間的接觸孔圖型CH3的線寬CD如圖24A所示。 圖25展示之線寬係計算自依據圖22所示之圖型資 之空中影像的二維影像。圖26展示之線寬係計算自依 圖24 A所示之圖型資料之空中影像的二維影像。在圖 及26中’橫坐標指示失焦(^m),縱座標指示線寬 依據圖26,在依據圖24A所示之目標圖型本身 中影像的二維影像中’被隔離之接觸孔圖型及在接觸 佈之孔陣列之接觸孔圖型的線寬變化很大,且其相對 焦之線寬改變也很大。 參考圖25,在依據圖22所示般,將輔助圖型插 被變形之主圖型所得之該圖型的該空中影像之二維影 之 似 確 影 1影 :資 :此 1 ' 陣 料 據 25 CD 空 分 聚 該 中 -39- 200931290 ,線寬變化小,且其相對該聚焦之線寬改變也小。 在此方式內,藉前述遮覃資料產生程式4〇1所產生之 遮罩資料(圖型資料)的影像績效優於藉習知技術產生之 遮罩資料的影像績效。如此可形成精準度更高的接觸孔圖 型。 與第一實施例相同,輔助圖型之大小可依據峰部分之 光強度(該峰値之大小)改變,而非維持不變。圖27展 〇 示之圖型資料係藉第二方法,改變圖22所示之圖型資料 (遮罩資料)內的輔助圖型大小所得。 藉改變輔助圖型大小,就可能改善輔助圖型對被隔離 之接觸孔圖型或在接觸孔分佈之孔陣列邊緣的接觸孔圖型 的影響。 圖28展示之線寬係計算自依據圖22及27所示之圖 型資料之空中影像的二維影像中央的被隔離之接觸孔圖型 。如前面所述,圖22所示之圖型資料是藉維持輔助圖型 ® 大小固定所得’而圖2 7所示者爲改變輔助圖型大小所得 。在圖28中,橫坐標指示失焦(,縱座標指示線 寬 CD ( nm )。 參考圖28,當輔助圖型大小改變(圖27)時,線寬 相對聚焦之改變小於(即聚焦特性較佳)當輔助圖型大小 維持固定者(圖22)。 第三實施例 如前面所述’輔助圖型之插入,在該輔助圖型與該主 -40- 200931290 圖型之間新產生光近似效應。特別是當輔助圖型大小依該 峰部分之光強度之反比改變時,同調性之改變顯著。因此 可能精確的造成圖型形狀改變及各圖型形狀的改變。在此 情況下,如圖3之流程圖所示,在將輔助圖型插入該被變 形之主圖型之後,再次計算該近似空中影像,並再進一步 將這些圖型資料變形(校正),是有效的。 下面將使用實施例一之例子解釋第三實施例。圖29A 〇 展示之近似空中影像係在將輔助圖型插入第一實施例的被 變形之主圖型之前計算的。圖29B展示之近似空中影像係 在將固定大小之輔助圖型插入第一實施例的被變形之主圖 型之後計算的。比較圖29A及圖29B之近似空中影像, 顯示分佈之顯著改變。自圖29B所示之近似空中影像抽出 二維影像,並與第一實施例同樣的,依據該二維影像將該 主圖型變形。然後將輔助圖型插入該主圖型。若沒有抽出 新輔助圖型,則可用,或也不用相同的輔助圖型。在此情 © 況下,由於主圖型之形狀被改變,可校正因輔助圖型插入 而改變之光近似效應。然後使用該被變形之圖型資料作爲 新圖型資料,計算近似空中影像。重覆相同程序,直到該 目標圖型與該二維影像間之差異落於容許値內爲止。圖 3〇展示如此得到之圖型資料(遮罩資料)。 對自圖3 0所示之圖型資料計算所得之空中影像的二 位影像,做量化評量。更精確的說,藉改變圖型資料之失 焦計算空中影像’故而計算線寬。在此實施例內,假設各 圖以橫軸爲X-軸’縱軸爲y-軸,計算線寬之位置在二維 -41 - 200931290 影像之中央(x = 〇,y = 0)、距離中央在y=1200的70%處 (x = 〇,y = 840 )、及距離中央在 y=1 200 的 90% 處(x = 0 ,y = 1 0 8 0 )。 圖31展示之線寬’由依據圖30所示之圖型資料之空 中影像之二維影像計算所得。比較圖1 5及3 1顯示’在依 據圖30所示之圖型資料之空中影像之二維影像中’線寬 之變化較小,而相對聚焦之線寬改變比圖1 1所示者更溫 ❹ 和。圖31所示之線寬計算結果幾乎與圖14所示者相同。 在使用線圖型時,長度縮短是一嚴重問題。爲解決此 問題,須評量線圖型之邊緣。在最佳聚焦狀態時,只須依 預期的線圖型縮短量將線圖型延長。但是線圖型係隨著失 焦縮短,故其長度以不因聚焦改變爲宜。並且,在線圖型 邊緣之對比應良好爲宜。在線圖型邊緣之對比係依據該 NILS評量。 圖32展示在以最佳聚焦狀態聚焦之前,將線圖型長 © 度分割的結果,並檢查因聚焦造成之改變。圖33展示線 圖型邊緣之該NILS的計算結果,並檢查因聚焦造成之改 變。在圖32及圖33中,Pattern_before指示圖型資料爲 目標圖型本身(即初始圖型資料,圖11A) ,SB指示之 狀況之圖型資料是將分散條型插入目標圖型所得之圖型( 圖12A) =〇PC指示之狀況之圖型資料是依據該近似空中 影像將主圖型變形所得之圖型(圖8B) °OPCl+assistl 字曰不之狀況之圖型資料是依據第一實施例’依據該近似空 中影像將主圖型變形,並將具有固定大小之輔助圖型插入 -42- 200931290 該主圖型(圖9) =OPC2 + aSSist2指示之狀況之圖型資料 是依據第三實施例,依據該近似空中影像將主圖型變形’ 並將具有固定大小之輔助圖型插入該主圖型(圖30)。 參考圖 32,在 OPCl+assistl (圖 9)及〇PC2 + assist2 (圖30)各狀況中,因聚焦變化而造成之線圖型長度改 變最小。 參考圖33,在OPC2 + aSsist2 (圖30)之最佳聚焦狀 0 態中,在線圖型邊緣之nils最大。並且,線圖型邊緣之 NILS相對OPCl+assistl (圖9)之聚焦,幾乎沒有改變 ,但是在〇PC2 + assist2之狀況就較弱。 第四實施例 下面將解釋其線圖型具有另一形狀之目標圖型的實施 例。第四實施例假設狀況,曝光設備使用之投影光學系統 之NA爲0.73(對應於NA資訊),而曝光的光之波長爲 〇 1 93ηιη (對應於λ資訊)。此外,投影光學系統以聚焦位 置偏移(失焦)作爲投影光學系統之像差,但不考慮加在 晶圓上的光阻(對應於光阻資訊)。照射光未被偏極化。 目標圖型(圖型資料)如圖35所示,爲L形(肘形 )圖型,其垂直與水平尺寸爲12OOnm。在圖35中,被隔 離之線圖型爲光屏蔽圖型(透光率爲零),而無被隔離線 圖型存在之區域(背景)的透光率爲1。在整個區域之相 位均爲零。圖35之圖表展示依據第四實施例之目標圖型 (圖型資料)。有效光源使用四極照射(對應於有效光源 -43- 200931290 資訊),如圖5所示。 該近似空中影像計算自該目標圖型及前述輸入資訊集 (有效光源資訊、NA資訊、λ資訊、像差資訊、及光阻 資訊)以關係式(1 0 )計算之。自所計算之近似空中影像 抽出二維影像。依據目標圖型與該近似空中影像之二維影 像間的差異計算圖型資料。在不重疊該目標圖型之區域內 爲峰値的峰部分,被依次由自圖型資料計算所得之近似空 〇 中影像中抽出,故而將輔助圖型插入此峰部分。 圖36展示如此產生之圖型資料,藉以作爲遮罩資料 。圖37Α及37Β展示精確計算自該遮罩資料之空中影像 。圖37Α展示之空中影像是在最佳聚焦狀態形成;圖37Β 展示之空中影像是在失焦0.2/zm形成。參考圖37Α及 3 7 B,得到之空中影像之角落是均勻的且失真小,故在失 焦時,抑制投影至晶圓上之影像的績效劣化。換言之,聚 焦深度增加,造成影像績效的改善。 Ο 下面參考圖34解釋曝光設備1〇〇。圖34之示意方塊 圖展示曝光設備1〇〇之配置。使用之遮罩130是依據執行 前述遮罩資料產生程式所產生之遮罩資料製造的。 曝光設備100爲浸入式曝光設備,將遮罩130之圖型 經由在晶圓1 5 0與投影光學系統丨40之間之液體LW曝光 於晶圓150上。雖然曝光設備100採用此實施例的該步進 與掃描機制’也可採用該步進與重複機制,或其他曝光機 制。 如圖34所示’曝光設備10〇包含光源110、照射光 -44- 200931290 學系統120'裝設遮罩130的遮罩架135、投影光學系統 1 4 0、裝設晶圓1 5 0之晶圓架1 5 5、液體供應/回收單元 160、及主控制系統170。光源11〇與照射光學系統12〇 構成照射設備’照射在其上面有待移轉電路圖型的遮罩 130。 光源110爲準分子鐘射(excimer laser),如波長爲 248nm之KrF準分子鐳射,或波長爲I93nm之ArF準分 Q 子鍾射。但是’光源11 〇之型式及數量沒有特別限制。例 如,波長約爲1 5 7 nm之F2鐳射亦可作爲光源1 1 0。 照射光學系統1 2 0以來自光源1 1 〇之光照射遮罩i 3 0 。照射光學系統1 20可提供各種照射模式,諸如傳統照射 及變化照射(例如四極照射,quadrupole illumination) 。在此實施例中,照射光學系統120包含光束成形光學系 統121、聚光光學系統122、偏極化控制單元123、光學 整合器(optical integrator ) 124、及孔徑限制器( ❹ aperture stop) 125。照射光學系統120亦包含聚光透鏡( condenser lens) 126、折光鏡(bending mirror ) 127、遮 罩片(masking blade) 128、及成像透鏡 129。 光束成形光學系統121可以是,包含數個圓柱透鏡之 光束擴展器爲例。光束成形光學系統1 2 1將來自光源1 1 0 之平行光(collimated light)之剖面形狀的水平對垂直比 値轉換成預定値(例如,將剖面形狀自長方形轉換成正方 形)。在此實施例中,光束成形光學系統1 2 1將來自光源 1 1 0之光整形成照射該光整合器1 24所需之大小及擴散角 -45- 200931290 度。 聚光光學系統122包含數個光學元件,並將光束成形 光學系統121整形過之光有效導引至該光整合器124。例 如’聚光光學系統122包含變焦透鏡系統(zoom lens system ),調整進入該光整合器124之光的形狀及角度。 例如,偏極化控制單元1 2 3包含一偏極化元件,被設 定在幾與該投影光學系統140之光瞳平面142共軛的位置 〇 。該偏極化控制單元123控制在該投影光學系統140之該 光瞳平面142上形成的有效光源之預定區域的偏極化狀態 〇 該光整合器124之功能爲把照射遮罩130之照射光均 句化、將其入射光的角分佈轉換成位置分佈、將所得之光 輸出。例如,光整合器124爲其入射表面與出口表面保持 傅立葉轉換關係之蒼蠅眼透鏡。蒼蠅眼透鏡以組合數個桿 狀透鏡(即微透鏡)構成。但是,光整合器124不特別限 〇 制於蒼蠅眼透鏡,且可以例如是:光學桿、繞射光柵、或 圓柱透鏡陣列板。 孔徑限制器125被設定在緊隨著該光整合器124之出 口表面之後的位置’並幾與在該投影光學系統140之光瞳 平面142上形成之有效光源共軛。孔徑限制器125之孔徑 形狀對應於在該投影光學系統140之光瞳平面142上形成 之有效光源的光強度分佈(即有效光源形狀)。換言之, 孔徑限制器1 2 5控制有效光源之光強度分佈。該孔徑限制 器125可依據該照射模式切換。不管有無使用孔徑限制器 -46- 200931290 ,有效光源形狀可藉設定在相對光整合器124之光源側的 繞射光學元件(diffractive optical element,CGH)或稜鏡 調整之。 聚光透鏡126將自光整合器124之該出口表面附近形 成之第二光源發出的光收縮,通過孔徑限制器1 25,且將 此光藉折光鏡1 27均勻照射到遮罩片1 2 8。 遮罩片128被設定在幾與遮罩130共軛的位置,且由 〇 數個可移動光屏蔽版形成。該遮罩片128形成近於長方形 開口,與該投影光學系統1 40之有效面積對應。通過該遮 罩片128的光被用做照射光,照射該遮罩130。 成像透鏡129將穿過遮罩片128之開口的光影像在遮 罩1 3 0上形成。 遮罩130係依據前述處理設備1所產生之遮罩資料製 造,且具有待移轉之電路圖型(主圖型)及輔助圖型。遮 罩130由遮罩架135支撐及驅動。遮罩130產生之繞射光 Ο 藉投影光學系統140投影在晶圓150上。該遮罩130與晶 圓150被設定成光學共軛關係。由於曝光設備100是該步 進及掃描機制,藉將遮罩130之待移轉之電路圖型同步掃 瞄,以移轉至晶圓150»在曝光設備1〇〇是該步進及重複 機制時,在遮罩130與晶圓150靜止時,進行曝光。 遮罩架135藉一遮罩叉柱(chuck)支撐遮罩130, 並連接至驅動機件(未顯示出來)。驅動機件(未顯示出 來)以線性馬達形成爲例,且在X-、y-、z-軸、及繞著各 該軸的旋轉方向驅動。請注意在遮罩130與晶圓150表面 47 - 200931290 之掃描方向被定義成y-軸方向,與其垂直之方向被定義 成X-軸方向,垂直於遮罩130或晶圓150表面之方向則 定義爲z-軸方向。 投影光學系統140將遮罩130之電路圖型投影於晶圓 150上。該投影光學系統140可以是折光系統(dioptric system)、光線反射曲折系統(catadioptric system)、 或反射系統(catoptric system)。投影光學系統140之最 © 終透鏡(final lens )(最終表面)被塗覆一塗料,以減少 由液體供應/回收單元供應之液體LW造成之影響(爲保 護之用)。 晶圓150是一基板,遮罩130之電路圖型就投影(移 轉)在其上面。但是,晶圓1 5 0可被玻璃板或其他基板取 代。晶圓150被塗覆一光阻。 晶圓架155支撐晶圓150,使用線性馬達,在X-、y-、z-軸、及繞著各該軸的旋轉方向移動晶圓150,與遮罩 © 架1 3 5相同。 液體供應/回收單元1 60的功能係將液體LW供應到 在晶圓1 50與投影光學系統140之最終透鏡(final lens ) (最終表面)之間的空間。液體供應/回收單元1 60尙有 —功能是回收被供應到在晶圓1 50與投影光學系統1 40之 最終透鏡(final lens )(最終表面)之間的空間的液體。 選擇透光率比曝光設備高、防止灰塵附著於投影光學系統 140上(在最終透鏡上)及匹配光阻處理之物質,做爲液 體LW。 -48- 200931290 主控制系統170包含一 CPU及記憶體,並控制曝光 設備1〇〇之作業。例如’主控制系統170電連接至遮罩架 135、晶圓架155、及液體供應/回收單元160,並控制該 遮罩架135與晶圓架155間之同步掃描。主控制系統170 且依據曝光中之晶圓架155之掃描方向及速率,控制液體 LW之供應、回收、及停止供應/回收的切換。主控制系統 1 70執行這些控制,特別係依據來自監視器與輸入裝置之 〇 資訊輸入’即來自照射裝置之資訊。例如,主控制系統 1 70藉驅動機件控制孔徑限制器之驅動。主控制系統1 7〇 之控制資訊及其他資訊顯示在該監視器及該輸入裝置之監 視器上。主控制系統1 70依據前述實施例之一,接收有關 有效光源之資訊,且控制,如該孔徑限制器、繞射光學元 件、及稜鏡,因此形成該有效光源。 在曝光時,光源110發射之光束藉照射光學系統120 照射遮罩130。投影光學系統140經由液體LW使光束通 〇 過遮罩130,將其上面的電路圖型反應出來,在晶圓150 上形成影像。曝光設備1 0 0成像效能極佳,可提供裝置( 如半導體裝置、LCD裝置、影像感應裝置(如CCD )、 及薄膜磁頭)高產能及良好的經濟效益。這些裝置的製造 步驟爲使用該曝光設備把100把塗覆有光阻(光敏劑 ,pho to sensitive agent )之基板(如晶圓或玻璃板)曝光的 步驟、將被曝光之基板顯影的步驟、及其他習知步驟。 雖然已參考實施例說明本發明,仍須明白本發明並不 受限於該發表之實施例,後面之申請專利範圍將依據最廣 -49- 200931290 義解釋’藉以涵蓋所有此類之修改及相等的結構及功能。 【圖式簡單說明】 圖1之示意方塊圖展示一處理設備之結構,此處理設 備結構執行依據本發明之一面向之產生方法。 圖2之流程圖解釋一產生遮罩資料程序,此程序以圖 1之處理設備的控制單元執行一遮罩資料產生程式。 D 圖3之流程圖解釋另一產生遮罩資料程序,此另一程 序以圖1之處理設備的控制單元執行一遮罩資料產生程式 〇 圖4之圖表展示依據第一實施例之目標圖型(圖型資 料)。 圖5之圖表展示依據第一實施例之一有效光源( effect source ) 0 圖6A及6B之圖表展示在第一實施例內所計算之近 〇 似空中影像。 圖7A及7B之7K意圖展示自圖6A及6B之近似空中 影像抽出之二維影像。 圖8A及8B之圖表解釋該圖型資料(主圖型)之變 形。 圖9之圖表展示將輔助圖型插入第一實施例之主圖型 ,所得到之圖型資料° 圖10之示意圖展不自圖9所示之圖型資料取得之精 確空中影像的二維影像。 -50- 200931290 圖11A之圖表展示依據第一實施例的目標圖型。 圖11B之示意圖展示自圖11A所示之目標圖型計算 所得之空中影像的二維影像。 圖12A之圖表展示將分散之條型插入依據第一實施 例目標圖型,所得到之圖型。 圖12B之示意圖展示自圖12A所示之圖型計算所得 之空中影像的二維影像。 0 圖13之曲線圖展示自依據圖8B所示之圖型資料之空 中影像的二維影像,計算所得之線寬。 圖14之曲線圖展示自依據圖9所示之圖型資料之空 中影像的二維影像,計算所得之線寬。 圖15之曲線圖展示自依據圖11A所示之圖型資料之 空中影像的二維影像,計算所得之線寬。 圖16之曲線圖展示自基於圖12A所示之圖型資料之 空中影像的二維影像,計算所得之線寬。 〇 圖17之示意圖解釋改變一輔助圖型之大小的方法。 圖18A及18B之之圖表展示,藉改變圖9所示之圖 型資料內的輔助圖型大小,所取得之圖型資料。 圖19之圖表展示依據第二實施例之目標圖型(圖型 資料)。 圖20之圖表展示依據第二實施例之一有效光源。 圖21A及21B之圖表展示在第二實施例內所計算之 近似空中影像。 圖22之圖表展示將輔助圖型插入第二實施例之主圖 -51 - 200931290 型,所得到之圖型資料。 圖23之示意圖展示自圖22所示之圖型資料取得之精 確空中影像的二維影像。 圖24 A之圖表展示依據第二實施例的目標圖型。 圖24B之示意圖展示自圖24A所示之目標圖型計算 所得之空中影像的二維影像。 圖25之曲線圖展示’自依據圖22所示之圖型資料之 〇 空中影像的二維影像,計算所得之線寬。 圖26之曲線圖展示’自依據圖24A所示之圖型資料 之空中影像的二維影像’計算所得之線寬。 圖27之之圖表展示’藉改變圖22所示之圖型資料內 的輔助圖型大小,所取得之圖型資料。 圖28之曲線圖展示自依據圖22及27所示之圖型資 料的空中影像之二維影像之中央的隔離接觸點圖型,計算 所得之線寬。 