TWI808712B - Motor control device, motor control system and motor control method - Google Patents

Motor control device, motor control system and motor control method Download PDF

Info

Publication number
TWI808712B
TWI808712B TW111113204A TW111113204A TWI808712B TW I808712 B TWI808712 B TW I808712B TW 111113204 A TW111113204 A TW 111113204A TW 111113204 A TW111113204 A TW 111113204A TW I808712 B TWI808712 B TW I808712B
Authority
TW
Taiwan
Prior art keywords
motor
speed
vibration
motor control
control device
Prior art date
Application number
TW111113204A
Other languages
Chinese (zh)
Other versions
TW202243386A (en
Inventor
関口裕幸
Original Assignee
日商三菱電機股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱電機股份有限公司 filed Critical 日商三菱電機股份有限公司
Publication of TW202243386A publication Critical patent/TW202243386A/en
Application granted granted Critical
Publication of TWI808712B publication Critical patent/TWI808712B/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/40Regulating or controlling the amount of current drawn or delivered by the motor for controlling the mechanical load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current

Abstract

馬達控制裝置(100),包括:速度檢測器(5),檢測出馬達(2)的速度;速度控制器(4),根據馬達的速度及速度指令,產生對馬達的力矩指令;修正計算器(6),修正力矩指令產生修正力矩指令;電流控制器(3),根據力矩指令及修正力矩指令使電流流過馬達;振動檢測器(8),檢測出馬達產生的振動振幅以及振動頻率;以及參數設定變更器(9),變更速度控制器的參數。在振動振幅比閾值大的情況下,修正計算器針對由馬達、速度檢測器、速度控制器、修正計算器以及電流控制器所構成的回授控制系統,計算出修正力矩指令,使振動頻率的遞移特性穩定化;在使遞移特性穩定化後振動振幅減少的情況下,參數設定變更器變更速度控制器的參數。The motor control device (100), including: speed detector (5), detects the speed of the motor (2); the speed controller (4), according to the speed and speed instruction of the motor, generate a torque instruction to the motor; correct the calculator (6), the correction torque instruction generates a correction torque instruction; Excessive motor; vibration detector (8), detect the vibration amplitude and vibration frequency generated by the motor; and the parameter setting the changeer (9) to change the parameter of the speed controller. When the vibration amplitude is larger than the threshold value, the correction calculator calculates the correction torque command for the feedback control system composed of the motor, the speed detector, the speed controller, the correction calculator and the current controller, so as to stabilize the transfer characteristic of the vibration frequency; when the vibration amplitude decreases after the transfer characteristic is stabilized, the parameter setting changer changes the parameters of the speed controller.

Description

馬達控制裝置、馬達控制系統及馬達控制方法Motor control device, motor control system and motor control method

本揭露系有關於對連結到機械裝置的馬達進行回授控制的馬達控制裝置、馬達控制系統及馬達控制方法。The present disclosure relates to a motor control device, a motor control system, and a motor control method for performing feedback control on a motor connected to a mechanical device.

在對位置或速度等狀態量需要以高精度控制的機械裝置中,使用馬達於驅動源,進行回授控制。為了實現對指令高響應、高精度的回授控制,必須適當地設計回授控制計算的參數。參數超出適當的範圍的話,不但無法實現高響應、高精度的回授控制,也會有回授控制系統不穩定,動作發生振動的這樣的現象的情況。In a mechanical device that requires high-precision control of state quantities such as position or speed, a motor is used as a drive source for feedback control. In order to realize high-response to commands and high-precision feedback control, the parameters of the feedback control calculation must be properly designed. If the parameters are out of the appropriate range, not only will it be impossible to achieve high-response and high-precision feedback control, but the feedback control system will be unstable and the action will vibrate.

回授控制系統的參數必須要配合連結到馬達的負荷機械的特性來設定。機械特性的例子可以舉出負荷機械的慣性或剛性,必須要因應這些特性來設定參數。The parameters of the feedback control system must be set in accordance with the characteristics of the load machinery connected to the motor. Examples of mechanical characteristics include the inertia and rigidity of the load machine, and parameters must be set in accordance with these characteristics.

又,以馬達驅動的負荷機械中,會有在運轉中機械特性會變化者,例如將薄片狀的材料從滾輪捲出、捲入並加工的捲對捲裝置中,因為捲繞於滾輪的材料的量會使得施加於使滾輪旋轉的馬達上的慣性發生變化。特別是,捲對捲裝置中其變化相當大,因為捲繞於滾輪的材料的量的不同,甚至有慣性發生數十倍變化的情況。在這樣的裝置中,參數設定成適合於慣性的大小偏向任一者的狀態的話,在相反側的狀態下控制系統就會有變得不穩定的狀況。為了防止這個狀況,必須要準備一種機構,能夠掌握慣性變化來設定參數使其在全範圍內穩定,並且因應慣性變化來變更預先決定的參數設定。裝置啟動的作業量變大。又,因為需要掌握變化範圍全體的特性,裝置啟動的作業時的自動調整功能的使用也變得困難。In addition, in the load machine driven by a motor, there may be those whose mechanical properties change during operation. For example, in a roll-to-roll device that unwinds, rolls, and processes sheet-like materials from a roller, the inertia applied to the motor that rotates the roller changes due to the amount of material wound on the roller. In particular, in the roll-to-roll device, the change is quite large, and the inertia may change tens of times due to the difference in the amount of material wound around the roller. In such a device, if the parameters are set so that the magnitude of the inertia is biased toward either state, the control system may become unstable in the opposite state. In order to prevent this situation, it is necessary to prepare a mechanism that can grasp the inertia change to set the parameters to be stable in the whole range, and change the predetermined parameter setting in response to the inertia change. The workload for starting up the device increases. In addition, since it is necessary to grasp the characteristics of the entire variation range, it becomes difficult to use the automatic adjustment function at the time of operation of starting the device.

專利文獻1中揭露了一種馬達系統,為了防止慣性變化的機械裝置中回授控制系統會振動,而具備了慣性檢測構件或振動檢測構件,根據各構件的檢測結果來變更回授控制系統的參數,抑制馬達的振動。 [先行技術文獻] [專利文獻] Patent Document 1 discloses a motor system. In order to prevent vibration of the feedback control system in a mechanical device with variable inertia, an inertia detection component or a vibration detection component is provided. The parameters of the feedback control system are changed according to the detection results of each component to suppress the vibration of the motor. [Prior Art Literature] [Patent Document]

專利文獻1:日本特開2016-35676號公報Patent Document 1: Japanese Patent Laid-Open No. 2016-35676

[發明所欲解決的問題][Problem to be solved by the invention]

然而,振動發生有外部干擾或控制系統的不穩定等的複數的原因,必須要因應原因來做不同的應對,但只有振動發生或振幅增大這樣的資訊的話無法判別發生現象的原因。因此專利文獻1中記載的馬達系統會有無法適當變更參數設定的情況。又,慣性檢測構件必須有伴隨著加速度的動作,因此會有因運轉模式不同而難以檢測出慣性的情況。However, the occurrence of vibration has multiple causes such as external disturbance and instability of the control system, and different measures must be taken according to the cause, but the cause of the phenomenon cannot be determined only by information such as the occurrence of vibration or the increase in amplitude. Therefore, the motor system described in Patent Document 1 may not be able to appropriately change parameter settings. In addition, since the inertia detection means must operate with acceleration, it may be difficult to detect inertia depending on the operation mode.

本揭露有鑑於上述的問題,目的是獲得一種馬達控制裝置,能夠實現當連結到控制對象的馬達的負荷變化時的動作穩定化。 [用以解決問題的手段] In view of the above problems, the present disclosure aims to obtain a motor control device capable of stabilizing the operation when the load of the motor connected to the control object changes. [means used to solve a problem]

為了解決上述問題並達成目的,本揭露是一種馬達控制裝置,用以控制驅動負荷機械的馬達,包括:速度檢測器,檢測出馬達的速度;速度控制器,根據馬達的速度及速度指令,產生對馬達的力矩指令;修正計算器,修正力矩指令產生修正力矩指令;電流控制器,根據力矩指令及修正力矩指令使電流流過馬達;振動檢測器,檢測出馬達產生的振動的振幅之振動振幅以及振動的頻率之振動頻率;以及參數設定變更器,變更速度控制器的參數。在振動振幅比閾值大的情況下,修正計算器針對由馬達、速度檢測器、速度控制器、修正計算器以及電流控制器所構成的回授控制系統,計算出修正力矩指令,使振動檢測器所檢測出的振動頻率的遞移特性穩定化;在使遞移特性穩定化後振動檢測器檢測出的振動振幅減少的情況下,參數設定變更器變更速度控制器的參數。 [發明功效] In order to solve the above problems and achieve the purpose, the present disclosure is a motor control device for controlling a motor driving a load machine, including: a speed detector for detecting the speed of the motor; a speed controller for generating a torque command for the motor according to the speed and speed command of the motor; a correction calculator for generating a corrected torque command for the corrected torque command; a current controller for making current flow through the motor according to the torque command and the corrected torque command; parameters of the controller. When the vibration amplitude is larger than the threshold value, the correction calculator calculates the correction torque command for the feedback control system composed of the motor, the speed detector, the speed controller, the correction calculator and the current controller, so that the transition characteristic of the vibration frequency detected by the vibration detector is stabilized; when the vibration amplitude detected by the vibration detector decreases after the transition characteristic is stabilized, the parameter setting changer changes the parameters of the speed controller. [Efficacy of the invention]

本揭露的馬達控制裝置達成了能夠實現當連結到控制對象的馬達的負荷變化時的動作穩定化。The motor control device of the present disclosure can achieve stable operation when the load of the motor connected to the control object changes.

[用以實施發明的形態][Mode for Carrying Out the Invention]

以下,根據圖式說明本揭露的實施型態的馬達控制裝置、馬達控制系統及馬達控制方法。Hereinafter, a motor control device, a motor control system, and a motor control method according to embodiments of the present disclosure will be described based on the drawings.

[第1實施型態]圖1為顯示使用實施型態1的馬達控制裝置所實現馬達控制系統的構成例的方塊圖。[First Embodiment] FIG. 1 is a block diagram showing a configuration example of a motor control system realized by using the motor control device of Embodiment 1. As shown in FIG.

實施型態1的馬達控制系統200具備馬達控制裝置100、被馬達控制裝置100所控制的馬達2、連結到馬達2的負荷機械1。The motor control system 200 of Embodiment 1 includes a motor control device 100 , a motor 2 controlled by the motor control device 100 , and a load machine 1 connected to the motor 2 .

馬達2接收來自馬達控制裝置100所供給的電流,產生力矩,驅動負荷機械1。The motor 2 receives electric current supplied from the motor control device 100 , generates torque, and drives the load machine 1 .

馬達控制裝置100具備電流控制器3、速度控制器4、速度檢測器5、修正計算器6、位置控制器7、振動檢測器8、參數設定變更器9。速度檢測器5是由位置檢測器51及微分計算器52所構成。The motor control device 100 includes a current controller 3 , a speed controller 4 , a speed detector 5 , a correction calculator 6 , a position controller 7 , a vibration detector 8 , and a parameter setting changer 9 . The speed detector 5 is composed of a position detector 51 and a differential calculator 52 .

電流控制器3根據修正計算器6所輸入的修正力矩指令,控制供給至馬達2的電流。The current controller 3 controls the current supplied to the motor 2 based on the correction torque command input from the correction calculator 6 .

速度控制器4根據位置控制器7所輸入的速度指令及速度檢測器5所輸入的速度檢測值來產生力矩指令。具體來說,速度控制器4為了使速度檢測值追隨著速度指令,會進行包含比例計算及積分計算的運算來產生力矩指令。The speed controller 4 generates a torque command according to the speed command input by the position controller 7 and the speed detection value input by the speed detector 5 . Specifically, the speed controller 4 performs operations including proportional calculation and integral calculation to generate a torque command in order to make the detected speed value follow the speed command.

速度檢測器5的位置檢測器51檢測出馬達2的位置,具體來說是馬達2的省略了圖示的轉子的位置。速度檢測器5的微分計算器52將表示位置檢測器51所檢測的顯示出馬達2的位置檢測結果的位置檢測值微分,算出馬達2的速度。馬達2的速度是指馬達2的轉子的旋轉速度。微分計算器52所算出的馬達2的速度會做為速度檢測值,輸出到速度控制器4及振動檢測器8。The position detector 51 of the speed detector 5 detects the position of the motor 2 , specifically, the position of a rotor (not shown) of the motor 2 . The differential calculator 52 of the speed detector 5 differentiates the position detection value indicating the position detection result of the motor 2 detected by the position detector 51 to calculate the speed of the motor 2 . The speed of the motor 2 refers to the rotational speed of the rotor of the motor 2 . The speed of the motor 2 calculated by the differential calculator 52 is output to the speed controller 4 and the vibration detector 8 as a speed detection value.

修正計算器6在振動檢測器8所檢測的振動振福及頻率滿足既定條件的情況下,對速度控制器4所輸出的指令進行修正運算,產生修正力矩指令。修正計算器6在振動振福及頻率不滿足既定條件的情況下,將輸入的力矩指令當作是修正力矩指令輸出。The correction calculator 6 performs correction calculation on the command output by the speed controller 4 to generate a correction torque command when the vibration vibration and frequency detected by the vibration detector 8 meet predetermined conditions. The correction calculator 6 outputs the input torque command as a correction torque command when the vibration and frequency do not satisfy the predetermined conditions.

位置控制器7為了使位置檢測器51所檢測出的馬達2的位置檢測值追隨著從外部輸入的位置指令,會進行包含比例計算的運算來產生速度指令。 The position controller 7 performs calculations including proportional calculations to generate a speed command so that the detected position value of the motor 2 detected by the position detector 51 follows a position command input from the outside.

振動檢測器8檢測出速度檢測器5所輸出的速度檢測值的波形中包含的振動的振幅及頻率,將檢測到的振幅(亦即振動振幅)以及檢測出的頻率(亦即振動頻率),輸出到修正計算器6及參數設定變更器9。 The vibration detector 8 detects the amplitude and frequency of the vibration contained in the waveform of the speed detection value output by the speed detector 5, and outputs the detected amplitude (that is, the vibration amplitude) and the detected frequency (that is, the vibration frequency) to the correction calculator 6 and the parameter setting changer 9.

參數設定變更器9根據振動檢測器8所檢測出的振動振幅及頻率,變更速度控制器4及位置控制器7的參數。 The parameter setting changer 9 changes the parameters of the speed controller 4 and the position controller 7 according to the vibration amplitude and frequency detected by the vibration detector 8 .

