TW200927637A - Micromechanical system - Google Patents

Micromechanical system Download PDF

Info

Publication number
TW200927637A
TW200927637A TW97141910A TW97141910A TW200927637A TW 200927637 A TW200927637 A TW 200927637A TW 97141910 A TW97141910 A TW 97141910A TW 97141910 A TW97141910 A TW 97141910A TW 200927637 A TW200927637 A TW 200927637A
Authority
TW
Taiwan
Prior art keywords
micromechanical
layer
suspension
functional layer
substrate
Prior art date
Application number
TW97141910A
Other languages
Chinese (zh)
Other versions
TWI471258B (en
Inventor
Tjalf Pirk
Axel Franke
Kersten Kehr
Original Assignee
Bosch Gmbh Robert
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Gmbh Robert filed Critical Bosch Gmbh Robert
Publication of TW200927637A publication Critical patent/TW200927637A/en
Application granted granted Critical
Publication of TWI471258B publication Critical patent/TWI471258B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0009Structural features, others than packages, for protecting a device against environmental influences
    • B81B7/0012Protection against reverse engineering, unauthorised use, use in unintended manner, wrong insertion or pin assignment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values

Abstract

The invention relates to a micromechanical system (1) which comprises a substrate (100), a suspension (130), a base (140) and a micromechanical sensor (150), the suspension (130) movably carrying the base (140) above the substrate (100) and the micromechanical sensor (150) being located on the base (140).

Description

200927637 九、發明說明: 【發明所屬之技術領域】 本發明關於一種微機機系統。 【先前技術】200927637 Nine, invention description: [Technical field to which the invention pertains] The present invention relates to a microcomputer system. [Prior Art]

微機械系統—例如微機械轉換器、慣量感測器、加 速度感測器、低g加速度感測器、轉速感測器、及使用的 構件在今日廣泛使用。因此,舉例而言,它們用於在汽車 中將安全氣囊動作或用於檢出電腦硬碟(c〇mputerfestplatte, 英:computer fixed disk)中的震動(Erschlitterung)。在此,一 微機械感測器往往包含一微機械方式構造化的可動的質量 塊(Masse,英:mass),其運動(受到加速度、震動或運動引起 者)被檢出。為此,可連續地測量該質量塊與一參考電極 之間的電容,因為電容值和質量塊距參考電極的距離有關。 此外對於微機械系統由於其用途很廣而要求部分地很 苛求的使用環境。屬此類者有溫度變動、振動、機械應力 及衝擊。這些影響會對該徵機械感測器有負面作用,並使 其可靠性及/或使用壽命減短。此外,這類影響例如在 車子中的振動(它們與原來要檢出的運動並無關聯)在許 多應用的場合不能避免。 為了保護此微機械系統免受這類負面影響以了為了維 ::的可靠性’可採某些措施。在此這類構想包含感測 、種特別„又s十、系、统殼^體的—特別結構或在模組 (Modul)及/或控制裝置中 斜嫉 的措施,這些措施的共同點為該 被機械系統在生產、涂播 建構及/或操作時所費功夫較高。此 5 200927637Micromechanical systems—such as micromechanical converters, inertia sensors, acceleration sensors, low-g acceleration sensors, rotational speed sensors, and the components used are widely used today. Thus, for example, they are used to operate an airbag in a car or to detect vibrations (Erschlitterung) in a computer hard disk (c〇mputerfestplatte, computer fixed disk). Here, a micromechanical sensor often contains a micromechanically constructed movable mass (Masse, mass) whose motion (caused by acceleration, vibration or motion) is detected. To this end, the capacitance between the mass and a reference electrode can be measured continuously because the capacitance value is related to the distance of the mass from the reference electrode. In addition, micromechanical systems require a partially demanding environment for their versatility. Such persons have temperature variations, vibrations, mechanical stresses, and shocks. These effects can have a negative effect on the mechanical sensor and reduce its reliability and/or service life. Moreover, such effects, such as vibrations in the car (which are not associated with the motion to be detected), cannot be avoided in many applications. In order to protect this micromechanical system from such negative effects, certain measures can be taken for the reliability of the dimension. In this case, such a concept includes sensing, special structuring, special structures or slanting measures in the module (Modul) and/or the control device. The mechanical system is costly to produce, spread, and/or operate. This 5 200927637

