TW200928626A - Holographic display with communications - Google Patents

Holographic display with communications Download PDF

Info

Publication number
TW200928626A
TW200928626A TW97118291A TW97118291A TW200928626A TW 200928626 A TW200928626 A TW 200928626A TW 97118291 A TW97118291 A TW 97118291A TW 97118291 A TW97118291 A TW 97118291A TW 200928626 A TW200928626 A TW 200928626A
Authority
TW
Taiwan
Prior art keywords
display
holographic
image
data
hologram
Prior art date
Application number
TW97118291A
Other languages
Chinese (zh)
Other versions
TWI447540B (en
Inventor
Robert Missbach
Alexander Schwedtner
Bo Kroll
Original Assignee
Seereal Technologies Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0718632.3A external-priority patent/GB0718632D0/en
Application filed by Seereal Technologies Sa filed Critical Seereal Technologies Sa
Publication of TW200928626A publication Critical patent/TW200928626A/en
Application granted granted Critical
Publication of TWI447540B publication Critical patent/TWI447540B/en

Links

Landscapes

  • Holo Graphy (AREA)

Abstract

Holographic display with which voice and holographic image over internet protocol (VHIOIP) services or communications are provided.

Description

200928626 九、發明說明: 【發明所屬之技術領域】 本發明與全像顯示器有關,尤指-個可用來提供網際網路語音及全像 影像協定(VHI0IP)服務或通訊的全像顯示器。 【先前技術】 ❹ 電腦產生全像影像(CGH)會在一個或多個空間光調制器(SLM)中進 行編碼處理;SLM可能包括許多可透過電學或光學方式控制的像素格。這 些像素格會透過對相應於-個視訊全像影像的全像影像值進行編碼來調制 光線的振幅及/或相位。CGH可以透過計算得出’例如,可透過“一致光 線追縱”、透過模擬由景象所反射光線與一個參考光波之間造成的干涉、 或者透過傅立葉(Fourier)或菲淫爾(Fresnel)轉換來進行計算。一個 理想的SLM將可以代表任意的複合值數值,亦即,可以分別控制一個輸入 ❹的光波的振幅及相位。不過,-個典型的SLM則只會控制一個性質,不是 振幅就是相位’而且還會有也可能會影響另一個性質不良副作用。有許多 不同的方法可以时依祕或相位對光線進行_,例如,有電學編址式 液晶SLM、光學編址式液晶SLM、磁光學式Μ、微反射職置、或聲光 調制器等。光的調制可以是上連續的或者包括有多個以—維或二維方 式排列、可個別編址(二進位,多階或連續)的像素格。 在本文件中’所謂的“編碼”表示對一個空間光調制器的各個區域供 應各健制值來編寫成一個全像影像使它可以透過slm來重建出一個肋 200928626 景象的方法。. 和純粹的自動立體顯示器不同的是,透過視訊全像影像,一個觀察者 可以看到-個三維景象的光波前的光學重建。3D景象會重建在一個在觀察 者的眼睛與空間光調制器(SLM)之間展開的空間之中。slm也可以以視訊 全像影像進行編碼使觀察者可以在SLM的前方看難朗三維景象的物 件,而以及在SLM上或SLM背後的其他物件。 〇 空間光_器的像餘最好是可讓光線通勒可透光像素格,它的光 線可以在至少-個定義的位置上以及以—致的長度(幾毫米左右)產生干 涉。這可讓全像影像重建至少在一個維度上具有一個適當的解析度。這樣 的光線我們將它稱為“充分一致的光線”。 為了在時間上確保具有足夠的一致性,由光源所發出的光的光譜必須 在一個適當狹窄的波長範圍内,也就是說,它必須接近單色光。高亮度發 光二極體(LED)所發出的光的光譜帶寬足夠狹窄’可以確保全像影像重建 Ο 在時間上的一致性。在SLM處的繞射角度會與波長成正比,這表示只有單 色的光源會產生銳利的物件點的重建。較寬的光譜將會導致較粗大的物件 點而會使重建的物件模糊不清。一個雷射光源的光譜可以被視為單色光。 LED的光線在空間上的線寬足夠狹窄,可以促進良好的重建。 空間上的一致性與光源的側向寬幅有關。傳統的光源,像是LED或冷 陰極螢光燈(CCFL),如果能透過一個適當的狹窄透光孔來放射光線,則也 能符合這些要求。一個雷射光源所發出的光可以將它視為從一個在繞射限 制範圍之内的點狀光源所發出的光,並且,根據它“形態上的純淨度”, 200928626 … 可以產生銳利的物件重建,也就是說,每—個物件點都會被重建為—個在 燒射限制範圍之内的點。 從個在空間上不一致的光源所發出的光會有較大的侧向寬幅而造成 重建的物件模糊林。這個模糊的程度是因為在—個特定的位置所重建的 個物件點的大小加寬所致^為了可以使用在空間上部—致的光源來進行 王像〜像的重建’必猶過—個透光孔在亮度與限制統的側向寬幅之間 找出-個雜點。賴削、,它在空n雜雛。 β ❹ -個直線光源’如果從—個與它的縱長直角相交的角度來看,也可以 視為是-個點狀光源。在這個方向上,光波可以一致的傳播,但是在另— 個方向上則會不一致。 整體而。自全像影像會透過光波在水平及垂直方向上的—致性重 來乂王像方式重建一個景象。這樣的一個視訊全像影像稱為“全視差全 G像影像,,。它所重建的物件可以從水平及垂直方向看並且具有運動視差, 就像是一個真實的物體一樣。不過,如果要具有寬大的視角,則必須在SLM 的水平及垂直方向上都具有極高的解析度。 通常,對於SLM的要求會因為將它限制為一個“唯水平視差”⑽) 的王像衫像而減少;它只會在水平方向上進行全像影像重建,而在垂直方 向上則不會進行全像影像重建。這會導致所重建的物件只具有水平運動視 而在垂直運動時匕的透視景觀則不會變化。一個㈣全像景多像在垂直 方向上對於SLM的解析度要求比一個全視差全像影像低。“唯垂直視差” 200928626 (VP0)的全像影像也是可行的’但並不常見;這種全像影像重建只會發生 在垂直方向上,因而使所重建的物件只具有垂直運動視差,而在水平方向 上則不會有運動視差。因此,左眼和右賴見的不同透視景觀也必須分別 建立。 全像影像的即時計算需要非常強A的運算性能,目前這可以透過昂貴 且特別製造的棚賴來實現,彳物具航件可編鰱斯辨列(FPGA)、 完全客製化1C、或是針對應用指定的積體電路(ASIC)的設備,或者使用 ® 可以平行處理的多個中央處理單元(cpu)來計算。 在薄膜電晶體(TFT)顯示器上,互相垂直的方向上的像素間距會決定 每個像素的面積。這個面積被劃分為用來進行液晶(LC)控制的透明電極、 TFT與電容器、以及縱列和橫列線路。對於縱列線路的線數頻率要求和顯 不尺寸會決定所要求的外形,因此也會決定翻和縱舰路的寬度。 理想的全像顯示器需要有比目前市面上所供應的TFT式監視器裝置 〇 更兩的解析度。而解析度越局,也表示像素間距越小,同時橫列和縱列線 路的線數辭也會gj為更兩的制數而增加。這會後續造成整個像素面積 被橫列和縱列線路所覆蓋的面積比例相較於解析度的增高不成比例的大 “釔果疋’透明電極可用的面積大幅減少,而使得顯示器的透光度顯著 下降這表示理想的具有高掃描頻率的高解析度全像顯示器只有在嚴格的 限制下才可能生產得出來。由於對運算性能的要求極高,目前可以用來進 仃王像影像即時計算的硬體設備,不論使用的是哪—種特定的硬體設備, 在仏格上都非常昂貴。由於它牽涉到大量的數據資料,從運算裝置到顯示 200928626 器的影像資料傳輸同樣也非常困難。 口 乂下將參考先則的專利文獻資料(請參晒10,取自美國贼吸謂 號專利)針對—種主動矩陣式液晶顯示裝置的共通構造加以簡要解說;本 文牛中引用US6,153, 893號專利僅做為參考用途。如圖1〇中所示,這個 线矩陣式顯示技有—個平板式的構造,包括有-片主基板m、-片 相對基板102、和-個將主基板與相對基板固定在一起的間隔空間⑽, 而液晶材料就保持在這兩片基板之間的空間。在這個主基板的表面上構成 ❹—麵神份1Q6,部份包括有像素㈣細動排列成矩陣 的«電極104的開/關裝置1〇5、以及連接到顯示部份ι〇6上的週邊 驅動挪107。開/關裝置1()5即由薄膜電晶體所構成;而薄膜電晶體同 時也包含麵邊雜1〇7巾誠電路元件。 由本申請人所提出的第W0 2_觸號文件(合併於本文件中做 為參考),其中說明有一個可用於計算電腦產生全像影像的方法 ◎根據這個 綠,財—個三維錄職振碰的各條件會被分關各個平行的虛 〇職層的點矩陣中使每一個剖面層都有—個以點矩陣中的不連續振幅值 、義的個別物件的資料集’ *針對—個全像影軸示器的空間光調制器 所進行的立體全像編碼則根據這些影像資料集來計算得出。 根據树請人所提出㈣WG 2_島839號文件(合併於本文件中 做為參考),下列步驟將透過電腦的協助來執行: -針對-恤於雜的距戦且與各勤層平行峨察者平面,根據每一 個斷層景象剖面的每-個物件資料集,以波場的一個單獨二維分布的形式 200928626 計算出-個繞射影像,其中會針對位於接近—個觀察者雙眼的觀察者平面 他少-佩_施娜侧咖物_鱗,細觀察 者視窗的面積相較於視訊全像影像較為縮小; -处加入電腦計算出來的所有剖面層的分布來針對與觀察者平面有關的— 個資料集t峨察者視蚊顧—健集波場;200928626 IX. INSTRUCTIONS: FIELD OF THE INVENTION The present invention relates to holographic displays, and more particularly to holographic displays that can be used to provide Internet Voice and holographic image protocol (VHI0IP) services or communications. [Prior Art] 电脑 A computer-generated hologram image (CGH) is encoded in one or more spatial light modulators (SLMs); the SLM may include many pixel cells that can be electrically or optically controlled. These pixels modulate the amplitude and/or phase of the light by encoding the holographic image values corresponding to the video holographic images. CGH can be calculated by, for example, "consistent ray tracing", by simulating interference between a reflected light from a scene and a reference light wave, or by Fourier or Fresnel conversion. Calculation. An ideal SLM will be able to represent any composite value, that is, the amplitude and phase of the light wave of an input 分别 can be individually controlled. However, a typical SLM will only control one property, not amplitude or phase, and there may be adverse effects that may also affect another property. There are many different ways to illuminate light by secret or phase, for example, an electrically addressed liquid crystal SLM, an optically addressed liquid crystal SLM, a magneto-optical Μ, a micro-reflective position, or an acousto-optic modulator. The modulation of the light may be continuous or include a plurality of pixel cells arranged in a dimensional or two dimensional manner, individually addressable (binary, multi-order or continuous). The term "so-called "encoding" in this document means that each region of a spatial light modulator is supplied with a respective fitness value to be programmed into a holographic image so that it can reconstruct a rib 200928626 scene through slm. Unlike a pure autostereoscopic display, an observer can see the optical reconstruction of the optical wavefront of a three-dimensional scene through the video holographic image. The 3D scene is reconstructed in a space that is unfolded between the observer's eye and the spatial light modulator (SLM). The slm can also be encoded in a video holographic image so that the observer can look at the difficult three-dimensional scene in front of the SLM, as well as other objects on the SLM or behind the SLM.像 The spatial image of the space light is preferably such that the light passes through the permeable pixel, and its light can be interfered at at least a defined position and with a length (a few millimeters). This allows holographic image reconstruction to have an appropriate resolution in at least one dimension. This kind of light we call it "sufficient light." In order to ensure sufficient consistency over time, the spectrum of the light emitted by the source must be within a suitably narrow wavelength range, that is, it must be close to monochromatic light. The spectral bandwidth of the light emitted by the high-brightness light-emitting diode (LED) is sufficiently narrow to ensure consistent photographic image reconstruction. The diffraction angle at the SLM is proportional to the wavelength, which means that only a single color source will produce a sharp object point reconstruction. A wider spectrum will result in coarser object points that will obscure the reconstructed object. The spectrum of a laser source can be considered as monochromatic light. The line width of the LED light is narrow enough in space to promote good reconstruction. The spatial consistency is related to the lateral width of the light source. Conventional light sources, such as LED or cold cathode fluorescent lamps (CCFLs), meet these requirements if they emit light through a suitably narrow, light-transmissive aperture. The light emitted by a laser source can be thought of as light emitted from a point source within the diffraction limits, and, according to its "morphological purity", 200928626 ... can produce sharp objects Reconstruction, that is, each object point is reconstructed as a point within the limits of the firing limit. Light from a spatially inconsistent source of light has a large lateral width that causes the reconstructed object to blur the forest. The degree of this blurring is due to the widening of the size of the object points reconstructed at a specific location. ^ In order to use the light source in the upper part of the space to reconstruct the image of the image~ The aperture finds a noise point between the brightness and the lateral width of the limiting system. Lai, it is in the empty n. β ❹ - a linear light source ' can also be regarded as a point light source if it is viewed from the angle perpendicular to its longitudinal direction. In this direction, light waves can propagate consistently, but they are inconsistent in the other direction. Overall. The hologram image reconstructs a scene by illuminating the image in the horizontal and vertical directions. Such a video holographic image is called a "full parallax full G image." The object it reconstructs can be viewed horizontally and vertically and has motion parallax, just like a real object. However, if you want to have A wide viewing angle must have a very high resolution in both the horizontal and vertical directions of the SLM. In general, the requirements for SLM are reduced by limiting it to a "horizontal parallax" (10) only. It only performs holographic reconstruction in the horizontal direction, but does not perform holographic reconstruction in the vertical direction. This will result in the reconstructed object having only horizontal motion and the vertical perspective when moving vertically. Variation. One (4) full-image multi-image requires a lower resolution for SLM than a full-parallax holographic image in the vertical direction. "Vertical Parallax" 200928626 (VP0) omni-image is also feasible 'but not common; This holographic image reconstruction only occurs in the vertical direction, so that the reconstructed object has only vertical motion parallax, while in the horizontal direction there is no motion vision. Therefore, the different perspectives of the left eye and the right view must also be established separately. The real-time calculation of the holographic image requires very strong A's computing performance, which can be achieved through expensive and specially manufactured sheds. A device that can be edited (FPGA), fully customized 1C, or an integrated circuit (ASIC) for an application, or calculated using multiple central processing units (Cpus) that can be processed in parallel. On thin film transistor (TFT) displays, the pixel pitch in the direction perpendicular to each other determines the area of each pixel. This area is divided into transparent electrodes, TFTs and capacitors, and columns for liquid crystal (LC) control. And the horizontal line. The line frequency requirement and the apparent size of the tandem line will determine the required shape, and therefore the width of the vertical and vertical shipways will also be determined. The ideal holographic display needs to be available on the market. The TFT type monitor device has two resolutions. The more the resolution is, the smaller the pixel pitch is, and the line number of the horizontal and vertical lines is also gj. And this will increase the area of the entire pixel area covered by the horizontal and vertical lines, which is disproportionately larger than the resolution. The available area of the large "transistor" transparent electrode is greatly reduced, and the display is transparent. Significantly reduced luminosity indicates that an ideal high-resolution holographic display with a high scanning frequency can only be produced under strict limits. Due to the extremely high computational performance requirements, hardware devices that can be used for instant image calculation of the king image, regardless of which specific hardware device is used, are very expensive on the grid. Since it involves a large amount of data, it is also very difficult to transfer image data from the computing device to the display 200928626. Under the slogan, reference will be made to the patent literature of the Advanced (please refer to Sun 10, taken from the US thief-sucking patent) for a brief explanation of the common structure of the active matrix liquid crystal display device; this article refers to US6,153, Patent No. 893 is for reference only. As shown in FIG. 1A, the line matrix display technology has a flat-plate configuration including a main substrate m, a wafer opposite substrate 102, and an interval for fixing the main substrate and the opposite substrate. Space (10), while the liquid crystal material remains in the space between the two substrates. On the surface of the main substrate, a ❹-face god 1Q6 is formed, and the part includes a pixel (four) finely arranged in a matrix «electrode 104 opening/closing device 1 〇 5, and connected to the display portion ι 〇 6 The peripheral drive moves 107. The on/off device 1() 5 is composed of a thin film transistor; and the thin film transistor also includes a surface-side impurity circuit device. The W0 2_touch file proposed by the Applicant (combined in this document for reference), which shows that there is a method for calculating a computer-generated holographic image ◎ according to this green, financial - three-dimensional recording vibration Each condition of the collision will be separated into the point matrix of each parallel imaginary layer, so that each section layer has a data set of discrete amplitude values in the point matrix, and individual objects of the meaning '* The stereo holographic encoding performed by the spatial light modulator of the hologram is based on these image data sets. According to the tree (3) WG 2_Island No. 839 (incorporated in this document for reference), the following steps will be carried out through the assistance of the computer: - For the mismatched distance and parallel to each level The plane of the observer, based on each object data set of each fault scene profile, calculates a diffraction image in the form of a single two-dimensional distribution of the wave field 200928626, which is targeted to the eyes of the observer. The viewer's plane is less - Pei - Shi Na side coffee _ scale, the area of the thin observer window is smaller than that of the video holographic image; - the distribution of all the section layers calculated by the computer is added to target the observer plane The relevant data set t inspectors regard the mosquito net-jianjian wave field;

❹ -將參考資料集轉換為一個位於一個有限距離處且與參考平面平^的入 像影像平面,以便針對-個景㈣匯集電臟生全像影像建立—齡丁像: ===中空㈣調辦全像影像平种,且財景象將於鱗 後在觀察者眼睛前方的空間中透過前述㈣光調·的協助進行重建。 上面提到的方法及顯示器都以不是重建景象物件本身、而是在一 ^個波前將由物件本身所發出的虛擬觀察者視窗中進行重建的構想為基 .們Μ㈣藏娜魏絲觀看景象。麵鮮者視窗會覆」 '、者眼睛的瞳孔並且可以透過已知的位置偵測及追蹤系統的幫助來 實際的觀察者位置。一個片磁沾 、、截__狀的重建空間會展開在全+ :示器的空間光調制器與觀察者視窗之間,其惰代表這個_ 懈侧峨叫峨織爾小,貝_ 截^體可齡接近,鲜塔難。聽者透過虛織察者視窗朝向再 =方嶋,蝴_辦概似綱賴。崎必要蝴 «St ’蝴物峨鐵嘯Μ。W碼也將會 恶要飛常叩貴的尚性能運算裝置。 200928626 ❹ ❹ 本申請人所提出的第W0 2_/025咖號文件揭露了一個可以讓人們 根據具有緩衝區資訊的三維影像資料即時產生視訊全像影像的方去 得利用相_單域價的運算裝絲產线些全娜像的條成為可L (本申請人所提出的第W0 20_25839號文件揭露了一個可即時產生 電腦產生全像影像的方法。透過一個空間光調制器Μ上的各個物件點所 建構的用來代表,__蝴繼_織衝區資訊的 影像資料來進行編碼。與上述先前的專利的解決方法類似,第恥 2_/02_號文件中所揭露的方法同樣以不是重建景象物件本身、而是 在一個或多個波前將由物件本身所發出的虛擬觀察者視窗中進行重建的構 想為基礎。一個經過調制的波場會透過一個空間光調制器⑽從充分一致 的光線中產生,這會由各個全像影像值來進行控制,而所需的實際或虛擬 三維景象則透過在空間中所發生的干涉來進行重建。虛擬觀察者視窗會以 SLM做為-個基底在各個截頭錐體形狀的重建空間中產生。這些視窗會落 在接近觀察者眼睛的位置,並且可以透過已知的位置偵測及追蹤系統的協 助來追蹤實際的觀察者位置。冑w〇 _島號文件中所揭露的方法 所根據的疋·事實上-個觀察者看見一個景象的這個區域是由一個從腳 -直伸展到觀察者視窗處的載頭錐體形狀的重建空間所定義的。這個截頭 錐體大致上可能會是—個金字塔形狀,因為觀察者視窗雜聊為小。除 此之外,這個方法也以-個單一物件點的重建只需要一個次全像影像做為 SLM的一個子集的原則為基礎。因此與每—個景象點有關的資訊並不會分 布到整個全像影像中,而只會包含在特定的限定區域内,也就是所謂的“次 11 200928626 王像影像巾。依照這個概念,景象中的_個_物件點只會透過sLM上 的-個限定的像素區域進行重建,即簡的“次全像影像”。第恥 2008/G测9號文件所揭露的触是以“各個次全像雜錄於整個景象 的重建的每一個物件點可以從各個檢視表榻取、而這些次全像影像會累積 以便針對整個景麵重建構成—鶴體的全側像”的構想為基礎。 一根據第W0難/()25839號文件中所揭露的方法中的—個特別較佳的 ⑽例’一個景象的呈現會根據每一個觀察者的位置和他們觀看#方向來決 定。每-個觀察者會分配有至少—個虛峨察者視窗落在靠近觀察者眼睛 的位置處的,觀察者平面中。在—個預備處理步驟中,景象會進行三維 分解而成為許許好的可見物件點。這些資料也可能是來自—個介面。第 W0 2008/025839號文件中所揭露的處理步驟包括: -步驟1 : 找出每-健件闕次全像影像·置:減的次全像影像的位置和範圍 會_-個婦點義4㈣,樣是輯它賴向χ、y錄和它的緩 衝區距離。 '步驟2 : 從檢視表擷取相應的次全像影像的配置。 -步驟3 : 針對所有的物件點重複進行上述這兩個步驟,並累加這些次全像影像以便 針對整個景象的重建構成一個總體的全像影像。 根據第WO 2008/025839號文件中所揭露的一個簡單範例,指定給一 12 200928626 個物件點的—個次錄雜壯持根敎又軟轉丨。駐曈孔的觀 察者視窗或它的-雜會經由物件職_全像影像平种,也就是投射 到SLM上。並據此來決定重建這個景象點所需的次全像影像的像素指標。 根據第2008/02·號文件所揭露的一個進—步的觀點,將會對 各個次全像影像或總體全像影像施加額外的修正魏,例如,时補償因 它的位置或形㈣造成的SLM的誤差、或者时改善重建的品質。舉例來 說’將修正值加入到次全像影像及/或總體全像影像的資料值中。另外, 喊每-個次全像影像都是由觀察者視窗的實際位置所定義的,因此可以 針對較不平常的觀察者視窗(例如’如果觀察者從旁邊的位置以一個極大 的角度觀看顯示器)產生一些特殊的檢視表。 如第WO 2GG8/G25839號文件所述’使用檢視表的原闕可以根據喜 好來擴大。例如’用於色彩和亮度資訊的參數資料就可以儲存在單獨的檢 視表中。另外,次全像影像及/或總體全像影像的資料值也可以配合來自 檢視表的亮度及/或色彩值來進行調制。其中的色彩表現是以各個原色可 以從個別的檢視表擷取的構想為基礎。 第W0 2008/025839號文件中所揭露的方法所根據的檢視表偏好依照 第WO 2006/066906號或第WO 2006/066919號專利文件(由本申請人所 提出,合併於本文件中做為參考)產生。之後並將檢視表儲存於合適的資 料載體及儲存媒體中。 圖26A說明第WO 2008Λ)25839號文件所揭露的以只有一位觀察者為 例的一般構想。一個景象(S)的視域會根據一個觀察者(〇)的位置和觀 13 200928626 看的方向來界定。這個觀察者會被分配有至少一個虛擬觀察者視窗(v〇w), 而這個視窗則落在靠近觀察者眼睛的一個參考平面中。一個經過調制的波 場會透過一個空間光調制器(SLM)由充分一致的光線產生,並透過各個全 像影像值來控制。這個方法和透過這個方法所導出的顯示器則以並不重建 景象的物件本身而是在一個或多個虛擬觀察者視窗(v〇w)中重建物件所發 出的波前的構想為基礎。在圖26A中,物件以一個單一物件點(pp)來表 示觀察者(0)可以透過虛擬觀察者視窗(v〇w)而看到景象(s)。虛擬 © 觀察者視窗(v〇w)會覆蓋觀察者⑻眼睛的瞳孔,並且可以在已知的位 置偵測及追《統的協助下追蹤實__者位置。藉由視訊全像影像的 全像影像值來控制空間光調制器(SLM)並據此造成波場(這會在各個像素 中進行調制並從顯示器螢幕發射出來),透過在重建空間中產生干涉來重建 三維景象。如同圖26A中所可見的,根據這個顯示設計的一般原則,景象 (S)的-個單—物伽(pp)只會由空間光調制器(⑽)上的一娜定 ❹的像素區域重建’即所謂的次全像影像(SH)。如同圖施中所可見的,根 據i最簡單的解決方案,—個次全像影像⑽的大小會根據交叉線定 理來決定,之後再藉此得出重建這働件點(〇p)所需的像素的指標。次 、影像(SH)的位置和範圍則根據一個物件點(pp)的位置(也就是它 的仏向x、y轴座標)和它的緩衝區距離(也就是z軸距離)導出。然後, '建這個點(PP)所需的個全像影像值則可以從檢視表(逝)擷取。 全像〜像(SH)會以—個亮度及/或色彩值來進行調制,然後累加 W固別位置處的全像影像平斜以便構成—個賴的“舰全像影像”。 14 200928626 包含在上述檢視表中的資料會事先產生。這些資料偏好採用第w〇 2006/066906號文件中所說明的方法產生(如前面所節錄的先前的專利中 所述)’並儲存在合適的資料載體及儲存媒體中。透過物件點的位置和性質 的幫助,可以事先計算出各個相應的次全像影像以及次全像影像的檢視 表,並可據此產生色彩和亮度值以及修正參數。 -圖26B則更詳細的解說了這個原理,並顯示出分別被指定給各個物件 -點(PI、P2)的次全像影像(SHI、SH2)。在圖26B中可以看到這些次全像 ® 衫像會被限制並構成總體全像影像,也就是整個空間光調制器(SLM),的 一個小而連續的子集。除了根據交又線定理來定義次全像影像的位置和範 圍之外,如圖26中所可見的,還可能會有其他的函數關係。 3.探討先前的專利 由本申凊人所提出的第WO 2004/044659號(US2006/0055994)及第 US73154G8B2號專利(全部合併在本文件中做為參考)說明了一個透過充 ® 分一致的光線的繞射來重建三維景象的裝置;這個裝置包括有一個點狀光 • 源或直線光源、一個用來進行光線聚焦的透鏡、和一個空間光調制器 (SLM)。和傳統全像顯示器不一樣的是,這個sy{在傳輸模式中會在至少 -個“虛擬觀察者視窗,,(關於這個用語以及相關的技術的討論,請參閱 附錄I及II)中重建-個3D景象。每一個虛擬觀察者視窗會落在靠近 觀察者眼睛的位置並且會限制在一定的大小使虛擬觀察者視窗落在一個單 -繞射級中’讓每個眼睛都能在一個從SLM表面伸展到虛擬觀察者視窗的 截頭錐體形狀的重建空間中看到完整的三維景象重建。為了讓—個全像影 15 200928626 Ο Ο 像重建元全沒有擾動,虛擬觀察者視窗的大小必須不超過—個重建、 級的週期間隔。不過,它也必須至少大到足以讓一位觀看者可以透過、 視窗看到整個重建的3D景象。另-隻眼睛可以透過同—個虛擬觀察= 窗重建的景象’或者可以指定第二個虛擬觀察者視窗(由—個第二光源根 據相關計算產生)。在這裡,一個能見區域(這通常會相當大)它的位置會 被限制在虛擬觀察者視窗上。已知的解決方案會以小巧的方式重建從個 傳統的SLM表面的高解析度所產生的大面積,然後在將它縮小到虛擬觀察 者視窗的大小。由於幾何上_素,這會有繞射駿極小的效果,使得現 行世代的SLM的解析度即足以透過合理的消費等級的運算設備而達到一 個品質極高的即時全像影像重建。 在第US2GG4/D223G49號專利(全部合併在本文件中做為參考)中揭 露了-個可產生三維立體影像的行動電話。不過,在該專利中所揭露的三 維立體影像是_自動立體照相技術所產生的。以自動立體照相方式所產 ^的三維域雜的—個_是:通常觀看者所翻_像是魏在顯示 器的内侧’錢看者畴的缝關通常會有聚焦在顯示器表面的傾向。 這個觀看者眼__與_受刺三維讀影像齡置之間的不—致, 在許多案射都導致觀看者在觀看—段時間後會產生俯服_覺。在以 全像攝影技#錢三維立贿像的航下,這侧題並不會發生 以顯著的減少。 考了 【發明内容】 本土月提丨種可用來提供網際網路語音及全像影像協定(VHI0IP) 服務或通訊的全像顯示器。 200928626 根據上述構想’本發明的刪Ip服務或通訊為網際網路語音及視訊 全像影像齡(·ωΐΡ)服務或通訊。 根據上述構想,本發明的VHI0IP或VVHI0IP服務或通訊以即時或近 即時方式提供。 根據上述構想’本發明的V_IP g VVHI0IP服務或通訊可以進行兩 個個人之帛的即喊近即時視訊全像通訊。 位觀舰祕者絲⑽)餘—峨察者或多 根據上述構想,本發明的全像顯示糾光源為發光二極體。 根據上述構想’本發明之齡財齡全像影像計算。 根據上述構想,本發明會使社全像影絲進行全像影像計算。 根據上述構想,本發明所執行的全像影像計算為即喊近即時運算。 根據上述構想’本發明包括—健間細繼⑽)糊器的各個像 素佈置在-㈣板上,其巾絲蚁SLM像麵全娜像辆資料所執行 的計算會利用佈置在與SLM的各個像素所在的同 執行0❹ - Convert the reference data set to an image plane of the image at a finite distance and level with the reference plane to create an image of the image of the visceral image for the scene (4): === hollow (4) The holographic image is tuned, and the financial image will be reconstructed in the space in front of the observer's eyes in the space in front of the observer's eyes through the assistance of the aforementioned (4) light adjustment. The methods and displays mentioned above are based on the idea of reconstructing the scene object itself, but reconstructing the virtual observer window emitted by the object itself in a wavefront. (4) Zanna Weiss watches the scene. The face window will cover the pupil of the eye and the actual observer position can be assisted by the known position detection and tracking system. A piece of magnetic smear, truncated __-shaped reconstruction space will expand between the full +: display space light modulator and the observer window, its idle represents this _ 峨 峨 峨 峨 峨 峨 , , 贝 贝^ The body age is close, and the fresh tower is difficult. The listener looks through the virtual weaver window and then the square. Saki must have a butterfly «St ‘Butterfly 峨 铁啸Μ. The W code will also be a bad performance computing device. 200928626 ❹ 第 The W0 2_/025 coffee file file proposed by the applicant exposes a method that allows people to instantly generate a video holographic image based on the 3D image data with buffer information. The strips of the silk-filled production line are made L. (The W0 20_25839 file proposed by the applicant discloses a method for instantly generating a holographic image of a computer. The objects on a space light modulator are attached. The image data constructed by the point is used to represent the __ butterfly _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Reconstructing the scene object itself, but based on the idea that one or more wavefronts will be reconstructed from the virtual observer window emitted by the object itself. A modulated wavefield will be fully consistent through a spatial light modulator (10) Produced in light, which is controlled by the values of the holographic images, and the actual or virtual three-dimensional image required is interfering with the interference occurring in space. The virtual observer window will be created with SLM as a base in the reconstruction space of each frustum shape. These windows will fall close to the observer's eyes and can be detected and tracked through known positions. The system assists in tracking the actual observer position. The method disclosed in the 胄w〇_island file is based on the fact that the observer sees a region of a scene that is stretched from foot to side. The reconstruction space of the shape of the head cone at the window is defined. This truncated cone may be roughly a pyramid shape because the observer window is small. In addition, this method also takes - The reconstruction of a single object point is based on the principle that only one sub-image is used as a subset of the SLM. Therefore, the information related to each scene point is not distributed to the entire holographic image, but only contains In a specific limited area, the so-called "Time 11 200928626 image image towel. According to this concept, the _ object points in the scene will only pass through a limited pixel area on the sLM. Reconstruction, that is, the simple "secondary hologram". The touch revealed in the shame 2008/G test No. 9 is that each object point of the reconstruction of the entire photographic image can be viewed from each view. The reclining, and these sub-images will accumulate in order to reconstruct the entire landscape of the entire landscape - the concept of the full-body image of the crane. According to the method disclosed in the W0 Difficult / () 25839 document - A particularly preferred case (10) 'The presentation of a scene will be determined according to the position of each observer and the direction in which they view #. Each observer will be assigned at least one virtual observer window that is placed close to the observer's eyes. At the position of the observer, in the preparatory processing step, the scene will be three-dimensionally decomposed into a good visible object point. These data may also come from an interface. The processing steps disclosed in Document No. WO 2008/025839 include: - Step 1: Finding the position and range of each sub-image of the 健 全 · 减 减 减 减 减 减 减 减 减 减 减 减 减 减 减 减 减 减 减 减It is the buffer distance that it relies on, y, and its buffer. 'Step 2: Capture the configuration of the corresponding sub-holographic image from the view. - Step 3: Repeat the above two steps for all object points and accumulate these sub-images to form an overall holographic image for the reconstruction of the entire scene. According to a simple example disclosed in document WO 2008/025839, assigning to a 12 200928626 object points - the number of records is strong and soft. The observer window in the pupil or its confession is morphologically imaged by the object _ holographic image, that is, projected onto the SLM. Based on this, the pixel metric of the sub-holographic image required to reconstruct this scene point is determined. According to a further approach disclosed in document 2008/02, an additional correction will be applied to each hologram or total hologram, for example, time compensation due to its position or shape (4) The error of the SLM, or the quality of the reconstruction. For example, 'Add the correction value to the data value of the sub-holographic image and/or the total hologram image. In addition, shouting every hologram image is defined by the actual position of the viewer window, so it can be targeted to less unusual viewer windows (eg 'if the viewer views the display from a side position at a great angle ) Produce some special inspectors. As described in document WO 2GG8/G25839, the original use of the view table can be expanded according to preferences. For example, the parameter data for color and brightness information can be stored in a separate view. In addition, the data values of the sub-images and/or the overall hologram may be modulated in accordance with the brightness and/or color values from the view. The color representation is based on the idea that each primary color can be extracted from an individual view. The method of the method disclosed in the document disclosed in the document No. WO 2008/025839 is based on the patent document No. WO 2006/066906 or WO 2006/066919 (issued by the present applicant and incorporated herein by reference) produce. The view is then stored in a suitable data carrier and storage medium. Figure 26A illustrates the general concept of a single observer as disclosed in document WO 2008Λ) 25839. The field of view of a scene (S) is defined by the position of an observer (〇) and the direction of view 13 200928626. This observer will be assigned at least one virtual observer window (v〇w), which falls in a reference plane near the observer's eye. A modulated wave field is generated by a uniform spatial light through a spatial light modulator (SLM) and is controlled by the values of the various holographic images. This method and the display derived by this method are based on the idea of reconstructing the object's wavefront in one or more virtual observer windows (v〇w), rather than reconstructing the object itself. In Fig. 26A, the object is represented by a single object point (pp) that the observer (0) can see the scene (s) through the virtual observer window (v〇w). The virtual © observer window (v〇w) will cover the pupil of the observer's (8) eye, and can track the position of the real__ with the help of the known position detection and chasing. Controlling the spatial light modulator (SLM) by the holographic image value of the video holographic image and thereby causing the wavefield (which is modulated in each pixel and emitted from the display screen), by interfering in the reconstruction space Reconstruct the three-dimensional scene. As can be seen in Figure 26A, according to the general principle of this display design, the single-object gamma (pp) of the scene (S) will only be reconstructed from the pixel region of the spatial light modulator ((10)). 'The so-called sub-holographic image (SH). As can be seen in the figure, according to the simplest solution of i, the size of the sub-image (10) will be determined according to the cross-line theorem, and then it will be used to reconstruct the condition point (〇p). The indicator of the pixel. The position and extent of the image (SH) are derived from the position of an object point (pp) (that is, its x-direction and y-axis coordinates) and its buffer distance (that is, the z-axis distance). Then, the holographic image value required to build this point (PP) can be retrieved from the view table. The hologram ~image (SH) will be modulated with a brightness and/or color value, and then the holographic image at the fixed position will be added to form a "ship hologram". 14 200928626 The information contained in the above view will be generated in advance. These data are preferred to be generated by the method described in document WO 2006/066906 (as described in the prior patents previously described) and stored in suitable data carriers and storage media. Through the help of the position and nature of the object points, the corresponding sub-hologram images and sub-hologram images can be calculated in advance, and the color and brightness values and correction parameters can be generated accordingly. - Figure 26B illustrates this principle in more detail and shows sub-holographic images (SHI, SH2) assigned to each object-point (PI, P2). It can be seen in Figure 26B that these sub-holographic ® shirt images are constrained and form a total holographic image, a small, continuous subset of the entire spatial light modulator (SLM). In addition to defining the position and extent of the sub-holographic image based on the intersection and line theorem, as seen in Figure 26, there may be other functional relationships. 3. Discussion of the prior patents by the applicants of the WO 2004/044659 (US2006/0055994) and the US Patent No. 73,154G8B2 (all incorporated herein by reference) A device that refractions to reconstruct a three-dimensional scene; the device includes a point light source or linear source, a lens for focusing light, and a spatial light modulator (SLM). Unlike traditional hologram displays, this sy{ will be rebuilt in the transfer mode in at least a "virtual observer window," (for a discussion of this term and related techniques, see Appendix I and II) - 3D scenes. Each virtual observer window will fall close to the observer's eyes and will be limited to a certain size so that the virtual observer window falls in a single-diffraction level' so that each eye can be in one The SLM surface extends into the reconstruction space of the frustoconical shape of the virtual observer window to see the complete 3D scene reconstruction. In order to make the hologram 15 200928626 Ο Ο the reconstruction element has no perturbation, the size of the virtual observer window It must not exceed a reconstruction, level of periodic interval. However, it must be at least large enough for a viewer to see the entire reconstructed 3D scene through the window. The other eye can pass the same virtual observation = The scene of the window reconstruction 'or can specify a second virtual observer window (generated by a second light source according to the relevant calculation). Here, a visible area (this Often quite large) its position is limited to the virtual observer window. The known solution rebuilds the large area resulting from the high resolution of a traditional SLM surface in a small way and then shrinks it to The size of the virtual observer window. Because of the geometric _ prime, this will have a small effect of diffracting, so that the resolution of the current generation of SLM is enough to achieve a very high quality instant holography through reasonable consumption level computing equipment. Image reconstruction. A mobile phone that produces a three-dimensional image is disclosed in US Patent No. 2, GG4/D223, the entire disclosure of which is incorporated herein by reference. The stereoscopic camera technology produces a three-dimensional domain that is produced by autostereoscopic photography. _ is: usually viewed by the viewer _ like Wei on the inside of the display. The tendency on the surface of the display. This viewer's eye __ and _ punctured three-dimensional read image between the age of the non-induced, in many cases lead to the viewer is watching - paragraph After the interval, there will be a squatting sensation. Under the voyage of the full-image photography technique, the three-dimensional bribery image will not be significantly reduced. A holographic display that provides Internet Voice and holographic image protocol (VHI0IP) services or communications. 200928626 According to the above concept, the deleted Ip service or communication of the present invention serves as an Internet voice and video holographic image age (·ωΐΡ) service. Or communication. According to the above concept, the VHI0IP or VVHI0IP service or communication of the present invention is provided in an instant or near-instant manner. According to the above concept, the V_IP g VVHI0IP service or communication of the present invention can perform near-instant video for two individuals. Full-image communication. The singularity of the singularity of the singularity of the singularity of the singularity of the present invention. According to the above concept, the age-age hologram image of the present invention is calculated. According to the above concept, the present invention enables the full-image image calculation of the hologram. According to the above concept, the hologram image performed by the present invention is calculated as a near-instantaneous operation. According to the above concept, the present invention includes - each of the pixels of the health relay (10) is arranged on the - (four) board, and the calculation performed by the towel ant SLM image surface is performed by each of the SLM The same execution of the pixel

基板上的電路組件來 根據上述構想,本發明的各項計算並不牽涉到傅立葉轉換(Μ加 transform)或菲涅爾轉換(Fresnel transf〇rm)的計算。 根據上述構想’本發明的全像影像編碼諸會在像麵佔㈣空間以 外的空間計算’之後_已知的資繼縮技術將全像影像編碼資料進行壓 縮’然後傳輸給像麵在縣板上的電雜件,電馳件概行一個將所 接收到的壓縮資料進行解壓縮的功能。 17 200928626 根據上述構想,本發明係可以在—個圖形子系統的3D表現處理流程 中合併額外的處理單元來進行進行全像轉換及編碼。 根據上述縣’本發鴨可㈣_個全像計算纽雜透過擴充顯示 卡的3D處理流程對三維空間中的各個點進行循序全像轉換並同一基板上 進行計算的全像影像顯示器。 娜上频想’本發鴨可使連續的真實㈣影像祕之卩4用在全像 f| +算中的真實空間影像資料各不相同全像顯示資料會以次全像影像差 、貝料和顯喊憶錄資制形式傳送給全像顯示叢集的全像顯示器。 根據上述構想’本發明係可提供VHI0IP或™匿的P_t0_p服務 或通訊。 根據上述構想,本發明射提供職分享服務或通訊。 根據上述構想,本發明斜透賴糖的全球祕提供即時訊息服務 或通訊。 〇 輯上賴想,本發_通概務或舰可透騎聯結的電腦網路提 供。 根據上述構想’本發賴職分享服務或龍可透過觸結的電腦網 路提供。 根據上述構想,本發_㈣减服務或龍可透過卿結的電腦網 路提供。 根據上賴想,本發日躲可提供可觀上暫時使用、何下載的電腦 敕體,以允許用戶使用VHI0IP或VVHI0IP服務或通訊。 18 200928626 根據上述構想,本發·可提供可供下載的線上㈣以允許用戶使用 VHI0IP或VVHI0IP服務或通訊。 根據上述構想,本發_可提供可進人_及峨資料料統以存取 全像顯示資料的通路。 本案更提出一種通訊系統,其中兩個使用者可利用以或 VVHI0IP絲礎的即時或近即喊訊全像通訊透__路進行通訊,每 一個使用者均使用根據前述任一專利主張所述的全像顯示器。 本案更提出一種利用上述構想的全像顯示器來產生由多個分散的點所 構成的二維立體景象的全像影像重建的方法,其中的顯示器包括有一個光 源和一個光學系統用來照亮空間光調制器;這個方法包括下列步驟: 進行全像影像編碼並透過空間光調制器呈現出來。 本發明可藉由下列之較佳實施例加以說明: 囷1是用來顯示全像影像的資料傳輸速率遠高於原始真實空間資料的 資料傳輸速率的說明圖; 圖2是先前專利中的SLM的一部份與一個可以在像素矩陣的空間中 執行全像計算的SLM的一部份在構造和性能特性方面的比較圖; 圖3是一個可以在像素矩陣的空間中執行全像計算的SLM的一部份 的構造圖; 圓4是一個可以在像素矩陣的空間中執行解壓縮計算以用於全像資料 顯示的SLM的一部份的構造圖;Circuit Components on the Substrate According to the above concept, the calculations of the present invention do not involve the calculation of Fourier transform or Fresnel transf〇rm. According to the above concept, the holographic image coding of the present invention will be compressed after the space calculation of the image plane (4) space. The known image compression data compresses the holographic image coding data and then transmits it to the image plane in the county board. The electrical components on the top, the electrical components are a function of decompressing the received compressed data. 17 200928626 In accordance with the above concept, the present invention can incorporate additional processing units for holographic conversion and encoding in a 3D representation processing flow of a graphics subsystem. According to the above-mentioned county 'Benfa Duck' (four) _ omni-image calculation, the omni-directional image display which performs sequential holographic conversion on each point in the three-dimensional space and calculates on the same substrate through the 3D processing flow of the extended display card. Na Shangchai thinks that 'this hair duck can make continuous real (four) video secret 卩 4 used in the whole image f| + real space image data in the calculation of different holographic image data will be sub-image poor image, shell material And a full-image display that is transmitted to the holographic display cluster in the form of a recalled recording. According to the above concept, the present invention can provide a P_t0_p service or communication of VHI0IP or TM. According to the above concept, the present invention provides a job sharing service or communication. According to the above concept, the present invention provides a real-time messaging service or communication for the global secret of lysine. 〇 The series is based on the computer network provided by the company. According to the above concept, the service can be provided through the computer network of the connection. According to the above concept, the _(4) reduction service or the dragon can be provided through the computer network of Qingjie. According to Shanglai, this day's escaping can provide a computer body that can be used temporarily and downloaded to allow users to use VHI0IP or VVHI0IP services or communications. 18 200928626 Based on the above concept, the company can provide online (4) downloadable to allow users to use VHI0IP or VVHI0IP services or communications. According to the above concept, the present invention can provide access to the holographic data to access the holographic display data. The present invention further proposes a communication system in which two users can communicate using the instant or near-infrared holographic communication via VVHI0IP, each of which uses the claim according to any of the aforementioned patent claims. Full-image display. The present invention further provides a method for generating a holographic image reconstruction of a two-dimensional stereoscopic scene composed of a plurality of discrete points using the holographic display of the above concept, wherein the display includes a light source and an optical system for illuminating the space. Light modulator; this method includes the following steps: holographic image encoding is performed and presented through a spatial light modulator. The present invention can be illustrated by the following preferred embodiments: 囷1 is an explanatory diagram for displaying a data transmission rate of a holographic image much higher than that of the original real-time data; FIG. 2 is an SLM of the prior patent; A comparison of the construction and performance characteristics of a portion of the SLM that can perform holographic calculations in the space of the pixel matrix; Figure 3 is an SLM that can perform holographic calculations in the space of the pixel matrix a partial construction diagram; circle 4 is a structural diagram of a portion of an SLM that can perform decompression calculations in the space of the pixel matrix for holographic data display;