接著,說明圖1所示的馬達控制裝置100的動作。這個馬達控制裝置100的目的是要進行負荷機械1及馬達2會追隨著位置指令的動作。 Next, the operation of the motor control device 100 shown in FIG. 1 will be described. The purpose of this motor control device 100 is to perform an operation in which the load machine 1 and the motor 2 follow the position command.

馬達控制裝置100中,位置控制器7為了使位置檢測器51所檢測出的顯示馬達2的位置之位置檢測值追隨著位置指令,會進行包含比例計算的運算來產生速度指令。位置控制器7的運算會使用比例計算的係數Kp而表示如式(1)。 In the motor control device 100, the position controller 7 performs calculations including proportional calculations to generate a speed command in order to make the position detection value detected by the position detector 51 and indicating the position of the motor 2 follow the position command. The operation of the position controller 7 is expressed as formula (1) using the proportional calculation coefficient Kp.

[式1]速度指令=Kp×(位置指令-位置檢測值)…(1) [Formula 1] Speed command = Kp × (position command - position detection value)...(1)

速度控制器4為了使速度檢測器5的微分計算器52所算出的馬達2的速度檢測值追隨著位置控制器7所輸出的速度指令,會進行包含比例計算及積分計算的運算,來計算力矩指令。速度控制器4為了計算力矩指令的運算會使用比例計算的係數Kv及積分計算的Ki而表示如式(2)。式(2)中的s是拉普拉斯算子,1/s表示積分計算。 The speed controller 4 performs operations including proportional calculation and integral calculation to calculate the torque command so that the detected speed value of the motor 2 calculated by the differential calculator 52 of the speed detector 5 follows the speed command output by the position controller 7 . The calculation of the speed controller 4 to calculate the torque command is expressed as Equation (2) using the proportional calculation coefficient Kv and the integral calculation Ki. s in formula (2) is the Laplacian operator, and 1/s represents integral calculation.

[式2]力矩指令=Kv×(1+Ki×1/s)×(位置指令-位置檢測值)…(2) [Formula 2] Torque command=Kv×(1+Ki×1/s)×(position command-position detection value)…(2)

速度控制器4所輸出的力矩指令會在修正計算器6被轉換成修正力矩指令,電流控制器3藉由將對應修正力矩指令的值的電流供給至馬達2,馬達2產生力矩並旋轉。像這樣,馬達控制裝置100進行由位置控制器7、速度控制器4、修正計算器6、電流控制器3、位置檢測器51、速度檢測器5、馬達2及負荷機械1所構成的回授迴路下執行的運算,也就是回授(以下,記載為FB)控制運算,藉此實現負荷機械1及馬達2追隨位置指令的動作。另外,這個情況下,使修正計算器6修正力矩指令的運算中使用的遞移函數h(s)為h(s)=1,力矩指令與修正力矩指令相同。詳細之後再說明,但修正計算器6在振動檢測器8檢測出的振動的振幅超過預定的閾值的情況下,修正力矩指令而產生修正力矩指令,也就是,將遞移函數h(s)設為h(s)=1來進行計算,輸出與輸入的指令相同值的修正力矩指令。The torque command output by the speed controller 4 is converted into a corrected torque command by the correction calculator 6 , and the current controller 3 supplies the current corresponding to the value of the corrected torque command to the motor 2 , and the motor 2 generates torque and rotates. In this way, the motor control device 100 performs calculations performed under the feedback loop composed of the position controller 7, the speed controller 4, the correction calculator 6, the current controller 3, the position detector 51, the speed detector 5, the motor 2, and the load machine 1, that is, the feedback (hereinafter, referred to as FB) control calculation, thereby realizing the action of the load machine 1 and the motor 2 following the position command. In this case, the transition function h(s) used in the calculation of the correction torque command by the correction calculator 6 is h(s)=1, and the torque command is the same as the correction torque command. The details will be described later, but the correction calculator 6 corrects the torque command to generate a corrected torque command when the amplitude of the vibration detected by the vibration detector 8 exceeds a predetermined threshold value, that is, performs calculation by setting the transition function h(s) to h(s)=1, and outputs a corrected torque command having the same value as the input command.

上述的架構的FB控制系統多使用於以馬達2控制位置或速度的情況下,為了使負荷機械1及馬達2高響應且高精度地追隨位置指令,必須設定使FB控制系統具有適當的特性。FB控制系統的特性能夠以位置控制器7及速度控制器4的特性來調整,這些各個控制器所執行的比例計算及積分計算的係數成為參數。FB控制系統的參數設定,不只有高響應且高精度的特性,還必須考慮穩定性。如果FB控制系統不穩定,有時會發生大振福的振盪現象,因此必須要設定參數使得控制系統穩定且具有高響應及高精度的特性。The FB control system with the above-mentioned structure is mostly used in the case where the motor 2 is used to control the position or speed. In order to make the load machine 1 and the motor 2 follow the position command with high response and high precision, it is necessary to set the FB control system to have appropriate characteristics. The characteristics of the FB control system can be adjusted with the characteristics of the position controller 7 and the speed controller 4, and the coefficients of the proportional calculation and the integral calculation performed by these respective controllers become parameters. The parameter setting of the FB control system not only has the characteristics of high response and high precision, but also must consider the stability. If the FB control system is unstable, there may sometimes be a large vibration phenomenon, so it is necessary to set parameters to make the control system stable and have high response and high precision characteristics.

接著,說明馬達2驅動慣性變化的負荷機械1的情況。例如,負荷機械1是將薄片狀的材料從滾輪捲出、捲入並加工的捲對捲裝置的滾輪時,因為捲繞在滾輪上的材料的量使得滾輪的慣性,也就是負荷機械1的慣性變化。捲對捲裝置中,會有慣性變化大,因為捲繞於滾輪的材料的量的不同,甚至有慣性發生數十倍變化的情況。Next, a case where the motor 2 drives the load machine 1 whose inertia changes will be described. For example, when the load machine 1 is a roll of a roll-to-roll device that unwinds, rolls, and processes sheet-like materials from the roll, the inertia of the roll, that is, the inertia of the load machine 1, changes due to the amount of material wound on the roll. In the roll-to-roll device, there is a large change in inertia, depending on the amount of material wound on the roll, and even the inertia changes by tens of times.

現在說明負荷機械1的慣性從初期狀態增加的情況下對FB控制系統的影響。舉例來說,思考負荷機械1的慣性從馬達慣性比5倍的初期狀態增加到最後馬達慣性250倍的情況。Now, the influence on the FB control system when the inertia of the load machine 1 increases from the initial state will be described. For example, consider a case where the inertia of the load machine 1 increases from an initial state where the motor inertia ratio is 5 times to a final motor inertia ratio of 250 times.

圖2為實施型態1的馬達控制裝置100所驅動的馬達2的波德圖。圖2的波德圖顯示負荷機械1的慣性在馬達慣性比5倍、31倍、250倍時的從馬達2的輸入(也就是電流)到馬達2的速度檢測值為止的遞移特性。FIG. 2 is a Bode diagram of the motor 2 driven by the motor control device 100 of the first embodiment. The Bode diagram in Fig. 2 shows the transition characteristics of the inertia of the load machine 1 from the input of the motor 2 (that is, the current) to the speed detection value of the motor 2 when the motor inertia ratio is 5 times, 31 times, and 250 times.

圖3為實施型態1的馬達控制裝置100的FB控制系統的開迴路遞移函數的波德圖。圖3的波德圖顯示,對慣性為馬達慣性比5倍的初期狀態的負荷機械1,設定位置控制器7及速度控制器4的參數,不變更這個參數設定,當負荷機械1的慣性增加時的FB控制系統的開迴路遞移函數。另外,雖然以帶通濾波器抑制180Hz附近的共振特性,但幾乎沒有負荷機械1的慣性的變化造成的影響,與本實施型態無關所以省略詳細的說明。圖4為實施型態1的馬達控制裝置100的FB控制系統的開迴路遞移函數的奈奎斯特圖。從圖3及圖4可知,負荷機械1的慣性增加到馬達慣性比31倍時,FB控制系統到達穩定界限。FIG. 3 is a Bode diagram of the open-loop transfer function of the FB control system of the motor control device 100 of Embodiment 1. FIG. The Bode diagram in Fig. 3 shows that for the load machine 1 in the initial state whose inertia is 5 times the motor inertia ratio, set the parameters of the position controller 7 and the speed controller 4, and do not change this parameter setting, the open-loop transfer function of the FB control system when the inertia of the load machine 1 increases. In addition, although the resonance characteristics around 180 Hz are suppressed by the band-pass filter, there is almost no influence due to the change of the inertia of the load machine 1, and the detailed description is omitted because it has nothing to do with this embodiment. FIG. 4 is a Nyquist diagram of the open-loop transfer function of the FB control system of the motor control device 100 of Embodiment 1. Referring to FIG. It can be seen from Figure 3 and Figure 4 that when the inertia of the load machine 1 increases to 31 times the motor inertia ratio, the FB control system reaches the limit of stability.

圖5為顯示實施型態1的馬達控制裝置100不穩定化時的動作波形的一例,顯示負荷機械1的慣性增加的過程的速度檢測值的波形的一例。圖5所示的速度檢測值在3秒的時間點時負荷機械1的慣性是馬達慣性比31倍,因為不穩定化而產生7.5Hz的振盪。另外,圖5中,為了看到振盪波形,會使用雙通濾波器去除跟隨速度指令的速度波形的成分。5 shows an example of an operation waveform when the motor control device 100 of Embodiment 1 becomes unstable, and an example of a waveform of a speed detection value showing a process in which the inertia of the load machine 1 increases. In the speed detection value shown in FIG. 5 , at the time of 3 seconds, the inertia of the load machine 1 is 31 times the motor inertia ratio, and oscillation of 7.5 Hz occurs due to instability. In addition, in Figure 5, in order to see the oscillation waveform, a double-pass filter is used to remove the component of the speed waveform following the speed command.

振動檢測器8算出速度檢測器5所輸出的速度檢測值的波形中包含的振動的振幅及頻率。發生圖5所示的振動的情況下,在6.5秒的時間點算出振幅0.5r/min且頻率為7.5Hz。將0.5r/min的振幅視為閾值並判定振動發生的情況下,修正計算器6對力矩指令進行暫時地使振動頻率附近的FB控制系統特性穩定化的修正運算,產生修正的力矩指令,也就是修正力矩指令。修正計算器6使用式(3)所示的遞移函數h(s)來進行修正運算,計算出修正力矩。The vibration detector 8 calculates the amplitude and frequency of the vibration included in the waveform of the speed detection value output from the speed detector 5 . When the vibration shown in FIG. 5 occurs, the amplitude is calculated at 6.5 seconds to be 0.5 r/min, and the frequency is 7.5 Hz. When the amplitude of 0.5 r/min is regarded as a threshold value and it is determined that vibration occurs, the correction calculator 6 performs a correction operation on the torque command to temporarily stabilize the characteristics of the FB control system near the vibration frequency, and generates a corrected torque command, that is, a corrected torque command. The correction calculator 6 performs a correction calculation using the transition function h(s) shown in the formula (3), and calculates a correction torque.

[式3] …(3) [Formula 3] ...(3)

式(3)中,ω h相對於檢測出的振動頻率ω 0=7.5×2π[rad/s],設定成ω h0×2.5[rad/s]。此時的遞移函數h(s)的波德圖如圖6。圖6為實施型態1的馬達控制裝置100的修正計算器6的傳遞函數的波德圖。修正計算器6進行了修正運算時的FB控制系統的開迴路遞移函數的波德圖如圖7,奈奎斯特圖如圖8,藉由修正計算器6的修正運算,使FB控制系統穩定化。圖7為實施型態1的馬達控制裝置100的FB控制系統的開迴路遞移函數的波德圖。圖8為實施型態1的馬達控制裝置100的FB控制系統的開迴路遞移函數的奈奎斯特圖。 In the formula (3), ω h is set to ω h0 ×2.5[rad/s] with respect to the detected vibration frequency ω 0 =7.5×2π[rad/s]. The Bode plot of the transfer function h(s) at this time is shown in Figure 6. FIG. 6 is a Bode diagram of the transfer function of the correction calculator 6 of the motor control device 100 of the first embodiment. The Bode diagram of the open-loop transfer function of the FB control system when the correction calculator 6 performs the correction operation is shown in Figure 7, and the Nyquist diagram is shown in Figure 8. The FB control system is stabilized by the correction calculation of the correction calculator 6. FIG. 7 is a Bode diagram of the open-loop transfer function of the FB control system of the motor control device 100 of Embodiment 1. Referring to FIG. FIG. 8 is a Nyquist diagram of the open-loop transfer function of the FB control system of the motor control device 100 of the first embodiment.

FB控制系統穩定化的情況下,如圖9所示,振盪被抑制,振動振幅減少。從FB控制系統穩定化會使振動振福減少這點來看,能夠判定振盪是FB控制系統的不穩定化的重要因素。圖9顯示實施型態1的馬達控制裝置100的FB控制系統穩定化時的動作波形。參數設定變更器9根據這個波形,也就是當振動振幅到達上述的閾值0.5r/min後振動振幅減少的情況下,變更位置控制器7的比例計算的係數Kp、速度控制器4的積分計算的係數Ki,將各個係數根據檢測出的振動頻率變更為Kp=Ki=7.5×2π/4的值,使FB控制系統穩定化。將顯示這個樣子的FB控制系統的開迴路遞移函數的波德圖顯示於圖10,將奈奎斯特圖顯示於圖11。圖10為實施型態1的馬達控制裝置100的FB控制系統穩定化時的開迴路遞移函數的波德圖。圖11為實施型態1的馬達控制裝置100的FB控制系統穩定化時的開迴路遞移函數的奈奎斯特圖。When the FB control system is stabilized, as shown in Fig. 9, the oscillation is suppressed and the vibration amplitude is reduced. From the point that the stabilization of the FB control system reduces vibration, it can be determined that oscillation is an important factor for destabilization of the FB control system. FIG. 9 shows operation waveforms when the FB control system of the motor control device 100 according to Embodiment 1 is stabilized. The parameter setting changer 9 changes the coefficient Kp calculated by the ratio of the position controller 7 and the coefficient Ki calculated by the integral of the speed controller 4 according to this waveform, that is, when the vibration amplitude decreases after the vibration amplitude reaches the above-mentioned threshold value of 0.5r/min, and changes each coefficient to a value of Kp=Ki=7.5×2π/4 according to the detected vibration frequency, thereby stabilizing the FB control system. FIG. 10 shows a Bode diagram showing the open-loop transfer function of the FB control system in this way, and FIG. 11 shows a Nyquist diagram. FIG. 10 is a Bode diagram of an open-loop transfer function when the FB control system of the motor control device 100 of Embodiment 1 is stabilized. FIG. 11 is a Nyquist diagram of an open-loop transfer function when the FB control system of the motor control device 100 according to Embodiment 1 is stabilized.