Ο 圖29A之圖表展示在將輔助圖型插入第一實施例內 之變形主圖型之前,所計算之近似空中影像。 圖2 9B之圖表展示在將固定大小之輔助圖型插入第一 實施例內之變形主圖型之後,所計算之近似空中影像。 圖30之圖表展示將輔助圖型插入第三實施例之主圖 型,所得到之圖型資料。 圖31之曲線圖展示自依據圖30所示之圖型資料之空 中影像的二維影像,計算所得之線寬。 圖32之曲線圖展示在聚焦至最佳聚焦狀態前’分割 -52- 200931290 線圖型之長度的結果’並檢查因聚焦造成之改變。 圖33之曲線圖展不線圖型之邊緣之NILS的 果,並檢查因聚焦造成之改變。 圖34之示意方塊圖展示依據本發明之一面向 設備配置。 圖35之圖表展示依據第四實施例之目標圖型 資料)。 〇 圖36之示意圖展示將輔助圖型插入第四實施 標圖型,所得到之圖型資料。 圖37A之示意圖展示自圖36所示之遮罩圖型 精確空中影像。 圖37B之示意圖展示在失焦(defocusing)時 空中影像。 圖38之圖表展示圖6B所示之之近似空中影像 微分。 ® 圖39之圖表展示圖21B所示之之近似空中影 次微分。 【主要元件符號說明】 1 :處理設備 1 〇 :匯流線 20 :控制單元 3〇 :顯示單元 40 _·儲存單元 計算結 的曝光 (圖型 例之目 取得之 之精確 的二次 像的二 -53- 200931290 50 :輸入單元 60 :媒體界面 401 :遮罩資料產生程式 4 0 8 :遮罩資料 4 1 0 :二維影像 70 :儲存媒體 4 0 2 :圖型資料 © 403 : 404 : 405 : 406 : 407 : 409 : 4 11: 100 : 〇 13 0: 150: 110: 120 : 13 5: 140 : 15 5: 160: 170: 有效光源資訊 NA資訊 λ資訊 像差資訊 光阻資訊 近似空中影像 被變形圖型資料 曝光設備 遮罩 晶圓 光源 照射光學系統 遮罩架 投影光學系統 晶圓架 液體供應/回收單元 主控制系統 -54 200931290 121 : 122 : 123 : 124 : 125 : 126 : 127 : © 128 ·· 129 : 142 : 光束成形光學系統 聚光光學系統 偏極化控制單元 光學整合器 孔徑限制器 聚光透鏡 折光鏡 遮罩片 成像透鏡 光瞳平面 ❹ -55-200931290 No The desired aerial image can be formed on the surface of the wafer. The two-dimensional image of the approximate aerial image shown in Fig. 23 is accurately calculated from the pattern data (mask data) of Fig. 22. The two-dimensional image of the aerial image shown in Fig. 24B is calculated from the target pattern itself shown in Fig. 24A. Comparing Fig. 23 with Fig. 24B, it is found that the two images shown in Fig. 23 are more uniform and have less elliptical distortion than the two-dimensional image shown in Fig. 24B. A two-dimensional image of the null image calculated from the pattern data shown in Figs. 22 and 14A is quantified. More precisely, the aerial image is calculated by changing the out-of-focus of the pattern, so the line width (hole diameter) is calculated. In the right embodiment, the contact hole pattern CH2 at the edge of the hole array of the contact hole distribution in the center of the two-dimensional image is isolated. The line width CD of the contact hole pattern CH3 in the middle of the I column is as shown in Fig. 24A. The line width shown in Fig. 25 is calculated from a two-dimensional image of the aerial image according to the pattern shown in Fig. 22. The line width shown in Fig. 26 is a two-dimensional image of an aerial image calculated from the pattern data shown in Fig. 24A. In the figure and 26, the 'abscissa indicates the out-of-focus (^m), and the ordinate indicates the line width. According to FIG. 26, the contact hole pattern is isolated in the two-dimensional image of the image according to the target pattern itself shown in FIG. 24A. The line width of the contact pattern of the type and the array of holes in the contact cloth varies greatly, and the line width of the relative focus changes greatly. Referring to FIG. 25, in the same manner as shown in FIG. 22, the two-dimensional shadow of the aerial image of the pattern obtained by inserting the auxiliary pattern into the main pattern of the deformation is shown as: 1: According to the 25 CD air distribution, the line width variation is small, and its line width change relative to the focus is also small. In this manner, the image performance of the mask data (pattern data) generated by the concealer data generating program 4〇1 is superior to the image performance of the mask data generated by the learned technology. This results in a more accurate contact hole pattern. As with the first embodiment, the size of the auxiliary pattern can be changed depending on the light intensity of the peak portion (the size of the peak ,), rather than being maintained. The pattern data shown in Fig. 27 is obtained by changing the size of the auxiliary pattern in the pattern data (mask data) shown in Fig. 22 by the second method. By varying the size of the auxiliary pattern, it is possible to improve the effect of the auxiliary pattern on the contact pattern of the isolated contact hole or the contact hole pattern at the edge of the array of contact holes. The line width shown in Fig. 28 is calculated from the isolated contact hole pattern in the center of the two-dimensional image of the aerial image according to the pattern data shown in Figs. 22 and 27. As described above, the pattern data shown in Fig. 22 is obtained by maintaining the auxiliary pattern type + size fixed and the figure shown in Fig. 27 is changing the size of the auxiliary pattern. In Fig. 28, the abscissa indicates out-of-focus (the ordinate indicates the line width CD (nm). Referring to Fig. 28, when the size of the auxiliary pattern is changed (Fig. 27), the change in line width with respect to focus is smaller (i.e., the focusing characteristics are smaller). Good) When the size of the auxiliary pattern remains fixed (Fig. 22). The third embodiment is as described above for the insertion of the auxiliary pattern, and the new approximation effect between the auxiliary pattern and the main-40-200931290 pattern Especially when the size of the auxiliary pattern changes according to the inverse ratio of the light intensity of the peak portion, the change in the homology is significant. Therefore, it is possible to accurately change the shape of the pattern and the shape of each pattern. In this case, as shown in the figure. As shown in the flow chart of 3, after inserting the auxiliary pattern into the deformed main pattern, it is effective to calculate the approximate aerial image again, and further deform (correct) the pattern data. The example of Example 1 illustrates the third embodiment. The approximate aerial image shown in Figure 29A is calculated prior to inserting the auxiliary pattern into the deformed main pattern of the first embodiment. Figure 29B shows the approximate aerial image system. The calculation is performed after inserting the fixed size auxiliary pattern into the deformed main pattern of the first embodiment. Comparing the approximate aerial images of Figs. 29A and 29B, the display shows a significant change in the distribution. The approximate aerial image shown in Fig. 29B Extracting the two-dimensional image, and transforming the main pattern according to the two-dimensional image, as in the first embodiment, and then inserting the auxiliary pattern into the main pattern. If no new auxiliary pattern is extracted, it is available, or The same auxiliary pattern is not used. In this case, since the shape of the main pattern is changed, the light approximation effect changed by the auxiliary pattern insertion can be corrected. Then the deformed pattern data is used as the new pattern. Data, calculate the approximate aerial image. Repeat the same procedure until the difference between the target image and the 2D image falls within the allowable frame. Figure 3 shows the pattern data (mask data) thus obtained. The two-dimensional image of the aerial image calculated from the pattern data shown in Fig. 30 is used for quantitative evaluation. More precisely, the aerial image is calculated by changing the out-of-focus data of the pattern data. In the embodiment, it is assumed that the horizontal axis is the X-axis and the vertical axis is the y-axis, and the position of the line width is calculated in the center of the two-dimensional -41 - 200931290 image (x = 〇, y = 0), and the distance is in the center. 