的成本。 【發明内容】 種較佳的微機械系統,它 感(特別是對機械應力與 造。此外,這類微機械系 因此本發明的目的在提供一種 一方面要對干擾性影響儘量不敏感 振動),另方面可儘量廉價地製造 統特別是要能在晶片或晶圓面上製備。 這種目的係利用申請專利範圍的微機械系統達成。本 發明其他有利的設計且於申請專利範圍附屬項。 依本發明的一種微機械系統(1)(2)(3)(4)(5),包含—基 材,一懸架(AufhSngung,英:suspension),一基礎,其中該懸 架以可動的方式將基礎承載在基材上方;及—微機械感測 器,其中該微機械感測器設在該基礎(14〇)上。本發明的微 機械系統有一優點,即:原來的微機械感測器可經由懸架 而和基材或微機械系統的其他部分在機械上解除轉合關 係。如此,懸架的機械性質就可測定:基材的何種運動要 傳到微機械感測器以及何種運動要被封鎖或者只作減弱而 進一步傳到微機械感測器。因此,舉例而言,懸架可視為 微機械振動作用的過濾器,舉例而言,它將一特定頻率帶 中的振動緩衝掉。此外也可利用此懸架使基材之變形(例 如受溫度影響的機械式變形)遠離微機械構件。 依本發明一實施例,該微機械感測器包含一微機械加 速度感測器,其中該微機械加速度感測器可包含一可動質 量塊且將該質量塊的運動轉換成電容的變化。 依本發明另一實施例一第一犧牲層設在該基材上、一 6 200927637 第一功能層設在該第一犠牲層上,一第二犠牲層設在該第 一功能層上。且一第二功能層設在該第二犧牲層上,其中 該第一功能層包含該基礎,且其中該第二功能層包含該微 機械感測器。該第一犧牲層與第二犠牲層可有二氧化矽, 且其中該第一功能層與第二功能層有矽。此外可有一配線 層設在該第一功能層與第二犠牲層之間。如此,本發明的 微機械系統可回歸到標準化的製造程序及/或起始材料儘 量廉價地製造。the cost of. SUMMARY OF THE INVENTION A preferred micromechanical system has a sensation (especially for mechanical stresses and builds. Furthermore, such micromechanical systems are therefore provided for the purpose of providing an interference that is as insensitive to interference as possible) On the other hand, it is possible to manufacture the system as cheaply as possible, especially on the wafer or wafer surface. This purpose is achieved using a patented range of micromechanical systems. Other advantageous designs of the invention are attached to the scope of the patent application. A micromechanical system (1)(2)(3)(4)(5) according to the present invention comprises a substrate, a suspension (AufhSngung, English: suspension), a foundation, wherein the suspension is movable in a movable manner The foundation is carried over the substrate; and - a micromechanical sensor, wherein the micromechanical sensor is disposed on the base (14 turns). The micromechanical system of the present invention has the advantage that the original micromechanical sensor can be mechanically decoupled from the substrate or other portions of the micromechanical system via the suspension. Thus, the mechanical properties of the suspension can be determined by what movement of the substrate is transmitted to the micromechanical sensor and which motion is blocked or simply attenuated and further passed to the micromechanical sensor. Thus, for example, a suspension can be considered a filter for micromechanical vibrations, for example, to buffer vibrations in a particular frequency band. In addition, the suspension can also be used to deform the substrate (e.g., mechanically affected by temperature) away from the micromechanical component. In accordance with an embodiment of the invention, the micromechanical sensor includes a micromechanical acceleration sensor, wherein the micromechanical acceleration sensor can include a movable mass block and convert the motion of the mass into a change in capacitance. According to another embodiment of the present invention, a first sacrificial layer is disposed on the substrate, and a first functional layer is disposed on the first layer, and a second layer is disposed on the first layer. And a second functional layer is disposed on the second sacrificial layer, wherein the first functional layer comprises the base, and wherein the second functional layer comprises the micromechanical sensor. The first sacrificial layer and the second layer may have cerium oxide, and wherein the first functional layer and the second functional layer are flawed. Further, a wiring layer may be disposed between the first functional layer and the second artificial layer. Thus, the micromechanical system of the present invention can be returned to a standardized manufacturing process and/or starting materials as inexpensively as possible.