又,馬達控制裝置100在參數設定變更器9變更位置控制器7及速度控制器4的參數後,使修正計算器6在修正運算中使用的遞移函數回到h(s)=1。另外,使用上述的式(3)的遞移函數的修正運算中獲得的穩定化無法獲得大的穩定餘裕,因此雖然能夠利用於使FB控制系統暫時地穩定化的用途,但如果目的是獲得常態的穩定化的話則不合適。只實施變更修正計算器6的遞移函數來進行穩定化的狀態下,如果負荷機械1的慣性更加增大,少許的增加都會再讓FB控制系統再次不穩定化。Also, in the motor control device 100 , after the parameters of the position controller 7 and the speed controller 4 are changed by the parameter setting changer 9 , the transition function used for the correction calculation by the correction calculator 6 is returned to h(s)=1. In addition, the stabilization obtained by the correction calculation of the transition function using the above-mentioned formula (3) cannot obtain a large stability margin, so although it can be used for temporarily stabilizing the FB control system, it is not suitable for the purpose of obtaining normal stabilization. In the state of stabilizing only by changing the transfer function of the correction calculator 6, if the inertia of the load machine 1 increases, a slight increase will destabilize the FB control system again.

接著,說明振動的主因是外在干擾的情況。圖12顯示實施型態1的馬達控制裝置100有外部干擾振動時的動作波形。圖12的動作波形顯示發生7.5Hz的外部干擾時的動作。在3秒的時間點外部干擾輸入,振動檢測器8從速度檢測值算出振動振幅0.8r/min及頻率7.5Hz。伴隨於此,修正計算器6開始進行使用上述式(3)的遞移函數的修正運算,但振動振幅沒有變化,根據這個結果,馬達控制裝置100判定出振動的產生並不是FB控制系統的不穩定化。因此,參數設定變更器9不變更位置控制器7及速度控制器4的參數設定。另外,修正計算器6在開始進行使用上述式(3)的遞移函數的修正運算後,在經過固定時間的時間點,使修正運算中使用的遞移函數回到h(s)=1。修正計算器6將遞移函數回到h(s)=1的時間點會在經過一段用來判定速度檢測值的振動產生的主因是外部干擾還是FB控制系統的不穩定化的必要時間之後。Next, a case where the main cause of vibration is external disturbance will be described. FIG. 12 shows the operation waveform of the motor control device 100 of Embodiment 1 when there is external disturbance vibration. The operation waveform in Fig. 12 shows the operation when external disturbance of 7.5 Hz occurs. When an external disturbance is input at a time point of 3 seconds, the vibration detector 8 calculates a vibration amplitude of 0.8 r/min and a frequency of 7.5 Hz from the speed detection value. Accompanying this, the correction calculator 6 starts the correction calculation using the transition function of the above formula (3), but the vibration amplitude does not change. From this result, the motor control device 100 determines that the generation of the vibration is not an instability of the FB control system. Therefore, the parameter setting changer 9 does not change the parameter settings of the position controller 7 and the speed controller 4 . In addition, the correction calculator 6 returns the transition function used in the correction calculation to h(s)=1 when a fixed time elapses after starting the correction calculation using the transition function of the above-mentioned expression (3). The time point at which the correction calculator 6 returns the transition function to h(s)=1 will be after a necessary time for determining whether the vibration of the speed detection value is caused by external disturbance or the instability of the FB control system.

將以上的馬達控制裝置100抑制馬達2的振盪的動作以流程圖顯示的話會如圖13圖所示。圖13為顯示實施型態1的馬達控制裝置100抑制馬達2的振動的動作的一例的流程圖。When the above-mentioned operation of the motor control device 100 to suppress the oscillation of the motor 2 is displayed as a flowchart, it will be as shown in FIG. 13 . FIG. 13 is a flowchart showing an example of the operation of the motor control device 100 according to Embodiment 1 to suppress the vibration of the motor 2 .

馬達控制裝置100在控制著馬達2的狀態時,依照圖13的流程圖判定有無馬達2的振動,檢測出振動發生的情況下,特定出發生振動的主因,當主因是FB控制系統的不穩定化的情況下,變更位置控制器7及速度控制器4的參數設定。When the motor control device 100 is controlling the state of the motor 2, it determines whether there is vibration of the motor 2 according to the flow chart of FIG.

也就是,正在控制馬達2的馬達控制裝置100將馬達2的速度的振動振幅與閾值相比(步驟S1),振動振幅在閾值以下的情況(步驟S1:No),重複步驟S1。當振動振幅比閾值大的情況下(步驟S1:Yes),馬達控制裝置100變更修正計算器6的遞移函數h(s)(步驟S2)。具體來說,是將修正計算器6在力矩指令的修正運算中使用的遞移函數h(s)變更為上述的式(3)。馬達控制裝置100接著確認馬達2的速度的振動振幅是否減少(步驟S3)。例如馬達控制裝置100在步驟S2變更修正計算器6的遞移函數後到經過既定的時間為止持續監視振動振幅,判定振動振幅是否減少。當振動振幅減少的情況下(步驟S3:Yes),馬達控制裝置100調整位置控制器7及速度控制器4的參數(步驟S4)。馬達控制裝置100調整位置控制器7及速度控制器4的參數後,變更修正計算器6的遞移函數h(s)(步驟S5)。在這個步驟S5,將遞移函數h(s)變更到實行上述的步驟S2之前的狀態,也就是h(s)=1。又,在步驟S2變更修正計算器6的遞移函數後,振動振幅沒有減少的情況下(步驟S3:No),馬達控制裝置100執行步驟S5,變更為h(s)=1。馬達控制裝置100在執行步驟S5後,回到步驟S1,並重複步驟S1~S5的處理。That is, the motor control device 100 controlling the motor 2 compares the vibration amplitude of the speed of the motor 2 with a threshold value (step S1 ), and if the vibration amplitude is below the threshold value (step S1 : No), step S1 is repeated. When the vibration amplitude is larger than the threshold value (step S1: Yes), the motor control device 100 changes the transition function h(s) of the correction calculator 6 (step S2). Specifically, the transition function h(s) used by the correction calculator 6 for the correction calculation of the torque command is changed to the above-mentioned formula (3). The motor control device 100 then checks whether the vibration amplitude of the speed of the motor 2 has decreased (step S3 ). For example, the motor control device 100 continues to monitor the vibration amplitude until a predetermined time elapses after changing the transition function of the correction calculator 6 in step S2, and determines whether the vibration amplitude has decreased. When the vibration amplitude decreases (step S3: Yes), the motor control device 100 adjusts the parameters of the position controller 7 and the speed controller 4 (step S4). After adjusting the parameters of the position controller 7 and the speed controller 4 , the motor control device 100 changes the transition function h(s) of the correction calculator 6 (step S5 ). In this step S5, the transition function h(s) is changed to the state before the execution of the above-mentioned step S2, that is, h(s)=1. Also, when the vibration amplitude does not decrease after changing the transfer function of the correction calculator 6 in step S2 (step S3 : No), the motor control device 100 executes step S5 and changes to h(s)=1. The motor control device 100 returns to step S1 after executing step S5, and repeats the processing of steps S1 to S5.

如以上的說明,馬達控制裝置100中,當振動檢測器8所檢測出的振動的振幅比閾值大的情況下,將修正計算器6用於修正運算的遞移函數,根據檢測出的振動的頻率變更,使FB控制系統的特性改變。然後,根據之後的振動振幅的變化狀態,判別出負荷機械1的慣性從初期狀態增加的情況下所產生的振動的主因。又,振動的產生主因是FB控制系統的不穩定化的情況下,參數設定變更器9變更位置控制器7及速度控制器4的參數,抑制大振幅的振盪。又,產生主因不是FB控制系統的不穩定化的情況下,參數設定變更器9不讓位置控制器7及速度控制器4的參數變更,也就是不進行FB控制系統的特性的變更。藉此,能夠只限定在隨著負荷機械1的慣性的增加,FB控制系統會不穩定化,馬達2產生振動的情況下,變更位置控制器7及速度控制器4的參數設定。換言之,能夠防止在因為外部干擾而暫時產生振動的情況下去變更位置控制器7及速度控制器4的參數使控制反而變得不穩定的狀況,能夠實現馬達控制系統200的動作穩定化。As described above, in the motor control device 100, when the amplitude of the vibration detected by the vibration detector 8 is larger than the threshold value, the correction calculator 6 is used to correct the transition function of the calculation, and the frequency of the detected vibration is changed to change the characteristics of the FB control system. Then, the main cause of the vibration that occurs when the inertia of the load machine 1 increases from the initial state is discriminated from the subsequent state of change in the vibration amplitude. Also, when the main cause of vibration is destabilization of the FB control system, the parameter setting changer 9 changes the parameters of the position controller 7 and the speed controller 4 to suppress large-amplitude oscillations. Also, when the cause is not the instability of the FB control system, the parameter setting changer 9 does not change the parameters of the position controller 7 and the speed controller 4, that is, does not change the characteristics of the FB control system. Thereby, the parameter settings of the position controller 7 and the speed controller 4 can be changed only when the FB control system becomes unstable and the motor 2 vibrates as the inertia of the load machine 1 increases. In other words, it is possible to prevent the situation where the parameters of the position controller 7 and the speed controller 4 are changed to make the control unstable when vibration is temporarily generated due to external disturbance, and the operation of the motor control system 200 can be stabilized.

又,以上的說明中,作為慣性變化的負荷機械1的例子,舉出了因為捲繞於滾輪的材料的量使得滾輪的慣性變化的捲對捲裝置,但並不限定於此,即使是搬運用機械或臂型機械人等會因為成為負荷的物體的有無或擺放方式變化而造成施加於馬達的慣性變化的裝置的情況下,都可以用同樣的方法來抑制振動,使FB控制系統穩定化。 In addition, in the above description, as an example of the load machine 1 whose inertia changes, a roll-to-roll device in which the inertia of the roll changes due to the amount of material wound on the roll is mentioned, but it is not limited to this. Even in the case of a device in which the inertia applied to the motor changes due to changes in the presence or absence or placement of objects serving as loads, such as a transfer machine or an arm robot, the same method can be used to suppress vibration and stabilize the FB control system.

又,本實施型態的馬達控制系統200具備負荷機械1、驅動負荷機械1的馬達2、檢測出馬達2的速度的速度檢測器5、根據馬達2的速度及速度指令對馬達2產生力矩指令的速度控制器4、修正力矩指令並產生修正力矩指令的修正計算器6、根據力矩指令及修正力矩指令使電流流過馬達2的電流控制器3、檢測出馬達2發生的振動的振動振幅以及振動頻率的振動檢測器8、變更速度控制器4的參數的參數設定變更器9。 In addition, the motor control system 200 of this embodiment includes a load machine 1, a motor 2 for driving the load machine 1, a speed detector 5 for detecting the speed of the motor 2, a speed controller 4 for generating a torque command to the motor 2 based on the speed of the motor 2 and a speed command, a correction calculator 6 for correcting the torque command and generating a corrected torque command, a current controller 3 for flowing current to the motor 2 based on the torque command and the corrected torque command, a vibration detector 8 for detecting the vibration amplitude and frequency of vibration generated by the motor 2, and a device for changing the parameters of the speed controller 4. Parameter setting changer9.

又,本實施型態的馬達控制裝置100所執行的馬達控制方法用於FB控制系統,其檢測出驅動負荷機械1的馬達2的位置,根據馬達2的位置及位置指令以包含比例計算的運算產生出速度指令,檢測出馬達2的速度,根據馬達2的速度及速度指令以包含比例計算及積分計算的運算產生出對馬達2的力矩指令,修正力矩指令並產生修正力矩指令,根據力矩指令及修正力矩指令使電流流過馬達2,檢測出馬達2產生的振動的振動振幅以及振動頻率,當振動振幅比閾值大的情況下,反覆進行馬達2的位置的檢測、速度指令的產生、馬達2的速度的檢測、力矩指令的產生、修正力矩指令的產生、使電流流過馬達。而馬達控制方法使馬達2產生的振動頻率的遞移特性穩定化,當使遞移特性穩定化後振動振幅減少的情況下,變更產生速度指令的運算的參數(也就是比例計算的係數),且變更產生力矩指令時的運算的參數(也就是積分計算的係數)。 In addition, the motor control method executed by the motor control device 100 of the present embodiment is used in the FB control system, which detects the position of the motor 2 driving the load machine 1, generates a speed command based on the position of the motor 2 and the position command by calculation including proportional calculation, detects the speed of the motor 2, generates a torque command for the motor 2 based on the speed of the motor 2 and the speed command by calculation including proportional calculation and integral calculation, and corrects the torque command to generate a corrected torque command. 2. When the vibration amplitude and vibration frequency of the generated vibration are larger than the threshold value, the position detection of the motor 2, the generation of the speed command, the detection of the speed of the motor 2, the generation of the torque command, the generation of the correction torque command, and the current flow to the motor are repeated. On the other hand, the motor control method stabilizes the transition characteristic of the vibration frequency generated by the motor 2. When the vibration amplitude decreases after the transition characteristic is stabilized, the parameters of the calculation for generating the speed command (that is, the coefficient of the proportional calculation) are changed, and the parameters of the calculation for generating the torque command (that is, the coefficient of the integral calculation) are changed.

另外,本實施型態的馬達控制裝置100的振動檢測器8根據速度值的波形算出振動的振幅及頻率,但也可以使其根據位置檢測值、速度指令、力矩指令、修正力矩指令、電流的波形算出振動的振幅及頻率。 In addition, the vibration detector 8 of the motor control device 100 of the present embodiment calculates the amplitude and frequency of the vibration from the waveform of the velocity value, but it may also be configured to calculate the amplitude and frequency of the vibration from the waveform of the position detection value, velocity command, torque command, corrected torque command, and current.

