TW200928629A - Motor controller - Google Patents

Motor controller Download PDF

Info

Publication number
TW200928629A
TW200928629A TW097127974A TW97127974A TW200928629A TW 200928629 A TW200928629 A TW 200928629A TW 097127974 A TW097127974 A TW 097127974A TW 97127974 A TW97127974 A TW 97127974A TW 200928629 A TW200928629 A TW 200928629A
Authority
TW
Taiwan
Prior art keywords
control gain
gain
control
feedback
adjustment
Prior art date
Application number
TW097127974A
Other languages
Chinese (zh)
Inventor
Fukashi Andoh
Original Assignee
Yaskawa Denki Seisakusho Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Denki Seisakusho Kk filed Critical Yaskawa Denki Seisakusho Kk
Publication of TW200928629A publication Critical patent/TW200928629A/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

To allow a motor with a connected load to be subjected to control gain adjustment safely and quietly without becoming vibratory. A motor controller includes a mechanical constant identifier (121) that receives a response V for frequency response measurement and outputs a mechanical constant, a stability boundary calculator (122) that receives the mechanical constant for gain adjustment and outputs a stability boundary, a calibration curve calculator (123) that receives the stability boundary and outputs a calibration curve, an initial value setter (124) that receives the calibration curve and outputs a control gain initial value Kin, and a control gain adjuster (125) that receives the calibration curve and the control gain initial value Kin and outputs a compensation amount Kf and a feedback control gain Kvj.

