200929457 七、 指定代表圖: (一) 本案指定代表圖為··第(1E)圖。 (二) 本代表圖之元件符號簡單說明: 3〇〇發光元件 22磊晶薄膜結構 222第一導電型半導體層224第二導電型半導體層 226發光層 40載體 42載體基板 44第一接觸墊 46第二接觸墊 50異方導電膠 八、 今案若有化學式時,請揭示最能顯示發明特徵的化學 式:無 九、發明說明: 【發明所屬之技術領域】 本發明係揭示一種發光元件,特別是關於一藉由異方導電膠將 磊晶薄膜結構固定於一載體之發光元件及其製造方法。 【先前技術】 發光二極體(light emitting diode, LED)的發光原理是利用電子 〇 在n型半導體與P型半導體間移動的能量差,以光的形式將能量 釋放’這樣的發光原理係有別於白熾燈發熱的發光原理,因此發 光二極體被稱為冷光源。此外,發光二極體具有高耐久性、壽命 長、輕巧、耗電量低等優點,因此現今的照明市場對於發光二極 體寄予厚望,將其視為新一代的照明工具。 如第1圖所示,習知之發光二極體發光元件100係將一具有透 明基板110、發光疊層120以及電極140/142之覆晶結構利用焊料 (solder)160/162固定於一絕緣基板180表面而形成;其中,發光二 極體100之電極140/142係藉由焊料160/162透過焊接(soldering) 4 200929457 之方式與絕緣基板⑽表φ之連接墊182/184電性連接。 然而,習知之發光元件卻容易因為焊接過程中連接墊與電極對 位不精綠以及4接條件控制不當,降低發光元件之穩定度,其製 造程序亦十分耗時;除此之外,於習知發光元件巾,發光層(圖未 不)所發n線於通過透明基板時,料產生全反射而無法射 出,進而導致發光元件之光摘出效率降低。 因此’本發明係為解決上述困擾,提供一種藉由異方導電膠將 磊晶薄膜結構固定於載體上之發光元件。200929457 VII. Designation of the representative representative: (1) The representative representative of the case is the picture (1E). (b) The symbol of the representative figure is briefly described: 3 〇〇 light-emitting element 22 epitaxial film structure 222 first conductive type semiconductor layer 224 second conductive type semiconductor layer 226 light-emitting layer 40 carrier 42 carrier substrate 44 first contact pad 46 Second contact pad 50 isotropic conductive adhesive 8. If there is a chemical formula in the present case, please disclose the chemical formula that best shows the characteristics of the invention: No. 9. Description of the invention: [Technical Field] The present invention discloses a light-emitting element, in particular It relates to a light-emitting element in which an epitaxial film structure is fixed to a carrier by an isotropic conductive paste and a method of manufacturing the same. [Prior Art] The principle of light emission of a light emitting diode (LED) is to use an electron enthalpy to move energy between an n-type semiconductor and a P-type semiconductor to release energy in the form of light. Unlike the principle of illuminating the incandescent lamp, the illuminating diode is called a cold source. In addition, the light-emitting diode has the advantages of high durability, long life, light weight, low power consumption, etc., so the current lighting market has high hopes for the light-emitting diode, which is regarded as a new generation of lighting tools. As shown in FIG. 1, the conventional light-emitting diode light-emitting element 100 is a chip-on-chip structure having a transparent substrate 110, a light-emitting layer 120, and electrodes 140/142 fixed to an insulating substrate by a solder 160/162. The surface of the light-emitting diode 100 is electrically connected to the connection pads 182/184 of the surface φ of the insulating substrate (10) by means of solder 160/162 through soldering 4 200929457. However, the conventional light-emitting element is easy to reduce the stability of the light-emitting element due to the inconsistent alignment between the connection pad and the electrode during the soldering process, and the manufacturing process is also time consuming; In the light-emitting element sheet, when the n-line emitted from the light-emitting layer (not shown) passes through the transparent substrate, the material is totally reflected and cannot be emitted, and the light extraction efficiency of the light-emitting element is lowered. Therefore, in order to solve the above problems, the present invention provides a light-emitting element in which an epitaxial film structure is fixed to a carrier by an isotropic conductive paste.