圖5是一個可以在像素矩陣的空間中執行解壓縮計算以用於傳統2D 200928626 顯示資料顯示的SLM的—部份的構造圖; 疋顯丁 TFT的製造過程中的各個情況的說明圖; 疋顯下TFT的製造過程中的各個情況的說明圖; 圖疋員不根據本發明的一個顯示設計來重建全像影像的方法的說明 Γ5Π · 圓, 圓9是顯示根據本發明的一個顯示設計來重建全像影像的方法的說明 圖; 圖10疋以先則的專利為根據的一個傳統主動矩陣式液晶顯示裝置的 一般構造的透視圖; 匕括顯不以本發明的-侧示設計為根_全細示器的一個 主動矩陣絲板的各师造麵的說明圖; 匕括示圖11中的主動矩陣式基板的各個進—步製造步驟的說 明圖; 囷13包括顯示圖12巾的主動矩陣式基板的各個進—步製造步驟的說 明圖; 圖14疋個在各個为散且任意的位置上表現各個物件點的全像顯示 器的說明圖; 囷15是可鎌供在以本發—麵示設計為根據的全細示器中 的圖形計算中的功能單元的說明圖; 圓16是用於以本發明的一個顯示設計為根據的全像顯示器中的次全 像影像SH的檢視表的說明圖; 20 200928626 圓17是用於以本發明的—個顯示設計為根據的全像顯示器中進行全 像轉換與編碼的額外處理單元的說圖; 圖18是齡在以本㈣的—個赫設計為轉的全像齡器中,如果 採用次全像影像,運算負荷將會更小(因為像素格的數量更少)的說明圖; 圖19是顯示-個在時間t時顯示的景象、另—個在時間糾時顯示 的景象、以及兩者之間的景象差別的說明圖; Ο 圖20是顯示具備有可編址資料傳輸能力的以本發明的—個顯示設計 為根據的全像顯示裝置的說明圖; 圖21顯示-個會在射計算以本發明的一個顯示設計為根據的全像 顯不器中的電晶體數量的試算表的一部份; 囷22是圖21中所示的試算表的其餘部份; 囷23是以用於本發明的一個顯示設計的全像顯示裝置為根據的叢集 設計的簡圖; 囷24是以用於本發明的一個顯示設計的全像顯示裝置為根據的顯示 資料所採取的路徑的說明圖; 圖25疋用於項顯示的運算上的各項計算可能在像素矩陣的空間中 執仃的、可以顯示傳統2D顯示資料、或全像顯示資料的一個SLM的一部 份的構造圖; 圖26疋以先刖的專利為根據、用來產生次全像影像的方法的說明圖; 圖2Ύ是顯不根據本發明的一個顯示設計來重建全像影像的方法的說 明圖; 21 200928626 圓28疋以本發明的一個顯示設計為根據的面板拼貼的構造圖; 圖29疋關於吸收的幾何上的考量的的說明圖; 圖30是關於吸收”的幾何上的考量的的說明圖; ® 31是根據本發個顯示設計來處理吸收現象的方法的說明圖; 圖32是根據本發明的一個顯示設計來處理吸收現象的方法的說明圖; 圖33是以用於本發明的一個顯示設計的全像顯示裝置為根據的顯示 資料所採取的路徑的說明圖; 。圖34是根據本發明的一個顯示設計,利用可控制的稜鏡透過移動虛擬 觀察者視窗來追蹤-個或多個制者的方法的說明圖。 【實施方式】 A.可在和像素所在的同一基板上進行計算的全像影像顯示器 本發明的一個顯示設計,包括有一個顯示器,可以接收真實空間影像 © t料(如對應卜個三維立體影像的—個光強度對應資料和—個緩衝區對 應資料)。_細制H的全像編碼鮮會轉三駐體雜資料以即時或 近即時的方式計算出來。透過結合兩個功能單元,也就是“全像影像計算 單元和全像影像顯示單元”(這些單元與先前專利中的裝置在功能上 和空間上都有所分別,以便在一個基板上構成一個共同的翠元),全像影像 的計算中至少有一部份可能在像素矩陣所在的物理空間中執行。這表示至 夕卩伤用於全像影像計算的電晶體可以整合在用於進行像素控制的各個 電晶體之間或相傍並排。此外,透過結合兩個功能單元,也就是“全像影 22 200928626 像计异單元,,和“全像影像顯示單元,,(這些單元與先前專利中的裝置在 功能上和如上都有所分別,以便在一個基板上構成—個共同的單元),所 有的全像树計算也可能在像素矩賴在騎理空財執行。或者,一部 伤或所有祕進行全絲像計算的電腿也可崎在像素轉之外,但在 和用於進行像素控制的電晶體所在的同一基板上。對熟悉這類技術的人來 說’應該可啸清楚所謂的“在同—基板上,,並林示這些電晶體只會在 軒層級讀基板發生接觸,喊絲絲在翅上提供了物理支持的媒 介,並在這個媒介上佈置相關的電路組件。關於“基板,,的意義的進一步 資訊將在題名為“基板,,的一節中加以闞述。 在像素矩料(或者是在_的同—基板上)所進行的全像影像著計 算’並不·先前的專财所·分析式全像影像計算方法。其他種類的 计异方法’像是“檢視表”(L〇〇k-UP Table,LUT)方法,也可以進行。 一個分析式的計算方法可以用來做為—個範例絲範這些計算方法。在像 素轉㈣全像影料算方面,整個顯示紅所有的全像方法可能都 S全相同,並且鎌加人次全像影像㈣料偏好在—個次全像影像尺度的 距離上進行交換。次全像影像將會被用來進行運算。運算將可以均質的分 散在整顯示器表面上。但為了讓硬體的設計、模擬、和驗證更方便,則可 能將運算分割成為許多小而完全相同的部份,稱為“叢集”,拼貼在顯示 器表面上。這些拼貼的圖點並不-定要是矩形的構造,也可以是其他的構 造,像是六角形(“蜂巢狀”)的構造。這個所謂的“叢集,,會用來做為 —個運算單位,它涵蓋-部贼者整個全像影像的:紐雜。所以一 23 200928626 個叢集可能就是可以用來根據—部份的原始真實空間資料來計算出顯示器 上的-個圖點的全像影像資料的最小單位。這些㈣偏好在互減鄰的單 位之間X換資料’使來自互相_鄰的單位的次全像影像相互重叠的地方也 π以SLM上正確的進行編碼。我們在圖24即以簡圖方式對此加以說 月採用叢集方法的-個優點是,在將叢集設計好之後,就可以輕易的透 過將所有元全相同的叢鱗貼在—起來來建構成―個全像顯示器。 Ο ❹ 理’上,要顯不具有極高影像品質的全像影像需要有極高的解析度(例 如1Μ00 X 12,〇〇〇像素),或採用一到幾⑽寬而不是只有幾腦寬的 觀察者視®,或者兩相時具備。要顯示的雜内容,包含有一個光 又影像資Λ和二維緩衝區資訊(這可以稱為—個“Ζ軸緩衝區”),典型 =這只^個最多2,咖X1测像素的解析度。如圖i中所示,用來顯 "麵需的貞料傳輸速率遠高糊來顯示原始資制需的資料傳輸 立^如,如範物補值兩者相差約仙倍。如圖i _所示,三維 應。1=枓以—個光強度對織料和—個三維緩衝區對麟料的形式供 一也成對的Γ對每—個畴(也就是針對每-個虛擬觀察者視窗)構成 含有=區對應資料和光強度對應資料™ 資料以三個Γ=,5°°像素的資料陣列。每—個對應中的每—個像素的 須色值和一個z值(即四 位元就是—個二 ,各為8位兀)來表示。一個5 is a structural view of a portion of an SLM that can perform decompression calculation in a space of a pixel matrix for display of a conventional 2D 200928626 display data; an explanatory diagram of each case in the manufacturing process of the TFT; An illustration of each case in the manufacturing process of the TFT is shown; an illustration of a method for reconstructing a holographic image without a display design according to the present invention 圆 5 Π · circle, circle 9 is a display design according to the present invention An explanatory view of a method of reconstructing a holographic image; FIG. 10 is a perspective view showing a general configuration of a conventional active matrix liquid crystal display device based on the prior patent; Illustrated diagram of each of the master matrix of an active matrix wire plate of the full-shower; an explanatory view of each of the steps of the active matrix substrate in FIG. 11; 囷13 includes a towel showing FIG. An explanatory diagram of each of the steps of the active matrix substrate; FIG. 14 is an explanatory diagram of a holographic display showing each object point at a discrete position; 囷15 is BRIEF DESCRIPTION OF THE FUNCTIONAL UNITS FOR GRAPHIC CALCULATIONS IN A INTEGRATED INTEGRATED DEVICE BASED ON THE GENERATION SET OVERVIEW; ROUND 16 is the number of times in a hologram display based on a display design of the present invention An illustration of a view of the hologram SH; 20 200928626 Circle 17 is an illustration of an additional processing unit for holographic conversion and encoding in a hologram display based on a display design of the present invention; In the full-aged device that is based on the (-) design of the (4), if the sub-holographic image is used, the calculation load will be smaller (because the number of pixels is smaller); Figure 19 is the display - An illustration of a scene displayed at time t, another scene displayed at time correction, and a scene difference between the two; Ο FIG. 20 is a diagram showing the ability to transmit data capable of being addressed by the present invention An illustration of a holographic display device designed to be based on a display; FIG. 21 shows a portion of a spreadsheet that would calculate the number of transistors in a holographic display based on a display design of the present invention.囷22 is in Figure 21 The rest of the spreadsheet is shown; 囷23 is a simplified diagram of a cluster design based on a holographic display device for a display design of the present invention; 囷24 is a hologram of a display design for use in the present invention. The display device is an explanatory diagram of the path taken according to the display material; FIG. 25 各项 The calculations for the operation of the item display may be performed in the space of the pixel matrix, and the traditional 2D display material or the hologram display may be displayed. A structural view of a portion of an SLM of the data; Figure 26 is an illustration of a method for generating a sub-holographic image based on a prior patent; Figure 2 is a representation of a display design in accordance with the present invention. An illustration of a method of holographic imagery; 21 200928626 A schematic diagram of a panel tile based on a display design of the present invention; FIG. 29 is an explanatory diagram of geometric considerations regarding absorption; An explanatory diagram of the geometrical consideration of absorption; ® 31 is an explanatory diagram of a method of processing an absorption phenomenon according to the present display design; and FIG. 32 is a display design according to the present invention. Illustrating a method of receiving phenomena; FIG. 33 is used in the present invention shows a design of a full image display apparatus described in FIG path based on a display data taken;. Figure 34 is an illustration of a display design for tracking one or more producers by moving a virtual viewer window using a controllable frame. [Embodiment] A. A holographic image display that can be calculated on the same substrate as the pixel. A display design of the present invention includes a display that can receive a real-world image (eg, corresponding to a three-dimensional image) - a light intensity corresponding data and - a buffer corresponding data). _ Fine H's holographic code will be converted to three-station data in an instant or near-instant manner. By combining two functional units, namely a “holographic image calculation unit and a holographic image display unit” (these units are functionally and spatially separated from the devices in the prior patents to form a common unit on one substrate) At least one part of the holographic image calculation may be performed in the physical space in which the pixel matrix is located. This means that the transistors used for holographic imaging calculations can be integrated between the individual transistors used for pixel control or side by side. In addition, by combining two functional units, namely "Full Image 22 200928626 Like Different Units," and "Full Image Display Units, (these units are functionally identical to the above in the previous patents). In order to form a common unit on a substrate, all holographic tree calculations may also be performed in the pixel matrix. Alternatively, an electric leg with a wound or all secrets can be satisfactorily turned out of the pixel, but on the same substrate as the transistor used for pixel control. For those familiar with this type of technology, it should be able to whisper the so-called "on the same substrate, and show that these transistors will only touch the substrate at the level of the substrate, and the silk wire provides physical support on the wings. The medium, and the relevant circuit components are arranged on this medium. Further information on the meaning of "substrate," will be described in the section entitled "Substrate," in the pixel matrix (or in the same - The hologram image on the substrate is calculated as 'not the previous special financial institution and the analytical hologram image calculation method. Other types of measurement methods' are like "view table" (L〇〇k-UP The Table, LUT) method can also be performed. An analytical calculation method can be used as a calculation method for the sample. In the pixel-to-four (four) holographic calculation, the entire display of the red holographic method may be All S are the same, and the twentieth image (4) material preference is exchanged at the distance of the holographic image scale. The sub-holographic image will be used for the calculation. The operation will be homogeneously dispersed in the whole display. On the surface of the device, but to make the design, simulation, and verification of the hardware more convenient, it is possible to split the operation into many small and identical parts, called "cluster", which are tiled on the surface of the display. The point of the graph is not - it must be a rectangular structure, or it can be other structures, such as a hexagonal ("homed") structure. This so-called "cluster," will be used as an arithmetic unit, it Covers the entire hologram of the thief: New York. So a 23 200928626 cluster may be the smallest unit that can be used to calculate the holographic image data of a map point on the display based on the original real-world spatial data. These (4) preferences X-changing data between units of mutually decreasing neighbors 'where the sub-images from the mutually adjacent units overlap each other π are correctly encoded on the SLM. In Figure 24, we use a simplified diagram to illustrate the use of the clustering method. One advantage is that after the cluster is designed, it can be easily constructed by attaching all the same clusters. A holographic display. Ο ' ', on the hologram image that does not have extremely high image quality, you need to have a very high resolution (such as 1 Μ 00 X 12, 〇〇〇 pixels), or use one to several (10) wide instead of only a few brain wide Observers are considered to be ®, or both. The miscellaneous content to be displayed contains a light and image resource and two-dimensional buffer information (this can be called a "Ζ axis buffer"), typical = this only ^ up to 2, coffee X1 pixel resolution degree. As shown in Figure i, the transmission rate of the data used to display the surface is far higher than the data transmission required to display the original asset system. For example, the difference between the two values is about a few times. As shown in Figure i_, three-dimensional should. 1 = 枓 — — — — — — — — — 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织 织The data and light intensity correspond to the data TM data array with three Γ=, 5°° pixels. The color value of each pixel in each correspondence and a z value (that is, the four bits are - two, each of which is 8 bits). One

Hz的頻率兀所痛個像素需要有32位元。視訊資料以25 眼和左眼)::::25 _傳輪速率為每秒4.8Gbits。這個資料會用來計算全像 24 200928626 ❹ 影像,在簡單的情況下會-格—格計算,不過在更複雜的情況下可能會執 订某些牽涉到連續祕的資料處理,例如,像是柔化雜訊或減少人工處理 痕跡’或者像是減少所需鳴傳輸物等。全像影像運算會產生對應 於一们6,000 χ 12,咖像素的資料陣列的資料輸出(其中每一個像素都 以8個位元表示,而影格速率為15〇 fps,採用25 Ηζ的視訊頻率和兩 個視域和二種色彩)。因此,如圖所示,全像影像的資料傳輸速率是每秒測 圖i的内容代表同時顯示出三個原色(紅、綠、藍)的處理。這個 ^例疋用於只針對—位使用者的配置,鮮是針對多位使用者的配置(具 相應細_格速率)也是可行的。對峨類技術的人來說,關 於全像___嫩輪,射咐網他的範例。 必須要強調的是,—個大約25 Hz的影格速率對於活動的影像來說是 格:ΓΓ最低速率。為了達到歧暢的播放,應使用高於的影 、。祕轉越高,觀看者所看_減將會概暢。 〇 一個全崎只騎對-爾蝴嶋_細,這也正 ΠΓΓΓ她似物,嫩瓣—個組成顏 組成來產、r原色)各進行一次。其他的色彩可以利用這三種色彩 、i ’而這樣的色彩混合可以透過循序方式或_方式來進行。 產生=錄#像是铜—基板(例如,在像素矩陣中)上的電路組件中 的’物物_繼物彳_紐 姆娜树傳=: <貧訊錢行全像職計算的位置。在財發明的一個 25 200928626 ==根據的偏好顯示器中,在計算全像影像中的—個像素的值時, 匕/、考慮原始影像中的—個次區段的值。這麼做的—個 T疋在整個_㈣各個部位都是完全—致的,而是在顯轉的各個次區 子在有不致’這些次區段可缺顯示器的各個小分區區段。顧示 器的'個次區段編_—個機纖彻財存在有不L致 Q #見象或者只有非常有限的不—致的程度。偏好的顯示器中的每一個次 區I又可U來產生整個全像影像中的—個相應的次全像影像。因此,一個 次全像影像的尺寸會蚊—個像素周__ (需要從這裡取得原始影像 的光強度和緩衝區值來進行次全像影像的計算)的最大延伸範圍。而這也 會決定必要_部線路(也就是所“區域互連線路”)的長度:請參 閱圖3。根據這個解決方案,由於用來產生全像影像所需的大量像素^中 的全或至少-部份會直接在顯示面板上將用來進行顯示的部位進行計 Q 算’因此並和貞要(或者可減少這樣的需要)透過極長的線路來傳輸全像 顯示資料或進行資料的中間儲存。這可減少傳送到顯示面板時所需的資料 的解析度’並可因此減少傳送到顯示面板時所需的資料傳輸速率。如果將 這個範例套用在圖1中所示的情況,則可以達到減低約5⑽的資料傳輸速 率的效果。因此,遍佈在整個面板上的橫列和縱列線路(即所謂的“全區 互連線路,請參閱圖3)的量也會因此而減少。它只需要比傳輪全像影像 貧料更少的線路即足以進行原始影像資料的傳輸,而且傳輸頻率也可以因 此而降低’而這同時也具有可減少横列和縱列驅動裝置的電功率消耗的好 26 200928626 處。 m傳輸鮮具村減少㈣和顧驅練置的功料耗的好 處&疋因為將個一進位數疋從零切換為一(或者從一切換為零)需要 消耗號電功率;當切換鮮升騎,電神的需求也會升^這些功率最 後會人..、的ι式排散’而這會為高資料傳輸頻率的顯示器帶來高溫的問 題。高溫_題可能包括零組件會升高到危險的高溫、因在高溫下降低應 ❹ Ο 力而導致的電子元件破裂及損壞、造成不必要的化學反應如電子元件氧 化、液晶材料由於暴露於極端溫度下而導致的品質劣化、以及由於溫度升 高而導致的半導體材料行為的改變如“熱載子生成”。如果裝置使用電池 來操作,如果耗用更多的功率,則電池的電量會更快耗盡,這會減少每次 電池充電後可供裝置_使用的時間。 在先前秦爾蝴t目鳴橫謝物姆素的面積 中的-大部分現在可以用在其他的目的上 作用原理。細她蝴輯犧 《_決方案的 12,_像素的高解析度全像顯示器為例明個具有16,_ X 顯示器分成4驗進彳,域28 r。_制和縱列線路, 條縱列線路和Μ⑼條橫列線路;_=示。每—個象限有8,咖 2Μ00 «.1^ 〇 ^ 32)000 三種組成色彩(即R、G B) i 兩個視域(右眼和左眼)各有 強度及z軸緩_的)各以25 fps的視訊頻率(輸入資料一光 稍铁衡£ _的影格速 示器影格速率。乘《橫列數並加上每個框格=產生每秒150個影像的顯 伦之間的10%空白傳輸時間,需 27 200928626 要p _的縱_動頻率。而在以本發__個顯示設計為娜的解決 ㈣2,刪W的實際影像 、陣列來供應。如果顯示器也分成4象限進行拼貼,每一個象限有哪 條橫列線路。將這健字乘以每秒⑽個影像並加上每個框格之間的m 空白傳輸時間,則只需要则z的縱列驅動頻率,如财所示。這鋪 ❹ 例是㈣針對—位使用者的配置,但若是針對多位使用者的配置(具有 相應較高的顯示影袼速率)也是可行的。 根據所使用的面板和相關的計算參數,在以本發明的一個顯示設計為 =的解決方案(如圖2)中,雖絲橫列和縱列線路方面所節省的空間可 能是微不足道,但在和以先前的專利為根據的解決方案(如圖2)相較時, 卻可能大於進行全像影像計算的電路組件所需的空間,所以,僅只節省下 來的空間中的-部份即足以應付用於進行全像影像計算的電晶體所需空 1在k種清況下’可以增加透明電極的面積並因此可以改善⑽的透光 度。因為是在所節省下來的像素面積中進行計算的,因此,它已經不再需 要個矛顯π器不在同一基板上、並且在任何已知的傳統裝置中都造成相 當可觀的曝度和成本花費的額外計算單元。另外的—個優點是,事實上 它可以大幅減少面板控制的複雜度’因為用於進行面板控制的資料傳輸速 ω _ β —個2’嶋χ i,咖像素的典型解析度、 視訊影格速率25 fps和兩個視域、每個像素為32阶的資料傳輸速率 為4.8 Gbit/S,這大約與一個具備6〇 &影格速率和三種8咐色彩的 1’920 X 1,6GG像素的TFT面板相當。這個範例是麟只針對—位使用者 28 200928626 的配置仁右疋針對多位使用者的配置(具有相應較高的顯示影格速率) 也是可行的。這表示這樣的—個面板使用傳統的顯示技術就可以輕易的進 行控制反觀以如圖1中所示的23〇Gbits/s的典型資料傳輸速率傳送整 個全像影像,包括在計算單元鋪示^電子緒ϋ及在顯示器電子 系統與顯示面板之間的傳送,都只有在_不僅在製做設計上有其困難、 而且也將㈣不觸概處理手段射有可能實現;這對祕這類技術的 人來說將會大大的讚賞。 〇 如果我們假設在空間光調·上進行—個全像影像的二維編碼,其中 原始真實空間影像有2, 000 x i,500像素,並以25加的視訊影格速率 供應’則大致上需要有大約1億個電晶體來進行全像計算,也就是每個真 實空間像素需要有大約34個電晶體。這是就開/關頻率為测MHz的單 晶石夕電路組件而言。由於-個以多晶石夕製成的TFT的開/關頻率可能只有 大約25 MHz,因此大約需要有6億9千萬個電晶體(而不是前面所說的 1據電晶體)才細補它較低的開/關速率4说一個全像影像的解析 ❾度為16’GGG X 12, _像素,這就表示每個全像影像像素大㈣要使用4 個電晶體。但由於計算值只有在-個新的影像被顯示時才能被寫入到像素 的像素格巾,因此每個像素還需要額外的丨到2個電晶體。如果維持相 同的解析度,則-個顯示H的尺寸越大,像素間距也越大,因此在一個像 素周圍可以額外排列的電晶體數目也會越大。更詳細的電晶體總數的估算 將在“電晶體總數估算”一節中加以說明。 如果面板是經由制和縱舰絲進行_,這些線路紐著顯示器 29 200928626 尺寸的增大M。_材軸鳴是議,而,如果採 用固定的麟_,騎_胸蝴娜婉正比增大·由 於線路材料的電阻係蚊固定的,如果制固定的線路長度和厚度,則線 路的電阻齡與它喊度成耻。這表示在像素鱗帽算全像影像的方 去對於傳統難術來說是有_,尤缺在大型以及高解析度的全像 顯示器方面。 將抓電晶體整合在一起,也就是將用於計算的電晶體與像素電晶體 © 一起佈置在同一個基板上,具有極大的好處。 ^麼u的額外的代m隨著電晶魏目的增加而可能帶來的較 大的故障機率。不過這可以透過採用—種容錯的計算方法來彌補,在這種 方法中,個別元件上的錯誤將只會對計算結果造成極小的偏差,而與完全 沒有任何元件缺失的情況下所獲得結果相差無幾。 計算將會在許多础鄰的運算裝置(稱為“叢集,,)中進行,如圖2及 w 3所示。通常,運算裝置(叢集μ大小必須進行最佳倾計,因為它 們的大小越大,-方面在龍傳輸鱗上戦纽的節驗果越小,但另 一方面卻也更容易進行計算。 在本發明之顯示設計的-個進一步的範例中,一個顯示器會用來顯示 根據真實空職料所計算出麵全像影像㈣,如光強度對應資料和緩衝 區對應資料。先前的專利_示騎有的—她天的問題就是它們需要使 用沒有與顯示用電路組件佈置在同一基板上的電路組件。這些額外的電路 組件必須佈置在顯示器基板之外的—個單獨的基板上。這會導致一些不利 30 200928626 的性質’像是較大的裝置體積和重量,消費者永恆追求的卻是更輕、薄、 短、小的顯示裝置。以本發明的—個顯示設計為根據的全像顯示器的運算 電路組制是在與顯示電路組件所在的同—基板上。這些運算電路組件可 能在顯示㈣各個像素之間’或者可能在顯示器的像鱗狀外,但仍在 同一基板上。 關於碎液晶(LCoS)顯示器中的整合問題的說明: ❹ 這種情況和佈置在-個單㈣晶片上的小型_顯示器有些不同。 採用本發明_示技術將可以有更高_率,所以即使是每個像素少於一 個電晶體也足以用來進行全像計算。通常,所進行的計算大部分都和分散 式計算相同,運算裝置將只會因為像素像素格耐斷。因躺來進行計算 所需的Si面積仍然一樣,因此所能產生的節約效果事實上是因為只會傳 0輸或儲存更少㈣料量所造成的。這會減少用於橫列和縱列線路所需的面 積並有辦傳輸資料給LCQS。不過,由於運算電馳件在顯示電路組件所 在的同-基板上(但電雜件並不設麵示電路組件之巾),因此這個 解決方案將會比運算電路組件位於和顯示電路組件所在的不同基板上的解 決方案更為精巧緊凑且更為經濟。 區域轉送 31 200928626 由於已經存在有-侧於計算資料區域轉送的額外邏輯存在,它同時 也可以用來轉送原始影像給侧的區域,這使得麵㈣和縱顺路完全 變成多餘。例如’賴資·會透過-個_暫翻從叢雜送到其他叢 集。由於制控縦在核進行的,㈣省略橫顺路使得顯示器的右側 和左側也可以用於寫入資訊。 容錯運算裝置 ❹ 目前-㈣TFT顯示器大概都有(例χ i,像素的解析 度,這可能會有製造上的錯贿在,最麵的就是所謂的像素錯誤。用於 全像顯示的高解析度顯示器會有更高的像素數,因此也會有更多的顶τ數 目,這會大幅提高出現像素錯誤的可能性。如果整合有額外的tft來進行 計算,則錯誤的機率還會進一步升高。這使得它必須將計算程序設計為可 使-個故_ TFT的錯誤轉纽·個顯示器上,而只會造成與理想性 Ο 能之間極小的局部偏差。 某些製造上的錯誤报可能會造成觀看者肉眼無法察覺、或者人類視覺 系統只會勉強感覺得到的後果。在這種情況下人們可能可以任受這樣的缺 失。但是’如果是一個(例如)完全損壞的叢集則是人們完全無法忍受的, 因在這種情況下會有—些SLM的像素格會受到波及。 備用電路組件(像是TFT)可能會被製造在像素矩陣的空間中,使這 些電路組件在發現某些用於裂置啟動的電路組件有故障時,可以用來取代 32 200928626 某些在裝置啟動時會用到的電路組件。一個裝置可能會隨時進行自我測 試,像是測試某一件電路組件的開/關特性是否顯示出這個電路組件故 障。故障的電馳件可能會在記,_巾(像是轉發性記紐)被記錄無 法使用而其他的電路組件貝彳被記錄為正在使用中且發揮正常功能。在“物 (Physics and the Information Revolution) (J. BirnbaumThe frequency of Hz is required to have 32 bits. The video data is in the 25-eye and left-eye)::::25 _ transmission rate is 4.8 Gbits per second. This information will be used to calculate the hologram 24 200928626 影像 image, in a simple case - grid-grid calculation, but in more complicated cases may be involved in some data processing involving continuous secrets, for example, like Soften the noise or reduce the amount of manual processing 'or reduce the need to transmit the sound. The holographic image operation produces a data output corresponding to a data array of 6,000 χ 12, café pixels (each of which is represented by 8 bits, and the frame rate is 15 〇 fps, using a video frequency of 25 和 and Two sights and two colors). Therefore, as shown in the figure, the data transmission rate of the hologram image is a process in which the content of the image i per second represents the simultaneous display of three primary colors (red, green, and blue). This example is used only for the configuration of the user, but it is also feasible for the configuration of multiple users (with a corresponding fine rate). For the cockroach technology, for the hologram ___ tender wheel, shoot his network example. It must be emphasized that a frame rate of approximately 25 Hz is the lowest for an active image: ΓΓ minimum rate. In order to achieve a smooth playback, you should use a higher than the shadow. The higher the secret turn, the more viewers will see _ reduce will be smooth. 〇 An all-saki only rides on the 尔 嶋 嶋 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Other colors can take advantage of these three colors, i' and such color mixing can be done in a sequential manner or in a _ mode. Produce = record # like a copper-substrate (for example, in the pixel matrix) in the circuit component of the 'objects _ successor _ _ Newna tree pass =: < poor news money line full image calculation position . In a preference display according to the invention of the invention, when calculating the value of one pixel in the holographic image, 匕/, consider the value of the sub-segment in the original image. In this way, a T 疋 is completely complete in all parts of the _ (four), but in each sub-region of the display, there is a small sub-area section where the sub-sections are missing. The number of the sub-sections of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Each sub-region I in the preferred display can also U to produce a corresponding sub-holographic image of the entire holographic image. Therefore, the size of a sub-holographic image will be the maximum extent of the mosquito-pixel week __ (the light intensity and buffer value of the original image need to be taken from here to calculate the sub-image). This will also determine the length of the necessary _ line (ie, the “area interconnect”): see Figure 3. According to this solution, all or at least part of the large number of pixels required to generate a holographic image will be counted directly on the display panel for the portion to be displayed. Or it can reduce the need to transmit holographic display data or intermediate storage of data through extremely long lines. This can reduce the resolution of the data required to be transferred to the display panel' and can thus reduce the data transfer rate required when transferring to the display panel. If this example is applied to the situation shown in Fig. 1, the effect of reducing the data transmission rate by about 5 (10) can be achieved. Therefore, the amount of course and column lines that are spread over the entire panel (so-called “all-area interconnections, see Figure 3”) will therefore be reduced. It only needs to be more poor than the full-image image. A small number of lines is sufficient for the transmission of the original image data, and the transmission frequency can be reduced accordingly. This also has a good 26, 200928626 which can reduce the electrical power consumption of the row and column drives. m transmission fresh village reduction (4) And the benefits of the power consumption of the driver and the driver; because the number of digits is switched from zero to one (or from zero to one), the power consumption is required; when switching the ride, the demand for the gods is also Will rise ^ these power will eventually be people.., ι-type dispersal' and this will bring high temperature to the display of high data transmission frequency. High temperature _ questions may include components will rise to dangerous high temperature, due to high temperature Lowering the breakdown and damage of electronic components caused by Ο 、 , causing unnecessary chemical reactions such as oxidation of electronic components, deterioration of quality of liquid crystal materials due to exposure to extreme temperatures, and A change in the behavior of a semiconductor material caused by an increase in degree, such as "hot carrier generation." If the device is operated with a battery, if more power is consumed, the battery will be depleted more quickly, which will reduce the charge per battery. After the available device _ the time of use. In the previous area of the Qiner, the majority of the area can now be used for other purposes. 12, _ pixel high-resolution holographic display for example has a 16, _ X display divided into 4 check 彳, domain 28 r. _ system and column line, strip column line and Μ (9) horizontal line; = Show. There are 8 in each quadrant, coffee 2Μ00 «.1^ 〇^ 32)000 Three kinds of composition colors (ie R, GB) i Two fields of view (right eye and left eye) each have intensity and z-axis slow _ Each of the video frequencies at 25 fps (input data is slightly lighter than the price of the frame). Multiply the number of columns and add each sash = produce a luminosity of 150 images per second. 10% blank transmission time between, need 27 200928626 to p _ vertical _ dynamic frequency. And in the present __ display For Na's solution (4) 2, delete the actual image and array of W. If the display is also divided into 4 quadrants for collage, each horizon has which row line. Multiply this word by (10) images per second and add The m blank transmission time between each sash only needs the column driving frequency of z, as shown in Fig.. This example is (4) for the configuration of the user, but for multiple users. Configuration (with a correspondingly higher display rate) is also possible. Depending on the panel used and the associated calculation parameters, in a solution with a display design of the invention = (see Figure 2), The space savings for column and column lines may be negligible, but may be larger than the space required for circuit components for holographic image calculations compared to previous patent-based solutions (Figure 2). Therefore, the only part of the space saved is enough to cope with the space required for the holographic image calculation. In the k condition, the area of the transparent electrode can be increased and thus the (10) can be improved. Light Degree. Because it is calculated in the saved pixel area, it no longer requires a spear finder to be on the same substrate and causes considerable exposure and cost in any known conventional device. Additional computing unit. Another advantage is that, in fact, it can greatly reduce the complexity of panel control 'because of the data transmission speed ω _ β — 2' 嶋χ i for panel control, typical resolution of video pixels, video frame rate 25 fps and two fields of view, 32-step data transfer rate of 4.8 Gbit/s per pixel, which is approximately 1'920 X 1,6 GG pixels with 6 〇 & frame rate and three 8 咐 colors The TFT panel is equivalent. This example is also feasible for the configuration of the user of the user's 28 200928626 for multiple users (with a correspondingly higher display frame rate). This means that such a panel can be easily controlled using conventional display technology to transmit the entire hologram image at a typical data transfer rate of 23 〇 Gbits/s as shown in Figure 1, including in the calculation unit. The electronic transmission and the transmission between the display electronic system and the display panel are only possible in the _ not only in the design of the design, but also in the (four) non-touch processing means; this is the secret technology People will greatly appreciate it. 〇If we assume a two-dimensional encoding of a holographic image on a spatial light tone, where the original real-world image has 2 000 xi, 500 pixels and is supplied at a 25-plus video frame rate, then roughly About 100 million transistors are used for holographic calculations, which means that there are about 34 transistors per real space pixel. This is for a single crystal circuit assembly with an on/off frequency measured in MHz. Since the on/off frequency of a TFT made of polycrystalline sinus may be only about 25 MHz, it is necessary to have about 690 million transistors (instead of the one mentioned above). Its lower on/off rate 4 says that the resolution of a holographic image is 16'GGG X 12, _ pixels, which means that each omni image pixel is large (four) to use 4 transistors. However, since the calculated value can only be written to the pixel of the pixel when a new image is displayed, each pixel requires an additional 2 transistors. If the same resolution is maintained, the larger the size of the display H, the larger the pixel pitch, and therefore the larger the number of transistors that can be additionally arranged around one pixel. A more detailed estimate of the total number of transistors will be described in the section "Estimating the total number of transistors". If the panel is _ via the system and the longitudinal ship, these lines are added to the display 29 200928626 size increase M. _Material axis is a discussion, and, if a fixed Lin _, riding _ 胸 婉 婉 婉 婉 · · · · · · · · · · · · 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于 由于It’s shameful to shout with it. This means that in the pixel scale hat to calculate the omni-image image, it is _, especially in large and high-resolution holographic displays. Integrating the grab electrodes together, that is, placing the transistors used for calculations on the same substrate as the pixel transistors ©, is of great benefit. ^The extra generation of u can have a greater probability of failure with the increase of the crystal. However, this can be compensated for by using a fault-tolerant calculation method in which errors on individual components will only result in very small deviations from the calculation results, and the results obtained will be different from those without any component missing. Few. The calculations will be performed in many neighboring computing devices (called "clusters,"), as shown in Figures 2 and w3. Typically, the arithmetic devices (cluster μ size must be optimally raked because their size The larger, the smaller the test results on the dragon transmission scale, but on the other hand, the calculation is easier. In a further example of the display design of the present invention, a display will be used to display The real holographic image is calculated by the real empty material (4), such as the light intensity corresponding data and the buffer corresponding data. The previous patent _ shows the ride - her problem is that they need to be used in the same way as the display circuit components Circuit components on the substrate. These additional circuit components must be placed on a separate substrate outside the display substrate. This can lead to some disadvantages. The nature of 200928626 is like the larger device size and weight that consumers are eagerly pursuing. It is a lighter, thinner, shorter, and smaller display device. The operational circuit group of the holographic display based on the display design of the present invention is in the display circuit group. On the same substrate, these operational circuit components may be displayed between (4) individual pixels' or may be on the same scale as the display, but still on the same substrate. Description of integration problems in broken liquid crystal (LCoS) displays : ❹ This situation is somewhat different from the small-displays placed on a single (four) wafer. With the present invention, the technology can have a higher rate, so even less than one transistor per pixel is sufficient. Perform holographic calculations. Usually, most of the calculations performed are the same as the decentralized calculations, and the arithmetic unit will only be interrupted because the pixel pixels are still broken. The Si area required for calculation by lying is still the same, so it can be produced. The saving effect is actually caused by only zero transmission or storage of less (four) material. This will reduce the area required for the course and column lines and will transfer data to LCQS. However, due to the operation of the motor The device is on the same substrate as the display circuit component (but the electrical components are not provided with the surface of the circuit component), so this solution will be located and displayed in comparison with the operational circuit components. The solution on the different substrates on which the circuit components are located is more compact and more economical. Regional Transfer 31 200928626 It can also be used to transfer original images to the existing logic that exists in the side of the computational data area. The side area, which makes the face (four) and the straight road completely redundant. For example, 'Lai Zi will pass through the - _ temporary turn from the clumps to other clusters. Because the control 縦 is carried out in the nucleus, (4) omitting the traverse road makes the display The right side and the left side can also be used to write information. Fault-tolerant computing devices ❹ Currently - (four) TFT displays probably have (example χ i, pixel resolution, which may have manufacturing errors, the most is the so-called pixels Error. High-resolution displays for holographic displays will have a higher number of pixels, so there will be more τ numbers, which will greatly increase the likelihood of pixel errors. If there is an extra tft integrated for calculation, the probability of error will increase further. This makes it necessary to design the calculation program so that it can cause a small local deviation from the ideal performance. Some manufacturing error reports can cause viewers to be undetectable to the naked eye, or the human visual system will only barely feel the consequences. In this case, people may be able to suffer such a deficiency. But 'if it's a (for example) completely corrupted cluster, it's totally unbearable, because in this case there will be some SLM pixels that will be affected. Alternate circuit components (such as TFTs) may be fabricated in the space of the pixel matrix, allowing these circuit components to be used in place of 32 200928626 when certain circuit components used for rupture startup are faulty. The circuit components that will be used. A device may self-test at any time, such as testing whether the on/off characteristics of a circuit component indicate that the circuit component is faulty. A faulty electrical component may be recorded in the memory, and the other circuit components are recorded as being in use and functioning normally. In the "Physics and the Information Revolution" (J. Birnbaum

Ο 與 R.S. Williams,physics T〇day 期刊,2〇〇〇 年一月,卯 38 42) 一 文(合併在本讀巾做為參考)巾,6經針對容錯的傳統電職路組件報 告了-個_的方法。糾,電路崎也可驗計成會使紐成一個像素 永久變暗的故障的可雛大於將造成_個像素永久變亮的故_可能性, 因為後者對於觀看者將會造成更大的刺激效果。 針對最佳㈣容錯設計方面,可齡_在電件中紐較重要的 地位的較大元件尺相電晶體(尤其是料歓賴向尺寸者)以減少電 路組件中較為重要的部件的故障機率。一個進一步的手段是混合計算管線 使一個有問題的單元所獲得的結果會被分布在一個較大的表面積上。如果 人們知道可齡在計算值中加人—健大_画或以上的全像影像像 素’那麼就可以可以瞭解這一點。如果這些值全都來自相同的管線,一旦 讀管線發生錯誤,則所有全像影像的像素值都會是完全錯誤的值。如果 -個叢集包含有並籍線,則叢細部結構侧用來加入的值將來 自所有並行的錄財式鋪。舉鄕說,如果碰縣自4個管線,如 ^其中的-㈣繼_,料2 W罐狂俩。在這個 月况下,辑算的全像娜像餘將會比刪的輸人值铸不正確的情 33 200928626 況更為精確。 在某些情況下可能會採用-個“後續修補,,的策略。在這樣的情況 下’人們可以在顯示器的測試階段辨認出有問題的單元,接著並以物理方 式切斷相關的傳導線路來修改電路組件;這樣的—個方法可㈣來解決短 路關題。_連接線路可以麵最“不受歡迎”的像素鱗(例如持續 以極间光度閃耀的像素)只需要簡單的將它們切斷(關閉)讓它變暗就可 以獲得適當的改善。 在以本發明的顯示設計為根據的裝置方面,裝置可以根據後面所述的 “製造程序概述”、或某些鱗的組合、或根據減這馳術的人所知道 的其他製造程序來觀。錢轉體也可_絲造林發_顯示設計 為根據的裝置中的電路組件。 B.可在同-基板上進行計算、可進行有效率的空間光調制器編碼計算的全 像影像顯示器 用於進行—軸轉換以表現可即時或近即時更新的大型電腦產生全 像影像(CGH)重建的已知方法都只有在運算資源方面花費極大的心力才有 可能實現。在先前的專利申請中所述的“透過LUT的協助即時產生電腦產 生全像影像的方法”(第W02_/Q25839號文件)的改良方法中,有_ X _健建的物件點的互喊即時全像影像可域過市㈣個人電腦 ⑽系統個預先計算的次全像影像並在檢視表⑽)的協助下以互動 34 200928626 的方式即時_。細^專獅㈣ 分散位置上重建,如圖14中以空心,徵是各個物件點只能在特定的 -個顯示設計的方關可迴避這樣的不。而這裡所將說明的本發明的 錐體空間内的任何位置產生,如圖14 LI各個物件點可以在重建的截頭 用先别的專利的方法所產生的各個 齡出利 配到特定的物件平面上。而物 ” &心圓圈)如何固定的分 上。相反的,…固定的距離定位在全像影像平面 © n / Β㈣的—_示設計的分析式方法,各個物件點(實 ^ 心圓圈)則可以在任何位置上。 件點(實 調制項的顯示設計可以利用先前的專利的方法實施來進行空間光 …碼精。此外’前面纟項_示設計也可簡用—個可提供更 =^空間光調制器編碼計算的方法來實施。在第w〇 2嶋聰咖號 〇月說明有一個更有效率的計算方法。下列更有效率的方法(本身 並不須要進行傅立葉轉換龜爾轉換的計算,因此可以有效率的觸 〇就是本申請人對本發明的一個顯示設計。也可以說下列更有效率的方法並 不須要進行傅立葉轉換或菲淫爾轉換的計算。 /财以提供更有效柄空縣調編碼計算的方法的範例如以下 :不,。它是—儀來供__個全像裝置(觸產生“電生視訊全像 影像的分析式方法(配合參考圖8及圖9來說明),包括有—個⑽光 調制手& (SLM1)且其中將由物件所發出的波前將會在一個或多個虛擬觀 察者視窗⑽)中重建,且其中一個三維景象(3D_S)的每個單—物件點 W)的重建只需要-個次全像影像(SH)做為要在SLM上進行編碼的整 35 200928626 個全像影像(ΗΣ一的子集,特徵是在一個3D景象(3D S)離散化 (D1SCretizatiGn)成為多個物件點之後,這個方法包括下列步驟: 針對3D景象的每個可見的物件點 (SH)的位置。 步驟A :針對每-働件點(Gp)決定次全像影像Ο With RS Williams, physics T〇day Journal, January 2000, 卯 38 42) article (combined in this reading towel as a reference) towel, 6 reported on the fault-tolerant traditional electric service components - _Methods. Correction, the circuit can also be counted as a fault that will make the ray into a pixel permanently darker than the _ pixel will be permanently brightened, because the latter will cause greater stimulation to the viewer effect. For the best (four) fault-tolerant design, the older _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ . A further approach is to mix the computational pipeline so that the results obtained by a problematic unit are distributed over a large surface area. If one knows that age can add people to the calculated value—Jianda_picture or above holographic image pixels, then you can understand this. If all of these values are from the same pipeline, once the read pipeline has an error, the pixel values of all holograms will be completely wrong. If - the cluster contains lummar lines, the value used to join the cluster detail side will come from all parallel recordings. He said that if you touch the county from 4 pipelines, such as ^ which - (four) following _, material 2 W cans mad. Under this circumstance, the holographic image of the ensemble will be more accurate than the deletion of the value of the input. In some cases, a "follow-up," strategy may be employed. In this case, one can identify the problematic unit during the test phase of the display, and then physically disconnect the relevant conductive line. Modify the circuit components; such a method can (4) solve the short-circuit problem. _ connection lines can face the most "unwelcome" pixel scales (such as pixels that continue to shine with extreme luminosity) only need to cut them off simply Appropriate improvement can be obtained by dimming it. In terms of the device based on the display design of the present invention, the device can be based on the "manufacturing procedure overview" described later, or a combination of certain scales, or Other manufacturing procedures known to the people of this technology can be viewed. Money swivel can also be used to display the circuit components in the design. B. Can be calculated on the same substrate, can be efficient Spatial light modulator coded holographic image display for on-axis conversion to represent full-image (CGH) reconstruction of large computers with immediate or near-instant real-time updates Known methods are only possible with great effort in terms of computing resources. As described in the prior patent application, "the method of generating a holographic image by a computer is immediately generated by the assistance of the LUT" (Document W02_/Q25839) In the improved method, there is a _X_jianjian object point mutual instant holographic image can be over the market (4) personal computer (10) system pre-computed sub-holographic image with the help of the view table (10) with interaction 34 200928626 The way is instant _. Fine ^ lion (4) Reconstruction in the scattered position, as shown in Figure 14 is hollow, the sign is that each object point can only be avoided in a specific design of the display. Illustrated in any position within the cone space of the present invention, as shown in Figure 14 LI, individual object points can be assigned to a particular object plane at the respective ages produced by the reconstructed truncation using the methods of the prior patents. "" & heart circle) how to fix the points. Conversely, ... a fixed distance is located in the holographic image plane © n / Β (4) - _ shows the analytical method of the design, each object point (solid circle) can be in any position. The point design (the display design of the real modulation item can be implemented by the method of the prior patent to carry out the spatial light... code fine. In addition, the 'front item' design can also be used simply - one can provide more = ^ spatial light modulator coding calculation The method to implement. In the first w〇2嶋聪咖号 〇月 shows that there is a more efficient calculation method. The following more efficient method (it does not need to perform the calculation of the Fourier transform turtle conversion, so it can be efficient The touch is a display design of the present invention by the applicant. It can also be said that the following more efficient method does not require the calculation of Fourier transform or Philippine conversion. The method is as follows: No. It is - the instrument for __ holographic device (the analytical method of generating "electrical video holographic image (with reference to Figure 8 and Figure 9), including - (10) Light Modulation Hand & (SLM1) and wherein the wavefront to be emitted by the object will be reconstructed in one or more virtual observer windows (10), and each of the three-dimensional scenes (3D_S) - The reconstruction of the point W) requires only one sub-image (SH) as the entire 35 200928626 hologram image to be encoded on the SLM (a subset of the first one, characterized by a 3D scene (3D S) After discretization (D1SCretizatiGn) becomes a plurality of object points, the method comprises the following steps: Position of each visible object point (SH) for the 3D scene. Step A: Determining the sub-hologram for each-piece point (Gp) image

例如,利用“交叉線定理”,其中—個虛擬 經由物件點投賴SLM杨。只要具奴_精確度,次全像影像 可以大致形塑成-健形。紐對次全像影像缺—健域座標系 統’以它的中心點為原點;x座標是橫座標而y座標是縱座標。次 全像影像的尺寸是:“a”為寬度的—半而“b,,為高度的一半。 步驟B:針對全像影像平面(邸) 定虛擬透鏡(L)的次全像影像: 範圍内的每—個次全像影像(SH)決 .〇 扮:決定虛擬透鏡的焦距(f) 透鏡的焦距⑴是全像影像平面㈣中要進行重建的物件邮p) 與SLM的垂直距離。 B2 :透鏡的次全像影像(SH0的複雜值: 次全像影像複雜财程式來決定 mP{- 0〔(π/λί ”( χ2 +y2 )〕} 其中λ是光的參考波長,而f是焦距。等式中如果f有一個正 的值則表示相當於—個凸面透鏡,如圖9A中卿。如果是要使用 36 200928626 -個虛擬魏透鏡在SLM姆於觀看者的—㈣建-個物件點 (0P),如圖27中所示,則f需要一個負的值。 B3:由於a在\和y方面的正負值是對稱的,因此只需要決定 -個象限中的a的值再利用適當的正負號將結果代人到其他三 個象限中即可。 .步驟c·決定全像影像平面(HE)中的稜鏡的次全像影像(sHp): 祕所選擇的區域座標統,加人—個稜鏡將會導致相位偏移,所 以相位偏移疋X和y座標的一個線型函數。 ci.決定具有水平效果的稜鏡⑺的線型因數G,以間隔為χ s 〔0 ’ a〕以内表示為For example, using the "crossing line theorem", where a virtual virtual object points to SLM Yang. As long as the slave _ precision, the sub-image can be roughly shaped into a shape. The New Zealand omni-image image is missing—the health domain coordinate system' has its center point as the origin; the x coordinate is the horizontal coordinate and the y coordinate is the vertical coordinate. The size of the sub-image is: "a" is the width - half and "b," is half the height. Step B: For the holographic image plane (邸), the sub-image of the virtual lens (L): Range Each sub-image (SH) in the interior determines the focal length of the virtual lens (f) The focal length of the lens (1) is the vertical distance between the object p) and the SLM in the holographic image plane (4) to be reconstructed. B2: Sub-holographic image of the lens (complex value of SH0: sub-holographic image complex financial program determines mP{- 0[(π/λί ”( χ2 +y2 )]} where λ is the reference wavelength of light, and f Is the focal length. If f has a positive value in the equation, it means equivalent to a convex lens, as shown in Figure 9A. If it is to use 36 200928626 - a virtual Wei lens in the SLM - the viewer - (four) built - Object point (0P), as shown in Figure 27, f needs a negative value. B3: Since a positive and negative values of a and \ are symmetric, it is only necessary to determine the value of a in a quadrant. Then use the appropriate sign to replace the result into the other three quadrants. Step c·Determine the holographic image plane (HE) The sub-holographic image of the 稜鏡 (sHp): The coordinate system selected by the secret, the addition of a 稜鏡 will result in a phase shift, so the phase shifts a linear function of the 疋X and y coordinates. ci. The line factor G of 稜鏡(7) with a horizontal effect is expressed as 间隔 s [0 ' a] at intervals

Cx - Μ * (2π/λ);其中Μ為絕對稜鏡斜率(圖9B) G2 :決定具有垂紐果的稜鏡(ρ)的、_隨&,以賴為y ^ 〇 〔〇,b〕以内表示為 • Cy = N * (2π/λ);其中N為絕對稜鏡斜率(圖9C) C3 :稜鏡的次全像影像(SHp)的複雜值: 运個次全像影像(SHp)的複雜值會根據稜鏡的重疊來決定,即 zp = exp { i*〔 cx* (x-a) + cy* (y-b)〕} C4 .如果光源是透過全像顯示裝置投射到v〇w上,則稜鏡修正可 37 200928626 以忽略。 步驟D:調制透鏡及稜鏡的次全像影像: 所結合的次全像影像雜值會透過—個虛擬透鏡(L)和麵棱 的效果的複乘法得出,如圖9Α所示,如下 zsh = ZL木ΖΡ,這也可以用SH = SHl木SHp來表示 步驟E:相位偏移 每一個次全像影像(SH)會以一個(統一分布的)相位偏移進行調制(這 裡的相位偏移每個次全像影像都不儘相同),以便能夠魏見區域中達= 均質的光度。這可域少可能因光源在光學上的_致性所造成的光斑。 相位偏移的幅度即足以減少光斑,並且可能小於π弧度(亦即,並不一 定要是-π < φ0< π ’而可以是(例如)_π/4 < φ()< π/4)。這個過程 可以由下列等式表示: ^ ZSH := ZSH exp (id)。),這也可以用 SH SH exp 〇φβ)來表示 步驟F:光強度調制 各個次全像影像個別的複雜值會以一個根據影格緩衝區内容(單色,或 衫色如R、G、B)所獲得的光強度因數來進行調制,使各個物件點可以 呈現各自所獨有的亮度和色彩(如果合適) zsh = C * zsh,這也可以用SH := C * SH來表示; 38 200928626 步驟G:加入次全像影像來構成整個全像影像。 各個次全像影像可以利用複加法來進行重疊。整個全像影像就是各個 次全像影像的複雜總和,以下列等式表示: ΗΣμ = Σ SHi ’這也可以根據整個全像影像的一個座標系統用Zsuj= ZZSHi來表示。 上述的步驟C、D、和E在以本發明的顯示設計為根據的某些範例中 © Μ侧或合略(在允許降錢算的能力或全像姆的品質的情況 下),而這也會帶來-餅處,例如可以減低為進行上述的計算方法所需的 硬體製造成本。 意的疋如果重建的物件點被當作是—個光學系統的焦點, 這表示在全《彡像平財有—織鏡,㈣述的這靖絲—麵斜角度 而且它的焦距為f。-個傾斜的透鏡由—個沒有傾斜的透鏡和__個棱鏡所 〇組成。根據這裡所表示的方法。一個物件點會以可在一個次全像影像的編 碼巾加人個透鏡缝和(必要時)—個稜鏡函數的方式進行重建(請參 透過㉞多個次全像影像來產 透on個n —個互動式即時全像影像麵的各個物件點可以 利用市售的標準硬體零組件在重建的截頭錐體空間中的任何位置產生。這 ;===細彻輪軸,峨高處 理早讀性能,就可以增加物件點的數量。 39 200928626 計算的程序可以歸納如下: 1. 透鏡的計算 a. 找出焦距f b. 使用透鏡等式:eM #〔(7Γ/λί )*( χ2 +y2川 2. 進行稜鏡方面的計算(不一定須要,依處理過程而定) a. 決定 Cx、Cy、a、及 b b. 專式:e" {i*〔 Cx* (x—a) + Cy* (y-b)〕}Cx - Μ * (2π/λ); where Μ is the absolute 稜鏡 slope (Fig. 9B) G2: 决定 & amp amp 具有 具有 amp 具有 amp amp amp amp amp amp amp amp 〇 〇 〇 b] is expressed as • Cy = N * (2π/λ); where N is the absolute 稜鏡 slope (Fig. 9C) C3: Complex value of the sub-holographic image (SHp) of 稜鏡: 个 holographic image ( The complex value of SHp) is determined by the overlap of 稜鏡, ie zp = exp { i*[ cx* (xa) + cy* (yb)]} C4 . If the light source is projected to v〇w through the holographic display device On, then the correction can be 37 200928626 to ignore. Step D: Modulating the sub-image of the lens and the hologram: The combined sub-image image miscellaneous value is obtained by the multiplication method of the effect of a virtual lens (L) and a facet, as shown in FIG. Zsh = ZL raft, which can also be represented by SH = SHl wood SHp. Step E: Phase offset Each sub-image (SH) is modulated with a (uniformly distributed) phase offset (here the phase offset) Shifting each holographic image is not the same), so that it can reach the uniform luminosity in the Weijian area. This can reduce the number of spots that may be caused by the optical symmetry of the light source. The magnitude of the phase offset is sufficient to reduce the spot and may be less than π radians (ie, not necessarily -π <φ0< π ' but may be (for example) _π/4 < φ() < π/4 ). This process can be expressed by the following equation: ^ ZSH := ZSH exp (id). ), this can also be expressed by SH SH exp 〇 φβ). Step F: Light intensity modulation The individual complex values of each omni image will be based on the contents of the frame buffer (monochrome, or shirt color such as R, G, B) The obtained light intensity factor is modulated so that each object point can exhibit its own unique brightness and color (if appropriate) zsh = C * zsh, which can also be represented by SH := C * SH; 38 200928626 Step G: Add a sub-image to form the entire hologram. Each hologram image can be overlapped by a complex addition method. The entire hologram image is the complex sum of the hologram images, expressed as the following equation: ΗΣμ = Σ SHi ’ This can also be represented by Zsuj= ZZSHi based on a coordinate system of the entire hologram image. The above-described steps C, D, and E are in some examples based on the display design of the present invention, either sideways or in combination (in the case of allowing the ability to reduce the amount of money or the quality of the full image), and this It also brings - the cake, for example, can reduce the hardware manufacturing cost required to carry out the above calculation method. If the reconstructed object point is regarded as the focus of an optical system, this means that the whole image of the image is the same as that of the image, and the focal length is f. - A tilted lens consists of a lens that is not tilted and a prism that is __ prism. According to the method represented here. An object point will be reconstructed by adding a lens slit and (if necessary) a 稜鏡 function to the coded towel of a sub-holographic image (please refer to more than 34 sub-images to produce through) n The individual object points of an interactive instant hologram image surface can be generated at any position in the reconstructed frustocon space using commercially available standard hardware components. This === fine wheel axle, high processing Early reading performance can increase the number of object points. 39 200928626 The calculation procedure can be summarized as follows: 1. Calculation of the lens a. Find the focal length f b. Use the lens equation: eM #[(7Γ/λί )*( χ 2 +y2chuan 2. Perform calculations on the 稜鏡 (not necessarily, depending on the process) a. Decide Cx, Cy, a, and b b. Specialized: e" {i*[ Cx* (x-a ) + Cy* (yb)]}