Description

200928629 九、發明說明 【發明所屬之技術領域】 本發明是關於調整控制增益對連結負荷後的馬達的動 作進行控制的馬達控制裝置。 【先前技術】 習知的馬達控制裝置,是將過渡時的位置隨動偏差的 ^ 誤差自乘面積即位置偏差評價函數成爲最小,並且,將位 置比例控制增益和速度比例控制增益設定在穩態時的扭矩 指令的誤差自乘面積不超過閾値(例如參照專利文獻1 ) 〇 第5圖是表示習知的馬達控制裝置一例構成方塊圖。 第5圖中,圖號501爲增益自動調整時目標指令部,圖號 5 02爲位置比例控制增益,圖號503爲速度比例控制增益 ,圖號504爲扭矩控制部,圖號505爲編碼器,圖號506 φ 爲馬達,圖號507爲滾珠螺桿機構,圖號508爲位置偏差 評價函數運算部,圖號5 09爲位置偏差評價函數記憶部, 圖號510爲評價函數最小增益決定部,圖號511爲扭矩指 令評價函數運算部,圖號512爲扭矩指令評價函數記憶部 ,圖號5 1 3爲扭矩指令判定部。 增益自動調整時目標値指令部50 1輸出位置指令Xr 。位置比例控制增益502是輸入從位置指令Xr減去位置 數據Xf後的位置隨動偏差Ex和位置比例控制增益設定値 Kp,然後輸出位置隨動偏差Ex已放大位置比例控制增益 -4- 200928629 設定値Κρ倍後的訊號即速度指令νΓ。 速度比例控制增益5 03輸入從速度指令Vr減去速度 數據Vf後的速度隨動偏差Ev和速度比例控制增益設定値 Κν,對扭矩指令Tref進行計算然後往扭矩控制部504及扭 矩指令評價函數運算部511輸出。 扭矩控制部504輸入扭矩指令Tref和編碼器脈衝,對 位置數據Xf和速度數據Vf進行計算後回饋,將馬達電流 ^ Im輸出至馬達506。 編碼器505檢測馬達5 06的位置然後作爲上述編碼器 脈衝往扭矩控制部504輸出。 馬達506輸入馬達電流Im驅動其所連結的滾珠螺桿 機構5 07。 位置偏差評價函數運算部508是輸入位置隨動偏差 Ex然後將過渡時的位置隨動偏差Ex的誤差自乘面積即位 置偏差評價函數往位置偏差評價函數記憶部509輸出。 〇 位置偏差評價函數記憶部509輸入上述位置偏差評價 函數然後記憶該輸入訊號作爲位置偏差評價函數記億値往 評價函數最小增益決定部510輸出。 評價函數最小增益決定部510輸入上述位置偏差評價 函數記憶値然後將該輸入訊號爲最小的控制增益的組合即 評價函數最小增益往扭矩指令判定部513輸出。 扭矩指令評價函數運算部511輸入扭矩指令Tref然後 將穩態時的扭矩指令Tref的誤差自乘面積即扭矩指令評價 函數往扭矩指令評價函數記憶部512輸出。 -5- 200928629 扭矩指令評價函數記憶部512輸入上述扭矩指令評價 函數然後記憶該輸入訊號作爲扭矩指令評價函數記憶値往 扭矩指令判定部5 1 3輸出。 扭矩指令判定部5 1 3輸入上述評價函數最小增益和上 述扭矩指令評價函數記憶値,當上述扭矩指令評價函數記 憶値不超過閩値時,將上述評價函數最小增益作爲位置比 例控制增益設定値Kp往位置比例控制增益502輸出,又 φ 將上述評價函數最小增益作爲速度比例控制增益設定値 Κν往速度比例控制增益5 03輸出。 如上述,習知的馬達控制裝置是將過渡時的位置隨動 偏差的誤差自乘面積即位置偏差評價函數成爲最小,並且 ,將位置比例控制增益和速度比例控制增益設定成穩態時 的扭矩指令的誤差自乘面積不超過閩値。 〔專利文獻1〕日本特開平6-208404號公報(第7 頁、第1圖) ❹ 【發明內容】 〔發明欲解決之課題〕 習知的馬達控制裝置,因是將過渡時的位置偏差的誤 差自乘面積即位置偏差評價函數成爲最小,並且,將位置 比例控制增益和速度比例控制增益設定成穩態時的扭矩指 令的誤差自乘面積不超過閾値,所以控制系就包括觀測器 、濾波器、空載時間等,當包括控制對象的控制系爲穩定 的控制增益的穩定區域成爲複雜形狀時,馬達所連結負荷 -6- 200928629 動作會產生振動或不穩定,以致有無法進行控制 的問題。 本發明是有鑑於上述問題點而爲的發明,目 一種可算出控制增益穩定區域的同時可在上述穩 調整控制增益,使馬達所連結負荷的動作不會產生 不穩定,可安靜、短時間調整控制增益的馬達控制 q 〔用以解決課題之手段〕 爲解決上述問題,本發明是構成如下述。 申請專利範圍第1項所記載的發明,具備:使 V r )和控制對象的響應(V )成爲一致進行控制運 出干擾校正前扭矩指令(Τα)的回饋控制器;根 述干擾校正前扭矩指令(Τα)減去干擾推定値( 的値即扭矩指令(Tref)和上述響應(V ),算出 擾推定値(Td)的干擾觀測器;輸入頻率響應測定 〇 ( Fr )和扭矩指令(Tref ),在頻率響應測定時將 率響應測定用訊號(Fr )作爲電流指令(lr )輸出 益調整時將上述扭矩指令(Tref )作爲電流指令( 出的輸入訊號轉換器;根據上述電流指令(Ir)對 制對象馬達流動馬達電流(Im )進行驅動的扭矩控 及根據上述響應(V)和扭矩指令(Tref)算出振 訊號(Vs )的振動控制部,構成對上述指令(Vr ) 述振動控制訊號(Vs )的馬達控制裝置,其特徵爲 根據上述響應(V)算出上述回饋控制器回饋控制 益調整 是提供 區域內 振動或 裝置。 指令( 算,算 據從上 Td)後 上述干 用訊號 上述頻 ,在增 ΙΓ)輸 上述控 制器; 動控制 加入上 ,具備 增益( -7- 200928629 KVj )和上述校正量(Kf)的控制增益調整部。 此外,申請專利範圍第2項所記載的發明是於申請專 利範圍第1項所記載的發明中,其特徵爲,上述頻率響應 測定用訊號(Fr)是掃頻正弦波訊號。 另外,申請專利範圍第3項所記載的發明是於申請專 利範圍第1項所記載的發明中,其特徵爲,上述頻率響應 測定用訊號(Fr)是以複數頻率正弦波構成。 Q 此外,申請專利範圍第4項所記載的發明是於申請專 利範圍第1項所記載的發明中,其特徵爲,上述控制增益 調整部,是由下述構成:在頻率響應測定時根據上述響應 (V)對上述控制對象的機械常數進行辨識的機械常數辨 識器;根據上述機械常數算出包括上述回饋控制器和上述 控制對象的閉環系穩定用的上述回饋控制增益和上述校正 量(Kf)穩定區域的外形線即穩定界線的穩定界線運算器 ;根據上述穩定界線算出能夠調整上述回饋控制增益和上 〇 述校正量(Kf)的調整曲線以在維持上述控制對象穩定性 的狀態下提高上述閉環系響應性和干擾抑制特性的調整曲 線運算器;根據上述調整曲線算出控制增益調整的上述回 饋控制增益(KVj )和校正量(Kf )的初期値即控制增益 初期値(Kin)的初期値設定器;及根據上述調整曲線和 上述控制增益初期値(Kin)調整上述回饋控制增益(KVj )和上述校正量(Kf)的控制增益調整器。 另外,申請專利範圍第5項所記載的發明是於申請專 利範圍第4項所記載的發明中,其特徵爲,上述機械常數 -8- 200928629 辨識器是算出上述控制對象的頻率響應根據上述頻率響應 算出上述機械常數。 此外,申請專利範圍第6項所記載的發明是於申請專 利範圍第4項所記載的發明中,其特徵爲,上述穩定界線 運算器是根據上述機械常數算出上述閉環系的等價單位回 饋系統,使上述等價單位回饋系的相位裕度可成爲正數的 相位裕度設定値地算出上述穩定界線。 Q 另外,申請專利範圍第7項所記載的發明是於申請專 利範圍第6項所記載的發明中,其特徵爲,上述相位裕度 設定値,設定成可在上述機械常數有不確定性的狀況時容 許上述不確定性使上述閉環系穩定的値。 此外,申請專利範圍第8項所記載的發明是於申請專 利範圍第4項所記載的發明中,其特徵爲,上述調整曲線 運算器在上述穩定曲線爲1個時,以「上述校正量(Kf) 爲零,上述回饋控制增益(Kvj)爲可朝上述穩定曲線的 φ 上述校正量(Kf)爲零的點即控制增益最佳値形成增加的 直線」作爲上述調整曲線輸出,當上述穩定曲線爲2個時 ,以「朝向通過2個上述穩定曲線中間成爲2個上述穩定 曲線交點即控制增益最佳値的曲線」作爲上述調整曲線輸 出。 另外,申請專利範圍第9項所記載的發明是於申請專 利範圍第8項所記載的發明中,其特徵爲,上述初期値設 置器,是以「上述調整曲線上的點且從上述控制增益最佳 値離開設定値量的點之上述回饋控制增益(Kvj)和上述 200928629 校正量(Kf)」作爲上述控制增益初期値(Kin)輸出。 此外,申請專利範圍第1 0項所記載的發明是於申請 專利範圍第9項所記載的發明中,其特徵爲,上述控制增 益調整器,是以沿著調整曲線從上述控制增益初期値( Ku )朝上述控制增益最佳値增加上述回饋控制增益(Kvj )和上述校正量(Kf)然後加以輸出。 〇 〔發明效果〕 根據申請專利範圍第1項至第7項所記載的發明時, 可算出控制增益的穩定區域,可將控制增益在其穩定區域 內加以調整,因此不會造成控制對象產生振動,能夠安靜 、安全調整控制增益,此外能夠實現自動又高的控制性能 〇 根據申請專利範圍第8項至第1 0項所記載的發明時 ’因是將控制增益在穩定區域內最不容易造成振動的調整 〇 曲線上從接近控制增益最佳値的控制增益初期値進行調整 ,所以不會造成控制對象產生振動,能夠安靜、安全、短 時間調整控制增益,此外還能夠實現自動又高的控制性能 【實施方式】 〔發明之最佳實施形態〕 以下,參照圖面對本發明實施形態進行說明。 實際的馬達控制裝置內藏有各種功能或手段,但圖中 -10- 200928629 只記載說明本發明有關的功能或手段。此外,對於以下同 一名稱是儘可能標示同一圖號省略重覆說明。 〔實施例1〕 第1圖是表示本發明第1實施例馬達控制裝置槪要構 成方塊圖。第1圖中,圖號101爲指令產生器圖號,圖號 102爲回饋控制器,圖號103爲輸入訊號轉換器,圖號 0 104爲扭矩控制器,圖號105爲控制對象,圖號106爲響 應檢測器,圖號107爲干擾觀測器,圖號108爲頻率響應 測定用訊號產生器,圖號110爲振動抑制部,圖號120爲 控制增益調整部,圖號111爲振動成份運算器,圖號112 爲相位調整器,圖號113爲校正量調整器,圖號121爲機 械常數識別器,圖號122爲穩定界線運算器,圖號123爲 調整曲線運算器,圖號124爲初期値設定器,圖號125爲 控制增益調整器。 〇 控制對象105是連結著負荷的馬達。 指令產生器1 〇 1是輸出指令Vr。 響應檢測器1 06是對控制對象1 05的響應進行檢測, 然後輸出響應V。 頻率響應測定用訊號產生器108是輸出頻率響應測定 用訊號Fr。 回饋控制器102是輸入從上述指令Vr減去響應v又 加入振動抑制訊號Vs後的振動抑制隨動偏差,和回饋控 制增益KVj,然後算出干擾校正前扭矩指令T a。 -11 - 200928629 輸入訊號轉換器103是輸入從上述干擾校正前扭矩指 令Τβ,減去干擾推定値Td後的扭矩指令Tref,和頻率響 應測定用訊號Fr,然後在增益調整時以扭矩指令Tref作爲 電流指令Ir輸入至扭矩控制器1 04,在頻率響應計測時以 頻率響應測定用訊號Fr作爲電流指令Ir輸入至扭矩控制 器 104。 扭矩控制器1 04輸入電流指令Ir,將馬達電流Im流 0 動至控制對象105的馬達藉此驅動馬達。 干擾觀測器107在增益調整時輸入扭矩指令Tref和響 應V然後算出干擾推定値Td。 振動抑制器110是以振動成份運算器11、相位調整 器112及校正量調整器113構成,在增益調整時,輸入扭 矩指令Tref和響應V和校正量Kf然後算出振動抑制訊號 Vs。 振動成份運算器111輸入扭矩指令Tref和響應V,然 〇 後算出響應V的振動成份輸出至相位調整器112。 相位調整器112輸入上述振動成份,然後算出該輸入 訊號經調整相位所獲得的相位調整振動成份輸出至校正量 調整器113。 校正量調整器113輸入上述相位調整振動成份和校正 量Kf,然後算出對上述相位調整振動成份乘以校正量Kf 後的振動抑制訊號Vs。 控制增益調整部120是以機械常數辨識器121、穩定 界線運算器122、調整曲線運算器123、初期値設定器 -12- 200928629 124及控制增益調整器125構成,在頻率饗應計測時’輸 入響應V,在增益調整時,算出校正量Kf和上述回饋控 制增益。 機械常數辨識器1 2 1在頻率響應計測時’輸人響應V ,然後算出控制對象105的機械常數輸出至穩定界線運算 器 122。 具體而言,機械常數辨識器121是根據響應V算出 ¢) 頻率響應(伯德圖),從其振幅圖的溝槽和引發尖峰的頻 率算出反共振頻率、共振頻率,從上述溝槽和上述尖峰的 Q値算出反共振的衰減係數和共振的衰減係數,根據比上 述反共振頻率當中最低的頻率還相當低之頻率的上述振幅 圖的値算出控制對象1 05的慣性矩,將上述反共振頻率、 上述共振頻率、上述衰減係數、上述慣性矩作爲上述機械 常數。 穩定界線運算器122在增益調整時,輸入機械常數, Φ 算出可使包括回饋控制器1 〇 2、控制對象1 〇 5、響應檢測 器106、干擾觀測器107的閉環系作爲臨界穩定的回饋控 制增益Kvj和校正量Kf之組合的曲線即穩定界線,然後 輸出至調整曲線運算器123。 調整曲線運算器123在增益調整時,輸入上述穩定界 線’算出上述穩定界線所包圍的穩定區域內響應V不會 成爲振動的回饋控制增益KVj和校正量Kf之組合形成的 調整曲線’然後輸出至初期値設定器124及控制增益調整 器 125 ° -13- 200928629 初期値設定器124在增益調整時輸入上述調整曲線, 算出位於上述調整曲線上相當接近通常動作時響應V爲 最佳之點即最佳控制增益點的點以該點作爲控制增益初期 値Kin輸出至控制增益調整器125。 控制增益調整器125在增益調整時,輸入上述調整曲 線和控制增益初期値Kin,從控制增益初期値Kin沿著上 述調整曲線朝上述最佳控制增益點改變校正量Kf和回饋 〇 控制增益KVj,將校正量Kf輸出至校正量調整器113,將 回饋控制增益KVj輸出至回饋控制器1 02。 頻率響應測定用訊號Fr,只要能夠測定馬達控制裝置 頻率響應的訊號則不拘任何訊號,但以掃頻正弦波訊號爲 佳。此外,也可以複數頻率正弦波構成的訊號。將頻率響 應測定用訊號Fr作爲掃頻正弦波訊號時,在短時間就能 夠正確測出控制對象105的頻率響應。另外,將頻率響應 測定用訊號Fr以複數頻率正弦波構成的訊號時,短時間 〇 就能夠正確測出控制對象105的頻率響應。 本發明和習知技術不同的部份在於具備有下述構成的 部份,即,具備有:在頻率響應計測時輸入響應後輸出機 械常數的機械常數辨識器121;在增益調整時輸入上述機 械常數後輸出穩定界線的穩定界線運算器122;輸入上述 穩定界線後輸出調整曲線的調整曲線運算器123;輸入上 述曲線後輸出控制增益初期値Kin的初期値設定器1 24 ; 及輸入上述調整曲線和控制增益初期値Kin後輸出校正量 Kf和回饋控制增益KVj的控制增益調整器125。 -14- 200928629 以下,揭示控制增益調整部120算出校正量Kf和回 饋控制增益KVj的詳細結構。 本實施例將回饋控制器1 02經由和速度PI控制器結 合在1次的低通濾波器即扭矩指令濾波器的串聯所構成, 控制對象1 05包括陷波濾波器、空載時間及三慣性機構。 此外,指令Vr爲速度指令,響應V爲馬達速度(以 下稱「馬達速度V」)。 Q 速度PI控制器的傳遞函數Ge(s)、扭矩指令濾波器的 傳遞函數Gt(s)、陷波濾波器的傳遞函數Gn(s)、三慣性機 構的傳遞函數Gp(s),及帶通濾波器即相位調整器112的 傳遞函數Gb(s),分別以(1 )式至(5 )式表示。 !:+y (i) \ 1iS) 唯,KVj是速度比例控制增益,Ti是速度控制積分時 間常數。 〇 速度比例控制增益KVj及速度控制積分時間常數Ti屬 於回饋控制增益,但眾所周知只要決定速度比例控制增益 Kvj就可從屬地決定速度控制積分時間常數Ti,因此本實 施例對於回饋控制增益是只針對速度比例控制增益KVj的 算出方法進行說明。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor control device that adjusts a control gain to control an operation of a motor after a load is connected. [Prior Art] A conventional motor control device minimizes the positional deviation evaluation function of the positional deviation of the positional deviation at the time of transition, and sets the position proportional control gain and the speed proportional control gain to a steady state. The error self-sufficient area of the torque command does not exceed the threshold 値 (see, for example, Patent Document 1). FIG. 5 is a block diagram showing an example of a conventional motor control device. In Fig. 5, the figure number 501 is the target command unit during gain automatic adjustment, the figure number 52 is the position proportional control gain, the figure number 503 is the speed ratio control gain, the figure number 504 is the torque control part, and the figure number 505 is the encoder. Figure 506 φ is the motor, Figure 507 is the ball screw mechanism, Figure 508 is the position deviation evaluation function calculation unit, Figure 5 09 is the position deviation evaluation function memory, and Figure 510 is the evaluation function minimum gain determination unit. Reference numeral 511 is a torque command evaluation function calculation unit, reference numeral 512 is a torque command evaluation function storage unit, and reference numeral 5 13 is a torque command determination unit. The target 値 command unit 50 1 outputs the position command Xr at the time of automatic gain adjustment. The position proportional control gain 502 is a position following deviation Ex and a position proportional control gain setting 値Kp after inputting the position data Xf from the position command Xr, and then outputting the position following deviation Ex amplified position proportional control gain -4-200928629 setting The signal after 値Κρ times is the speed command νΓ. The speed proportional control gain 503 inputs the speed following deviation Ev and the speed proportional control gain setting 値Κν after subtracting the speed data Vf from the speed command Vr, calculates the torque command Tref, and then calculates the torque command unit 504 and the torque command evaluation function. The part 511 outputs. The torque control unit 504 inputs the torque command Tref and the encoder pulse, calculates the position data Xf and the speed data Vf, and returns the motor current to the motor 506. The encoder 505 detects the position of the motor 506 and outputs it to the torque control unit 504 as the above encoder pulse. The motor 506 inputs the motor current Im to drive the ball screw mechanism 5 07 to which it is coupled. The positional deviation evaluation function calculation unit 508 outputs the positional deviation deviation Ex, and then outputs the positional deviation evaluation function, which is the error multiplication area of the positional follow-up deviation Ex at the time of transition, to the positional deviation evaluation function storage unit 509.位置 The positional deviation evaluation function storage unit 509 inputs the positional deviation evaluation function and then stores the input signal as the positional deviation evaluation function, and outputs it to the evaluation function minimum gain determination unit 510. The evaluation function minimum gain determining unit 510 inputs the above-described positional deviation evaluation function memory 値 and then the combination of the control gains that minimize the input signal, that is, the evaluation function minimum gain is output to the torque command determining unit 513. The torque command evaluation function calculation unit 511 inputs the torque command Tref and outputs the torque command evaluation function, that is, the torque command evaluation function of the torque command Tref at the steady state, to the torque command evaluation function storage unit 512. -5- 200928629 The torque command evaluation function storage unit 512 inputs the torque command evaluation function and then stores the input signal as the torque command evaluation function memory to the torque command determination unit 5 1 3 . The torque command determining unit 5 1 3 inputs the evaluation function minimum gain and the torque command evaluation function memory 値, and when the torque command evaluation function does not exceed 闽値, the evaluation function minimum gain is set as the position proportional control gain 値Kp The position proportional control gain 502 is outputted, and φ is outputted as the speed proportional control gain setting 値Κν to the speed proportional control gain 503 as the speed of the evaluation function minimum gain. As described above, the conventional motor control device minimizes the error deviation self-occupying area, that is, the positional deviation evaluation function at the time of transition, and sets the position proportional control gain and the speed proportional control gain to the steady state torque. The error self-sufficiency area of the command does not exceed 闽値. [Patent Document 1] Japanese Laid-Open Patent Publication No. Hei 6-208404 (page 7 and Fig. 1) ❹ [Summary of the Invention] The conventional motor control device is configured to shift the position at the time of transition. The error self-multiplied area, that is, the position deviation evaluation function becomes the minimum, and the error proportional multiplication area of the torque command when the position proportional control gain and the speed proportional control gain are set to the steady state does not exceed the threshold 値, so the control system includes the observer and the filter When the control unit including the control object has a stable control gain and the stable region becomes a complicated shape, the load connected to the motor -6-200928629 may cause vibration or instability, so that there is a problem that control cannot be performed. . The present invention has been made in view of the above problems, and it is possible to calculate a control gain stabilization region while maintaining the control gain in the above-described manner, so that the operation of the load connected to the motor does not become unstable, and the adjustment can be quietly and in a short time. Motor control q for controlling gain [Means for Solving the Problem] In order to solve the above problems, the present invention is constituted as follows. According to the invention of the first aspect of the invention, the feedback controller (Vr) and the control target response (V) are matched to each other to control the pre-interference correction torque command (Τα); The command (Τα) subtracts the disturbance presumption 値 (the torque command (Tref) and the above response (V), calculates the disturbance observer T (Td) interference observer; the input frequency response measurement 〇 (Fr) and the torque command (Tref In the frequency response measurement, when the rate response measurement signal (Fr) is used as the current command (lr), the torque command (Tref) is used as the current command (output signal converter; according to the above current command (Ir) a torque control unit that drives the motor current motor current (Im) and a vibration control unit that calculates a vibration signal (Vs) based on the response (V) and the torque command (Tref), and constitutes vibration control for the command (Vr) The motor control device of the signal (Vs) is characterized in that the feedback of the feedback controller is calculated based on the response (V) to provide an intra-area vibration or device. Calculate, the data from the above Td) after the above-mentioned dry signal is used to transmit the above controller; the dynamic control is added, with gain (-7-200928629 KVj) and the above