Ο 【發明内容】 I古本之目的係於提供一發光元件,包含一遙晶薄膜結構、一 f ’以及—載體,並且藉由異方導電膠將蠢晶薄膜結構 出疋在此發光元件中’級係由羞晶_結構直接射 率。,、,、需穿透翻基板,以減少光線全反射發生,提高光摘出效 直電本3月*之德另二目^於提供一發光元件,其異方導電膠具有垂 平電流導通之難’故無需精確之對位程序 私軸結獅錄紐上,亦可使遙晶 賴結構與健產线性連接,以簡化製程。 元件過程中對娜膜結構產生破= 之再—目的_用異方導電膠具妓好黏接固定之特 產品可選用不_载體基板,以增加產品之多元性。、 本^^==^合所附賴式詳加酬,#更容易瞭解 本發月^目的技_各、迦及其所達成之功效。 L實施方式】 第2八至2K K係為本發明第一實施例製造流程之各步驟示意 200929457 圖。 如第2A圖與第2B所示’提供一成長基板2〇,並運用習知之方式, 例如化學亂相沈積法(Chemical Vapor Deposition^ CVD),於成長基板2〇 上成長遙晶薄膜結構22 ;其中此蟲晶薄膜結構22由下而上,依序為 第一導電型半導體層222、發光層226,以及第二導電型半導體層224^ 隨後,如第2C圖與第2D圖所示,於蠢晶薄膜結構22上塗佈一 連接層24,並藉由連接層24將一暫時基板26與一磊晶薄臈結構22 相連接’·其中,連接層24係為具有黏結特性之材質,諸如聚醯亞胺 © (PI)、笨并環丁烯(BCB)或過氟環丁烷(PFCB)以及上述材質之組合。 接著,藉由習知之雷射剝除法(laserlift-off)、機械研磨法、乾餞刻 (diy etching)、濕蝕刻(wet etching)或是化學機械研磨法(Chemieal MechaniCalP〇lishing,CMP)移除成長基板20以裸露磊晶薄膜結構22, 如第2E圖所示;接著以微影蝕刻法,選擇性地钮刻部分磊晶薄膜結構 22表面直至裸露出第一導電型半導體層222為止,以形成一 l型之結 構’如第2F圖所示;而後,如第2G圖所示,分別在裸露之第一導電 型半導體層222上形成一第一電極28以及在未受蝕刻之遙晶薄膜結構 〇 22表面形成一第二電極30。 隨後’如第2H圖所示,提供一載體基板42,並於載體基板42上 形成第一接觸墊44與第二接觸墊46,以組成載體40,然後塗佈一異 方導電膠(Anisotropic Conductive Film,ACF)50 於載體 40 之上;其中, 此處所使用之異方導電膠50以透明異方導電膠尤佳;載體基板42亦 可搭配不同材料系統之材質,諸如··彈性基板、高導熱基板或玻璃基 板等’以增加產品的多元性。接著,翻轉第2G圖所示之結構,使第 一電極28與第二電極3〇位於蠢晶薄膜結構22之下並且分別對應著載 體40上之第一接觸墊44與第二接觸墊46,並且提供一外力壓合磊晶 6 200929457 之雛撕紐28料 電極30與第二接觸墊44之間間隔著 5〇,仍能產生電性連接轉通電流。 方導電膠 切2J圖所示,藉由雷射光(laser)、紫外光⑽1^〇Η UV) 或熱能等方式提供—能量,24 ❹ 〇 移除暫時級26 ’以形成如第2K圖所示之發光元件2〇〇。 圖。第3Α至3F圖係為本發明第二實施例製造流程之各步驟示意 如第3Α圖所示’於完成圖2Ε所示之移除成長基板2〇之步驟 = 薄膜結構22之表面進行選擇性蝕刻以形成至少 曰舰歸導電型半導體222之溝槽32 ;其中該溝槽32將磊 3:圖:二,2上1分為第一平台與第二平台(圖未示);接著如第 60彝第-不雷么分別於上述之第一平台與第二平台上形成第—電極 、一玉62,其中,第一電極60之上表面60a以及第二電 ^银2之上表面必係位於同一水平面上。接著,如第3C圖所示, 楚一 3B圖之結構反轉,使蟲晶薄膜結構22上之第-電極60與 2刀別對應載體40上之第一接觸塾44與第二接觸塾 -々kit異方導電膠5Q連接健4G與蠢晶賴、轉,並且提供 合蟲晶薄膜結構22與載體40,如第3D圖所示;隨後, %…圖所示’提供―能量以熔化連接I 24 ;而後除暫時基板 以:成如第3F ®所示之發光元件300。此外,由於發光元件 ^ 電極60之上表面6〇a與第二電極62之上表面62a係 立;同一水平面’因此,亦可如第6圖所示,第一電極60與第 7 200929457 一接觸墊44以及第二電極62與第二接觸墊46係直接接觸,並 且利用非等向導電薄臈50加強第-與第二電極以及第-與第二 接觸墊之間之電性連接。 由於本發明第一與第二實施例中之異方導電膠5〇係採用透明異 方導電膠,因此更可如第4A與4B圖所示,於載體基板42以及第一 接觸塾44與第二接觸墊46之間形成一反射層48,其反射層48之材 質可為銦(In)、錫(Sn)、紹(A1)、金(Au)、銘(Pt)、鋅(Ζι〇、銀(Ag)、 鈦(Ti)、錫(Pb)、鍺(Ge)、銅(Cu)、鎳⑽、鈹化金(AuBe)、鍺化 〇 金(AuGe)、鋅化金(AuZn)、錫化鉛(PbSn)、氮化矽(SiNx)、氧化矽 (Si02)、氧化鋁(A1203)、氧化鈦(Ti〇2)、氧化鎂(Mg〇)、上述材料 之組合或分散式布拉格反射層(Distributed Bragg Reflector,DBR) 者,用以反射發光層226朝向載體40所發出之光線,提高發光 元件之光摘出效率。 為了減少光線於磊晶薄膜結構22中發生全反射之情形,亦可 如第5A與5B圖所示,於發光元件2〇〇或發光元件300之磊晶薄 膜結構22出光面進行粗化程序’以進一步地提高光摘出效率。 ❹ 此外,亦可如第7圖所示,將複數個具有第一電極與第二電 極之磊晶薄膜結構22藉由非等向性薄膜5〇固定於載體4〇上, 以形成一大面積之發光元件400;其中,載體基板42可以是彈性 基板、高導熱基板或玻璃基板等材料;而此種大面積之發光元件4〇〇 更可廣泛地應用於光電顯示器或液晶顯示器背光源等。 以上所述之實施例僅係為說明本發明之技術思想及特點,其 目的在使熟習此項技藝之人士能夠瞭解本發明之内容並據以實 施,當不能以之限定本發明之專利範圍,即大凡依本發明所揭示 之精神所作之均等變化或修飾,仍應涵蓋在本發明之專利範圍 8 200929457 【圖式簡單說明】 ,1圖為習知發光元件之構造示意圖。 