70% of y=1200 (x = 〇, y = 840), and the center of the distance is 90% of y=1 200 (x = 0, y = 1 0 8 0 ). Figure 31 shows the line width 'by Calculated according to the two-dimensional image of the aerial image of the graphic data shown in Fig. 30. Comparing Figs. 15 and 31 shows 'in the two-dimensional image of the aerial image according to the graphic data shown in Fig. 30' The change is small, and the line width change of the relative focus is warmer than that shown in Fig. 11. The line width calculation result shown in Fig. 31 is almost the same as that shown in Fig. 14. Shortening the length is a serious problem when using line patterns. To solve this problem, the edge of the line graph must be evaluated. In the best focus state, the line pattern is only extended in accordance with the expected line pattern shortening. However, the line pattern is shortened with the out of focus, so the length is not changed by focusing. Also, the comparison of the edges of the online graphics should be good. The comparison of the edges of the online graphs is based on the NILS assessment. Figure 32 shows the result of dividing the line pattern length by degrees before focusing in the best focus state, and checking for changes due to focusing. Figure 33 shows the results of this NILS calculation at the edge of the line graph and checks for changes due to focus. In FIG. 32 and FIG. 33, Pattern_before indicates that the pattern data is the target pattern itself (ie, the initial pattern data, FIG. 11A), and the pattern data indicated by the SB is the pattern obtained by inserting the scattered strip into the target pattern. (Fig. 12A) = The pattern data indicated by the PC indicates the pattern obtained by deforming the main pattern according to the approximate aerial image (Fig. 8B). The pattern data of the °OPCl+assistl word is based on the first The embodiment 'deforms the main pattern according to the approximate aerial image, and inserts the auxiliary pattern with a fixed size-42-200931290. The main pattern (Fig. 9) = OPC2 + aSSist2 indicates the status of the pattern is based on the In a third embodiment, the main pattern is deformed according to the approximate aerial image and an auxiliary pattern having a fixed size is inserted into the main pattern (Fig. 30). Referring to Fig. 32, in the respective conditions of OPCl+assistl (Fig. 9) and 〇PC2 + assist2 (Fig. 30), the line pattern length change due to the change in focus is minimized. Referring to Figure 33, in the best focus state of OPC2 + aSsist2 (Figure 30), the nils at the edge of the line pattern is the largest. Moreover, the focus of the NILS of the line graph edge relative to OPCl+assistl (Fig. 9) is almost unchanged, but the condition of PC2 + assist2 is weak. Fourth Embodiment An embodiment in which a line pattern has a target pattern of another shape will be explained below. The fourth embodiment assumes that the NA of the projection optical system used by the exposure apparatus is 0.73 (corresponding to NA information), and the wavelength of the exposed light is 〇 1 93 ηιη (corresponding to λ information). In addition, the projection optical system uses the focus position shift (out of focus) as the aberration of the projection optical system, but does not consider the photoresist applied to the wafer (corresponding to the photoresist information). The illumination light is not polarized. The target pattern (pattern data) is shown in Figure 35, which is an L-shaped (elbow) pattern with a vertical and horizontal dimension of 12OOnm. In Fig. 35, the isolated line pattern is a light-shielding pattern (transmission is zero), and the area (background) where no isolation line pattern exists is light transmittance. The phase is zero in the entire region. The graph of Fig. 35 shows a target pattern (pattern data) according to the fourth embodiment. The effective source uses four-pole illumination (corresponding to the effective source -43- 200931290 information), as shown in Figure 5. The approximate aerial image is calculated from the target pattern and the aforementioned input information set (effective light source information, NA information, lambda information, aberration information, and photoresist information) by a relation (10). A two-dimensional image is extracted from the approximate aerial image calculated. The pattern data is calculated based on the difference between the target pattern and the two-dimensional image of the approximate aerial image. In the region where the target pattern is not overlapped, the peak portion of the peak is sequentially extracted from the image in the approximate space calculated from the pattern data, so the auxiliary pattern is inserted into the peak portion. Figure 36 shows the pattern data thus generated as a mask material. Figures 37Α and 37Β show aerial images that are accurately calculated from the mask data. Figure 37 shows that the aerial image is formed in the best focus state; the aerial image shown in Figure 37Β is formed at a defocus of 0.2/zm. Referring to Figures 37A and 3 7 B, the corners of the aerial image obtained are uniform and the distortion is small, so that the performance of the image projected onto the wafer is suppressed from deteriorating when the focus is out of focus. In other words, the depth of focus increases, resulting in improved image performance.曝光 The exposure apparatus 1 is explained below with reference to FIG. The schematic block diagram of Fig. 34 shows the configuration of the exposure apparatus. The mask 130 used is manufactured based on the mask data generated by executing the mask data generating program. The exposure apparatus 100 is an immersion exposure apparatus that exposes a pattern of the mask 130 to the wafer 150 via a liquid LW between the wafer 150 and the projection optical system 丨40. Although the exposure apparatus 100 employs the step and scan mechanism of this embodiment, the step and repeat mechanism, or other exposure mechanism, can also be employed. As shown in FIG. 34, the exposure apparatus 10 includes a light source 110, an illumination light-44-200931290 system 120', a mask holder 135 for mounting the mask 130, a projection optical system 140, and a wafer 1150. A wafer rack 150, a liquid supply/recovery unit 160, and a main control system 170. The light source 11A and the illumination optical system 12' constitute a mask 130 on which the illumination device's illumination pattern is to be transferred. The light source 110 is an excimer laser such as a KrF excimer laser having a wavelength of 248 nm or an ArF quasi-fraction Q sub-clock of a wavelength of I93 nm. However, the type and number of the light source 11 are not particularly limited. For example, an F2 laser with a wavelength of approximately 157 nm can also be used as the light source 1 1 0. The illumination optical system 120 emits the mask i 3 0 with light from the light source 1 1 。. Illumination optics 1 20 can provide various illumination modes, such as conventional illumination and varying illumination (e.g., quadrupole illumination). In this embodiment, the illumination optical system 120 includes a beam shaping optical system 121, a collecting optical system 122, a polarization control unit 123, an optical integrator 124, and an aperture stop 125. The illumination optical system 120 also includes a condenser lens 126, a bending mirror 127, a masking blade 128, and an imaging lens 129. The beam shaping optical system 121 may be, for example, a beam expander including a plurality of cylindrical lenses. The beam shaping optical system 1 2 1 converts the horizontal-to-vertical ratio 剖面 of the cross-sectional shape of the collimated light from the light source 110 into a predetermined chirp (for example, converting the cross-sectional shape from a rectangle to a square). In this embodiment, the beam shaping optics 1 1 1 aligns the light from the source 110 into the size and spread angle required to illuminate the optical integrator 1 24 -45 - 200931290 degrees. The concentrating optical system 122 includes a plurality of optical elements and effectively directs light shaped by the beam shaping optical system 121 to the optical integrator 124. For example, the concentrating optical system 122 includes a zoom lens system that adjusts the shape and angle of light entering the optical integrator 124. For example, the polarization control unit 1 2 3 includes a polarization element disposed at a