control amount (Kf) control gain adjustment In the invention according to the first aspect of the invention, the frequency response measurement signal (Fr) is a frequency sine wave signal. The invention according to the invention of claim 1 is characterized in that the frequency response measurement signal (Fr) is formed by a complex frequency sine wave. According to the invention of the first aspect of the invention, the control gain adjustment unit is configured to: according to the response (V) in the frequency response measurement a mechanical constant identifier for identifying a mechanical constant of the control object; and calculating a closed loop system for including the feedback controller and the control target based on the mechanical constant The feedback control gain and the contour line of the correction amount (Kf) stable region, that is, the stability boundary operator of the stability boundary; and the adjustment curve capable of adjusting the feedback control gain and the upper reference correction amount (Kf) according to the stability boundary An adjustment curve calculator for improving the closed-loop responsiveness and the interference suppression characteristic while maintaining the stability of the control target; and calculating the feedback gain (KVj) and the correction amount (Kf) of the control gain adjustment based on the adjustment curve That is, an initial clamper that controls the gain initial 値 (Kin); and a control gain adjuster that adjusts the feedback control gain (KVj) and the correction amount (Kf) based on the adjustment curve and the control gain initial 値 (Kin). The invention according to claim 4, wherein the mechanical constant -8-200928629 identifier calculates a frequency response of the control target according to the frequency. The above mechanical constant is calculated in response. The invention according to claim 4, wherein the stable boundary line operator calculates the equivalent unit feedback system of the closed loop system based on the mechanical constant. The stability margin is calculated by setting the phase margin of the equivalent unit feedback system to a positive phase margin. In the invention described in claim 6, the phase margin setting 设定 is set such that the mechanical constant is uncertain. The above-mentioned uncertainty is allowed in the situation to make the closed loop system stable. In the invention described in the fourth aspect of the invention, the adjustment curve computing unit uses the above correction amount when the stability curve is one. Kf) is zero, and the feedback control gain (Kvj) is a straight line which can increase the control gain (値, which is a point at which the correction amount (Kf) is zero to the stability curve, and is increased as the above-mentioned adjustment curve output. When the number of the two curves is "the curve which becomes the intersection of the two stable curves, which is the intersection of the two stable curves in the middle of the two stable curves", the above-mentioned adjustment curve is output. The invention of the invention of claim 8 is characterized in that the initial setting device is "the point on the adjustment curve and from the control gain" The feedback control gain (Kvj) and the above-mentioned 200928629 correction amount (Kf) of the point at which the optimum 値 is set to the set amount are output as the control gain initial 値 (Kin). The invention described in claim 9 is the invention according to claim 9, wherein the control gain adjuster is configured to follow an adjustment curve from an initial stage of the control gain ( Ku) increases the above-described feedback control gain (Kvj) and the above-described correction amount (Kf) toward the above-described control gain optimum and then outputs it. 〇 [Effect of the Invention] According to the invention described in the first to seventh aspects of the patent application, the stable region of the control gain can be calculated, and the control gain can be adjusted in the stable region, so that the control object does not vibrate. The control gain can be adjusted quietly and safely, and the automatic and high control performance can be realized. According to the invention described in the eighth to tenth claims of the patent application, the control gain is the least likely to be caused in the stable region. The vibration adjustment curve is adjusted from the initial control gain close to the control gain, so that the control object does not vibrate, the control gain can be adjusted quietly, safely, and in a short time, and automatic and high control can be realized. [Embodiment] [Best Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The actual motor control device contains various functions or means, but only the functions or means for explaining the present invention are described in the figure - -10-200928629. In addition, the same name is used to omit the same figure number as much as possible. [Embodiment 1] Fig. 1 is a block diagram showing a schematic configuration of a motor control device according to a first embodiment of the present invention. In Fig. 1, the figure 101 is the command generator figure number, the figure 102 is the feedback controller, the figure 103 is the input signal converter, the figure 0 104 is the torque controller, and the figure 105 is the control object, the figure number 106 is a response detector, reference numeral 107 is an interference observer, reference numeral 108 is a frequency response measurement signal generator, picture number 110 is a vibration suppression unit, picture number 120 is a control gain adjustment unit, and picture number 111 is a vibration component operation The figure number 112 is the phase adjuster, the figure 113 is the correction amount adjuster, the figure 121 is the mechanical constant identifier, the figure 122 is the stability boundary operator, the figure 123 is the adjustment curve operator, and the figure 124 is The initial setter, figure 125, is the control gain adjuster. 〇 The control object 105 is a motor to which a load is connected. The command generator 1 〇 1 is the output command Vr. The response detector 106 detects the response of the control object 105 and then outputs a response V. The frequency response measurement signal generator 108 is an output frequency response measurement signal Fr. The feedback controller 102 inputs the vibration suppression follow-up deviation after subtracting the response v from the command Vr and adding the vibration suppression signal Vs, and the feedback control gain KVj, and then calculates the disturbance correction pre-torque command T a . -11 - 200928629 The input signal converter 103 inputs the torque command Tref after subtracting the interference estimation 値Td from the disturbance correction torque command Τβ, and the frequency response measurement signal Fr, and then uses the torque command Tref as the torque adjustment. The current command Ir is input to the torque controller 104, and is input to the torque controller 104 by the frequency response measurement signal Fr as the current command Ir at the time of frequency response measurement. The torque controller 104 inputs a current command Ir to move the motor current Im to the motor of the control object 105 to thereby drive the motor. The disturbance observer 107 inputs the torque command Tref and the response V at the time of gain adjustment and then calculates the interference estimation 値Td. The vibration suppressor 110 is composed of a vibration component arithmetic unit 11, a phase adjuster 112, and a correction amount adjuster 113. At the time of gain adjustment, the torque command Tref, the response V, and the correction amount Kf are input, and the vibration suppression signal Vs is calculated. The vibration component computing unit 111 inputs the torque command Tref and the response V, and then calculates the vibration component of the response V to output to the phase adjuster 112. The phase adjuster 112 inputs the above-described vibration component, and then calculates a phase adjustment vibration component obtained by adjusting the phase of the input signal to the correction amount adjuster 113. The correction amount adjuster 113 inputs the phase adjustment vibration component and the correction amount Kf, and then calculates the vibration suppression signal Vs obtained by multiplying the phase adjustment vibration component by the correction amount Kf. The control gain adjustment unit 120 is composed of a mechanical constant identifier 121, a stability boundary operator 122, an adjustment curve operator 123, an initial parameter setter-12-200928629124, and a control gain adjuster 125, and is input when the frequency is measured. In response to V, at the time of gain adjustment, the correction amount Kf and the feedback control gain described above are calculated. The mechanical constant identifier 1 2 1 inputs the response V to the frequency response measurement, and then calculates the mechanical constant of the control object 105 to be output to the stabilization boundary operator 122. Specifically, the mechanical constant identifier 121 calculates a frequency response (Bode diagram) based on the response V, and calculates an anti-resonance frequency and a resonance frequency from the frequency of the groove of the amplitude map and the peak of the induced peak, from the groove and the above Q値 of the peak calculates the attenuation coefficient of the anti-resonance and the attenuation coefficient of the resonance, and calculates the moment of inertia of the control object 105 based on the amplitude of the amplitude map which is relatively lower than the lowest frequency among the anti-resonance frequencies, and the anti-resonance is performed. The frequency, the resonance frequency, the attenuation coefficient, and the moment of inertia are used as the mechanical constant. The stability limit line operator 122 inputs a mechanical constant at the time of gain adjustment, and calculates a closed-loop system including the feedback controller 1 〇2, the control object 1 〇5, the response detector 106, and the disturbance observer 107 as a critically stable feedback control. The curve of the combination of the gain Kvj and the correction amount Kf is a stability boundary, and is then output to the adjustment curve operator 123. In the gain adjustment, the adjustment curve operator 123 inputs the above-described stable boundary line 'the adjustment curve formed by the combination of the feedback control gain KVj and the correction amount Kf in which the response V does not become the vibration in the stable region surrounded by the stable boundary line, and then outputs to the adjustment curve The initial setter 124 and the control gain adjuster 125 ° -13 - 200928629 The initial setter 124 inputs the above-mentioned adjustment curve during the gain adjustment, and calculates the point at which the response V is optimal when the adjustment curve is relatively close to the normal operation. The point at which the gain point is controlled is outputted to the control gain adjuster 125 at this point as the control gain initial 値Kin. The control gain adjuster 125 inputs the adjustment curve and the control gain initial 値Kin at the gain adjustment, and changes the correction amount Kf and the feedback 〇 control gain KVj from the control gain initial 値Kin along the adjustment curve toward the optimal control gain point, The correction amount Kf is output to the correction amount adjuster 113, and the feedback control gain KVj is output to the feedback controller 102. The frequency response measurement signal Fr is not limited to any signal as long as it can measure the frequency response of the motor control device, but the sweep sine wave signal is preferred. In addition, a signal composed of a plurality of frequency sine waves can also be used. When the frequency response measurement signal Fr is used as the frequency sine wave signal, the frequency response of the control object 105 can be accurately detected in a short time. Further, when the frequency response measurement signal Fr is a signal composed of a complex frequency sine wave, the frequency response of the control object 105 can be accurately detected in a short time. The present invention differs from the prior art in that it has a portion having a configuration in which a mechanical constant identifier 121 that outputs a mechanical constant after inputting a response during frequency response measurement is provided, and the mechanical input is input during gain adjustment. a constant boundary operator 122 for outputting a stable boundary; an adjustment curve operator 123 for outputting the adjustment curve after inputting the stable boundary; and an initial setter 1 24 for outputting the control gain initial 値Kin after inputting the curve; and inputting the above adjustment curve And a control gain adjuster 125 that outputs a correction amount Kf and a feedback control gain KVj after controlling the gain initial 値Kin. -14-200928629 Hereinafter, the detailed configuration in which the control gain adjustment unit 120 calculates the correction amount Kf and the feedback control gain KVj is disclosed. In this embodiment, the feedback controller 102 is combined with the speed PI controller in a series of low-pass filters, that is, torque command filters, and the control object 105 includes a notch filter, dead time and three inertia. mechanism. Further, the command Vr is a speed command, and the response V is a motor speed (hereinafter referred to as "motor speed V"). Q speed PI controller transfer function Ge(s), torque command filter transfer function Gt(s), notch filter transfer function Gn(s), three inertia mechanism transfer function Gp(s), and band The pass filter, that is, the transfer function Gb(s) of the phase adjuster 112, is expressed by equations (1) to (5), respectively. !:+y (i) \ 1iS) Only KVj is the speed proportional control gain, and Ti is the speed control integral time constant. The 〇 speed proportional control gain KVj and the speed control integral time constant Ti belong to the feedback control gain, but it is known that the speed control integral time constant Ti can be determined subordinately by determining the speed proportional control gain Kvj. Therefore, the feedback control gain of the present embodiment is only for A method of calculating the speed proportional control gain KVj will be described.