音圖第2八至2K冑為本發明第一實施例製造流程之各步驟構造示 第3AS3F圖為本發明第二實施例製造流程之各步驟構造示意Ο [Summary] The purpose of the present invention is to provide a light-emitting element comprising a telecrystalline thin film structure, a f' and a carrier, and the silicidal thin film structure is formed in the light-emitting element by an isotropic conductive paste. The grade is directly radiant by the shame _ structure. ,,,, need to penetrate the substrate, to reduce the occurrence of total light reflection, improve the light extraction effect of the direct electricity of this month, the other two eyes to provide a light-emitting element, the conductive conductive adhesive has a vertical current conduction Difficulty, it is not necessary to accurately align the program with the private axis of the lion record, and also make the linear structure of the remote crystal structure and the production line to simplify the process. In the process of the component, the film structure is broken. The purpose is to use the heterogeneous conductive adhesive to fix the special product. The product can be used without the carrier substrate to increase the diversity of the product. This ^^==^ is attached to Lai's detailed remuneration, # is easier to understand. This is the function of each month. L Embodiments The second to second KK is a schematic diagram of the steps of the manufacturing process of the first embodiment of the present invention 200929457. As shown in FIGS. 2A and 2B, a growth substrate 2 is provided, and a telecrystalline thin film structure 22 is grown on the growth substrate 2 by a conventional method such as Chemical Vapor Deposition (CVD). Wherein the insect crystal film structure 22 is from bottom to top, in order to be the first conductive semiconductor layer 222, the light emitting layer 226, and the second conductive semiconductor layer 224^, as shown in FIGS. 2C and 2D, A connection layer 24 is coated on the amorphous film structure 22, and a temporary substrate 26 is connected to an epitaxial thin film structure 22 by the connection layer 24. The connection layer 24 is made of a material having a bonding property, such as Polyimine© (PI), stupid cyclobutene (BCB) or perfluorocyclobutane (PFCB) and combinations of the above materials. Then, it is removed by a conventional laser lift-off method, mechanical grinding method, diy etching, wet etching or chemical mechanical polishing (Chemieal MechaniCalP〇lishing, CMP). The substrate 20 is grown to expose the epitaxial film structure 22, as shown in FIG. 2E; then, the surface of the partial epitaxial film structure 22 is selectively engraved by photolithography until the first conductive semiconductor layer 222 is exposed. Forming an l-type structure as shown in FIG. 2F; and then, as shown in FIG. 2G, a first electrode 28 and an unetched telecrystalline film are formed on the exposed first conductive semiconductor layer 222, respectively. A second electrode 30 is formed on the surface of the structure 〇22. Subsequently, as shown in FIG. 2H, a carrier substrate 42 is provided, and a first contact pad 44 and a second contact pad 46 are formed on the carrier substrate 42 to form a carrier 40, and then an anisotropic conductive adhesive is applied. Film, ACF) 50 is above the carrier 40; wherein, the heterogeneous conductive adhesive 50 used herein is preferably a transparent anisotropic conductive adhesive; the carrier substrate 42 can also be matched with materials of different material systems, such as an elastic substrate, high Thermally conductive substrates or glass substrates, etc. 