又,本實施型態的馬達控制裝置100判斷振動產生主因是FB控制系統的不穩定化的情況下,將位置控制器7的比例計算的係數Kp及速度控制器4的積分計算的係數Ki,根據檢測出的振動頻率來變更,分別為Kp=Ki=7.5×2π/4,也就是設定為振動頻率的1/4倍,但也不限定於1/4倍,也可以將係數Kp及Ki變更成比振動頻率小的值。具體來說,如果將係數Kp及Ki變更比振動頻率×2π的1/2倍小的話,就能夠抑制FB控制系統的不穩定化。又,也能夠例如將變更前的係數Kp及Ki變更為1/4倍這樣子地變更為比變更前的係數Kp及Ki更小的值,使其比變更前的值的1/2倍更小的話就能抑制FB控制系統的不穩定化。 In addition, when the motor control device 100 of this embodiment determines that the main cause of the vibration is the instability of the FB control system, the coefficient Kp calculated by the proportional calculation of the position controller 7 and the coefficient Ki calculated by the integral calculation of the speed controller 4 are changed according to the detected vibration frequency, respectively, Kp=Ki=7.5×2π/4, that is, set to 1/4 times the vibration frequency, but not limited to 1/4 times, and the coefficients Kp and Ki can also be changed to values smaller than the vibration frequency. Specifically, if the coefficients Kp and Ki are changed to be smaller than 1/2 times the vibration frequency × 2π, the destabilization of the FB control system can be suppressed. In addition, it is also possible to change the coefficients Kp and Ki before the change to 1/4 times, for example, to values smaller than the coefficients Kp and Ki before the change, so that if they are smaller than 1/2 times the values before the change, the instability of the FB control system can be suppressed.

又,本實施型態的馬達控制裝置100中,位置控制器7依照式(1)產生速度指令,速度控制器4依照式(2)產生力矩指令,但也可以是其他架構。 例如,可以是速度I-P控制系統的架構,也可以是追加微分計算器的架構。在這個情況下,根據檢測出的振動頻率,變更參數來達成圖10、圖11所示的特性變化即可。 Furthermore, in the motor control device 100 of this embodiment, the position controller 7 generates a speed command according to formula (1), and the speed controller 4 generates a torque command according to formula (2), but other structures are also possible. For example, a speed I-P control system may be used, or a differential calculator may be added. In this case, the parameters may be changed according to the detected vibration frequency to achieve the characteristic changes shown in FIGS. 10 and 11 .

又,本實施型態的馬達控制裝置100中,修正計算器6使用式(3)的遞移函數h(s)來變化FB控制系統的特性,但也可以使用其他的遞移函數。例如也可以使用這些方法:設定低通濾波器來變化FB控制系統的特性、使用相位前進補償器來變化FB控制系統的特性、如下式(4)所示將塑造速度檢測值的波形加到力矩指令來變化FB控制系統的特性等。使用這些方法的情況下也能夠實現相同的功能。 Also, in the motor control device 100 of the present embodiment, the correction calculator 6 changes the characteristics of the FB control system using the transition function h(s) of the formula (3), but other transition functions may also be used. For example, these methods can also be used: setting a low-pass filter to change the characteristics of the FB control system, using a phase advance compensator to change the characteristics of the FB control system, adding the waveform of the shaping speed detection value to the torque command as shown in the following equation (4) to change the characteristics of the FB control system, etc. The same function can be realized also when using these methods.

Figure 111113204-A0305-02-0015-1
Figure 111113204-A0305-02-0015-1

接著,說明實現本實施型態的馬達控制裝置100的硬體。 Next, hardware for realizing the motor control device 100 of the present embodiment will be described.

本實施型態的馬達控制裝置100中,用以變化FB控制系統的特性的架構,具體來說位置控制器7、速度控制器4、修正計算器6、振動檢測器8以及參數設定變更器9能夠以專用的處理電路來實現,也可以用執行程式的通用的處理器來實現。專用的處理電路的例子式ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、或它們的組合的電路。又以處理器實現上述的架構的情況下,例如使用如圖14所示的處理器101及記憶體102所組成的控制電路。圖14顯示實現實施型態1的馬達控制裝置100的硬體的一例。處理器101是CPU(也稱為Central Processing Unit、中央處理裝置、處理裝置、運算裝置、微處理器、微電腦、DSP(Digital Signal Processor))、系統LSI(Large Scale Integration)等。記憶體102是RAM(Random Access Memory)、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(註冊商標)(Electrically Erasable Programmable Read Only Memory)等。記憶體102中儲存了程式,其編寫了位置控制器7、速度控制器4、修正計算器6、振動檢測器8以及參數設定變更器9各自的功能。處理器101藉由執行儲存於記憶體102中的程式,而作為位置控制器7、速度控制器4、修正計算器6、振動檢測器8以及參數設定變更器9動作。另外,也能夠以專用的處理電路來實現位置控制器7、速度控制器4、修正計算器6、振動檢測器8以及參數設定變更器9,以圖14所示的控制電路來實現剩餘的部分。In the motor control device 100 of this embodiment, the architecture for changing the characteristics of the FB control system, specifically the position controller 7, the speed controller 4, the correction calculator 6, the vibration detector 8, and the parameter setting changer 9 can be realized by a dedicated processing circuit, or can be realized by a general-purpose processor for executing programs. An example of a dedicated processing circuit is an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. In the case of implementing the above architecture with a processor, for example, a control circuit composed of a processor 101 and a memory 102 as shown in FIG. 14 is used. FIG. 14 shows an example of hardware for realizing the motor control device 100 of the first embodiment. The processor 101 is a CPU (also referred to as a Central Processing Unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, and a DSP (Digital Signal Processor)), a system LSI (Large Scale Integration), or the like. The memory 102 is RAM (Random Access Memory), ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), or the like. Programs are stored in the memory 102 , and the respective functions of the position controller 7 , the speed controller 4 , the correction calculator 6 , the vibration detector 8 , and the parameter setting changer 9 are programmed. Processor 101 operates as position controller 7 , speed controller 4 , correction calculator 6 , vibration detector 8 , and parameter setting changer 9 by executing the programs stored in memory 102 . In addition, the position controller 7, the speed controller 4, the correction calculator 6, the vibration detector 8, and the parameter setting changer 9 can be realized by dedicated processing circuits, and the remaining parts can be realized by the control circuit shown in FIG. 14 .

馬達控制裝置100的速度檢測器5以編碼器來實現。電流控制器3以電子電路來實現,其輸出對應到修正計算器6輸入的修正力矩指令的值的電流。The speed detector 5 of the motor control device 100 is realized by an encoder. The current controller 3 is realized as an electronic circuit, and outputs a current corresponding to the value of the correction torque command input by the correction calculator 6 .

[實施型態2]圖15為顯示使用實施型態2的馬達控制裝置100a來實現的馬達控制系統200a的構成例的方塊圖。圖15所示的馬達控制裝置100a中取代了圖1所示的實施型態1的馬達控制裝置100的參數設定變更器9,而具備變更速度控制器4的參數的參數設定變更器9a。其他相同符號的組成要素與圖1相同,因此省略說明。[Embodiment 2] FIG. 15 is a block diagram showing a configuration example of a motor control system 200a realized using the motor control device 100a of Embodiment 2. As shown in FIG. A motor control device 100a shown in FIG. 15 includes a parameter setting changer 9a for changing parameters of a speed controller 4 instead of the parameter setting changer 9 of the motor control device 100 of Embodiment 1 shown in FIG. 1 . The other constituent elements with the same symbols are the same as those in FIG. 1 , and therefore description thereof will be omitted.

接著,說明圖15所示的馬達控制裝置100a的動作。馬達控制裝置100a與實施型態1的馬達控制裝置100同樣地,目的是使負荷機械1及馬達2追隨著位置指令而動作,與圖1相同符號的組成要素會進行與馬達控制裝置100相同的動作。參數設定變更器9a在判定出由位置控制器7、速度控制器4、速度檢測器5、修正計算器6、電流控制器3、馬達2及負荷機械1所構成的FB控制系統不穩定化時,根據振動檢測器8所算出的振動的振幅及頻率,變更速度控制器4的參數。 Next, the operation of the motor control device 100a shown in FIG. 15 will be described. The motor control device 100a is the same as the motor control device 100 of Embodiment 1, and its purpose is to make the load machine 1 and the motor 2 operate following the position command, and the components with the same symbols as in FIG. The parameter setting changer 9a changes the parameters of the speed controller 4 according to the amplitude and frequency of the vibration calculated by the vibration detector 8 when it is determined that the FB control system composed of the position controller 7, the speed controller 4, the speed detector 5, the correction calculator 6, the current controller 3, the motor 2, and the load machine 1 is unstable.

接著,說明實施型態2的馬達控制系統200a中負荷機械1的慣性從初期狀態減少的情況下對FB控制系統的影響、以及馬達控制裝置100a的動作。考慮負荷機械1的慣性從馬達慣性比250倍的初期狀態最終減少到馬達慣性比5倍的情況。顯示從馬達2的輸入(電流)至馬達2的速度檢測值的遞移特性的波德圖與圖2相同。 Next, in the motor control system 200a of Embodiment 2, when the inertia of the load machine 1 decreases from the initial state, the influence on the FB control system and the operation of the motor control device 100a will be described. Consider a case where the inertia of the load machine 1 eventually decreases from an initial state where the motor inertia ratio is 250 times to 5 times the motor inertia ratio. The Bode diagram showing the transition characteristic from the input (current) of the motor 2 to the speed detection value of the motor 2 is the same as that of FIG. 2 .

圖16為實施型態2的馬達控制裝置100a的FB控制系統的開迴路遞移函數的波德圖。圖16的波德圖顯示對初期狀態的負荷機械1設定位置控制器7及速度控制器4的參數,不變更這個設定,負荷機械1的慣性減少時的FB控制系統的開迴路遞移函數。負荷機械1的慣性減少到馬達慣性比5.5倍左右時,FB控制系統到達穩定界限。另外,雖然以帶通濾波器抑制了180Hz附近的共振特性,但幾乎沒有負荷機械1的慣性的變化造成的影響,因為與本實施型態的無關所以省略詳細的說明。圖17顯示負荷機械1的慣性減少過程的馬達2的速度檢測值的波形的一例。圖17所示的速度檢測值顯示,在7秒的時間點時負荷機械1的慣性達到馬達慣性比5.5倍,因為不穩定化而產生了52Hz的振盪。另外,圖17中,為了看到振盪波形,使用雙通濾波器除去追隨著速度指令的速度波形的成分。 FIG. 16 is a Bode diagram of the open-loop transfer function of the FB control system of the motor control device 100a of the second embodiment. The Bode diagram in FIG. 16 shows the open-loop transition function of the FB control system when the inertia of the load machine 1 decreases when the parameters of the position controller 7 and the speed controller 4 are set for the load machine 1 in the initial state and the settings are not changed. When the inertia of the load machine 1 is reduced to about 5.5 times the motor inertia ratio, the FB control system reaches the stable limit. In addition, although the resonance characteristics near 180 Hz are suppressed by the band-pass filter, there is almost no influence due to the change of inertia of the load machine 1, and a detailed description is omitted because it is irrelevant to this embodiment. FIG. 17 shows an example of the waveform of the speed detection value of the motor 2 during the inertia reduction process of the load machine 1 . The speed detection values shown in FIG. 17 show that the inertia of the load machine 1 reached 5.5 times the motor inertia ratio at 7 seconds, and oscillation at 52 Hz occurred due to instability. In addition, in FIG. 17, in order to see the oscillating waveform, a double-pass filter is used to remove the component of the velocity waveform following the velocity command.

振動檢測器8與實施型態1同樣地,算出速度檢測值中產生的振動的振幅及頻率。速度檢測值中發生圖17所示的振動的情況下,振動檢測器8在8秒的時間點算出振動的振幅0.5r/min且頻率為52Hz。0.5r/min被視為檢測到振動產生的振幅的情況下,修正計算器6在8秒的時間點判定振動發生,對力矩指令進行暫時地使振動頻率附近的FB控制系統特性穩定化的修正運算,產生修正力矩指令。具體來說,修正計算器6使用式(3)所示的遞移函數h(s)的運算來計算修正力矩指令。式(3)中,ω h相對於振動檢測器8所檢測出的振動頻率ω 0=52×2π[rad/s],設定成ω h0×2.5[rad/s]。修正計算器6使用式(3)的遞移函數h(s)進行修正運算時的FB控制系統的開迴路遞移函數的波德圖如圖18,藉由修正計算器6的修正運算,使FB控制系統穩定化。圖18為實施型態2的馬達控制裝置100a的FB控制系統的開迴路遞移函數的波德圖。FB控制系統穩定化的情況下,如圖19所示,振盪被抑制,振動振幅減少。圖19顯示實施型態2的馬達控制裝置100a的FB控制系統穩定化時的動作波形。根據FB控制系統的穩定化使振動振幅減少這點,能夠判斷振盪的主因是FB控制系統的不穩地化。參數設定變更器9a根據這個判定變更速度控制器4的比例計算的係數Kv,使FB控制系統穩定化。變更後的係數Kv例如是將變更前的係數Kv變更為1/2倍的值。在這個情況下的FB控制系統的開迴路遞移函數的波德圖如圖20。圖20為實施型態2的馬達控制裝置100a的回授控制系統穩定化時的開迴路遞移函數的波德圖。 Similar to the first embodiment, the vibration detector 8 calculates the amplitude and frequency of the vibration generated in the speed detection value. When the vibration shown in FIG. 17 occurs in the speed detection value, the vibration detector 8 calculates the amplitude of the vibration at 0.5 r/min and the frequency at 52 Hz at the time point of 8 seconds. When 0.5 r/min is regarded as the detected amplitude of vibration generation, the correction calculator 6 judges that vibration occurs at the time point of 8 seconds, performs a correction operation on the torque command to temporarily stabilize the characteristics of the FB control system near the vibration frequency, and generates a corrected torque command. Specifically, the correction calculator 6 calculates the correction torque command using the calculation of the transition function h(s) shown in the formula (3). In the formula (3), ω h is set to ω h0 ×2.5 [rad/s] with respect to the vibration frequency ω 0 =52×2π[rad/s] detected by the vibration detector 8 . The Bode diagram of the open-loop transfer function of the FB control system when the correction calculator 6 uses the transfer function h(s) of formula (3) to perform the correction calculation is shown in Figure 18. The FB control system is stabilized by the correction calculation of the correction calculator 6. FIG. 18 is a Bode diagram of the open-loop transfer function of the FB control system of the motor control device 100a of the second embodiment. When the FB control system is stabilized, as shown in Fig. 19, the oscillation is suppressed and the vibration amplitude is reduced. FIG. 19 shows operation waveforms when the FB control system of the motor control device 100a of Embodiment 2 is stabilized. From the fact that the stabilization of the FB control system reduces the vibration amplitude, it can be judged that the main cause of the oscillation is destabilization of the FB control system. The parameter setting changer 9a changes the coefficient Kv calculated by the ratio of the speed controller 4 based on this determination, and stabilizes the FB control system. The coefficient Kv after the change is, for example, a value obtained by changing the coefficient Kv before the change to 1/2 times. The Bode plot of the open-loop transfer function of the FB control system in this case is shown in Fig. 20. FIG. 20 is a Bode diagram of the open-loop transfer function when the feedback control system of the motor control device 100a of the embodiment 2 is stabilized.