position 共 conjugated to the pupil plane 142 of the projection optical system 140. The polarization control unit 123 controls a polarization state of a predetermined region of the effective light source formed on the pupil plane 142 of the projection optical system 140. The function of the optical integrator 124 is to illuminate the illumination mask 130. The sentence is averaged, the angular distribution of the incident light is converted into a positional distribution, and the obtained light is output. For example, the optical integrator 124 has a fly-eye lens that maintains a Fourier-converted relationship between the incident surface and the exit surface. The fly-eye lens is composed of a combination of a plurality of rod lenses (i.e., microlenses). However, the optical integrator 124 is not particularly limited to a fly-eye lens, and may be, for example, an optical rod, a diffraction grating, or a cylindrical lens array plate. The aperture limiter 125 is set at a position ' immediately after the exit surface of the optical integrator 124' and is conjugated to an effective light source formed on the pupil plane 142 of the projection optical system 140. The aperture shape of the aperture limiter 125 corresponds to the light intensity distribution (i.e., effective source shape) of the effective source formed on the pupil plane 142 of the projection optical system 140. In other words, the aperture limiter 1 2 5 controls the light intensity distribution of the effective light source. The aperture limiter 125 can be switched in accordance with the illumination mode. Regardless of whether or not the aperture limiter -46-200931290 is used, the effective light source shape can be adjusted by a diffractive optical element (CGH) or 设定 set on the light source side of the optical integrator 124. The condensing lens 126 shrinks the light emitted from the second light source formed near the exit surface of the optical integrator 124, passes through the aperture limiter 125, and uniformly illuminates the light through the refracting mirror 127 to the mask sheet 1 2 8 . The mask sheet 128 is set at a position conjugate with the mask 130, and is formed by a plurality of movable light shielding plates. The mask sheet 128 forms a nearly rectangular opening corresponding to the effective area of the projection optical system 140. Light passing through the mask sheet 128 is used as irradiation light to illuminate the mask 130. The imaging lens 129 forms a light image that passes through the opening of the mask sheet 128 on the mask 130. The mask 130 is manufactured according to the mask data generated by the processing apparatus 1 described above, and has a circuit pattern (main pattern) to be transferred and an auxiliary pattern. The cover 130 is supported and driven by the shield frame 135. The diffracted light generated by the mask 130 is projected onto the wafer 150 by the projection optical system 140. The mask 130 and the crystal 150 are set in an optically conjugate relationship. Since the exposure device 100 is the stepping and scanning mechanism, the circuit pattern of the mask 130 to be transferred is synchronously scanned to be transferred to the wafer 150» when the exposure device 1 is the stepping and repeating mechanism. When the mask 130 and the wafer 150 are stationary, exposure is performed. The mask frame 135 supports the mask 130 by a masked chuck and is connected to a driving mechanism (not shown). The drive mechanism (not shown) is exemplified by a linear motor formation and is driven in the X-, y-, z-axis, and in the direction of rotation about each of the axes. Note that the scanning direction of the mask 130 and the wafer surface 47 - 200931290 is defined as the y-axis direction, and the direction perpendicular thereto is defined as the X-axis direction, which is perpendicular to the surface of the mask 130 or the wafer 150. Defined as the z-axis direction. Projection optics 140 projects the circuit pattern of mask 130 onto wafer 150. The projection optical system 140 may be a dioptric system, a catadioptric system, or a catotric system. The most final projection lens (final surface) of the projection optical system 140 is coated with a coating to reduce the influence of the liquid LW supplied by the liquid supply/recovery unit (for protection). The wafer 150 is a substrate on which the circuit pattern of the mask 130 is projected (shifted). However, the wafer 150 can be replaced by a glass plate or other substrate. Wafer 150 is coated with a photoresist. The wafer holder 155 supports the wafer 150, and uses a linear motor to move the wafer 150 in the X-, y-, z-axis, and in the direction of rotation about each of the axes, the same as the mask © frame 1 3 5 . The function of the liquid supply/recovery unit 1 60 supplies the liquid LW to the space between the wafer 150 and the final lens (final surface) of the projection optical system 140. The liquid supply/recovery unit 1 has a function of recovering a liquid supplied to a space between the wafer 150 and the final lens (final surface) of the projection optical system 1 40. A material having a higher transmittance than the exposure apparatus, preventing dust from adhering to the projection optical system 140 (on the final lens), and matching the photoresist treatment is selected as the liquid LW. -48- 200931290 The main control system 170 includes a CPU and a memory, and controls the operation of the exposure device. For example, the main control system 170 is electrically coupled to the mask holder 135, the wafer holder 155, and the liquid supply/recovery unit 160, and controls the synchronous scanning between the mask holder 135 and the wafer holder 155. The main control system 170 controls the supply, recovery, and stop supply/recovery switching of the liquid LW based on the scanning direction and rate of the wafer holder 155 during exposure. The main control system 1 70 performs these controls, in particular based on the information input from the monitor and the input device, i.e., information from the illumination device. For example, the main control system 170 drives the aperture limiter drive by the drive mechanism. Control information and other information of the main control system 1 〇 are displayed on the monitor and the monitor of the input device. The primary control system 170 receives information about the effective light source and controls, such as the aperture limiter, diffractive optical element, and chirp, in accordance with one of the foregoing embodiments, thereby forming the effective light source. At the time of exposure, the light beam emitted from the light source 110 illuminates the mask 130 by the illumination optical system 120. The projection optical system 140 passes the light beam through the mask 130 via the liquid LW, reacts the circuit pattern thereon, and forms an image on the wafer 150. The exposure device 1000 has excellent imaging performance and can provide high productivity and good economic benefits for devices such as semiconductor devices, LCD devices, image sensing devices (such as CCD), and thin film magnetic heads. The manufacturing steps of these devices are a step of exposing 100 substrates (such as wafers or glass plates) coated with a photoresist (photosensitive agent) using the exposure device, and developing a substrate to be exposed, And other familiar steps. Although the present invention has been described with reference to the embodiments, it is to be understood that the invention is not to be construed as limited. Structure and function. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic block diagram showing the structure of a processing apparatus which performs a method for generating a method according to one aspect of the present invention. The flowchart of Fig. 2 illustrates a mask generating data program which executes a mask data generating program by the control unit of the processing device of Fig. 1. D. FIG. 3 is a flow chart explaining another process for generating a mask data. The other program executes a mask data generation program by the control unit of the processing device of FIG. 1. FIG. 4 is a diagram showing the target pattern according to the first embodiment. (Graphic data). The graph of Fig. 5 shows an effect source 0 according to the first embodiment. The graphs of Figs. 6A and 6B show near-simultaneous aerial images calculated in the first embodiment. 7K of Figures 7A and 7B are intended to show two-dimensional images extracted from the approximate aerial image of Figures 6A and 6B. The graphs of Figures 8A and 8B explain the deformation of the pattern data (main pattern). Figure 9 is a diagram showing the insertion of the auxiliary pattern into the main pattern of the first embodiment, and the obtained pattern data. Figure 10 is a schematic view showing a two-dimensional image of a precise aerial image obtained from the pattern data shown in Figure 9. . -50- 200931290 The graph of Fig. 11A shows the target pattern according to the first embodiment. Figure 11B is a schematic diagram showing a two-dimensional image of an aerial image calculated from the target pattern shown in Figure 11A. The graph of Fig. 12A shows the pattern obtained by inserting the dispersed strip into the target pattern according to the first embodiment. Figure 12B is a schematic diagram showing a two-dimensional image of an aerial image calculated from the pattern shown in Figure 12A. 0 The graph of Fig. 13 shows the calculated line width from the two-dimensional image of the aerial image according to the pattern data shown in Fig. 8B. The graph of Fig. 14 shows the calculated line width from the two-dimensional image of the aerial image according to the pattern data shown in Fig. 9. The graph of Fig. 15 shows the calculated line width from the two-dimensional image of the aerial image according to the pattern data shown in Fig. 11A. The graph of Fig. 16 shows the calculated line width from the two-dimensional image of the aerial image based on the pattern data shown in Fig. 12A. 〇 The schematic of Figure 17 illustrates a method of changing the size of an auxiliary pattern. The graphs of Figs. 18A and 18B show the pattern data obtained by changing the size of the auxiliary pattern in the pattern data shown in Fig. 9. The graph of Fig. 19 shows a target pattern (pattern data) according to the second embodiment. Figure 20 is a chart showing an effective light source in accordance with a second embodiment. The graphs of Figures 21A and 21B show approximate aerial images calculated in the second embodiment. Fig. 22 is a diagram showing the pattern data obtained by inserting the auxiliary pattern into the main type -51 - 200931290 of the second embodiment. Figure 23 is a schematic diagram showing a two-dimensional image of an accurate aerial image taken from the pattern data shown in Figure 22. The graph of Figure 24A shows a target pattern in accordance with a second embodiment. Figure 24B is a schematic diagram showing a two-dimensional image of an aerial image calculated from the target pattern shown in Figure 24A. The graph of Fig. 25 shows the calculated line width from the two-dimensional image of the 空中 aerial image based on the pattern data shown in Fig. 22. The graph of Fig. 26 shows the line width calculated from the "two-dimensional image of the aerial image according to the pattern data shown in Fig. 24A". The graph of Fig. 27 shows the pattern data obtained by changing the size of the auxiliary pattern in the pattern data shown in Fig. 22. The graph of Fig. 28 shows the isolated contact point pattern from the center of the two-dimensional image of the aerial image according to the pattern data shown in Figs. 22 and 27, and the calculated line width is calculated. Ο The graph of Fig. 29A shows the approximate aerial image calculated before the auxiliary pattern is inserted into the main deformation pattern in the first embodiment. The graph of Fig. 2B shows the approximate aerial image calculated after inserting the fixed size auxiliary pattern into the deformed main pattern in the first embodiment. The graph of Fig. 30 shows the pattern data obtained by inserting the auxiliary pattern into the main pattern of the third embodiment. The graph of Fig. 31 shows the calculated line width from the two-dimensional image of the aerial image according to the pattern data shown in Fig. 30. The graph of Fig. 32 shows the result of 'severing the length of the -52-200931290 line pattern' before focusing to the best focus state and checking for changes due to focusing. The graph of Figure 33 shows the NILS results at the edge of the line graph and checks for changes due to focus. Figure 34 is a schematic block diagram showing a device-oriented configuration in accordance with one aspect of the present invention. The graph of Fig. 35 shows the target pattern data according to the fourth embodiment). 〇 The schematic diagram of Figure 36 shows the pattern data obtained by inserting the auxiliary pattern into the fourth implementation pattern. The schematic of Figure 37A shows a precise aerial image of the mask pattern shown in Figure 36. The schematic of Figure 37B shows an aerial image at the time of defocusing. The graph of Figure 38 shows the approximate aerial image differentiation shown in Figure 6B. The graph of Figure 39 shows the approximate aerial image subdifferential shown in Figure 21B. [Main component symbol description] 1 : Processing device 1 〇: Bus line 20: Control unit 3 〇: Display unit 40 _· Storage unit calculates the exposure of the junction (the second image of the second image obtained by the eye of the pattern example) 53- 200931290 50 : Input unit 60 : Media interface 401 : Mask data generation program 4 0 8 : Mask data 4 1 0 : 2D image 70 : Storage medium 4 0 2 : Pattern data © 403 : 404 : 405 : 406 : 407 : 409 : 4 11: 100 : 〇 13 0: 150: 110: 120 : 13 5: 140 : 15 5: 160: 170: Effective light source information NA information λ information aberration information photoresist information approximate aerial image was Deformation pattern data exposure equipment mask wafer light source illumination optical system mask frame projection optical system wafer holder liquid supply / recovery unit main control system -54 200931290 121 : 122 : 123 : 124 : 125 : 126 : 127 : © 128 ·· 129 : 142 : Beam shaping optics concentrating optics polarization control unit optical integrator aperture limiter concentrating lens refracting mirror mask imaging lens pupil plane ❹ -55-

Claims (1)

200931290 十、申請專利範圍 1. 一種用電腦產生供曝光設備使用之遮罩資料的方 法,該曝光設備包含:以來自光源之光照射該遮罩之照射 光學系統,及將遮罩之圖型投影於基板上之投影光學系統 ,該方法包含: 空中影像(aerial image)計算步驟,依據該照射光學 系統在該投影光學系統之光瞳平面(pupil plane)上形成 〇 的光強度分佈相關之資訊、來自該光源之光波長相關資訊 、在該投影光學系統之該影像平面之一側的投影光學系統 的一數値孔徑(numerical aperture)相關之資訊、及將於 該基板上形成之目標圖型,計算在該投影光學系統之影像 平面上形成之空中影像; 二維影像抽出步驟,自該空中影像計算步驟內所計算 之該空中影像中,抽出二維影像; 主圖型決定步驟,依據該二維影像抽出步驟所抽出之 〇 該二維影像,決定該遮罩之主圖型; 峰部分抽出步驟,自該空中影像計算步驟內所計算之 該空中影像,抽出一峰部分;該峰部分除了在該主圖型投 影於該影像平面之區域外,其光強度係在峰値; 輔助圖型決定步驟,依據該峰部分抽出步驟中,所抽 出之該峰部分的該光強度,決定一輔助圖型;及 產生步驟,將該輔助圖型決定步驟所決定之該輔助圖 型,插入該遮罩之一部份,此部分與該峰部分抽出步驟內 所抽出之峰部分對應,藉以產生包含該輔助圖型及在該主 -56- 200931290 圖型決定步驟內所決定之主圖型的圖型資料,作爲該遮罩 之該資料。 2.如申請專利範圍第1項之方法,其中在該二維影 像抽出步驟中: 如果該目標圖型爲透光圖型,則抽出該空中影像之光 強度不小於臨界値的區域;及 如果該目標圖型爲光屏蔽圖型,則抽出該空中影像之 © 光強度不大於臨界値的區域。 3 ·如申請專利範圍第1項之方法,其中在該主圖型 決定步驟中,該主圖型被變形,直到在該二維影像與該目 標圖型之間的差異落於容許値之內。 4. 如申請專利範圍第3項之方法,其中採用該空中 影像之光強度、NILS及線寬三者之一,作爲該二維影像 與該目標圖型之差異的評量値。 5. 如申請專利範圍第1項之方法,其中在該輔助圖 〇 型決定步驟中,若該目標圖型爲透光圖型,則依據該主圖 型之光強度最大値與該主圖型被投影於該基板之區域以外 之區域的光強度最大値的比値,決定該輔助圖型的大小; 及 若該目標圖型爲光屏蔽圖型,則依據背景之光強度與 該主圖型之該光強度最小値間之差,與該背景之光強度與 在該主圖型被投影於該基板之區域以外之該區域的光強度 最小値之差的比値,決定該輔助圖型的大小。 6 ·如申請專利範圍第1項之方法,其中在該峰部分 -57- 200931290 抽出步驟中,對該空中影像計算步驟內所計算之空中影像 計算二次微分,及依據該取得之二次微分抽出該峰部分。 