唯,T f是扭矩指令過濾時間常數。 -15- 200928629 唯,ωη是陷波濾波器頻率,tn是陷波濾波器衰減 係數Only Tf is the torque command filter time constant. -15- 200928629 Only, ωη is the notch filter frequency, tn is the notch filter attenuation coefficient

唯,J是三慣性機構的總慣性矩,ω rl是第1共振頻 率,Γη是第1共振衰減係數’ ω3ΐ是第1反共振頻率, ral是第1反共振衰減係數’ 〇r2是第2共振頻率, 0 是第2共振衰減係數,ω32是第2反共振頻率,(a2是第 2反共振衰減係數。Only J is the total moment of inertia of the three-inertia mechanism, ω rl is the first resonance frequency, Γη is the first resonance attenuation coefficient 'ω3ΐ is the first anti-resonance frequency, ral is the first anti-resonance attenuation coefficient' 〇r2 is the second The resonance frequency, 0 is the second resonance attenuation coefficient, ω32 is the second anti-resonance frequency, and (a2 is the second anti-resonance attenuation coefficient.

(r-5 + l)? (5) 唯,r是帶通過濾時間常數。 干擾觀測器1〇7是對控制對象105常數無法正確得知 的部份和重力干擾或雜波等造成的干擾進行推定。干擾觀 測器107的傳遞函數是以(6)式表示^(r-5 + l)? (5) Only r is the pass filter time constant. The disturbance observer 1〇7 estimates the interference caused by the gravity of the control object 105 and the interference caused by gravity interference or clutter. The transfer function of the disturbance observer 107 is expressed by the equation (6) ^

唯,T/是干擾推定値Td的拉普拉斯變換,J〇是公稱 慣性矩,V是正規化推定干擾D的拉普拉斯變換,^是 馬達速度V的拉普拉斯變換,Tref4是可使控制對象105構 成用馬達驅動的扭矩產生的扭矩指令Tref的拉普拉斯變換 ,Gvd(s)是從馬達速度 < 至干擾推定値T/爲止的傳遞函 數,1!、12是干擾觀測器增益,Gtd(s)是從扭矩指令Tre, 至干擾推定値T/爲止的傳遞函數。 -16- 200928629 振動成份運算器111是利用(7)式所揭不的速度觀 測器算出振動成份去除後的馬達速度,從馬達速度v M 去振動成份去除後的馬達速度可算出馬達速度v 的振動成份。Only T/ is the Laplace transform of the interference estimate 値Td, J〇 is the nominal moment of inertia, V is the Laplace transform of the normalized estimated interference D, and ^ is the Laplace transform of the motor speed V, Tref4 It is a Laplace transform that allows the control target 105 to constitute a torque command Tref generated by the torque driven by the motor, and Gvd(s) is a transfer function from the motor speed < to the disturbance estimation 値T/, 1!, 12 is The disturbance observer gain, Gtd(s), is the transfer function from the torque command Tre to the disturbance estimate 値T/. -16- 200928629 The vibration component calculator 111 calculates the motor speed after the vibration component is removed by the speed observer disclosed in the equation (7), and calculates the motor speed v from the motor speed v M to remove the motor component after the vibration component is removed. Vibration component.

唯,Ve*是推定馬達速度Ve的拉普拉斯變換’ Gtv(S) 是從扭矩指令Tref*至推定馬達速度Ve·爲止的傳遞函數’ 1是速度觀測器增益,GVV(S)是從馬達速度V +至推定馬達 速度V/爲止的傳遞函數。 相位調整器112是以(5)式所揭示的帶通濾波器構 成,算出已改變成可使輸入後的上述振動成份相位符合指 令V相位的上述相位調整振動成份。 第2圖是表示第1圖所示本發明第1實施例的馬達控 制裝置等價單位回饋系統圖。第2圖中,圖號201爲開環 傳遞函數。 第2圖是將第1圖控制增益調整部120除外的部份等 價轉換成單位回饋系後所獲得的圖。 開環傳遞函數201是使用空載時間八和(8)式所示 的第1有理傳遞函數Gi(s)及(9)式所示的第2有理傳遞 函數G2(s)以(10 )式表示。Only, Ve* is the Laplace transform for estimating the motor speed Ve. 'Gtv(S) is the transfer function from the torque command Tref* to the estimated motor speed Ve·' is the speed observer gain, and GVV(S) is from The transfer function from the motor speed V + to the estimated motor speed V / . The phase adjuster 112 is constructed by a band pass filter disclosed in the formula (5), and calculates the phase adjustment vibration component that has been changed so that the phase of the input vibration component coincides with the phase of the command V. Fig. 2 is a view showing an equivalent unit feedback system of the motor control device according to the first embodiment of the present invention shown in Fig. 1. In Fig. 2, reference numeral 201 is an open loop transfer function. Fig. 2 is a view obtained by converting the portion excluding the control gain adjustment unit 120 of Fig. 1 into a unit feedback system. The open-loop transfer function 201 is a first rational transfer function Gi(s) shown by the dead time VIII and (8), and a second rational transfer function G2(s) represented by the formula (9), and (10) Said.