又,修正計算器6在參數設定變更器9a變更速度控制器4的參數後,與實施型態1同樣地,使修正運算中使用的遞移函數回到h(s)=1。將修正計算器6的遞移函數回到h(s)=1的理由與實施型態1中說明的,負荷機械1的慣性從初期狀態開始增加的情況相同。In addition, the correction calculator 6 returns the transition function used for the correction calculation to h(s)=1 after changing the parameters of the speed controller 4 by the parameter setting changer 9a, as in the first embodiment. The reason for returning the transition function of the correction calculator 6 to h(s)=1 is the same as that described in Embodiment 1, where the inertia of the loading machine 1 increases from the initial state.

接著,說明振動的主因是外部干擾的情況。圖21顯示實施型態2的馬達控制裝置100a的有外部干擾振動時的動作波形。圖21顯示52Hz的外部干擾發生時的速度檢測值的波形。在3秒的時間點時外部干擾輸入,振動檢測器8根據速度檢測值,算出振動振幅0.5r/min及頻率52Hz。伴隨於此,修正計算器6開始進行使用上述式(3)的遞移函數的修正運算,但振動振幅沒有變化,因此從這個結果判定出振動的產生不是FB控制系統的不穩定化。因此,參數設定變更器9a不變更位置控制器7及速度控制器4的參數設定。又,修正計算器6開始進行使用上述式(3)的遞移函數的修正運算後,在經過既定時間的時間點,使修正運算中使用的遞移函數回到h(s)=1。Next, a case where the main cause of vibration is external disturbance will be described. FIG. 21 shows an operation waveform of the motor control device 100a of Embodiment 2 when there is external disturbance vibration. Fig. 21 shows the waveform of the speed detection value when a disturbance of 52 Hz occurs. When an external disturbance is input at a time point of 3 seconds, the vibration detector 8 calculates a vibration amplitude of 0.5 r/min and a frequency of 52 Hz based on the speed detection value. Accompanying this, the correction calculator 6 starts the correction calculation using the transition function of the above-mentioned formula (3), but the vibration amplitude does not change. Therefore, it is determined from this result that the generation of the vibration is not an instability of the FB control system. Therefore, the parameter setting changer 9 a does not change the parameter settings of the position controller 7 and the speed controller 4 . Also, the correction calculator 6 returns the transition function used in the correction calculation to h(s)=1 when a predetermined time elapses after starting the correction calculation using the transition function of the above-mentioned expression (3).

以上的馬達控制裝置100a抑制馬達2的振盪的動作,與實施型態1的馬達控制裝置100抑制馬達2的振盪的動作同樣地,能夠以圖13的流程圖表示。然而,馬達控制裝置100a的動作的情況下,圖13的步驟S4是調整速度控制器4的參數。The above-described operation of the motor control device 100a to suppress the vibration of the motor 2 can be represented by the flowchart of FIG. 13 similarly to the operation of the motor control device 100 of Embodiment 1 to suppress the vibration of the motor 2 . However, in the case of the operation of the motor control device 100a, step S4 in FIG. 13 is to adjust the parameters of the speed controller 4 .

如以上說明,馬達控制裝置100a中,振動檢測器8檢測出的振動的振幅比閾值大的情況下,將修正計算器6用於修正運算中的遞移函數,根據檢測出的振動的頻率變更,使FB控制系統的特性變化。然後,根據之後的振動振幅的變化狀態,判別出負荷機械1的慣性從初期狀態減少的情況下所產生的振動的主因。又,振動的主因是FB控制系統的不穩定化的情況下,參數設定變更器9a變更速度控制器4的參數,抑制大振幅的振盪。又,振動的主因不是FB控制系統的不穩定化的情況下,參數設定變更器9a不進行速度控制器4的參數的變更,也就是不進行FB控制系統的特性的變更。藉此,僅限於伴隨著負荷機械1的慣性的減少而使得FB控制系統不穩定化進而發生馬達2的振動的情況下,能夠變更速度控制器4的參數設定。換言之,能夠防止因為外部干擾而暫時產生振動的情況下變更速度控制器4的參數使控制反而變得不穩定的狀況,能夠實現馬達控制系統200a的動作的穩定化。As described above, in the motor control device 100a, when the amplitude of the vibration detected by the vibration detector 8 is larger than the threshold value, the correction calculator 6 is used to correct the transition function in the calculation, and the frequency of the detected vibration is changed to change the characteristics of the FB control system. Then, the main cause of the vibration that occurs when the inertia of the load machine 1 decreases from the initial state is discriminated from the subsequent state of change in the vibration amplitude. Also, when the main cause of the vibration is the destabilization of the FB control system, the parameter setting changer 9 a changes the parameters of the speed controller 4 to suppress large-amplitude oscillation. Also, when the main cause of the vibration is not the destabilization of the FB control system, the parameter setting changer 9a does not change the parameters of the speed controller 4, that is, does not change the characteristics of the FB control system. Thereby, the parameter setting of the speed controller 4 can be changed only when the FB control system is destabilized and the motor 2 vibrates due to the reduction of the inertia of the load machine 1 . In other words, it is possible to prevent the situation where the parameters of the speed controller 4 are changed to cause the control to become unstable when vibration is temporarily generated due to external disturbance, and the operation of the motor control system 200a can be stabilized.

又,本實施型態的馬達控制裝置100a具備變更速度控制器4的參數的參數設定變更器9a,來取代實施型態1的馬達控制裝置100的參數設定變更器9。其他的構成要素相同。In addition, the motor control device 100a of the present embodiment includes a parameter setting changer 9a for changing the parameters of the speed controller 4 instead of the parameter setting changer 9 of the motor control device 100 of the first embodiment. The other constituent elements are the same.

又,本實施型態的馬達控制裝置100a所執行的馬達控制方法用於FB控制系統,其檢測出驅動負荷機械1的馬達2的位置,根據馬達2的位置及位置指令以包含比例計算的運算產生速度指令,檢測出馬達2的速度,根據馬達2的速度及速度指令以包含比例計算及積分計算的運算對馬達2產生力矩指令,修正力矩指令而產生修正力矩指令,根據力矩指令及修正力矩指令使電流流過馬達2,檢測出馬達2產生的振動的振動振幅及振動頻率,當振動振幅比閾值大的情況下反覆進行馬達2的位置的檢測、速度指令的產生、馬達2的速度的檢測、力矩指令的產生。馬達控制方法使馬達2產生的振動頻率中的遞移特性穩定化,並在使遞移特性穩定化後振動振幅減少的情況下,變更產生力矩指令時的運算的參數,也就是變更比例計算的係數。In addition, the motor control method executed by the motor control device 100a of the present embodiment is used in the FB control system, which detects the position of the motor 2 driving the load machine 1, generates a speed command based on the position of the motor 2 and the position command by calculation including proportional calculation, detects the speed of the motor 2, generates a torque command for the motor 2 based on the speed and speed command of the motor 2, and generates a corrected torque command by correcting the torque command. The vibration amplitude and vibration frequency of the vibration, when the vibration amplitude is greater than the threshold value, the detection of the position of the motor 2, the generation of the speed command, the detection of the speed of the motor 2, and the generation of the torque command are repeated. The motor control method stabilizes the transition characteristic in the vibration frequency generated by the motor 2, and when the vibration amplitude decreases after the transition characteristic is stabilized, changes the parameter of the calculation when the torque command is generated, that is, changes the coefficient of the proportional calculation.

另外,本實施型態的馬達控制裝置100a的振動檢測器8雖然根據速度檢測值的波形來算出振動的振幅及頻率,但也可以根據位置檢測值、速度指令、力矩指令、修正力矩指令、電流的波形來算出振動的振幅及頻率。In addition, although the vibration detector 8 of the motor control device 100a of this embodiment calculates the amplitude and frequency of vibration from the waveform of the speed detection value, it may also calculate the amplitude and frequency of vibration from the waveform of the position detection value, speed command, torque command, corrected torque command, and current.

又,本實施型態的馬達控制裝置100a判斷振動的發生主因是FB控制系統的不穩定化的情況下,將速度控制器4的比例計算的係數Kv變更為變更前的係數Kv的1/2倍,但不限定於1/2倍,也可以將係數Kv變更為比變更前的係數Kv更小的值。例如,將係數Kv變更為比變更前的值的1/ 倍更小的話,就能夠抑制FB控制系統的不穩定化。 In addition, when the motor control device 100a of this embodiment determines that the main cause of the vibration is the instability of the FB control system, the coefficient Kv calculated by the proportional calculation of the speed controller 4 is changed to 1/2 times the coefficient Kv before the change, but it is not limited to 1/2 times, and the coefficient Kv may be changed to a value smaller than the coefficient Kv before the change. For example, change the coefficient Kv to 1/ If the times are smaller, the destabilization of the FB control system can be suppressed.

又,本實施型態的馬達控制裝置100a中,位置控制器7依照式(1)產生速度指令,速度控制器4依照式(2)產生力矩指令,但也可以是別的架構。例如,可以是速度I-P控制系統的架構,也可以是追加微分計算器的架構。在這個情況下,根據檢測出的振動頻率,變更參數來達成圖20所示的特性變化即可。Also, in the motor control device 100a of this embodiment, the position controller 7 generates a speed command according to formula (1), and the speed controller 4 generates a torque command according to formula (2), but other structures are also possible. For example, a speed I-P control system may be used, or a differential calculator may be added. In this case, it is only necessary to change the parameters according to the detected vibration frequency to achieve the characteristic change shown in FIG. 20 .

又,本實施型態的馬達控制裝置100a中,修正計算器6使用式(3)的遞移函數h(s)來變化FB控制系統的特性,但也可以使用其他的遞移函數。例如,設定低通濾波器來變化FB控制系統的特性、使用相位前進補償器來變化FB控制系統的特性、如式(4)所示將塑造速度檢測值的波形加到力矩指令來變化FB控制系統的特性等。使用這些方法的情況下也能夠實現相同的功能。Also, in the motor control device 100a of the present embodiment, the correction calculator 6 changes the characteristics of the FB control system using the transition function h(s) of the formula (3), but other transition functions may also be used. For example, set a low-pass filter to change the characteristics of the FB control system, use a phase advance compensator to change the characteristics of the FB control system, add the waveform of the shape speed detection value to the torque command as shown in equation (4) to change the characteristics of the FB control system, etc. The same function can be realized also when using these methods.

[實施型態3] 圖22為顯示使用實施型態3的馬達控制裝置100b來實現的馬達控制系統200b的構成例的方塊圖。圖22所示的馬達控制裝置100b中在圖1所示的實施型態1的馬達控制裝置100追加了特性變化方向儲存部10,具備振動檢測器8a來取代振動檢測器8,具備參數設定變更器9b來取代參數設定變更器9。其他相同符號的組成要素與圖1相同,因此省略說明。[Embodiment 3] FIG. 22 is a block diagram showing a configuration example of a motor control system 200b realized using the motor control device 100b of Embodiment 3. As shown in FIG. In the motor control device 100b shown in FIG. 22, a characteristic change direction storage unit 10 is added to the motor control device 100 of Embodiment 1 shown in FIG. The other constituent elements with the same symbols are the same as those in FIG. 1 , and therefore description thereof will be omitted.

接著,說明圖22所示的馬達控制裝置100b的動作。馬達控制裝置100b與實施型態1的馬達控制裝置100及實施型態2的馬達控制裝置100a同樣地,目的是使負荷機械1及馬達2追隨著位置指令而動作,與圖1相同符號的組成要素會進行與馬達控制裝置100相同的動作。Next, the operation of the motor control device 100b shown in FIG. 22 will be described. The motor control device 100b is the same as the motor control device 100 of Embodiment 1 and the motor control device 100a of Embodiment 2. The purpose is to make the load machine 1 and the motor 2 operate in accordance with the position command, and the components with the same symbols as those in FIG.

特性變化方向儲存部10會儲存負荷機械1的慣性從初期狀態變化時的增減方向的資訊,也就是慣性增加方向、減少方向等的資訊。The characteristic change direction storage unit 10 stores information on the direction of increase or decrease in the inertia of the load machine 1 when the inertia changes from the initial state, that is, information on the direction of inertia increase or decrease.

振動檢測器8a因應特性變化方向儲存部10所儲存的負荷機械1的慣性的增減方向,對從速度檢測器5輸入的速度檢測值進行濾波處理後再進行振動的振幅及頻率的計算。例如,負荷機械1的慣性增加的情況下,FB控制系統變不穩定時產生的振動會在由位置控制器7的比例計算的係數Kp及速度控制器4的積分計算的係數Ki所求出頻率附近的頻率發生。因此,使用讓這個頻帶通過的帶通濾波器或雙帶通濾波器等,能夠抽出關係到不穩定化的振動成分並加以處理。又,負荷機械1的慣性減少的情況下,FB控制系統變不穩定時產生的振動會在由速度控制器4的比例計算的係數Kv所求出頻率附近的頻率,或者是在初期狀態調整FB控制系統時所獲得的界限特性的頻率附近的頻率發生。因此,使用讓這個頻帶通過的帶通濾波器或雙帶通濾波器等,能夠抽出關係到不穩定化的振動成分並加以處理。也就是說,振動檢測器8a對於由速度檢測器5所輸入的速度檢測值,進行因應負荷機械1的慣性的增減方向的濾波處理,使用濾波處理實施後的速度檢測值來算出振動的振幅及頻率。Vibration detector 8a calculates the amplitude and frequency of vibration after filtering the speed detection value input from speed detector 5 according to the increase and decrease direction of inertia of load machine 1 stored in characteristic change direction storage unit 10 . For example, when the inertia of the load machine 1 increases, the vibration generated when the FB control system becomes unstable occurs at a frequency near the frequency obtained by the coefficient Kp calculated by the proportional calculation of the position controller 7 and the coefficient Ki calculated by the integral calculation of the speed controller 4. Therefore, by using a band-pass filter or a double-band-pass filter or the like that passes this frequency band, it is possible to extract and process the vibration component related to destabilization. Also, when the inertia of the load machine 1 decreases, the vibration generated when the FB control system becomes unstable occurs at a frequency near the frequency obtained by the coefficient Kv calculated from the ratio of the speed controller 4, or at a frequency near the frequency of the limit characteristic obtained when the FB control system is adjusted in the initial state. Therefore, by using a band-pass filter or a double-band-pass filter or the like that passes this frequency band, it is possible to extract and process the vibration component related to destabilization. That is, the vibration detector 8a performs filtering processing corresponding to the direction of increase and decrease of inertia of the load machine 1 on the speed detection value input from the speed detector 5, and calculates the amplitude and frequency of vibration using the speed detection value after the filtering processing.