7. —種用電腦產生供曝光設備使用之遮罩資料的方 法,該曝光設備包含:以來自光源之光照射遮罩之照射光 學系統,及將遮罩之圖型投影於基板上之投影光學系統, 該方法包含: 第一空中影像計算步驟,依據該照射光學系統在該投 〇 影光學系統之光瞳平面上形成的光強度分佈相關資訊、來 自該光源之光的波長相關之資訊、在該投影光學系統之該 影像平面之一側的一數値孔徑相關之資訊、及將於該基板 上形成之目標圖型,計算在該投影光學系統之影像平面上 形成之空中影像; 第一二維影像抽出步驟,自該第一空中影像計算步驟 內所計算之該空中影像中,抽出二維影像; 第一主圖型決定步驟,依據該第一二維影像抽出步驟 Ο 所抽出之該二維影像,決定該遮罩之主圖型; 第一峰部分抽出步驟,自該第一空中影像計算步驟內 所計算之該空中影像抽出一峰部分;該峰部分除了在該主 圖型投影於該影像平面之區域外,其光強度係在峰値; 第一輔助圖型決定步驟,依據該第一峰部分抽出步驟 所抽出之該峰部分的該光強度,決定一輔助圖型; 第二空中影像計算步驟,依據一圖型、與該照射光學 系統在該投影光學系統之該光瞳平面上形成的光強度分佈 相關之該資訊、與來自該光源之該光的波長相關之該資訊 -58 - 200931290 、及在該投影光學系統之該影像平面側的該數値孔徑相關 之該資訊,計算在該投影光學系統之該影像平面上形成 之空中影像;該圖型包含於該第一主圖型決定步驟內所決 定之該主圖型及在該第一輔助圖型決定步驟所決定之該輔 助圖型,該輔助圖型並插入該遮罩之與第一峰部分抽出步 驟內所抽出之該峰部分對應的部分; 第二二維影像抽出步驟,自該第二空中影像計算步驟 〇 內所計算之該空中影像中,抽出二維影像; 第二主圖型決定步驟,依據該第二二維影像抽出步驟 所抽出之該二維影像,決定該遮罩之主圖型; 第二峰部分抽出步驟,自該第二空中影像計算步驟內 所計算之該空中影像,抽出一峰部分;該峰部分除了在該 主圖型投影於該影像平面之區域外,其光強度係在峰値; 第二輔助圖型決定步驟,依據該第二峰部分抽出步驟 所抽出之該峰部分的該光強度,決定一輔助圖型;及 Ο 產生步驟,將該第二輔助圖型決定步驟所決定之該輔 助圖型插入該遮罩之一部份,此部分與該第二峰部分抽出 步驟內所抽出之該峰部分對應;藉以產生包含該輔助圖型 及在該第二主圖型決定步驟內所決定之該主圖型的圖型資 料,做爲該遮罩之該資料。 8. 一種遮罩製造方法,包含: 依據申請專利範圍第1至7項中任一項之產生方法所 產生的資料,製造遮罩。 9. 一種曝光方法,包含下列步驟: -59- 200931290 以申請專利範圍第8項之遮罩製造方法,製造遮罩; 照射該所製造之遮罩;及 以該投影光學系統將該遮罩之一圖型的影像,投影至 一基板上。 10. —種裝置製造方法,包含下列步驟: 使用申請專利範圍第9項之曝光方法將基板曝光;及 將已曝光之基板做顯影處理(development process) ❹ 1 1. 一種儲存媒體,儲存之程式使電腦產生遮罩資料 ,供曝光設備使用;該曝光設備包含:以來自光源之光照 射該遮罩之照射光學系統,及將該遮罩之圖型投影於基板 上之投影光學系統,該媒體使該電腦執行下列步驟: 空中影像計算步驟,依據該照射光學系統在該投影光 學系統之光瞳平面上形成的光強度分佈相關之資訊、來自 該光源之光的波長相關之資訊、在該投影光學系統之該影 Ο 像平面之一側的一數値孔徑相關之資訊、及將於該基板上 形成之目標圖型,計算在該投影光學系統之影像平面上形 成之空中影像; 二維影像抽出步驟,自該空中影像計算步驟內所計算 之該空中影像中,抽出二維影像; 主圖型決定步驟,依據該二維影像抽出步驟所抽出之 該二維影像,決定該遮罩之主圖型; 峰部分抽出步驟,自該空中影像計算步驟內所計算之 該空中影像抽出一峰部分,該峰部分除了在該主圖型投影 -60- 200931290 於該影像平面之區域外,其光強度係在峰値; 輔助圖型決定步驟,依據該峰部分抽出步驟中所抽出 之該峰部分的該光強度,決定一輔助圖型;及 產生步驟,將該輔助圖型決定步驟所決定之該輔助圖 型插入該遮罩之一部份,此部分與該峰部分抽出步驟內所 抽出之峰部分對應,藉以產生包含該輔助圖型及在該主圖 型決定步驟內所決定之主圖型的圖型資料,做爲該遮罩資 ❹ 料。 1 2 · —種儲存媒體,儲存之程式使電腦產生遮罩資料 ,供曝光設備使用,該曝光設備包含:以來自光源之光照 射該遮罩之照射光學系統,及將該遮罩之圖型投影於基板 上之投影光學系統,該媒體使電腦執行下列步驟: 第一空中影像計算步驟,依據該照射光學系統在該投 影光學系統之光瞳平面上形成的光強度分佈相關之資訊、 來自該光源之光的波長相關之資訊、在該投影光學系統之 Ο 該影像平面之一側的一數値孔徑相關之資訊、及將於該基 板上形成之目標圖型,計算在該投影光學系統之影像平面 上形成之空中影像; 第一二維影像抽出步驟,自該第一空中影像計算步驟 內所計算之該空中影像中,抽出二維影像; 第一主圖型決定步驟,依據該第一二維影像抽出步驟 所抽出之該二維影像,決定該遮罩之主圖型; 第一峰部分抽出步驟,自該第一空中影像計算步驟內 所計算之該空中影像抽出一峰部分,該峰部分除了在該主 -61 - 200931290 圖型投影於該影像平面之區域外,其光強度係在峰値; 第一輔助圖型決定步驟,依據該第一峰部分抽出步驟 所抽出之該峰部分的該光強度,決定一輔助圖型; 第二空中影像計算步驟,依據一圖型、與該照射光學 系統在該投影光學系統之該光瞳平面上形成的光強度分佈 相關之該資訊、與來自該光源之該光的波長相關之該資訊 、及在該投影光學系統之該影像平面側的該數値孔徑相關 〇 之該資訊,計算在該投影光學系統之該影像平面上形成之 空中影像;該圖型包含在該第一主圖型決定步驟內所決定 之該主圖型及在該第一輔助圖型決定步驟內所決定之該輔 助圖型,該輔助圖型並插入該遮罩之與第一峰部分抽出步 驟內所抽出之該峰部分對應的部分; 第二二維影像抽出步驟,自該第二空中影像計算步驟 內所計算之該空中影像中,抽出二維影像; 第二主圖型決定步驟,依據該第二二維影像抽出步驟 G 所抽出之該二維影像,決定該遮罩之主圖型; 第二峰部分抽出步驟,自該第二空中影像計算步驟內 所計算之該空中影像,抽出一峰部分;該峰部分除了在該 主圖型投影於該影像平面之區域外,其光強度係在峰値; 第二輔助圖型決定步驟,依據該第二峰部分抽出步驟 所抽出之該峰部分的該光強度,決定一輔助圖型; 產生步驟,將該第二輔助圖型決定步驟所決定之該輔 助圖型插入該遮罩之一部份,此部分與該第二峰部分抽出 步驟內所抽出之該峰部分對應,藉以產生包含該輔助圖型 -62- 200931290 及在該第二主圖型決定步驟內所決定之該主圖型的圖型資 料,做爲該遮罩之該資料。200931290 X. Patent application scope 1. A method for generating mask data for use by an exposure device by using a computer, the exposure device comprising: an illumination optical system for illuminating the mask with light from a light source, and projecting a pattern of the mask a projection optical system on a substrate, the method comprising: an aerial image calculation step, according to the illumination optical system, forming information related to a light intensity distribution of the pupil on a pupil plane of the projection optical system, Information about the wavelength of the light from the light source, information about a numerical aperture of the projection optical system on one side of the image plane of the projection optical system, and a target pattern to be formed on the substrate, Calculating an aerial image formed on an image plane of the projection optical system; a two-dimensional image extraction step of extracting a two-dimensional image from the aerial image calculated in the aerial image calculation step; the main pattern determining step, according to the second The two-dimensional image extracted by the dimension image extraction step determines the main pattern of the mask; the peak portion Extracting step, extracting a peak portion from the aerial image calculated in the aerial image calculation step; the peak portion is in a peak region except for the region where the main pattern is projected on the image plane; the auxiliary pattern Determining a step of determining an auxiliary pattern according to the light intensity of the peak portion extracted in the peak portion extraction step; and generating a step of inserting the auxiliary pattern determined by the auxiliary pattern determining step into the mask a portion of the cover corresponding to the peak portion extracted during the peak portion extraction step, thereby generating a map including the auxiliary pattern and the main pattern determined within the main-56-200931290 pattern determining step Type data as the material for the mask. 2. The method of claim 1, wherein in the two-dimensional image extraction step: if the target pattern is a light transmission pattern, extracting an area of the aerial image whose light intensity is not less than a critical threshold; and if If the target pattern is a light-shielding pattern, the area where the light intensity is not greater than the critical threshold is extracted. 3. The method of claim 1, wherein in the main pattern determining step, the main pattern is deformed until a difference between the two-dimensional image and the target pattern falls within a permissible range . 4. The method of claim 3, wherein one of the light intensity, NILS, and line width of the aerial image is used as a measure of the difference between the two-dimensional image and the target pattern. 5. The method of claim 1, wherein in the auxiliary pattern determining step, if the target pattern is a light transmission pattern, the light intensity according to the main pattern is the largest and the main pattern The ratio of the maximum intensity 値 of the area projected outside the area of the substrate determines the size of the auxiliary pattern; and if the target pattern is a light shielding pattern, the light intensity according to the background and the main pattern The difference between the minimum intensity of the light intensity and the difference between the light intensity of the background and the minimum light intensity of the region outside the region where the main pattern is projected onto the substrate determines the auxiliary pattern size. 6) The method of claim 1, wherein in the extraction step -57-200931290, the second derivative is calculated for the aerial image calculated in the aerial image calculation step, and the second derivative is obtained according to the acquisition Extract the peak portion. 