Cx = ( 2ττ/λ ) * mCx = ( 2ττ/λ ) * m

Cy = ( 2tt/A ) * n 3·進行稜鏡和透鏡方__ 定須要’依處理過程而定) 4. 套用任意的相位(不一定須要,依處理過程而定) 5. 光強度調制 6. 進行全像影像的SLM指定編碼 C.可在同一基板上進行解壓縮計算的全像影像顯示器 —本發明的—個顯示設計包括—個可以接收真實㈣影像資料(如對應 於-個三维立體影像的—個光強度對顧料和—個緩衝輯應資料)的顯 示器。接著’會娜三維讀影像資料則卩時錢㈣的方式計算出空間 光調制器的全像影像編碼。透職合_魏單元(也就是“全像影像顯 200928626 不計算單元,,和“全像影像顯示單元,,),所有的全像影像顯示器計算或至 少其中的_部份可以在像素鱗所麵物理空财進行,這些單元與先前 專利中的㈣綱增物彳,哪―錄板上構成一個 共同的單元。這表示用於所有全縣像顯示計算或至少財—部份的電晶 體可以整合在躲進行像餘_各㈣晶體之贼赠並排。此外,全 像衫像顯封算也可以位於與像素電路組件所在的同—基板上的電路 組件來進行,但這些麟全像影_科算的祕婦从含在像素電路 組件中。 在本發明的一個顯示設計的這個進一步的範例中,全像影像計算會在 像素矩陣所側的賴以相—個位置進行。這樣的計算可以具有可區域 存取的檢視表(LUT)的優點(如第w〇 2議/〇25謂號文件所述),這可 增進各項計算崎算效^賴丨所清楚顯稍,在齡雜素以外 、,置執行王像衫料算的手段的—個問題是需要有極高的總體資料傳輸 速率來傳送資訊給顯示H的各個像於但如果_—侧似於如圖4中所 示的方法时段’射以避免這種情況。 在顯示器中’全像影像的編碼資料會在像素矩陣所佔用的空間以外的 方進仃4算。偏^些計算的m可能是或可能不是在麵示器基板所 在的同I板上。全像影像編瑪資料會利用已知的資料壓縮技術進行壓 縮’之後再傳輸到顯示II的各個叢集(這些叢集是整麵示器的一部份)。 在圖4中,用於進行全像影像計算的各個抓會對經由橫列和縱列線路所 接收到的貝料執订解壓縮的贱。不過,這些資料也可能經由其他手段接 200928626 收到,例如經由一個並列資料匯流排、或一個序列資料連接線路。以一個 叢集一個叢集為基礎的全像影像顯示器可以減少對各個全像顯示考像素之 間的互連線路的需求,並因此可減少對影像光強度對應資料和影像緩衝區 對應資料的來源的需求。全像影像計算和資料壓縮也可以在顯示器基板以 外的位置上執行,其中資料解壓縮會利用位於顯示器的像素所在的同一基 板上的電路組件執行,但解壓縮則在像素矩陣的空間以外的位置執行。對 熟悉這類技術的人來說,其他的範例自不必多加贅述。 〇 D.可在同一基板進行解壓縮計算的高解析度顯示器 在本發明的-個顯示設計的-個進一步的範例中,—個高解析度顯示 器會用來顯示高解析度影像資料,這可能是一般顯示資料或者也可^是根 據光強度對應資料和緩衝區對應資料所計算出來的全像影像顯示資^二 U的專利為根獅緒析度顯示器所固有的問題是,它們都需要極言密 〇 度的電路組件這會更料產生製造上的錯誤,同時它們也需要極= 開/關鮮,而這也可能會導致_發熱的問題。如果採用5 所示的手段的一個方法,則可以減少或避免這些問題。 、 在高解析度顯示器中,影像資料會在_器内部或外部已知的資 料壓縮技魏行顏’讀再雜咖個叢t (紐叢集是整個 顯示器的-部份)。進行壓縮計算的空間可能是或可能不是在盘顯亍= 所在的同一基板上。在圖5中,用於進行解壓縮計算的各個TFT會對_ 42 200928626 橫列和縱列線路所接收到的資料執行解壓縮的功能。不過,這些資料也可 月由八他手段接收到,例如經由—個並列資料匯流排、或一個序列資料 連接線路。為了減少對記憶體的需求,以一個25 Hz的影格速率為例,用 於進行解壓縮計算的各個TFT將會被要求在約40ms或以下的時間内對這 個=貝料進行解壓縮來透過叢集的各個像素進行顯示。以一個叢集一個叢集 為基礎的影像顯示器可以減少對各個影像顯示器像素之間的互連線路的需 求’並因此可減少對影像光強度對應資料的來源的需求。對熟悉這類技術 © #人來說’其他的範例自不必多加贅述。 在一個較佳的範例中,解壓縮後的真實空間影像資料會傳送給顯示器 的各個叢集。在第—個步驟中,叢集會執行壓縮過的真實空間影像資料的 解壓縮。在第二個步驟中,全像顯示資料會由顯示器的各個叢集利用由第 一個步驟所產生的資料計算得出。對熟悉這類技術的人來說,其他的範例 自不必多加贅述。 ❹ p E.可透過合併用於進行全像轉換和編碼的額外處理單元以一個擴充的圖 形子系統的3D著色管線(Rendering Pipeline)在同一基板上進行計算的 全像影像顯示器 前面A項的顯示設計可以利用先前的專利的方法實施來進行空間光 调制盗的編碼。此外,前面A項的顯不设3十也可以利用—個可提供更有效 率的空間光調制器編碼的方法來實施。以下將提供一個可提供更有效率的 43 200928626 工間光㉟㈣編碼的方法的細,但對於許多熟悉這類技術的人來說,其 他的範例自不必多加贅述。 這個方法(如圖15中所示的一個範例),透過合併用於進行全像轉換 和、為碼的額外處理單元,擴充了圖形子系統的3D著色管線(驗^呢 . )^個方法就疋本申请人對本發明的一個顯示設計。這裡所謂的 用於進行全像轉換和編媽的額外處理單元”以下將以“完全管線,,這個 名稱來取代。這個完全管線直接安排在圖形管線的下游。每個叢集所 ©需的3D管線(Ρ—)資料會傳送給顯示器上相應的叢集;從現在起以 下的敘述將著重在一個單一叢集層級的顯示設計上。一個ζ袖對應緩衝區 和-個色衫對應緩衝區(色彩對應R、色彩對應G、色彩對應幻構成兩 個管線之間的銜接介面。請參照圖15中的_所示。在像素座標中的每一 個個別的點方Φ ’ Z姆應包含有—個z值,這個财尺度並且可以以各 種清晰度水準絲。z㈣翻尺歧在條〇到i g之間的範園 内’純可能是其他的範15。它的清晰度水準會根據位元絲決定,即, 〇 通常是8、16、或24 bit。 在現代的圖形子系統中,色彩對應的清晰度為24阶,也就是每個分 色(R、G、B,即紅、綠、藍)各8 bu。色鑛應構成影格緩衝區的一部 份’緩衝區的内容正常會顯示在晝面上。這兩個緩衝區(包含有z軸對應 資料和色彩對應資料)會加以定義來構成3D著色管線伽浙如 Pipeline)和完全管線之間的銜接介面。z軸對應資料會針對—個顯示波長 來提供’但R、G'B則沒有特定的波長。z軸對應資料的拷貝15〇1和15〇2 44 200928626 則會分別騎糾__昧波絲提供。 個全像影像只能針對—個特定的顯示光波長來進行計算。這也正是 為什麼必須針對每-個物件點進行三次計算的原因,也就是針對每個原^ 進行人紅(λΚ)、綠(⑹、和藍UB)。其他的色彩可以利用這三個 刀色創來’而⑽色彩的調配可以透過循序或同步方式進行。為了提 冋處理的it度’它會咖至少兩個額外的完全管線使全像影像計算可以 並行執行,讓它可明時得顺有三個分⑽結果。為此,它必須將z軸 ❹對應資料複製到額外的記憶體區段1501和1502 (請參閱圖15),這些區 段可以獨轉取。因此,這可以防止涉及到記碰區段的操作(如z軸對 應貝料)可能會彼此造成妨礙的情況。所以,各個記憶體區段在理論上應 實際分隔。色彩對應資料RGB中關於色彩G和B的内容也會分別複製到 色表對應G和色彩對應b的單獨記憶體區段,以確保三個分色可以獨立 存取(凊參閱圖15)。同樣的,各個記憶體區段也可能實際分隔以防止在記 It體存取細發輯突並減少或甚至彡肖__顯示設計巾帶有號總 ❾ (SelDaph〇re)、互斥運算(也就是“mutexes”)等的同步存取問題,這些 問題可能縣統性能有不利的影響。然而,雖航憶體區段可能彼此實際 刀隔們最好仍應位在顯示器的同—個叢集範圍中。請注意,一個號 諸是-個受保護的變數(或抽象的資料類型)並構成在一個多元程式操作 環&中用來P艮制存取共享資源(例如,儲存空間)的典型方法;互斥運算 會使用在並仃處理的域設計巾耻透軸電麟的#段叫丨關鍵區段的 方式避免同時使用—個共享的資源,例如一個整體變數。 45 200928626 以下將假設-個全像影像由多個次全像影像所構成。其中的第^個次 全像影像以-個透鏡代表,這個透鏡可由—個透鏡函數說明·以 U2 +y,2))。其中的常數Ct包括透鏡的焦距f; f的值會在套用透鏡函 數之前先行計算得出,使之後f的值可㈣在所有的三個管線中。f的值 因此與色彩無關:由於它是_織擬魏,因此並不表現色差。這可 以擁有透鏡函數關係的優點,因為一個透鏡在它的χ軸和y轴上是對稱 的。為了詳細綱-個透鏡,這個函數只需要個在—個象限上。之後可 © 靖在-録时所計算喊鏡聽的值细正負韻_原跡用到其 他三個象限上。 ct也會因波長λ而異,三個原色(R、G、B)的波長树上就各不相 同。又的值並不需要計算,因為,由於事實上使用的是一個定義的雷射或 光源來產生每一個波長,因此波長是已知的;不過,應在計算中代入λ的 值以便計算顯示器的每個原色的G (請參閲圖15)。 根據所採用的程序,可能除了透鏡函數函數之外也會需要套用一個稜 ❹鏡函數(請參閲® 15)以便改變光傳播的方向。在稜鏡函數中,一個常數 也包括有波長Λ。這個常數的值因此也會有所不同,因為三個原色各有不 同的波長,所以這個常數的值在三個完全管線上每個管線各有一個指定的 值。 現在,透鏡函數和稜鏡函數在如圖15進行複乘法ι5〇3、15〇4、和 1505。接著,在套用隨機的相位15〇6、15〇7、和15〇8,加入到透鏡和稜 鏡函數的複乘法的結果中。這個方法的目標是避免在觀察者平面產生亮度 46 200928626 峰值,或所謂的“光斑”。接著使用個別的色彩對應資料的光強度調制出 個別的全像影像1509、1510、和1511。 在下一個步驟中,這個次全像影像會進行一項複加法來針對叢集構成 總體全像影像(請參簡⑸。現在,所獲得個結果可以利用在全像顯示叢 集中進行的加法運算來進行後續的處理(如果合適),例如,套用修正對應 或灰階影像(灰階修正),由於這只會取決於SLM的系統性質,所以最好 在這個階段進行修正。接著是編碼處理程序。全像影像可以依色彩來進行 〇 重建。編碼運算法則(請參閱圖15)會因為所使用的SLM而有極大的差別, W症是依她編碼、依振幅編碼、或者依另__種方式進行編碼。 熟悉這類技術的人將會看得出來本節情述的顯示設計中的某些方面 在本申請鱗巾的其他地方有更詳細的揭載。 F.可以以—個全像計算管線透過擴充顯示卡的3D管線⑼划㈣對王 維二間中的各個點進行循序全像轉換並在同-基板上進行計算的全像影像 ^ 顯示器Cy = ( 2tt / A ) * n 3 · Perform 稜鏡 and lens __ must be 'depending on the process') 4. Apply any phase (not necessarily, depending on the process) 5. Light intensity modulation 6. SLM designation code for holographic image C. Full-image image display capable of decompressing calculation on the same substrate - the display design of the present invention includes - receiving real (four) image data (eg corresponding to - three dimensions) A display of a stereoscopic image—a light intensity versus a buffer and a buffer. Then, the image of the spatial light modulator's holographic image is calculated by the method of reading the image data in the three-dimensional image. Through the job _ Wei unit (that is, "Full Image Image 200928626 does not calculate the unit, and "Full Image Display Unit,"), all holographic image display calculations or at least _ part of it can be in the pixel scale The physical physics is carried out, and these units are combined with the (4) extensions in the previous patent, which constitute a common unit on the board. This means that all the county-like display calculations or at least the financial-partial electro-crystals can be integrated into the side-by-side thieves who are hiding the _ _ (4) crystals. In addition, the full-length shirt image can also be located on the same circuit board component as the pixel circuit component, but these are all included in the pixel circuit component. In this further example of a display design of the present invention, holographic image calculations are performed at a position on the side of the pixel matrix. Such calculations may have the advantage of a regionally accessible view table (LUT) (as described in the §25〇/〇25 preface file), which can improve the calculation of the various calculations. In addition to the age-old, the problem of implementing the image of the king's blouse is that there is a need for a very high overall data transmission rate to transmit information to the various images of the display H, but if the _-side is like the figure The method period shown in 4 'shoots to avoid this. In the display, the encoded data of the holographic image will be calculated in addition to the space occupied by the pixel matrix. Some of the calculated m may or may not be on the same I-board as the surface of the display substrate. The holographic image marshalling data is compressed using known data compression techniques and then transmitted to the various clusters of display II (these clusters are part of the overall display). In Fig. 4, each of the grabs used to perform the hologram image calculation performs a decompression of the bedding received via the row and column lines. However, such information may also be received by other means, 200928626, for example via a side-by-side data bus or a serial data link. A holographic image display based on a cluster of clusters can reduce the need for interconnects between the holographic pixels of the holographic display, and thus reduce the need for sources of image light intensity correspondence and image buffer corresponding data. . Full-image image calculation and data compression can also be performed at locations other than the display substrate, where data decompression is performed using circuit components located on the same substrate on which the pixels of the display are located, but decompression is outside the space of the pixel matrix. carried out. For those familiar with this type of technology, other examples need not be repeated. 〇D. High-resolution display that can be decompressed on the same substrate. In a further example of the display design of the present invention, a high-resolution display would be used to display high-resolution image data, which may It is a general display material or it can be based on the light intensity corresponding data and the corresponding data of the buffer. The omni-directional image display is a patent. The problem inherent in the lion's grading display is that they all need to be extremely The circuit components of the density are more likely to cause manufacturing errors, and they also require pole = on/off, which may also cause problems with heat. If you use a method of the means shown in 5, you can reduce or avoid these problems. In the high-resolution display, the image data will be known to the inside and outside of the _ device, Wei Xingyan's reading and confusing t (the new cluster is the part of the entire display). The space for the compression calculation may or may not be on the same substrate as the disk display. In FIG. 5, each TFT for performing decompression calculation performs a function of decompressing the data received by the _42 200928626 course and column lines. However, this information can also be received by the Month, for example via a parallel data bus or a sequence data link. In order to reduce the memory requirements, for example, a 25 Hz frame rate, each TFT used for decompression calculation will be required to decompress this = bedding in about 40 ms or less to pass through the cluster. Each pixel is displayed. An image display based on a cluster of clusters can reduce the need for interconnects between pixels of each image display' and thus reduce the need for sources of image light intensity correspondence. Be familiar with this type of technology © #人's other examples don't have to go into details. In a preferred example, the decompressed real-world image data is transmitted to the various clusters of the display. In the first step, the cluster performs decompression of the compressed real-world image data. In the second step, the hologram display data is calculated from the various clusters of the display using the data generated by the first step. For those familiar with this type of technology, other examples need not be repeated. ❹ p E. Display of the front item A of the holographic image display calculated by the additional processing unit for holographic conversion and encoding by a 3D rendering pipeline of an extended graphics subsystem on the same substrate The design can be implemented using the methods of the prior patents for the encoding of spatial light modulation. In addition, the display of the previous item A can also be implemented by a method that provides a more efficient spatial light modulator coding. The following is a detailed description of the method for providing more efficient 43 200928626 Inter-Work 35 (4) coding, but for many people familiar with this type of technology, other examples need not be repeated. This method (as an example shown in Figure 15) expands the 3D shading pipeline of the graphics subsystem by combining the additional processing units for holographic conversion and code, (methods.) The Applicant has a display design for the present invention. The so-called extra processing unit for holographic conversion and editing is referred to below as "complete pipeline," the name. This complete pipeline is arranged directly downstream of the graphics pipeline. Each cluster's required 3D pipeline (Ρ-) data is sent to the corresponding cluster on the display; the narrative from now on will focus on a single cluster level display design. A sleeve corresponding to the buffer and a color shirt corresponding to the buffer (color corresponding to R, color corresponding to G, color corresponding to the magic interface between the two pipelines. See _ in Figure 15. In the pixel coordinates Each individual point Φ 'Z should contain a z value, this financial scale can be used in various clarity levels. z (four) 尺 歧 在 在 在 在 在 在 在 在 在 在 在 在 在Van 15. Its level of clarity is determined by the bit line, ie, 〇 is usually 8, 16, or 24 bit. In modern graphics subsystems, the color corresponds to a resolution of 24, that is, each Color separation (R, G, B, ie red, green, blue) each 8 bu. The color mine should form part of the image buffer 'the contents of the buffer will normally be displayed on the surface. These two buffers ( The data corresponding to the z-axis and the color corresponding data are defined to form the interface between the 3D coloring pipeline, such as Pipeline, and the complete pipeline. The z-axis data will be provided for a display wavelength, but R, G'B will have no specific wavelength. The copy of the z-axis corresponding data 15〇1 and 15〇2 44 200928626 will be provided separately by riding __昧波丝. A holographic image can only be calculated for a specific display wavelength. This is why it is necessary to perform three calculations for each object point, that is, human red (λΚ), green ((6), and blue UB) for each original. Other colors can be created with these three colors. (10) Color matching can be done in a sequential or synchronized manner. In order to improve the degree of processing, it will have at least two additional full pipelines so that the holographic image calculation can be performed in parallel, so that it can be followed by three sub- (10) results. To do this, it must copy the z-axis data to the additional memory sections 1501 and 1502 (see Figure 15), which can be transferred independently. Therefore, it is possible to prevent a situation involving the operation of the striking section (e.g., the z-axis corresponding to the bedding) may cause an obstacle to each other. Therefore, each memory segment should theoretically be physically separated. The contents of the color correspondence data RGB regarding the colors G and B are also copied to the separate memory sections of the color table corresponding to G and color corresponding b to ensure that the three color separations can be accessed independently (see Fig. 15). Similarly, each memory segment may also be physically separated to prevent access to the fine-grained bursts in the It body and reduce or even ambiguously __ display design towel with a total number of ❾ (SelDaph〇re), mutual exclusion operation ( That is, "mutexes" and other synchronous access problems, these problems may have adverse effects on county performance. However, although the aeronautical memory segments may actually be separated from each other, they should preferably be located in the same cluster range of the display. Note that a number is a protected variable (or abstract data type) and constitutes a typical method for accessing shared resources (eg, storage space) in a multi-program operation loop & Mutually exclusive operations use the # segment of the domain to be used in the parallel processing of the domain to avoid simultaneous use of a shared resource, such as an overall variable. 45 200928626 The following assumes that a hologram image consists of multiple sub-images. The second sub-image is represented by a lens, which can be described by a lens function, U2 + y, 2)). The constant Ct includes the focal length f of the lens; the value of f is calculated before the lens function is applied, so that the value of f afterwards can be (iv) in all three pipelines. The value of f is therefore independent of color: since it is _ weaving Wei, it does not exhibit chromatic aberration. This can have the advantage of a lens function relationship because a lens is symmetrical on its x-axis and y-axis. In order to detail the lens, this function only needs to be in one quadrant. After that, it can be used in the three quadrants. Ct also varies with wavelength λ, and the three primary colors (R, G, B) have different wavelength trees. The value does not need to be calculated because the wavelength is known due to the fact that a defined laser or source is used to generate each wavelength; however, the value of λ should be substituted in the calculation to calculate the display. G for each primary color (see Figure 15). Depending on the procedure used, it may be necessary to apply a prismatic function in addition to the lens function function (see ® 15) to change the direction of light propagation. In the 稜鏡 function, a constant also includes a wavelength Λ. The value of this constant will therefore vary, since the three primary colors each have a different wavelength, so the value of this constant has a specified value for each of the three complete pipelines. Now, the lens function and the 稜鏡 function are multiplied by ι5 〇 3, 15 〇 4, and 1505 as shown in FIG. Next, the random phases 15〇6, 15〇7, and 15〇8 are applied to the results of the complex multiplication of the lens and the prism function. The goal of this method is to avoid the occurrence of brightness in the observer plane 46 200928626 peak, or the so-called "spot". The individual hologram images 1509, 1510, and 1511 are then modulated using the light intensity of the individual color-corresponding data. In the next step, this sub-image will perform a complex addition to form a total holographic image for the cluster (see Simplified (5). Now, the results obtained can be performed using the addition in the holographic cluster. Subsequent processing (if appropriate), for example, applying a modified corresponding or grayscale image (grayscale correction), since this will only depend on the system nature of the SLM, it is best to make corrections at this stage. Then there is the encoding process. Imagery can be reconstructed by color. The encoding algorithm (see Figure 15) can vary greatly depending on the SLM used. W is encoded by her, encoded by amplitude, or by another method. Coding. Those familiar with this type of technology will see that some aspects of the display design of this section of the description are more detailed in other parts of the scale of this application. F. Can be used as a holographic calculation pipeline Expand the 3D pipeline of the display card (9). (4) Perform a holographic image conversion on each point in the Wang Wei 2 and calculate the holographic image on the same substrate.

前面A 〇 顯示設計可以姻先前的專·方法實施來進行空間 $ m的編碼4算。此外,前面A項的顯示設計可以利用一個可在執行 像計算時齡時間延遲的方法來實施。可在執行全像計算時減少時 延遲的細-她㈣例細嶋的人來說 其他的範例自不必多加贅述。 200928626 對-個可在物崎物_輪咖,這個顯 的一個目標是’減少時間延遲(相角於其他的全像計算來說)。這將會因為 用於即時全像轉換和編碼的額外硬想模組而導致(例如)現行使用的= 卡(3D管線(PiPellne))在架構上的擴大。 -般而言,在執行-個全像轉換計算之前,整個三維景象已經透過數 二人的邪轉換和光度計算來構成。構成景象中的物件的各個基元(例如, Ο Ο 點、線、三角)會在3D處理的管線末尾時進行像素化。整個結果接著會 放在兩個减無段供姻。這_區段是包含雜察者所看到的景象的 色彩值(色彩對應資料)的影格緩衝區、和—個包含有從觀察者的位置看 會以-個尺度比例來表現景象的緩衝區對應資料的z軸緩舰。在先 ^二法中,全像胸鳴碼程序只有在有全部的結果(兩個記憶體區 k可仏使用時才會開始,因為這兩個記憶體區段的存取必須如此。而這 會導致-個視訊框格產生—個時間延遲,時間延遲在某也互動式的 應用(制舰)巾娜槪崎。顺物太長,則可 供操作者使_反麟,齡贿纽,⑽縣作者將無法執行 某些原本彻爾。—讎騎糊⑽此的顯示裝 置中不會小於'約17 ms),對於高速的遊戲來說可齡帶來重大的影響。而 全像顯示器也只有在有這方面糊可行性之下才有被市場接受的可能 (像疋電子概遊戲的玩家這_目標鱗是絕對不能忽略的)。 維立體王像成像技術在軍事應用上也有它的優點,像是可以透過三 維的視野來觀察敵軍、或者其他資訊(如地形資訊),這可以改善遂行戰鬥 48 200928626 的有效性’遠較二維資料顯示器為佳。而如果將這個顯示器使用在戰鬥任 務中的軍事用途上’上述的時間延遲可能會導致執行任務的人員傷亡、或 導致昂貴軍事設備損壞或毁壞的嚴重後果。慨,減少上義時間延遲將 可以改善三維域全像成像技術在軍事上的_的有效性。 為了減少這個延遲_,我們並不須要等候全部的色彩及z轴緩衝區 對應資料都可以使用才能開始處理。相反的,全像計算將會在經過如管 線(Pipeline)處理之後、只要空間中已經有—個點可用的情況下立即進 〇 行。因此,我們可以說這個管線(Hpeline)可以透過-個全像管線來 擴充。 用於進行全像轉換和編碼的計算時間最好應不超過3d管線 (Pipeline)中進行-個3D點的計算所需的時間,因為若非這樣,將會造 成進-步的時間延遲。這個概念在次全像影像層面上已經可以輕易實現, 因為在這種情況下只有必要的資訊片段需要進行處理。為了說明這—點, 我們假設如果將全像轉換從空間中的一個單一的3D點套用到一個全像影 〇 像或SLM的整體規模,可能會產生大約1,GGG倍社的額外運算負荷量。 如此一來,使用現行可用的運算硬體來進行即時計算將可能會無法實現。 圖8顯不出一個次全像影像的概念和它的相關說明。圖18則以圖解方式 解說了在本發明的一個顯示設計的這個範例中所偏好採用的次全像影像。 由於次全像影像比SLM更小’因此每一個次全像影像的計算都會比—個橫 跨整個SLM的完整全像影像的計算更為快速。除此之外,各個次全像影像 也可以依序計算,相較於計算一個橫跨整個SLM的完整全像影像的情況 49 200928626 (以只有在接收到-個完整的影像資料框格後才能執行),這可以大㈣+ 時間延遲。在比較兩個附圖⑽謂)時,可以清楚的看出如果: 次全像影像,計算每—個物件_運算負荷量將會大幅降低,因為相較於 整個SLM來說,個次全像影像中的像素格數量要少得多。 在本發明的一個顯示設計的某些範例中,位置最靠近觀察者的點的次 全像影像(圖16)會儲存在一個次全像影像緩衝區中。用於每個叢集的肋 管線(Pipeline)資料會傳送給顯示器上相應的叢集(圖17);從現在起以下 的敘述將著重在-個單-叢集層級的顯示設計上。關於簡的大小以及 vow的方向和與SLM之間的距離的資料會供應給叢集做為輸入來進行計 算(圖17)。顯示器的每一個叢集都有它自己的檢視表用來儲存它所顯示的 次全像影像的編碼,這可能是一個或多個次全像影像。每當有一個更靠近 觀察者的新的點產生時’就會進行對應於這個點的次全像影像(孤)的計 算(請參晒17) ’也就是說,全像轉換在:欠全像影像的尺寸已經確定後才 ❺會執行。然後,SLM的叢集的内容並不能只是簡單的以次全像影像來覆寫, 因為-個SLM像素格可能包含有來自多個次全像影像的資訊。這也正它會 針對-個在位置xy輸人的妓像歸(SHni)(這做全像雜在當時也 會顯示在SLM的叢集上)搜尋一個檢視表的原因。在讀取來自的sh 的内容之後,它會計算出目前顯示的SH (亂〇與新的SH (肌)之間的 差(請參閱圖17)。 在空間中有-個3D點的情況下,如果這個點比先前的一健更靠近 觀察者’則會在稍後根據位置xy進行計算,這個肌會被寫入到通中 50 200928626 取代舊的SH㈠(請參閱圖17)。現在,兩者之間的差孤會被加到SLM中 的值上’並且储翻—個祕緩衝區巾。這個過程之後緊接著就是進行編 碼以及可能的修正(請參閱圖17)。 事實上顯裝置(SLM)會提供它的配置資訊(例如類別解析度)給 運算裝置參關17),這絲它將可以連接任何麵的全像顯示裝置 (SLM)。這錄置可能有不_大小、像素格數量、祕至是編碼類別。 因此k個解決方案並不會限^止能使用一個較類別的則。 〇 G.可在同-基板上執行計算的全像爾顯示器,全細㈣並可隨機編址 前面A 顯示設計可以细聽的專_方法實絲進行空間光 調制益的編碼a十算。此外,前面A項的顯示設計也可以利用一個可提供更 佳的程序來執行全像計算的方絲實施。以下將針對—個可提供更佳的程 縣執行全像計算的方法的—纖例加以·,但對於許錄悉這類技術 〇 的人來說,其他的範例自不必多加贅述。 這個顯示設計的-個目標是,透過在應財_次全像影像的特性上 的優點來減少必驗-個_生模組(例如,顯示卡)傳送到視覺化模 組(也就是全像顯示器)的資料量。 在先前的補巾,勸容產生單元(例如,顯示卡)麻覺倾組(例 如⑽或陰極射線管⑽)監視器)所進行的影像資料傳輸會傳送一 個影像的整個内容(從上到下、一條掃描線接一條掃描線),就像傳統的射 51 200928626 線管監視器一樣。在高清晰度電視(HDTV)方面,解析度可高達384〇χ24〇〇 像素(IBM (RTM) Berta顯示器 —> 現在的IIΙΑΜΑ等,請參閱網站說明, 例如:http://www. pcmag. com/article2/0,1895, 2038797, 00. asp),這並 不會有問題,因為所需的資料量可以透過各種標準化的介面,像是數位視 覺介面(DVI)或高清晰度多媒體介面(HDMI),以足夠的高速傳送。 不過,理想的全像顯示裝置則會需要有遠比此更高的像素數目才能在 觀察者平面中產生一個大小為一到幾cm寬的虛擬觀察者視窗(v〇w)(相 〇 反的,若是較原始的裝置,則大約只有5刪寬)。較大的VOW有非常多 的好處,因為就商業使用中的可靠性來說,如果這個視窗越大,這個全像 顯不裝置也越可靠。這是因為對於具有追蹤功能的全像顯示器(像是追蹤 系統或位置轉裝置’絲追輸看者的眼睛姆賤示㈣位置)中的 其他零組件的要求,在這鋪況下將會比較低。此外,如果裝置不具有追 蹤功能’若是將vow的大小增大-些,也可以改善觀看者頭部微幅移動的 容忍度。 ° 這侧示設計的—個目標是’透過全部或至少-贿社像計算會在 像素矩陣進行來齡必須勸容產生模轉送到全像齡器㈣視覺化模 組的資料量。 在前面所述的先前專利的資料傳輸過程中,它會傳輸所有的資訊,包 括那些從-個框格到下—個框格都沒有改變的f訊片段。因為—個全像影 像會在-個三維空間中重建影像的各個點,因此只要知道哪些點相較於先 前的框格來說有所改變就已經足夠,在後續的處理中也只會考慮這些點(請 52 200928626 參閱圖19)〇 一個單-的物件點由-個次全像影像SH產生,它的大州取決於觀 察者的位置。由於一個SLM像素格可能不只包含一個次全像影像的資訊, 還可能包含多個次全像影像的資訊,因此可以計算在位置哪上的舊的點 的SH和在同樣的位f xyz上的新的點的SH之間的差別。在本發明的— 個顯示設計的-個範例中,這個差異次全像影像接著可以在灿上 重新進行編碼。 在顯不器内部或外部的電路組件會接收3D影像資料,這個資料包括 有每一個框格的—個色彩或光強賴«料和-個Z軸緩衝區對應資 料。它會計算連續的框格之間的差,如圖2〇巾的簡圖所示。之後,更新了 的顯不貝料會崎像差異冑制形讀送給_㈣全雜料元。如圖 20中所示’每一個全像轉鮮元都會傳送相對於重建點或用來在顧上 進行編碼的點的3D差異點影像資料。如果一個特定叢集的連續框格的顯 厂、負料之間沒有差異、或者只有微乎其微而可以忽略的差異,則並不須要 傳送資料給全像轉解元:這可以加速顯科統的有效 SLM更新速率。系 ”先中用來產生SHD的部份可以稱之為“内容產生模組,,,它可能包括運算 力此和個顯不卡。接著再將這些次全像影像傳送給每一個叢集。叢集所 執仃的第個工作疋處理所接收到的資訊,將全像影像資料與有關娜的 大J #位置的貝料分開。叢集的工作還包括將,寫入到適當的驅像 素格中使SH可以正確的顯示在適當的Μ位置上並且具有正確的大 /J、〇 53 200928626 除了次全像影像弧(或者是—個新的框格的sh) 以像素數表示的大小以及它在顯示器叢集中的位置也可術== 影像顯示資料分解為次全健職料™«訊。後面這兩個值 的目的疋用來計异次全像影像在_中的位址細,使次全像影像紐或 SHD的資料可以被寫入到叢針的正確SLM像素格上。 常見的SLM是主動矩陣式顯示器,它的像素格必須持續更新才不會讓 © :雜流失。如果只有新的内容會被寫入到聊上,則其他區域中的資訊將 會流失(例如,請參閱圖19 :其中的四個黑色圓點將不會再出現)。基於這 個理由,在這種情況下可以使用一個特殊的隨機存取記憶體_來使輸 入側只會寫入新的SH或SIL·,而在輸出側則會完整的讀取整個記憶體並將 完整的資訊寫入到SLM上。雙蟑咖或其他允許同時讀取和寫入的記憶 體系統所能夠發揮的作用(如以上所述),即可以應用在這樣的目的上。 根據3D景象中的變化情況,將會傳送哪些點的資訊,這會在内容產 © 生單70中決定。因此,減少資料流的動作會在資料被傳送壯像顯示裝置 之前就會執行。這些資訊可以以任何順序傳輪,因為次全像影像會有額外 的資訊加以補充,如以上所述。這大致上是掃描線之間的差異,就像先前 的專利的視覺化系統中的資料傳輸一樣。 在用戶側,也就是在内容已經產生後,資料是否要傳送的一個決定會 在資料開始傳送之前先行決定,如本發明的顯示設計中所述。如果内容已 經完全改變,像是在一個場景轉換之後或者要顯示一個完全不一樣的景象 的情況下,將會有非常多的對應於各個3D物件點的次全像影像必須傳 54 Ο ❹ 200928626 送。典型上來說,我們可以斷言··—個SLM ▲ 影像來取代傳送整個全像影像的優點也越明顯解析度越间,以傳送次全像 H.在像素空間中具備有運算功能的顯示器 在本侧-嶋蝴—健—步_种,有—軸示器會用 ==資料’這可能是—般_示_者也可能是已經根據光強度 對應-貝科和緩衝區對應資料計算出來的全像影像顯示資料。先前的專利中 Γ不器在先天地術,靖㈣輪施細在同-基 單組件。這些額外的電路組件必須佈置在顯示器基板之外的一個 作消費者2追Γ導致—鮮彻㈣,像是較大_置體積和重量。 =細追求的卻是更輕、薄、短、小的顯示裝置。如果採用一個手 題將可 巾所不的手段,讀像是裝置體碰大和«較重之類的問 方也刀而解。如果將運算單元佈置在靠近顯示器的各個像素的地 示計算得示任何資料時的時間延遲(這已經由運算翠元針對顯 會帶H0夺間延遲的減少對於諸如高速遊戲裝置的應用來說將 ==域爾轉一㈣,更佳 度也可能帶來軍事上的優勢。 嶋處,在顯示 來執行運算魏的空岐顯示器的各個顯示像素旁的空間執行。用 中’用於购 _ TFT °«25 說,其他的範例自不必多加贊述。私功能。對熟悉這類技術的人來 55 200928626 ι.吸收 在電腦_巾,“魏(QcelusiGn)”這铜語絲個較靠近 視平面的物件遮蔽(或吸收)一錄遠離視平面的物件的方式。在2D顯 示器的圖形管線中,人們會採用一種吸收剔除的形式在進行澄染和試映之 前先行移除隱藏的表面。而在全像的環境中,“吸收,,的顯示設計會牵涉 到必須確保距離虛織察者視練近的物件點會舰沿著_的視線上距 © 離虛擬觀察者視窗較遠物件點。 我們對-個全像顯示器所希望的吸收行為的一個範例如圖29所示。在 圖29中’從所示的眼睛位置,應該不可能看得到立方體的厚度側,因為這 面破立方體最靠近觀看者的_面吸收了。如果丽的大小有眼睛瞳孔大 、數l之大’馳看者將可峨獨的方向看這個立謂,以便能夠看 般個立方體的厚度側。但如果是—_單的吸收辭設計,這個立方體 ❹的厚度侧將不會在SLM上進行編碼,所以_看者改變觀看方向,觀看 者還是看不耻謂__,因為倾沒有在SLM上進行編碼。 、在圖3〇中’觀看者從—個不同於圖29中所示的方向來看這個立方體 讀此夠相立方_厚度側。但如果是—侧單的吸收顯倾計,如果 有十對圖29所不的情況進行吸收處理,這個立方體的厚度側也不會在 :上進行編碼’所以圖30中的觀看者還是無法看見立方體的厚度側,因 為匕並沒有在SLM上断編喝:因為沒有針中的立方體的厚度側 56 200928626 所屬的物件點進行重建,因此細3G也沒有這個立方體的厚度側經過重建 的物件點。 、圖加中所示的問題的—個解決方法是將丽分成兩個或多個區段, 然後針對每-個雨區段來重建各個物件點。每一個丽區段的大小最 好大致和人類眼睛的曈孔大小相當。 在圖31中’從眼目月位置】,觀看者將可以看到物件點1但不能看到 被遮蔽的物件點2。而從眼睛位置2,觀看者將會看到物件點2,但看不 到從這個位置和觀看方向所無法相的物件點卜耻,從眼睛位置2, 觀看者可以相在從眼雜置i歸時會被物雜i賴的物件點2。 物件點1和物件點2在次全像影像i和次全像影像2中分別都被吸收 了。 不過,在圖32中,從眼睛位置1和眼睛位置2都可以看見重合的物 件點1和物件點2,因為它們在次全像影像i和次全像影像2中也都分 別重合。 〇 另外’魏也可財構祕_龍歸和光酸賴㈣的階段中 進仃。在違種情況下’最好針對每一個眼睛(也就是針對每一個虛擬觀察 者視窗)各組織-個成對的緩衝區對應資料和光強度對應資料。 在本文件所包括的本發_顯示設計的—個範财,吸收會利用由佈 置在像素矩陣的空間中的電路組件所執行的計算來實施。這些電路組件可 能包括TFT。吸收也可以利用由佈置於和像素矩陣所在的同一基板上、伸 在像素矩陣以外的空間中的電路組件所執行的計算來實施。 57 200928626 j.顯示卡的功能 侧祕里單7G或稱GPU (有時也稱為視覺處料元或),是 -個個人電腦、功站、«戲主機上的_個專用的圖形呈現裝置。現代 的GPU在操縱及顯示電腦圖形方面非常有效率,同時它們高度並行化的架 構讓它們在一系列複雜的運算上比典型的cpu更為有效。 E5 現代的圖形處理單元_會將它們大部分的電晶體用在與犯電腦 圖形有關的計算上。它們最早是用來加速需要密集存取記憶體的工作,如 紋理映射和呈現多邊形,後來有加上一些單元來加速幾何計算,例如將頂 點轉譯成不同的座標系統。近年來GPlJ方面的發展包括支援可程式著色引 擎,它可以透過CPU所支援的許多相同的操作、超取樣、和内插技術來操 縱頂點和紋理,以減少疊影,並具有極高精密度的色彩空間。 除了 3D的硬體之外,現今的GPU也包括有基本的2D加速和影格緩 〇 衝區的能力(通常採用一個視訊圖形陣列(VGA)相容模式)。另外,大部 分從1995年以後所生產的GPU也都支援γυν色彩空間和硬體重疊(對 於數位影像播放非常重要),而許多在2〇〇〇年以後製造的Gpu也支援有 “動晝專家小組’’ (MPEG)基元,像是動作補償和反離散餘弦函數轉換 (iDCT)。最近的顯示卡甚至可以在卡上直接進行高清晰度視訊的解碼,為 中央處理單元分攤了一部份的工作負荷。YUV色彩空間的版本以一個光度 和兩個色彩分量的觀點來定義一個色彩空間。γυν色彩版本適用pAL、 58 200928626 NTSC、和SECAM複合色彩視訊標準。 Ο ❹ 在本射請駐_全細稍魏下,齡卡魏峽計牵涉到確 保以上所述的魏都可以在麟齡_行全料算時魏,而這裡所稱 的顯示器可以在像素矩賴在的㈣中執行所麵全料算,或至少有一 部份的全像計算可以在像素矩_麵空㈣執仏例如,這包括將著色 引擎設計成可以透過CHI所支援的許多相_操作、超取樣、和内插技術 來操縱頂點和紐以齡魏,郷職高軸麵色毅間,來加速需 要密集存取記憶體私作’如紐映射和呈現錢形,以便加賴何計算, 像是將頂點轉譯為不同的座標系統,並執行牽涉到矩陣和向量操作的運 算。在計算全像影像方面’ GPU高度並行化的架構讓它們在一系列複雜的 運算上比典型的CPU更為有效。此外,根據上述構想,本案之全像顯示器 也可以是料在像素鱗所在輕間帽行全料算的—侧示器。 在本項申請所主張的全像顯示的環境下,顯示卡功能的設計也可能牵 涉到採用-個由佈置在像素矩陣所在的空間中、或在像素矩陣所在的空間 之外但在雜素矩_在的同-基板上的m峨行的3d著色管線 (_eringPipeline)。以另一種角度來說,一個邪著色管雜浙洫 咖1_的功能’像是執行著色引擎的各種功能,將從先前的專利所採用 的顯示卡轉移到設置在液晶面板内的TFT上執行。 此外’根據上述構想,本案之全像顯示器也可以是不會在像素矩陣所 在的空間中執行全像計算的—個顯示器。或者,_的,根據上述構想, 本案之全像顯示H也可歧-财會在像素矩陣所麵㈣巾執行全像計 59 200928626 算仁可以利用存在於與像素矩陣所在的同一基板上的組件來執行全 像計算的顯示器。 K· 2D □ 3D 轉換 在-個2D □ 3D轉換的範例中,來自一對立體影像的一個第—影像 和-個第二影像會傳送給顯示裝置,其中全部或至少一部份的全像計算會 © 在像素所在的空間中執行’或者是在像素所在的基板上執行。2D □ 3D轉 換計算可以在像素矩陣所在的空間中、或者是在像素所在的基板上的電路 組件上進打’或者可以在用來產生緩衝區對應資料和色彩強度對應資料以 傳送給顯示器的電路組件上進行’或者也可以在位於熟悉這類技術的人都 清楚的其健置上的銳轉上進行。第二個傳輸的影像可缺這兩個立 體影像之間的差別影像,因為—個差別影像通f將只會要求比—個完整的 影像更少的資料。如果是進行三維立體視訊顯示,第一影像本身可計算能 0 ⑽行影像與來自—個稍早的時間刻度的影像之間的絲表示。同樣的, 第二影像也可能⑽行影像與來自早_間刻度的影像之間的差來 表示。顯示裝置接著可能利用這個技術領域中用來在2D與三維立體⑽ 影像之間進行轉換的已知計算程序’根據所接收刺·計算出一個具有 相應的緩衝區對應資料的二維(2D)影像。如果是一個彩色影像的情況, 它會需要有以三原色呈現、並伴隨有各自對應的緩衝區對應資料的三個肋 分色影像。對應於2D影像和緩衝區對應的資料接著可能由用來顯示全像 200928626 影像的裝置進行處理。這個裝置會在它的SLM上進行全像影像的編蜗。為 充分有效的利用傳輸頻寬,在這個系統中傳輸的資料可能接受已知的壓縮 程序進行壓縮’並在顯7F裝置上進行相躺解壓縮程序。 ' 在其中執行2D □ 3D轉換的電路組件可能有權存取—個包含有—組 已知的3D雜的資料庫,在這個資料庫中它可能會嘗試匹配它所計算出 來的3D資料;或者它可能有權存取一個包含有一組已知的2D外形的資 〇料庫’在這個資料庫中它可能會嘗試匹配輸入的2D影像資料。如果與已 知的形狀之間發現有良好的匹配吻合,將可以加速計算過程,因為沙或 3D影像之後可能以-個相對的已知形狀來表示。3D形狀的資料庫可能會 儲存有-組(例如)運動明星(像是頂尖網球明星或足球明星)的諸如臉 4或身體的形狀’以及頂尖運動場地(像是知名網球場或知名足球場)的 完整或局部的形狀。例如’ 一個人的臉部的一個3D影像可能會以顯示裝 置所存取的一個影像、加上面部表情的變化(例如,可能是微笑或皺眉)、 再加Jilt如輕長度料錢化麵的長度在轉贿的資料後可 能會增長或剪短)來表示。顯示裝置有權存取的資料如果出現有非常明顯 的差異使得它清楚顯示出顯示裝置所有權存取的資料已經過時,例如,一 個人的頭髮長度6蝴著改變以及儲存的資料已經有-段録的時間,則 可、由顯7R裝置進行更新。如果用於計算的電路組件碰到一個2D或肋影 像而在匕所有權存取的資料庫t找不到可以良好匹配吻合的形狀,則可以 將這些新的形狀加入到記錄中。 61 200928626 2D □犯影轉換也可能根據—個單獨的、非自動立體照相的2D影 像,利用這個技術躺中已知的轉執行這類轉換的程序來執行。謝 行全像計算並顯示出來 以將3晴資料(_區對物和色彩物料)傳送給顯示器來進 ❹ 上述的训邪轉換可能_於將用來在―個全像顯示器上顯示的 資料’在這個顯示紅全像計算會在佈置於像素矩陣所在的空財的電路 組件上進行’或者至対-部份的全料算纽佈·像素辦所在的空 間中、或在像麵在的基板上的其他位置的電馳件上進行。 L.視訊會談(3D Skype™) 根據第E3660065號歐盟社群商標(EU⑺酬而^丫 Trade Mark)申請 案,我們知道Skype™可以透過一個全球化的網路提供網際網路語音點對 點(V0IP)通訊、以及檔案分享、和即時訊息服務;也就是透過一個電腦 網路提供通訊服務、檔案分享、以及即時訊息服務。 根據第E4521084號歐盟社群商標(EU Community Trade Mark)申請 案’我們知道Skype™可以為他人提供電腦服務和軟體開發,也就是用於 電信及網際網路語音協定(V0IP)應用、資料傳輸、及即時訊息服務的電 腦軟體及硬體設計;為他人建立及維護網站;在一個用於全球化電腦網路 的電腦伺服器上控制他人的網站;安裝及維護電腦軟體;提供可供線上暫 時使用、不可下載的電腦軟體以允許用戶使用V0IP通訊服務;提供線上 62 200928626 軟體供他人下載以允許用戶使用VOIP通訊服務。 根據第2358090號英國商標(UK Trade Mark),我們知道Skype™可 Ο 以提供網際網路存取、入口及快取服務;電信及電信服務;網際網路協定 (“IP”)服務;網際網路語音協(“VoIP”)服務;電子郵件及網際網 路通訊服務;經由第三方的電信服務;網際網路協定(“Ip”)對數值電 話號碼以及數值電話號碼對“IP”對應映對系統及資料庫;網域及網域資 料庫系統;出租電腦資料庫存取時間(由網際網路服務提供者提供)。 上述的任何服務都可以結合一個可以利用佈置在像素矩陣所在的空間 中的電路組件來執行所有全像計算、或至少可以利用佈置在像素矩陣所在 的工間中的電馳件純行—部份全料算的全細示器來提供,除了 Sky’提供的瓣贿之外,射啸供—侧關麟音及全像影像 協疋(VHI0IP)服務。在廷種情況下’以上所述的程序可以由位於液晶面 板中的TFT來執行。此外’上述的任何服務也可以結合一個不會在像素矩 車斤在的二間中執订全像計算的全像顯示器來提供,除了洗撰w提供的 腑服務之外’還可以提供—個網際網路語音及全像影像協定(丽π) 務此外’同樣的,上述的任何服務也可以結合一個不會在像素矩陣所 ^ 、但_位她咖_侧—基板上的 全輪晴供,除了咖™提供的丽 此外,同樣呵乂提供烟際網路語音及全縣雜定(刪ip)服務。The front A 〇 shows that the design can be implemented in the previous method and method to calculate the space $ m code. Furthermore, the display design of item A above can be implemented using a method that can perform time-lapse delays in image calculations. It is possible to reduce the time delay when performing holographic calculations - she (four) fine-grained people, other examples need not be repeated. 200928626 Yes - one can be in the object of the rags, this one of the goals is to reduce the time delay (phase angle is calculated for other holographic calculations). This will result in an architectural expansion of the currently used = card (Pilot), for example, due to additional hard-working modules for instant omni-directional conversion and encoding. In general, the entire three-dimensional scene has been constructed by the two-person evil transformation and photometric calculation before performing the hologram conversion calculation. The primitives (e.g., Ο, lines, triangles) that make up the object in the scene are pixelated at the end of the 3D processed pipeline. The whole result will then be placed in two minus paragraphs for marriage. This _ section is a frame buffer containing the color values (color correspondence data) of the scene seen by the observer, and a buffer containing the view from the position of the observer to represent the scene in a scale ratio. The z-axis slow ship corresponding to the data. In the first two methods, the hologram chest code program only starts when there are all the results (the two memory areas k can be used, because the access of the two memory segments must be the same. Causes - a video frame to produce - a time delay, time delay in an interactive application (shipship) towel Nazaki. Shun objects are too long, then the operator can make _ anti-lin, age bribe, (10) County authors will not be able to perform some of the original Col.—The 显示 糊 ( (10) This display device will not be less than 'about 17 ms.', which can have a significant impact on high-speed games. The holographic display can only be accepted by the market if it has the feasibility of this aspect. (The target scale of the game is definitely not to be ignored.) Dimensional imagery technology also has its advantages in military applications, such as the ability to observe enemy forces, or other information (such as terrain information) through three-dimensional view, which can improve the effectiveness of the battles of the war 48 200928626 Dimensional data display is preferred. And if this display is used for military purposes in combat missions, the above-mentioned time delays may result in casualties for personnel performing the mission or serious consequences of damage or destruction of expensive military equipment. Generosity, reducing the time delay of the upper sense will improve the effectiveness of the three-dimensional domain holographic imaging technology in the military. In order to reduce this delay _, we do not have to wait for all the color and z-axis buffers. The corresponding data can be used to start processing. Conversely, holographic calculations will be performed immediately after processing, such as Pipeline, as long as there is already a point available in the space. Therefore, we can say that this pipeline (Hpeline) can be expanded by a hologram pipeline. The calculation time for holographic conversion and encoding should preferably not exceed the time required to perform a 3D point calculation in the Pipeline, because otherwise, it will result in a time delay of the further step. This concept can be easily implemented at the sub-holographic image level, because in this case only the necessary pieces of information need to be processed. To illustrate this point, we assume that if the holographic transformation is applied from a single 3D point in space to the overall size of a hologram or SLM, it may yield an additional computational load of approximately 1, GGG times. . As a result, using the currently available computing hardware for immediate calculations may not be possible. Figure 8 shows the concept of a sub-holographic image and its associated description. Figure 18 is a diagrammatic illustration of a sub-holographic image that is preferred for use in this example of a display design of the present invention. Since the sub-holographic image is smaller than the SLM', the calculation of each sub-image is faster than the calculation of a complete hologram across the entire SLM. In addition, each hologram image can also be calculated sequentially, as compared to the calculation of a complete hologram image across the entire SLM. 49 200928626 (only after receiving a complete image data frame) Execution), this can be large (four) + time delay. When comparing the two figures (10), it can be clearly seen that if: the hologram image, the calculation of the load per object _ will be greatly reduced, because compared to the entire SLM, the hologram The number of pixels in the image is much smaller. In some examples of a display design of the present invention, the sub-image of the point closest to the viewer (Fig. 16) is stored in a sub-holographic image buffer. The ipeline data for each cluster is transmitted to the corresponding cluster on the display (Figure 17); from now on the following description will focus on the display design of the single-cluster hierarchy. Information about the size of the Jane and the direction of the vow and the distance to the SLM is supplied to the cluster as input for calculation (Figure 17). Each cluster of displays has its own view table for storing the encoding of the sub-holographic image it displays, which may be one or more sub-holographic images. Whenever a new point closer to the observer is generated, 'the calculation of the sub-image (orphan) corresponding to this point is performed (see Sun 17). That is, the hologram conversion is: under-full The image will be executed only after the size of the image has been determined. Then, the content of the SLM cluster cannot be simply overwritten with sub-holographic images, because - an SLM pixel may contain information from multiple sub-images. This is why it will search for a view table for a SHni (which is also displayed on the SLM cluster at the time). After reading the content of the sh from it, it calculates the difference between the currently displayed SH (the chaos and the new SH (muscle). (See Figure 17). In the case of a 3D point in space, If this point is closer to the observer than the previous one, then it will be calculated later based on the position xy. This muscle will be written to Tongzhong 50 200928626 instead of the old SH (1) (see Figure 17). Now, both The difference between the orphans is added to the value in the SLM and the memory is buffered. This process is followed by encoding and possible corrections (see Figure 17). In fact, the display device (SLM) It will provide its configuration information (such as class resolution) to the operating device 17), which will connect any face omnidirectional display device (SLM). This recording may have a size of no, a number of pixels, and a secret category. Therefore, the k solutions are not limited to the use of a more general category. 〇 G. The full-image display that can perform calculations on the same-substrate, full-scale (four) and can be randomly addressed. The front A display design can be used to listen to the specific method of solid-wire modulation. In addition, the display design of item A above can also be implemented using a square wire that provides a better program to perform holographic calculations. The following will be for a fiber-optic method that provides a better method of performing holographic calculations in Cheng County, but for those who have learned such techniques, other examples need not be repeated. The goal of this display design is to reduce the necessity of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The amount of data in the display). In the previous patch, the image data transmission performed by the perceptual generating unit (for example, the display card), such as the (10) or cathode ray tube (10) monitor, transmits the entire content of an image (from top to bottom). One scan line is connected to one scan line), just like the traditional shot 51 200928626 line tube monitor. In high definition television (HDTV), the resolution can be as high as 384 〇χ 24 〇〇 pixels (IBM (RTM) Berta display -> now II ΙΑΜΑ, etc., please refer to the website description, for example: http://www. pcmag. Com/article2/0,1895, 2038797, 00. asp), this is not a problem, because the amount of data required can be through a variety of standardized interfaces, such as digital visual interface (DVI) or high-definition multimedia interface ( HDMI), with sufficient high speed transmission. However, an ideal hologram display device would require a much higher number of pixels to produce a virtual observer window (v〇w) that is one to several cm wide in the viewer plane (reversely If it is a more primitive device, it is only about 5). Larger VOWs have a lot of benefits, because in terms of reliability in commercial use, the larger the window, the more reliable the holographic device is. This is because the requirements for other components in the hologram display with tracking function (such as the tracking system or the position-transfer device's eye tracking device's eye (4) position) will be compared in this case. low. In addition, if the device does not have a tracking function, if the size of the vow is increased, the tolerance of the viewer's head movement can be improved. ° The purpose of this side-by-side design is to 'through all or at least the bribes to calculate the amount of data that must be transmitted to the full-aged (4) visual module in the pixel matrix. In the data transfer process of the prior patent described above, it transmits all the information, including those that have not changed from the sash to the next sash. Because a hologram image reconstructs the various points of the image in a three-dimensional space, it is sufficient to know which points are changed compared to the previous sash, and only these will be considered in subsequent processing. Point (please refer to Figure 19 for 2009 200926) 〇 A single-object point is generated by a sub-image SH, whose state depends on the observer's position. Since an SLM pixel may contain more than one sub-holographic image information, it may also contain information of multiple sub-images, so it is possible to calculate the SH of the old point at the position and the same bit f xyz. The difference between the new points of SH. In an example of a display design of the present invention, the differential sub-holographic image can then be re-encoded on the chan. The circuit components inside or outside the display receive 3D image data, which includes the color or intensity of each frame and the corresponding information of the Z-axis buffer. It calculates the difference between consecutive sashes, as shown in the sketch of Figure 2. After that, the updated display will be sent to the _ (four) full miscellaneous material. As shown in Fig. 20, each of the holograms transmits 3D difference point image data relative to the reconstruction point or the point used to encode it. If there is no difference between the display factory and the negative material of a particular cluster, or there is only a negligible difference, then there is no need to transmit data to the holographic transfer element: this can speed up the effective SLM of the explicit system. Update rate. The part that is used to generate the SHD in the first place can be called the “content generation module.” It may include the computing power and the display card. These sub-images are then transmitted to each cluster. The first work performed by the cluster is to process the received information and separate the holographic image data from the beakers of Na's Big J # position. The work of the cluster also includes writing, writing to the appropriate drive pixel grid so that the SH can be correctly displayed at the appropriate Μ position and have the correct large /J, 〇53 200928626 except for the sub-holographic image arc (or - The size of the new sash sh) in pixels and its position in the monitor cluster can also be corrected == image display data is decomposed into sub-health products. The purpose of the latter two values is to calculate the address of the different hologram image in _, so that the data of the sub-holographic image or SHD can be written to the correct SLM pixel of the cluster pin. A common SLM is an active matrix display whose pixels must be continuously updated so that it does not cause © :. If only new content is written to the chat, the information in other areas will be lost (for example, see Figure 19: four of the black dots will no longer appear). For this reason, in this case a special random access memory _ can be used to make the input side only write new SH or SIL·, while on the output side, the entire memory will be read completely and Complete information is written to the SLM. Dual geeks or other functions that the memory system that allows simultaneous reading and writing can perform (as described above) can be applied for such purposes. According to the changes in the 3D scene, which points of information will be transmitted, this will be determined in the content production © Health Order 70. Therefore, the action of reducing the data stream is performed before the data is transferred to the display device. This information can be transmitted in any order, as the sub-holographic image will be supplemented with additional information, as described above. This is roughly the difference between the scan lines, just like the data transfer in the prior patented visualization system. On the user side, i.e., after the content has been generated, a decision as to whether the material is to be transmitted will be determined prior to the start of transmission of the material, as described in the display design of the present invention. If the content has completely changed, such as after a scene change or to display a completely different scene, there will be a lot of sub-holographic images corresponding to each 3D object point must be transmitted 54 Ο ❹ 200928626 . Typically, we can assert that the SLM ▲ image replaces the advantage of transmitting the entire hologram image. The more obvious the resolution is, the more the sub-image is transmitted. The display with the computing function in the pixel space is Side-嶋嶋-健-步_种,有—Axis will use == data 'This may be - _ _ _ may also have been calculated according to light intensity corresponding - Becco and buffer corresponding data The hologram image shows the data. In the previous patents, it was not in the innate technique, and the Jing (four) wheel was applied in the same-base single component. These additional circuit components must be placed outside of the display substrate as a consumer 2 chasing result - fresh (four), like larger _ volume and weight. = The pursuit of lighter, thinner, shorter, smaller display devices. If a problem is used, the means that can be used for the towel can be read as if the device body is too big and the questioning method such as heavier. If the arithmetic unit is placed close to the display of each pixel of the display, the time delay is calculated when any data is calculated (this has been reduced by the operation of the emerald to the display band H0 inter-delay for applications such as high-speed gaming devices) == Domain turns one (four), and better degrees may also bring military advantages. In the meantime, the space is displayed next to each display pixel of the open display that performs the operation Wei. °«25 said that other examples do not have to be praised. Private functions. For those who are familiar with this type of technology, 55 200928626 ι. absorbed in the computer _ towel, "Wei (QcelusiGn)" which is closer to the viewing plane The object obscures (or absorbs) the way the object is far from the viewing plane. In the graphics pipeline of the 2D display, one uses an absorption culling form to remove the hidden surface before performing the dyeing and previewing. In a holographic environment, the "absorption," display design will involve ensuring that the objects that are close to the virtual weaver are close to the line of view from the _ line of view from the virtual observer window. Object point. An example of the desired absorption behavior for a hologram display is shown in Figure 29. In Figure 29, from the eye position shown, it should not be possible to see the thickness side of the cube because it is broken. The cube is closest to the viewer's _ face. If Li's size has a large pupil and a large number of 'big viewers', the viewer will be able to see the vertical direction in order to be able to see the thickness side of the cube. If it is a single absorption design, the thickness side of this cube will not be encoded on the SLM, so the viewer will change the viewing direction, and the viewer is still not ashamed to say __ because the tilt is not performed on the SLM. Encoding. In Figure 3, the viewer sees this cube from the direction different from that shown in Figure 29. This is enough for the cubic _ thickness side. But if it is - the side of the absorption salimeter, if there is Ten cases are not absorbed in the case of Fig. 29, and the thickness side of the cube is not encoded on the same side. Therefore, the viewer in Fig. 30 still cannot see the thickness side of the cube because the flaw is not broken on the SLM. Drink: The object side of the thickness side of the cube in the needle is not reconstructed, so the thin 3G does not have the reconstructed object point on the thickness side of the cube. The solution to the problem shown in Fig. 2 is to divide Li Two or more segments, and then each object point is reconstructed for each rain segment. The size of each segment is preferably approximately the same as the size of the pupil of the human eye. In Figure 31, the position from the eye of the eye 】, the viewer will be able to see the object point 1 but not the obscured object point 2. From the eye position 2, the viewer will see the object point 2, but can not see from this position and viewing direction The object of the phase is shameful. From the eye position 2, the viewer can be in the object point 2 when the eye is mismatched. The object point 1 and the object point 2 are in the sub-holographic image i and times. The hologram 2 is absorbed separately. However, in Fig. 32, the coincident object point 1 and the object point 2 can be seen from both the eye position 1 and the eye position 2 because they also coincide in the sub-hologram image i and the sub-hologram image 2. 〇 In addition, the 'Wei can also be the secret of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ In the case of a violation, it is preferable for each eye (that is, for each virtual observer window) to organize a pair of buffer corresponding data and light intensity correspondence data. In the context of the present invention, the absorption is performed using calculations performed by circuit components disposed in the space of the pixel matrix. These circuit components may include TFTs. Absorption can also be performed using calculations performed by circuit components disposed on the same substrate as the pixel matrix and extending beyond the pixel matrix. 57 200928626 j. The function side of the display card is 7G or GPU (sometimes called visual unit or element), which is a personal computer, a station, and a dedicated graphic presentation device. . Modern GPUs are very efficient at manipulating and displaying computer graphics, and their highly parallel architecture makes them more efficient than typical cpu in a complex set of operations. E5 Modern graphics processing units _ use most of their transistors for calculations related to computer graphics. They were first used to speed up the work that required dense access to memory, such as texture mapping and rendering polygons, and later added some units to speed up geometric calculations, such as translating the top points into different coordinate systems. In recent years, GPlJ development has included support for programmable shader engines, which can manipulate vertices and textures through many of the same operations, oversampling, and interpolation techniques supported by the CPU to reduce aliasing and have extremely high precision. Color space. In addition to 3D hardware, today's GPUs also include basic 2D acceleration and frame buffering capabilities (usually in a video graphics array (VGA) compatible mode). In addition, most of the GPUs produced since 1995 also support γυν color space and hardware overlap (very important for digital video playback), and many Gpus manufactured after 2 years also support “dynamic experts”. Group '' (MPEG) primitives, such as motion compensation and inverse discrete cosine function conversion (iDCT). Recent graphics cards can even decode high-definition video directly on the card, sharing a portion of the central processing unit Workload. The YUV color space version defines a color space from the perspective of one luminosity and two color components. The γυν color version applies to pAL, 58 200928626 NTSC, and SECAM composite color video standards. Ο ❹ Fully fine Wei, the age of Ka Weixia is involved in ensuring that the above-mentioned Wei Du can be counted in the lining age, and the display referred to here can be implemented in the (4) pixel. All of the calculations, or at least some of the holographic calculations can be performed in the pixel moment _ facespace (four). For example, this includes designing the shader engine to be able to pass many of the phases supported by CHI. Oversampling, and interpolation techniques to manipulate the vertices and New York-old Wei, the high-axis of the sinister, to accelerate the need for dense access to memory private work 'such as map mapping and rendering money, in order to add calculations, It's like translating vertices into different coordinate systems and performing operations involving matrix and vector operations. In terms of computing holographic images, the GPU's highly parallel architecture makes them more complex than typical CPUs in a series of complex operations. In addition, according to the above concept, the holographic display of the present case may also be a side-by-side device that is expected to be in the light of the pixel scale. In the context of the holographic display claimed in this application, the display card The design of the function may also involve the use of a 3d coloring pipeline arranged in the space in which the pixel matrix is located, or outside the space in which the pixel matrix is located, but on the same substrate as the impurity matrix ( _eringPipeline). In another way, the function of a sinister coloring tube is like the function of performing the coloring engine, which will be transferred from the display card used in the previous patent to the setting liquid. According to the above concept, the holographic display of the present invention may also be a display that does not perform holographic calculation in the space in which the pixel matrix is located. Or, according to the above concept, the case The holographic display H can also be ambiguous-finished in the pixel matrix (four) towel to perform the full image meter 59 200928626 The controller can use the components existing on the same substrate as the pixel matrix to perform the holographic calculation of the display. K· 2D □ 3D conversion In the case of a 2D □ 3D conversion, a first image and a second image from a pair of stereo images are transmitted to the display device, and all or at least part of the hologram calculation will be Execution in the space where the pixel is located 'or on the substrate where the pixel is located. 2D □ 3D conversion calculation can be performed in the space where the pixel matrix is located, or on the circuit component on the substrate where the pixel is located, or can be used to generate the buffer corresponding data and color intensity corresponding data for transmission to the display circuit Performing on the component 'or can also be performed on a sharp turn on the health of a person who is familiar with such techniques. The second transmitted image may lack the difference image between the two stereo images, because a differential image will only require less data than a complete image. In the case of a three-dimensional stereoscopic display, the first image itself can calculate a silk representation between a 0 (10) line image and an image from an earlier time scale. Similarly, the second image may also be represented by the difference between the (10) line image and the image from the early _ scale. The display device may then use a known calculation program in the art for converting between 2D and three-dimensional (10) images to calculate a two-dimensional (2D) image with corresponding buffer corresponding data based on the received thorns. . In the case of a color image, it would be necessary to have three rib color separation images presented in three primary colors accompanied by corresponding buffer corresponding data. The data corresponding to the 2D image and buffer may then be processed by the device used to display the full image 200928626 image. This device will perform holographic imaging of the hologram on its SLM. In order to fully utilize the transmission bandwidth, the data transmitted in this system may be compressed by a known compression program' and the decompression procedure is performed on the display 7F device. The circuit component in which the 2D □ 3D conversion is performed may have access to a database containing a known set of 3D hashes in which it may attempt to match the 3D data it calculates; or It may have access to a database containing a known set of 2D shapes. In this database it may attempt to match the input 2D image data. If a good match is found between the known shapes, the calculation process will be accelerated because the sand or 3D image may be represented by a relative known shape. The 3D-shaped database may store - for example, sports stars (like top tennis stars or football stars) such as the shape of the face 4 or body' and top sports venues (like famous tennis or famous football fields) The full or partial shape. For example, a 3D image of a person's face may be an image accessed by the display device, plus a change in facial expression (for example, may be a smile or a frown), plus the length of the Jilt, such as a light length. It may be expressed after the information on the bribe may be increased or shortened. If there is a significant difference in the information that the display device has access to, it clearly shows that the information accessed by the display device is outdated. For example, a person's hair length is changed and the stored data is already recorded. The time can be updated by the display 7R device. If the circuit component used for the calculation encounters a 2D or rib image and the database for the ownership access does not find a shape that matches well, then these new shapes can be added to the record. 61 200928626 2D □ The phantom conversion may also be performed according to a separate, non-auto-stereoscopic 2D image, using the procedure known in the art to perform such conversions. The Xie Xing hologram is calculated and displayed to transmit the 3 qing data (_ zone and color materials) to the display. The above-mentioned training conversion may be used to display the information on the hologram display. The display of the red hologram calculation is performed on the circuit component disposed on the empty matrix where the pixel matrix is located, or in the space where the full-scale calculation cloth/pixel is located, or on the substrate on which the image plane is located. It is carried out on other parts of the motor. L. Video Conversation (3D SkypeTM) According to the E3660065 EU Community Trademark (EU (7) Reward and Trade Mark) application, we know that SkypeTM can provide Internet Voice Point-to-Point (V0IP) through a global network. Communication, file sharing, and instant messaging services; that is, providing communication services, file sharing, and instant messaging services through a computer network. According to the EU Community Trade Mark application No. E4521084, we know that SkypeTM can provide computer services and software development for others, that is, for telecom and Internet Voice Protocol (V0IP) applications, data transmission, And computer software and hardware design for instant messaging services; building and maintaining websites for others; controlling other people's websites on a computer server for global computer networks; installing and maintaining computer software; providing online temporary use Non-downloadable computer software to allow users to use V0IP communication services; online 62 200928626 software for others to download to allow users to use VOIP communication services. According to UK Trade Mark 2358090, we know that SkypeTM can provide Internet access, portal and cache services; telecommunications and telecommunications services; Internet Protocol ("IP") services; Internet Road Voice Association ("VoIP") service; e-mail and Internet communication services; telecommunications services via third parties; Internet Protocol ("Ip") numeric telephone numbers and numeric telephone numbers corresponding to "IP" System and database; domain and domain database system; rental computer data inventory time (provided by Internet service provider). Any of the above services may be combined with a circuit component arranged in the space in which the pixel matrix is located to perform all holographic calculations, or at least may utilize a pure line of parts arranged in the work space in which the pixel matrix is located. The full-scale all-in-one display is provided, in addition to the pet bribe provided by Sky's, the whistling-speaking-side lining and holographic imaging assistant (VHI0IP) service. In the case of the case, the above-described procedure can be performed by a TFT located in the liquid crystal panel. In addition, any of the above services can also be provided in conjunction with a holographic display that does not perform holographic calculations in the two pixels of the pixel, in addition to the 腑 service provided by the w w Internet voice and holographic image protocol (Li π) In addition, the same, any of the above services can also be combined with a full round of clearing on the substrate, but not on the base of the pixel matrix. In addition to the coffee provided by the TM, in addition to the same, the same voice provides the Internet voice and the county's miscellaneous (deleted ip) service.