⑻ 唯,Kf是第1圖的校正量。 -17- (91 200928629(8) Only Kf is the correction amount of Fig. 1. -17- (91 200928629

因是利用穩定界線運算器122算出上述穩定界線,所 以第2圖的開環傳遞函數201就近似如第(1〇)式所示。Since the stable boundary line is calculated by the stability boundary operator 122, the open-loop transfer function 201 of Fig. 2 is approximately as shown in the equation (1).

[,琢oik A>/.。十·A* (TO)[,琢oik A>/.十·A* (TO)

唯,Νσ1ν、Dq1Q及D。^是於速度比例控制增益Kvj和 校正量Kf獨立的拉普拉斯變數s的多項式,從無理傳遞 函數往有理傳遞函數的近似是使用帕德近似(Pade approximation) ° (Kvj、Kf)平面的上述閉環系成爲穩定的穩定區域 是於上述回饋系中從開環傳遞函數201相位裕度爲正的條 件算出。 爲算出相位裕度的條件是將代入(10)式中, © 如此一來就可獲得(11)式。唯,j是虛數單位。 唯,Nr、Ni、D〇r、Dvr、Dgi及DVi是於速度比例控制 增益KVj和校正量Kf獨立的拉普拉斯變數s相關的多項式 於增益交叉頻率中ω·:中因開環傳遞函數2〇1的振幅 是成爲1所以(12)式就可成立。 -18- 200928629Only Νσ1ν, Dq1Q and D. ^ is a polynomial of the Laplace variable s independent of the velocity proportional control gain Kvj and the correction amount Kf. The approximation from the irrational transfer function to the rational transfer function is using the Pade approximation ° (Kvj, Kf) plane The closed loop system is a stable stable region which is calculated from the condition that the phase margin of the open loop transfer function 201 is positive in the feedback system. The condition for calculating the phase margin is to be substituted into (10), and thus the equation (11) can be obtained. Only j is an imaginary unit. Only Nr, Ni, D〇r, Dvr, Dgi, and DVi are polynomials associated with the Laplacian variable s independent of the speed proportional control gain KVj and the correction amount Kf. In the gain crossover frequency ω·: The amplitude of the function 2〇1 is 1 and the equation (12) can be established. -18- 200928629

對(12)式加以變形就可獲得(13)式。 Υ _ ·^ · + ^rpGf' +¾ · (¾ + 『f ii+jf ~~^ (13) ΟThe formula (13) can be obtained by deforming the formula (12). Υ _ ·^ · + ^rpGf' +3⁄4 · (3⁄4 + 『f ii+jf ~~^ (13) Ο

當Kvj · Kf的値決定時就可使用(1 3 )式算出KVj。 其次,開環傳遞函數201的相位裕度成爲5的條件是 以(14 )式表示。 ^ |14) 增益交叉頻率ω。的開環傳遞函數201的相位是以( 15 )式表示。 M々 尾.(¾ +¾.〜為私獨柄+%今Aj ci S3 _ hnra沟+馬·⑨鐵 D0 +Kf · Κν· ·Σ\ ^^ =.¾ Α-Λ| Dw 將(1 5 )式代入(14 )式中解出Kf · Kvj就可獲得( 1 6 )式。 +1¾-tan# 當增益交叉頻率 _ 決定時就可利用(I6)式算出When Kvj · Kf's decision is made, KVj can be calculated using (1 3 ). Next, the condition that the phase margin of the open-loop transfer function 201 becomes 5 is expressed by the formula (14). ^ |14) Gain crossover frequency ω. The phase of the open loop transfer function 201 is expressed by the equation (15). M々尾.(3⁄4 +3⁄4.~为私单柄+%今Aj ci S3 _ hnra ditch+马·9 iron D0 +Kf · Κν· ·Σ\ ^^ =.3⁄4 Α-Λ| Dw will (1 5) Equation (14) can be obtained by solving Kf · Kvj (1 6 ). +13⁄4-tan# When the gain crossover frequency _ is determined, it can be calculated by (I6)

Kf • Kvi。 -19- 200928629 將Kf · KVj的値代入(1 3 )式中時就可算出Kvj,將 Kf · Kvj除以Kvj可算出Kf。 如此一來,就可算出使第1圖的閉環系在相位裕度(5 成爲穩定的(Kvj、Kf)即上述穩定界線。 當上述穩定界線由2個曲線形成時,第1圖的閉環系 是穩定並且帶幅變大的(KVj、Kf)的最佳增益組是成爲 上述2個曲線的交點。 ❹ 另一方面,當上述穩定界線是由1個曲線形成時,上 述最佳增益組是成爲上述1個曲線且Kf= 0的點。 調整曲線運算器123,在上述穩定曲線爲1個時,以 「校正量Kf爲零,上述回饋控制增益爲可朝上述穩定曲 線的上述校正量Kf爲零的點即控制增益最佳値形成增加 的直線」作爲上述調整曲線輸出,當上述穩定曲線爲2個 時’以「朝向通過2個上述穩定曲線中間成爲2個上述穩 定曲線交點即控制增益最佳値的曲線」作爲上述調整曲線 G 輸出。 初期値設置器124是以「上述調整曲線上的點且從上 述控制增益最佳値離開設定値量的點之上述回饋控制增益 *和校正量Kf」作爲上述控制增益初期値Kin輸出。 如上述’藉由上述調整曲線的設定,能夠讓第1圖的 閉環系不產生振動,能夠安靜、安全地將(Kvj、Kf)調 整成上述最佳增益組。 控制增益調整器1 25是從控制增益初期値Kin沿著上 述調整曲線朝上述穩定界線的交點即上述最佳增益組調整 -20- 200928629 控制增益組(KVj、Kf)。將控制增益組(KVj、Kf)沿著 上述調整曲線接近上述最佳增益組,將響應V不振盪範 圍內Kvj爲最高値的控制增益組(KVj、Kf )作爲其最佳値 校正量調整器113是對上述相位調整振動成份乘以校 正量Kf後算出振動抑制訊號vs。 本發明的增益調整是從上述控制增益初期値朝上述最 0 佳增益組沿著上述調整曲線調整(KVj、Kf ),藉此就能 夠將上述閉環系在不產生振動的狀況下短時間,安靜、安 全地調整成上述最加增益組。 本實施例中揭示著回饋控制器1 02爲速度PI控制器 時的狀況,但同樣是可應用在速度P控制器、速度Ι-P控 制器、位置P速度PI控制器、位置P速度Ι-P控制器、 位置PID控制器等任何控制器。 此外,同樣可應用在上述扭矩指令瀘波器、陷波濾波 〇 器、干擾觀測器及不拘有無空載時間或數量多寡等的狀況 另外,本發明對於控制對象1 05爲剛體機制或任意的 多慣性機構可和本實施例相同地應用。 此外,爲降低(13)式和(16)式的冪數,可將Kf • Kvi. -19- 200928629 Kvj can be calculated by substituting Kf · KVj into (1 3 ), and Kf can be calculated by dividing Kf · Kvj by Kvj. In this way, the closed loop of the first graph can be calculated as the phase margin (5 is stabilized (Kvj, Kf), that is, the stable boundary. When the stable boundary is formed by two curves, the closed loop of Fig. 1 The optimum gain group which is stable and has a large amplitude (KVj, Kf) is the intersection of the above two curves. ❹ On the other hand, when the above-mentioned stable boundary is formed by one curve, the above optimum gain group is When the stability curve is one, the adjustment curve operator 123 sets "the correction amount Kf to zero, and the feedback control gain is the correction amount Kf that can be made to the stable curve. A point that is zero, that is, a line that increases the control gain, and an increase is formed as the above-mentioned adjustment curve. When the above-mentioned stability curve is two, the control gain is obtained by the intersection of two stable curves in the middle of the two stable curves. The optimum 曲线 curve is output as the above-mentioned adjustment curve G. The initial 値 setter 124 is the above-described feedback control of the point on the above adjustment curve and the point at which the control gain is optimally removed from the set enthalpy. The benefit* and the correction amount Kf are output as the control gain initial 値Kin. As described above, the setting of the above-mentioned adjustment curve allows the closed-loop system of Fig. 1 to generate no vibration, and can be quietly and safely (Kvj, Kf). Adjusted to the above optimal gain group. The control gain adjuster 125 is adjusted from the initial point of the control gain 値Kin along the above-mentioned adjustment curve to the above-mentioned stable boundary line, that is, the above-mentioned optimal gain group adjustment -20-200928629 control gain group (KVj, Kf The control gain group (KVj, Kf) is brought close to the above optimal gain group along the above adjustment curve, and the control gain group (KVj, Kf) whose response V is not the oscillation range is the highest 作为 is used as the optimal 値 correction amount. The adjuster 113 calculates the vibration suppression signal vs by multiplying the phase adjustment vibration component by the correction amount Kf. The gain adjustment of the present invention is adjusted from the initial stage of the control gain toward the optimum gain group along the adjustment curve (KVj, Kf), whereby the closed loop system can be quietly and safely adjusted to the above-mentioned maximum gain group in a short time without vibration. In this embodiment, feedback is revealed. The controller 102 is the condition of the speed PI controller, but the same can be applied to the speed P controller, the speed Ι-P controller, the position P speed PI controller, the position P speed Ι-P controller, the position PID control Any controller, etc. In addition, the same can be applied to the above-mentioned torque command chopper, notch filter buffer, disturbance observer, and the situation of no-load time or quantity, and the present invention is A rigid body mechanism or an arbitrary multi-inertial mechanism can be applied in the same manner as the present embodiment. Further, in order to reduce the powers of the equations (13) and (16),