7. A method of using a computer to generate mask data for use in an exposure apparatus, the exposure apparatus comprising: an illumination optical system that illuminates the mask with light from the light source, and projection optics that project the pattern of the mask onto the substrate a system, the method comprising: a first aerial image calculation step, according to information related to a light intensity distribution formed by the illumination optical system on a pupil plane of the projection optical system, and information about wavelengths of light from the light source, An information about a number of apertures on one side of the image plane of the projection optical system, and a target pattern formed on the substrate, and calculating an aerial image formed on an image plane of the projection optical system; a dimension image extraction step of extracting a two-dimensional image from the aerial image calculated in the first aerial image calculation step; a first main pattern determining step, according to the first two-dimensional image extraction step Ο a dimensional image that determines a main pattern of the mask; a first peak portion extraction step from which the air is calculated in the first aerial image calculation step Extracting a peak portion; the peak portion is light peak in addition to the region in which the main pattern is projected on the image plane; the first auxiliary pattern determining step is extracted according to the first peak portion extracting step The light intensity of the peak portion determines an auxiliary pattern; the second aerial image calculation step is related to the light intensity distribution formed by the illumination optical system on the pupil plane of the projection optical system according to a pattern Information, the information related to the wavelength of the light from the light source - 58 - 200931290, and the information related to the number of apertures on the image plane side of the projection optical system, and calculating the image in the projection optical system An aerial image formed on a plane; the pattern includes the main pattern determined in the first main pattern determining step and the auxiliary pattern determined in the first auxiliary pattern determining step, the auxiliary pattern And inserting a portion of the mask corresponding to the peak portion extracted in the first peak portion extraction step; a second two-dimensional image extraction step, calculating a step from the second aerial image Extracting the two-dimensional image from the aerial image calculated in the step; the second main pattern determining step determines the main pattern of the mask according to the two-dimensional image extracted by the second two-dimensional image extracting step; a second peak portion extraction step of extracting a peak portion from the aerial image calculated in the second aerial image calculation step; the peak portion is in addition to the region where the main pattern is projected on the image plane, and the light intensity is a second auxiliary pattern determining step of determining an auxiliary pattern according to the light intensity of the peak portion extracted by the second peak portion extraction step; and a generating step, the second auxiliary pattern determining step Determining the auxiliary pattern into a portion of the mask, the portion corresponding to the peak portion extracted in the second peak portion extraction step; thereby generating the auxiliary pattern and the second main pattern Determining the pattern data of the main pattern determined in the step as the material of the mask. A mask manufacturing method comprising: manufacturing a mask according to the data generated by the method of producing any one of claims 1 to 7. 9. An exposure method comprising the steps of: -59-200931290 manufacturing a mask by the mask manufacturing method of claim 8; irradiating the manufactured mask; and masking the mask with the projection optical system A picture of the image is projected onto a substrate. 10. A device manufacturing method comprising the steps of: exposing a substrate using an exposure method of claim 9; and developing a substrate to be exposed ❹ 1 1. a storage medium, a program for storing Having the computer generate masking data for use by the exposure apparatus; the exposure apparatus includes: an illumination optical system that illuminates the mask with light from the light source, and a projection optical system that projects the pattern of the mask onto the substrate, the medium Having the computer perform the following steps: an aerial image calculation step, based on information related to a light intensity distribution formed on the pupil plane of the projection optical system, information related to the wavelength of light from the light source, at the projection The image of the optical system is related to a number of apertures on one side of the image plane, and a target pattern formed on the substrate, and an aerial image formed on the image plane of the projection optical system is calculated; Extracting step of extracting a two-dimensional image from the aerial image calculated in the aerial image calculation step; a pattern determining step of determining a main pattern of the mask according to the two-dimensional image extracted by the two-dimensional image extraction step; a peak portion extraction step of extracting a peak portion from the aerial image calculated in the aerial image calculation step The peak portion is in the peak region except for the main pattern projection -60-200931290 in the image plane; the auxiliary pattern determining step is based on the peak portion extracted in the peak portion extraction step. The light intensity determines an auxiliary pattern; and a generating step of inserting the auxiliary pattern determined by the auxiliary pattern determining step into a portion of the mask, the portion extracted from the peak portion extraction step The peak portion corresponds to generate the pattern data including the auxiliary pattern and the main pattern determined in the main pattern determining step as the mask material. 1 2 · a storage medium, the stored program causes the computer to generate mask data for use by an exposure device, the exposure device comprising: an illumination optical system that illuminates the mask with light from a light source, and a pattern of the mask a projection optical system projected on a substrate, the medium causing the computer to perform the following steps: a first aerial image calculation step, based on information related to a light intensity distribution formed on the pupil plane of the projection optical system The information about the wavelength of the light of the light source, the information about the aperture of one side of the image plane on the side of the image plane, and the target pattern formed on the substrate are calculated in the projection optical system. An aerial image formed on the image plane; a first two-dimensional image extraction step of extracting the two-dimensional image from the aerial image calculated in the first aerial image calculation step; the first main pattern determining step, according to the first The two-dimensional image extracted by the two-dimensional image extraction step determines the main pattern of the mask; the first peak portion is extracted from the first The aerial image calculated in the aerial image calculation step extracts a peak portion, the light portion is in a peak region except that the main -61 - 200931290 pattern is projected on the image plane; the first auxiliary pattern a determining step of determining an auxiliary pattern according to the light intensity of the peak portion extracted by the first peak portion extraction step; and a second aerial image calculation step according to a pattern and the illumination optical system at the projection optical system The information relating to the distribution of the intensity of the light formed on the pupil plane, the information relating to the wavelength of the light from the source, and the correlation between the apertures on the image plane side of the projection optical system Information, calculating an aerial image formed on the image plane of the projection optical system; the pattern includes the main pattern determined in the first main pattern determining step and within the first auxiliary pattern determining step Determining the auxiliary pattern, the auxiliary pattern is inserted into a portion of the mask corresponding to the peak portion extracted in the first peak portion extraction step; a dimension image extraction step of extracting a two-dimensional image from the aerial image calculated in the second aerial image calculation step; a second main pattern determining step, according to the second two-dimensional image extraction step G a dimensional image that determines a main pattern of the mask; a second peak portion extraction step that extracts a peak portion from the aerial image calculated in the second aerial image calculation step; the peak portion is projected on the main pattern The light intensity is outside the region of the image plane, and the second auxiliary pattern determining step determines an auxiliary pattern according to the light intensity of the peak portion extracted by the second peak portion extraction step; Inserting the auxiliary pattern determined by the second auxiliary pattern determining step into a portion of the mask, the portion corresponding to the peak portion extracted in the second peak portion extraction step, thereby generating the auxiliary The pattern-62-200931290 and the pattern data of the main pattern determined in the second main pattern determining step are used as the material of the mask. -63--63-