依本發明又一實施例,該懸架包含一彈簧元件,且其 中該懸架用彈簧彈性方式承載著該基礎。如此,該微機械 系統的基材或其他部分及/或外部元件的應力及/或變形 可與該微機械感測器保持遠離,在此,其他的及外部的元 件可包含一殼體、一鑄造料、一固定件及/或一印刷電路。 依本發明再一實施例,該懸架包含一緩衝元件,且其 中該懸架將基礎的運動緩衝。此緩衝元件可除了一彈簧元 件外附加地設置。 在此,一 的指仵及一 琢緩衝件包含 的指件’纟中該第—組指件以對基材成位置固定的方式設 置,其中第二組指件與基礎連接,且其中第一組與第二組 的指件互㈣合’此外’該第—組指件與—第—電位、, 第二組指件與一第二電位連接,且其中第一及第二電位設 成將基礎的運動緩衝。 Λ 如此,該懸架的機械性質(特別是其振動特性)可用 有利地方式依標的調整,舉例而t,俾將在μ 200927637 振動與微機械感測|§保持遠離。此外,藉著將電位變化, 可使該性質呈動態地配合不同的使用條件。 以下利用圖式詳細說明本發明的較佳實施例。 【實施方式】 圖1顯示本發明第一實施例之一微機械系統沿一橫截 面的示意侧視圖。在一層疊中的一第一微機械系統做在 一基材(100)上,此層疊包含一第一犠牲層(H〗)、—第一功 此層(121)、一第二犠牲層(丨丨2)及一第功能層(122)。此基材 (100)可包含一半導體基材,例如一破基材,其中第一及第 二犧牲層(111)(112)可包含一半導體氧化例,例如二氧化 矽,且其中第一及第二功能層(121)(122)可包含一半導體, 例如矽。此外,第一及第二功能層(121)(122)的半導體可包 含矽、多晶矽、非晶質矽及/或以磊晶(epitaktisch)方式生 長的多晶矽(EPI)。這類微機械構件[如該第一微機械系統(1)] 的製造可利用一習知之犠牲層程序達成。依本發明此實施 Q 例,由第一功能層(121)加工出一基礎(140)。在此該基礎(140) 被一懸架(130)以可動的方式承載在基材(丨〇〇)上方。懸架 (130)可包含可撓性及/或緩衝作用的元件,它們在此處利 用一不意的彈簧(134)及一示意的緩衝元件〇35)表示。因此 該基材(100)及/或微機械系統(丨)的其他部分所受到的一機 械應力、一振動或其他干擾影響可用有利的方式利用懸架 (130)而與基礎(14〇)解耦。懸架(13〇)的機械性質(例如缓衝 行為及/或特性之機械自身振動)可設計成使基礎(14〇)與 相關的或預期的干擾影響耦。因此,舉例而言,汽車中一 8 200927637 般常發生的振動在設計懸架時被列入考慮。因為這類振動 • 往往可利用有限的頻帶代表其特性。 此外,基礎(140)用於當作一微機械感測器(15〇)的載 體’它利用其他懸架(131)以可動方式固定在基礎(14〇)上。 此處所示的雙重振動器[呈微機械感測器(15〇)的二個質量 塊(1501)的形式]在此處也可代表一般之微系統及/或感測 器。因此,舉例而言,該微機械感測器(15〇)可包含一膜振 動器,一彈簧墊(TramPolin)振動器、一蹺蹺板(Wippe)振動 器、一樑共振器或使用之機械構、懸架(13〇)的機械性質可 有利地配合另一懸架(13 1)和微機械感測器(丨5〇)的機械性 質,使得基材(100)之不想要的運動被微機械感測器(丨5〇)阻 塞掉’反之’基材(100)之所要的運動則大致不受緩衝地進 一步送到微機械感測器(1 50)。 圖1B顯示本發明一第二實施例的微機械系統沿一橫截 面的示意側視圖。依此,一第二微機械系統包含由基材 q (100)上的第一犠牲層(111)、第一功能層(121)、第二犠牲層 (1 12)、以及第二功能層(122)且構成的層疊。基礎(140)利用 懸架(130)以可動方式設在基材(100)上方。此外,基礎(14〇) 攜帶著微機械感測器(150),後者利用其他懸架(131)以可動 方式懸設在基礎(140)上。 依本發明此實施例,該微機械系統(2)具有第一功能層 (121)與第二犠牲層(112)之間的一配線層(16〇)。配線層(160) 可設在懸架(130)的一區域區,或為懸架(13〇)的一部分或藉 著夠薄的構造以有利的方式大致不改變懸架(13〇)的機械性 9 200927637 質。配線層(160)可用有利方式使微機械感測器(丨5〇)在基礎 (140)上作電接觸。為此,微機械系統(2)可在進一步過程中 包含其他機械式及/或電子式元件,它們將電信號進一步 送到微機械感測器(150)或從微機械感測器(150)接收電信 號。配線層(160)可有利地包含一種導電材料。其例子包含 金屬、鋁、銅、金、摻雜的及/或未摻雜的半導體、矽、 多晶碎及非晶質梦。 圖2 A顯示本發明一第三實施例的微機械系統的示意上 視圖。依此實施例,一第三微機械系統的一懸架(13〇1)包含 一彈簧元件(136)。此彈簧元件(136)將基礎(140)以可動方式 支承在基材(100)上方。為此’至少該第二功能層(丨22)[它在 圖2A的視圖中係在上方]對應地作構造化。在基礎(14〇)之 上或之中設一微機械感測器(15 1 ),例如微機械感測器(15〇) 或(152)’如圖ΙΑ、1B或2C所示者。 彈簧元件(136)可有利的方式將基材(100)的機械應力抵 消並使基材(100)大致上與基材(14〇)解耦。對應於此,舉例 而言’基材(100)及/或微機械系統(3)的其他部分可在此平 面中變形,雖然這種變形只以很少的量進一步送到基礎 (140)。舉例而言,這種變形可由於微機械系統(3)操作溫度 變化而引起’因為’舉例而言,微機械系統(3)在第一溫度 時與另一電路牢接’而微機械系統(3)在一第二溫度操作。 在此,第一溫度與第二溫度之間的溫差一般可大於5〇〇c、 大於100°C或大於200°C。 圖2B的示意上視圖顯示依本發明一第四實施例的一微 10 200927637 機械系統。依此,一第四微機械系統(4)的一基礎(140)用一 懸架(1302)以可動方式懸設在基材(1〇〇)上方。在此,懸架 U3〇2)包含彈簧元件(138),例如圖2A中所述之那種彈簧元 件(136)。依此實施例,懸架(13〇2)另外包含缓衝元件(137), 它將基礎(140)相對於基材(100)的運動緩衝。此外緩衝元件 (137)可包含第一組的第一指件(1371)及第二組的第二指件 (1372)。在此,第一指件(1371)以位置固定的方式[例如經由 一第一犧牲層、一第一功能層、一第二犠牲層及/或一第 二功能層]與基材(1〇〇)連接,而第二指件(1372)與基礎(14〇) 牢接。 此外,第一指件(137)與第二指件(13 72)互相嵌合。一第 一指件(1371)與一第二指件(1372)之間的緩衝,舉例而言, 係可利用直接接觸、附著、摩擦、在粘性介質中的摩擦、 及/或一電場造成及/或調整。特別是一第一指件(1371) 可與一第一電位連接、一第二指件(1372)可與一第二電位連 接。此外’第一電位與第二電位之間的電位差可控制及/ 或調節’因此緩衝元件(137)的緩衝性質可依標的改變、控 制或作動態調節。因此依此實施例,懸架(13〇2)的傳動系統 ——包含彈簧元件(138)和緩衝元件(137)可改變、調整或事 先決定。因此宜決定懸架(1302)的一機械性質,如此可依標 的將應力及/或振動[它們作用到基材(1〇〇)或微機械系統 的其他部分]可和基礎(140)大致解耦。 圖2C的示意上視圖顯示本發明第五實施例的一微機械 系統。依此,在一第五微機械系統(5)中,在第二功能層(122) 200927637 下方設一配線層(161),為了作說明,在懸架(1303)的一上部 - 中,第二功能層(122)破開。懸架(130)可一如懸架(130)(1201) 或(1302)包含彈簧元件及/或緩衝元件,如本發明前面的實 施例所述者。 此外’在基礎(140)上設有一微機械感測器(152)。此感 測器舉例而言可包含一傾斜振動器(1502),它在功能層(121) 中構造化,且利用配線層(161)—第一區域(1601)、配線層 (161)的第二(16〇2)及配線層(161)的一第三區域(1603)接 ^ 觸,依此可用有利方式使微機械感測器(152)經由懸架(1303) 作電接觸。 【圖式簡單說明】 圖1A與1B係本發明的第一及第二實施例之微機械系 統的示意側視圖; 圖2A、2B及2C係本發明第三、第四及第五實施例的 示意上視圖。 