Skype™㈣合晰娜醜供,除了 π扒的VOIP服務之外, 退可以提供一個網際網路語音及全像影像 63 200928626 協定(VHI0IP)服務。 此外’上述的任何服務也可以結合一個不會在像素矩陣所在的空間中 執行全像計算的全像顯示器來提供,除了 SkypeT«提供的v〇Ip服務之 外’還可以提供一個網際網路語音及全像影像協定(VHI〇Ip)服務。 在以上所述的服務中,VHI0IP可以以網際網路語音及視訊全像影像協 定(VVHI0IP)的形式來提供。VHI〇Ip或VVHI〇Ip可以以即時或近即時的 方式提供’且這些網際網路協定可以允許在全都使用有全像顯示器的兩個 〇 人之間進行即時或近即時的全像視訊通訊。 M.編碼補償 在傳統攝影術中,曝光補償是一個用來針對可能會導致呈現一個不良 影像的其他因素,來對一個計算出來的或計畫使用的曝光值提供補償的技 ◎ 術這些會造成影響的因素可能包括一個攝影系統的内部變異、濾鏡、非 標準處理、❹]意的曝林足祕光過度。電影攝胸也可齡針對快門 角度或軟片速度的改變、或者其他的因素來施加曝光補償。在攝影術中, 許多攝影機都會包括有這樣的功能以便讓使用者可以自動調整所計算的曝 光值。補償可以是分鮮段的正滅(增加曝光)或者是貞鋪(減少曝 光),通常每一段會增減1/3或1/2格光圈⑴設定,通常最多可以朝 增減(正負)方向作二或三段的調整。 64 200928626 就光學上來S兑,從鏡片的有效焦距的觀點來看,一個光學系統的f數 值表示曈孔(光圈)開孔的直徑。在攝影機上,f數值通常會以多個分散 的格位來調整,稱為f設定。每一格“設定,,都標示有相應的f數值, 且每一格都表示相當於前一格的一半的光強度。這相當於以一個2的平方 根的倍率來減少瞳孔及光圈開孔的直徑,因此會使瞳孔(光圈)的面積減 半0 #綱償會在當制者知賴職所自麟算曝光值將纽成一個不 〇 理想的曝光時採用。—個㈣亮的調子為主的景象經常會造成曝光不足, 而-個以陰暗的調子為主的景象則經常會造成曝光過度。一個經驗豐富的 攝影師會知道什麼狀況下會有這種情況發生,並且知道要施加多少的補償 才能獲得有完美曝光的相片。 上述的任何祕都可以結合—個可以在像素矩陣所在的同—基板上執 行所有全像體、或至対錢像素矩陣所在賴—基板上執行一部份全 ❹像計算的全像顯㈣來提供。上述的任何魏也可赌合-個可以在像素 酬#、絲州梅矩陣所在的 _中執W轉物嶋伽。料,墙任何功能 也可以結合任何全像顯示器來提供。補償可以在編碼步驟中或編碼步驛之 f麟組,顺-肺嫩蝴爾,也就是通 輕光正確的影像,而不會有曝光不蝴光過度的問題。 眼睛追蹤 65 200928626 全像裝置可·備有鱗者树睛 每個眼睛的觀看視窗的尺寸極小的情況尤其有利(例如 =情幻。我們偏好採用—個位置醉裝置透過多個追縱步驟來使用者的 1) 透過偵測使用者的臉部來限定搜尋範圍 Ο ❹ 2) 透過偵測眼睛來限定追蹤範圍 3) 追蹤眼睛的位置 透過一個立體攝影機對用於執行眼睛位置辨識功能的計算模組提供— 對立_像。在經過模組運算後,模組會畴每個眼睛姆於-個固定點 ⑽,的中心點)的x、y、h軸座標。這些座標可以(例如)透 過個序列介面傳輸。為執行這個程序所需的運算可能由位於與顯示器像 素所在的同—基板上的電路組件(包括位於像素轉中的電 TFT,來執行。 像疋 為了追蹤-位觀看者的眼睛,SLM面板上的全像編碼可以在χ及/或 、;β (也就疋在面板的平面上)移位。根據所採用的全像編碼方法 (彳如1D編喝),最好應透過將整個全像編碼内容在SLM上朝χ 或=方向移位來執行—個侧向方向的眼睛追縱。在進行咖的全像編 碼之前,計算模組會計算出全像影像資料相對於SLM在X或y輛方向上 、移量觀看者的目_的χ、y、和z軸絲會作為-織入提供。 66 200928626SkypeTM (4) Clearly ugly, in addition to π扒's VOIP service, retire can provide an Internet voice and holographic image 63 200928626 agreement (VHI0IP) service. In addition, any of the above services can also be combined with a holographic display that does not perform holographic calculations in the space in which the pixel matrix is located. In addition to the SkypeT provided v〇Ip service, an Internet voice can be provided. And the holographic image agreement (VHI〇Ip) service. Among the services described above, VHI0IP can be provided in the form of Internet Voice and Video Full Image Consortium (VVHI0IP). VHI〇Ip or VVHI〇Ip can be provided in an immediate or near-instant manner' and these Internet Protocols allow for instant or near-instant holographic video communication between two individuals who all use a hologram display. M. Code Compensation In traditional photography, exposure compensation is a technique used to compensate for a calculated or projected exposure value for other factors that may cause a bad image to appear. The factors may include an internal variation of the photographic system, filters, non-standard treatments, and ambiguous exposure to excessive light. The film chest can also be used to apply exposure compensation for changes in shutter angle or film speed, or other factors. In photography, many cameras include such features so that the user can automatically adjust the calculated exposure value. The compensation can be positive or negative (increased exposure) or 贞 shop (reduced exposure) of the fresh-segment segment. Usually, each segment will increase or decrease by 1/3 or 1/2-stop aperture (1) setting, usually up to the increase (decrease) Make two or three adjustments. 64 200928626 In terms of optical S, the f-number of an optical system represents the diameter of the pupil (aperture) opening from the viewpoint of the effective focal length of the lens. On a camera, the f-value is usually adjusted in a number of discrete positions, called the f-set. Each box "sets, is marked with a corresponding f-number, and each cell represents a light intensity equivalent to half of the previous cell. This is equivalent to reducing the pupil and aperture opening by a square root of 2 The diameter, therefore, will reduce the area of the pupil (aperture) by half. ## The compensation will be used when the system knows that the exposure value will be an unfavorable exposure. The (four) bright tone is The image of the Lord often causes underexposure, and a scene dominated by dark tones often causes overexposure. An experienced photographer will know what happens under this condition and know how much to apply. The compensation can be obtained with a perfect exposure. Any of the above secrets can be combined with one part that can perform all holograms on the same substrate as the pixel matrix, or on the substrate where the pixel matrix is located. The full image of the full image is calculated (four) to provide. Any of the above Wei can also be gambling - one can hold the gamma in the _ of the pixel reward #, silk state plum matrix. Material, wall any function can also Combined with any hologram display, the compensation can be in the encoding step or the encoding step, the shun-lung, that is, the correct image through the light, without the problem of excessive exposure Eye Tracking 65 200928626 All-image device can be equipped with a scaler eye. The size of the viewing window of each eye is extremely small (for example, = illusion. We prefer to use a position drunk device through multiple tracking steps) The user's 1) limits the search range by detecting the user's face Ο ) 2) Detecting the eye to limit the tracking range 3) Tracking the position of the eye through a stereo camera to calculate the position of the eye position recognition function The group provides - the opposite _ image. After the module operation, the module will coordinate the x, y, and h axes of each eye at the center point of a fixed point (10). These coordinates can be (for example) Serial interface transmission. The operations required to perform this procedure may be performed by circuit components located on the same substrate as the pixels on which the display is located, including the electrical TFTs located in the pixel turn.疋In order to track the eyes of the viewer, the holographic code on the SLM panel can be shifted at χ and/or, β (that is, on the plane of the panel), depending on the holographic encoding method used (eg 1D editing), it is best to perform a lateral direction of eye tracking by shifting the entire holographic code content on the SLM in the direction of χ or =. Calculate the module accounting before performing the holographic coding of the coffee. Calculating the hologram, y, and z-axis of the holographic image data relative to the SLM in the X or y direction, shifting the viewer's target _ is provided as a weaving. 66 200928626

為了追蹤-位觀看者的眼睛,SLM面板上的全像編碼可以在 X及/或 y轴方向上(纽是在面_平社)移位。追觀可赠過麟續照亮 SLM的先源隨著觀看者位置的改變而同步移動來執行。不論發光的光源是 否會移動,或者-致的光絲在有極窄的開孔而由非—致的光線照射的點 狀光源或直'絲源中產生,只要通過這個開孔的光都會被視為一致的光 線。如果光源是由-個液晶顯示器的像素所構成,則可以進行編址並且可 以配合觀看者的位置即時調整。 0.像差修正 在某些麵的全像顯示器中,像差修正是用來修正因負責執行傅立葉 轉換的一個凹凸透鏡陣列中、<一個 、 一 平幻m固2D透鏡陣列中的各個透鏡所造成的 ❹ 像差。像纽應相絲_婦麵方向與錄1__異,並且 可以透過峨刪輪啦蝴觀。物⑽立於全像 計算之外並彳渐,—姆懈爾剩_纟。細步驟之 後’總和全像影像和縣修正對射以_起進行調制。 像差修正運討赠齡财__餘_來執行。最_ 全像影像獅她細梅謝_艰娜法來調 制。關於像差修正的-個顯示設計的範例如圖33中所示。在關中,像 差修正會姻位於騎贿所麵如巾㈣路崎來執行。不過,在其 他的情況下’像差修正則可能姻位於像素矩陣所在的空間以外的位置、 67 200928626 但在與像素矩陣同一基板上的電路組件來實施。 p.光斑修正 在某些翻的全像顯示財,光畴正是贿減少或雜醜示器的 不同區域之_緋-致__搞造成的触。光喊應可以透過空 暇調賴絲進行_修正。修正運討明立於全像計算之外並 行執行直龜錢和全祕像的步驟為止。在難麵之後,總和全 像影像和光斑修正對應可以一起進行調制。 光斑修正運算可以透過分析方式或利用檢視表_來執行。最終的 全像影像計算值最好只在有總和全像影像可供使用以後透過複乘法來調 制。關於光斑修正的一個顯示設計的範例如圖33中所示。在圖泊中,光 _正會利用位於像素矩陣所在的空間中的電路組件來執行。不過,光斑 ❹修正也可㈣驗於像麵陣所麵㈣以外驗置、但在與像素矩陣同 一基板上的電路組件來實施。 Q•全像顯示11的數錄鮮理技術(DRM)解碼 么、應、m個全像顯示器的内容資料可能有受DRM保護,也就是顯示器 會接收到有編碍加密_容資料。高頻寬數位内容保護協定(HDCp)是— 個針對在2D顯示器上實施丽的共同標準。具備有瓣解碼功能的高 68 200928626 清晰度多媒體介面(_) 電路板_上。傳、_卜 2D顯示器的電子系統的印刷 的影像資料傳輪通常是在解碼之:個基本弱點⑽子_面板 ^ 後進行。所以它可以透過將面板的資料傳 輸電路組件的電路接通來截取解韻的資料。 示設相—雜财,解碼和全像計算是利用 一、執行的。在本發_㈣設計的一個進 一步的範财’解碼和全像計細是分餘像輕时的電路組 細一個分散術輪W她上辦嫩-條置可以截 取所有過解碼的貢料。如果在面板上的不同區位採用不同的解碼密输, 則解碼密_破_錢得更加_。⑽面板上並沒躲何連接器可以 用來從面板截取經過解碼的資料,那些想要規避順的人必須必須知道面To track the eyes of the viewer, the hologram encoding on the SLM panel can be shifted in the X and / or y-axis directions (News is in the face). The follow-up can be given to the continuation of the SLM. The source of the SLM is synchronized to move as the viewer's position changes. Whether or not the illuminating light source will move, or the resulting filament is produced in a point source or a straight source that has a very narrow opening and is illuminated by non-induced light, as long as the light passing through the aperture is Considered as consistent light. If the light source is made up of pixels of a liquid crystal display, it can be addressed and adjusted instantly to match the viewer's position. 0. Aberration correction In some hologram displays, the aberration correction is used to correct each lens in a lenticular lens array that is responsible for performing Fourier transform, <one, a phantom m solid 2D lens array The resulting coma aberration. Like the New York Yingsi _ women's face direction and recorded 1__ different, and can be cut through the 轮 啦. The object (10) stands outside the calculation of the hologram and gradually grows up. After the fine step, the sum total hologram image and the county correction modulate the shot. Aberration correction will be given to the gift of age __余_ to execute. Most _ full-image video lion her fine Mei Xie _ qi Nafa to adjust. An example of a display design for aberration correction is shown in FIG. In Guanzhong, the aberration correction will be carried out in the face of a bribe (such as the towel). However, in other cases, the aberration correction may be performed at a location other than the space in which the pixel matrix is located, 67 200928626 but implemented on a circuit component on the same substrate as the pixel matrix. p. Spot Correction In some of the turned-over holograms, the light domain is the touch of the different areas of the bribe reduction or miscellaneous display. The light shouting should be able to make corrections through the air. The amendments are based on the steps of executing the straight turtle money and the full secret image in parallel with the hologram calculation. After the difficulty, the sum hologram and the spot correction can be modulated together. The spot correction operation can be performed by analysis or by using the view table_. The final holographic image calculation is preferably tuned by complex multiplication only after the holographic image is available for use. An example of a display design for spot correction is shown in FIG. In the mooring, the light_ is being executed using circuit components located in the space in which the pixel matrix is located. However, the spot correction can also be performed (4) on a circuit component that is mounted on the same substrate as the pixel matrix, but on the same substrate as the pixel matrix. Q•Full-image display 11 Digital Recording Technology (DRM) decoding The content of the M-image display may be protected by DRM, that is, the display will receive the encrypted data. The High-Frequency Digital Content Protection Protocol (HDCp) is a common standard for implementing MN on 2D displays. High with flap decoding function 68 200928626 Sharpness multimedia interface (_) board _ on. The image data transfer of the electronic system of the 2D display is usually performed after decoding: a basic weak point (10) sub-panel ^. Therefore, it can intercept the data of the rhyme by turning on the circuit of the data transmission circuit component of the panel. The display phase - miscellaneous wealth, decoding and holographic calculations are utilized. In the _ (four) design of a further fan wealth 'decoding and hologram count is the circuit group when the residual image is light. A decentralized wheel W will be able to capture all the over-decoded tributes. If different decoding bits are used in different locations on the panel, then the decryption is more _. (10) The connector on the panel does not hide the connector. It can be used to intercept the decoded data from the panel. Those who want to avoid it must know the face.

板㈣路圖並且必須連接廣泛分散在整個顯示器上各的部位的多個TFT 電晶體才能存取經過解碼的龍。這對於改善麵的保護確實有非常卓著 的貢獻。 ❹ 本發明的-個齡設計的__健—步的細是,解柳全像影像計算 會利用位於像素轉所麵紐上的€雜件(包她於像麵陣以外的 位置上的電路組件)來執行。本發明的一個顯示設計的-個進-步的範例 是’解碼和全像影像計算會利用分散在整個像素矩陣所在的基板上的電路 組件(包括位於像素矩陣以外的位置上的電路組件)來執行。 R· 2D顯示器的數位版權管理技術(DRM)解碼 69 200928626 供應給-個2D顯示器的内容資料可能有受_保護,也就是顯示器 會接收到有編碼加密的内容資料。高頻寬數位内容保護贼⑽P)是- 辦對在2D顯示器上實請的共同標準。具備有·解碼功能的高 Μ晰度多媒體介面_接收器通常位於2D顯示器的電子系統的印刷 電路板(P⑻h傳峨济個基她咖細㈣統到面板 ❹ ❹ 的影像資嶋__㈣餅,W細硫的資料傳 輸電路組件的電路接通來截取解碼過的資料。The board (four) road map and must be connected to a plurality of TFT transistors widely distributed throughout the display to access the decoded dragon. This does have a very significant contribution to improving the protection of the face. ❹ The __健-step of the aging design of the invention is that the image calculation of the solution will use the miscellaneous pieces located on the surface of the pixel transfer (the circuit components that surround her in the position other than the area array) To execute. An example of a further design of the display design of the present invention is that 'decoding and holographic image calculations utilize circuit components (including circuit components located at locations other than the matrix of pixels) dispersed throughout the substrate on which the pixel matrix is located. carried out. Digital Rights Management Technology (DRM) Decoding for R·2D Display 69 200928626 The content material supplied to a 2D display may be protected by _, that is, the display will receive content encrypted with code encryption. High-frequency wide digital content protection thief (10) P) is - a common standard for real-time on 2D displays. High-definition multimedia interface with decoding function _ Receiver is usually located on the printed circuit board of the electronic system of 2D display (P(8)h 峨 个 她 她 咖 咖 咖 咖 咖 四 四 四 四 四 四 四 ❹ ❹ 影像 影像 影像 _ _ _ _ _ _ _ _ _ The circuit of the W fine sulfur data transmission circuit component is turned on to intercept the decoded data.

在本發明的—個顯示設計的一個範例中,解碼是利用分散在整個SLM 面板上的電馳峨_物_。目崎i靖有任何 一個位置可喊取所有經__。如果麵板上的不_採用不 ⑽解碼密鑰’贿碼咖亀输更靖。目输上並沒有 任何連接器可以絲從面板截取經過解碼㈣料,那些想要規避麵的人 必須必須知道面板的細並且必須連接廣泛分散在整個顯祖各的部 位的多個m電晶體才能存取經過解碼的資料。這對於改善麵的保護 綠實有非常卓著的貢獻。 在本發明的-咖蝴,—娜辦U 2D顯示裝 置會用來謙棚稱_—自崎(爾靖轉中或者在 像素矩陣料)_細_她爾。賴_崎純於顯示 器的K3上的電路組件更難以存取。這也有助於改善麵的保護。 200928626 s.在與顯7FH財觀路連接的硬體巾執行倾應用程式 原則上’電腦軟體的許多部份也可以利用電腦硬體來獨立執行 發明的-個顯示設計的_個範例中,—個可以利用軟體來執行的應用 已經改為利用分散在—個SLM面板的整個基板上的電路組件在硬體 行。這樣的電触件可缺錄像麵料,或者可触於 Ο ❹ 的同一基板上但在像素矩陣以外的位置。SLM面板可以是用於車斤在 器、或者用於2D顯示器的SLM面板。 1 ”貝不 T. 採用多個微稜鏡的可變光束轉向 針對-個可以追蹤歸者或婦者目„驗置的全像顯㈣,投 看者或觀看者眼雜置的“可變光束轉向,,會__個可崎光束進〜 加以控制的轉向的微稜鏡_來執行。而這個“可加以控制的轉向,進= 連續可變I追蹤會透過一個位置細和追轉統來執行。稜鏡的性質: 以可將光現在-倾兩個維度上進行轉向的方式來進行控制。兩個維度的 光線轉向可以利用縱列的兩個微稜鏡陣列來進行 ' .. 將其中一個陣列 中的稜鏡驗概定在與另-個_巾的稜鏡的縱軸呈 —/,,, 有效角度的方 向,例如大約90。。針對不同的應用,這樣的幾何配置 觀,542,449號專利中的敘述(合併在本文件中做為參考)。圖料暴八 光線會根據稜鏡的性質來以-個較小或以—個較大的角度進行偏導顯= 71 200928626 稜鏡可能是可以根據所施加的電荷來改變偏導角度的液態微稜鏡〔例如 採用電濕潤微稜鏡進行靈活的廣角光束轉向”文中所述,Heikenfeld等 著,Optics Express 14,pp. 6557-6563 (2006),(合併在本文件中做為 參考)〕,或者是可以控制光束轉向的其他已知的稜鏡陣列。 如圖34中所可見的,平行的光線在通過SLM和稜鏡遮罩時會根據稜 鏡的性質而被偏導。這個程序的一個優點是,可以在光線通過稜鏡之前先 ® 行減少各種光學效應(例如透鏡的像差)。這種方法適合用於將vow置於 觀看者或觀看者眼睛處的應用上。在另外的一個範例中,在稜鏡陣列之前 或之後加設一個聚焦的手段(例如一個傅轉透鏡_)將可以協助將光 線匯集到vow上。 當-個觀察者改變他的位置時,稜鏡的偏導角度可以隨之進行調整(例 如透過調整施加在液態微稜鏡陣列上的電壓)。這個偏導角度是可以連續改 變的’這些稜鏡並不都有相_偏導角度。另外,它也可以針對每 ® -健鏡侧進雜制’使每—個稜鏡可財不同的偏導肖度(例如用來 進行Z轴追蹤),也就是使離開稜鏡陣列的光線可以大致匯集到簡處, 因為vow與顯示ϋ之間的距離將會因為觀看者移_更靠近顯示器或更 遠離顯不器的位置而改變。 稜鏡角度的計算在進行時可能會將使时的位置納人考慮。稜鏡角度 的計算可能會由位於SLM的基板上的運算電路組件來執行(就像物件點的 重建-樣),或者利用設置在稜鏡陣列基板上的運算電路組件來執行。而如 72 200928626 果SLM的基板也可以用來做為稜鏡陣列的基板,則並不須要有一個獨立的 棱鏡陣列基板。 位置瞄準裝置與SLM之間需要有一個通訊介面:例如,這個介面可以 是· ~~個序列介面。 如果用於計算稜鏡陣列偏導角度的運算電路組件不是在稜鏡陣列的基 板上,而是在SLM的基板上,則兩個基板之間需要有一個資料連接線路, 使稜鏡陣列的電極可以利用計算的結果來進行控制。 除了用於控制稜鏡的計算之外,我們還必須施加一個“相位修正,,針 對因稜鏡陣列所造成的相位“跳動,,(或稱“相位不連續”)的現象提供 補償。否則稜鏡陣顺呈現出來的效果會像是—綱耀光栅—般,也就是 通過不同稜鏡的波前的各個部份會有不同的光程距離到達v〇w處,因此呈 現出來的效果會像是-個格栅-樣,而改變稜鏡角度會影響到不同的繞射 級上所分布的能量。這個相位修正可以由SLM在它的全像影像編碼功能之 外執行。通過這兩個組件(也就是稜鏡_和SLM)的光線根據每一個組 件的功能會進行-項複絲。經過修正的她職資射包括有微棱鏡陣 列所需的減修正:全像縣㈣絲重建齡關代表像素格狀態 的值,包括相位修正的值,來進行編碼。 以上所述的功能也可以套用在全像影像是在一個投影式設備中產生的 情況,這裡所稱的投影牵涉到在棱谢車列上構成一個Μ景緣,而所需的 3D景象的重建則發生在V〇w的前方,據以形成一個相當於在這個技術領 域中已知的郷設_設備。所需輯算和__於以上職,對熟悉 73 200928626 這類技術的人自然熟知而不必贅言。必須針對稜鏡陣列中的各個稜鏡的偏 導角度、以及用來修正因此所造成的相位不連續的相位補償進行計算。稜 鏡陣列的相位補償可以在於稜鏡陣列上形成SLM時提供、或者以一個置於 稜鏡陣列附近的額外SLM來分開提供。為了可以進行投影,SLM可能是可 以透光的而稜鏡陣列則可以反射、或者SLM可能是可以反射的而稜鏡陣列 則可以透光,對熟悉這類技術的人自然熟知而不必贅言。 液態微稜鏡如“採用電濕潤微稜鏡進行靈活的廣角光束轉向”文中所 述〔Heikenfeld 等著,Optics Express 14,ρρ· 6557-6563 (2006),(合 併在本文件中做為參考)〕。這個技術被稱為“電濕潤,,(electr〇wetting 或e-wetting)。在這項技術中,由一種透明導電液體和另一種流體(例如 空氣)之間的銜接面與一個包覆有不親水絕緣的電極所構成的接觸角是施 加在電極上的電職之於透明導紐體的—個函數。個別控獅加在兩個 各包覆有不親水絕緣的電極(每—個電齡別構成__個電賴像素格的側 壁,每一個側壁與由另一個電極所構成的另一個側壁兩兩相對)上的電壓, 可以用來控制這個接㈣,並由此控制當絲在穿越像素格時的轉向。利 用電濕潤稜絲翻縣轉向目的的其娜置對麟賴技術的人自然熟 知而不必贅s。光束轉向角度會卿施加到位於每—個電顧像素格陣列 的不同側的不同電極上的可魏壓絲進行控制。 第一製造程序概述 200928626 在本發明的一個顯示設計的薄膜半導體顯示裝置的基本結構中,提供 有-個顯示部件,其中的電路組件佈置在顯示部件的各個像素之間的^ 間,或者在基板上的其他位置,用來執行與將資料顯示在裝置的顯示部件 上有關的各種計算。顯轉件、収姻㈣件範_储祕板上的其 他位置上用佩行咖输件,整遍_上。咖用來驅動 顯示部件的電馳件射能健在顯示部件的週邊,但健合在同一基板 上。 用來操作空間光調制器的TFT電路組件,以及諸如用來執行邏輯運算 的其他電路組件’則可能以一個如以下所述的方法佈置在一個基板上,這 個方法類似於第US6,153,893號專利中所述用來製做一個不同的裝置構 以的方法’ US6,153’893號專利整體合併在本文件中作為參考。其他的方 法對熟悉這類技術的人自麵知而不必贅言。這個基板可能是—個大面積 的基板’且基板可缺—種合賴玻璃材質種類。使財璃基板,其經常 ^的處理程序傾向於偏好低溫處理,至少就&裝置製造技術的標準而 。而諸如在大約麵χ進行用來產生裝置的閘絕緣層的賴高溫氧化 處理程序則傾向於與低溫處理程序不相容,這個處理程序的典型溫度大約 侍從350Τ到70〇。(:的範圍。 像素電極和用來進行開/關的薄膜電晶體排列在顯示部件中的-個矩 陣内。用來構成電路元件的薄膜電晶體則佈置在顯示部件的各個像素之間 或者在基板上的其他位置,或者可以佈置在整合在同-基板上_示器驅 。牛中薄膜電晶體可能是下閘極式,包括有一個閘極、一個形成在閘 75 200928626 極上的-個絕緣層上的多晶半導體層、以及一個包括有在多晶半導體層上 形成的一個源極和一個汲極的高濃度雜質薄臈。用來進行開/關的tft可 能有-個輕度摻雜的沒極⑽)構造,其中會在多晶半導體層和高濃度雜 質薄膜之間插入一個低濃度雜質薄膜。 在個典型的顯不設計中,顯示部件有一個包括有像素電極的上側部 份、-個包括有用來進行.關的TFT的下側部份、以及可能有一個滤色 層、-個黑色遮罩層、和一個插入在上側和下側之間的平坦化層。若是這 〇 種情況’黑色遮罩層會包含有-個金屬線層以便與源極和没極的高濃度雜 質層構成魏連接。同時,像素電極也會透過金屬線層與祕的高漢度雜 質薄膜構成電氣連接。此外,如果使用有一個包含有三原色並以一個時序 多工模式點亮的背光燈,則濾色層可以省略。 一個具有社_的構造_稀置可簡訂舰溫製絲製造。 首先,在玻魏板上形細極。接下來,在難上的-舰緣薄膜上形成 辨導輯膜’織親雷射退火將半_薄轉魏-個乡晶層。然 «擇性的只在包括於像素開/關中的多晶層上形成一個低濃度雜質層, 例如透過採用一個遮罩層。除此之外,也在低濃度雜質薄膜上形成一個用 於源極和没極的高濃度雜質層,並據此構成一個擁有層疊LDD構造、用來 進行開/關的TFT。在此同時,用於電路元件的m則會透過直接在包 括在電路轉部份巾(像是用郷像_輯、或驗週邊驅動部份)的 多晶層上形成-個用於源極和沒極的高濃度雜質層來構成。最好,可以在 包括在電路組件部份中的高濃度雜質層上選擇性的執行雷射退火以便降低 76 200928626 多晶半導體層的電阻β 备在一個玻璃基板上形成閘極後,會低溫下在閘極上的一個閘極絕緣 薄膜上形成-個半導體薄膜。這個半導體薄膜接著再透過雷射退火轉變成 -個多晶層。因此’可以利用低溫處理程序來形成一個多晶TFT。所使用 的雷射典型上擁有-個較短的波長使雷射的輻射可以在Si中被強力吸 收.-個例子是制準分子雷射,但其他也都是已知的。由於它是一個下 P雜式TFT ’這樣的結構並不利於财受來自雜f (像是玻璃基板中的納) 〇 所造成的不良影響。在裝置區域巾使料晶半導體層可以讓我們製造更小 的TFT。在用於像素開/關的TFT中,LDD的構造可以使线漏電流保持在 極低的水準。如果$漏電流太高,則可能會在—個顯示裝置中產生致命的 缺失。相反的,在構成電路元件的TFT巾,N通道型抓和p通道型 TFT可以利用低溫處理程序透過在多晶半導體層上重疊一個高濃度雜質層 來同時形成。可以對構成電路元件的TFT執行額外的雷射退火來提高這些 TFT的速度。也可以採用另外的—個構造,這個構造包括有一個滤色層、 -織色麟層、和-解坦化層,料助棚更高的像素密度和更高的 開口率。 可以利用這個製造方法做的構造並不崎TFT的構造,制時也可 以適用於於任何已知的構造。 第二製造程序概述 77 200928626 在本發明的-個顯示設計的薄媒半導體顯示裝置的基本結構 示部件,其中的電路組件佈置在顯示部件的各個像素之間的空、 基板上的其触置,时執行與將麟騎在裝置的顯示部 件上有_各_算。顯示料、以顧來執行計算㈣馳件,整合佈 置在基板上。而其他用來驅動顯示部件的電路組賴可能佈置在顯示部件 的週邊,但仍整合在同一基板上。 用來操作空間光調制器的TFT電路組件,以及諸如用來執行邏輯運算 的其他電路組件,則可能以—個如以下所述的方法佈置在-個基板上,這 個方法類似於第US6,14M67號專利中所述用來製做一個不同的裝置構 造的方法;US6,14G,667號專利整體合併在本文件中作為參考。其他的方 法對熟悉這類技術的人自然熟知而不必贅言。可以顧這個製造程序製成 的石夕的翻稱為“連續晶㈣”,而它的電學特性在某些方面(或者說在 許多方面)可能類似於單晶矽的電學特性。 ❹ 圖11、12、和13顯示出一個可以用來形成適合用於顯示器的(包括 使用於像素開/關、顯示器驅動、和邏輯電路組件中的)連續晶粒(CG) 矽的流程的簡述。基板1101可能是一個大面積的基板,且基板可能是一 種合適的玻璃、或石英材質種類。如果顯示器將只用在一個反射的幾何配 置中(像基板並不須要可以透光的一個反射式幾何配置),則可以使用不透 明基板,例如原生多晶矽或陶瓷基板。基板有一個絕緣表面。薄膜11〇2是 一個非結晶矽薄膜,其中矽的厚度在10 nm到75 nm之間,包括所形成 的任何氧化物。這個薄膜可以透過低壓化學蒸氣沈積(CVD)、或透過電漿 78 200928626 CVD處理程序來生成。 以下,我們將說明結晶矽的製程, 夕 ^ ^ ^ a ,旦許多其他的製程在這個技術領域 中都疋已知的。先形成-層遮軍絕 舶儉认ΓΓ A 1103,其中的開口對應於基板上 所需的CG珍的位置。以一種包合古λτ. 铟 1的溶液作為用來使_ 一個旋轉 塗佈製私(在這姆程中會形成促進 ㈣膜1104層)所塗佈的非結晶Si 晶化的促進劑。其他的促進劑像是 〇 Fe、Sn、Pb、Pd、Pt、Cu、4Ai^^ 類似的物質也都可以使用。在遮罩絹 Ο Ο 緣4膜1103中的開口處,促進劑薄 膜1104會與非結晶si薄膜nog接觸。 丧觸非、纟《日日Si薄膜11〇2接著可 以透過在_到霞之間的溫度下進行4小铜12小時的退火, 在-個惰㈣環射,或者是在—個包含有氫氣或氧氣的環境中生成結晶。 如圖11B中所示,在區域聰和_中的非結晶&臓會因為 Ni促進劑的催化而結晶。接著形成水平生長區域11〇7和·,這個生 長大致上會遍及整個基板。只有這些水平生長區域,如·和議,會 用來做為絲板上形成的TFT裝4_⑽。在退火完狀後,會將遮罩 層1103從基板上移除。接著進行成形,如llc中所示圖。這會在整個基 板上形成島狀的半導體層n〇g、lU〇、和11H(這些是作用層是 構成一個互補金屬氧化半導體(CMOS)電路的一個n通道型TFT的一個 作用層,1110是構成一個CMOS電路的一個P通道型TFT的一個作用 層’而1111則是構成一個像素矩陣電路的一個N通道型TFT的一個作 用層 當作用層1109、1110、和1111已經形成後,接著會形成包括有 79 200928626 含有石夕的絕緣薄膜的-個·絕緣薄臈⑽。閘極絕緣薄膜ιιΐ2的厚度 可錄咖旧50 nm的範圍内,我們應讓這個薄膜在後續的一個高溫 氧化步驟中接受-魏化。_ 1112可以_已知的氣相生長方法來生 成0 請顯示-個用來移除Ni促進劑的熱處理方法。加熱會在蝴 素屬物質的謝♦ _,物心進行01 〇 〇 到6小時的加熱叫_子是在峨的溫度下,在含有3容積百分比 (〇1/〇的HC1的ί衣境中(或者更通常的是介於〇 5v⑽到Wv〇1%之 間)’進行〇.5 ___。可恤鞭_觀幅合高濃度的氣氣 W來減緩薄膜中的矽的氧化。除了 HC1之外,其他含齒素屬物質像是 H HBr Cl2 F2 Br2、NF3、C1F3、BC13或類似的物質也都可以使用。這 個除氣程序可簡來移除細上的Ni促鋪。這個作用似乎是透過讓所 形成的氣化鎳屬物質揮發到魏空氣巾而由魏线吸絲發生的。閉極 絕緣薄膜1112的厚度在這個氧化過程中會有增大的趨勢。區域11〇9、 mo、和ini會相應的變薄’這會減低TFT的關閉⑽)電流,並且 能增進場效移動率以及其他明顯的好處。 在經過上述處理讀,接著會在—個含有氮氣的環射、在·T的 溫度下進行1小時的熱處理,以改善雜絕緣細1112的品質以及閑極 絕緣薄膜1112與區域1109、1110、和im之間的銜接面的品質。 接著會形成一個含有0.2重量百分比(wt%)的Sc的A1薄膜,並 且會形成一個用來構成一個閘極的原型的電極型樣(後面將會說明這在 200928626In one example of a display design of the present invention, decoding utilizes an electrical_distribution_distributed across the entire SLM panel. Miyazaki I Jing has any position to shout all the __. If the panel does not use the (10) decoding key, the bribe code is lost. There are no connectors on the mesh that can be intercepted and decoded from the panel. Those who want to avoid the surface must know the thinness of the panel and must connect multiple m-crystals that are widely dispersed throughout the entire ancestor. Access to decoded data. This has a very outstanding contribution to improving the protection of the surface. In the present invention, the coffee maker, the Na 2 U 2D display device will be used to humiliate the _-self-saki (Erjing turn or in the pixel matrix material) _ fine _ her. Lai _ Saki pure circuit components on the K3 of the display are more difficult to access. This also helps to improve the protection of the face. 200928626 s. In the implementation of the application of the hardware to the 7FH financial road, in principle, many parts of the computer software can also use the computer hardware to independently implement the invention - a display design example - Applications that can be implemented using software have instead been implemented in hardware using circuit components that are spread across the entire substrate of an SLM panel. Such electrical contacts may lack video material or may be on the same substrate as the Ο 但 but outside the matrix of pixels. The SLM panel can be an SLM panel for use in a vehicle or for a 2D display. 1 "Bei T. T. The variable beam steering with multiple micro-turns can be used to track the return of the vestigator or the woman's eye. (4), the viewer or the viewer's eye is mixed. The beam is turned, and __ can be oscillated into the beam ~ to control the steering of the micro 稜鏡 _ to perform. And this "controllable steering, into = continuous variable I tracking will be through a position fine and chasing To execute. The nature of 稜鏡: Controlled by the way the light can be turned in two dimensions. The two-dimensional ray turn can be performed by using two micro-array arrays in the column '.. The test in one of the arrays is set to be _ with the vertical axis of the other _ towel. ,, the direction of the effective angle, for example about 90. . For a variety of applications, such a geometric configuration, the description in the '542 patent (which is incorporated herein by reference). According to the nature of the crucible, the light will be deflected by a small or a larger angle. 71 200928626 稜鏡 It may be a liquid micro that can change the deflection angle according to the applied charge.稜鏡 [For example, flexible wide-angle beam steering using electrowetting micro-twisters," Heikenfeld et al., Optics Express 14, pp. 6557-6563 (2006), (combined in this document). Or other known arrays of turns that can control beam steering. As can be seen in Figure 34, parallel rays are deflected according to the nature of the turns as they pass through the SLM and the 稜鏡 mask. One of the programs The advantage is that various optical effects (such as lens aberrations) can be reduced before the light passes through the 稜鏡. This method is suitable for applications where the vow is placed at the viewer or viewer's eyes. In the example, adding a focusing means (such as a Fu-rotor lens) before or after the 稜鏡 array will help to collect the light onto the vow. When the observer changes his position, the 偏's partial guide The angle can be adjusted accordingly (for example by adjusting the voltage applied to the liquid micro-array array). This partial deflection angle can be continuously changed. 'These flaws do not have a phase-bias angle. In addition, it can also For each ® - Mirror side-injection 'to make each 稜鏡 稜鏡 不同 不同 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( Because the distance between the vow and the display 将会 will change because the viewer moves closer to the display or further away from the display. The calculation of the 稜鏡 angle may take into account the position of the time when it is in progress. The calculation of the 稜鏡 angle may be performed by an arithmetic circuit component located on the substrate of the SLM (like the reconstruction of the object point), or by an arithmetic circuit component disposed on the 稜鏡 array substrate. For example, 72 200928626 If the SLM substrate can also be used as a substrate for a tantalum array, there is no need to have a separate prism array substrate. A communication interface is required between the position sighting device and the SLM: for example, The interface can be a sequence interface. If the arithmetic circuit component used to calculate the deflection angle of the 稜鏡 array is not on the substrate of the 稜鏡 array, but on the substrate of the SLM, there needs to be between the two substrates. A data connection line allows the electrodes of the 稜鏡 array to be controlled using the calculated results. In addition to the calculations used to control 稜鏡, we must also apply a “phase correction” for the phase caused by the 稜鏡 array. The phenomenon of “jumping, (or “phase discontinuity”) provides compensation. Otherwise, the effect of the 稜鏡 顺 顺 呈现 呈现 会 会 会 会 会 会 会 会 会 会 , , , , , , , , , , , , There will be different path distances reaching v〇w, so the effect will be like a grid-like, and changing the angle of the 会 will affect the energy distributed on different diffraction levels. This phase correction can be performed by the SLM outside of its holographic image encoding function. The light passing through these two components (ie 稜鏡_ and SLM) will be subjected to the - item multifilament according to the function of each component. The revised her job shot includes the subtraction correction required for the microprism array: the holographic county (four) wire reconstruction age represents the value of the pixel state, including the value of the phase correction, for encoding. The functions described above can also be applied to the case where the holographic image is produced in a projection device. The projection referred to here involves the formation of a rim on the eccentric train and the reconstruction of the required 3D scene. This occurs in front of V〇w, thereby forming a device corresponding to that known in the art. The required calculations and __ in the above positions are naturally familiar to those familiar with the technology of 73 200928626 without rumors. The calculation must be made for the deflection angle of each 稜鏡 in the 稜鏡 array and for the phase compensation used to correct the resulting phase discontinuity. The phase compensation of the prism array can be provided separately when the SLM is formed on the germanium array or separately by an additional SLM placed near the germanium array. In order to be able to project, the SLM may be light transmissive and the array may be reflective, or the SLM may be reflective and the array may be transparent, well known to those skilled in the art without ignorance. Liquid micro-caries such as "Flexible wide-angle beam steering with electrowetting micro-twisting" as described in the article [Heikenfeld et al., Optics Express 14, ρρ·6557-6563 (2006), (combined in this document for reference) ]. This technique is called "electrowetting," (electr〇wetting or e-wetting). In this technique, the interface between a transparent conductive liquid and another fluid (such as air) is coated with a The contact angle formed by the hydrophilically insulated electrode is a function of the electric power applied to the electrode to the transparent guide body. The individual lions are added to two electrodes each coated with non-hydrophilic insulation (each time - each age) The voltage on the side wall of each of the __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The turning of the pixel grid. The use of the electric wetting ribs to turn the county to the purpose of the Nao set is very familiar to the people of Lin Lai technology without having to s. The beam steering angle will be applied to the array of pixels in each cell. The controllable filaments on the different electrodes of the side are controlled. First Manufacturing Procedure Overview 200928626 In the basic structure of a thin film semiconductor display device of a display design of the present invention, a display component is provided, wherein The circuit components are arranged between the respective pixels of the display component, or at other locations on the substrate, for performing various calculations related to displaying the material on the display component of the device. Displaying, merging (four) pieces On the other side of the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The TFT circuit assembly for operating the spatial light modulator, as well as other circuit components such as those used to perform the logic operations, may be arranged on a substrate in a manner as described below, which is similar to that described in U.S. Patent No. 6,153,893. A method for making a different device is described in the entirety of U.S. Patent No. 6,153,893, the disclosure of which is incorporated herein by reference in its entirety in its entirety in the entire disclosure of It is a large-area substrate and the substrate can be deficient. The type of glass material depends on the type of glass material. The processing procedure of the glass substrate tends to prefer low temperature processing, at least The standard of manufacturing technology. The high temperature oxidation process, such as the gate insulation used to create the device, tends to be incompatible with the low temperature process. The typical temperature of this process is about 350 Τ to 70 侍. The range of (:: the pixel electrode and the thin film transistor for performing on/off are arranged in a matrix in the display part. The thin film transistor for constituting the circuit element is disposed between respective pixels of the display part or Other locations on the substrate, or may be arranged on the same substrate. The thin film transistor may be a lower gate type, including a gate and a gate formed on the gate 75 200928626 A polycrystalline semiconductor layer on the insulating layer, and a high concentration impurity thin layer including a source formed on the polycrystalline semiconductor layer and a drain. The tft used for on/off may have a lightly doped immersion (10) structure in which a low concentration impurity film is interposed between the polycrystalline semiconductor layer and the high concentration impurity film. In a typical display design, the display member has an upper portion including a pixel electrode, a lower portion including a TFT for performing OFF, and possibly a color filter layer, a black mask. a cover layer, and a planarization layer interposed between the upper side and the lower side. If this is the case, the black mask layer will contain a layer of metal wire to form a Wei connection with the source and the high concentration of the impurity layer. At the same time, the pixel electrode is also electrically connected to the secret high-hazard impurity film through the metal wire layer. In addition, if a backlight containing three primary colors and illuminated in a time-multiplexed mode is used, the color filter layer can be omitted. A construction with a social _ thin can be customized for shipbuilding. First, a thin pole is formed on the glass plate. Next, on the difficult-ship film, a discriminating film is formed, and the laser-annealing of the film is half-thin-week-wei. However, it is preferable to form a low-concentration impurity layer only on the polycrystalline layer included in the pixel on/off, for example, by using a mask layer. In addition to this, a high-concentration impurity layer for the source and the gate is formed on the low-concentration impurity film, and accordingly, a TFT having a laminated LDD structure for on/off is formed. At the same time, the m used for the circuit component is formed through the polycrystalline layer directly included in the circuit-turning portion (such as the image-receiving portion or the peripheral driving portion) - for the source It is composed of a high-concentration impurity layer with no polarity. Preferably, the laser annealing can be selectively performed on the high-concentration impurity layer included in the circuit component portion to reduce the resistance of the polycrystalline semiconductor layer of the semiconductor layer of 2009. A semiconductor film is formed on a gate insulating film on the gate. This semiconductor film is then converted into a polycrystalline layer by laser annealing. Therefore, a polycrystalline TFT can be formed using a low temperature processing procedure. The lasers used typically have a shorter wavelength such that the radiation of the laser can be strongly absorbed in the Si. An example is a standard molecular laser, but others are also known. Since it is a structure of a P-type TFT ’, it is not advantageous for the adverse effects caused by impurities (such as nano-dots in a glass substrate). In the device area, the seed crystal layer allows us to make smaller TFTs. In TFTs for pixel on/off, the LDD is constructed to keep the line leakage current at an extremely low level. If the leakage current is too high, a fatal loss may occur in one display device. On the contrary, in the TFT pads constituting the circuit elements, the N-channel type grasping and p-channel type TFTs can be simultaneously formed by superposing a high-concentration impurity layer on the polycrystalline semiconductor layer by a low-temperature processing program. Additional laser annealing can be performed on the TFTs constituting the circuit elements to increase the speed of these TFTs. It is also possible to use another configuration which includes a color filter layer, a woven color layer, and a de-salting layer to provide a higher pixel density and a higher aperture ratio. The construction which can be made by this manufacturing method is not the configuration of the TFT, and the manufacturing time can be applied to any known configuration. Second Manufacturing Procedure Overview 77 200928626 A basic structural display component of a thin-film semiconductor display device of the present invention, wherein the circuit component is disposed between the respective pixels of the display component, the contact thereof on the substrate, When performing and riding on the display part of the device, there are _ each_. Display materials, perform calculations (4), and integrate them on the substrate. Other circuit groups for driving the display components may be disposed on the periphery of the display member, but still integrated on the same substrate. The TFT circuit components used to operate the spatial light modulator, as well as other circuit components such as those used to perform logic operations, may be arranged on a substrate in a manner similar to that described in US6, 14M67. A method for making a different device configuration as described in the patent; U.S. Patent No. 6,14, the entire disclosure of which is incorporated herein by reference. Other methods are naturally familiar to those familiar with such techniques without rumors. The singularity of Shi Xi, which can be made by this manufacturing process, is called "continuous crystal (four)", and its electrical properties may be similar in some aspects (or in many respects) to the electrical properties of single crystal germanium. ❹ Figures 11, 12, and 13 show a simplified flow that can be used to form a continuous die (CG) 适合 suitable for use in displays, including for pixel on/off, display drive, and logic circuit components. Said. The substrate 1101 may be a large area substrate, and the substrate may be a suitable glass or quartz material. If the display will only be used in a reflective geometry (like a substrate that does not require a reflective geometry to transmit light), an opaque substrate such as a native polysilicon or ceramic substrate can be used. The substrate has an insulating surface. Film 11〇2 is an amorphous germanium film in which germanium has a thickness between 10 nm and 75 nm, including any oxide formed. This film can be formed by low pressure chemical vapor deposition (CVD) or by a plasma processing procedure. In the following, we will explain the process of crystallization enthalpy, and many other processes are known in the art. First form a layer-covering ΓΓ 俭 ΓΓ A 1103, the opening corresponding to the position of the CG Jane on the substrate. A solution containing the intrinsic λτ. Indium 1 was used as an accelerator for crystallizing the amorphous Si coated by a spin coating method in which a film of 1104 was promoted. Other accelerators such as 〇Fe, Sn, Pb, Pd, Pt, Cu, and 4Ai^^ can also be used. At the opening in the mask 4 Ο edge 4 film 1103, the accelerator film 1104 is in contact with the amorphous Si film nog. The sorrow is not the same, 纟 "Silver film 11 〇 2 can then be annealed by 4 hours of copper at a temperature between _ to Xia, 12 hours in an inert (four) ring, or in a gas containing Crystals are formed in an oxygen environment. As shown in Fig. 11B, the amorphous & 在 in the region Cong and _ will crystallize due to the catalysis of the Ni promoter. Then, horizontal growth regions 11?7 and ? are formed, and this growth substantially spreads over the entire substrate. Only these horizontal growth areas, such as the discussion, will be used as the TFTs formed on the wire board 4_(10). After annealing, the mask layer 1103 is removed from the substrate. The shaping is then carried out as shown in the figure of llc. This forms island-like semiconductor layers n〇g, lU〇, and 11H on the entire substrate (these layers are an active layer of an n-channel type TFT constituting a complementary metal oxide semiconductor (CMOS) circuit, and 1110 is formed. An active layer of a P-channel type TFT of a CMOS circuit and 1111 is an active layer of an N-channel type TFT constituting a pixel matrix circuit. After the active layers 1109, 1110, and 1111 have been formed, they are subsequently formed. There are 79 200928626 Insulation thin film (10) containing Shi Xi's insulating film. The thickness of the gate insulating film ιιΐ2 can be recorded in the range of 50 nm, we should let this film accept in a subsequent high temperature oxidation step - Weihua. _ 1112 can be known by the known vapor phase growth method to generate 0. Please show a heat treatment method for removing the Ni promoter. Heating will be carried out in the genus of the genus The 6-hour heating is called _ sub-at the temperature of 峨, in a volume containing 3 volume percent (〇1/〇 HC1 (or more usually between 〇5v(10) to Wv〇1%)' Carry out 〇.5 ___ The whisker _ viewing and high concentration of gas W to slow the oxidation of bismuth in the film. In addition to HC1, other genus materials such as H HBr Cl2 F2 Br2, NF3, C1F3, BC13 or similar substances It can also be used. This degassing procedure can be used to remove the thin Ni coating. This effect seems to be caused by the Wei wire suction by volatilizing the formed vaporized nickel species into the Wei air towel. The thickness of the pole insulating film 1112 tends to increase during this oxidation process. The regions 11〇9, mo, and ini will be correspondingly thinned 'this will reduce the closing (10) current of the TFT, and can improve the field effect mobility and Other obvious advantages. After the above processing, the heat treatment is performed for 1 hour at a temperature of ·T in an annular reaction containing nitrogen gas to improve the quality of the impurity insulating 1112 and the idle insulating film 1112 and the region. The quality of the interface between 1109, 1110, and im. An A1 film containing 0.2 weight percent (wt%) of Sc is then formed, and an electrode pattern of a prototype for forming a gate is formed (back Will explain this 200 928 626