'to increase product diversity. Next, the structure shown in FIG. 2G is flipped so that the first electrode 28 and the second electrode 3 are positioned below the stray film structure 22 and correspond to the first contact pad 44 and the second contact pad 46 on the carrier 40, respectively. Moreover, an external force is applied to press the epitaxy 6 200929457. The gap between the 28 spring electrode 30 and the second contact pad 44 is 5 〇, and electrical connection current can still be generated. The square conductive paste is cut as shown in Fig. 2J, and the energy is supplied by laser, ultraviolet light (10), or thermal energy, and 24 ❹ is removed to form the temporary level 26' to form a pattern as shown in Fig. 2K. The light-emitting element 2〇〇. Figure. 3 to 3F are diagrams showing the steps of the manufacturing process of the second embodiment of the present invention as shown in FIG. 3 'step of removing the growth substrate 2 shown in FIG. 2 = = selective surface of the film structure 22 Etching to form at least the trenches 32 of the stern-conducting semiconductor 222; wherein the trenches 32 are divided into the first platform and the second platform (not shown); The first electrode and the second plate are respectively formed on the first platform and the second platform, wherein the upper surface 60a of the first electrode 60 and the upper surface of the second electrode 2 are required to be Located on the same level. Next, as shown in FIG. 3C, the structure of FIG. 3B is reversed so that the first electrode 60 and the second contact 塾 44 on the carrier 40 of the insect crystal film structure 22 and the second contact 塾 are 々kit heterogeneous conductive adhesive 5Q connects with healthy 4G and stupid crystal, and provides a combined crystal film structure 22 and carrier 40, as shown in Fig. 3D; then, %... shows the 'energy' to melt the connection I 24; and then the temporary substrate is removed to form a light-emitting element 300 as shown in the 3F. In addition, since the upper surface 6〇a of the light-emitting element electrode 60 is tied to the upper surface 62a of the second electrode 62; the same horizontal plane' Therefore, as shown in FIG. 6, the first electrode 60 is in contact with the seventh 200929457. The pad 44 and the second electrode 62 are in direct contact with the second contact pad 46, and the electrical connection between the first and second electrodes and the second and second contact pads is reinforced by the non-isotropic conductive thin film 50. Since the dissimilar conductive adhesive 5 in the first and second embodiments of the present invention uses a transparent isotropic conductive paste, it can be further as shown in FIGS. 4A and 4B on the carrier substrate 42 and the first contact pads 44 and A reflective layer 48 is formed between the two contact pads 46. The reflective layer 48 may be made of indium (In), tin (Sn), Sau (A1), gold (Au), Ming (Pt), and zinc (Ζι〇, Silver (Ag), titanium (Ti), tin (Pb), germanium (Ge), copper (Cu), nickel (10), gold telluride (AuBe), germanium telluride (AuGe), zincated gold (AuZn), Lead (PbSn), tantalum nitride (SiNx), yttrium oxide (SiO2), alumina (A1203), titanium oxide (Ti〇2), magnesium oxide (Mg〇), combinations of the above materials or dispersed Bragg reflection A layer (Distributed