【主要 元件符號說明】 (1) 第一微機械系統 (2) 第二微機械系統 (3) 第三微機械系統 (4) 第四微機械系統 (5) 第五微機械系統 (100) 基材 (111) 第一犠牲層 (Π2) 第二犧牲層 12 200927637 (1201)懸架 (121) 第一功能層 (122) 第二功能層 (130) 懸架 (1301)懸架 (1303)懸架 (131) 懸架 (134) 彈簧 (135) 緩衝元件 (136) 彈簧元件 (137) 緩衝元件 (1371) 第一指件 (1372) 第二指件 (138) 彈簧元件 (150) 微機械感測器 (151) 微機械感測器 (152) 微機械感測器 (160) 配線層 (161) 配線層的第一區域 (1602) 配線層的第二區域 (1603) 配線層的第三區域 13According to a further embodiment of the invention, the suspension comprises a spring element, and wherein the suspension carries the foundation in a spring-elastic manner. As such, the stress and/or deformation of the substrate or other portion of the micromechanical system and/or external components may be kept away from the micromechanical sensor, where other and external components may include a housing, Cast material, a fixture and/or a printed circuit. In accordance with still another embodiment of the present invention, the suspension includes a cushioning member, and wherein the suspension cushions the movement of the foundation. This cushioning element can be additionally provided in addition to a spring element. Here, a finger and a buffer member include a finger member in which the first group finger is disposed in a positionally fixed manner to the substrate, wherein the second group of fingers is connected to the base, and wherein the first member The first and second potentials are connected to each other, and the second set of fingers is connected to a second potential, and the first and second potentials are set to be Basic motion buffering.如此 As such, the mechanical properties of the suspension (especially its vibration characteristics) can be adjusted in an advantageous manner, for example, t, 俾 will remain away from μ 200927637 vibration and micro-mechanical sensing | §. In addition, by varying the potential, this property can be dynamically matched to different conditions of use. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail using the drawings. [Embodiment] Fig. 1 is a schematic side view showing a micromechanical system according to a first embodiment of the present invention, taken along a cross section. A first micromechanical system in a stack is formed on a substrate (100) comprising a first layer (H), a first layer (121), and a second layer (12)丨丨 2) and a functional layer (122). The substrate (100) may comprise a semiconductor substrate, such as a broken substrate, wherein the first and second sacrificial layers (111) (112) may comprise a semiconductor oxidation example, such as hafnium oxide, and wherein the first The second functional layer (121) (122) may comprise a semiconductor, such as germanium. Furthermore, the semiconductors of the first and second functional layers (121) (122) may comprise germanium, polycrystalline germanium, amorphous germanium and/or epitaxial germanium (EPI) grown in an epitaxial manner. The manufacture of such micromechanical components [such as the first micromechanical system (1)] can be achieved using a conventional layering procedure. According to this embodiment of the present invention, a base (140) is machined from the first functional layer (121). Here, the foundation (140) is movably carried over the substrate (丨〇〇) by a suspension (130). The suspension (130) may comprise flexible and/or cushioning elements, which are represented herein by an unintentional spring (134) and a schematic cushioning element 〇 35). Therefore, a mechanical stress, vibration or other disturbance effect on the substrate (100) and/or other parts of the micromechanical system (丨) can be decoupled from the base (14〇) by means of the suspension (130) in an advantageous manner. . The mechanical properties of the suspension (13 〇), such as the mechanical vibration of the cushioning behavior and/or characteristics, can be designed to couple the foundation (14〇) with associated or expected interference effects. So, for example, the vibrations that often occur in cars in 2009-28637 are considered when designing suspensions. Because of this type of vibration, it is often possible to use a limited frequency band to represent its characteristics. In addition, the base (140) is used as a carrier for a micromechanical sensor (15 它) which is movably fixed to the base (14 利用) by means of other suspensions (131). The dual vibrator shown here [in the form of two masses (1501) of a micromechanical sensor (15") may also represent a typical microsystem and/or sensor herein. Thus, for example, the micromechanical