Ta、W、Mo、或 ,會形成閘極 圖π並沒有顯示出來。適合用於這個目的的其他材料,如 Si也都可以使用。透過對這個型樣的表面進行陽極氧化 1113、1114、和1115,以及陽極化薄膜1116、1117、和1118,如11])中 所示圖。在下一個步驟中,如圖11E中所示’以蝕洗方式去除薄膜1112 (例如使肖CHF3氣體),使薄m 1112只會留存在各個電極的正下方 1119、1120 U21的位置。這時會以-個耐钱遮罩1122來遮覆預定 用於-個P通道型TFT的區域。接著透過(例如)植入或電漿沈積方法 〇 來加入用於11型材料的雜質離子,如圖11E中的箭頭所示。接著形成n型 區域1123、1124、1125、和1126。在這個過程之後,可以將耐餘遮罩1122 移除,並在η型區域上加上一個耐钱遮罩1127來遮覆(圖12Α)。接著可 以透過(例如)植入或電漿沈積方法來對ρ型區域1128和1129進行摻 雜。Ρ摻雜區域也就是LDD區域。然後可以將遮覆η型區域的耐蝕遮罩 1127去除。 接著透過一個回蝕處理程序在侧壁1130、1131、和1132上形成氧化 矽薄膜。以一個遮罩1133來遮覆ρ型區域,並加入η型摻雜劑來提高 沒有被氧化物侧壁遮覆的區域中的η型摻雜劑的濃度。將源極^/汲極區域 的薄膜電阻調整到小於500 Ω的水準,最好是小於300 Ω。接著在閘極 下方形成一個原生的或本質上是原生的通道成形區域1137。接著形成構成 像素矩陣電路的一個源極區域1138、一個汲極區域1139、低濃度雜質區 域1140、和—個Ν通道型TFT的通道成形區域1141(圖12C)。在圖12D 中’耐敍遮單1133已經移除並在n通道型TFT上形成一個耐蝕遮罩 81 200928626 1142。進一步加入ρ型雜質來提高ρ型摻雜劑的濃度。接著將耐蝕遮罩 1142移除並透過熱處理(例如徐冷爐退火、雷射退火、或類似處理)來使 雜質離子活化。這可以減少或消除因熱處理所造成的植入損壞。 接著形成一層厚度在20 nm到50 nm之間的Ti薄膜1147並執行 採用燈照退火方法的熱處理。Si與Ti薄膜接觸會發生化學反應而形成石夕 ❹ 〇 化鈦’而形成石夕化物區域1148、1149、和1150,如圖13A中所示。圖13B 顯示出島狀的型樣1151、1152、和1153,這些型樣的形成可以避免石夕化 物細區域1148、1149、和1150在後續的步驟中由於形成用來連接源極 /汲極區域和配線的接觸孔而被去除。 接著形成一層厚度在0.3 μιη到1 μιη之間的氧化矽薄膜作為第一中 介層絕緣賴1154。接著形成接觸孔,並形成源極配線1155、脳、和 順以及汲極配線⑽和1159,如圖13Β中所示。可以使用有機樹脂 來做為第-中介層絕緣薄膜U54。在圖13C中,會在基板上形成一個厚度 在0.5 μιη到3 μΓη顧_第二絕緣層聰。可以使用聚亞軸、丙稀 酸樹脂、聚醯胺、聚亞酿胺醯胺、或類似材料來做為有機樹脂薄膜。接著 在薄膜絕緣層1160上形成-個黑色遮罩116卜織形成—個厚度在 μιη到0.3 μιη範圍内的第三絕緣中介層薄膜1162,像是氧化矽、氮化矽、 氮氧化破、或-财機樹脂賊、或是這些娜的層積薄膜。在薄膜116〇 和薄膜1162上形成各個接觸孔,並形成一個厚度為12〇咖的像素電極 腿。在-舰色鱗1161與像素電極⑽重疊域形成—個輔助 電容1164,如圖13C中所示。 82 200928626 #整娜板在錢氣的環射在35(rG的溫訂加熱丨到2小 時,這可以對懸浮鍵提供補償,尤其是在各個薄膜的作用層中 。在這些步 驟之後,可以在同-基板上(例如在相鄰的位置上)臟圖13c左側所示 的CMOS電路以及圖13C右側所示的像素矩陣電路。 可以透過这種製造方法製成的構造並不限於τρτ構造,而可以套用於 • 任何已知的構造,包括下閘極式TFT。 第二製造程序概述 在本發明的-個顯示設計的薄膜半導體顯示裝置的基本結構中,提供 有-個顯示部件,其中的電路組件佈置在顯示部件的各個像素之間的空 間’或在同-餘上的其他,用純行無龍齡在裝置的顯示部 件上有關的各種計算。顯示部件、以及用來執行計算的電輸件,整合佈 置在基板上。而其他用來驅動顯示部件的電路組件射能佈置在顯示部件 的週邊’但仍整合在同一基板上。 〇 时操作空間光調制器的TFT電路組件,以及諸如用來執行邏輯運算 麟他電馳件,則可能以—個如以下所述的方法佈置在—個基板上,這 個方法類似於第US6, 759, 677號專利中所述用來製做—個不同的震置構 造的方法;US6, 759,號專利整體合併在本文件中作為參考。其他的方 法對热悉賴技術的人自然熟知㈣必贅言。可以採用這種製造程序製成 的半導體種類是多晶石夕鍺,而它的電學特性在某些方面(或者在許多方面 都)可能類似於(或甚至超過)單晶矽的電學特性。 這個製造程序可以使電路組件在同一個基板上形成。可以使用多晶矽 83 200928626 做為作用層來產生許多可以用來控制顯示器的各個像素的tft。所產生的 其他τπ則可以具有像是_驅動電路、源極驅動電路、和訊號處理電路 的功能,在這些TFT中用來做為作用層的是石夕鍺,以便提升高速運算的能 力。Ge會加入到需要具有高速運算能力的電路組件的部份而多晶&則 會用在需要具有低關閉(OFF)電流特性的電路部份。 在這個程序中會製造一個包含有一個像素矩陣電路、以及一個驅動電 路(在這個範例中這是-個CM0S電路)的主動矩陣式顯示裝置,而這些 ° 全部都在同—個基板上的—個絕緣表面上形成。這個處理程序如圖6中所 示0 如圖6A中所示,準備-個玻璃基板6〇1,然後在其上形成一層氧化石夕 602。利用電聚CVD方法形成-個厚度為3〇 nm的非結晶石夕薄膜6〇3。利 用成形法在非結晶Si薄膜603上形成-個耐钱遮罩6〇4。形成這個耐钱 遮罩是為了遮覆那些將用來形成用於像素矩陣電路的τρτ組群的區域。而 將用來形成高速電路的區域則不加以遮覆。如圖6β中所示,^會利用諸 〇 如“離子植入,,、“電漿摻雜,,、或“雷射摻雜,,的技術來加入。Ge的加 入是為了改變非結晶si薄膜的組成成份以便產生一個均勻的Siixfe薄 膜(其中0<χ<1)的組成成份。如果採用離子植入技術,則要加入^的 薄膜605將會有遭受植入損壞的風險。_ 薄膜6〇5是處於一個 非結晶的狀態下。 由於在Ge中的晶格擴散所需的活化能量比在&中為低,且^和 Si在二元合金相位圖中在低於炼點以下的溫度下會成為彼此的一個固溶 84 200928626 體’因此Ge的存在可以用來加速sh-xGex薄膜的結晶(相較於只有純Si 薄膜的結晶)。在這方面,Ge在Si的結晶上(像是在雷射誘引結晶中) 可以被視為是一種觸媒半導體。 在圖6C中,财蚀層6〇3已經被移除並在整個表面上加上一層含Ni 層606,如第US5, 643, 826號專利中所述;US5, 643, 826號專利整體合併 在本文件中作為參考。Ni是用來做為一種觸媒材料以便加速以或 Sh-xGex薄膜的結晶。但除Ni以外的元素,像是c〇、Fe、Cu、时' pt、Au、 © 或In也可以用於這個目的上。如圖6D中所示,Si和Sinfe薄膜的結 晶可以透過徐冷爐退火來達成,在的溫度下退火約8小時。這會 形成一個多晶Sinfe區域607和一個多晶石夕區域6〇8。這個熱處理也可 以利用其他方法純行,例如像是雷㈣火或燈照退火。Ta, W, Mo, or , will form the gate map π and it is not shown. Other materials suitable for this purpose, such as Si, can also be used. The graphs shown in Fig. 11) were anodized by the surface of this type of patterns 1113, 1114, and 1115, and anodized films 1116, 1117, and 1118. In the next step, the film 1112 is removed by etching (e.g., the Schiff CHF3 gas) as shown in Fig. 11E, so that the thin m 1112 is left only in the position immediately below the respective electrodes 1119, 1120 U21. At this time, a region suitable for a P-channel type TFT is covered with a money-resistant mask 1122. Impurity ions for the Type 11 material are then added by, for example, implantation or plasma deposition methods, as indicated by the arrows in Figure 11E. N-type regions 1123, 1124, 1125, and 1126 are then formed. After this process, the residual mask 1122 can be removed and a nense mask 1127 is applied over the n-type area to cover (Fig. 12A). The p-type regions 1128 and 1129 can then be doped by, for example, implantation or plasma deposition methods. The erbium doped region is also the LDD region. The resist mask 1127 covering the n-type region can then be removed. A ruthenium oxide film is then formed on the sidewalls 1130, 1131, and 1132 through an etch back process. A mask 1133 is used to cover the p-type region, and an n-type dopant is added to increase the concentration of the n-type dopant in the region not covered by the oxide sidewall. Adjust the sheet resistance of the source/drain region to a level of less than 500 Ω, preferably less than 300 Ω. A native or essentially native channel forming region 1137 is then formed beneath the gate. Next, a source region 1138 constituting the pixel matrix circuit, a drain region 1139, a low-concentration impurity region 1140, and a channel forming region 1141 of a Ν channel type TFT are formed (Fig. 12C). In Fig. 12D, the refractory mask 1133 has been removed and a resist mask 81 200928626 1142 is formed on the n-channel type TFT. Further, a p-type impurity is added to increase the concentration of the p-type dopant. The resist mask 1142 is then removed and activated by heat treatment (e.g., quench oven annealing, laser annealing, or the like) to activate the impurity ions. This can reduce or eliminate implant damage caused by heat treatment. Next, a Ti film 1147 having a thickness of between 20 nm and 50 nm is formed and heat treatment by a lamp annealing method is performed. When Si is in contact with the Ti film, a chemical reaction occurs to form Titanium ruthenium titanium oxide, and the lithium compound regions 1148, 1149, and 1150 are formed as shown in Fig. 13A. Fig. 13B shows island-like patterns 1151, 1152, and 1153, which are formed to prevent the formation of the fine-grained regions 1148, 1149, and 1150 from being formed in the subsequent steps for connecting the source/drain regions and The contact holes of the wiring are removed. Next, a ruthenium oxide film having a thickness of between 0.3 μm and 1 μm is formed as the first interlayer insulating layer 1154. Contact holes are then formed, and source wirings 1155, 脳, and cis and drain wirings (10) and 1159 are formed as shown in Fig. 13A. An organic resin can be used as the inter-layer insulating film U54. In Fig. 13C, a thickness of 0.5 μm to 3 μm of the second insulating layer is formed on the substrate. As the organic resin film, a poly-shaft, an acrylic resin, a polyamide, a poly-anisoleamine, or the like can be used. Then, a black mask 116 is formed on the thin film insulating layer 1160 to form a third insulating interposer film 1162 having a thickness ranging from μιη to 0.3 μηη, such as tantalum oxide, tantalum nitride, nitrogen oxide, or - The resin thief, or the laminated film of these. Each of the contact holes is formed on the film 116A and the film 1162, and a pixel electrode leg having a thickness of 12 Å is formed. An auxiliary capacitor 1164 is formed in the overlap region of the ship scale 1161 and the pixel electrode (10) as shown in Fig. 13C. 82 200928626 #整娜板 is in a loop of money at 35 (rG temperature heating for 2 hours, which can provide compensation for the floating key, especially in the layer of each film. After these steps, you can The CMOS circuit shown on the left side of the dirty picture 13c and the pixel matrix circuit shown on the right side of FIG. 13C are on the same substrate (for example, at adjacent positions). The configuration that can be made by this manufacturing method is not limited to the τρτ configuration, and Can be applied to any known configuration, including a lower gate TFT. Second Manufacturing Procedure Overview In the basic structure of a thin film semiconductor display device of the present invention, a display component is provided, in which the circuit The components are arranged in a space between the respective pixels of the display component or other calculations on the display component of the device in a pure line without a dragon. The display component and the electrical transmission used to perform the calculation The components are integrated on the substrate, while other circuit components for driving the display components are disposed on the periphery of the display member but are still integrated on the same substrate. The TFT circuit assembly of the light modulator, and the like, for performing logic operations, may be arranged on a substrate in a manner similar to that described in US Pat. No. 6,759,677. The method described in the patent for making a different slanting structure; the US Patent No. 6,759, the entire disclosure of which is incorporated herein by reference in its entirety in its entirety in its entirety in its entirety in its entirety The type of semiconductor fabricated by this fabrication process is polycrystalline, and its electrical properties may be similar (or even superior) to the electrical properties of single crystal germanium in some respects (or in many respects). The program can be used to form circuit components on the same substrate. Polysilicon 83 200928626 can be used as the active layer to generate a number of tfts that can be used to control the individual pixels of the display. The other τπ generated can have a _drive circuit, source. The functions of the pole drive circuit and the signal processing circuit are used in these TFTs as the layer of action, in order to improve the ability of high-speed operation. Ge will add To the part of the circuit component that requires high-speed computing capability, polycrystalline & is used in circuits that require low off current characteristics. In this program, a pixel matrix circuit is fabricated, and An active matrix display device of a drive circuit (in this example, this is a CM0S circuit), and these are all formed on an insulating surface on the same substrate. This processing procedure is shown in FIG. 0 As shown in FIG. 6A, a glass substrate 6〇1 is prepared, and then a layer of oxidized oxide 602 is formed thereon. An amorphous lithography film 6〇3 having a thickness of 3 〇nm is formed by an electropolymerization CVD method. A money-resistant mask 6〇4 is formed on the amorphous Si film 603 by a forming method. This money-resistant mask is formed to cover areas that will be used to form the τρτ group for the pixel matrix circuit. The area that will be used to form the high speed circuit is not obscured. As shown in Figure 6β, ^ will be added using techniques such as "ion implantation," "plasma doping," or "laser doping." Ge is added to change the amorphous Si. The composition of the film is such that a uniform composition of Siixfe film (where 0 < χ < 1) is produced. If ion implantation techniques are employed, the film 605 to be added will be at risk of implant damage. _ Film 6 〇5 is in an amorphous state. The activation energy required for lattice diffusion in Ge is lower than in & and ^ and Si are below the refining point in the binary alloy phase diagram. At temperature, it will become a solid solution of each other. 84 200928626 Body 'Therefore, the presence of Ge can be used to accelerate the crystallization of the sh-xGex film (compared to the crystallization of only pure Si film). In this respect, Ge is on the crystal of Si ( As in laser-induced crystallization, it can be considered as a catalyst semiconductor. In Figure 6C, the eclipse layer 6〇3 has been removed and a layer of Ni-containing layer 606 is added over the entire surface, as in US5. Patent No. 826; US 5, 643, 826 This document is used as a reference. Ni is used as a catalyst material to accelerate the crystallization of a film or a Sh-xGex film, but elements other than Ni, such as c〇, Fe, Cu, when 'pt, Au, © Or In can also be used for this purpose. As shown in Fig. 6D, the crystallization of the Si and Sinfe films can be achieved by annealing in a quench oven and annealing at a temperature of about 8 hours. This will form a polycrystalline Sinfe region 607 and more than one. The spar area is 6〇8. This heat treatment can also be performed by other methods, such as Ray (four) fire or lamp illumination.

l。接下來,對這個島狀型樣執行陽極氣 個多孔性陽極氧⑽_。接著改變溶 85 200928626 =進-娜極氧化以形成—個緊致的陽極氧化物 型樣。細這個方式樹孔性陽極氧化物薄膜和緊致陽極氧化物薄膜= 後,利用—個餘方法綠刻閘極介電薄膜。在完成_介電薄膜的钮刻 之後,將纽《極獅咖除,藉縣獲得_中㈣狀態。 如圖7A中所示,7U、712、和〆 13疋由氧化矽薄膜所構成的閘極絕 緣薄膜,m、715、和 716 是―μ ai ___ 1 ❹ 7Π、718、和719則是用來保護閘極的緊致陽極氧化物薄膜。如圖π中 所示,來形成-個Ρ通道型TFT的部位以—個遮請遮覆。其餘 的部位則將進行n型離子植入以便提供n型導性。如第卿,⑽,奶號 專利中所述,將會使用兩個不同的加速電壓來使所植人的離子在整個深度 上的濃度有更均勻的分布。 在圖7B中,這個處理程序會形成用來構成一個驅動電路的—個^通 道型TFT的-個没極區域72卜一娜極區域把、一個區域似、 和-個通道區域724。同時也會形成用來構成一個像素矩陣電路的一個N ® 通道型TFT的一個汲極區域726、一個源極區域725、一個LDD區域 727、和一個通道區域728。 在圖7C中’已經將耐钱遮罩720移除並加上一個耐姓遮罩729來遮 覆η型區域。接著利用如第US5, 648,277號專利所述的兩個加速電壓來 植入雜質離子以提供Ρ型導性,使所植入的離子在整個深度上的濃度有更 均勻的分布。這會形成用來構成一個驅動電路的一個ρ通道型TFT的一 個源極區域730、一個汲極區域731、一個LDD區域732、和一個通道區 86 200928626 域733。雜質離子會透過—個退火程序使它活化。 接著形成一個第一中介層絕緣薄膜734並在其中開設多個接觸孔來 形成源極735、736、737和没極738、739。絕緣層734可以使用從氧化 石夕、氮化石夕、氮氧化石夕、和樹脂薄膜中挑選的材料製成。用於驅動電路的册τ 現在已經完成。接下來必須完成用於像素矩陣的π卜在形成源極和沒極 之後’接著形成-個第二中介層絕緣薄膜74(),織在其上形成—個包括 Tl薄膜的黑色遮罩74卜如果我們在形成黑色遮罩741之前先在沒極 739上的位置部份移除第二中介層絕緣薄膜,則可以從黑色遮罩、第二中 介層絕緣;|膜、和祕形成—個獅電容。接著在黑色遮罩Ml上形成一 個第三絕緣層薄膜742並在其中形成一個接觸孔,以及在其上形成—個包 括有透明導電薄膜(諸如氧化觸)的像素電極743。 如圖7D中所示,這裡揭露的是一個包含TFT的主動矩陣式基板,它 包括有完整形成的像素和駆動電路,這些電路可能彼此緊鄰。熟 Ο 術的人將會清楚瞭解圖7D中的漏電路可以取代為其他電路,像是訊號 處理電路k個電路可以在多晶石夕錄區域上形成。這個多晶碎錯區域擁有 極同的禮移動率’因此非常適合用於高速運算,然多晶魏域相較於 多晶麵域具有較差的運算速度的特性,_魏域在應躲像素矩 降TFT中時部也具有較佳的低關(OFF)電流特性。 可以透過_製造方法製成的構造並秘於TFT構造,而可以套用於 任何已知的構造’包括下閘極式TFT。 87 200928626 雷射光源 以(例如)GaInAs或GaInAsN材料為基礎的固態雷射光源,由 於它們的精巧性質以及它們所具有的高水準光定向能力,可能非常適合用 來做為-個全像顯示器的光源。這―_光源包括發光二極體以及由美國 i的Novalux (RTM)公司所製造的卿垂直面射型雷射(VCSEL)。這 種雷射光財單束雷射或物雷射的型式供應,賴每-種光源都可以透 L彻繞料光學it制來產生乡道光束。錄可能會通過乡模光纖,因 〇 騎可以減少—致性轉’如果-雖水準太高,在用於精巧型全像顯示 器中時’ 34可以避免產生令人不悅的人卫處理痕跡,像是雷射光斑。雷射 光源的陣列可以是一維或二維的陣列。 基板 我們必須強調所謂的“基板,,也就是用來製造顯示器的一個材料板 塊。這通常會是一個絕緣基板,像是玻璃板基板、或是一個藍寶石基板、 © 、 a 或者是一個半導體基板(如Si或GaAs),但其他的基板像是聚合物板材 或金屬板材也是可行的❶基板,如玻璃基板或半導體基板(像是Si或 GaAs),經常會用在裝置的製造中,因為它們可以簡化處理步驟以及在執行 不同的製程步驟的各個設備(像是材料沈積、退火、以及材料蝕洗設備) 之間的輸送。所謂的“基板,,並不是指稱一個個別個電路板,如同 Shimobaba 等人在 〇pticsExpress 期刊(13,4196,2005)中所揭露的: 一個個別電路板並不允許在其上進行可以在一個個別的基板(像是玻璃板 88 200928626 基板)上執行的一系列製造程序。 電晶體總數估算 本節將說明在-個全像計算將在佈置在顯示器的各個像素之間的電路 组件上執行_示器中所需的電晶韻數目的估算。 在採用個FPGA的顯示設計方面,全像影像計算包括有下列的各個l. Next, the anode gas porous anodic oxygen (10)_ was performed on this island-like pattern. Then change the solubility 85 200928626 = In-polar oxidation to form a compact anodic oxide pattern. After the thin-hole anodic oxide film and the compact anodic oxide film are thinned in this way, a green gate dielectric film is used. After completing the button of the _ dielectric film, the lion is removed from the lion, and the _ middle (four) state is obtained by the county. As shown in Fig. 7A, 7U, 712, and 〆13疋 are gate insulating films composed of a hafnium oxide film, m, 715, and 716 are "μ ai ___ 1 ❹ 7 Π, 718, and 719 are used. A compact anodic oxide film that protects the gate. As shown in Fig. π, the portion where the ? channel type TFT is formed is covered with a cover. The remaining sites will be implanted with n-type ions to provide n-type conductivity. As described in Diqing, (10), Milk Number, two different accelerating voltages will be used to provide a more even distribution of implanted ions over the entire depth. In Fig. 7B, this processing program forms a non-polar region 72, a region-like region, and a channel region 724, which are used to form a driving circuit. A drain region 726, a source region 725, an LDD region 727, and a channel region 728 of an N ® channel type TFT for forming a pixel matrix circuit are also formed. The money mask 720 has been removed in Figure 7C and a resistance mask 729 has been added to cover the n-type area. Impurity ions are then implanted using two accelerating voltages as described in U.S. Patent No. 5,648,277 to provide the sigmoidal conductivity to provide a more uniform distribution of implanted ions over the entire depth. This forms a source region 730, a drain region 731, an LDD region 732, and a channel region 86 200928626 field 733 of a p-channel type TFT which constitutes a driving circuit. Impurity ions are activated by an annealing process. Next, a first interposer insulating film 734 is formed and a plurality of contact holes are formed therein to form source electrodes 735, 736, 737 and gates 738, 739. The insulating layer 734 can be made of a material selected from the group consisting of oxidized stone, cerium nitride, oxynitride, and a resin film. The book τ for the drive circuit has now been completed. Next, it is necessary to complete the π for the pixel matrix, and then form a second interposer insulating film 74 (after forming the source and the immersion), and fabricate a black mask 74 including the T1 film thereon. If we remove the second interposer insulating film at the position on the electrodeless 739 before forming the black mask 741, it can be insulated from the black mask and the second interposer; | film, and secret formation - a lion capacitance. Next, a third insulating layer film 742 is formed on the black mask M1 and a contact hole is formed therein, and a pixel electrode 743 including a transparent conductive film such as an oxidized touch is formed thereon. As shown in Figure 7D, disclosed herein is an active matrix substrate comprising a TFT comprising fully formed pixels and sway circuits which may be in close proximity to each other. Those skilled in the art will clearly understand that the drain circuit of Figure 7D can be replaced by other circuits, such as signal processing circuits, k circuits can be formed on the polycrystalline stone recording area. This polycrystalline broken region has the same ritual mobility rate 'so it is very suitable for high-speed operation, but the polycrystalline Wei domain has poorer operating speed characteristics than the polycrystalline surface region, and the _ domain should hide the pixel moment. The time portion of the falling TFT also has a better low-off (OFF) current characteristic. The construction which can be made by the manufacturing method is secretive to the TFT construction, and can be applied to any known structure 'including the lower gate TFT. 87 200928626 Laser sources Solid-state laser sources based on, for example, GaInAs or GaInAsN materials, due to their ingenious nature and their high level of light directivity, may be well suited for use as a holographic display. light source. This _ light source includes a light-emitting diode and a clear vertical plane laser (VCSEL) manufactured by Novalux (RTM) of the United States. This kind of laser light source single beam laser or object laser type supply, relying on each type of light source can be used to produce a rural road beam through the optical fiber. Recording may pass through the rural model fiber, because the ride can be reduced - the sexual turn 'if - although the level is too high, when used in a compact holographic display' 34 can avoid unpleasant human guards, Like a laser spot. The array of laser sources can be a one- or two-dimensional array. The substrate we must emphasize the so-called "substrate, that is, a material plate used to make the display. This will usually be an insulating substrate, such as a glass substrate, or a sapphire substrate, ©, a or a semiconductor substrate ( Such as Si or GaAs), but other substrates such as polymer sheets or metal sheets are also feasible tantalum substrates, such as glass substrates or semiconductor substrates (such as Si or GaAs), are often used in the manufacture of devices because they can Simplify processing steps and transport between various devices (such as material deposition, annealing, and material etch equipment) that perform different process steps. The so-called "substrate, does not refer to a single board, like Shimobaba, etc. As disclosed in the 〇pticsExpress Journal (13, 4196, 2005): A single board does not allow a series of manufacturing procedures to be performed on an individual substrate (such as a glass plate 88 200928626 substrate). . Estimation of the total number of transistors This section will illustrate the estimation of the number of electro-crystals required to perform in a hologram on a circuit component disposed between individual pixels of a display. In the display design using an FPGA, the holographic image calculation includes the following

步驟’其中所示的百分岐表示在脱上可以聽特定步驟的邏輯資源 的百分比。 •透鏡函數:加上__減根據z絲產生次全像影像(㈣) NORDIC 將取自她和度量的各個複雜轉換為實值和虛值,並 執行光強度的調制(62.5%) 疊加各個次全像影像來構成全像影像(15•⑹ •全像影像編碼:G_e咖細來_轉換為她和度量以 及轉換回實值和虛值,並用於龍剪裁和正常化(17.5%) 由於用於記敵福電晶體數目並不取決於管線的_,以上所示的 百分比數字在執行像素鱗㈣時可能會有所不同。躲 的運算需求將會_全像影像的像絲增加而升高。 、、竭 透鏡函數⑽可能會有-些較小的挪來定義取決於z值的: ^像的大小和透鏡函數的起始常數^猶鏡函數.個相對較⑤ ’體數目用於LUT以及一個取決於每一個時鐘週期根據透綱 89 200928626 並行驅動的CGRDIC單元數的可變電晶體數目。—般而言,運算裝置(叢 集)的大小必須是最佳化的,因為它們的大小越大,在資料傳輸速率中所 能產生的節触果越小。但另—方面,叢集越大,將可以讓計算更容易實 現。圖23中的範例只顯示出_個簡化了的叢集設計,因為—個叢集可能包 含有一百萬個電晶體或甚至更多。The percentage shown in step ' represents the percentage of logical resources that are available to listen to a particular step. • Lens function: plus __ minus sub-images generated from z-rays ((4)) NORDIC converts each complex from her and metrics into real and imaginary values, and performs modulation of light intensity (62.5%) Sub-holographic image to form a holographic image (15•(6) • holographic image encoding: G_e coffee fine _ converted to her and metrics and converted back to real and imaginary values, and used for dragon clipping and normalization (17.5%) due to The number used to remember the enemy's crystals does not depend on the pipeline's _. The percentage figures shown above may differ when performing the pixel scale (4). The need for hiding operations will increase the ray of the holographic image. The high-, and depleted lens functions (10) may have some smaller definitions depending on the z-value: ^ the size of the image and the starting constant of the lens function ^ utah function. a relative number of 5 'body is used for The LUT and a number of variable transistors that depend on the number of CGRDIC units driven in parallel for each clock cycle according to Transparency 89 200928626. In general, the size of the computing devices (cluster) must be optimized because of their size. The bigger the data transmission speed The smaller the touches that can be produced in the middle, the smaller the cluster, the larger the cluster will make the calculation easier. The example in Figure 23 shows only a simplified cluster design because the cluster may contain There are one million transistors or even more.