參數設定變更器9b在判定由位置控制器7、速度控制器4、位置檢測器51、速度檢測器5、修正計算器6及電流控制器3、馬達2及負荷機械1所構成的FB控制系統不穩定化時,會因應特性變化方向儲存部10所儲存的負荷機械1的慣性的增減方向,變更位置控制器7或速度控制器4的參數。參數設定變更器9b在負荷機械1的慣性增加的情況下,與實施型態1的馬達控制裝置100的參數設定變更器9同樣地,根據振動檢測器8a所算出的振動的振幅及頻率,變更位置控制器7的比例計算的係數及速度控制器4的積分計算的係數。又,參數設定變更器9b在負荷機械1的慣性減少的情況下,與實施型態2的馬達控制裝置100a的參數設定變更器9a同樣地,根據振動檢測器8a所算出的振動的振幅及頻率,變更速度控制器4的比例計算的係數。When the parameter setting changer 9b determines that the FB control system composed of the position controller 7, the speed controller 4, the position detector 51, the speed detector 5, the correction calculator 6, the current controller 3, the motor 2, and the load machine 1 is unstable, it changes the parameters of the position controller 7 or the speed controller 4 in accordance with the direction of increase or decrease of the inertia of the load machine 1 stored in the characteristic change direction storage unit 10. When the inertia of the load machine 1 increases, the parameter setting changer 9b changes the coefficient of the proportional calculation of the position controller 7 and the coefficient of the integral calculation of the speed controller 4 based on the amplitude and frequency of the vibration calculated by the vibration detector 8a, similarly to the parameter setting changer 9 of the motor control device 100 of Embodiment 1. Also, when the inertia of the load machine 1 decreases, the parameter setting changer 9b changes the proportional calculation coefficient of the speed controller 4 based on the amplitude and frequency of the vibration calculated by the vibration detector 8a similarly to the parameter setting changer 9a of the motor control device 100a of Embodiment 2.

以上的馬達控制裝置100b抑制馬達2的振盪的動作與實施型態1的馬達控制裝置100抑制馬達2的振盪的動作同樣地,能夠以圖13的流程圖顯示。然而,馬達控制裝置100b的動作的情況下,圖13的步驟S4中,因應負荷機械1的慣性的增減方向,調整位置控制器7及速度控制器4雙方的參數、或速度控制器4的參數。The operation of suppressing the vibration of the motor 2 by the motor control device 100b described above is similar to the operation of suppressing the vibration of the motor 2 by the motor control device 100 of Embodiment 1, and can be shown in the flowchart of FIG. However, in the case of the operation of the motor control device 100b, the parameters of both the position controller 7 and the speed controller 4, or the parameters of the speed controller 4 are adjusted in step S4 of FIG.

如以上說明,馬達控制裝置100b中,振動檢測器8a所檢測出的振動的振幅比閾值大的情況下,將修正計算器6使用於修正計算的遞移函數,根據檢測的振動的頻率來變更使FB控制系統的特性變化。然後。根據之後的振動振幅的變化狀態,判別振動的產生主因。又,振動的發生主因是負荷機械1的特性變化造成FB控制系統的不穩定化的情況下,因應特性變化方向儲存部10所儲存的負荷機械1的特性變化的方向,也就是負荷機械1的慣性從初期狀態變化時的增減方向,參數設定變更器9b變更位置控制器7的比例計算的係數及速度控制器4的積分計算的係數,或者是速度控制器4的比例計算的係數。藉此,能夠只限定於伴隨著負荷機械1的慣性的變化,FB控制系統不穩定化而發生馬達2的振動的情況下,變更位置控制器7及速度控制器4的參數設定,抑制大振幅的振盪。又,振動的發生主因不是FB控制系統的不穩定化的情況下,能夠不變更FB控制系統的特性。也就是,能夠防止在外部干擾造成暫時發生振動的情況下變更位置控制器7及速度控制器4的參數,使得控制反而變得不穩定的狀況,也能夠實現馬達控制系統200b的動作的穩定化。As described above, in the motor control device 100b, when the amplitude of the vibration detected by the vibration detector 8a is larger than the threshold value, the correction calculator 6 uses the transition function used for the correction calculation to change the characteristic of the FB control system according to the frequency of the detected vibration. Then. Based on the change state of the vibration amplitude afterward, the main cause of the vibration is discriminated. Also, when the main cause of vibration is the instability of the FB control system caused by the change in the characteristics of the load machine 1, the parameter setting changer 9b changes the coefficient of the proportional calculation of the position controller 7 and the coefficient of the integral calculation of the speed controller 4, or the coefficient of the proportional calculation of the speed controller 4, according to the direction of the characteristic change of the load machine 1 stored in the characteristic change direction storage unit 10, that is, the direction of increase or decrease when the inertia of the load machine 1 changes from the initial state. Thereby, the parameter settings of the position controller 7 and the speed controller 4 can be changed only when the FB control system is destabilized and the vibration of the motor 2 occurs due to a change in the inertia of the load machine 1, and large-amplitude oscillations can be suppressed. Also, when the main cause of the vibration is not the destabilization of the FB control system, it is possible not to change the characteristics of the FB control system. That is, it is possible to prevent the situation where the parameters of the position controller 7 and the speed controller 4 are changed when vibration is temporarily generated by external disturbances, so that the control becomes unstable instead, and the operation of the motor control system 200b can be stabilized.

又,本實施型態的馬達控制裝置100b在實施型態1的馬達控制裝置100中,追加了特性變化方向儲存部10,並具備振動檢測器8a來取代振動檢測器8,具備參數設定變更器9b來取代參數設定變更器9。其他的構成要素與馬達控制裝置100相同。In addition, the motor control device 100b of the present embodiment has a characteristic change direction storage unit 10 added to the motor control device 100 of the first embodiment, a vibration detector 8a instead of the vibration detector 8, and a parameter setting changer 9b instead of the parameter setting changer 9. The other components are the same as those of the motor control device 100 .

又,本實施型態的馬達控制裝置100b實行的馬達控制方法用於FB控制系統,其檢測出驅動負荷機械1的馬達2的位置,根據馬達2的位置及位置指令以包含比例計算的運算產生速度指令,檢測出馬達2的速度,根據馬達2的速度及速度指令以包含比例計算及積分計算的運算對馬達2產生力矩指令,修正力矩指令而產生修正力矩指令,根據力矩指令及修正力矩指令使電流流過馬達2,儲存馬達2驅動的負荷機械1的慣性的增減方向,因應儲存的負荷機械1的慣性的增減方向來變更馬達2的位置、速度或是對於基於力矩的驅動波形的濾波處理,根據濾波處理後的驅動波形檢測出馬達2產生的振動的振動振幅及振動頻率,當馬達2產生的振動振幅比閾值大的情況下反覆進行馬達2的位置的檢測、速度指令的產生、馬達2的速度的檢測、力矩指令的產生、修正力矩指令的產生、使電流流過馬達2。馬達控制方法使馬達2產生的振動頻率中的遞移特性穩定化,並在使遞移特性穩定化後振動振幅減少的情況下,變更負荷機械1的慣性增加的情況下產生速度指令時的運算中包含的比例計算的係數,以及產生力矩指令時的運算中包含的積分計算的係數,在負荷機械1的慣性減少的情況下,變更產生力矩指令時的運算中包含的比例計算的係數。In addition, the motor control method implemented by the implementation of this type of motor control device is used for the FB control system. It detects the position of the motor 2 of the driving load mechanical 1. According to the position and position instruction of the motor 2, the speed instruction is generated by the calculation of the calculation of the proportion. Damn 2 to generate torque instructions, modify the torque instructions to generate a correction torque instruction, according to the torque instructions and correction torque instructions to flow the current over the motor 2, storage motor 2 drive load mechanical 1 inertial increase or decrease direction, change the position, speed of the motor 2 in the direction of the amount of load mechanical 1 in response to the inertia direction of the load mechanical 1, or the filtering of the driver -based driver -based driver waveform. Treatment, detect the vibration amplitude and vibration frequency of the vibration generated by the motor 2 according to the filtering drive waveform. When the vibration amplitude generated by the motor 2 is repeatedly performed at the position of the motor 2, the speed of the speed instruction, the speed of the motor 2, the generation of the torque instruction, and the current flow over the motor. 2. The motor control method stabilizes the transition characteristic in the vibration frequency generated by the motor 2, and when the vibration amplitude decreases after the transition characteristic is stabilized, the coefficients of the proportional calculation included in the calculation when the speed command is generated when the inertia of the load machine 1 increases and the coefficients of the integral calculation included in the calculation when the torque command is generated are changed, and the coefficients of the proportional calculation included in the calculation when the torque command is generated when the inertia of the load machine 1 decreases.

另外,本實施型態的馬達控制裝置100b的振動檢測器8a從速度檢測值的波形算出振動的振幅及頻率,但也可以從位置檢測值、速度指令、力矩指令、修正力矩指令、電流的波形算出振動的振幅及頻率。In addition, the vibration detector 8a of the motor control device 100b of the present embodiment calculates the vibration amplitude and frequency from the waveform of the speed detection value, but may also calculate the vibration amplitude and frequency from the position detection value, speed command, torque command, corrected torque command, and current waveform.

又,本實施型態的馬達控制裝置100b中,位置控制器7依照式(1)來產生速度指令,速度控制器4依照式(2)來產生力矩指令,但也可以是其他的架構。例如,可以是速度I-P控制系統的架構,也可以是追加微分計算器的架構。在這個情況下,根據檢測出的振動頻率,變更參數來達成圖10、圖11、圖20所示的特性變化即可。In addition, in the motor control device 100b of this embodiment, the position controller 7 generates a speed command according to formula (1), and the speed controller 4 generates a torque command according to formula (2), but other configurations are also possible. For example, a speed I-P control system may be used, or a differential calculator may be added. In this case, the parameters may be changed according to the detected vibration frequency to achieve the characteristic changes shown in FIGS. 10 , 11 , and 20 .

又,本實施型態的馬達控制裝置100b中,修正計算器6使用式(3)的遞移函數h(s)來變化FB控制系統的特性,但也可以使用其他的遞移函數。例如,設定低通濾波器來變化FB控制系統的特性、使用相位前進補償器來變化FB控制系統的特性、如式(4)所示將塑造速度檢測值的波形加到力矩指令來變化FB控制系統的特性等。使用這些方法的情況下也能夠實現相同的功能。Also, in the motor control device 100b of the present embodiment, the correction calculator 6 changes the characteristics of the FB control system using the transition function h(s) of the formula (3), but other transition functions may also be used. For example, set a low-pass filter to change the characteristics of the FB control system, use a phase advance compensator to change the characteristics of the FB control system, add the waveform of the shape speed detection value to the torque command as shown in equation (4) to change the characteristics of the FB control system, etc. The same function can be realized also when using these methods.

[實施型態4]圖23為顯示使用實施型態4的馬達控制裝置100c來實現的馬達控制系統200c的構成例的方塊圖。圖23所示的馬達控制裝置100c中從圖22所示的實施型態3的馬達控制裝置100b刪除了位置控制器7,並具備參數設定變更器9c來取代參數設定變更器9b。其他相同符號的組成要素與圖22相同,因此省略說明。[Embodiment 4] Fig. 23 is a block diagram showing a configuration example of a motor control system 200c realized using the motor control device 100c of Embodiment 4. In the motor control device 100c shown in FIG. 23, the position controller 7 is deleted from the motor control device 100b of Embodiment 3 shown in FIG. 22, and a parameter setting changer 9c is provided instead of the parameter setting changer 9b. The other constituent elements with the same reference numerals are the same as those in FIG. 22 , and therefore description thereof will be omitted.

接著,說明圖23所示的馬達控制裝置100c的動作。馬達控制裝置100c的目的是使負荷機械1及馬達2追隨著外部輸入的速度指令而動作,與圖22相同符號的組成要素會進行與實施型態3的馬達控制裝置100b相同的動作。Next, the operation of the motor control device 100c shown in FIG. 23 will be described. The purpose of the motor control device 100c is to make the load machine 1 and the motor 2 operate following the speed command input from the outside, and the components with the same symbols as in FIG.

振動檢測器8a因應特性變化方向儲存部10所儲存的負荷機械1的慣性的增減方向,對從速度檢測器5輸入的速度檢測值進行濾波處理後再進行振動的振幅及頻率的計算。例如,負荷機械1的慣性增加的情況下,FB控制系統變不穩定時產生的振動會在由速度控制器4的積分計算的係數所求出頻率附近的頻率發生。因此,使用讓這個頻帶通過的帶通濾波器或雙帶通濾波器等,能夠抽出關係到不穩定化的振動成分並加以處理。又,負荷機械1的慣性減少的情況下,FB控制系統變不穩定時產生的振動會在由速度控制器4的比例計算的係數所求出頻率附近的頻率,或者是在初期狀態調整FB控制系統時所獲得的界限特性的頻率附近的頻率發生。因此,使用讓這個頻帶通過的帶通濾波器或雙帶通濾波器等,能夠抽出關係到不穩定化的振動成分並加以處理。Vibration detector 8a calculates the amplitude and frequency of vibration after filtering the speed detection value input from speed detector 5 according to the increase and decrease direction of inertia of load machine 1 stored in characteristic change direction storage unit 10 . For example, when the inertia of the load machine 1 increases, the vibration generated when the FB control system becomes unstable occurs at a frequency near the frequency obtained by the coefficient of the integral calculation of the speed controller 4 . Therefore, by using a band-pass filter or a double-band-pass filter or the like that passes this frequency band, it is possible to extract and process the vibration component related to destabilization. Also, when the inertia of the load machine 1 is reduced, the vibration generated when the FB control system becomes unstable occurs at a frequency near the frequency obtained by the coefficient of the proportional calculation of the speed controller 4, or at a frequency near the frequency of the limit characteristic obtained when the FB control system is adjusted in the initial state. Therefore, by using a band-pass filter or a double-band-pass filter or the like that passes this frequency band, it is possible to extract and process the vibration component related to destabilization.