sensor (15〇) may comprise a membrane vibrator, a spring pad (TramPolin) vibrator, a scorpion (Wippe) vibrator, a beam resonator or a mechanical structure used, The mechanical properties of the suspension (13〇) can advantageously match the mechanical properties of the other suspension (13 1) and the micromechanical sensor (丨5〇) such that the unwanted motion of the substrate (100) is micromechanically sensed The desired motion of the substrate (100) is blocked and the buffer is further sent to the micromechanical sensor (150). Fig. 1B shows a schematic side view of a micromechanical system according to a second embodiment of the present invention along a cross section. Accordingly, a second micromechanical system includes a first layer (111), a first functional layer (121), a second layer (1 12), and a second functional layer on the substrate q (100) ( 122) and the composition of the stack. The foundation (140) is movably disposed above the substrate (100) using a suspension (130). In addition, the base (14〇) carries a micromechanical sensor (150) that is movably suspended from the base (140) using other suspensions (131). According to this embodiment of the invention, the micromechanical system (2) has a wiring layer (16 turns) between the first functional layer (121) and the second artificial layer (112). The wiring layer (160) may be provided in an area of the suspension (130), or as part of the suspension (13〇) or in a favorable manner, without substantially changing the mechanical properties of the suspension (13〇) 9 200927637 quality. The wiring layer (160) can advantageously electrically contact the micromechanical sensor (丨5〇) on the base (140). To this end, the micromechanical system (2) may include further mechanical and/or electronic components in further processes that further send electrical signals to the micromechanical sensor (150) or from the micromechanical sensor (150) Receive electrical signals. The wiring layer (160) may advantageously comprise a conductive material. Examples include metal, aluminum, copper, gold, doped and/or undoped semiconductors, germanium, polycrystalline and amorphous dreams. Figure 2A shows a schematic top view of a micromechanical system in accordance with a third embodiment of the present invention. In accordance with this embodiment, a suspension (13〇1) of a third micromechanical system includes a spring element (136). This spring element (136) movably supports the base (140) above the substrate (100). To this end, at least the second functional layer (丨22) [which is attached above in the view of Fig. 2A] is correspondingly constructed. A micromechanical sensor (15 1 ) is provided on or in the base (14 〇), such as a micromechanical sensor (15 〇) or (152)' as shown in Fig. 1, 1B or 2C. The spring element (136) advantageously displaces the mechanical stress of the substrate (100) and decouples the substrate (100) substantially from the substrate (14 turns). Corresponding to this, for example, the other parts of the substrate (100) and/or the micromechanical system (3) can be deformed in this plane, although this deformation is further sent to the foundation (140) in a small amount. For example, such a deformation may be caused by a change in the operating temperature of the micromechanical system (3), because, for example, the micromechanical system (3) is intimately connected to another circuit at the first temperature' and the micromechanical system ( 3) Operate at a second temperature. Here, the temperature difference between the first temperature and the second temperature may generally be greater than 5 〇〇 c, greater than 100 ° C or greater than 200 ° C. Fig. 2B is a schematic top view showing a micro 10 200927637 mechanical system in accordance with a fourth embodiment of the present invention. Accordingly, a base (140) of a fourth micromechanical system (4) is movably suspended above the substrate (1〇〇) by a suspension (1302). Here, the suspension U3 〇 2) comprises a spring element (138), such as the spring element (136) of the type described in Figure 2A. In accordance with this embodiment, the suspension (13〇2) additionally includes a cushioning element (137) that cushions the movement of the base (140) relative to the substrate (100). Further, the cushioning member (137) may include a first set of first fingers (1371) and a second set of second fingers (1372). Here, the first finger (1371) is fixed in a positional manner [for example, via a first sacrificial layer, a first functional layer, a second artificial layer, and/or a second functional layer] and a substrate (1〇) 〇) Connect, and the second finger (1372) is firmly attached to the base (14〇). Further, the first finger (137) and the second finger (13 72) are fitted to each other. The buffer between a first finger (1371) and a second finger (1372), for example, may be caused by direct contact, adhesion, friction, friction in a viscous medium, and/or an electric field. / or adjust. In particular, a first finger (1371) can be coupled to a first potential and a second finger (1372) can be coupled to a second potential. Further, the potential difference between the first potential and the second potential can be controlled and/or adjusted. Thus, the cushioning properties of the cushioning member (137) can be changed, controlled or dynamically adjusted according to the standard. Thus, in accordance with this embodiment, the transmission system of the suspension (13〇2), including the spring element (138) and the cushioning element (137), can be changed, adjusted or determined in advance. It is therefore desirable to determine a mechanical property of the suspension (1302) such that stress and/or vibration [which acts on the substrate (1〇〇) or other parts of the micromechanical system] can be substantially decoupled from the base (140). . Fig. 2C is a schematic top view showing a micromechanical system of a fifth embodiment of the present invention. Accordingly, in a fifth micromechanical system (5), a wiring layer (161) is disposed under the second functional layer (122) 200927637, for the sake of illustration, in an upper portion of the suspension (1303), the second The functional layer (122) is broken. The suspension (130) may comprise a spring element and/or a cushioning element as the suspension (130) (1201) or (1302), as described in the previous embodiments of the present invention. Further, a micromechanical sensor (152) is provided on the foundation (140). The sensor may, for example, include a tilting vibrator (1502) that is structured in the functional layer (121) and utilizes a wiring layer (161) - a first region (1601), a wiring layer (161) A third (16〇2) and a third region (1603) of the wiring layer (161) are in contact with each other, whereby the micromechanical sensor (152) can be electrically contacted via the suspension (1303) in an advantageous manner. BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1A and 1B are schematic side views of a micromechanical system according to first and second embodiments of the present invention; FIGS. 2A, 2B and 2C are views showing third, fourth and fifth embodiments of the present invention. Indicate the upper view. [Explanation of main component symbols] (1) First micromechanical system (2) Second micromechanical system (3) Third micromechanical system (4) Fourth micromechanical system (5) Fifth micromechanical system (100) base Material (111) First layer (Π2) Second sacrificial layer 12 200927637 (1201) Suspension (121) First functional layer (122) Second functional layer (130) Suspension (1301) Suspension (1303) Suspension (131) Suspension (134) Spring (135) Cushioning Element (136) Spring Element (137) Cushioning Element (1371) First Finger (1372) Second Finger (138) Spring Element (150) Micromechanical Sensor (151) Micromechanical sensor (152) Micromechanical sensor (160) Wiring layer (161) First region of wiring layer (1602) Second region of wiring layer (1603) Third region of wiring layer 13