現在,我們來估算-個全像計算將由佈置在顯示獅各個像素之間的 電路組件執行_示1!所需要的電晶龍目。因為在脱顯示設計中 C0RDIC運算法需要使用到超過75%以上的資源,因此這個估算將集中在 用來執行Ο)職計算的電晶體上。本文件中合併了參考文獻 〔CORDIC-A1gor i thmenNow, let's estimate that a holographic calculation will be performed by the circuit components arranged between the various pixels of the display lion. Because the C0RDIC algorithm requires more than 75% of the resources in the off-display design, this estimate will be concentrated on the transistors used to perform the Ο) job calculations. References incorporated in this document [CORDIC-A1gor i thmen

Architekturen und monolithischeArchitekturen und monolithische

Realisierungen mit Anwendungen in der Bildverarbeitung > Dirk Ti—n ’ 1990〕做參考’摘錄其中的第i〇〇頁到第i〇i頁的内容, 來幫助估算0)隱所需的電晶魏目。針對腦解決方案,已經開發 *出使用有獨鮮的-做良的⑽肌單元,喊此所估算_於一個 管線的C0RDIC單元的電晶體數目大約是52,晒電晶體。 圖21和22巾所示賴算表出針對所_的全縣料算(有源 個2,000 X以⑼個像素的真實空間影像的16,剛χ 12,_個全 像影像像素)的估算《次全像影像中的每— 抑Realisierungen mit Anwendungen in der Bildverarbeitung > Dirk Ti-n ’ 1990] is a reference to extract the contents of page i to page i to help estimate 0). For brain solutions, it has been developed to use a well-prepared (10) muscle unit, and the number of transistors in the C0RDIC unit of a pipeline is estimated to be approximately 52, which is a solar cell. Figures 21 and 22 show the estimates of the county's calculations (active 2,000 X with (9) pixels of the real-world image of the 16th, χ 12, _ holographic image pixels) Everything in the sub-holographic image

|個像素都需要進行一個C0RDIC 運算’也就是每秒總計要進行25(mr9個運算。卩&斷的管線頻率 來算’需« _魅列的⑺腫單元。叢細設計會影響電晶體的 數目和設収能’因域集獻,_於分布全娜像議資源消耗 200928626 越=但是如刪太小’在叢集中所進行的運算將會 些單元將會大部分時間“盔 ’因為某 L田 …、¥而只是徒然增加電晶體數目而Ρ 如果一個叢集包括有i 職目而已。 透鏡函數單元和1個CORDTr - 需要有9800個叢集和6億 ^ ’將會 果-個業h h 萬個f晶體來進行次全像f彡像運算。如 果一個叢集包括有i個透鏡函數單元和8個_ 會雹要句杯古〗〇nn /旅 早70 ’則顯示器將 '欣、 0 I和5億3千萬個電晶體絲進行次全像巧像 運算。所以叢集的大小可能會 ^ Ο 我們b會有極大_的變化。針對我們的設計範例, 祕〜集包含有4個C0_單元和1個透鏡函數單元。估算 的結果,這會需要有25〇〇個 影像運算。 #和5 ϋ千萬個電M來進行次全像 要找出最理想嶋大小,必須進衝精細的設計。試算表中的數 字_和心是,略輯,但娜卩槪出 要依存形g。 _ C0RDIC (位數對照方法,知運算法)(_c也就是“座標轉 動數位電腦”的縮寫)是—種減單而效率極佳的運算法,可用來計算雙曲 、^和角函數由於这裡是將c〇RDIC用來將來自相位和度量值的複雜數 值轉換為實值和虛值(趙反向無),因此也可轉料他的運算法。如 果叹有硬體倍增器(例如,簡單的微控制器和腸)可用,通常就會採 用CORDIC g)為匕只需要小量的檢視表、位數移位、和加法計算。除此之 外,若在軟體或專用的硬體上執行,c_c運算法非常適合用於管線作 業。現代的C_C運算法首先在年由Jack E. Voider提出,儘 91 200928626 管它和Henry Briggs早在腦年所發表的技術非常類似。最初,c_c 是以二進位制進行的,到了 年代,十進位制⑽肌已經廣泛應用 在口袋型計算機上,它們大部分都不是以二進位制運算,而是以二進位編 碼十進位制(BCD)運算。_IC特別適用於手持計算器,在這個應用方 面,匕的成本(以及晶片上的閘極數目)遠較它的速度更為重要。在沒有 硬體倍增器(例如’微控制器中)可用時、或者在需要減少用來執行所需 的閘極數目(例如,FPGA中)時’C0RDIC的速度通常會比其他方法更快。 〇 C0RDIC是“移位與疊加”類運算法的一部分,如同從Henry ΒΗ娜 的研究中導出的數與指數運算法。另—種可以用來計算許多種基本函數 的移位與疊加運算法是醜運算法,這是-種用於複數平面的廣義的對數 與指數運算法。舉例來說,BKM可以用來透過計算〇 + ix的指數(也就 疋COSX+isinx)來計算一個實際角度x (弧度)的正弦和餘弦。在1994 年最先由 J.C. Bajard、S. Kla、和 J.M. Muller 在 IEEE 電腦會刊(43 (8) : 955-963,1994年8月)中提出的BKM運算法比C0RDIC稍微更 © 複雜些,但它具有不須要使用一個比例因數的優點。BKM運算法在本發明 的顯示設計中可以用來代替C0RDIC運算法。 運算方法 今天’中央處理單元(CHJ)和數位訊號處理器(DSP)單元主要採用 數位同步邏輯來進行運算。FPGA全像影像運算也可以採用這個方法來運 算。由於每個全像影像像素所需的電晶體數目較低,根據運算的步驟,也 92 200928626 可以採用其他的方法。以下我們列出一些其他的運算方法的主要屬性: 數位同步邏輯(時鐘邏輯) •適用於高電晶體數目 •運算時間短 •時序計算簡單 •有良好的設計工具支援 ❹ 數位非同步邏輯(非時鐘邏輯) •有良好的功率效率 •適用於高電晶體數目 •運算時間短 •沒有良好的設計工具支援 •時序計算困難 PWM (脈衝寬度調變) •適用於低電晶體數目 •運算時間長 類比 •主要是在1950到1960年代發展出來 93 200928626 •除用於簡單的高綱途外,類比運算在今天已經不常用 •適用於極低的電晶體數目 •運算時間短 •精密度有限 •高度依賴生產參數飄移 混用多種技術 ❹ 各個麵的絲料_。由於諸如“㈣晶體的運算容量有 限,運算綠練射轉錄。最歸綠將會視難的程式設計 而定。以下是一些範例。 為減少電晶聽目,有她需麵馨步驟,像是透鏡函數和編碼, 可以採用圈。類比轉移暫存器可以用於資料分布,因為真實空間資料和 全像影像龍只會使_大約8位元的精密度。有一種特殊設計的非同步 CGRDIC:單元也可以用來減少鱗消耗。每—個步驟使用—種社的方法還 〇 可以進—步減少電晶體數目’不過這可能會增加設計的成本。 顯示器種類 所使用的顯示器最好是一種使用在顯示器表面上的電晶體或其他開關 元件(如電氣、光學開關)的主動矩陣式架構的顯示器。電晶體材料應有 一個適當的結構寬度以及開/關頻率來佈置額外的電晶體以供運算使用。 可以使用單晶矽和多晶矽的各種變化形態諸如低溫多晶矽(LTPS)、CGS、 94 200928626 單體曰曰㈣、或多晶補。非結晶妙的開/關頻率—般來說對於高性能的 全像影像計算將會太低。原壯’ #解導贼奈米碳管也可以用來做為 開關元件的材料。傳統大型顯示器需要有極大的面積用來容納橫列和縱列 線路,若採用本發明的方法將可以節省這樣的空間需求。 由於越大的顯示器上所能節省的空間越多,因此我們偏好採用下列型 式的顯示器: • LTPS式液晶顯示器(LCD) • LTPS式有機發光二極體(0LED)〔包括發光聚合物(LEp)〕 單晶矽只用於小型顯示器,相較於新的方法,它的優點較少。 课用單 晶矽範例包括:|Pixels need to perform a C0RDIC operation', that is, a total of 25 per second (mr9 operations. 卩 & broken pipeline frequency to calculate 'needs « _ mei column (7) swollen unit. The cluster design will affect the crystal The number and collection can be 'due to the domain set, _ in the distribution of the full image of the resource consumption 200928626 more = but if the deletion is too small 'the operation in the cluster will be some units will be most of the time "helmet" because A L field..., ¥ is just a vain increase in the number of transistors and Ρ If a cluster includes i jobs. Lens function unit and 1 CORDTr - need 9800 clusters and 600 million ^ 'will fruit - industry hh Ten f crystals are used to perform sub-holomorphic f-image operations. If a cluster includes i lens function units and 8 _ 雹 雹 句 杯 gu gu 〇 nn / 旅早 70 ' then the display will be 'Xin, 0 I And 530 million crystal wires for sub-images. So the size of the cluster may be Ο we b will have a huge change. For our design example, the secret ~ set contains 4 C0_ Unit and 1 lens function unit. Estimated results, this will be required There are 25 image operations. #和5 ϋ10 million electric M to carry out the second hologram to find the most ideal size, must enter the fine design. The number in the spreadsheet is _ and the heart is, slightly, But Na Na is dependent on the shape g. _ C0RDIC (digit comparison method, known algorithm) (_c is also the abbreviation of "coordinate rotation digital computer") is a kind of algorithm that can reduce the order and is very efficient, can be used Calculate the hyperbolic, ^, and angular functions. Since c〇RDIC is used here to convert complex values from phase and metric values into real and imaginary values (Zhao reverse no), it can also be converted to his algorithm. If you have a hard multiplier (for example, a simple microcontroller and intestine) available, you will usually use CORDIC g) as a small amount of view, bit shift, and addition calculations. In addition, if executed on software or dedicated hardware, the c_c algorithm is very suitable for pipeline operations. The modern C_C algorithm was first proposed by Jack E. Voider in the year, and it was in the early years of 2009 and 2009. The published technology is very similar. Initially, c_c was binary In the old days, the decimal system (10) muscles have been widely used in pocket computers, most of which are not binary computing, but binary encoding decimal (BCD) operations. _IC is especially suitable for Handheld calculator, in this application, the cost of 匕 (and the number of gates on the wafer) is far more important than its speed. When no hardware multiplier (such as 'microcontroller) is available, or when needed When reducing the number of gates required to perform (for example, in an FPGA), the speed of 'C0RDIC is usually faster than other methods. 〇C0RDIC is part of the "shift and superposition" class algorithm, as from Henry's The number and exponential algorithms derived in the study. Another type of shifting and superposition algorithm that can be used to compute many basic functions is the ugly algorithm, which is a generalized logarithmic and exponential algorithm for complex planes. For example, BKM can be used to calculate the sine and cosine of an actual angle x (radian) by calculating the exponent of 〇 + ix (ie 疋COSX+isinx). The BKM algorithm first proposed by JC Bajard, S. Kla, and JM Muller in IEEE Computer Journal in 1994 (43 (8): 955-963, August 1994) is slightly more complicated than C0RDIC. But it has the advantage of not having to use a scaling factor. The BKM algorithm can be used in place of the C0RDIC algorithm in the display design of the present invention. Algorithms Today's central processing unit (CHJ) and digital signal processor (DSP) units use digital synchronization logic to perform operations. FPGA holographic image operations can also be operated using this method. Since the number of transistors required for each holographic image pixel is low, other methods can be used according to the steps of the operation. Below we list the main properties of some other algorithms: Digital Synchronization Logic (Clock Logic) • Suitable for high transistor count • Short computation time • Simple timing calculation • Good design tool support ❹ Digital non-synchronous logic (non-clock Logic) • Good power efficiency • Suitable for high transistor count • Short calculation time • No good design tool support • Timing calculation difficulty PWM (pulse width modulation) • Suitable for low transistor count • Long time calculation analogy • Mainly developed in the 1950s and 1960s 93 200928626 • In addition to being used for simple high-level, analog operations are not commonly used today • Suitable for extremely low number of transistors • Short computation time • Limited precision • Highly dependent on production parameters The drifting mixes a variety of techniques 丝 the silk of each side _. Due to the limited computational capacity of the "(4) crystal, the operation of green transcripts. The most green will depend on the programming of the difficulty. Here are some examples. In order to reduce the appearance of electro-crystals, she needs to face the steps, like Lens function and coding can be used in circles. Analog transfer registers can be used for data distribution, because real-world data and holographic image dragons only make _ about 8 bits of precision. There is a specially designed asynchronous CGRDIC: Units can also be used to reduce scale consumption. Each step can be used to reduce the number of transistors. However, this may increase the cost of the design. The display used for the type of display is preferably a type of display. An active matrix architecture display of a transistor or other switching element (such as an electrical, optical switch) on the surface of the display. The transistor material should have an appropriate structural width and on/off frequency to place additional transistors for operation Various variations of single crystal germanium and polycrystalline germanium such as low temperature polycrystalline germanium (LTPS), CGS, 94 200928626 can be used. Or polycrystalline compensation. The non-crystallized on/off frequency is generally too low for high-performance holographic image calculations. The original Zhuang's can also be used as a switching element. The traditional large display needs to have a large area to accommodate the course and column lines, which would save space requirements if the method of the invention is used. The larger the space available on the display, the more space is saved. We prefer the following types of displays: • LTPS liquid crystal display (LCD) • LTPS organic light emitting diode (0LED) (including luminescent polymer (LEp)) Single crystal germanium is only used for small displays, compared to new ones. The method has fewer advantages. Examples of single crystal cymbals include:

• LC0S •數位光處理(DLP)技術 可以用於本發明的一個顯示設計的可能顯示技術名單如下. 晶顯不器(LCD)—類別 LC0S 矽液晶 NLC 向列型液晶 TN 扭轉向列型 VAN 垂直排列向列型 FLC 強誘電性液晶 95 200928626 FED (場發射顯示器) SED表面傳導電子發射顯示器 奈米碳管發射器(以矽基板或塗佈氧化銦錫(ΙΤ0)的玻璃基板為基 礎’但這些只能用來做為光源,因為它會發射非一致性的光) 電機系統 反射鏡陣列/數位光處理(DLP)技術 MEMS反射鏡(微電機系統),也稱為M0EMS (微光電電機系統) 全像影像計算的方法包括: -檢視表(LUT) -分析式運算 -第W0 2006/066919號專利公告中所述的方法,合並於本文件中做為參 考。 -光線追縱方法 轉換類別: -2D轉換 -水平面中的1D轉換 -垂直面中的1D轉換 96 200928626 編碼類別: -Burckhardt 編碼 -唯相位編碼 -雙相位編碼 _ BIAS編碼 -MDE (最小距離編碼)一每個全像像素使用3個以上的SIJ像素的編 〇 碼 硬體 個外4全像影像3十算單元,可能包括一對高階FpGA或包含有約5 t 2千萬個電晶體及5〇〇 MHz的管線頻率的一個根據應用指定的積體電 路(ASIC)或一個純客製積體電路(IC)。為傳送大約23〇對低電壓差分 訊號(LVDS)的資料給顯示器,每一對的傳輸可以使用每秒丨Gbits的速 © 率。為接收資料,也會需要玻璃覆晶(C0G)橫列及縱列、線路驅動裝置。如 果運算將只整合在顯示器基板上,職開/關鮮_件諸如數位視覺介 面(DVI)接收器必須佈置在額外的硬體上。必須只能以低5〇倍的資料傳 輪速率來傳送原始資料(請參關丨)。可以制與顯示器只有少數連接線 路的低價位齡n電m這魏子祕大_條今天的傭析度2D TFT顯示器中的電子系統。 附註: 以上二節概略敘述了可能結合的製造方法而沒有偏離本發明的範圍的 97 200928626 特點。 在本文件的附圖中,所顯示的相關尺寸並不必然符合比例。 對於热悉賴技術的人來說且,本發明的各種修改及變更將是顯而易 ⑽、’但仍不會超出本發_舰,且熟悉這馳術的人應可瞭解本發明 並未過度限定於本文件所附的圖解範例。 本文件中包含有多種概念(如“概念A — Γ所述)。瞒m包含 〇 有可能有祕界定這她念_容。減魏技術的人將會非常清楚,揭 露一個概念可能將有助於闡述無的概念。本文件巾的某她念可能構成 本發明不可躲的-部分,並且將在本文件的其他地方有清楚的闡述。 〇 98 200928626• LC0S • Digital Light Processing (DLP) technology can be used in a display design of the present invention. The list of possible display technologies is as follows. Crystal Display (LCD) - Category LC0S 矽 Liquid Crystal NLC Nematic Liquid Crystal TN Twisted Nematic VAN Vertical Arranged Nematic FLC Strongly Sensitive Liquid Crystal 95 200928626 FED (Field Emission Display) SED Surface Conduction Electron Emission Display Nano Carbon Tube Transmitter (based on a ruthenium substrate or a glass substrate coated with indium tin oxide (ΙΤ0)') Can only be used as a light source because it emits non-uniform light.) Motor System Mirror Array / Digital Light Processing (DLP) Technology MEMS Mirror (Micro Motor System), also known as M0EMS (Micro Photoelectric System) The method of holographic image calculation includes: - Viewing Table (LUT) - Analytical Operation - The method described in the Patent Publication No. WO 2006/066919, which is incorporated herein by reference. - Ray tracing method conversion category: -2D conversion - 1D conversion in horizontal plane - 1D conversion in vertical plane 96 200928626 Coding categories: -Burckhardt coding - phase only coding - biphase coding _ BIAS coding - MDE (minimum distance coding) A hologram pixel using more than 3 SIJ pixels, a coded hardware, an outer 4 hologram, and a 30-count unit, possibly including a pair of high-order FpGAs or containing about 5 t 20 million transistors and 5 One of the 管线MHz pipeline frequencies is an application-specific integrated circuit (ASIC) or a pure custom integrated circuit (IC). To transmit approximately 23 〇 of low voltage differential signaling (LVDS) data to the display, each pair of transmissions can use a rate of 丨 Gbits per second. In order to receive data, glass flip-chip (C0G) courses and columns and line drivers are also required. If the operation will only be integrated on the display substrate, a digital visual interface (DVI) receiver such as a digital visual interface (DVI) must be placed on additional hardware. The original data must only be transmitted at a data transfer rate that is 5 times lower (see 丨). It can be made with only a few connections to the display. The low-cost n-m is the electronic system in the 2D TFT display. NOTE: Sections II above summarize the features of the manufacturing method that may be combined without departing from the scope of the invention. In the drawings of the present document, the relative dimensions shown are not necessarily to scale. For those skilled in the art, various modifications and variations of the present invention will be readily apparent (10), but will not go beyond the present invention, and those skilled in the art should understand that the present invention is not Excessively limited to the graphical examples attached to this document. This document contains a variety of concepts (such as "Concept A - Γ"). 瞒m contains 〇 may have a secret definition of this _ 容. People who reduce Wei technology will be very clear, revealing a concept may help To illustrate the concept of nothing. Some of her documents may constitute part of the invention that cannot be avoided, and will be clearly stated elsewhere in this document. 〇98 200928626

附錄I 技術入門 以下這一節將用來做爲多項用於某些套用本發明的系統中的關鍵技術的基本介紹。 在傳統全像技術中,觀察者可以看到一個物件的全像影像重建(這可能是一個不斷變動 的景象);不過,觀察者與全像影像之間的距離可能無關。這種重建,就典型的視覺配 置來說’是在照亮全像影像的光源的影像平面上或它的附近,也就是在全像影像的傅立 葉平面上或它的附近。因此’這個重建影像有與被重建的真實世界物件相同的遠場光分 布。 一個早期的系統(如第WO 2004/044659及US 2006/0055994號專利中所述,整體合 並在本文件中做爲參考)定義了一種非常不一樣的配置,其中重建的物件完全不在全像 影像的傅立葉平面上或它的附近,相反的,貝!J是一個虛擬觀察者視窗區域在這個全像影 像的傅立葉平面上;觀察者將眼睛放在這個位置上,並且將只能看到一個正確重建的影 像。全像影像會在一個LCD (或者其他類型的空間光調制器)上編碼,並透過一個光 學設計照亮,使全像影像的傅立葉轉換就在虛擬觀察者視窗上進行(因此也就是一個傅 立葉轉換値接映射到眼睛上);在觀察者視窗與SLM之間的一個截頭錐體空間中形成 的重建物件之後則透過全像影像的菲涅爾轉換在傳播上做更佳的描述,因爲它並不是在 透鏡的焦點平面上。相反的,它是由一個近場光分布所界定的(利用球面波前構形,與 一個遠場分布的平面波前相反)。這個重建可以出現在虛擬觀察者視窗(如前面所述, 也就是全像影像的傅立葉平面)與SLM之間的任何地方或甚至可以出現在SLM後面 成爲一個虛像物件。 這種方法會帶來多種後果。首先,對全像視訊系統設計者的基本限制是SLM (或者其 他類型的光調制器)的像素間距的問題。目標是可以使用能以合理的成本從市面上購得 的適當像素間距的§LM來進行夠大的全像影像重建。但在過去,這卻由於下列因素而 無法實現。傅立葉平面中的相鄰繞射級之間的週期間隔以λί)//?來表示,其中λ是照 99 200928626 明光的波長,D是從全像影像到傅立葉平面的距離’而户是SLM的像素間$。0¾ 傳統的全像顯示器上,重建的物件會出現在傅立葉平面上或它的附件。因此,一個重建 的物件必須保持小於週期間隔;如果較大,則它的邊緣將會因爲一個相鄰的繞射級的 重建而模糊。這會使重建的物件變得非常小一通常寬幅只有幾cm,即使是使用所費 不貲的專用小間距顯示器也是一樣。但若採用本發明的方法’虛擬觀察者視窗(如以上 鎖數,這個視窗的位置就在全像影像的傅立葉平面上)的大小只需要像眼睛的瞳孔一樣 大即可。這樣的結果是,即使只有中等間距大小的SLM也能夠使用。同時因爲重建的 物件可以整個充滿虛擬觀察者視窗與全像影像之間的截頭錐體空間,因此它確實夠大’ 當然也遠大於週期間隔。除此之外,如果使用一個OASLM,則不會有鋸齒狀的現象’ 因此也週期性的問題,所以也不會再有虛擬觀察者視窗必須保持小於一個週期間隔的限Appendix I Introduction to Technology The following section will be used as a basic introduction to a number of key techniques used in some systems in which the present invention is applied. In traditional holographic techniques, the observer can see a holographic image reconstruction of an object (this may be a constantly changing scene); however, the distance between the observer and the holographic image may not be relevant. This reconstruction, in the typical visual configuration, is on or near the image plane of the light source that illuminates the holographic image, that is, on or near the Fourier plane of the holographic image. Therefore, this reconstructed image has the same far-field light distribution as the reconstructed real-world object. An earlier system (as described in the patents of WO 2004/044659 and US 2006/0055994, the entire disclosure of which is incorporated herein by reference in its entirety in the entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire entire all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all all On or near the Fourier plane, on the contrary, Bay! J is a virtual observer window area on the Fourier plane of this hologram; the observer places the eye at this position and will only see one correctly Reconstructed image. The holographic image is encoded on an LCD (or other type of spatial light modulator) and illuminated by an optical design so that the Fourier transform of the holographic image is performed on the virtual observer window (hence a Fourier transform) The mapping is mapped to the eye; after the reconstructed object formed in a truncated cone space between the observer window and the SLM, the Fresnel transformation of the holographic image is better described in terms of propagation because it Not on the focal plane of the lens. Instead, it is defined by a near-field light distribution (using a spherical wavefront configuration, as opposed to a far-field distributed plane wavefront). This reconstruction can occur anywhere in the virtual observer window (as described above, the Fourier plane of the holographic image) and the SLM or even appear as a virtual object behind the SLM. This approach has many consequences. First, the basic limitation for holographic video system designers is the pixel pitch problem of SLM (or other types of light modulators). The goal is to achieve a large holographic image reconstruction using §LM, which is commercially available at a reasonable cost with the appropriate pixel pitch. But in the past, this was not possible due to the following factors. The periodic interval between adjacent diffraction orders in the Fourier plane is represented by λί)//?, where λ is the wavelength of 99 200928626 bright light, and D is the distance from the holographic image to the Fourier plane' while the household is SLM $ between pixels. 03⁄4 On a traditional hologram display, the reconstructed object will appear on the Fourier plane or its attachment. Therefore, a reconstructed object must remain less than the periodic interval; if larger, its edges will be obscured by the reconstruction of an adjacent diffraction order. This will make the reconstructed object very small, usually only a few cm wide, even if it is a dedicated small-pitch display that is costly. However, if the method of the present invention is used, the virtual viewer window (e.g., the number of locks above, the position of the window on the Fourier plane of the hologram) needs to be as large as the pupil of the eye. The result of this is that even SLMs of medium pitch size can be used. At the same time, since the reconstructed object can completely fill the truncated cone space between the virtual observer window and the omni image, it is indeed large enough 'of course, much larger than the periodic interval. In addition, if an OASLM is used, there will be no jagged phenomenon, so it is also a cyclical problem, so there will be no more virtual observer windows that must remain less than one cycle interval.

若採用另一種變化方式,這還有另外一個好處。在計算一個全像影像時,我們先從我們 對重建的物件的認識說起一例如,您可能有一輛賽車的一個3D影像橋 將會說明這個物件應該從哪些不同的觀看位置才能看見。在傳統的全像技術中,全像影 像必須在一個需要密集運算的過程中產生一個直接取自3D影像檔案中的賽車的一個 重建。但虛擬觀察者視窗的方法則可以採用一個不同的且運算效率更佳的技術。從重建 的物件的一個平面開始,我們可以以物件的菲涅爾轉換的方式來計算虛擬觀察者視窗。 我們接著可以針對所有的物件平面執行這個動作,並加總所有的結果來產生一個累計的 〇 菲涅爾轉換;這會界定整個虛擬觀察者視窗的波場。我們接著再以這個虛擬觀察者視窗 的傅立葉轉換的方式來計算全像影像。由於虛擬觀察者視窗包含有物件的所有資訊’只 有單一平面的虛擬觀察者視窗(而不是多平面的物件)必須進行傅立葉轉換成爲全像影 像。如果從虛擬觀察者視窗到全像影像不是只採用一個轉換步驟而是採用一個反覆的轉 換步驟(像是反覆傅立葉轉換運算法),這會特別有利。如果需要迭代運算,貝每一個 迭代步驟只包括有一個虛擬觀察者視窗的傅立葉轉換而不是每一個物件平面的傅立葉 轉換 > 這會顯著的減少運算的需求》 虛擬觀察者視窗方法的另一個有利的結果是重建一個特定物件點所需的所有資訊是包 含在全像影像中的一個相對小的部份中;這與傳統的全像技術不一樣(它重建一個特定 100 200928626 物件點所需的資訊是分散在整個全像影像的各處)。由於我們只需要將這些資訊編碼成 爲全像影像中的一個明顯更小的部份,這表示我們需要處理和編碼的資訊量遠少於一個 傳統的全像影像。這同樣也表示即使是即時的視訊全像技術’也可以使用傳統的運算裝 置(例如,成本和性能適合用於量產市場化裝置的一個傳統的DSP)。 不過,它也有一些可能不盡如人意的結果。首先’相對於全像影像的觀看距離將非常重 要一全像影像是以只有在眼睛處於全像影像的傅立葉平面上或附近的位置時才能看 見正確的重建的方式來進行編碼和投射的;而在一般的全像影像方面,觀看距離並不是 一個重要的因素。不過,已經各種不同的技術可以用來減少Z軸距離的敏感度或環繞 j 這個因素的設計困難度。 同時,由於全像影像是以encoded and illuminated in such a way that正確的全像影像重 建只能從一個精密且極小的觀看位置(尤其是針對側向定位以及在Z軸距離而言)上 看見的方式進行編碼和投射的,因此可能需要進行眼睛追蹤。由於對Z軸距離極爲敏 感,因此需要採用各種技術來減少X、Y方位的敏感度_繞這個因素的設計困難度。 例如,隨著像素間距的縮小(因爲它具有SLM在製造上的優勢),虛擬觀察者視窗的 大小將可以增大。除此之外,更有效率的編碼技術(像是Kinoform編碼)也有利於使 用一個更大的週期間隔的部份來做爲虛擬觀察者視窗,並因此可以增大虛擬觀察者視 以上的說明的一個前提是假設我們所處理的是傅立葉全像影像。虛擬觀察者視窗是在全 像影像的傅立葉平面上,也就是在光源的影像平面上。它的優點是’非繞射的光會聚焦 在所謂的DC點上。如果虛擬觀察者視窗不是在光源的影像平面上,這個技術也可以 用在菲涅爾全像影像上。不過’必須注意由於一個擾動的背景,非繞射的光是看不見的。 必須注意的另一點是所謂的“轉換”應解釋爲包括任何等同於或近似於用來說明光的 傳播的轉換的數學或運算上的技術。麥斯威爾(Maxwellian)波傳播等式對雌只近似 於物理過程的轉換有更精確的定義;菲涅爾和傅立葉轉換則是第二級近似,但它具有下 列優點:(a)因爲它們與微分相反的代數,所以可以以一個在運算上更有效率的方式來 處理,以及(ϋ)可以在光學系統中精確的實施。 101 200928626 進一步的細節可參閱美國專利申請案第US 2006-0138711、US 2006-0139710、及US 2006-0250671號(本文件合倂相關內容做爲參考)。There is another benefit to adopting another variant. When calculating a holographic image, let's start with our understanding of the reconstructed object. For example, you might have a 3D image bridge of a racing car that shows which different viewing positions the object should see. In traditional holographic techniques, omni-image must produce a reconstruction of a car directly from a 3D image archive in a process that requires intensive operations. But the virtual observer window approach can take a different and more efficient technique. Starting from a plane of the reconstructed object, we can calculate the virtual observer window by means of the Fresnel transformation of the object. We can then perform this action on all object planes and sum all the results to produce a cumulative 〇 Fresnel transformation; this will define the wavefield of the entire virtual observer window. We then calculate the hologram image by means of the Fourier transform of this virtual observer window. Since the virtual observer window contains all the information about the object 'only a single planar virtual observer window (rather than a multi-plane object) must be Fourier transformed into a holographic image. This is particularly advantageous if the transition from the virtual observer window to the holographic image is not a single conversion step but a repeated conversion step (such as a repeated Fourier transform algorithm). If iterative operations are required, each iteration step of the Bay includes only the Fourier transform of a virtual observer window instead of the Fourier transform of each object plane. This significantly reduces the computational requirements. Another advantage of the virtual observer window approach. The result is that all the information needed to reconstruct a particular object point is contained in a relatively small portion of the holographic image; this is different from traditional holographic techniques (it recreates the information needed for a particular 100 200928626 object point) It is scattered throughout the hologram image). Since we only need to encode this information into a significantly smaller portion of the hologram, this means that we need to process and encode much less information than a traditional hologram. This also means that even the instant video holography technology can use traditional computing devices (for example, a traditional DSP with cost and performance suitable for mass production of marketed devices). However, it also has some results that may not be satisfactory. First of all, 'the viewing distance relative to the holographic image will be very important. A holographic image is encoded and projected only when the eye is in or near the Fourier plane of the holographic image to see the correct reconstruction; In general holographic images, viewing distance is not an important factor. However, a variety of different techniques have been used to reduce the sensitivity of the Z-axis distance or the design difficulty of the factor around j. At the same time, since the holographic image is encoded and illuminated in such a way that the correct holographic image reconstruction can only be seen from a precise and minimal viewing position (especially for lateral positioning and in terms of Z-axis distance). The way to encode and project, so eye tracking may be required. Due to the extreme sensitivity to the Z-axis distance, various techniques are needed to reduce the sensitivity of the X and Y orientations. For example, as the pixel pitch shrinks (because it has the manufacturing advantage of SLM), the size of the virtual viewer window can be increased. In addition, more efficient coding techniques (like Kinoform coding) also facilitate the use of a larger periodic interval as a virtual observer window, and thus can increase the virtual observer's view. One of the premise is to assume that we are dealing with Fourier hologram images. The virtual observer window is on the Fourier plane of the holographic image, that is, on the image plane of the light source. Its advantage is that 'non-diffracted light will focus on the so-called DC point. If the virtual observer window is not on the image plane of the light source, this technique can also be used on Fresnel hologram images. However, it must be noted that due to a disturbing background, non-diffracted light is invisible. Another point that must be noted is that the so-called "conversion" should be interpreted to include any mathematical or computational technique equivalent to or similar to the transformation used to account for the propagation of light. The Maxwellian wave propagation equation has a more precise definition of the transformation of the female approximate physical process; Fresnel and Fourier transform are second-order approximations, but it has the following advantages: (a) because of them Algebra, as opposed to differential, can be handled in a more computationally efficient manner, and (ϋ) can be accurately implemented in an optical system. 101 200928626 Further details can be found in U.S. Patent Application Nos. US 2006-0138711, US 2006-0139710, and US 2006-0250671, the entire contents of each of which are incorporated herein by reference.