TW097133456A 2007-09-19 2008-09-01 Mask data generation method, mask fabrication method, exposure method, device fabrication method, and storage medium TWI371701B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007242911 2007-09-19
JP2008041489A JP2009093138A (en) 2007-09-19 2008-02-22 Mask data generation method, mask fabrication method, exposure method, device fabrication method and program for generation of mask data

Publications (2)

Publication Number Publication Date
TW200931290A true TW200931290A (en) 2009-07-16
TWI371701B TWI371701B (en) 2012-09-01

Family

ID=40665153

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097133456A TWI371701B (en) 2007-09-19 2008-09-01 Mask data generation method, mask fabrication method, exposure method, device fabrication method, and storage medium

Country Status (4)

Country Link
JP (2) JP2009093138A (en)
KR (1) KR101001219B1 (en)
DE (1) DE602008005223D1 (en)
TW (1) TWI371701B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9507253B2 (en) 2013-06-11 2016-11-29 Canon Kabushiki Kaisha Mask pattern generating method, recording medium, and information processing apparatus
TWI587082B (en) * 2014-06-26 2017-06-11 Nuflare Technology Inc Mask inspection device, mask evaluation method and mask evaluation system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5665398B2 (en) * 2009-08-10 2015-02-04 キヤノン株式会社 Generation method, creation method, exposure method, device manufacturing method, and program
JP5279745B2 (en) * 2010-02-24 2013-09-04 株式会社東芝 Mask layout creation method, mask layout creation device, lithography mask manufacturing method, semiconductor device manufacturing method, and computer-executable program
JP5603685B2 (en) * 2010-07-08 2014-10-08 キヤノン株式会社 Generation method, creation method, exposure method, device manufacturing method, and program
JP5627394B2 (en) * 2010-10-29 2014-11-19 キヤノン株式会社 Program for determining mask data and exposure conditions, determination method, mask manufacturing method, exposure method, and device manufacturing method
JP6039910B2 (en) 2012-03-15 2016-12-07 キヤノン株式会社 Generation method, program, and information processing apparatus
JP5677356B2 (en) 2012-04-04 2015-02-25 キヤノン株式会社 Generation method of mask pattern
JP5656905B2 (en) 2012-04-06 2015-01-21 キヤノン株式会社 Determination method, program, and information processing apparatus
CN105051611B (en) 2013-03-14 2017-04-12 Asml荷兰有限公司 Patterning device, method of producing a marker on a substrate and device manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3576791B2 (en) * 1998-03-16 2004-10-13 株式会社東芝 Mask pattern design method
SG137657A1 (en) * 2002-11-12 2007-12-28 Asml Masktools Bv Method and apparatus for performing model-based layout conversion for use with dipole illumination
SG125109A1 (en) * 2003-01-14 2006-09-29 Asml Masktools Bv Method and apparatus for providing optical proximity features to a reticle pattern for deep sub-wavelength optical lithography
SG139530A1 (en) * 2003-01-14 2008-02-29 Asml Masktools Bv Method of optical proximity correction design for contact hole mask
KR101115477B1 (en) * 2003-06-30 2012-03-06 에이에스엠엘 마스크툴즈 비.브이. A method, program product and apparatus for generating assist features utilizing an image field map
SG109607A1 (en) * 2003-09-05 2005-03-30 Asml Masktools Bv Method and apparatus for performing model based placement of phase-balanced scattering bars for sub-wavelength optical lithography
SG125970A1 (en) * 2003-12-19 2006-10-30 Asml Masktools Bv Feature optimization using interference mapping lithography
US7620930B2 (en) * 2004-08-24 2009-11-17 Asml Masktools B.V. Method, program product and apparatus for model based scattering bar placement for enhanced depth of focus in quarter-wavelength lithography
US7349066B2 (en) * 2005-05-05 2008-03-25 Asml Masktools B.V. Apparatus, method and computer program product for performing a model based optical proximity correction factoring neighbor influence
JP5235322B2 (en) * 2006-07-12 2013-07-10 キヤノン株式会社 Original data creation method and original data creation program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9507253B2 (en) 2013-06-11 2016-11-29 Canon Kabushiki Kaisha Mask pattern generating method, recording medium, and information processing apparatus
TWI564653B (en) * 2013-06-11 2017-01-01 佳能股份有限公司 Mask pattern generating method, recording medium, and information processing apparatus
TWI587082B (en) * 2014-06-26 2017-06-11 Nuflare Technology Inc Mask inspection device, mask evaluation method and mask evaluation system
US10026011B2 (en) 2014-06-26 2018-07-17 Nuflare Technology, Inc. Mask inspection apparatus, mask evaluation method and mask evaluation system

Also Published As

Publication number Publication date
JP5188644B2 (en) 2013-04-24
JP2013011898A (en) 2013-01-17
DE602008005223D1 (en) 2011-04-14
KR20090030216A (en) 2009-03-24
KR101001219B1 (en) 2010-12-15
TWI371701B (en) 2012-09-01
JP2009093138A (en) 2009-04-30

Similar Documents

Publication Publication Date Title
TW200931290A (en) Mask data generation method, mask fabrication method, exposure method, device fabrication method, and storage medium
KR101043016B1 (en) Methods and system for lithography process window simulation
US7488933B2 (en) Method for lithography model calibration
TWI797362B (en) Method for determining an etch profile of a layer of a wafer for a simulation system
EP2040120B1 (en) Mask data generation method, mask fabrication method, exposure method, device fabrication method, and program
US20080052334A1 (en) Original data producing method and original data producing program
JP4804294B2 (en) Master data creation program, master data creation method, master creation method, exposure method, and device manufacturing method
KR20080007297A (en) Lithographic apparatus and device manufacturing method
TW201633190A (en) Process window identifier
TWI718771B (en) Methods, computer program product, and systems for reducing variability of an error associated with a structure on a wafer
TW202006346A (en) Hidden defect detection and EPE estimation based on the extracted 3D information from e-beam images
TW201937270A (en) Guided patterning device inspection
US8234600B2 (en) Computer readable storage medium storing program for generating reticle data, and method of generating reticle data
TW202006317A (en) Utilize pattern recognition to improve SEM contour measurement accuracy and stability automatically
US20060256311A1 (en) Lithographic apparatus and device manufacturing method
US8352892B2 (en) Method, computer-readable storage medium, and apparatus for generating a mask data and fabricating process
JP3854231B2 (en) Aberration measurement method for projection optical system
US7528934B2 (en) Lithographic apparatus and device manufacturing method
TWI793443B (en) Method for determining aberration sensitivity of patterns
Neureuther Processing issues and modeling
JP2012124289A (en) Calculation program of effective light source, exposure method and method of manufacturing device
JP5607327B2 (en) Determination method, exposure method, device manufacturing method, and program