Claims (1)

200927637 十、申請專利範面: 1· 一種微機械系統(1)(2)(3)(4)(5),包含 基材(1 00); 懸架(13 0)(13 01)(13 02)(1303); 基礎(140),其中該懸架(130)(1301)(ΐ3〇2χΐ3()3) 以可動的方式將基礎(140)承載在基材(100)上方;及 微機械感測器(15〇)(151)(152),其中該微機械感 測器(150)( 15 1)(152)設在該基礎(140)上。 2·如申請專利範圍第1項之微機械系統,其中: 該微機械感測器(150)(151)(152)包含一微機械加速度 感測器。 3·如申請專利範圍第2項之微機械系統,其中: 該微機械加速度感測器包含一可動之質量塊 (1501)(1502)且將該質量塊(1501)(15〇2)的運動轉換成電容 的變化。 4. 如申請專利範圍第i或第2項之微機械系統其中: 一第一犠牲層(111)設在該基材(1〇〇)上、一第一功能層 (121)設在該第一犧牲層(111)上,一第二犠牲層(112)設在該 第一功能層(121)上。且一第二功能層(122)設在該第二犧牲 層(112)上,其中該第一功能層(121)包含該基礎(14〇),且其 中該第一功能層(122)包含該微機械感測器(15〇)(151)(152)。 5. 如申請專利範圍第4項之微機械系統,其中: 該第一犠牲層(111)與第二犠牲層(112)有二氧化矽,且 其中該第一功能層(121)與第二功能層(22)有矽。 200927637 6·如申請專利範圍第4項之微機械系统,其中: 一配線層(160)設在該第一功能層(121)與第二犠牲層 (112)之間。 7.如申請專利範圍第i或第2項之微機械系統,其中: 該懸架(130)(1301)(1302)(1303)包含—彈菁元件 (134) (136)(138),且其中該㈣地)(1利用 彈箐彈性方式承載著該基礎(140)。 ❿ 8·如申請專利範圍第丨或第2項之微機械系統,其中: 該懸架(130)(1301)(1302)(1303)包含一緩衝元件 (135) (137),且其中該懸架(13〇)(13〇1)(13〇2)(13〇3)將基礎 (140)的運動緩衝。 9. 如申請專利範圍第8項之微機械系統,其中: 該緩衝元件(135)(137)包含一第一組的指件(1371)及一 第二2的指件(1372)’其中該第一組指件以對基材(1〇〇)成位 置固疋的方式設置,其中第二組指件與基礎(140)連接,且 〇 其中第一組與第二組的指件(1371)(1372)互相嵌合。 10. 如申請專利範圍第9項之微機械系統,其中: 第一組指件與一第一電位連接,第二組指件與一第二 電位連接,且其中第一及第二電位設成將基礎(140)的運動 緩衝。 十一、圖式: 如次頁 15200927637 X. Patent application: 1. A micromechanical system (1)(2)(3)(4)(5), including substrate (1 00); suspension (13 0) (13 01) (13 02 (1303); a foundation (140), wherein the suspension (130) (1301) (ΐ3〇2χΐ3()3) carries the foundation (140) over the substrate (100) in a movable manner; and micromechanical sensing The device (15) (151) (152), wherein the micromechanical sensor (150) (15 1) (152) is disposed on the base (140). 2. The micromechanical system of claim 1, wherein: the micromechanical sensor (150) (151) (152) comprises a micromechanical acceleration sensor. 3. The micromechanical system of claim 2, wherein: the micromechanical acceleration sensor comprises a movable mass (1501) (1502) and the mass (1501) (15〇2) is moved Converted into a change in capacitance. 4. The micromechanical system of claim i or 2, wherein: a first layer (111) is disposed on the substrate (1), and a first functional layer (121) is disposed in the first On a sacrificial layer (111), a second layer (112) is disposed on the first functional layer (121). And a second functional layer (122) is disposed on the second sacrificial layer (112), wherein the first functional layer (121) comprises the base (14A), and wherein the first functional layer (122) comprises the Micromechanical sensor (15〇) (151) (152). 5. The micromechanical system of claim 4, wherein: the first layer (111) and the second layer (112) have cerium oxide, and wherein the first functional layer (121) and the second The functional layer (22) has flaws. 200927637. The micromechanical system of claim 4, wherein: a wiring layer (160) is disposed between the first functional layer (121) and the second artificial layer (112). 7. The micromechanical system of claim i or 2, wherein: the suspension (130) (1301) (1302) (1303) comprises - an elastomeric element (134) (136) (138), and wherein (4) Ground) (1) The foundation (140) is carried by elastic means. ❿ 8. The micromechanical system of claim 丨 or 2, wherein: the suspension (130) (1301) (1302) (1303) includes a cushioning element (135) (137), and wherein the suspension (13〇) (13〇1) (13〇2) (13〇3) buffers the motion of the base (140). The micromechanical system of claim 8 wherein: the cushioning element (135) (137) comprises a first set of fingers (1371) and a second set of fingers (1372) wherein the first set of fingers The pieces are disposed in a positionally fixed manner to the substrate (1〇〇), wherein the second set of fingers are connected to the base (140), and the first group and the second set of fingers (1371) (1372) 10. The micromechanical system of claim 9, wherein: the first set of fingers is coupled to a first potential, the second set of fingers is coupled to a second potential, and wherein the first and the Two potential setting The base (140) of the buffer movement XI drawings: such as hypophosphorous page 15
TW97141910A 2007-11-02 2008-10-31 Mikromechanisches system TWI471258B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710052367 DE102007052367A1 (en) 2007-11-02 2007-11-02 Micromechanical system