Bragg Reflector, DBR) is used to reflect the light emitted by the light-emitting layer 226 toward the carrier 40, thereby improving the light extraction efficiency of the light-emitting element. In order to reduce the total reflection of light in the epitaxial film structure 22, As shown in FIGS. 5A and 5B, the light-emitting element 2 or the light-emitting surface of the epitaxial film structure 22 of the light-emitting element 300 is subjected to a roughening process to further improve the light extraction efficiency. As shown in Figure 7, a plurality of epitaxial film structures 22 having a first electrode and a second electrode are fixed on the carrier 4 by an anisotropic film 5〇 to form a large area of the light-emitting element 400; The carrier substrate 42 may be a material such as an elastic substrate, a high thermal conductivity substrate or a glass substrate; and such a large-area light-emitting device 4 can be widely applied to a photoelectric display or a liquid crystal display backlight, etc. The invention is only intended to illustrate the technical idea and the features of the present invention, and the purpose of the invention is to enable those skilled in the art to understand the contents of the present invention and to implement the invention. The equivalent variation or modification of the disclosed spirit should still be covered by the patent scope 8 200929457 of the present invention. [Fig. 1 is a schematic diagram of a schematic diagram, and Fig. 1 is a schematic diagram of the structure of a conventional light-emitting element. The steps of the manufacturing process of the first embodiment of the invention show that the third AS3F diagram is a schematic configuration of the steps of the manufacturing process of the second embodiment of the present invention.
第4A與4B圖為本發明另一實施例之構造示意圖。 第5A與5B圖為本發明又一實施例之構造示意圖。 第6圖為本發明再一實施例之構造示意圖。 第7圖為本發明另一實施例之構造示意圖。 Ο 【主要元件符號說明】 1〇〇覆晶結構發光二極體 120發光疊層 180絕緣基板 100成長基板 222第一導電型半導體層 226發光層 26暫時基板 30、62第二電極 60a第一電極上表面 42載體基板 46第二接觸墊 48反射層 200、300、400發光元件 110透明基板 140、142 電極 182、184連接墊 22磊晶薄膜結構 224第二導電型半導體 24連接層 28、60 第一電極 40載體 62a第二電極上表面 44第一接觸墊 32溝槽 50異方導電膠 94A and 4B are schematic views showing the configuration of another embodiment of the present invention. 5A and 5B are schematic views showing the configuration of still another embodiment of the present invention. Figure 6 is a schematic view showing the configuration of still another embodiment of the present invention. Figure 7 is a schematic view showing the configuration of another embodiment of the present invention. Ο [Main component symbol description] 1〇〇 flip chip structure light emitting diode 120 light emitting layer 180 insulating substrate 100 growth substrate 222 first conductive type semiconductor layer 226 light emitting layer 26 temporary substrate 30, 62 second electrode 60a first electrode Upper surface 42 carrier substrate 46 second contact pad 48 reflective layer 200, 300, 400 light emitting element 110 transparent substrate 140, 142 electrode 182, 184 connection pad 22 epitaxial film structure 224 second conductivity type semiconductor 24 connection layer 28, 60 An electrode 40 carrier 62a second electrode upper surface 44 first contact pad 32 trench 50 anisotropic conductive adhesive 9