參數設定變更器9c在判定由速度控制器4、速度檢測器5、修正計算器6及電流控制器3、馬達2及負荷機械1所構成的FB控制系統不穩定化時,會因應特性變化方向儲存部10所儲存的負荷機械1的慣性的增減方向,變更速度控制器4的參數。參數設定變更器9c在負荷機械1的慣性增加的情況下,根據振動檢測器8a所算出的振動的振幅及頻率,變更速度控制器4的積分計算的係數。又,參數設定變更器9c在負荷機械1的慣性減少的情況下,與實施型態2的馬達控制裝置100a的參數設定變更器9a同樣地,根據振動檢測器8a所算出的振動的振幅及頻率,變更速度控制器4的比例計算的係數。When the parameter setting changer 9c determines that the FB control system composed of the speed controller 4, the speed detector 5, the correction calculator 6, the current controller 3, the motor 2, and the load machine 1 is unstable, it changes the parameters of the speed controller 4 in accordance with the direction of increase or decrease of the inertia of the load machine 1 stored in the characteristic change direction storage unit 10. The parameter setting changer 9c changes the coefficient of the integral calculation of the speed controller 4 based on the amplitude and frequency of the vibration calculated by the vibration detector 8a when the inertia of the load machine 1 increases. Also, when the inertia of the load machine 1 decreases, the parameter setting changer 9c changes the proportional calculation coefficient of the speed controller 4 based on the amplitude and frequency of the vibration calculated by the vibration detector 8a, similarly to the parameter setting changer 9a of the motor control device 100a of Embodiment 2.

以上的馬達控制裝置100c抑制馬達2的振盪的動作與實施型態1的馬達控制裝置100抑制馬達2的振盪的動作同樣地,能夠以圖13的流程圖顯示。然而,馬達控制裝置100c的動作的情況下,圖13的步驟S4中,調整速度控制器4的參數。The operation of suppressing the vibration of the motor 2 by the motor control device 100c described above is similar to the operation of suppressing the vibration of the motor 2 by the motor control device 100 of Embodiment 1, and can be shown in the flowchart of FIG. However, in the case of the operation of the motor control device 100c, in step S4 of FIG. 13, the parameter of the speed controller 4 is adjusted.

如以上說明,馬達控制裝置100c中,振動檢測器8a所檢測出的振動的振幅比閾值大的情況下,將修正計算器6使用於修正計算的遞移函數,根據檢測的振動的頻率來變更使FB控制系統的特性變化。然後。根據之後的振動振幅的變化狀態,判別振動的產生主因。又,振動的發生主因是負荷機械1的特性變化造成FB控制系統的不穩定化的情況下,因應特性變化方向儲存部10所儲存的負荷機械1的特性變化的方向,也就是負荷機械1的慣性從初期狀態變化時的增減方向,參數設定變更器9c變更速度控制器4的積分計算或比例計算的係數。藉此,能夠只限定於伴隨著負荷機械1的慣性的變化,FB控制系統不穩定化而發生馬達2的振動的情況下,變更速度控制器4的參數設定,抑制大振幅的振盪。又,振動的發生主因不是FB控制系統的不穩定化的情況下,能夠不變更FB控制系統的特性。也就是,能夠防止在外部干擾造成暫時發生振動的情況下變更速度控制器4的參數,使得控制反而變得不穩定的狀況,也能夠實現馬達控制系統200c的動作的穩定化。As described above, in the motor control device 100c, when the amplitude of the vibration detected by the vibration detector 8a is larger than the threshold value, the correction calculator 6 uses the transition function used for the correction calculation to change the characteristic of the FB control system according to the frequency of the detected vibration. Then. Based on the change state of the vibration amplitude afterward, the main cause of the vibration is discriminated. In addition, when the main cause of vibration is that the FB control system is destabilized due to a change in the characteristics of the load machine 1, the parameter setting changer 9c changes the coefficient of the integral calculation or the proportional calculation of the speed controller 4 in accordance with the direction of the characteristic change of the load machine 1 stored in the characteristic change direction storage unit 10, that is, the direction of increase or decrease when the inertia of the load machine 1 changes from the initial state. Thereby, the parameter setting of the speed controller 4 can be changed only when the FB control system is destabilized and vibration of the motor 2 occurs due to a change in the inertia of the load machine 1 , and large-amplitude oscillation can be suppressed. Also, when the main cause of the vibration is not the destabilization of the FB control system, it is possible not to change the characteristics of the FB control system. That is, it is possible to prevent a situation in which the parameters of the speed controller 4 are changed when vibrations are temporarily generated due to external disturbances, so that the control becomes unstable instead, and it is also possible to stabilize the operation of the motor control system 200c.

又,本實施型態的馬達控制裝置100c在實施型態3的馬達控制裝置100b中,刪除了位置控制器7,並具備參數設定變更器9c來取代參數設定變更器9b。其他的構成要素與馬達控制裝置100b相同。Furthermore, the motor control device 100c of the present embodiment deletes the position controller 7 from the motor control device 100b of the third embodiment, and includes a parameter setting changer 9c instead of the parameter setting changer 9b. The other constituent elements are the same as those of the motor control device 100b.

又,本實施型態的馬達控制裝置100c實行的馬達控制方法用於FB控制系統,其檢測出驅動負荷機械1的馬達2的速度,根據馬達2的速度及速度指令以包含比例計算及積分計算的運算對馬達2產生力矩指令,修正力矩指令而產生修正力矩指令,根據力矩指令及修正力矩指令使電流流過馬達2,儲存馬達2驅動的負荷機械1的慣性的增減方向,因應儲存的負荷機械1的慣性的增減方向來變更馬達2的位置、速度或是對於基於力矩的驅動波形的濾波處理,根據濾波處理後的驅動波形檢測出馬達2產生的振動的振動振幅及振動頻率,當馬達2產生的振動的振動振幅比閾值大的情況下反覆進行馬達2的速度的檢測、力矩指令的產生、修正力矩指令的產生、使電流流過馬達2。馬達控制方法使馬達2產生的振動頻率中的遞移特性穩定化,並在使遞移特性穩定化後振動振幅減少的情況下,變更負荷機械1的慣性增加的情況下產生力矩指令時的運算中包含的積分計算的係數,在負荷機械1的慣性減少的情況下,變更產生力矩指令時的運算中包含的比例計算的係數。In addition, the motor control method implemented by the motor control device 100c of this embodiment is used in the FB control system, which detects the speed of the motor 2 driving the load machine 1, generates a torque command to the motor 2 based on the speed of the motor 2 and the speed command through calculations including proportional calculations and integral calculations, and corrects the torque command to generate a corrected torque command. Change the position and speed of the motor 2 or filter the drive waveform based on the torque, detect the vibration amplitude and vibration frequency of the vibration generated by the motor 2 based on the filtered drive waveform, and when the vibration amplitude of the vibration generated by the motor 2 is larger than the threshold, the detection of the speed of the motor 2, the generation of the torque command, the generation of the corrected torque command, and the current flow through the motor 2 are repeated. The motor control method stabilizes the transition characteristic in the vibration frequency generated by the motor 2, and when the vibration amplitude decreases after the transition characteristic is stabilized, changes the coefficient of the integral calculation included in the calculation when the torque command is generated when the inertia of the load machine 1 increases, and changes the coefficient of the proportional calculation included in the calculation when the torque command is generated when the inertia of the load machine 1 decreases.

另外,本實施型態的馬達控制裝置100c的振動檢測器8a從速度檢測值的波形算出振動的振幅及頻率,但也可以從力矩指令、修正力矩指令、電流的波形算出振動的振幅及頻率。In addition, the vibration detector 8a of the motor control device 100c of the present embodiment calculates the vibration amplitude and frequency from the waveform of the speed detection value, but may also calculate the vibration amplitude and frequency from the torque command, corrected torque command, and current waveform.

又,本實施型態的馬達控制裝置100c中,速度控制器4依照式(2)來產生力矩指令,但也可以是其他的架構。例如,可以是速度I-P控制系統的架構,也可以是追加微分計算器的架構。在這個情況下,根據檢測出的振動頻率,變更參數來達成圖10、圖11、圖20所示的特性變化即可。In addition, in the motor control device 100c of the present embodiment, the speed controller 4 generates the torque command according to the formula (2), but other configurations are also possible. For example, a speed I-P control system may be used, or a differential calculator may be added. In this case, the parameters may be changed according to the detected vibration frequency to achieve the characteristic changes shown in FIGS. 10 , 11 , and 20 .

又,本實施型態的馬達控制裝置100c中,修正計算器6使用式(3)的遞移函數h(s)來變化FB控制系統的特性,但也可以使用其他的遞移函數。例如,設定低通濾波器來變化FB控制系統的特性、使用相位前進補償器來變化FB控制系統的特性、如式(4)所示將塑造速度檢測值的波形加到力矩指令來變化FB控制系統的特性等。使用這些方法的情況下也能夠實現相同的功能。In addition, in the motor control device 100c of the present embodiment, the correction calculator 6 changes the characteristics of the FB control system using the transition function h(s) of the formula (3), but other transition functions may also be used. For example, set a low-pass filter to change the characteristics of the FB control system, use a phase advance compensator to change the characteristics of the FB control system, add the waveform of the shape speed detection value to the torque command as shown in equation (4) to change the characteristics of the FB control system, etc. The same function can be realized also when using these methods.

以上的實施型態所示的架構僅是一例,也可與其他公知的技術組合,也可以將實施型態之間組合,在不脫離要旨的範圍內也能夠做一部分架構的省略或變更。The architecture shown in the above embodiments is just an example, and it can also be combined with other known technologies, and the implementation types can also be combined, and part of the architecture can be omitted or changed within the scope of not departing from the gist.

1:負荷機械 2:馬達 3:電流控制器 4:速度控制器 5:速度檢測器 6:修正計算器 7:位置控制器 8,8a:振動檢測器 9,9a,9b,9c:參數設定變更器 10:特性變化方向儲存部 51:位置檢測器 52:微分計算器 100,100a,100b,100c:馬達控制裝置 101:處理器 102:記憶體 200,200a,200b,200c:馬達控制系統 1: load machinery 2: motor 3: Current controller 4: Speed controller 5: Speed detector 6: Correction calculator 7: Position controller 8,8a: Vibration detector 9,9a,9b,9c: parameter setting changer 10:Characteristic change direction storage unit 51: Position detector 52: Differential Calculator 100, 100a, 100b, 100c: motor control device 101: Processor 102: memory 200, 200a, 200b, 200c: Motor Control Systems

圖1為顯示使用實施型態1的馬達控制裝置所實現馬達控制系統的構成例的方塊圖。 圖2為實施型態1的馬達控制裝置所驅動的馬達的波德圖。 圖3為實施型態1的馬達控制裝置的回授控制系統的開迴路遞移函數的波德圖。 圖4為實施型態1的馬達控制裝置的回授控制系統的開迴路遞移函數的奈奎斯特圖。 圖5為顯示實施型態1的馬達控制裝置不穩定化時的動作波形的一例。 圖6為實施型態1的馬達控制裝置的修正計算器的傳遞函數的波德圖。 圖7為實施型態1的馬達控制裝置的回授控制系統的開迴路遞移函數的波德圖。 圖8為實施型態1的馬達控制裝置的回授控制系統的開迴路遞移函數的奈奎斯特圖。 圖9顯示實施型態1的馬達控制裝置的回授控制系統穩定化時的動作波形。 圖10為實施型態1的馬達控制裝置的回授控制系統穩定化時的開迴路遞移函數的波德圖。 圖11為實施型態1的馬達控制裝置的回授控制系統穩定化時的開迴路遞移函數的奈奎斯特圖。 圖12顯示實施型態1的馬達控制裝置有外部干擾振動時的動作波形。 圖13為顯示實施型態1的馬達控制裝置抑制馬達的振動的動作的一例的流程圖。 圖14顯示實現實施型態1的馬達控制裝置的硬體的一例。 圖15為顯示使用實施型態2的馬達控制裝置來實現的馬達控制系統的構成例的方塊圖。 圖16為實施型態2的馬達控制裝置的回授控制系統的開迴路遞移函數的波德圖。 圖17顯示負荷機械的慣性減少過程的馬達的速度檢測值的波形的一例。 圖18為實施型態2的馬達控制裝置的回授控制系統的開迴路遞移函數的波德圖。 圖19顯示實施型態2的馬達控制裝置的回授控制系統穩定化時的動作波形。 圖20為實施型態2的馬達控制裝置的回授控制系統穩定化時的開迴路遞移函數的波德圖。 圖21顯示實施型態2的馬達控制裝置的有外部干擾振動時的動作波形。 圖22為使用實施型態3的馬達控制裝置來實現的馬達控制系統的構成例的方塊圖。 圖23為使用實施型態4的馬達控制裝置來實現的馬達控制系統的構成例的方塊圖。 FIG. 1 is a block diagram showing a configuration example of a motor control system realized using the motor control device of Embodiment 1. As shown in FIG. FIG. 2 is a Bode diagram of the motor driven by the motor control device of Embodiment 1. FIG. FIG. 3 is a Bode diagram of the open-loop transfer function of the feedback control system of the motor control device of Embodiment 1. FIG. FIG. 4 is a Nyquist diagram of the open-loop transfer function of the feedback control system of the motor control device of Embodiment 1. FIG. Fig. 5 shows an example of an operation waveform when the motor control device according to Embodiment 1 becomes unstable. FIG. 6 is a Bode diagram of a transfer function of a correction calculator of the motor control device of Embodiment 1. FIG. FIG. 7 is a Bode diagram of the open-loop transfer function of the feedback control system of the motor control device of Embodiment 1. FIG. FIG. 8 is a Nyquist diagram of the open-loop transfer function of the feedback control system of the motor control device of Embodiment 1. FIG. FIG. 9 shows operation waveforms when the feedback control system of the motor control device of Embodiment 1 is stabilized. 10 is a Bode diagram of the open-loop transfer function when the feedback control system of the motor control device of Embodiment 1 is stabilized. 11 is a Nyquist diagram of the open-loop transfer function when the feedback control system of the motor control device of Embodiment 1 is stabilized. FIG. 12 shows the operation waveform of the motor control device of Embodiment 1 when there is external disturbance vibration. 13 is a flowchart showing an example of the operation of the motor control device according to Embodiment 1 to suppress vibration of the motor. FIG. 14 shows an example of hardware for realizing the motor control device of the first embodiment. Fig. 15 is a block diagram showing a configuration example of a motor control system realized using the motor control device of the second embodiment. FIG. 16 is a Bode diagram of the open-loop transfer function of the feedback control system of the motor control device of Embodiment 2. FIG. FIG. 17 shows an example of the waveform of the speed detection value of the motor during the inertia reduction process of the load machine. FIG. 18 is a Bode diagram of the open-loop transfer function of the feedback control system of the motor control device of Embodiment 2. FIG. FIG. 19 shows the operation waveforms when the feedback control system of the motor control device of Embodiment 2 is stabilized. FIG. 20 is a Bode diagram of the open-loop transfer function when the feedback control system of the motor control device of Embodiment 2 is stabilized. FIG. 21 shows the operation waveform of the motor control device of Embodiment 2 when there is external disturbance vibration. Fig. 22 is a block diagram showing a configuration example of a motor control system realized using the motor control device of the third embodiment. Fig. 23 is a block diagram showing a configuration example of a motor control system realized using the motor control device according to the fourth embodiment.