Gn(s) · Gp(s)近似成如(17)式所示,同樣地算出上述穩 定界線,根據該穩定界線自動調整(KVj、Kf)。 1 s2 + 2ζαλω<Αβ + ωΙ[ -21 - (17) 200928629 以下,揭示本實施例的電腦模擬結果。電腦 用的數値如下述。 J;l· 51X10_4[kg.m2]、 ω =295Χ2Χ π [rad/s]、ζ =0· 16、 rl rl ω =128.Χ2Χ 7t[rad/s]、ζ =0.16、 al al ω =1340Χ2Χ ?c[rad/s]、ζ =0. 05、 γ2 γ2 ω =906Χ2Χ π [rad/s]、ζ =0.05、η =10、 a2 a2 d s =5_〇Χ2Χ π [rad/s]、1 =6· 28Χ ΙΟ2、 ο ι 1 =9. 87Χ1〇\ Kv=6〇X2Xtc[s_1]n 2 J =1. 51X10_4[kg.m2]、 Ο Κ =KvXJ=0. 0569[N*m*s/rad]% Τ =4/Κν=0. 〇〇85[s]n τ = vj i f )=〇. 44X10-3[s]、 ω =ω =134〇X2XTT[rad/s]、ζ =0_7、 η r2 ηGn(s) · Gp(s) is approximated as shown in the equation (17), and the above-described stability boundary is calculated in the same manner, and is automatically adjusted (KVj, Kf) based on the stability boundary. 1 s2 + 2 ζ αλω < Α β + ω Ι [ -21 - (17) 200928629 The computer simulation results of the present embodiment are disclosed below. The number of computers used is as follows. J;l· 51X10_4[kg.m2], ω =295Χ2Χ π [rad/s], ζ =0·16, rl rl ω =128.Χ2Χ 7t[rad/s], ζ =0.16, al al ω =1340Χ2Χ ?c[rad/s], ζ =0. 05, γ2 γ2 ω =906Χ2Χ π [rad/s], ζ =0.05, η =10, a2 a2 ds =5_〇Χ2Χ π [rad/s], 1 =6· 28Χ ΙΟ2, ο ι 1 =9. 87Χ1〇\ Kv=6〇X2Xtc[s_1]n 2 J =1. 51X10_4[kg.m2], Ο Κ =KvXJ=0. 0569[N*m*s /rad]% Τ =4/Κν=0. 〇〇85[s]n τ = vj if )=〇. 44X10-3[s], ω =ω =134〇X2XTT[rad/s], ζ =0_7 η r2 η

Trat=0. 637[N*m],T=125X10_6[s]% T=250X10~6[s] t 唯,^是(10)式所使用的帕德近似的冪數 度觀測器的極,li、h是極成爲so的干擾觀測器 φ 是正規化速度比例控制增益,Trat是額定扭矩, 週期,Tl是空載時間。公稱慣性矩Jo是干擾觀 和振動成份運算器111所使用的慣性矩値。 速度比例控制增益Kvj、速度控制積分時間1 扭矩指令過濾時間常數r f,如上述是使用正規 例控制增益κν設定成從屬性。 本電腦模擬所使用的樣品如以上所述是於第 將回饋控制器102爲(1 )式所示的速度ΡΙ控彳 )式的扭矩指令濾波器,扭矩控制器1 〇4爲(: 模擬所使Trat=0. 637[N*m], T=125X10_6[s]% T=250X10~6[s] t wei, ^ is the pole of the power observer of the Pader approximation used in (10), Li, h is the interference observer φ that is extremely so, φ is the normalized speed proportional control gain, Trat is the rated torque, period, and Tl is the dead time. The nominal moment of inertia Jo is the disturbance moment and the moment of inertia used by the vibration component operator 111. The speed proportional control gain Kvj, the speed control integration time 1 and the torque command filter time constant r f are set as the slave attributes using the normal example control gain κν as described above. The sample used in this computer simulation is as described above in the feedback controller 102 as the speed command filter of the formula (1), and the torque controller 1 〇4 is (: simulation station Make