102 200928626 附錄·ι 本文件中所採用的用語說明 電腦產生全像影像 一個電腦產生的全像影像(CGH)是根據一個景象所計算出來的一個全像影像。CGH可 能包括代表用來重建景象所需的光波的振幅和相位的複合値數値。CGH可以透過計算 得出,例如,可透過“一致光線追蹤”、透過模擬景象與一個參考光波之間的干涉、或 者透過傅立葉或菲涅爾轉換。 編碼 編碼是一個程序,在這個程序中會提供全像影像的控制値給一個空間光調制器(例如, 構成它的像素格、或者一個連續的SLM如OASLM的相鄰區域)。一般而言,一個全 像影像包括有代表振幅和相位的複合値數値。 編碼區域 編碼區域通常是指全像影像中的一個限定空間的區域,在這個區域中會對一個單一的景 象點的全像影像資訊進行編碼。空間上的限制可能藉由一個突然的截斷、或者藉由透過 一個從虛擬觀察者視窗到全像影像的傅立葉轉換所達成的平滑截斷來實現。 傅立葉轉換 傅立葉轉換會用來計算光在空間光調制器的遠場中的傳播。波前則以2p面波來描述。 傅立葉平面 傅立葉平面包含光在空間光調制器上的分布的傅立葉轉換。若沒有任何有焦點的透鏡, 傅立葉平面會在無限遠的位置。如果在光的行進路線中有一個有焦點的透鏡靠近空間光 調制器,貝ί!傅立葉平面相當於包含有光源的影像的平面。 菲淫爾轉換 菲涅爾轉換會用來計算光在空間光調制器的近場中的傳s 〇波前則以球面波來描述。光 波的相位因數包括有一個取決於橫向座標平方的二° 103 200928626 截頭錐體 虛擬觀察者視窗與SLM之間會構成一個虛擬的截頭錐體並一直延伸到SLM後方。景 象會在這個截頭錐體中重建。所重建的景象的大小會受這個截頭錐體限制而不會受 SLM的週期間隔限制。 光源系統 光源系統可能包括有一個一致的光源(如雷射)或一個部份一致的光源(如LED)。部 份一致的光源在時間上和空間上的一致性必須足以有利於進行良好的景象重建,發射表 面的也就是光譜線寬度和側向廣度必須夠小。 虛擬觀察者視窗(VOW) 虛擬觀察者視窗是在觀察者平面上的一個虛擬視窗,透過這個可以看見經過重建的3D 物件。VOW是全像影像的傅立葉轉換,並且位於一個週期間隔範圍內以避免看見物件 的多個重建影像。VOW的大小必須至少是眼睛瞳孔的大小。如果至少有一個VOW設 置在觀察者眼睛的位置處並且具備有一個觀察者追蹤系統,則VOW比觀察者側向移 動的範圍更小。這可方便使用一個只具有適當解析度(因此也具有較小的週期間隔)的 SLM。可以將VOW想像爲一個鑰匙孔,透過這個鑰匙孔我們可以看見重建的3D物 件;可以是每個眼睛使用一個VOW或者是兩個眼睛共用一個VOW 〇 週期間隔 如果CGH顯示在一個由個別的可編址像素格所組成的SLM上,會對它進行取樣。這 個取樣的動作會產生一個繞射圖樣的週期性重複。週期間隔以AD/p表示’其中λ是 波長,D是從全像影像到傅立葉平面的距離’而Ρ是SLM像素格的間距。不過 OASLM並沒有進行取樣,因此繞射圖樣也沒有週期14的重複;這個重】複事實上是被抑 制的。 重建 將有全像影像編碼的空間光調制器照亮會重建原來的光的分布。這個光的分布會用來計 算全像影像。理論上,觀察者將無法分辨重建的光分布和原來的光分布。在大部分的全 像顯示器上,所重建的是景象的光的分布;而在我們的顯示器上,貝ϋ是重建虛擬觀察者 104 200928626 視窗中的光的分布。 景象 要進行重建的景象是一個真實的或者由電腦產生的三維的光分布。在一個特殊的例子 中,它也可能是一個二維的光分布。一個景象可能包括有排列在一個空間中的各個不同 的固定或活動的物件。 空間光調制器(SLM) SLM會用來調制輸入的光的波前。一個理想的SLM將可以代表任意的複合値數値, 亦即’可以分別控制一個輸入的光波的振幅及相位。不過,~~個曲型的SLM則只會控 ❹ 制—個性質,不是振幅就是相位,而且還會有也可能會影響另一個性質不良副作用。 ❹ 105 200928626 附錄m 槪念 本文件中包含有多種槪念(如“槪念A — T”臓)。以下的說明可能有助於界定這些 槪念。 Α.可在和像素所在的同一基板上進行計算的全像影像顯示器 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 % Θ 像素所在的同一基板上的電路組件來執行的全像顯示器。 •至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於空間光調制器的 各個像素之間的電路組件來執行。 •計算會在分散在顯示器中個各個區域執行,以便針對各個分散區域,進行各個相應 的分散區域的像素編碼。 •電路組件中包括有薄膜電晶體。 •至少有一部份電路組件的有效區位採用有多晶矽。 .至少有—部份電路組件的有效區位採用有連續晶粒砂。 •至少有一部份電路組件的有效區位採用有多晶矽鍺。 •至少有一部份電路組件的有效區位採用有單晶矽。 •至少有一部份電路組件的有效區位採用有單體晶粒矽。 106 200928626 •至少有一部份電路組件的有效區位採用有有機半導體。 .採用單晶矽基板。 •採用玻璃基板。 •只有真實空間影像資料會被傳輸給顯示器。 .視訊的影格速率至少約爲25 Hz 〇 •影像資料中包含光強度及緩衝區對應資料。 •所進行的全像計算爲即時或近即時運算。 •所進行的全像計算將採用檢視表方法執行。 •採用次全像影像來進行運算。 •用於加入次全像影像的資料會在一個次全像影像尺度的距離上進行交換。 .全像運算會均質的分散在整顯示器表面上。 •全像計算會分割爲拼貼在顯示器表面上的許多全等的微小部份(稱爲叢集)。 •用於加入次全像影像的資料會在一個叢集尺度的距離上進行交換。 •全像顯示器可以透過將許多全等的叢集拼貼在一起而構成。 107 200928626 •根據上述構想,本案之全像顯示器是一個高解析度顯示器。 .根據上述構想,本案之全像顯示器是一個極高解析度顯示器。 • 一個虛擬觀察者視窗的直徑大約是眼睛瞳孔的直徑或更大的直徑。 •這個虛擬觀察者視窗的直徑大約是1 cm或更大的直徑。 •會針對每一個眼睛(亦即針對每一個虛擬觀察者視窗)組織一組成對的緩衝區對應 及光強度對應顏》 •將可以顯示單色影像° •將可以顯示彩觸像。 •將可以顯示RGB格式的彩色影像。 •在計算一個全像影像的一個像素的値時,只會考慮原始影像的一個次區段的値。 •用於進行全像影像重建的光並非在整個顯不器上完全一致,而是在顯示器的各個次 區段範圍內完全一致。 •只需比傳輸全像影像資料所需更少的線路即足以用來傳輸原始影像資料。 •減低資料傳輸頻率具有可減少橫列和縱列驅動裝置中的功率消耗的好處。 •在先前的專利的解決方案中因縱列和橫列線路所需的大部分像素面積可以運用於其 他目的。 108 200928626 •透明電極的面積可以增加,並可因此而改善顯示器的透光度。 •顯示面板可以利用傳統顯示技術來控制。 •顯示器在製造上將採用矽晶液晶技術。 •顯示器在製造上將採用MEMS技術。 •顯示器在製造上將採用場發射顯示器(FED)技術。 •全像轉換爲一維轉換。 •全像轉換爲二維轉換。 .有一個額外的邏輯可用於區域轉送現有計算所得的資料’而這個額外的邏輯也同時 用於轉送原始影像給各個叢集,所以至少可以剔除某些共通的橫列和縱。 •備用電路組件(像是TFT)可能會被製造在像素矩陣的空間中’使這些電路組#$ 以在發現某些用於裝置啓動的電路組件有故障時,用來取代某些在裝置啓動時會用到的 _ 電路組件。 •使用全像顯示器的方法。 B.可在同一基板上進行計算' 可進行有效率的空間光調制器編碼計算的全像影像顯示 器 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 像素所在的同一基板上的電路,組件來執行的全像顯示器,且這些計算的本身並不牽涉到 傅立葉轉換或菲淫爾轉換的計算。 109 200928626 •至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於空間光調制器的 各個像素之間的電路組件來執行。 •計算會在分散在顯示器中個各個區域執行,以便針對各個分散區域,進行各個相應 的分散區域的像素編碼。 •電路組件中包括有薄膜電晶體。 •至少有一部份電路組件的有效區位採用有多晶矽。 .至少有一部份電路組件的有效區位採用有連續晶粒敢。 •至少有一部份電路組件的有效區位採用有多晶矽鍺。 •至少有一部份電路組件的有效區位採用有單晶矽。 •至少有一部份電路組件的有效區位採用有單體晶粒砍。 •至少有一部份電路組件的有效區位採用有有機半導體。 •採用單晶矽基板。 •採用玻璃基板。 •只有真實空間影像資料會被傳輸給顯示器。 •視訊的影格速率至少約爲25 Hz 〇 110 200928626 •影像資料中包含光強度及緩衝區對應資料。 •所進行的全像計算爲即時或近即時運算。 •所進行的全像計算將採用檢視表方法執行。 •採用次全像影像來進行運算。 •全像運算會均質的分散在整顯示器表面上。 * Ο •全像計算會分割爲拼貼在顯示器表面上的許多全等的微小部份(稱爲叢集)。 •根據上述構想,本案之全像顯示器是一個高解析度顯示器。 •一個虛擬觀察者視窗的直徑大約是眼睛瞳孔的直徑或更大的直徑。 •將可以顯示單色影像。 •將可以顯示彩色影像° 〇 . •在計算一個全像影像的一個像素的値時,只會考慮原始影像的一個次區段的値。 •用於進行全像影像重建的光並非在整個顯示器上完全一致,而是在顯示器的各個次 區段範圍內完全一致。 •只需比傳輸全像影像資料所需更少的線路即足以用來傳輸原始影像資料。 •減低資料傳輸頻率具有可減少橫列和縱列驅動裝置中的功率消耗的好處。 111 200928626 •在先前的專利的解決方案中因縱列和橫列線路所需的大部分像素面積可以運用於其 他目的。 •透明電極的面積可以增加,並可因此而改善顯示器的透光度。 •顯示面板可以利用傳統顯示技術來控制》 •顯示器在製造上將採用矽晶液晶技術。 Λ •顯示雛製造上讎用MEMS技術》 0 •顯示雛製造上將採用場發射顯示器(fed)技術。 •全像轉換爲一維轉換。 •全像轉換爲二維轉換。 •有一個額外的邏輯可用於區域轉送現有計算所得的資料,而這個額外的邏輯也同時 用於轉送原始影像給各個叢集,所以至少可以剔除某些共通的橫列和縱列線路。 ◎ •備用電路組件(像是TFT)可能會被製造在像素矩陣的空間中’使這些電路組件可 以在發現某些用於裝置啓動的電路組件有故障時,用來取代某些在裝置啓動時會用到的 電路組件。 •將由物件所發出的波前將會在一個或多個虛擬觀察者視窗(vow)中重建’且其中 —個三維景象(3D S)的每個單一物件點(OP)的重建只需要一個次全像影像(SH) 做爲要在SLM上進行編碼的整個全像影像(ΗΣ%μ)的子集。 •在一個景象(3D S)離散化成爲多個物件點(ΟΡ)之後,針對3D景象的每個可見 112 200928626 的物件點,透鏡次全像影像(SHL)的複雜値會在SLM上進行編碼,其中透鏡次全像 影像的難値會利用下列方程式來決定:ZL = exp卜i*〔(Wf ) * ( x2 + y2 )〕},其 中λ是參考波長,f是焦距’而x和y貝ίί是在次全像影像的平面中互相垂直的座標。 .稜鏡的次全像影像(SHP)會在全像影像平面(HE)中決定以便移動虛擬觀察者視 窗以遠離光軸。 .透鏡和稜鏡的是次全像影像是迴旋的’這也可以用SH = SHL * SHP來表示。 •每一個次全像影像(SH)會以一個統一分布的相位偏移來進行調制’這裡的相位偏 ❹移每-個次全像影像都不盡相同。 .會將多個次全像影像疊加在一起來構成整個全像影像。 •用於進行重建的電腦產生全像影像的呈現可即時或近即時更新。 .在全像計算中會使用檢視表。 •各個物件點可以在用來進行重建的截頭錐體空間中的任何位置產生。 〇 •使用全像顯示器的方法。 C.可在同一基板上進行解壓縮計算的全像影像顯示器 全像影像編碼資料是在像素矩陣所佔用的空間以外的地方計算,然後在將全像影像編碼 資料利用已知的資料壓縮技術進行壓縮’接著再傳輸到顯示器基板上的電路組件’ 電路組件接著再對所接收到的資料執行解壓縮功能的全像顯示器。 .至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器 113 200928626 的像素所在的同一基板上的電路組件來執行。 •電路組件中包括有薄膜電晶體。 •至少有一部份電路組件的有效區位採用有多晶矽。 •至少有一部份電路組件的有效區位採用有連續晶粒矽。 、 •至少有一部份電路組件的有效區位採用有多晶矽鍺。 〇 •至少有一部份電路組件的有效區位採用有單晶矽。 •至少有一部份電路組件的有效區位採用有單體晶粒矽。 •至少有一部份電路組件的有效區位採用有有機半導體。 .採用單晶矽基板。 •採用玻璃基板° ❹ . .視訊的影格速率至少約爲25 Hz。 •影像資料中包含光強度及緩衝區對應資料。 •所進行的全像計算爲即時或近即時運算。 •所進行的全像計算將採用檢視表方法執行。 •採用次全像影像來進行運算。 114 200928626 • • 根據上述構想,本案之全像顯示器是一個高解析度顯示器。 一個虛擬觀察者視窗的直徑大約是眼睛瞳孔的直徑或更大的直徑。 • 將可以顯示單色影像。 • 將可以顯示彩色影像。 ❹ 在計算一個全像影像的一個像素的値時,只會考慮原始影像的一個次區段的値。 •用於進行全像影像重建的光並非在整個顯示器上完全一致,而是在顯示器的各個次 區段範圍內完全一致。 •減低資料傳輸頻率具有可減少橫列和縱列驅動裝置中的功率消耗的好處。 •在先前的專利的解決方案中因縱列和橫列線路所需的大部分像素面積可以運用於其 他目的。 ❹ • 透明電極的面積可以增加,並可因此而改善顯示器的透光度。 • 顯示面板可以利用傳統顯示技術來控制。 • 顯示器在製造上將採用矽晶液晶技術。 •顯示器在製造上將採用MEMS技術。 •顯示器在製造上將採用場發射顯示器(FED)技術。 115 200928626 •全像轉換爲一維轉換。 •全像轉換爲二維轉換。 •備用電路組件(像是TFT)可能會被製造在像素矩陣的空間中,使這些電路組件可 以在發現某些用於裝置啓動的電路組件有故障時,用來取代某些在裝置啓動時會用到的 電路組件。 •將由物件所發出的波前將會在一個或多個虛擬觀察者視窗(vow)中重建,且其中 • 一個三維景象(3D S)的每個單一物件點(0P)的重建只需要一個次全像影像(SH) ❹ 做爲要在SLM上進行編碼的整個全像影像(H2slm)的子集。 •在一個景象(3D S)離散化成爲多個物件點(0P)之後,針對3D景象的每個可見 的物件點,透鏡次全像影像(SHL)的複雜値會在SLM上進行編碼,其中透鏡次全像 影像的複雜値會利用下列方程式來決定:zL = exP ( -i*) * ( x2 + y2 )〕} ’其 中λ是參考波長,f是焦距,而X和y貝丨J是在次全像影像的平面中互相垂直的座標。 .稜鏡的次全像影像(SHp)會在全像影像平面(HE )中決定以便移動虛擬觀察者視 窗以遠離光軸。 -〇 • .透鏡和稜鏡的是次全像影像是迴旋的,這也可以用SH = SHL * SHp來表示。 •用來執行全像計算的空間可能是或可能不是在與顯示器基板所在的同一基板上。 •負責執行解臟計算的電路組件位於顯示器的各讎素之間。 .負責執行解壓縮計算的電路組件位於顯示器的像素矩陣以外、但在同一基板上的位 置。 116 200928626 •叢集會執行解壓縮計算。 •進行解壓縮計算的叢集會經由顯示器的橫列和縱列線路來接收資料。 •每一個進行解壓縮計算的叢集會經由一個並列資料匯流排來接收資料。 •每一個進行解壓縮計算的叢集會經由一個序列資料連接線路來接收資料。 . •使用全像顯示器的方法。 © D.可在同一基板進行解壓縮計算的高解析度顯示器 —個高解析度顯示器會用來顯示高解析度影像資料,這些資料會先利用已知的資料壓縮 技術進行壓縮,然後再傳輸到顯示器的基板上的電路組件,這些電路組件接著再對所接 收到的資料執行解壓縮功能,之後再將資料顯示在顯示器的各個像素上。 ,進行解壓縮的電路組件位於顯示器的各個像素之間。 •進行解壓縮的電路組件位於顯示器的像素矩陣之外、但在顯示器所在的同一基板上。 ❿ •壓縮過的資料會傳輸到顯示器上構成整個顯示器的各個叢集上,叢集接著再對所接 • 收到的資料執行解壓縮功能,之後再將資料顯示在區域叢集的各個像素上。 •可以顯示一般顯示資料。 •可以顯示全像顯示資料° •執行壓縮計算的空間可能在或可能不在與顯示器的基板所在的同一基板上。 117 200928626 •進行解壓縮計算的叢集會經由顯示器的橫列和縱列繼練接收顏。 •每—個進行解壓縮計算的叢集會經由—個並列資料匯流排來接收資料。 •每-鍵行解臟計猶叢集會經由-個序列資料連纖路總收韻。 •是一個極高解析度的顯示器。 •每一個叢集會在40 ms或以下的時間內執行解壓縮。 Η •全像影像計算會在解壓縮之後執行。 •至少有—部分用雜定—個空間光I剛器的編碼的計算會棚位於和空間光酬器 的像素所在的同一基板上的電路組件來執行。 •至少有一部分用來決疋一個空間光調制器的編碼的計算會利用位於和空間光調制器 的像素所在的同一基板上的電路組件來執行,且這些計算的本身並不牽涉到傅立葉轉換 或菲涅爾轉換的計算。 η •至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於空間光調制器的 各個像素之間的電路組件來執行。 •計算會在分散在顯示器中個各個區域執行,以便針對各個分散區域,進行各個相應 的分散區域的像素編碼。 .電路組件中包括有薄膜電晶體。 •至少有一部份電路組件的有效區位採用有多晶矽。 118 200928626 •至少有一部份電路組件的有效區位採用有連續晶粒矽。 •至少有一部份電路組件的有效區位採用有多晶矽鍺。 •至少有一部份電路組件的有效區位採用有單晶矽。 •至少有一部份電路組件的有效區位採用有單體晶粒矽。 . •至少有一部份電路組件的有效區位採用有有機半導體。 〇 •採用單晶矽基板。 •採用玻璃基板° .視訊的影格速率至少約爲25 Hz。 •只有真實空間影像資料會被傳輸給顯示器。 .影像資料中包含光強度及緩衝區對應資料。 ❹ • •所進行的全像計算爲即時或近即時運算。 •所進行的全像計算將採用檢視表方法執行。 •將採用次全像影像來進行運算° •顯示器在製造上將採用矽晶液晶技術。 •顯示器在製造上將採用MEMS技術。 119 200928626 •顯示器在製造上將採用場發射顯示器(FED)技術。 •使用高解析度顯示器的方法。 E.可透齢删腿行全像讎棚纖祕麵顆以—娜挪_彡子系統的 3D著色管線(Rendering Pipeline)在同一基板上進的全像影像顯不器 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 像素所在的同一基板上的電路組件來執行的全像顯示器,因此圖形子系統的3D著色管 〇 線(Rendering Pipeline)整合有用於進行全像轉換和編碼的額外處理單元。 •所進行的全像計算將使用位於顯示器的各個像素之間的電路組件來執行。 •全像計算會糊位麵示器的讎矩陣以外的位置、但额顯示器的像麵在的同 —基板上的電路組件來執行。 •至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器 的像素所在的同—基板上的電路組件來執行’且這些計算的本身並不牽涉到傅立葉轉換 © 或菲涅爾轉換的計算。 .丽會在分散在顯示器中個各個區域執行,以便針對各個分散區域,進行各懈目應 的分散區域的像素編碼。 .電路組件中包括有薄膜電晶體。 •視訊的影格速率至少約爲25 Hz。 .只有真實空間影像資料會被傳輸給顯示器。 12〇 200928626 .影像資料中包含光強度及緩衝區對應資料。 •所進行的全像計算爲即時或近即時運算。 •所進行的全像計算將採用檢視表方法執行。 •採用次全像影像來進行運算° •全像運算會均質的分散在整顯示器表面上。 •全像計算會分割爲拼貼在顯示器表面上的許多全等的微小部份(稱爲叢集)。 •根據上述構想,本案之全像顯示器是一個高解析度顯示器。 •一個虛擬觀察者視窗的直徑大約是眼睛瞳孔的直徑或更大的直徑。 •將可以顯示單色影像。 •將可以顯示彩色影像。 .在計算一個全像影像的一個像素的値時,只會考慮原始影像的一個次區段的値。 •用於進行全像影像重建的光並非在整個顯示器上完全一致,而是在顯示器的各個次 區段範圍內完全一致。 •全像轉換爲一維轉換。 •全像轉換爲二維轉換。 121 200928626 •備用電路組件(像是TFT)可能會被製造在像素矩陣的空間中,使這些電路組件可 以在發現某些用於裝置啓動的電路組件有故障時,用來取代某些在裝置啓動時會用到的 電路組件0 •將由物件所發出的波前將會在一個或多個虛擬觀察者視窗(VOW)中重建,且其中 一個三維景象(3D S)的每個單一物件點(OP)的重建只需要一個次全像影像(SH) 做爲要在SLM上進行編碼的整個全像影像(ΗΣ_)的子集。 •在一個景象(3D S)離散化成爲多個物件點(OP)之後,針對3D景象的每個可見 的物件點,透鏡次全像影像(SHL)的複雜値會在SLM上進行編碼,其中透鏡次全像 影像的複雜値會利用下列方程式來決定:zL = exp { 〔(π/λί ) * ( x2 + y2 )〕} ’其 中λ是參考波長,f是焦距,而X和y則是在次全像影像的平面中互相垂直的座標。 •稜鏡的次全像影像(SHP)會在全像影像平面(HE)中決定以便移動虛擬觀察者視 窗以遠離光軸。 •透鏡和稜鏡的是次全像影像是迴旋的,這也可以用SH = SHL * SHP來表示。 •每一個次全像影像(SH)會以一個統一分布的相位偏移來進行調制,這裡的相位偏 移每一個次全像影像都不盡相同。 •會將多個次全像影像漏在一起來構成整個全像影像。 •用於進行重建的電腦產生全像影像的呈現可即時或近即時更新。 .在全像計算中會使用檢視表。 •各個物件點可以在用來進行重建的截頭錐體空間中的任何位置產生。 122 200928626 •用於第一顯示波長的Z軸對應資料會進行兩次複製供第一及第二顯示波長使用。 •會針對三個顯示波長中的每一個顯示波長並行計算全像影像。 .用於兩個色彩的色彩對應RGB內容會複製到備_3憶^_ ’ 色都可以獨立存取。 •用於每個顯示器色彩的透鏡函數和稜鏡函數會進行〇 〇 •顯示器的每一個叢集會套用一個隨機的相位。 •計算出來的SLM編碼會在全像顯示叢集中使麵外的運算法接受顯的處理。 .使用全像顯示器的方法。 F.可以以—個全像計算管線透過擴充顯示卡的3D管線(PiPeline)對三維空間中的各個 點進行循序全像轉換並同一基板上進行計算的全像影像顯示器 ® 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 像素所在的同一基板上的電路組件來執行,使三維空間中的各個點的循序全像轉換藉由 透過一個全像計算管線來擴充顯示卡的3D管線(Pipeline)來執行的全像顯示器。 •所進行的全像計算將使用位於顯示器的各個像素之間的電路組件來執行。 •全像計算會利用位於像素矩陣以外的位置、但在與顯示器所在的同一基板上的電路 組件來執行。 •至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器 123 200928626 的像素所在的同一基板上的電路組件來執行,且這些計算的本身並不牽涉到傅立葉轉換 或菲涅爾轉換的計算。 •計算會在分散在顯示器中個各個區域執行,以便針對各個分散區域,進行各個相應 的分散區域的像素編碼。 •電路組件中包括有薄膜電晶體。 . .視訊的影格速率至少約爲25 Hz。 〇 •只有真實空間影像資料會被傳輸給顯示器。 .影像資料中包含光強度及緩衝區對應資料。 •所進行的全像計算爲即時或近即時運算。 •所進行的全像計算將採用檢視表方法執行。 • •採用次全像影像來進行運算。 .❹ - .全像運算會均質的分散在整顯示器表面上。 •全像計算會分割爲拼貼在顯示器表面上的許多全等的微小部份(稱爲叢集)。 •根據上述構想,本案之全像顯示器是一個高解析度顯示器。 .一個虛擬觀察者視窗的直徑大約是眼睛瞳孔的直徑或更大的直徑。 •將可以顯示單色影像。 124 200928626 •將可以顯示彩色影像。 .在計算一個全像影像的一個像素的値時,只會考慮原始影像的一個次區段的値。 •用於進行全像影像重建的光並非在整個顯示器上完全一致,而是在顯示器的各個次 區段範圍內完全一致。 •全像轉換爲一維轉換° Ο •全像轉換爲二維轉換0 •備用電路組件(像是TFT)可能會被製造在像素矩陣的空間中,使這些電路組件可 以在發現某些用於裝置啓動的電路組件有故障時,用來取代某些在裝置啓動時會用到的 電路組件。 •將由物件所發出的波前將會在一個或多個虛擬觀察者視窗(VOW)中重建,且其中 —個三維景象(3D S)的每個單一物件點(OP)的重建只需要一個次全像影像(SH) 做爲要在SLM上進行編碼的整個全像影像(IESLM)的子集。 •在一個景象(3D S)離散化成爲多個物件點(OP)之後,針對3D景象的每個可見 的物件點,透鏡次全像影像(SHL)的複雜値會在SLM上進行編碼’其中透鏡次全像 影像的複雜値會利用下列方程式來決定:zL = exp { -i*〔(if ) * ( x2 + y2 )〕} ’其 中λ是參考波長,f是焦距,而x和y則是在次全像影像的平面中互相垂直的座標。 •稜鏡的次全像影像(SHP)會在全像影像平面(HE)中決定以便移動虛擬觀察者視 窗以遠離光軸。 •透鏡和稜鏡的是次全像影像是迴旋的,這也可以用SH = SHL * SHP來表示。 125 200928626 •每一個次全像影像(SH)會以一個統一分布的相位偏移來進行調制,這裡的相位偏 移每一個次全像影像都不盡相同。 •會將多個次全像影像疊加在一起來構成整個全像影像。 •用於進行重建的電腦產生全像影像的呈現可即時或近即時更新。 •在全像計算中會使用檢視表。 〇 •各個物件點可以在用來進行重建的截頭錐體空間中的任何位置產生。 •圖形子系統的3D著色管線(Rendering Pipeline)整合有用於進行全像轉換和編碼的額 外處理單元° •用於第一顯示波長的Z軸對應資料會進行兩次複製供第二及第三顯示波長使用。 •會針對三個顯示波長中的每一個顯示波長並行計算全像影像。102 200928626 Appendix·ι Explanation of Terms Used in This Document Computer Generates Holographic Image A computer-generated hologram image (CGH) is a holographic image calculated from a scene. The CGH may include a composite parameter 代表 representing the amplitude and phase of the light waves needed to reconstruct the scene. CGH can be calculated, for example, by "consistent ray tracing", by interference between a simulated scene and a reference light wave, or by Fourier or Fresnel conversion. Encoding An encoding is a program in which control of a holographic image is provided to a spatial light modulator (for example, a pixel grid that makes up it, or a contiguous region of a continuous SLM such as OASLM). In general, a holographic image includes a composite number 値 representing amplitude and phase. Encoding area The coding area is usually a space-limited area in a holographic image in which holographic image information for a single scene point is encoded. Spatial constraints can be achieved by a sudden truncation or by a smooth truncation through a Fourier transform from the virtual observer window to the holographic image. Fourier transform Fourier transform is used to calculate the propagation of light in the far field of a spatial light modulator. The wavefront is described by a 2p surface wave. Fourier Plane The Fourier plane contains the Fourier transform of the distribution of light over a spatial light modulator. Without any focal lens, the Fourier plane would be in infinity. If there is a focal lens in the path of light close to the spatial light modulator, the Fourier plane is equivalent to the plane containing the image of the source. Fischer conversion The Fresnel transformation is used to calculate the s-waves in the near-field of the spatial light modulator and is described by spherical waves. The phase factor of the light wave consists of a two-dimensional dimension depending on the square of the lateral coordinate. 200928626 Frustum The virtual observer window and the SLM form a virtual frustum and extend all the way to the rear of the SLM. The scene will be reconstructed in this frustocone. The size of the reconstructed scene is limited by this frustum and is not limited by the periodic interval of the SLM. Light source system The light source system may include a uniform light source (such as a laser) or a partially consistent light source (such as an LED). The consistent temporal and spatial consistency of the partially uniform light source must be sufficient to facilitate good image reconstruction, and the emission surface, ie the spectral line width and lateral extent, must be small enough. Virtual Observer Window (VOW) The Virtual Observer Window is a virtual window on the viewer's plane through which you can see reconstructed 3D objects. VOW is a Fourier transform of a holographic image and is located within a periodic interval to avoid seeing multiple reconstructed images of the object. The size of the VOW must be at least the size of the pupil of the eye. If at least one VOW is placed at the observer's eye and has an observer tracking system, the VOW is smaller than the observer's lateral movement. This makes it easy to use an SLM that only has the appropriate resolution (and therefore also a small periodic interval). You can think of VOW as a keyhole through which we can see reconstructed 3D objects; either one VOW per eye or one VOW for each eye 〇 cycle interval if CGH is displayed in an individual It is sampled on the SLM that consists of the address cells. This sampling action produces a periodic repetition of the diffractive pattern. The period interval is expressed by AD/p where λ is the wavelength, D is the distance from the hologram to the Fourier plane, and Ρ is the pitch of the SLM pixel. However, OASLM does not sample, so the diffractive pattern does not have a repetition of cycle 14; this reinstatement is in fact suppressed. Reconstruction Illuminating a spatial light modulator with omni-image encoding will reconstruct the original distribution of light. This distribution of light is used to calculate the hologram image. In theory, the observer will not be able to distinguish the reconstructed light distribution from the original light distribution. On most holographic displays, the distribution of the light of the scene is reconstructed; on our display, Bellow is the distribution of light in the window of the reconstructed virtual observer 104 200928626. The scene to be reconstructed is a real or computer-generated three-dimensional light distribution. In a special case, it could also be a two-dimensional light distribution. A scene may include various fixed or moving objects arranged in a space. Spatial Light Modulator (SLM) The SLM is used to modulate the wavefront of the incoming light. An ideal SLM will be able to represent an arbitrary composite number 値, ie, the amplitude and phase of an input light wave can be individually controlled. However, ~~ a type of SLM will only control the nature of the system, not the amplitude or phase, but also may also affect the adverse side effects of another property. ❹ 105 200928626 Appendix m mourning This document contains a variety of commemorations (such as "memory A - T" 臓). The following instructions may help define these commemorations.全. A holographic image display that can be calculated on the same substrate as the pixel is used to determine at least a portion of the calculation of the encoding of a spatial light modulator using the same substrate as the % 像素 pixel of the spatial light modulator. The circuit component is used to perform a hologram display. • At least a portion of the calculations used to determine the encoding of a spatial light modulator are performed using circuit components located between the individual pixels of the spatial light modulator. • Calculations are performed in various areas scattered throughout the display to enable pixel encoding of the respective discrete areas for each discrete area. • A thin film transistor is included in the circuit assembly. • At least some of the circuit components have polysilicon in their active locations. At least some of the circuit components have a continuous grain of sand in the effective location. • At least some of the circuit components have polysilicon in their active locations. • At least some of the circuit components have a single crystal 有效 in the effective location. • At least some of the circuit components have a valid area with a single die. 106 200928626 • At least some of the circuit components have an effective location with organic semiconductors. A single crystal germanium substrate is used. • Use a glass substrate. • Only real-world image data will be transmitted to the monitor. The frame rate of the video is at least about 25 Hz. • The image data contains the light intensity and buffer data. • The holographic calculations performed are either immediate or near real-time operations. • The holographic calculations performed will be performed using the view method. • Use sub-holographic images for calculations. • Data used to add sub-holographic images is exchanged over a sub-image size. The hologram operation is homogeneously dispersed over the entire display surface. • The holographic calculation is divided into many congruent tiny parts (called clusters) that are tiled on the surface of the display. • Data used to join sub-holographic images is exchanged at a cluster scale distance. • A holographic display can be constructed by tiling a number of congruent clusters together. 107 200928626 • According to the above concept, the holographic display of this case is a high-resolution display. According to the above concept, the holographic display of the present case is an extremely high resolution display. • The diameter of a virtual observer window is approximately the diameter of the pupil of the eye or a larger diameter. • This virtual observer window has a diameter of approximately 1 cm or more. • A pair of buffer correspondences and light intensity corresponding colors will be organized for each eye (ie for each virtual observer window) • Monochrome images will be displayed ° • Color touch images will be displayed. • Color images in RGB format will be displayed. • When calculating the 値 of a pixel of a holographic image, only the 値 of a sub-segment of the original image is considered. • The light used for holographic image reconstruction is not exactly the same across the entire display, but is exactly the same across the sub-sections of the display. • Only enough lines are needed to transfer the original image data than to transfer the holographic image data. • Reducing the data transmission frequency has the benefit of reducing the power consumption in the row and column drives. • Most of the pixel area required for the tandem and horizontal lines in previous patented solutions can be used for other purposes. 108 200928626 • The area of the transparent electrode can be increased, and thus the transmittance of the display can be improved. • The display panel can be controlled using traditional display technology. • The display will be manufactured using twin crystal technology. • The display will be manufactured using MEMS technology. • The display will be manufactured using Field Emission Display (FED) technology. • The hologram is converted to a one-dimensional conversion. • The hologram is converted to a two-dimensional transform. There is an additional logic for the area to transfer existing calculated data' and this additional logic is also used to forward the original image to each cluster, so at least some common columns and verticals can be eliminated. • Alternate circuit components (such as TFTs) may be fabricated in the space of the pixel matrix 'to make these circuit groups #$ to replace some of the device startups when it is found that some of the circuit components used for device startup are faulty The _ circuit components that will be used. • The method of using a hologram display. B. Computation on the same substrate 'A holographic image display capable of efficient spatial light modulator encoding calculations is used at least in part to determine the calculation of the encoding of a spatial light modulator using the spatial and spatial light modulators Circuitry on the same substrate where the pixels are located, components to perform a holographic display, and the calculations themselves do not involve the calculation of Fourier transform or Philippine conversion. 109 200928626 • At least a portion of the computation used to determine the encoding of a spatial light modulator is performed using circuit components located between the individual pixels of the spatial light modulator. • Calculations are performed in various areas scattered throughout the display to enable pixel encoding of the respective discrete areas for each discrete area. • A thin film transistor is included in the circuit assembly. • At least some of the circuit components have polysilicon in their active locations. At least some of the circuit components have effective locations with continuous die. • At least some of the circuit components have polysilicon in their active locations. • At least some of the circuit components have a single crystal 有效 in the effective location. • At least some of the circuit components have a valid area with a single die cut. • At least some of the circuit components have active semiconductors in their active locations. • Use a single crystal germanium substrate. • Use a glass substrate. • Only real-world image data will be transmitted to the monitor. • Video frame rate is at least about 25 Hz 〇 110 200928626 • Image data contains light intensity and buffer correspondence data. • The holographic calculations performed are either immediate or near real-time operations. • The holographic calculations performed will be performed using the view method. • Use sub-holographic images for calculations. • The holographic operation is evenly distributed across the entire display surface. * Ο • The holographic calculation is divided into many congruent tiny parts (called clusters) that are tiled on the surface of the display. • According to the above concept, the holographic display of this case is a high-resolution display. • The diameter of a virtual observer window is approximately the diameter of the pupil of the eye or a larger diameter. • A monochrome image will be displayed. • The color image will be displayed ° 〇 . • When calculating the 値 of one pixel of a holographic image, only the 区段 of one sub-segment of the original image will be considered. • The light used to reconstruct the holographic image is not exactly the same across the display, but is exactly the same across the sub-sections of the display. • Only enough lines are needed to transfer the original image data than to transfer the holographic image data. • Reducing the data transmission frequency has the benefit of reducing the power consumption in the row and column drives. 111 200928626 • Most of the pixel area required for the tandem and transverse lines in previous patented solutions can be used for other purposes. • The area of the transparent electrode can be increased, and thus the transmittance of the display can be improved. • The display panel can be controlled using traditional display technology. • The display will be manufactured using twin crystal technology. Λ • Display MEMS technology for the production of 雏 • 0 • Display display will use field emission display (fed) technology. • The hologram is converted to a one-dimensional conversion. • The hologram is converted to a two-dimensional transform. • There is an additional logic for the area to transfer the existing calculated data, and this additional logic is also used to forward the original image to each cluster, so at least some common course and column lines can be eliminated. ◎ • Spare circuit components (such as TFTs) may be fabricated in the space of the pixel matrix 'to enable these circuit components to replace some of the device startups when it is found that some of the circuit components used for device startup are faulty. The circuit components that will be used. • The reconstruction of the wavefront emitted by the object will be reconstructed in one or more virtual observer windows (vow) and the reconstruction of each single object point (OP) of the three-dimensional scene (3D S) takes only one time The hologram (SH) is a subset of the entire hologram (ΗΣ%μ) to be encoded on the SLM. • After a scene (3D S) is discretized into multiple object points (ΟΡ), for each object point of the 3D scene visible 112 200928626, the complex sub-image of the lens (SHL) is encoded on the SLM The difficulty of the lens sub-image is determined by the following equation: ZL = exp bu i*[(Wf ) * ( x2 + y2 )]}, where λ is the reference wavelength and f is the focal length ' and x and y Belle is a coordinate that is perpendicular to each other in the plane of the sub-image. The sub-holographic image (SHP) of the 稜鏡 is determined in the holographic image plane (HE) to move the virtual observer window away from the optical axis. The lens and the 稜鏡 are sub-images that are convoluted'. This can also be represented by SH = SHL * SHP. • Each sub-image (SH) is modulated with a uniformly distributed phase offset. The phase offset here is different for each omni-image. Multiple sub-images are superimposed to form the entire hologram. • The rendering of a holographic image produced by the computer used for reconstruction can be updated instantly or near instantaneously. A view table is used in hologram calculations. • Individual object points can be generated anywhere in the frustoconic space used for reconstruction. 〇 • The method of using a hologram display. C. The holographic image display holographic image encoding data that can be decompressed on the same substrate is calculated outside the space occupied by the pixel matrix, and then the holographic image encoding data is processed using known data compression techniques. Compressing the 'circuit component that is then transmitted to the display substrate' The circuit component then performs a decompression function of the holographic display of the received data. At least a portion of the calculations used to determine the encoding of a spatial light modulator are performed using circuit components located on the same substrate as the pixels of the spatial light modulator 113 200928626. • A thin film transistor is included in the circuit assembly. • At least some of the circuit components have polysilicon in their active locations. • At least some of the circuit components have active areas with continuous die. • At least some of the circuit components have polysilicon in their active locations. 〇 • At least some of the circuit components have a single crystal 有效 in the effective location. • At least some of the circuit components have a valid area with a single die. • At least some of the circuit components have active semiconductors in their active locations. A single crystal germanium substrate is used. • Use a glass substrate ° ❹ . . Video frame rate is at least about 25 Hz. • The image data contains light intensity and buffer corresponding data. • The holographic calculations performed are either immediate or near real-time operations. • The holographic calculations performed will be performed using the view method. • Use sub-holographic images for calculations. 114 200928626 • • According to the above concept, the hologram display of this case is a high-resolution display. The diameter of a virtual observer window is approximately the diameter of the pupil of the eye or a larger diameter. • A monochrome image will be displayed. • A color image will be displayed. ❹ When calculating the 値 of one pixel of a holographic image, only the 値 of a sub-segment of the original image is considered. • The light used to reconstruct the holographic image is not exactly the same across the display, but is exactly the same across the sub-sections of the display. • Reducing the data transmission frequency has the benefit of reducing the power consumption in the row and column drives. • Most of the pixel area required for the tandem and horizontal lines in previous patented solutions can be used for other purposes. ❹ • The area of the transparent electrode can be increased, and thus the transmittance of the display can be improved. • The display panel can be controlled using traditional display technology. • The display will be manufactured using twin crystal technology. • The display will be manufactured using MEMS technology. • The display will be manufactured using Field Emission Display (FED) technology. 115 200928626 • The hologram is converted to a one-dimensional conversion. • The hologram is converted to a two-dimensional transform. • Alternate circuit components (such as TFTs) may be fabricated in the space of the pixel matrix so that these circuit components can be used to replace some of the device startups when it is found to be faulty. The circuit components used. • The wavefront emitted by the object will be reconstructed in one or more virtual observer windows (vow), and • the reconstruction of each single object point (0P) of a three-dimensional scene (3D S) only needs one time The hologram (SH) ❹ is a subset of the entire hologram (H2slm) to be encoded on the SLM. • After a scene (3D S) is discretized into multiple object points (0P), for each visible object point of the 3D scene, the complex sub-image of the lens (SHL) is encoded on the SLM, where The complexity of the lens sub-image is determined by the following equation: zL = exP ( -i*) * ( x2 + y2 )]} ' where λ is the reference wavelength, f is the focal length, and X and y are J Coordinates that are perpendicular to each other in the plane of the sub-holographic image. The sub-holographic image (SHp) of the 稜鏡 is determined in the holographic image plane (HE) to move the virtual observer window away from the optical axis. -〇 • . The lens and 稜鏡 are sub-images that are convoluted, which can also be represented by SH = SHL * SHp. • The space used to perform holographic calculations may or may not be on the same substrate as the display substrate. • The circuit components responsible for performing the dirty calculation are located between the various elements of the display. The circuit components responsible for performing the decompression calculation are located outside of the pixel matrix of the display but on the same substrate. 116 200928626 • The cluster performs decompression calculations. • The cluster that performs the decompression calculation receives the data via the column and column lines of the display. • Each cluster that performs decompression calculations receives data via a parallel data bus. • Each cluster that performs decompression calculations receives data via a sequence data connection line. • The method of using a hologram display. © D. High-resolution displays that can be decompressed on the same substrate—a high-resolution display that displays high-resolution imagery that is first compressed using known data compression techniques and then transferred to Circuit components on the substrate of the display, which in turn perform decompression on the received data, and then display the data on individual pixels of the display. The decompressed circuit components are located between the pixels of the display. • The decompressed circuit components are located outside of the display's pixel matrix but on the same substrate as the display. ❿ • The compressed data is transferred to the monitor to form the entire cluster of the monitor. The cluster then decompresses the received data and then displays the data on each pixel of the regional cluster. • The general display data can be displayed. • Full-image display data can be displayed. • The space for performing compression calculations may or may not be on the same substrate as the display's substrate. 117 200928626 • The cluster that performs the decompression calculation will receive the color via the course and column of the display. • Each cluster that performs decompression calculations receives data via a parallel data bus. • Each-key line solves the dirty counts and collects the rhyme through the serial data. • It is a very high resolution display. • Each cluster performs decompression for 40 ms or less. Η • The hologram image calculation will be performed after decompression. • The calculation of the encoding of at least some of the spatially-spaced optical modulators is performed by circuit components on the same substrate as the pixels of the spatial photoreactor. • At least a portion of the calculations used to determine the encoding of a spatial light modulator are performed using circuit components located on the same substrate as the pixels of the spatial light modulator, and the calculations themselves do not involve Fourier transforms or Calculation of Fresnel conversion. η • At least a portion of the calculations used to determine the encoding of a spatial light modulator are performed using circuit components located between the individual pixels of the spatial light modulator. • Calculations are performed in various areas scattered throughout the display to enable pixel encoding of the respective discrete areas for each discrete area. The circuit assembly includes a thin film transistor. • At least some of the circuit components have polysilicon in their active locations. 118 200928626 • At least some of the circuit components have active areas with continuous die. • At least some of the circuit components have polysilicon in their active locations. • At least some of the circuit components have a single crystal 有效 in the effective location. • At least some of the circuit components have a valid area with a single die. • At least some of the circuit components have an effective location with organic semiconductors. 〇 • Use a single crystal germanium substrate. • Use a glass substrate °. The video frame rate is at least about 25 Hz. • Only real-world image data will be transmitted to the monitor. The image data contains light intensity and buffer corresponding data. ❹ • • The hologram calculation performed is an instant or near real-time operation. • The holographic calculations performed will be performed using the view method. • Sub-holographic images will be used for calculations. • The display will be manufactured using twin crystal technology. • The display will be manufactured using MEMS technology. 119 200928626 • The display will be manufactured using Field Emission Display (FED) technology. • The method of using a high-resolution display. E. At least a part of the holographic image display that can be determined by the 3D shading pipeline of the Nao _ 彡 subsystem on the same substrate can be determined by deleting the leg line. The computation of the encoding of a spatial light modulator utilizes a circuit component located on the same substrate as the pixel of the spatial light modulator to perform a holographic display, so the graphics subsystem's 3D rendering pipeline is integrated. Additional processing unit for holographic conversion and encoding. • The holographic calculations performed will be performed using circuit components located between the various pixels of the display. • The holographic calculation will be performed at a position other than the 雠 matrix of the surface display, but the circuit surface on the same substrate as the image surface of the display. • At least a portion of the calculations used to determine the encoding of a spatial light modulator are performed using circuit components located on the same substrate as the pixels of the spatial light modulator' and the calculations themselves do not involve Fourier transforms© Or the calculation of the Fresnel transformation. The highlights are distributed in various areas of the display to perform pixel coding of the discrete areas of each of the discrete areas. The circuit assembly includes a thin film transistor. • Video frame rate is at least approximately 25 Hz. Only real-world image data will be transmitted to the display. 12〇 200928626 . The image data contains light intensity and buffer corresponding data. • The holographic calculations performed are either immediate or near real-time operations. • The holographic calculations performed will be performed using the view method. • Use sub-holographic images for calculations • Full-image operations are evenly distributed across the entire display surface. • The holographic calculation is divided into many congruent tiny parts (called clusters) that are tiled on the surface of the display. • According to the above concept, the holographic display of this case is a high-resolution display. • The diameter of a virtual observer window is approximately the diameter of the pupil of the eye or a larger diameter. • A monochrome image will be displayed. • The color image will be displayed. When calculating the 値 of a pixel of a holographic image, only the 値 of a sub-segment of the original image is considered. • The light used to reconstruct the holographic image is not exactly the same across the display, but is exactly the same across the sub-sections of the display. • The hologram is converted to a one-dimensional conversion. • The hologram is converted to a two-dimensional transform. 121 200928626 • Alternate circuit components (such as TFTs) may be fabricated in the space of the pixel matrix so that these circuit components can be used to replace some of the device startups when it is found that some of the circuit components used for device startup are faulty. Circuit component 0 that will be used • The wavefront emitted by the object will be reconstructed in one or more virtual observer windows (VOW), and each single object point of one of the three-dimensional scenes (3D S) (OP Reconstruction requires only one sub-image (SH) as a subset of the entire hologram (ΗΣ_) to be encoded on the SLM. • After a scene (3D S) is discretized into multiple object points (OPs), for each visible object point of the 3D scene, the complex sub-image of the lens (SHL) is encoded on the SLM, where The complexity of the lens sub-image is determined by the following equation: zL = exp { 〔(π/λί ) * ( x2 + y2 )]} ' where λ is the reference wavelength, f is the focal length, and X and y are Coordinates that are perpendicular to each other in the plane of the sub-holographic image. • The sub-holographic image (SHP) of the 稜鏡 is determined in the holographic image plane (HE) to move the virtual observer window away from the optical axis. • The lens and 稜鏡 are sub-images that are convoluted, which can also be represented by SH = SHL * SHP. • Each sub-image (SH) is modulated with a uniformly distributed phase offset, where the phase shift is different for each sub-image. • Multiple sub-images are leaked together to form the entire hologram. • The rendering of a holographic image produced by the computer used for reconstruction can be updated instantly or near instantaneously. A view table is used in hologram calculations. • Individual object points can be generated anywhere in the frustoconic space used for reconstruction. 122 200928626 • The Z-axis correspondence data for the first display wavelength is copied twice for the first and second display wavelengths. • A holographic image is computed in parallel for each of the three display wavelengths. The color corresponding to the RGB content for the two colors will be copied to the standby _3 recall ^_ ′ color can be accessed independently. • The lens function and 稜鏡 function for each display color will be 〇 〇 • Each cluster of the display will have a random phase applied. • The calculated SLM code will cause the out-of-plane algorithm to accept explicit processing in the hologram display cluster. A method of using a hologram display. F. At least one part of the holographic image display can be determined by a holographic calculation pipeline through a 3D pipeline (PiPeline) of the extended display card to perform sequential holographic conversion of each point in the three-dimensional space and calculation on the same substrate. The calculation of the encoding of a spatial light modulator is performed using circuit components located on the same substrate as the pixels of the spatial light modulator, enabling sequential holographic transformation of points in the three-dimensional space by passing through a holographic calculation pipeline A full-image display that is implemented by expanding the 3D pipeline (Pipeline) of the display card. • The holographic calculations performed will be performed using circuit components located between the various pixels of the display. • The holographic calculation is performed using circuit components located outside the pixel matrix but on the same substrate as the display. • At least a portion of the calculations used to determine the encoding of a spatial light modulator are performed using circuit components located on the same substrate as the pixels of the spatial light modulator 123 200928626, and these calculations themselves do not involve Fourier transforms. Or the calculation of the Fresnel transformation. • Calculations are performed in various areas scattered throughout the display to enable pixel encoding of the respective discrete areas for each discrete area. • A thin film transistor is included in the circuit assembly. The video frame rate is at least approximately 25 Hz. 〇 • Only real-world image data will be transmitted to the monitor. The image data contains light intensity and buffer corresponding data. • The holographic calculations performed are either immediate or near real-time operations. • The holographic calculations performed will be performed using the view method. • • Use sub-holographic images for calculations. .❹ - . The hologram operation is homogeneously dispersed on the entire display surface. • The holographic calculation is divided into many congruent tiny parts (called clusters) that are tiled on the surface of the display. • According to the above concept, the holographic display of this case is a high-resolution display. The diameter of a virtual observer window is approximately the diameter of the pupil of the eye or a larger diameter. • A monochrome image will be displayed. 124 200928626 • Color images will be displayed. When calculating the 値 of a pixel of a holographic image, only the 値 of a sub-segment of the original image is considered. • The light used to reconstruct the holographic image is not exactly the same across the display, but is exactly the same across the sub-sections of the display. • Full-image conversion to one-dimensional conversion ° Ο • Full-image conversion to two-dimensional conversion 0 • Alternate circuit components (such as TFT) may be fabricated in the space of the pixel matrix so that these circuit components can be found in some of the When a device-initiated circuit component fails, it is used to replace some of the circuit components that are used when the device is started. • The wavefront emitted by the object will be reconstructed in one or more virtual observer windows (VOW), and the reconstruction of each single object point (OP) of a three-dimensional scene (3D S) takes only one time The hologram (SH) is a subset of the entire hologram (IESLM) to be encoded on the SLM. • After a scene (3D S) is discretized into multiple object points (OPs), for each visible object point of the 3D scene, the complex sub-image of the lens (SHL) is encoded on the SLM. The complexity of the lens sub-image is determined by the following equation: zL = exp { -i*[(if ) * ( x2 + y2 )]} ' where λ is the reference wavelength, f is the focal length, and x and y are Is a coordinate perpendicular to each other in the plane of the sub-holographic image. • The sub-holographic image (SHP) of the 稜鏡 is determined in the holographic image plane (HE) to move the virtual observer window away from the optical axis. • The lens and 稜鏡 are sub-images that are convoluted, which can also be represented by SH = SHL * SHP. 125 200928626 • Each sub-holographic image (SH) is modulated with a uniformly distributed phase offset, where the phase shift is different for each sub-image. • Multiple sub-images are superimposed to form the entire hologram. • The rendering of a holographic image produced by the computer used for reconstruction can be updated instantly or near instantaneously. • View tables are used in hologram calculations.各个 • Individual object points can be generated anywhere in the frustoconic space used for reconstruction. • The graphics subsystem's 3D Rendering Pipeline incorporates additional processing units for holographic conversion and encoding. • The Z-axis correspondence for the first display wavelength is copied twice for the second and third displays. Wavelength use. • A holographic image is computed in parallel for each of the three display wavelengths.

.Q •用於兩個色彩的色彩對應RGB內容會複製到個別的記億體區段中,以確保三個分 • 色都可以獨立存取》 .用於每個顯示器色彩的透鏡函數和稜鏡函數會進行一項複乘法。 .顯示器的每一個叢集會套用一個隨機的相位。 •計算出來的SLM編碼會在全像顯示叢集中使用額外的運算法接受後續的處理。 •全像計算可以在有完整的色彩對應及Z軸緩衝區資料可用之前開始。 126 200928626 •針對每一個次全像影像執行全像計算所需的時間小於一個影像框格的時間。 .針對每一個次全像影像執行全像計算所需的時間爲17 ms或以下。 .可以使用於軍事用途。 .顯示器的每一個叢集都有自己的檢視表用來儲存它所顯示的次全像影像的編碼。.Q • Colors for two colors correspond to RGB content that is copied into individual cells to ensure that all three colors can be accessed independently. Lens function and edge for each display color The mirror function performs a complex multiplication. Each cluster of displays will have a random phase applied. • The calculated SLM code will use additional algorithms in the hologram display cluster for subsequent processing. • The hologram calculation can begin before there is a full color correspondence and the Z-axis buffer data is available. 126 200928626 • The time required to perform a hologram calculation for each sub-image is less than the time of one image frame. The time required to perform a hologram calculation for each sub-image is 17 ms or less. Can be used for military purposes. Each cluster of displays has its own view table for storing the encoding of the sub-holographic image it displays.