1:負荷機械 1: load machinery

2:馬達 2: motor

3:電流控制器 3: Current controller

4:速度控制器 4: Speed controller

5:速度檢測器 5: Speed detector

6:修正計算器 6: Correction calculator

7:位置控制器 7: Position controller

8:振動檢測器 8: Vibration detector

9:參數設定變更器 9: Parameter setting changer

51:位置檢測器 51: Position detector

52:微分計算器 52: Differential Calculator

100:馬達控制裝置 100: Motor control device

200:馬達控制系統 200:Motor control system

Claims (11)

一種馬達控制裝置,用以控制驅動負荷機械的馬達,包括:速度檢測器,檢測出該馬達的速度;速度控制器,根據該馬達的速度及速度指令,產生對該馬達的力矩指令;修正計算器,修正該力矩指令產生修正力矩指令;電流控制器,根據該力矩指令及修正力矩指令使電流流過該馬達;振動檢測器,檢測出該馬達產生的振動的振幅之振動振幅以及該振動的頻率之振動頻率;以及參數設定變更器,變更該速度控制器的參數;特性變化方向儲存部,儲存該負荷機械的慣性變化時的增減方向,其中在該振動振幅比閾值大的情況下,該修正計算器針對由該馬達、該速度檢測器、該速度控制器、該修正計算器以及該電流控制器所構成的回授控制系統,計算出修正力矩指令,使該振動檢測器所檢測出的該振動頻率的遞移特性穩定化,在使該遞移特性穩定化後該振動檢測器檢測出的該振動振幅減少的情況下,該參數設定變更器變更該速度控制器的參數,該速度控制器藉由包含比例計算及積分計算的運算產生該力矩指令,該參數設定變更器在該特性變化方向儲存部所儲存的該增減方向是增加方向的情況下變更該積分計算的係數,在該增減方向是減少方向的情況下變更該比例計算的係數。 A motor control device for controlling a motor driving a load machine, comprising: a speed detector for detecting the speed of the motor; a speed controller for generating a torque command for the motor according to the speed of the motor and a speed command; a correction calculator for correcting the torque command to generate a corrected torque command; a current controller for making current flow through the motor according to the torque command and the corrected torque command; a vibration detector for detecting the vibration amplitude of the vibration generated by the motor and the vibration frequency of the vibration frequency; The characteristic change direction storage part stores the increase and decrease direction when the inertia of the load machine changes, wherein when the vibration amplitude is larger than the threshold value, the correction calculator calculates a correction torque command for the feedback control system composed of the motor, the speed detector, the speed controller, the correction calculator and the current controller, so that the transition characteristic of the vibration frequency detected by the vibration detector is stabilized. The changer changes the parameters of the speed controller. The speed controller generates the torque command through an operation including proportional calculation and integral calculation. The parameter setting changer changes the coefficient of the integral calculation when the increase and decrease direction stored in the characteristic change direction storage unit is an increasing direction, and changes the coefficient of the proportional calculation when the increase and decrease direction is a decreasing direction. 如請求項1的馬達控制裝置,其中:該參數設定變更器在該增減方向是增加方向的情況下,將該速度控制器的該積分計算的係數,變更成比變更前的值更小的值,或者是比該振動頻率更小的值。 The motor control device according to claim 1, wherein: the parameter setting changer changes the coefficient of the integral calculation of the speed controller to a value smaller than a value before the change, or to a value smaller than the vibration frequency when the increase and decrease direction is an increase direction. 如請求項1的馬達控制裝置,其中:該參數設定變更器在該增減方向是減少方向的情況下,將該速度控制器的該比例計算的係數變更為比變更前的值更小的值。 The motor control device according to claim 1, wherein the parameter setting changer changes the coefficient of the proportional calculation of the speed controller to a value smaller than a value before the change when the increase/decrease direction is a decrease direction. 如請求項1的馬達控制裝置,其中:該振動檢測器對於根據該馬達的位置、速度或力矩的驅動波形,在該特性變化方向儲存部所儲存的該增減方向是增加方向的情況及減少方向的情況下執行不同的濾波處理,從濾波處理後的該驅動波形檢測出該振動振幅及該振動頻率。 The motor control device according to claim 1, wherein: the vibration detector performs different filtering processes for the driving waveform according to the position, speed or torque of the motor, when the increasing and decreasing direction stored in the characteristic change direction storage unit is an increasing direction and a decreasing direction, and detects the vibration amplitude and the vibration frequency from the filtered driving waveform. 如請求項1至4任一項的馬達控制裝置,更包括:位置檢測器,檢測出該馬達的位置;以及位置控制器,根據該馬達的位置及位置指令,以包含比例計算的運算產生該速度指令,其中該參數設定變更器在該增減方向是增加方向的情況下,將該位置控制器的該比例計算的係數,變更成比變更前的值更小的值,或者是比該振動頻率更小的值。 The motor control device according to any one of Claims 1 to 4, further comprising: a position detector, which detects the position of the motor; and a position controller, which generates the speed command according to the position of the motor and the position command, using an operation including proportional calculation, wherein the parameter setting changer changes the coefficient of the proportional calculation of the position controller to a value smaller than the value before the change, or to a value smaller than the vibration frequency when the direction of increase and decrease is an increase direction. 一種馬達控制系統,包括:如請求項1至5任一項的馬達控制裝置;該馬達,被該馬達控制裝置所控制;以及該負荷機械,被該馬達所驅動。 A motor control system, comprising: the motor control device according to any one of claims 1 to 5; the motor controlled by the motor control device; and the load machine driven by the motor. 一種馬達控制方法,由馬達控制裝置所執行,該馬達控制裝置用以控制驅動負荷機械的馬達,該馬達控制方法包括:第1步驟,檢測出該馬達的速度;第2步驟,根據該馬達的速度及速度指令輸出對該馬達的力矩指令;第3步驟,修正該力矩指令產生修正力矩指令; 第4步驟,根據該力矩指令及修正力矩指令使電流流過該馬達;第5步驟,檢測出該馬達產生的振動的振幅之振動振幅以及該振動的頻率之振動頻率;第6步驟,在該振動振幅比閾值大的情況下,在反覆進行該馬達的速度的檢測、該力矩指令的產生、該修正力矩指令的產生、使電流流過該馬達的回授控制系統中,使該振動頻率的遞移特性穩定化;以及第7步驟,在使該遞移特性穩定化後該振動振幅減少的情況下,變更產生該力矩指令的運算的參數,其中:在該第2步驟,藉由包含比例計算及積分計算的運算來產生該力矩指令,在該第7步驟,該負荷機械的慣性增加的情況下變更該積分計算的係數,該負荷機械的慣性減少的情況下,變更該比例計算的係數。 A motor control method, executed by a motor control device, the motor control device is used to control a motor that drives a load machine, the motor control method includes: a first step, detecting the speed of the motor; a second step, outputting a torque command to the motor according to the speed of the motor and a speed command; a third step, correcting the torque command to generate a corrected torque command; The fourth step is to make the current flow through the motor according to the torque command and the corrected torque command; the fifth step is to detect the vibration amplitude of the vibration amplitude generated by the motor and the vibration frequency of the vibration frequency; the sixth step is to repeatedly perform the detection of the speed of the motor, the generation of the torque command, the generation of the corrected torque command, and the feedback control system that makes the current flow through the motor to stabilize the transfer characteristics of the vibration frequency; When the vibration amplitude decreases after the transition characteristic is stabilized, change the parameters of the calculation for generating the torque command, wherein: in the second step, the torque command is generated by calculation including proportional calculation and integral calculation; in the seventh step, the coefficient of the integral calculation is changed when the inertia of the load machine increases, and the coefficient of the proportional calculation is changed when the inertia of the load machine decreases. 如請求項7的馬達控制方法,其中:在該第7步驟,該慣性增加的情況下,將該積分計算的係數變更為比變更前更小的值,或者是比該振動頻率更小的值。 The motor control method according to claim 7, wherein: in the seventh step, when the inertia increases, the coefficient of the integral calculation is changed to a value smaller than that before the change, or a value smaller than the vibration frequency. 如請求項7的馬達控制方法,其中:在該第7步驟,在該慣性減少的情況下,將該比例計算的係數變更為比變更前的值更小的值。 The motor control method according to claim 7, wherein: in the seventh step, when the inertia decreases, the coefficient for the proportional calculation is changed to a value smaller than the value before the change. 如請求項7的馬達控制方法,其中:在該第5步驟,對於根據該馬達的位置、速度或力矩的驅動波形,在該慣性增加的情況及該慣性減少的情況下執行不同的濾波處理,從濾波處理後的該驅動波形檢測出該振動振幅及該振動頻率。 The motor control method according to claim 7, wherein: in the fifth step, for the driving waveform according to the position, speed or torque of the motor, different filtering processes are performed when the inertia increases and when the inertia decreases, and the vibration amplitude and the vibration frequency are detected from the filtered driving waveform. 如請求項7至10項任一項的馬達控制方法,更包括:第8步驟,檢測出該馬達的位置; 第9步驟,根據該馬達的位置及位置指令,以包含比例計算的運算產生該速度指令;以及第10步驟,在該慣性增加的情況下,將該第9步驟的該比例計算的係數,變更成比變更前的值更小的值,或者是比該振動頻率更小的值。 The motor control method according to any one of claims 7 to 10, further comprising: step 8, detecting the position of the motor; In the ninth step, the speed command is generated by calculation including proportional calculation based on the position of the motor and the position command; and in the tenth step, when the inertia increases, the coefficient of the proportional calculation in the ninth step is changed to a value smaller than the value before the change, or to a value smaller than the vibration frequency.
TW111113204A 2021-04-21 2022-04-07 Motor control device, motor control system and motor control method TWI808712B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2021/016132 2021-04-21
PCT/JP2021/016132 WO2022224370A1 (en) 2021-04-21 2021-04-21 Motor control device, motor control system, and motor control method

Publications (2)

Publication Number Publication Date
TW202243386A TW202243386A (en) 2022-11-01
TWI808712B true TWI808712B (en) 2023-07-11

Family

ID=80629666

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111113204A TWI808712B (en) 2021-04-21 2022-04-07 Motor control device, motor control system and motor control method

Country Status (5)

Country Link
JP (1) JP7008885B1 (en)
KR (1) KR20230154976A (en)
CN (1) CN117083792A (en)
TW (1) TWI808712B (en)
WO (1) WO2022224370A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201505352A (en) * 2013-04-18 2015-02-01 Mitsubishi Electric Corp Motor controlling device
US20150091483A1 (en) * 2012-02-28 2015-04-02 Calsonic Kansei Corporation Electric Motor Control Device
TW201804270A (en) * 2016-07-20 2018-02-01 Nidec Sankyo Corp Motor system including a first gain transform mechanism and a second gain transform mechanism
TW202046625A (en) * 2019-06-14 2020-12-16 日商日立產機系統股份有限公司 Motor control device, notch filter adjustment device, and notch filter adjustment method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05122970A (en) * 1991-10-29 1993-05-18 Hitachi Ltd Motor speed controller
JPH0668554A (en) * 1992-08-17 1994-03-11 Sharp Corp Tape drive control method and device in magnetic recording and reproducing device
WO2006129612A1 (en) * 2005-05-31 2006-12-07 Mitsubishi Electric Corporation Electric motor control device
DE602006018777D1 (en) 2005-10-07 2011-01-20 Seiko Instr Inc FUEL BATTERY
JP6353731B2 (en) 2014-08-04 2018-07-04 日本電産サンキョー株式会社 Motor system
CN110502043A (en) * 2018-05-18 2019-11-26 伊顿公司 Dynamic property and active damping method in web up- coiler tension control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150091483A1 (en) * 2012-02-28 2015-04-02 Calsonic Kansei Corporation Electric Motor Control Device
TW201505352A (en) * 2013-04-18 2015-02-01 Mitsubishi Electric Corp Motor controlling device
TW201804270A (en) * 2016-07-20 2018-02-01 Nidec Sankyo Corp Motor system including a first gain transform mechanism and a second gain transform mechanism
TW202046625A (en) * 2019-06-14 2020-12-16 日商日立產機系統股份有限公司 Motor control device, notch filter adjustment device, and notch filter adjustment method

Also Published As

Publication number Publication date
WO2022224370A1 (en) 2022-10-27
JPWO2022224370A1 (en) 2022-10-27
KR20230154976A (en) 2023-11-09
JP7008885B1 (en) 2022-01-25
TW202243386A (en) 2022-11-01
CN117083792A (en) 2023-11-17

Similar Documents

Publication Publication Date Title
CN107645267B (en) Motor system
US10985684B2 (en) Motor control device
EP3641127B1 (en) Electric motor control device and electric motor control device control method
JP3900219B2 (en) Electric motor speed control device and gain setting method for the same
JP6353731B2 (en) Motor system
JP2009042985A (en) Motor control unit and motor control method
JP2011257205A (en) Axial torque controller for dynamometer system
JP2012110166A (en) Position controller for motor
JP5127767B2 (en) Drive control device
TWI808712B (en) Motor control device, motor control system and motor control method
US7183738B2 (en) Motor control device
JP5017984B2 (en) Servo control device and speed tracking control method thereof
JP5271853B2 (en) Feedback control device and feedback control method
JP2014007900A (en) Motor controller
JP6274325B2 (en) Electric motor control device
JP2005223960A (en) Controller of motor
JP4025971B2 (en) Electric motor control device and gain setting method thereof
TW200928629A (en) Motor controller
JP5125283B2 (en) Electric motor control device and electric motor control program
JP6256656B2 (en) Inter-roll conveyance control device and inter-roll conveyance control method
US11101760B2 (en) Electric motor control device
JP4420158B2 (en) Motor speed control device
JP5084196B2 (en) Electric motor control apparatus and electric motor control method
JP2003189656A (en) Position controller
JP4366566B2 (en) Control constant adjustment device