1/(4ΧΚν ,S 〇是速 增益,Κν Τ是控制 測器107 言數及 化速度比 1圖中, 器和(2 )式的陷 -22- 200928629 波濾波器,控制對象105爲(4)式,振動成份運算器 1 Π是構成爲從響應V減去經由(7 )式的速度觀測器所 算出的速度推定値V11算出上述振動成份,相位調整器112 爲(5 )式的帶通濾波器,干擾觀測器1 07爲(6 )式。唯 ,表示控制對象105的(4)式以外爲控制週期T的離散 時間表現,扭矩指令Tref是以額定扭矩Trat形成爲飽和。 第3圖是表示本發明第1實施形態電腦模擬的開環系 Q 的伯德圖和乃奎斯特圖。 第3(a)圖是第2圖開環傳遞函數201的伯德圖。 第3(a)圖中,實線是根據(3)式和(4)式的三慣性 系統樣品描繪的伯德圖,一點虛線是根據(1 7 )式的二慣 性近似樣品描繪的伯德圖。 從第3 (a)圖得知,在第2反共振頻率ω32的周邊 以外,根據三慣性系統樣品描繪的伯德圖是和上述根據二 慣性近似樣品描繪的伯德圖大約一致。 〇 第3(a)圖中,a、b、c分別是振幅爲1的頻率,相 位裕度爲最小的頻率爲c點是可從相位圖得知。 第3 ( b )圖是上述開環系的乃奎斯特圖。第3(b) 圖中,實線是根據上述三慣性系統樣品描繪的乃奎斯特圖 ,一點虛線是根據上述二慣性近似樣品描繪的乃奎斯特圖 ,虛線是單位圓。 第3(b)圖中,a、b、c分別是表示乃奎斯特圖和上 述單位圓形成交叉的點,分別對應第3 ( a )圖中的a、b 、c。從第3(b)圖得知,c點是最接近第2象限對第2 -23- 200928629 圖的單位回饋系的穩定性影響最大。 當改變正規化速度比例控制增益Κν時,第3 ( a )圖 的相位圖幾乎沒有改變,只有振幅圖是和正規化速度比例 控制增益Kv變化量大致成比例改變。 正規化速度比例控制增益Κν增加時所產生的振動的 頻率是和上述相位圖成爲-180度的頻率即相位交叉頻率 大約一致。 0 穩定界線運算器1 22,首先,對速度比例控制增益Κν 設定適當的値,描繪出第3(a)圖的伯德圖,算出上述 相位交叉頻率,作爲由振動抑制部1 1 0抑制的抑制振動頻 率ω ν。 其次,於上述相位交叉頻率中算出振幅可成爲比1小 之値的正規化速度比例控制增益Κν的値。 將帶通過濾時間常數r、干擾觀測器增益h、l2及觀 測器增益1分別設定成下述。 11 — (〇 y 2 * \ 2 = (〇 v / 2 * 1= ίϋ v / 2 * τ = 2 (t) v 根據以上的設定値由穩定界線運算器122算出上述穩 定界線。 穩定界線運算器122是根據上述機械常數算出包括回 饋控制器1 02和控制對象1 〇5的閉環系統的等價單位回饋 系,使上述等價單位回饋系的相位裕度可成爲正數的相位 裕度設定値地算出上述穩定界線。 上述相位裕度設定値設定成可在上述機械常數有不確 定性狀況時容許上述不確定性使上述閉環系成爲穩定的値 -24- 200928629 第4圖是表示本發明第1實施例電腦模擬的穩定界線 、調整曲線及控制增益初期値的圖。第4圖中,實線是表 示穩定界線,虛線是表示調整曲線,X是表示控制增益初 期値,□是表示穩定區域。 本電腦模擬是將相位裕度5爲0度。 如第4圖所示,穩定界線運算器122是輸出上述穩定 D 界線,調整曲線運算器123是輸出上述調整曲線,初期値 設定器1 24是設定控制增益初期値Kin,控制增益調整器 125是從控制增益初期値Kin沿著上述調整曲線朝上述穩 定界線的交點即上述最佳增益組調整控制增益組(Kvj、 Kf)。 機械常數辨識器121的輸出機械常數有不正確性時, 透過將相位裕度6設定成比〇度大的値,能夠使第4圖的 上述穩定區域變窄,能夠容許機械常數的不正確性,能夠 〇 讓第1圖的閉環系不產生振動能夠安靜、安全地調整增益 〇 此外,控制對象1 05爲任意多慣性系統時,第1圖的 閉環系不包括干擾觀測器時,可不拘陷波濾波器或低通濾 波器的有無或數量,此外,可不拘回饋控制器102的控制 規則,將本發明可和本實施例相同地應用》 即,回饋控制器爲速度P控制器、速度Ι-P控制器、 位置P速度PI控制器、位置P速度Ι-P控制器、位置 PID控制器等的狀況時,同樣地本發明可和本實施例相同 -25- 200928629 地應用。 如上述,本發明是構成根據控制對象的機械常數算出 控制增益的穩定區域,因此不會造成控制對象產生振動, 能夠安靜、安全地調整控制增益,此外還能夠實現自動又 高的控制性能。 〔產業上之可利用性〕 q 由於不會造成連結負荷後的馬達產生振動,能夠安靜 、安全地調整控制增益,所以能夠廣泛地應用在半導體製 造裝置、液晶面板製造裝置、工作機械、產業用機械人等 一般產業用裝置。 【圖式簡單說明】 第1圖爲表示本發明第1實施例馬達控制裝置槪要構 成方塊圖。 Ο 第2圖爲表示第1圖所示本發明第1實施例的馬達控 制裝置等價單位回饋系圖。 第3圖爲表示本發明第1實施例電腦模擬的開環系伯 德圖和乃奎斯特圖。 第4圖爲表示本發明第1實施例電腦模擬的穩定界線 、調整曲線及控制增益初期値的圖。 第5圖爲表示習知的馬達控制裝置一例構成方塊圖。 【主要元件符號說明】 -26- 200928629 1 〇 1 :指令產生器 1 02 :回饋控制器 103:輸入訊號轉換器 104 :扭矩控制器 105 :控制對象 106 :響應檢測器 107 :干擾觀測器 φ 108:頻率響應測定用訊號產生器 1 1 〇 :振動抑制部 1 11 :振動成份運算器 1 1 2 :相位調整器 1 13 :校正量調整器 120 :控制增益調整部 1 2 1 :機械常數識別器 122 ‘·穩定界線運算器 ❹ 123 :調整曲線運算器 124 :初期値設定器 125 :控制增益調整器 201 :開環傳遞函數 501:增益自動調整時目標値指令部 502 :位置比例控制增益 5 03 :速度比例控制增益 504 :扭矩控制部 5 05 :編碼器 -27- 200928629 5 0 6 :馬達 507 :滾珠螺桿機構 5 08:位置偏差評價函數運算部 509:位置偏差評價函數記憶部 510:評價函數最小增益決定部 511 :扭矩指令評價函數運算部 512:扭矩指令評價函數記憶部 5 1 3 :扭矩指令判定部 -28-1/(4ΧΚν , S 〇 is the speed gain, Κν Τ is the control detector 107 and the speed ratio is 1 in the figure, and the (2) type trap-22-200928629 wave filter, the control object 105 is (4 In the equation, the vibration component computing unit 1 is configured to calculate the vibration component from the response V by subtracting the velocity estimation 値V11 calculated by the velocity observer of the equation (7), and the phase adjuster 112 is a bandpass of the formula (5). The filter and the disturbance observer 107 are in the equation (6). Only the discrete time expression of the control period T other than the equation (4) of the control object 105 is expressed, and the torque command Tref is saturated with the rated torque Trat. It is a Bode diagram and a Nyquist diagram showing the open-loop system Q of the computer simulation according to the first embodiment of the present invention. Fig. 3(a) is a Bode diagram of the open-loop transfer function 201 of Fig. 2. In the figure, the solid line is the Bode diagram depicted by the three inertia system samples according to equations (3) and (4), and the one-dotted dashed line is the Bode diagram depicted by the two inertia approximation sample of equation (1 7 ). 3 (a) The figure shows the Bode diagram drawn from the sample of the three inertia system, except for the periphery of the second anti-resonant frequency ω32. It is approximately the same as the Bode diagram depicted by the two inertia approximation samples. In Fig. 3(a), a, b, and c are frequencies with amplitude 1 respectively, and the frequency with minimum phase margin is c. The phase diagram shows that the third (b) is the Nyquist diagram of the above open-loop system. In the third (b) diagram, the solid line is the Nyquist diagram drawn according to the above three inertial system samples, a dotted line It is a Nyquist diagram drawn according to the above two inertia approximation samples, and the broken line is a unit circle. In Fig. 3(b), a, b, and c are points indicating that the Nyquist diagram and the unit circle are intersected, respectively. Corresponding to a, b, and c in Fig. 3(a) respectively, it is known from Fig. 3(b) that point c is the closest to the stability of the unit feedback system of the second quadrant to the 2-23-200928629 graph. When the normalized speed proportional control gain Κν is changed, the phase map of the third (a) graph hardly changes, and only the amplitude map is roughly proportional to the normalized speed proportional control gain Kv variation. Normalized speed proportional control The frequency of the vibration generated when the gain Κν is increased is the frequency of -180 degrees with the above phase map. That is, the phase crossover frequency is approximately the same. 0 The stability boundary operator 1 22 first sets an appropriate 値 for the speed proportional control gain Κν, draws the Bode diagram of the third (a) diagram, and calculates the phase crossover frequency as the vibration. The suppression vibration frequency ω ν suppressed by the suppression unit 1 1 0. Next, the amplitude of the normalization speed proportional control gain Κν which is smaller than 1 is calculated at the phase crossover frequency. The band passing filter time constant r, interference The observer gains h, l2 and the observer gain 1 are set as follows. 11 - (〇y 2 * \ 2 = (〇v / 2 * 1= ίϋ v / 2 * τ = 2 (t) v Based on the above The stabilization boundary is calculated by the stability boundary operator 122. The stability boundary operator 122 calculates an equivalent unit feedback system of the closed loop system including the feedback controller 102 and the control target 1 〇 5 based on the mechanical constant, so that the phase margin of the equivalent unit feedback system can be a positive phase margin. The above setting is used to calculate the above-mentioned stability boundary. The phase margin setting 値 is set such that the above-mentioned uncertainty is allowed to stabilize the closed loop system when the mechanical constant has an uncertain state. 値-24- 200928629 FIG. 4 is a computer simulation of the first embodiment of the present invention. A map of the stability boundary, the adjustment curve, and the initial control gain. In Fig. 4, the solid line indicates the stability boundary, the broken line indicates the adjustment curve, X indicates the initial stage of the control gain, and □ indicates the stable area. This computer simulation uses a phase margin of 5 degrees. As shown in Fig. 4, the stability boundary operator 122 outputs the stable D boundary, and the adjustment curve operator 123 outputs the adjustment curve. The initial threshold setter 14 is the set control gain initial value 値Kin, and the control gain adjuster 125 is From the control gain initial stage 値Kin, the control gain group (Kvj, Kf) is adjusted along the intersection of the above-mentioned adjustment curve toward the above-described stable boundary line, that is, the above-described optimum gain group. When the output mechanical constant of the mechanical constant identifier 121 is not correct, the phase margin 6 is set to be larger than the twist, so that the stable region of FIG. 4 can be narrowed, and the mechanical constant can be allowed to be incorrect. It is possible to adjust the gain quietly and safely without causing vibration in the closed loop system of Fig. 1. In addition, when the control object 105 is an arbitrary multi-inertial system, the closed loop system of Fig. 1 does not include the disturbance observer, and may not be trapped. The presence or absence of the wave filter or the low-pass filter, and in addition, the control rule of the feedback controller 102 can be applied, and the present invention can be applied in the same manner as the embodiment. That is, the feedback controller is the speed P controller, the speed Ι In the case of the -P controller, the position P speed PI controller, the position P speed Ι-P controller, the position PID controller, etc., the present invention can be similarly applied to the present embodiment -25-200928629. As described above, the present invention constitutes a stable region in which the control gain is calculated based on the mechanical constant of the control target. Therefore, vibration of the control target is not generated, the control gain can be adjusted quietly and safely, and automatic and high control performance can be realized. [Industrial Applicability] q The control gain can be adjusted quietly and safely without causing vibration of the motor after the load is connected. Therefore, it can be widely used in semiconductor manufacturing equipment, liquid crystal panel manufacturing equipment, machine tools, and industrial applications. General industrial equipment such as robots. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a block diagram showing a schematic configuration of a motor control device according to a first embodiment of the present invention. Fig. 2 is a diagram showing an equivalent unit feedback mechanism of the motor control device according to the first embodiment of the present invention shown in Fig. 1. Fig. 3 is a view showing a Bode diagram and a Nyquist diagram of the open loop system of the computer simulation of the first embodiment of the present invention. Fig. 4 is a view showing the stability boundary, the adjustment curve, and the initial stage of the control gain of the computer simulation of the first embodiment of the present invention. Fig. 5 is a block diagram showing an example of a conventional motor control device. [Description of main component symbols] -26- 200928629 1 〇1: Command generator 1 02: Feedback controller 103: Input signal converter 104: Torque controller 105: Control object 106: Response detector 107: Disturbance observer φ 108 : Frequency response measurement signal generator 1 1 〇: Vibration suppression unit 1 11 : Vibration component calculator 1 1 2 : Phase adjuster 1 13 : Correction amount adjuster 120 : Control gain adjustment unit 1 2 1 : Mechanical constant recognizer 122 '·stability boundary operator ❹ 123 : adjustment curve operator 124 : initial 値 setter 125 : control gain adjuster 201 : open loop transfer function 501 : target for gain automatic adjustment 値 command unit 502 : position proportional control gain 5 03 : Speed proportional control gain 504 : Torque control unit 5 05 : Encoder -27 - 200928629 5 0 6 : Motor 507 : Ball screw mechanism 5 08 : Position deviation evaluation function calculation unit 509 : Position deviation evaluation function Memory unit 510 : Evaluation function Minimum gain determination unit 511: Torque command evaluation function calculation unit 512: Torque command evaluation function storage unit 5 1 3 : Torque command determination unit -28-

Claims (1)