• •在讀取來自LUT的SH的內容之後,它會計算出目前顯示的SHCSHw)與新的SH 〇 (SHn)之間的差。 •三維空間中的各個點的循序全像轉換,會透過擴充一個具全像計算管線(Pipeline)之 顯示卡之3D管線的方法來執行,並不限於特定種類的SLM。 •使用全像顯示器的方法。 G.可在同一基板上執行計算的全像影像顯示器,全像顯示器並可隨機編址 v 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 像素所在的同一基板上的電路組件來執行,使連續的真實空間影像框格之間用在全像計 算中的真實空間影像資料各不相同,而全像顯示資料會以次全像影像差異資料和顯示記 憶位置資料的形式傳送給全像顯示叢集的全像顯示器。 •三維空間中的各個點的循序全像轉換會透過擴充一個具全像計算管線(Pipeline)之顯 示卡之3D管線的方法來執行。 •所進行的全像計算將使用位於顯示器的各個像素之間的電路組件來執行。 127 200928626 •全像計算會利用位於像素矩陣以外的位置、但在與顯示器所在的同一基板上的電路 組件來執行。 •至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器 的像素所在的同一基板上的電路組件來執行,且這些計算的本身並不牽涉到傅立葉轉換 或菲涅爾轉換的計算。 •計算會在分散在顯示器中個各個區域執行,以便針對各個分散區域,進行各個相應 的分散區域的像素編碼。 Ο •電路組件中包括有薄膜電晶體。 •視訊的影格速率至少約爲25 Hz。 •只有真實空間影像資料會被傳輸給顯示器。 •影像資料中包含光強度及緩衝區對應資料。 ▲ •所進行的全像計算爲即時或近即時運算° ❹ .所進行的全像計算將採用檢視表方法執行。 •會顯示各個次全像影像° .全像運算會均質的分散在麵示器表面上。 •全像計算會分割爲拼貼在顯示器表面上的許多全等的微小部份(稱爲叢集)。 •根據上述構想,本案之全像顯示器是一個高解析度顯示器。 128 200928626 •一個虛擬觀察者視窗的直徑大約是眼睛瞳孔的直徑或更大的直徑。 •將可以顯示單色影像。 •將可以顯潇觸像。 •在計算一個全像影像的一個像素的値時’只會考慮原始影像的一個次區段的値。 •用於進行全像影像重建的光並非在整個顯示器上完全一致,而是在顯示器的各個次 區段範圍內完全一致。 •全像轉換爲一維轉換。 •全像轉換爲二維轉換。 •備用電路組件(像是TFT)可能會被製造在像素矩陣的空間中,使這些電路組件可 以在發現某些用於裝置啓動的電路組件有故障時’用來取代某些在裝置啓動時會用到的 電路組件。 •將由物件所發出的波前將會在一個或多個虛擬觀察者視窗(VOW)中重建,且其中 一個三維景象(3D S)的每個單一物件點(〇P)的重建只需要一個次全像影像(SH) 做爲要在SLM上進行編碼的整個全像影像〇ESLM)的子集。 •在一個景象(3D S)離散化成爲多個物件點(OP)之後,針對3D景象的每個可見 的物件點,透鏡次全像影像(SHL)的複雜値會在SLM上進行編碼,其中透鏡次全像 影像的複雜値會利用下列方程式來決定:zL = exp { -i*〔(if ) * ( X2 + y2 )〕},其 中λ是參考波長,f是焦距,而x和y貝提在次全像影像的平面中互相垂直的座標。 129 200928626 .稜鏡的次全像影像(SHP)會在全像影像平面(HE)中決定以便移動虛擬觀察者視 窗以遠離光軸。 .透鏡和稜鏡的是次全像影像是迴旋的,這也可以用SH = SHL * SHP來表示。 .每一個次全像影像(SH)會以一個統一分布的相位偏移來進行調制,這裡的相位偏 移每一個次全像影像都不盡相同。 •會將多個次全像影像疊加在一起來構成整個全像影像。 5 .用於進行重建的電腦產生全像影像的呈現可即時或近即時更新。 .各個物件點可以在用來進行重建的截頭錐體空間中的任何位置產生。 •圖形子系統的3D著色管線(Rendering Pipeline)整合有用於進行全像轉換和編碼的額 外處理單元。 .用於第一顯示波長的Z軸對應資料會進行兩次複製供第二及第三顯示波長使用。 % @ •會針對三個顯示波長中的每一個顯示波長並行計算全像^胃。 •用於兩個色彩的色彩對應RGB內容會複製到個別的記億體區段中’以確保三個分 色都可以獨立存取。 •用於每個顯示器色彩的透鏡函數和稜鏡函數會進行一項。 •顯示器的每一個叢集會套用一個隨機的相位。 •計算出來的SLM編碼會在全像顯示叢集中刪額外的蓮算法接受後續的處理。 130 200928626 .可以使用於軍事用途。 •各個全像計算單元會接收影像差異資料。 •如果一個特定叢集的連續框格的顯示資料之間沒有差異、或者只有微乎其微而可以 忽略的差異,貝!J並不須要傳送資料給叢集。 •每一個全像轉換單元都會傳送相對於重建點或用來在SLM上進行編碼的點的3D 差異點影像資料。 •在每一個全像顯示叢集中有一個分解器,它會將計算出來的全像影像顯示資料分解 爲次全像影像資料以及大小和位置資訊,其中後面這兩個値可以用來計算次全像影像在 RAM中的位址範圍’使次全像影像SH或Sifc的資料可以被寫入到叢集中的正確 SLM像素格上》 •使用一個特殊的隨機存取記憶體(RAM)來使輸入側只會寫入新的SH或SHD,而 在輸出側則會完整的讀取整個記憶體並將完整的資訊寫入到SLM上。 .使用全像顯示器的方法。 H.在像素空間中具備有運算功能的顯示器 運算功能軸麵在麵示器的像麵在的同—纖上幌路組件執行酬示器。 •運算功能會由佈置在與顯示器的像素之間的電路組件執行。 .運算功能會由佈置在像素矩陣以外、但在與顯示器所在的同一基板上的電路組件執 行。 131 200928626 •顯示器上的顯示資料的延遲小於由佈置在與顯示器的像素所在的同一基板上的電路 組件所執行的運算功能如果在其它地方執行所造成的的延遲。 •這些運算是圖形的運算。 •可以構成高速遊戲裝置的一部份。 •可以使用於軍事用途。 •計算會在分散在顯示器中個各個區域執行,以便針對各個分散區域,進行各個相應 的分散區域的像素編碼。 •電路組件中包括有薄膜電晶體。 •至少有一部份電路組件的有效區位採用有多晶矽。 •至少有一部份電路組件的有效區位採用有連續晶粒矽。 •至少有一部份電路組件的有效區位採用有多晶矽鍺。 •至少有一部份電路組件的有效區位採用有單晶矽° •影像資料的影格速率至少約爲25 Hz。 •運算(可能是並行運算)會分割爲拼貼在顯示器表面上的許多全等的微小部份,稱 胃“叢集,、 •顯示器可以透過將許多全等的叢集拼貼在一起而構成。 132 200928626 •顯示器是一個高解析度顯示器。 •顯不器是一個極高解析度顯不器。 •將可以顯示彩色影像。 .將可以顯示RGB格式的彩色影像。 •顯示器在製造上將採用矽晶液晶技術。 •有一個額外的邏輯可用於區域轉送現有計算所得的資料’而這個額外的邏輯也同時 用於轉送原始影像給各個叢集,所以至少可以剔除某些共通的橫列和縱列線路。 .使用顯示器的方法。 I.吸收 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 像素所在的同一基板上的電路組件來執行,並且可以確保距離虛擬觀察者視窗較近的物 件點會遮蔽沿著相同的視線上距離虛擬觀察者視窗較遠物件點的全像顯示器。 .計算的本身並不牽涉到傅立葉轉換或菲涅爾轉換的計算。 •全像影像編碼資料會在像素矩陣所佔用的空間以外的地方計算,然後再將這些全像 影像編碼資料利用已知的資料壓縮技術進行壓縮,之後再傳輸到顯示器基板上的電路組 件上,這些電路組件接著再執行將所接收到的資料解壓縮的功能。 •圖形子系統的3D著色管線(Rendering Pipeline)整合有用於進Γ了全像轉換和編碼的額 133 200928626 外處理單元。 •三維空間中的各個點的循序全像轉換會透過使用一個全像計算管線來擴充顯示卡的 3D管線(Pipeline)來執行。 .用於進行全像計算中的真實空間影像資料是每一格連續真實空間影像框格之間的 差,而全像顯示資料會以次全像影像差異資料以及顯示記憶位虞資料的形式傳送給各個 全像顯示叢集》 j · “吸收,,會利用由佈置在與像素矩陣所在的同-基板上的電路組件所執行的計算來實 施。 •“吸收”會利用由佈置在顯示器的像素之間的電路組件所執行的計算來實$。 •一個虛擬觀察者視窗的直徑大約是眼睛瞳孔的直徑或更大的直徑° • VOW會分成兩個或多個區段。 ~ .每一個VOW區段的大小大致和人類眼睛的瞳孔大目當。 .每一個VOW區段會以一個不同的次全像影像進行編碼。 • 吸收,,會在構成緩衝區對應資料和光強度對應資料的階段中進行。 •使用全像顯示器的方法。 J.顯示卡的功能 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 134 200928626 像素所在的同一基板上的電路組件來執行,且顯示卡的功能會利用佈置在與顯示器的像 素所在的同一基板上的電路組件來執行的全像顯示器。 .計算的本身並不牽涉到傅立葉轉換或菲涅爾轉換的計算。 •全像影像編碼資料會在像素矩陣所佔用的空間以外的地方計算’然後再將這些全像 影像編碼資料利用已知的資料壓縮技術進行壓縮,之後再傳輸到顯示器基板上的電路組 件上,這些電路組件接著再執行將所接收到的資料解壓縮的功能。 •圖形子系統的3D著色管線(Rendering Pipeline)整合有用於進行全像轉換和編碼的額 外處理單元。 •三維空間中的各個點的循序全像轉換會透過使用一個全像計算管線來擴充顯示卡的 3D管線(Pipeline)來執行。 •用於進行全像計算中的真實空間影像資料是每一格連續真實空間影像框格之間的 差,而全像顯示資料會以次全像影像差異資料以及顯示記憶位置資料的形式傳送給各個 全像顯示叢集° •顯示卡的功能會利用佈置在顯示器的像素之間的電路組件來執行。 •顯示卡的功能會利用佈置在像素矩陣以外的電路組件來執行。 •顯示卡的功能包括紋理映射。 .顯示卡的功能包括呈現多邊形。 •顯示卡的功能包括將頂點轉譯成不同的座標系統。 135 200928626 .顯示卡的功能包括可程式著色引擎。 •顯示卡的功能包括超取樣和內插技術來減少疊影。 .顯示卡的功能包括極高精密度的色彩空間。 •顯示卡的功能包括2D加速計算能力。 . •顯示卡的功能包括影格緩衝區能力。 ❹ •顯示卡的功能包括“動畫專家小組”(MPEG)基元。 •顯示卡的功能包括執行牽涉到矩陣和向量操作的運算。 •顯不卡的功能包括採用一個由佈置在與像素矩陣所在的同一基板上的TFT所執行的 3D 著色管線(Rendering Pipeline)。 •使用全像顯示器的方法。 〇 K. 2D㈠3D轉換 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 像素所在的同一基板上的電路組件來執行,並且會執行2D㈠3D影像轉換的全像顯 示器。 •計算的本身並不牽涉到傅立葉轉換或菲涅爾轉換的計算。 • A像影像編碼資料會在像素矩陣所佔用的空間以外的地方計算,然後再將這些全像 影像編碼資料利用已知的資料壓縮技術進行壓縮,之後再讎到顯示器基板上的電路組 136 200928626 件上,這些電路組件接著再執行將所接收到的資料解壓縮的功能。 •圖形子系統的3D著色管線(Rendering Pipeline)整合有用於進行全像轉換和編碼的額 外處理單元。 •三維空間中的各個點的循序全像轉換會透過使用一個全像計算管線來擴充顯示卡的 3D管線(Pipeline)來執行。 •用於進行全像計算中的真實空間影像資料是每一格連續真實空間影像框格之間的 φ 差,而全像顯示資料會以次全像影像差異資料以及顯示記憶位置資料的形式傳送給各個 全像顯示叢集。 • 2D 〇 3D影像轉換會利用佈置在與顯示器的像素所在的同一基板上的電路組件來 執行。 .2D㈠3D影像轉換會利用不在與顯示器的像素所在的同一基板上的電路組件來執 行。 • 2D㈠3D影像轉換會利用佈置在顯示器的像素之間的電路組件來執行。 〇 .2D Μ 3D影像轉換會利用在像素矩陣以外但在與像素所在的同一基板上的電路組 件來執行。 • 2D㈠3D影像轉換會利用成對的立體影像來執行。 •顯示裝置會根據所接收到的資料計算出一 Μ具有相鹏緩衝區對應資料的二維(2D > 影像。 •用來執行2D 〇 3D轉換的電路組件有權存取一個包含有一組已知的3D形狀的資 137 200928626 料庫。 •用來執行2D㈠3D轉換的電路組件有權存取一個包含有一組已知的2D外形的資 料庫,在這個資料庫中它可能會嘗試匹配輸入的2D影像資料。 .2D 〇 3D影像轉換會根據一個單獨的、非自動立體照相的2D影像來執行。 •使用全像顯示器的方法° • L.視訊會談(3DSkypeTM) 全像顯示器將可以提供網際網路語音及全像影像協定(VHIOIP)服務。 •至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器 的像素所在的同一基板上的電路組件來執行。 •計算的本身並不牽涉到傅立葉轉換或菲涅爾轉換的計算。 •全像影像編碼資料會在像素矩陣所佔用的空間以外的地方計算’然後再將這些全像 Θ 影像編碼資料利用已知的資料壓縮技術進行壓縮,之後再傳輸到顯示器基板上的電路組 件上,這些電路組件接著再執行將所接收到的資料解壓縮的功能。 •圖形子系統的3D著色管線(Rendering Pipeline)整合有用於進行全像轉換和編碼的額 外處理單元。 •三維空間中的各個點的循序全像轉換會透過使用一個全像計算管線來擴充顯示卡的 3D管線(Pipeline)來執行。 .用於進行全像計算中的真實空間影像資料是每一格連續真實空間影像框格之間的 138 200928626 差,而全像顯示資料會以次全像影像差異資料以及顯示記憶位置資料的形式傳送給各個 全像顯示叢集 .可以提供VHIOIP點對點通訊服務。 •可以提供檔案分享。 •可透過它所連線的一個全球網路提供即時訊息服務。 U ·可透過它所連I泉的一個電腦網路提供通訊服務。 •可透過它所連線的一個電腦網路樹共檔案分享服務。 .可透過它所連線的一個電腦網路提供即時訊息服務。 •提供有可供線上暫時使用、不可下載的電腦軟體以允許用戶使用VHIOIP通訊服務。 •提供有可供下載的線上軟體以允許用戶使用VHIOIP通訊服務。 ❹ •提供有可進入網域及網域餓庫系統以存取全像顯示資料的通道。 •使用全像顯示器的方法。 M.編碼補償 可以在編碼步驟中或編碼步驟之前對全像影像資料施加補償,以提供一個可以看得更清 楚的影像的全像顯示裝置。 •至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器 139 200928626 的像素所在的同一基板上的電路組件來執行。 •計算的本身並不牽涉到傅立葉轉換或菲涅爾轉換的計算。 •全像影像編碼資料會在像素矩陣所佔用的空間以外的地方計算,然後再將這些全像 影像編碼資料利用已知的資料壓縮技術進行壓縮,之後再傳輸到顯示器基板上的電路組 件上,這些電路組件接著再執行將所接收到的資料解壓縮的功能。 •圖形子系統的3D著色管線(Rendering Pipeline)整合有用於進行全像轉換和編碼的額 p 外處理單元。 •三維空間中的各個點的循序全像轉換會透過使用一個全像計算管線來擴充顯示卡的 3D管線(Pipeline)來執行。 •用於進行全像計算中的真實空間影像資料是每一格連續真實空間影像框格之間的 差,而全像顯示資料會以次全像影像差異資料以及顯示記憶位置資料的形式傳送給各個 全像顯示叢集° 0 · “補償”會利用佈置在與顯示器的像素所在的同一基板上的電路組件來實施。 •“補償”會利用佈置在顯示器的各個像素之間的電路組件來實施。 •"補償"會在編碼步驟Φ施加到全像影像資料上° •“補償”會在編碼步驟之前施加到全像影像簡上。 .會對一個以明亮的調子爲主而傾向於可能會曝光不足的景象施加補償來進行修正。 •會對一個以陰暗的調子爲主而傾向於可能會曝光過度的景象施加補償來進行修正。 140 200928626 •使用全像顯示器的方法。 N.眼睛追蹤 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 像素所在的同一基板上的電路組件來執行,並且會實施眼睛追蹤的全像顯示器。 •計算的本身並不牽涉到傅立葉轉換或菲麵轉換的計算。 •全像影像編碼資料會在像素矩陣所佔用的空間以外的地方計算,然後再將這些全像 影像編碼資料利用已知的資料壓縮技術進行壓縮,之後再傳輸到顯示器基板上的電路組 件上,這些電路組件接著再執行將所接收到的資料解壓縮的功能。 •圖形子系統的3D著色管線(Rendering Pipeline)整合有用於進行全像轉換和編碼的額 外處理單元。 .三維空間中的各個點的循序全像轉換會透過使用一個全像計算管線來擴充顯示卡的 3D管線(Pipeline)來執行。 .用於進行全像計算中的真實空間影像資料是每一格連續真實空間影像框格之間的 差,而全像顯示資料會以次全像影像差異資料以及顯示記憶位置資料的形式傳送給各個 全像顯示叢集。 •可以針對單一觀看者實施眼睛追蹤。 •可以針對複數觀看者實施眼睛追蹤。 .眼睛追蹤會透過偵、測使用者的臉部來限定搜尋範圍,然後透過偵測眼睛來限定追蹤 141 200928626 範圍,接著再追蹤眼睛的位置來實施。 •會透過一個立體攝影機對用於執行眼睛位置辨識功能的計算模組提供一對立體影像。 •模組會回傳每個眼睛相對於一個固定點的X、y '及Z軸座標。 •爲執行追蹤所需的運算會由位於與顯示器像素所在的同一基板上的電路組件來執行。 •爲執行追蹤所需的運算會由位於像素矩陣中的電路組件來執行。 • SLM面板上的全像編碼可以在面板的平面上移位。 •會透過將整個全像編碼內容在SLM上朝X或y軸方向移位來執行一個個J向方向 的眼睛追蹤。 •追蹤可以透過使持續照亮SLM的光源隨著觀看者位置的改變而同步移動來執行。 •使用全像顯示器的方法。 〇.像差修正 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 像素所在的同一基板上的電路組件來執行,並且會實施像差修正的全像顯示器。 •計算的本身並不牽涉到傅立葉轉換或菲涅爾轉換的計算。 •全像影像編碼資料會在像素矩陣所佔用的空間以外的地方計算,然後再將這些全像 影像編碼資料利用已知的資料壓縮技術進行壓縮,之後再傳輸到顯示器基板上的電路組 件上,這些電路組件接著再執行將所接收到的資料解壓縮的功能。 142 200928626 .圖形子系統的3D著色管線(Rendering Pipeline)整合有用於進行全像轉換和編碼的額 外處理單元° •三維空間中的各個點的循序全像轉換會透過使用一個全像計算管線來擴充顯示卡的 3D管線(Pipeline)來執行。 •用於進行全像計算中的真實空間影像資料是每一格連續真實空間影像框格之間的 差,而全像顯示資料會以次全像影像差異資料以及顯示記憶位置資料的形式傳送給各個 全像顯示叢集。 •像差修正會利用與像素矩陣所在的同一基板上的電路組件來實施。 •像差修正會利用佈置在像素之間的電路組件來實施。 •像差可以透過空間光調制器的編碼來進行動態修正。 •所修正的像差是在一個凹凸透鏡陣列中的透鏡上的像差。 •所修正的像差是在一個2D透鏡陣列中的透鏡上的像差。 •會顯示各個次全像影像。 •會根據各個次全像影像產生一個總和全像影像。 •修正運算可以獨立於全像計算之外並行執行,一直到產生總和全像影像的步驟爲止。 •總和全像影像和像差修正對應可以一起進行調制。 143 200928626 ,像差修正運算可以透過分析方式來執行。 •像差修IEM算可以利用檢視表(LUT)來執行。 •使用全像顯示器的方法。 P·光斑修正 至少有一部分用來決定一個空間光調制器的編碼的計算會利用位於和空間光調制器的 J 像素所在的同一基板上的電路組件來執行,並且會執行光斑修正的全像顯示器。 .計算的本身並不牽涉到傅立葉轉換或菲涅爾轉換的計算。 •全像影像編碼資料會在像素矩陣所佔用的空間以外的地方計算,然後再將這些全像 影像編碼資料利用已知的資料壓縮技術進行壓縮,之後再傳輸到顯示器基板上的電路糸且 件上,這些電路組件接著再執行將所接收到的資料解壓縮的功能。 •圖形子系統的3D著色管線(Rendering Pipeline)整合有用於進行全像轉換和編碼的額 ③外處理單元° .三維空間中的各個點的循序全像轉換會透過使用一個全像計算管線來擴充顯示卡的 3D管線(Pipeline)來執行。 •用於進行全像計算中的真實空間影像資料是每一格連續真實空間影像框格之間的 差,而全像顯示資料會以次全像影像差異資料以及顯示記憶、位置資料的形式傳送給各個 全像顯示叢集。 •光斑修正會利用與像素矩陣所在的同一基板上的電路組件來實施。 144 200928626 .光斑修正會利用佈置在像素之間的電路組件來實施。 •光斑可以透過空間光調制器的編碼來#° •會顯示各個次全像影像。 .會根據各個次全像影像產生一個總和全像影像。 • .光斑修正運算可以獨立於全像計算之外並行執行,一直到產生總和全像影像的步驟 ❹ 爲止。 •總和全像影像和光斑修正對應可以—腿行調制。 •光斑修正運算可以透過分析方式來執行。 •光斑修正運算可以利用檢視表(LUT)來執行° •使用全像顯示器的方法。 Q.全像顯示器的數位版權管理技術(DRM)解碼 解碼和全像影像計算會利用位於像素矩陣所在的基板上的電路組件來執行的全像顯示 裝置。 .解碼和全像影像計算會利用分散在整個像素矩陣基板上的電路組件以一個分散的槪 念來執行。 •解碼和全像影像計算會利用位於像素矩陣中的電路組件來執行。 145 200928626 •解碼和全像影像計算會利用位於像素矩陣以外、但在與像素矩陣所在的同一基板上 的電路組件來執行。 •基板上不會有任何一個單一的位置可以截取所有經過解碼的餅。 •整個面板上的不同區位都使用有不同的解碼密鑰。 •使用全像顯示器的方法。 Ο R. 2D顯示器的數位版權管理技術(DRM)解碼 解碼計算會利用分散在整個像素矩陣基板上的電路組件以一個分散的槪念來執行的2D 顯示裝置。 •解碼計算會利用位於像素矩陣中的電路組件以一個分散的槪念來執行。 ^ .解碼計算會利用位於像素矩陣以外、但在與像素矩陣所在的同一基板上的電路組件 ❹ 以一個分散的槪念來執行。 •基板上不會有任何一個單一的位匱可以截取所有經過解碼的資料。 •整個基板上的不同區位都使用有不同的解碼密鑰。 •使用顯示器的方法。 解碼計算會利用位於顯示器基板的一個單一區位中的電路組件來執行的2D顯示裝 置。 146 200928626 •這些電路組件可以在像素矩陣內部。 •這些電路組件可以在像素矩陣以外。 •使用顯示器的方法。 S. 在與顯示器以實體線路連接的硬體中執行軟體應用程式 Q —個可以利用軟體來執行的應用程式改爲利用分散在一個SLM面板的整個基板上的 電路組件在硬體中執行的顯示裝置。 •這個顯7Γ;器是一個2D顯不器。 •這個顯示器是一個全像顯示器。 •應用程式會利用位於顯示器的各個像素之間的電路組件來執行。 ^ .應用程式會利用位於顯示器的像素矩陣以外的電路組件來執行。 〇 •使用顯示器的方法。 T. 採用多個微稜鏡的可變光束轉向 一位觀看者或多位觀看者可以利用一個可以控制光束轉向的微稜鏡陣列來進行追蹤的 全像顯示器。 •可以利用縱列的兩個微稜鏡陣列來進行兩個維度的光,線轉向。 •這些稜鏡是液態微稜鏡。 147 200928626 •可以減少透鏡像差的光學效應。 • vow設在一位觀看者或多位觀看者眼睛的位置。 •加設在棱鏡陣列之前或之後的一個聚焦的手段將可以協助將光線匯集到vow上。 •稜鏡並非都有相同的偏導角度。 •稜鏡並非都有相同的偏導角度使離開稜鏡陣列的光線可以大致匯集到vow處。 .稜鏡角度的計算會在位於SLM的基板上的運算電路組件中執行。 〇 •稜鏡角度的計算會在佈置於稜鏡陣列的基板上的運算電路組件中執行。 • SLM的基板也可以用來做爲稜鏡陣列的基板。 •會施加一個“相位修正”針對因稜鏡陣列所造成的相位相位不連續的現象提供補償。 •相位修正可以由SLM執行。 •全像影像是在一個投影式設備中產生’這裡的投影牽涉到在稜鏡陣列上構成一個 SLM影像,而所需的3D景象的重建則發生在VOW的前方。 •針對稜鏡陣列的相位補償會在在稜鏡陣列上構成SLM影像時提供。 Ο .針對棱鏡陣列的相位補償會由設置在靠近稜鏡陣列的一個額外的。 • SLM可能是可以透光的而稜鏡陣列則可以反射。 • SLM可能是可以反射的而稜鏡陣列則可以透光。 •使用全像顯示器的方法。 148 200928626 【圖式簡單說明】 圖1是用來顯示全像影像的資料傳輸速率遠高於原始真實空間資料的資料 傳輸速率的說明圖; 圖2是先前專利中的SLM的一部份與—個可以在像素矩陣的空間中執行 全像計算的SLM的-部份在構造和性能特性方面的比較圖; 圖3是-個可以在像素矩陣的娜中執行全像計算的slm的一部份的構 造圖; 〇 ® 4是—個可以在像素矩辆空間巾執行解壓料算以麟全像資料顯示 的SLM的一部份的構造圖; 圓5是-個可以在像素矩陣的空間中執行解壓縮計算以用於傳統肋顯示 資料顯示的SLM的一部份的構造圖; 圖6是顯示TFT的製造過程中的各個情況的說明圖; 圖7是顯示TFT的製造過程中的各個情況的說明圖; 圖8是顯示根據本發明的一個顯示設計來重建全像影像的方法的說明圖; 〇 曰 ® 9讀7F根據本發明的-侧示設計來重建全像影像的滅的說明圖; 圖10是以先前的專利為根據的一個傳統主動矩陣式液晶顯示裝置的一般 構造的透視圖; 圖11包括顯示以本發明的一個顯示設計為根據的全像顯示器的一個主動 矩陣式基板的各個製造步驟的說明圖; 圖12包括顯示圖11中的主動矩陣式基板的各個進一步製造步驟的說明 圖; 囷13包括顯不圖12中的主動矩陣式基板的各個進一步製造步驟的說明 149 200928626 圖14是-個在各個分散且任意雜置上表現各錄件關全像顯示器的 說明圖; 囷15是可能提供在以本發明的—侧示設計為根據的全像顯示器 中的圖 形計算中的功能單元的說明圖; 圖16是以本發__個顯示設計為根據的全像顯示齡的次全像影 像SH的檢視表的說明圖;• • After reading the contents of the SH from the LUT, it calculates the difference between the currently displayed SHCSHw) and the new SH 〇 (SHn). • Sequential holographic transformation of points in 3D space is performed by expanding the 3D pipeline of a PIC image display card, not limited to a specific type of SLM. • The method of using a hologram display. G. A holographic image display that can perform calculations on the same substrate, a holographic display and can be randomly addressed. v At least a portion of the calculations used to determine the encoding of a spatial light modulator will utilize the pixels located in the spatial light modulator. The circuit components on the same substrate are executed so that the real-world image data used in the holographic calculation between successive real-world image frames is different, and the holographic display data will be sub-image-like difference data and display. The form of the memory location data is transmitted to the holographic display of the holographic display cluster. • Sequential holographic transformation of points in three-dimensional space is performed by expanding the 3D pipeline of a display card with a holographic pipeline (Pipeline). • The holographic calculations performed will be performed using circuit components located between the various pixels of the display. 127 200928626 • Full-image calculations are performed using circuit components located outside the pixel matrix but on the same substrate as the display. • At least a portion of the calculations used to determine the encoding of a spatial light modulator are performed using circuit components located on the same substrate as the pixels of the spatial light modulator, and these calculations themselves do not involve Fourier transform or Philippine The calculation of the Niel conversion. • Calculations are performed in various areas scattered throughout the display to enable pixel encoding of the respective discrete areas for each discrete area. Ο • The circuit assembly includes a thin film transistor. • Video frame rate is at least approximately 25 Hz. • Only real-world image data will be transmitted to the monitor. • The image data contains light intensity and buffer corresponding data. ▲ • The holographic calculation performed is an immediate or near-instant operation ° ❹ The holographic calculation performed will be performed using the view method. • Each hologram image will be displayed. The hologram operation will be evenly distributed on the surface of the display. • The holographic calculation is divided into many congruent tiny parts (called clusters) that are tiled on the surface of the display. • According to the above concept, the holographic display of this case is a high-resolution display. 128 200928626 • The diameter of a virtual observer window is approximately the diameter of the pupil of the eye or a larger diameter. • A monochrome image will be displayed. • It will be able to visualize the touch. • When calculating the 値 of one pixel of a holographic image, only the 値 of a sub-segment of the original image is considered. • The light used to reconstruct the holographic image is not exactly the same across the display, but is exactly the same across the sub-sections of the display. • The hologram is converted to a one-dimensional conversion. • The hologram is converted to a two-dimensional transform. • Alternate circuit components (such as TFTs) may be fabricated in the space of the pixel matrix so that these circuit components can be used to replace some of the device components that are used for device startup. The circuit components used. • The wavefront emitted by the object will be reconstructed in one or more virtual observer windows (VOW), and the reconstruction of each single object point (〇P) of one of the three-dimensional scenes (3D S) only needs one time The hologram (SH) is a subset of the entire hologram (〇ESLM) to be encoded on the SLM. • After a scene (3D S) is discretized into multiple object points (OPs), for each visible object point of the 3D scene, the complex sub-image of the lens (SHL) is encoded on the SLM, where The complexity of the lens sub-image is determined by the following equation: zL = exp { -i*[(if ) * ( X2 + y2 )]}, where λ is the reference wavelength, f is the focal length, and x and y are Coordinates that are perpendicular to each other in the plane of the sub-holographic image. 129 200928626 . The sub-holographic image (SHP) of the 稜鏡 is determined in the holographic image plane (HE) to move the virtual observer window away from the optical axis. The lens and 稜鏡 are sub-images that are convoluted, which can also be represented by SH = SHL * SHP. Each sub-image (SH) is modulated with a uniformly distributed phase offset, where the phase shift is different for each sub-image. • Multiple sub-images are superimposed to form the entire hologram. 5. The rendering of the holographic image produced by the computer used for reconstruction can be updated instantly or near instantaneously. Individual object points can be created anywhere in the frustoconic space used to reconstruct. • The graphics subsystem's 3D Rendering Pipeline incorporates additional processing units for holographic transformation and encoding. The Z-axis correspondence data for the first display wavelength is copied twice for use in the second and third display wavelengths. % @ • The hologram is calculated in parallel for each of the three display wavelengths. • Colors for two colors correspond to RGB content copied into individual cells to ensure that all three colors are independently accessible. • A lens function and a 稜鏡 function for each display color will be performed. • Each cluster of the display will have a random phase applied. • The calculated SLM code will be used to delete the additional lotus algorithm in the hologram display cluster for subsequent processing. 130 200928626 . Can be used for military purposes. • Each hologram calculation unit receives image difference data. • If there is no difference between the displayed data of a continuous sash of a particular cluster, or only a negligible difference that can be ignored, Bay! J does not need to send data to the cluster. • Each hologram conversion unit transmits 3D difference point image data relative to the reconstruction point or the point used to encode on the SLM. • There is a resolver in each hologram display cluster that decomposes the calculated holographic image display data into sub-holographic image data as well as size and position information, where the latter two 値 can be used to calculate the second The address range of the image in the RAM 'allows the data of the sub-holographic image SH or Sifc to be written to the correct SLM pixel in the cluster.' • Use a special random access memory (RAM) to make the input Only the new SH or SHD will be written to the side, while the entire memory will be read completely on the output side and the complete information will be written to the SLM. A method of using a hologram display. H. Display with a computing function in the pixel space The computational function axis surface is used to execute the rendezvous on the same-fiber upper loop component of the image surface of the surface display. • The arithmetic function is performed by circuit components disposed between the pixels of the display. The arithmetic function is performed by circuit components disposed outside the pixel matrix but on the same substrate as the display. 131 200928626 • The delay of the display material on the display is less than the delay caused by the computational functions performed by the circuit components disposed on the same substrate as the pixels of the display, if performed elsewhere. • These operations are graphical operations. • Can form part of a high-speed gaming device. • Can be used for military purposes. • Calculations are performed in various areas scattered throughout the display to enable pixel encoding of the respective discrete areas for each discrete area. • A thin film transistor is included in the circuit assembly. • At least some of the circuit components have polysilicon in their active locations. • At least some of the circuit components have active areas with continuous die. • At least some of the circuit components have polysilicon in their active locations. • At least some of the circuit components have a valid area with a single crystal 矽 ° • The image data has a frame rate of at least approximately 25 Hz. • The operation (possibly parallel) is split into a number of congruent tiny parts that are tiled on the surface of the display, called the stomach "cluster," • the display can be made by tiling many congruent clusters together. 200928626 • The display is a high-resolution display. • The display is a very high-resolution display. • It will display color images. It will display color images in RGB format. • The display will be twinned in manufacturing. LCD technology • There is an additional logic for the area to transfer existing calculated data' and this additional logic is also used to forward the original image to each cluster, so at least some common course and column lines can be eliminated. Method of using a display I. Absorbing at least a portion of the calculations used to determine the encoding of a spatial light modulator is performed using circuit components located on the same substrate as the pixels of the spatial light modulator, and ensuring distance virtual Object points closer to the viewer window will obscure the virtual observer window along the same line of sight The holographic display of the object point. The calculation itself does not involve the calculation of the Fourier transform or the Fresnel transform. • The holographic image encoding data is calculated outside the space occupied by the pixel matrix, and then these are all Image-encoded data is compressed using known data compression techniques and then transmitted to circuit components on the display substrate, which in turn perform the function of decompressing the received data. • 3D rendering of the graphics subsystem The Rendering Pipeline incorporates a 133 200928626 external processing unit for holographic transformation and encoding. • Sequential holographic transformation of points in 3D space expands the 3D of the display card by using a holographic calculation pipeline. The pipeline (Pipeline) is executed. The real-space image data used in the holographic calculation is the difference between the contiguous real-space image sashes, and the holographic display data will be sub-holographic image difference data and display. The memory bit is transmitted in the form of data to each omnipresent display cluster. j · "Absorb, will be utilized by the arrangement and image The calculations performed by the circuit components on the same-substrate where the prime matrix is located are implemented. • "Absorption" takes advantage of the calculations performed by the circuit components disposed between the pixels of the display. • The diameter of a virtual observer window is approximately the diameter of the pupil of the eye or a larger diameter. • The VOW is divided into two or more segments. ~ The size of each VOW section is roughly the same as the pupil of the human eye. Each VOW segment is encoded with a different sub-image. • Absorption, will be performed in the stage that constitutes the buffer corresponding data and light intensity corresponding data. • The method of using a hologram display. J. The function of the display card is at least partially used to determine the calculation of the encoding of a spatial light modulator by using circuit components located on the same substrate as the 134 200928626 pixel of the spatial light modulator, and the function of the display card A holographic display that is implemented using circuit components disposed on the same substrate as the pixels of the display. The calculation itself does not involve the calculation of Fourier transform or Fresnel transform. • The holographic image encoding data will be calculated outside the space occupied by the pixel matrix. 'The holographic image encoding data is then compressed using known data compression techniques and then transmitted to the circuit components on the display substrate. These circuit components then perform the function of decompressing the received data. • The graphics subsystem's 3D Rendering Pipeline incorporates additional processing units for holographic transformation and encoding. • Sequential holographic transformation of points in 3D space is performed by augmenting the 3D pipeline (Pipeline) of the graphics card using a holographic calculation pipeline. • The real-world image data used in the hologram calculation is the difference between the contiguous real-space image frames, and the hologram display data is transmitted to the sub-image-like image difference data and the display memory location data. Each hologram display cluster ° • The function of the display card is performed using circuit components disposed between the pixels of the display. • The function of the display card is performed using circuit components arranged outside the pixel matrix. • The functionality of the display card includes texture mapping. The function of the display card includes rendering polygons. • The function of the display card includes translating the vertices into different coordinate systems. 135 200928626 . The function of the display card includes a programmable coloring engine. • Display card features include oversampling and interpolation techniques to reduce overlays. The function of the display card includes a very high precision color space. • The functionality of the display card includes 2D acceleration computing capabilities. • The function of the display card includes the image buffer capability. ❹ • The features of the display card include the Animation Experts Group (MPEG) primitives. • The functionality of the display card includes the execution of operations involving matrix and vector operations. • The ability to display cards includes the use of a 3D Rendering Pipeline that is executed by TFTs placed on the same substrate as the pixel matrix. • The method of using a hologram display. 〇K. 2D (a) 3D conversion at least a portion of the calculation used to determine the encoding of a spatial light modulator is performed using circuit components located on the same substrate as the pixels of the spatial light modulator, and performs a 2D (one) 3D image conversion hologram monitor. • The calculation itself does not involve the calculation of Fourier transform or Fresnel transform. • A-image encoded data will be calculated outside the space occupied by the pixel matrix, and then these holographic image-encoded data will be compressed using known data compression techniques, and then clamped to the circuit group on the display substrate 136 200928626 These circuit components then perform the function of decompressing the received data. • The graphics subsystem's 3D Rendering Pipeline incorporates additional processing units for holographic transformation and encoding. • Sequential holographic transformation of points in 3D space is performed by augmenting the 3D pipeline (Pipeline) of the graphics card using a holographic calculation pipeline. • The real-space image data used in the holographic calculation is the φ difference between the contiguous real-world image frames, and the holographic display data is transmitted in the form of sub-holographic image difference data and display memory location data. Show clusters for each hologram. • 2D 〇 3D image conversion is performed using circuit components placed on the same substrate as the pixels on the display. .2D (1) 3D image conversion is performed using circuit components that are not on the same substrate as the pixels of the display. • 2D (1) 3D image conversion is performed using circuit components disposed between pixels of the display. 〇 .2D Μ 3D image conversion is performed using circuit components that are outside the pixel matrix but on the same substrate as the pixel. • 2D (1) 3D image conversion is performed using paired stereo images. • The display device calculates a two-dimensional (2D > image) data corresponding to the phase buffer based on the received data. • The circuit component used to perform 2D 〇3D conversion has access to a group that contains Known 3D Shapes 137 200928626 Library • Circuit components used to perform 2D (1) 3D conversion have access to a database containing a known set of 2D shapes in which it may attempt to match the input 2D Image data. .2D 〇3D image conversion is performed according to a single, non-automatic stereoscopic 2D image. • Method using holographic display ° • L. Video Talk (3DSkypeTM) holographic display will provide Internet access Voice and Holographic Image Protocol (VHIOIP) services • At least some of the computations used to determine the encoding of a spatial light modulator are performed using circuit components located on the same substrate as the pixels of the spatial light modulator. It does not involve the calculation of Fourier transform or Fresnel transform itself. • The holographic image encoded data will be outside the space occupied by the pixel matrix. Place calculations' then compress these holographic image encoding data using known data compression techniques and then transfer them to the circuit components on the display substrate, which then perform the decompression of the received data. Features • The graphics subsystem's 3D Rendering Pipeline incorporates additional processing units for holographic transformation and encoding. • Sequential holographic transformation of points in 3D space is achieved through the use of a holographic pipeline. Expand the 3D pipeline of the display card (Pipeline) to execute. The real-space image data used in the holographic calculation is the difference between the 138 200928626 between each successive real-world image sash, and the holographic display data will be The holographic image difference data and the display memory location data are transmitted to each hologram display cluster. VHIOIP peer-to-peer communication services can be provided. • File sharing can be provided. • Instant messaging service can be provided through a global network connected to it. U · can provide communication services through a computer network connected to I Spring. A computer network tree connected to the file sharing service. It can provide instant messaging service through a computer network connected to it. • Provides software for online temporary use and non-downloadable software to allow users to use VHIOIP. Communication Services • Provides online software for download to allow users to use VHIOIP communication services. • Provides access to domain and domain hungry systems to access holographic display data. • Uses holographic displays Method M. Code Compensation A holographic display device can be applied to the holographic image data during the encoding step or prior to the encoding step to provide a holographic display device that can see a clearer image. • At least a portion is used to determine a spatial light modulation. The calculation of the encoding of the device is performed using circuit components located on the same substrate as the pixels of the spatial light modulator 139 200928626. • The calculation itself does not involve the calculation of Fourier transform or Fresnel transform. • The holographic image encoding data is calculated outside the space occupied by the pixel matrix, and then the holographic image encoding data is compressed by a known data compression technique and then transmitted to the circuit components on the display substrate. These circuit components then perform the function of decompressing the received data. • The graphics subsystem's 3D Rendering Pipeline incorporates an extra-processing unit for holographic transformation and encoding. • Sequential holographic transformation of points in 3D space is performed by augmenting the 3D pipeline (Pipeline) of the graphics card using a holographic calculation pipeline. • The real-world image data used in the hologram calculation is the difference between the contiguous real-space image frames, and the hologram display data is transmitted to the sub-image-like image difference data and the display memory location data. Each holographic display cluster ° 0 · "Compensation" is implemented using circuit components disposed on the same substrate as the pixels of the display. • "Compensation" is implemented using circuit components disposed between the various pixels of the display. • "Compensation" will be applied to the hologram image at the encoding step Φ ° • “Compensation” will be applied to the hologram image before the encoding step. Correction is applied to a scene that is dominated by bright tones and tends to be underexposed. • Correction is applied to a scene that is dominated by a dark tone and tends to be overexposed. 140 200928626 • The method of using a hologram display. N. Eye Tracking At least a portion of the calculations used to determine the encoding of a spatial light modulator are performed using circuit components located on the same substrate as the pixels of the spatial light modulator, and an eye-tracking holographic display is implemented. • The calculation itself does not involve the calculation of Fourier transform or Philippine conversion. • The holographic image encoding data is calculated outside the space occupied by the pixel matrix, and then the holographic image encoding data is compressed by a known data compression technique and then transmitted to the circuit components on the display substrate. These circuit components then perform the function of decompressing the received data. • The graphics subsystem's 3D Rendering Pipeline incorporates additional processing units for holographic transformation and encoding. The sequential holographic transformation of each point in the three-dimensional space is performed by augmenting the 3D pipeline (Pipeline) of the display card using a holographic calculation pipeline. The real-space image data used in the holographic calculation is the difference between the sash frames of each continuous real-world image, and the holographic display data is transmitted to the sub-holographic image difference data and the display memory location data. Each omnipresent display cluster. • Eye tracking can be implemented for a single viewer. • Eye tracking can be performed for multiple viewers. Eye tracking limits the search range by detecting and measuring the user's face, and then limits the range of tracking 141 200928626 by detecting the eye, and then tracking the position of the eye. • A pair of stereo images will be provided to the computing module used to perform the eye position recognition function through a stereo camera. • The module will return the X, y ' and Z axis coordinates of each eye relative to a fixed point. • The operations required to perform the trace are performed by circuit components located on the same substrate as the display pixels. • The operations required to perform the trace are performed by the circuit components located in the pixel matrix. • The hologram code on the SLM panel can be shifted on the plane of the panel. • Perform eye tracking in the J-direction by shifting the entire hologram encoded content on the SLM in the X or y-axis direction. • Tracking can be performed by causing the light source that continuously illuminates the SLM to move synchronously as the position of the viewer changes. • The method of using a hologram display. 〇. aberration correction at least a part of the calculation used to determine the encoding of a spatial light modulator is performed using circuit components located on the same substrate as the pixels of the spatial light modulator, and a hologram of aberration correction is implemented. monitor. • The calculation itself does not involve the calculation of Fourier transform or Fresnel transform. • The holographic image encoding data is calculated outside the space occupied by the pixel matrix, and then the holographic image encoding data is compressed by a known data compression technique and then transmitted to the circuit components on the display substrate. These circuit components then perform the function of decompressing the received data. 142 200928626 . The graphics subsystem's 3D Rendering Pipeline incorporates additional processing units for holographic transformation and encoding. • Sequential holographic transformation of points in 3D space is augmented by using a holographic pipeline The 3D pipeline (Pipeline) of the display card is executed. • The real-world image data used in the hologram calculation is the difference between the contiguous real-space image frames, and the hologram display data is transmitted to the sub-image-like image difference data and the display memory location data. Each omnipresent display cluster. • Aberration correction is performed using circuit components on the same substrate as the pixel matrix. • Aberration correction is implemented using circuit components arranged between pixels. • Aberrations can be dynamically corrected by the encoding of the spatial light modulator. • The aberration corrected is the aberration on the lens in a lenticular lens array. • The aberration corrected is the aberration on the lens in a 2D lens array. • Each hologram image will be displayed. • A total hologram image is generated based on each hologram image. • Correction operations can be performed in parallel independently of holographic calculations, up to the step of generating a holographic image. • The total hologram and aberration correction can be modulated together. 143 200928626, the aberration correction operation can be performed by analysis. • The aberration correction IEM can be performed using a view table (LUT). • The method of using a hologram display. P. Spot Correction is at least partially used to determine the calculation of the encoding of a spatial light modulator using a circuit component located on the same substrate as the J pixel of the spatial light modulator, and performing a spot correction hologram display . The calculation itself does not involve the calculation of Fourier transform or Fresnel transform. • The holographic image encoding data will be calculated outside the space occupied by the pixel matrix, and then the holographic image encoding data will be compressed by known data compression techniques, and then transmitted to the circuit on the display substrate. These circuit components then perform the function of decompressing the received data. • The graphics subsystem's 3D Rendering Pipeline incorporates an external 3 processing unit for holographic transformation and encoding. The sequential holographic transformation of points in 3D space is augmented by using a holographic pipeline. The 3D pipeline (Pipeline) of the display card is executed. • The real-world image data used in the holographic calculation is the difference between the contiguous real-space image frames, and the holographic display data is transmitted in the form of sub-holographic image difference data and display memory and position data. Show clusters for each hologram. • Spot correction is performed using circuit components on the same substrate as the pixel matrix. 144 200928626 . Spot correction is implemented using circuit components arranged between pixels. • The spot can be encoded by the spatial light modulator. #° • Each hologram image is displayed. A sum total hologram image is generated based on each omni image. • The spot correction operation can be performed in parallel independently of the holographic calculation until the step of generating a total holographic image ❹. • The sum omni image and spot correction can be combined - leg line modulation. • The spot correction operation can be performed by analysis. • The spot correction operation can be performed using the view table (LUT). • The method of using the hologram display. Q. Digital Rights Management Technology (DRM) decoding of holographic displays Decoding and holographic image computing utilizes a circuit component located on a substrate on which the pixel matrix is located to perform a holographic display device. Decoding and holographic image calculations are performed with a discrete concept using circuit components dispersed throughout the pixel matrix substrate. • Decoding and holographic image calculations are performed using circuit components located in the pixel matrix. 145 200928626 • Decoding and holographic image calculations are performed using circuit components located outside of the pixel matrix but on the same substrate as the pixel matrix. • There will be no single location on the substrate to capture all decoded cakes. • Different decoding keys are used for different locations on the entire panel. • The method of using a hologram display.数 R. 2D Display Digital Rights Management Technology (DRM) Decoding The decoding calculation uses a circuit component distributed over the entire pixel matrix substrate to perform a 2D display device with a discrete complication. • Decoding calculations are performed with a discrete commemoration of the circuit components located in the pixel matrix. ^. The decoding calculation is performed with a discrete commemoration of the circuit components located outside the pixel matrix but on the same substrate as the pixel matrix. • There will not be a single bit on the substrate that can intercept all decoded data. • Different decoding keys are used for different locations on the entire substrate. • How to use the monitor. The decoding calculation utilizes a 2D display device that is executed by circuit components located in a single location of the display substrate. 146 200928626 • These circuit components can be inside the pixel matrix. • These circuit components can be outside the pixel matrix. • How to use the monitor. S. Executing a software application in a hardware connected to the display with a physical line Q. An application that can be executed by software instead uses a circuit component distributed on the entire substrate of one SLM panel to perform display in hardware. Device. • This is 7: The device is a 2D display. • This monitor is a hologram display. • The application will execute using circuit components located between the various pixels of the display. ^ . The application will execute using circuit components located outside of the display's pixel matrix. 〇 • How to use the monitor. T. Variable beam steering with multiple micro-turns A one-viewer or multiple viewers can use a micro-iris array that controls beam steering for tracking. • Two dimensions of light and line steering can be performed using two micro-array arrays in a column. • These defects are liquid micro-caries. 147 200928626 • Can reduce the optical effect of lens aberrations. • vow is located in the eye of one viewer or multiple viewers. • A focusing means applied before or after the prism array will assist in the collection of light onto the vow. • 稜鏡 does not all have the same deflection angle. • The 稜鏡 does not all have the same deflectance angle so that the light exiting the 稜鏡 array can be roughly summed to the vow. The calculation of the 稜鏡 angle is performed in an arithmetic circuit component located on the substrate of the SLM. 〇 • The calculation of the 稜鏡 angle is performed in an arithmetic circuit component disposed on the substrate of the 稜鏡 array. • The SLM substrate can also be used as a substrate for the 稜鏡 array. • A “phase correction” is applied to compensate for the phase phase discontinuity caused by the 稜鏡 array. • Phase correction can be performed by the SLM. • A holographic image is produced in a projection device. The projection here involves the formation of an SLM image on the 稜鏡 array, and the reconstruction of the required 3D scene occurs in front of the VOW. • Phase compensation for the 稜鏡 array is provided when the SLM image is formed on the 稜鏡 array. Ο The phase compensation for the prism array will be set by an extra near the 稜鏡 array. • The SLM may be light transmissive and the 稜鏡 array can reflect. • The SLM may be reflective and the 稜鏡 array may be transparent. • The method of using a hologram display. 148 200928626 [Simple description of the diagram] Figure 1 is an explanatory diagram showing the data transmission rate of the hologram image is much higher than the data transmission rate of the original real space data; Figure 2 is a part of the SLM in the prior patent and - A comparison of the structural and performance characteristics of the SLM that can perform holographic calculations in the space of the pixel matrix; Figure 3 is a part of slm that can perform holographic calculations in the matrix of the pixel matrix The structure diagram; 〇® 4 is a structural diagram of a part of the SLM that can be used to perform decompression calculation on the pixel moment space data; the circle 5 is - can be executed in the space of the pixel matrix Decompression calculation is used for a structural view of a part of the SLM of the conventional rib display material display; FIG. 6 is an explanatory view showing each case in the manufacturing process of the TFT; FIG. 7 is a view showing each case in the manufacturing process of the TFT FIG. 8 is an explanatory diagram showing a method of reconstructing a holographic image according to a display design of the present invention; 〇曰® 9 reading 7F an explanatory diagram for reconstructing a holographic image according to the side view design of the present invention; Figure 10 A perspective view of the general construction of a conventional active matrix liquid crystal display device based on the prior patent; FIG. 11 includes various fabrication steps for an active matrix substrate showing a holographic display based on a display design of the present invention. Figure 12 includes an explanatory view showing respective further manufacturing steps of the active matrix substrate of Figure 11; 囷13 includes an illustration of each of the further manufacturing steps of the active matrix substrate shown in Figure 12 200928626 Figure 14 - an illustration showing the holographic display of each recording on each of the discrete and arbitrary miscellaneous; 囷 15 is a functional unit that may be provided in the graphical calculation in the holographic display based on the side view design of the present invention FIG. 16 is an explanatory diagram of a view table of the hologram image SH of the hologram display age based on the __ display design;

圖17是用於以本發明的—個顯示設計為根據的全像顯示器中進行全像轉 換與編碼的額外處理單元的說圖; 圖18是顯示在以本發明的—個顯示設計為根據的全像顯示器中,如果採用 次全像影像,貞荷鞭小__喊㈣)的說明圖; ^9是顯示-個在時間t時顯示的景象、另一個在時間糾時顯示的景 以及兩者之間的景象差別的說明圖; Ο 圖20疋顯不具備有可編址資料傳輸能力 據的全像顯轉置的說明圖; 的以本發_—個鮮設計為根 圖21顯示—個會在其中計算以本發明的—個顯示設 器中的電晶體數量的試算表的一部份; 計為板據 的全像顯示 圖22疋圖21中所示的試算表的其餘部份; 置為根據的叢集設計 圖23心用於本發明的-麵示設計的全像顯示農 的簡圖; ~17 is a diagram of an additional processing unit for holographic conversion and encoding in a hologram display based on a display design of the present invention; FIG. 18 is a view showing a display design based on the present invention. In the hologram display, if the sub-holographic image is used, the description of the 贞 鞭 __ shouting (four)); ^9 is the display - a scene displayed at time t, another scene displayed at time correction, and two An explanatory diagram of the difference in the scene between the two; Ο Figure 20 shows an explanatory diagram of the holographic transposition with no addressable data transmission capability; the root image is shown in Figure 21 A portion of the spreadsheet in which the number of transistors in the display device of the present invention is calculated; the hologram of the panel is displayed as the rest of the spreadsheet shown in FIG. 22 and FIG. ; set according to the cluster design diagram 23 heart used in the present invention - the overall design of the face design shows the farmer's sketch; ~

的一個顯示設計的全像顯示震 置為根據的顯示資料 150 200928626 所採取的路徑的說明圖; 5疋用於項顯示的運算上的各項計算可能在像素矩陣的空間中執行 的、可以顯示傳統2D顯示資料、或全像顯示資料的一個syi的一部份的 構造圖; ® 26是以先前的專利為根據、用來產生次全像影像的方法的說明圖; 圖27疋顯不根據本發明的_個顯示設計來重建全像影像的方法的說明圖; ® 28疋以本發明的一個顯示設計為根據的面板拼貼的構造圖; ® 29疋關於魏的幾何上的考量的的說明圖; 圏3〇是關於“吸收,,的幾何上的考量的的說明圖; 疋根據本發明的_個顯示設計來處理吸收現象的方法的說明圖; 圖32疋根據本發明的一個顯示設計來處理吸收現象的方法的說明圖; 3 本發@的—她示設計的全賴示裝㈣祕的顯示資料 所採取的路徑的說明圖; 〇 : 4疋根據本發明的—個顯示設計’利用可控制的稜鏡透過移動虛擬觀察 ,者錢來追蹤―域蝴叫的細說明圖; 元件符號簡單說明: 601玻璃基板 6〇2氧化矽 6〇3非結晶矽薄膜 604耐餘遮罩 6〇5薄膜 151 200928626 606含Ni層 607多晶SiuxGex區域 608多晶每7區域 609作用層 610作用層 711,712,713閘極絕緣薄膜 714,715,716 閘極The hologram of one display design shows an explanatory diagram of the path taken by the display data 150 200928626; 5 各项 The calculations for the operation of the item display may be performed in the space of the pixel matrix, and may be displayed A conventional 2D display material, or a structural image of a part of a syi of a holographic display material; ® 26 is an explanatory diagram of a method for generating a sub-holographic image based on a prior patent; An illustration of a method of designing a holographic image to reconstruct a photographic image; a structure of a panel tiling based on a display design of the present invention; ® 29 疋 about the geometric considerations of Wei Illustrated; 圏3〇 is an explanatory diagram of "absorption," geometric considerations; 说明 an illustration of a method for processing an absorption phenomenon according to the present invention; FIG. 32A shows according to the present invention An illustration of a method designed to deal with the phenomenon of absorption; 3 the description of the path taken by the display of the information of the display of the present invention (4) The display design 'Using the controllable 稜鏡 to move through the virtual observation, the money to track the detailed description of the domain scream; The symbol of the component is simple: 601 glass substrate 6〇2 矽6矽3 amorphous 矽 film 604 resistant Residual mask 6〇5 film 151 200928626 606 Ni-containing layer 607 polycrystalline SiuxGex region 608 polycrystal per 7 regions 609 active layer 610 active layer 711, 712, 713 gate insulating film 714, 715, 716 gate

717,718,719緊致陽極氧化物薄膜 720遮罩 721汲極區域 722源極區域 723 LDD區域 724通道區域 725源極區域 726汲極區域 727 LDD區域 728通道區域 729耐蝕遮罩 730源極區域 731汲極區域 732LDD區域 733通道區域 734中介層絕緣薄膜 152 200928626 735,736,737 源極 738,739 汲極 740中介層絕緣薄膜 741黑色遮罩 742絕緣層薄膜 743像素電極 VOW虚擬觀察者視窗 SLM空間光調制器 OP 物件點 HAE全像顯示裝置 SH 次全像影像 101主基板 102相對基板 103間隔空間 104像素電極 105開/關裝置 106顯示部份 107週邊驅動部份 1101基板 1102薄膜 1103遮罩絕緣薄膜 200928626 1104促進劑薄膜 1105區域 1106區域 1107水平生長區域 110 8水平生長區域 1109,1110,1111島狀的半導體層 1112閘極絕緣薄膜 1113,1114,1115 閘極 1116,1117,1118陽極化薄膜 1119,1120,1121電極的正下方 1122耐蝕遮罩 1123,1124,1125,1126 η 型區域717,718,719 compact anodic oxide film 720 mask 721 drain region 722 source region 723 LDD region 724 channel region 725 source region 726 drain region 727 LDD region 728 channel region 729 corrosion shield 730 source region 731 bungee region 732LDD area 733 channel area 734 interposer insulating film 152 200928626 735,736,737 source 738,739 bungee 740 interposer insulating film 741 black mask 742 insulating film 743 pixel electrode VOW virtual observer window SLM spatial light modulator OP object point HAE hologram Display device SH hologram image 101 main substrate 102 opposite substrate 103 space 104 pixel electrode 105 on/off device 106 display portion 107 peripheral driving portion 1101 substrate 1102 film 1103 mask insulating film 200928626 1104 accelerator film 1105 region 1106 Region 1107 horizontal growth region 110 8 horizontal growth region 1109, 1110, 1111 island-like semiconductor layer 1112 gate insulating film 1113, 1114, 1115 gate 1116, 1117, 1118 anodized film 1119, 1120, 1121 directly below the electrode 1122 Corrosion resistant mask 1123, 1124, 1125, 1126 n-type area

1127耐蝕遮罩 1128,1129 ρ 型區域 1130,1131,1132 側壁 1133遮罩 1134,1138源極區域 1135,1139汲極區域 1136,1140低濃度雜質區域 1137原生的通道成形區域 1141通道成形區域 1142耐蝕遮罩 154 200928626 1147 Ti薄膜 1148,1149,1150矽化物區域 1151,1152,1153島狀的型樣 1154中介層絕緣薄膜 1155,1156,1157 源極配線 1158,1159汲極配線 1160絕緣層 1161黑色遮罩 1162絕緣中介層薄膜 1163像素電極 1501,1502 Z軸對應(映圖)資料的拷貝 1503,1504,1505進行複乘法 1506,1507,1508套用隨機的相位 1509,1510,1511調制出個別的全像影像 ❹ ' CORDIC位數對照方法,Voider運算法’CORDIC也就是“座標 轉動數位電腦”的縮寫 1551127 Corrosion Resistant Mask 1128, 1129 p-type region 1130, 1131, 1132 sidewall 1133 mask 1134, 1138 source region 1135, 1139 drain region 1136, 1140 low concentration impurity region 1137 native channel forming region 1141 channel forming region 1142 corrosion resistance Mask 154 200928626 1147 Ti film 1148, 1149, 1150 Telluride region 1151, 1152, 1153 Island-like pattern 1154 Interposer insulating film 1155, 1156, 1157 Source wiring 1158, 1159 Dust wiring 1160 Insulation layer 1161 Black shading Cover 1162 insulating interposer film 1163 pixel electrode 1501, 1502 Z-axis corresponding (map) data copy 1503, 1504, 1505 multiplication 1506, 1507, 1508 set random phase 1509, 1510, 1511 to modulate individual hologram Image ❹ ' CORDIC digit comparison method, Voider algorithm 'CORDIC is also the abbreviation of "coordinate rotary digital computer" 155

Claims (1)

200928626 十、申請專利範圍: 1. 一種可用來提供網際網路語音及全像影像協定(VHI0IP)服務或通訊的 全像顯示器。 2. 如申請專利範圍第!項所述之全像顯示器,其中的VHI〇Ip服務或通訊 為網際網路語音及視訊全像影像協定(ννΗί〇Ιρ)服務或通訊。 〇 3. *申請專利賴第1項所述之全像顯示器,其中的VHI0IP或WHI0IP 服務或通訊以即時或近即時方式提供。 4.如申凊專利*圍前述任—項所述之全像顯示器,其中的刪π或 WH腑歸或雜可叫行兩_人之_即時歧即喊訊全像通 5.如申Ί軎直士丨益益Ά、&200928626 X. Patent coverage: 1. A holographic display that can be used to provide Internet Voice and holographic image protocol (VHI0IP) services or communications. 2. If you apply for a patent scope! The holographic display described in the above, wherein the VHI 〇Ip service or communication is an Internet voice and video holographic image protocol (ννΗί〇Ιρ) service or communication. 〇 3. * Apply for a holographic display as described in item 1, where the VHI0IP or WHI0IP service or communication is provided in an immediate or near-instant manner. 4. For the holographic display as described in the above-mentioned item, the deletion of π or WH 腑 或 or miscellaneous may be called two _ people _ instant ambiguous instant call full image pass 5.丨直士丨益益Ά, & 6.如申請專利範圍前述任_ 源為發光二極體。 項所述之全像顯示器,其巾的全像顯 示器的光 7.如申請專利範圍前述住_ 影像計算。 項所述之全像顯示器, 其中顯示器會執行全像 156 200928626 8·如申明專利範圍第7項所述之全像顯示器’其中會使用次全像影像來進 行全像影像計算。 9. 如申請專利範圍第7或8項所述之全像顯示器 ’其中所執行的全像影像 S 十算為即時或近即時運算。 10. 如申請專利範圍前述任一項所述之全像顯示器,其中包括一個空間光調 制器(SLM)調㈣的各個像素佈Ϊ在-個絲上,其巾絲蚊SLM像 素的全像影像編碼資料所執行的計算會利用佈置在與SLM的各個像素所 在的同—基板上_馳件綠行。6. As claimed in the patent application, the aforementioned source is a light-emitting diode. The holographic display of the item, the light of the holographic display of the towel, is as described in the patent application. The holographic display of the item, wherein the display performs a holographic image 156 200928626. The holographic display as described in claim 7 wherein the hologram image is used for holographic image calculation. 9. The holographic image S performed in the holographic display as described in claim 7 or 8 is counted as an immediate or near real-time operation. 10. The holographic display according to any one of the preceding claims, wherein each of the pixels comprising a spatial light modulator (SLM) (4) is disposed on the one wire, and the holographic image of the silkworm SLM pixel The calculations performed on the encoded data are performed on the same substrate as the individual pixels of the SLM. 11.如申sf專利制第1Q項所述之全像顯示器,其中的各項計算並不牵涉 (Fourier transform) (Fresnel transform) 的計算。 .如申明專利範圍第或U項所述之全像顯示器,其中的全像影像編 碼貝料會在像素所佔用的空間财卜的空間計算,之後個已知的資料壓縮 技術將全健像編碼㈣締獅’織雜給像素所麵基板上的電路 組件’電触件再執行__個騎触刺舰㈣進行麵縮的功能。 157 200928626 13·如申請專利範圍前述任一項所述之全像顯示器,其係可以在一個圖形子 系統的3D表現處理流程中合併額外的處理單元來進行進行全像轉換及編 碼。 14. 如申請專利範圍前述任一項所述之全像顯示器,其係可以以一個全像計 算處理流程透過擴充顯示卡的3D處理流程對三維空間中的各個點進行循 序全像轉換並同-基板上進行計算的全像影像顯示器。 〇 15. 如申請專利範圍第7 m4項任一項所述之全像顯示器,其係可使連續 的真實空間影像框格之間用在全像計算中的真實空間影像資料各不相同, 而全像顯㈣料會財全像影像差異龍和_記敵置資·形式傳送 給全像顯示叢集的全像顯示器。 16·如申請專利範圍前述任一項所述之全像顯示器,其係可提供刪Ip或 〇 VVHI0IP的P-t0_P服務或通訊。 17·如申n月專利範圍前述任一項所述之全像顯示_,其係可提供樓案分享服 務或通訊。 18.如申清專利範圍前述任一項所述之全像顯示器,其係可透過所聯結的全 球網路提料時絲服務或軌。 158 200928626 19.如申晴專利範圍箭、+、v 述任一項所述之全像顯示器,其中的通訊服務或通訊 可透過所騎㈣綱路提供。 20.如申叫專利範圍前述任一項所述之全像顯示器,其中的槽案分享服務或 通訊可透過觸結的電腦網路提供。 ❹21.如申叫專利範圍前述任一項所述之全像顯示器,其中的即時訊息服務或 通訊可透過所聯結的電酬路提供。 22.如申請專利範圍前述任一項所述之全像顯示器,其係可提供可供線上暫 時使用、不可下載的電腦軟體,以允許用戶使用刪ιρ或爾脈服務 或通訊。 ® 23.如申請專利範圍前述任一項所述之全像顯示器,其係可提供可供下載的 線上軟體以允許用戶使用VHI0IP或VVHI0IP服務或通訊。 24. 如申請專利範圍前述任一項所述之全像顯示器,其係可提供可進入網域 及網域資料庫系統以存取全像顯示資料的通路。 25. —種通訊系統,其中兩個使用者可利用以VHIOIP或VVHI0IP為基礎 159 200928626 的即時或近㈣魏全像通喊過網際網祕行通n個仙者均使 用根據前述任-專触騎賴全像顯示器。 26. -種利用前述申請專利範圍第i到24項中任一項所述的全像顯示器 來產生由多個分散的點所構成的三維立體景象的全像影像重建的方法,其 中的顯示器包括有一個光源和一個光學系統用來照亮空間 J九調制器;這個11. The holographic display described in the 1st item of the sf patent system, wherein the calculations do not involve the calculation of the Fourier transform (Fresnel transform). A holographic display as claimed in the patent scope or U, wherein the holographic image coding beaker is calculated in the space occupied by the pixels, and the latter known data compression technique encodes the full image. (4) The lion's 'weave the circuit components on the substrate on the surface of the pixel' and the electric contacts are executed __ riding the barbed ship (four) to perform the function of surface shrinking. 157 200928626. The holographic display of any of the preceding claims, wherein an additional processing unit is incorporated in the 3D representation processing flow of a graphics subsystem for holographic conversion and encoding. 14. The holographic display according to any one of the preceding claims, wherein the holographic calculation process can perform a sequential holographic conversion of each point in the three-dimensional space by augmenting the 3D processing flow of the display card with a holographic calculation process. A holographic image display that is calculated on the substrate. 〇15. The holographic display according to any one of claims 7 to 4, wherein the real-world image data used in the holographic calculation between successive real-world image frames is different, and The full-image display (four) is expected to be like a video difference dragon and _ remember enemy capital. The form is transmitted to the holographic display cluster omnidirectional display. 16. A holographic display according to any of the preceding claims, which provides a P-t0_P service or communication for deleting Ip or 〇VVHI0IP. 17. The holographic display _, as described in any of the preceding claims, may provide a case sharing service or communication. 18. A holographic display according to any of the preceding claims, which is a wire service or rail that can be fed through a connected global network. 158 200928626 19. For example, the holographic display of the scope of the patent, the communication service or communication can be provided through the riding (four) road. 20. The holographic display of any of the preceding claims, wherein the slot sharing service or communication is provided via a network of touched computers. The omni-directional display of any of the preceding claims, wherein the instant messaging service or communication can be provided via a connected electronic payment path. 22. A holographic display according to any of the preceding claims, which provides a computer software for temporary use on the line that is not downloadable, to allow the user to use a service or communication. ® 23. The holographic display of any of the preceding claims, which provides a downloadable online software to allow a user to use VHI0IP or VVHI0IP services or communications. 24. The holographic display of any of the preceding claims, wherein the holographic display provides access to a network domain and a domain database system for accessing holographic display data. 25. A communication system, in which two users can use the instant or near (four) Wei hologram based on VHIOIP or VVHI0IP 159 200928626 to scream through the Internet secrets pass n all use according to the aforementioned - special touch Ride the full picture display. 26. A method of generating a holographic image reconstruction of a three-dimensional scene consisting of a plurality of discrete points, using a holographic display as claimed in any one of the preceding claims, wherein the display comprises There is a light source and an optical system to illuminate the space J-nine modulator; this 方法包括下列步驟: 1 進行全像影像編碼並透過空間光調制器呈現出來。 〇 160The method comprises the following steps: 1 Performing a holographic image encoding and presenting it through a spatial light modulator. 〇 160
TW097118291A 2007-05-16 2008-05-16 Holographic display with communications TWI447540B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0709379A GB0709379D0 (en) 2007-05-16 2007-05-16 Smart display extended
GBGB0718632.3A GB0718632D0 (en) 2007-05-16 2007-09-25 Holograms

Publications (2)

Publication Number Publication Date
TW200928626A true TW200928626A (en) 2009-07-01
TWI447540B TWI447540B (en) 2014-08-01

Family

ID=38234523

Family Applications (3)

Application Number Title Priority Date Filing Date
TW097118291A TWI447540B (en) 2007-05-16 2008-05-16 Holographic display with communications
TW97118288A TWI412904B (en) 2007-05-16 2008-05-16 A holographic display and method of generating a holographic reconstruction of a three dimensional scene
TW097118290A TWI464548B (en) 2007-05-16 2008-05-16 A high-resolution display of highly decompressed image data can be displayed

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW97118288A TWI412904B (en) 2007-05-16 2008-05-16 A holographic display and method of generating a holographic reconstruction of a three dimensional scene
TW097118290A TWI464548B (en) 2007-05-16 2008-05-16 A high-resolution display of highly decompressed image data can be displayed

Country Status (2)

Country Link
GB (1) GB0709379D0 (en)
TW (3) TWI447540B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500313B (en) * 2010-06-04 2015-09-11 Au Optronics Corp Image scanning system and method of controlling the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9892669B2 (en) 2014-03-18 2018-02-13 Nvidia Corporation Superresolution display using cascaded panels
CN107340704B (en) * 2017-01-04 2020-02-07 京东方科技集团股份有限公司 Holographic display device
KR102523873B1 (en) * 2018-06-29 2023-04-20 레이아 인코포레이티드 Hybrid Backlights, Displays, and Methods

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05119341A (en) * 1991-10-25 1993-05-18 Seiko Epson Corp Optical device
US6122403A (en) * 1995-07-27 2000-09-19 Digimarc Corporation Computer system linked by using information in data objects
US6438266B1 (en) * 1998-08-27 2002-08-20 Lucent Technologies Inc. Encoding images of 3-D objects with improved rendering time and transmission processes
GB2350962A (en) * 1999-06-09 2000-12-13 Secr Defence Brit Holographic displays
JP2001285894A (en) * 2000-03-31 2001-10-12 Olympus Optical Co Ltd Method for running three-dimensional image data
JP2002123160A (en) * 2000-10-16 2002-04-26 Sony Corp Holographic stereogram printing order accepting system and method
US6582980B2 (en) * 2001-01-30 2003-06-24 Eastman Kodak Company System for integrating digital control with common substrate display devices
JP3847593B2 (en) * 2001-02-20 2006-11-22 シャープ株式会社 Optical element such as corner cube array and reflective display device including the same
US7272575B2 (en) * 2001-07-13 2007-09-18 Lilly Mae Vega Method and system for facilitating service transactions
RU2293365C2 (en) * 2002-11-13 2007-02-10 Сириал Текнолоджиз Гмбх Device for restoration of holograms
JP4464751B2 (en) * 2003-08-25 2010-05-19 株式会社エヌ・ティ・ティ・ドコモ Stereoscopic image display apparatus and stereoscopic image display system
DE102004063838A1 (en) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Method and apparatus for calculating computer generated video holograms
TWI268737B (en) * 2005-07-29 2006-12-11 Au Optronics Corp Full-color organic electroluminescence panel with high resolution
TWM288379U (en) * 2005-08-26 2006-03-01 Jeng Jang Three-dimensional, omni-directional holographic display
US8903916B2 (en) * 2006-07-05 2014-12-02 International Business Machines Corporation Method, system, and computer-readable medium to render repeatable data objects streamed over a network
US7702164B2 (en) * 2006-09-22 2010-04-20 International Business Machines Corporation Run length limited encoding of data into a 5×5 matrix for recording into a holographic medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI500313B (en) * 2010-06-04 2015-09-11 Au Optronics Corp Image scanning system and method of controlling the same

Also Published As

Publication number Publication date
GB0709379D0 (en) 2007-06-27
TWI447540B (en) 2014-08-01
TWI412904B (en) 2013-10-21
TW200916986A (en) 2009-04-16
TWI464548B (en) 2014-12-11
TW200916985A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
JP6882379B2 (en) Holographic display for communication
TWI564876B (en) The full-image display is reconstructed with all-dimensional images that produce a three-dimensional scene
CN101743519B (en) Holographic display
CN101802725B (en) Holographic display
TW200928626A (en) Holographic display with communications