200928629 十、申請專利範圍 1·—種馬達控制裝置,具備: 使指令(vr)和控制對象的響應(v)成爲一致進行 控制運算,算出干擾校正前扭矩指令(τ«)的回饋控制 器; 根據從上述干擾校正前扭矩指令(Τα)減去干擾推 定値(Td)後的値即扭矩指令(Tref )和上述響應(V ) 0 ,算出干擾推定値(Td)的干擾觀測器; 輸入頻率響應測定用訊號(Fr)和扭矩指令(Tref ) ,在頻率響應測定時將上述頻率響應測定用訊號(Fr)作 爲電流指令(I)輸出,在增益調整時將上述扭矩指令( Tref)作爲電流指令(Ir)輸出的輸入訊號轉換器; 根據上述電流指令(Ir )對上述控制對象的馬達流動 馬達電流(Im )進行驅動的扭矩控制器;及 根據上述響應(V)和扭矩指令(Tref)算出振動抑 Q 制訊號(Vs )的振動抑制部,構成爲對上述指令(Vr )加 入上述振動抑制訊號(Vs),其特徵爲·· 具備根據上述響應(V)算出上述回饋控制器回饋控 制增益(KVj )和上述校正量(Kf)的控制增益調整部。 2.如申請專利範圍第1項所記載的馬達控制裝置,其 中,上述頻率響應測定用訊號(Fr)是掃頻正弦波訊號。 3 .如申請專利範圍第1項所記載的馬達控制裝置,其 中,上述頻率響應測定用訊號(Fr)是以複數頻率正弦波 構成。 -29- 200928629 4 .如申請專利範圍第1項所記載的馬達控制裝置,其 中,上述控制增益調整部是由下述構成: 在頻率響應測定時根據上述響應(V)對上述控制對 象的機械常數進行辨識的機械常數辨識器; 根據上述機械常數算出包括上述回饋控制器和上述控 制對象的閉環系穩定用的上述回饋控制增益和上述校正量 (Kf)的穩定區域外形線即穩定界線的穩定界線運算器; ❹ 根據上述穩定界線算出能夠調整上述回饋控制增益和 上述校正量(Kf)的調整曲線以在維持上述控制對象穩定 性的狀態下提高上述閉環系響應性和干擾抑制特性的調整 曲線運算器; 根據上述調整曲線算出控制增益調整的上述回饋控制 增益(KVj )和上述校正量(Kf )的初期値即控制增益初 期値(Kin )的初期値設定器·,及 根據上述調整曲線和上述控制增益初期値(Kin )調 ® 整上述回饋控制增益(Kvj)和上述校正量(Kf )的控制 增益調整器。 5 .如申請專利範圍第4項所記載的馬達控制裝置,其 中’上述機械常數辨識器是算出上述控制對象的頻率響應 根據上述頻率響應算出上述機械常數。 6 .如申請專利範圍第4項所記載的馬達控制裝置,其 中’上述穩定界線運算器是根據上述機械常數算出上述閉 環系的等價單位回饋系,使上述等價單位回饋系的相位裕 度可成爲正數的相位裕度設定値地算出上述穩定界線。 -30- 200928629 7 .如申請專利範圍第6項所記載的馬達控制裝置,其 中,上述相位裕度設定値是設定成可在上述機械常數有不 確定性的狀況時容許上述不確定性使上述閉環系穩定的値 〇 8 .如申請專利範圍第4項所記載的馬達控制裝置,其 中,上述調整曲線運算器是在上述穩定曲線爲1個時,以 「上述校正量(Kf)爲零,上述回饋控制增益(Kvj)爲 0 可朝上述穩定曲線的上述校正量(Kf)爲零的點即控制增 益最佳値形成增加的直線」作爲上述調整曲線輸出,當上 述穩定曲線爲2個時’以「朝向通過2個上述穩定曲線中 間成爲2個上述穩定曲線交點即控制增益最佳値的曲線」 作爲上述調整曲線輸出。 9 ·如申請專利範圍第8項所記載的馬達控制裝置,其 中,上述初期値設置器是以「上述調整曲線上的點且從上 述控制增益最佳値離開設定値量的點之上述回饋控制增益 ❹ (Kvj )和上述校正量(Kf )」作爲上述控制增益初期値 (Kin)輸出。 10.如申請專利範圍第9項所記載的馬達控制裝置, 其中’上述控制增益調整器是以沿著調整曲線從上述控制 增益初期値(Kin )朝上述控制增益最佳値增加上述回饋 控制增益(Kvj)和上述校正量(Kf)然後輸出。 -31 -200928629 X. Patent Application No. 1 - A motor control device comprising: a feedback controller that synchronizes a command (vr) with a response (v) of a control object to perform a control calculation, and calculates a torque command (τ«) before interference correction; Interference observer for calculating the interference estimation 値(Td) based on the 扭矩 immediate torque command (Tref) and the above response (V) 0 after subtracting the interference estimation 値(Td) from the disturbance correction torque command (Τα); In response to the measurement signal (Fr) and the torque command (Tref), the frequency response measurement signal (Fr) is output as a current command (I) during frequency response measurement, and the torque command (Tref) is used as a current during gain adjustment. An input signal converter for outputting an instruction (Ir); a torque controller for driving the motor flow motor current (Im) of the control target according to the current command (Ir); and according to the response (V) and the torque command (Tref) The vibration suppression unit that calculates the vibration suppression Q signal (Vs) is configured to add the vibration suppression signal (Vs) to the command (Vr), which is characterized by The control gain adjustment unit that calculates the feedback controller control gain (KVj) and the correction amount (Kf) is calculated based on the response (V). 2. The motor control device according to claim 1, wherein the frequency response measurement signal (Fr) is a frequency sine wave signal. 3. The motor control device according to claim 1, wherein the frequency response measurement signal (Fr) is a complex frequency sine wave. The motor control device according to the first aspect of the invention, wherein the control gain adjustment unit is configured to: control the machine to be controlled based on the response (V) during frequency response measurement a mechanical constant identifier for identifying a constant; calculating, based on the mechanical constant, a stability of a stable boundary line of the feedback control gain including the feedback control of the feedback controller and the control target, and a stable region outline of the correction amount (Kf) The boundary line operator calculates an adjustment curve capable of adjusting the feedback control gain and the correction amount (Kf) based on the stability boundary to improve the adjustment curve of the closed-loop responsiveness and the interference suppression characteristic while maintaining the stability of the control target. An arithmetic unit that calculates the feedback gain (KVj) of the control gain adjustment and the initial value of the correction amount (Kf), that is, the initial setting of the control gain initial value (Kin) based on the adjustment curve, and the adjustment curve according to the adjustment curve The above control gain initial 値 (Kin) adjusts the above feedback control Gain (Kvj) and the correction amount (Kf of) control gain adjuster. The motor control device according to claim 4, wherein the mechanical constant identifier is a frequency response for calculating the control target, and the mechanical constant is calculated based on the frequency response. 6. The motor control device according to claim 4, wherein the stability limit line operator calculates an equivalent unit feedback system of the closed loop system based on the mechanical constant, and causes a phase margin of the equivalent unit feedback system The stability margin can be calculated by setting the phase margin of a positive number. The motor control device according to the sixth aspect of the invention, wherein the phase margin setting 设定 is set such that the uncertainty can be allowed when the mechanical constant is uncertain. The motor control device according to the fourth aspect of the invention, wherein the adjustment curve operator has "the correction amount (Kf) is zero when the stability curve is one. When the feedback control gain (Kvj) is 0, a point at which the correction amount (Kf) of the stability curve is zero, that is, a line where the control gain is optimally increased, is formed as the adjustment curve output, and when the stability curve is two 'The curve of the control gain optimum 成为 which is the intersection of the two stable curves in the middle of the two stable curves is output as the above adjustment curve. The motor control device according to claim 8, wherein the initial setting device is the feedback control at a point on the adjustment curve and from a point at which the control gain is optimally set to a predetermined amount. The gain ❹ (Kvj ) and the above-described correction amount (Kf ) are output as the control gain initial 値 (Kin). 10. The motor control device according to claim 9, wherein the control gain adjuster increases the feedback control gain from the initial control gain (Kin) toward the control gain along the adjustment curve. (Kvj) and the above correction amount (Kf) are then output. -31 -
TW097127974A 2007-12-27 2008-07-23 Motor controller TW200928629A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007335662 2007-12-27

Publications (1)

Publication Number Publication Date
TW200928629A true TW200928629A (en) 2009-07-01

Family

ID=40823990

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097127974A TW200928629A (en) 2007-12-27 2008-07-23 Motor controller

Country Status (3)

Country Link
JP (1) JP5316424B2 (en)
TW (1) TW200928629A (en)
WO (1) WO2009084258A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114223129A (en) * 2019-11-27 2022-03-22 株式会社日立产机系统 Motor control device and automatic adjustment method thereof
CN114280969A (en) * 2020-09-28 2022-04-05 Abb瑞士股份有限公司 Control loop performance monitoring in variable frequency drives

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101448746B1 (en) * 2012-10-17 2014-10-10 현대자동차 주식회사 Method and system for controlling anti-jerk of electric vehicle
JP5741566B2 (en) * 2012-12-26 2015-07-01 株式会社安川電機 Motor control device and motor control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000062412A1 (en) * 1999-04-09 2000-10-19 Mitsubishi Denki Kabushiki Kaisha Controller for electric motor
JP4779969B2 (en) * 2004-03-26 2011-09-28 株式会社安川電機 Electric motor control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114223129A (en) * 2019-11-27 2022-03-22 株式会社日立产机系统 Motor control device and automatic adjustment method thereof
TWI766350B (en) * 2019-11-27 2022-06-01 日商日立產機系統股份有限公司 Motor control device and automatic adjustment method thereof
CN114223129B (en) * 2019-11-27 2024-02-02 株式会社日立产机系统 Motor control device and automatic adjustment method thereof
CN114280969A (en) * 2020-09-28 2022-04-05 Abb瑞士股份有限公司 Control loop performance monitoring in variable frequency drives

Also Published As

Publication number Publication date
JPWO2009084258A1 (en) 2011-05-12
WO2009084258A1 (en) 2009-07-09
JP5316424B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
CN110741458B (en) Pulsed bidirectional radio frequency source/load
KR100364016B1 (en) Vector controller for induction motor
US10985684B2 (en) Motor control device
JP2002330600A (en) Control system for induction motor drive with no speed sensor, observer, and control method
US20160344326A1 (en) Motor control device
WO2007138758A1 (en) Servo controller
JP2010051104A (en) Motor control apparatus
TW200928629A (en) Motor controller
JP2011257205A (en) Axial torque controller for dynamometer system
US20150251313A1 (en) Control device, control method and control program
US9143074B2 (en) Controlling method of synchronous motor
JP2007306753A (en) Method for adjusting parameters for notch filter, program, and motor controller
JP3869388B2 (en) air conditioner
WO2021106250A1 (en) Motor control device and automatic adjustment method for same
JP4789067B2 (en) System identification apparatus and motor control apparatus including the same
JP4546437B2 (en) Auto tuning device and auto tuning method
JP2007020297A (en) System identification equipment and method
JP2007306779A (en) Motor controller
JP2009106015A (en) Controller for motor
TW200811627A (en) Motor control device, and control parameter adjusting method
TWI808712B (en) Motor control device, motor control system and motor control method
JP4238652B2 (en) Speed sensorless vector control method and apparatus
JP5200648B2 (en) Motor drive device
JP5084196B2 (en) Electric motor control apparatus and electric motor control method
JP2007020267A (en) System identification apparatus