Publications (2)

Publication Number Publication Date
TW200927637A true TW200927637A (en) 2009-07-01
TWI471258B TWI471258B (en) 2015-02-01

Family

ID=40514303

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97141910A TWI471258B (en) 2007-11-02 2008-10-31 Mikromechanisches system

Country Status (4)

Country Link
CN (1) CN101842313A (en)
DE (1) DE102007052367A1 (en)
TW (1) TWI471258B (en)
WO (1) WO2009056420A2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9227835B2 (en) * 2010-11-23 2016-01-05 Honeywell International Inc. Vibration isolation interposer die
DE102012200929B4 (en) * 2012-01-23 2020-10-01 Robert Bosch Gmbh Micromechanical structure and method for manufacturing a micromechanical structure
DE102013216898B4 (en) * 2013-08-26 2023-02-09 Robert Bosch Gmbh Micromechanical component and method for producing a micromechanical component
DE102013216901A1 (en) * 2013-08-26 2015-02-26 Robert Bosch Gmbh Micromechanical component and method for producing a micromechanical component
CN104891419B (en) * 2015-06-29 2016-11-09 歌尔股份有限公司 A kind of MEMS inertial sensor and manufacture method thereof
JP6677269B2 (en) * 2017-05-08 2020-04-08 株式会社村田製作所 Capacitive microelectromechanical accelerometer
DE102021202573B3 (en) 2021-03-16 2022-07-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein MEMS TRANSDUCER WITH CUTS AND PROJECTIONS

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5536988A (en) * 1993-06-01 1996-07-16 Cornell Research Foundation, Inc. Compound stage MEM actuator suspended for multidimensional motion
DE19526903B4 (en) * 1995-07-22 2005-03-10 Bosch Gmbh Robert Yaw rate sensor
US6330102B1 (en) * 2000-03-24 2001-12-11 Onix Microsystems Apparatus and method for 2-dimensional steered-beam NxM optical switch using single-axis mirror arrays and relay optics
US6632698B2 (en) * 2001-08-07 2003-10-14 Hewlett-Packard Development Company, L.P. Microelectromechanical device having a stiffened support beam, and methods of forming stiffened support beams in MEMS
KR100431004B1 (en) * 2002-02-08 2004-05-12 삼성전자주식회사 Rotation type MEMS gyroscpoe of a decoupled structure
US20050066728A1 (en) * 2003-09-25 2005-03-31 Kionix, Inc. Z-axis angular rate micro electro-mechanical systems (MEMS) sensor
US7187100B2 (en) * 2004-04-20 2007-03-06 Advanced Numicro Systems, Inc. Dimensions for a MEMS scanning mirror with ribs and tapered comb teeth
KR100652952B1 (en) * 2004-07-19 2006-12-06 삼성전자주식회사 The MEMS gyroscope with coupling spring

Also Published As

Publication number Publication date
DE102007052367A1 (en) 2009-05-07
WO2009056420A3 (en) 2009-10-22
CN101842313A (en) 2010-09-22
WO2009056420A2 (en) 2009-05-07
TWI471258B (en) 2015-02-01

Similar Documents

Publication Publication Date Title
TW200927637A (en) Micromechanical system
JP5898283B2 (en) Micro electromechanical system
JP2005538551A (en) Microchip having stress relief means
JP2006518673A (en) Packaged microchip
US20060049497A1 (en) Physical quantity sensor
US20100259130A1 (en) Device for energy conversion, in particular a piezoelectric micropower converter
JP2010127763A (en) Semiconductor mechanical quantity detection sensor and controller using the same
WO2014055542A1 (en) Mems pressure sensor assembly
US20150192602A1 (en) Inertial force sensor
JP2005331258A (en) Vibration angular-velocity sensor
US20020144548A1 (en) High precision accelerometer
TWI700237B (en) Mems device and multi-layered structure
JP2007212174A (en) Angular velocity sensor device
CN106662601A (en) Physical quantity sensor
JP2008070230A (en) Physical quantity sensor
WO2011040233A1 (en) Sensor device
US10843917B2 (en) Micromechanical device having a decoupled micromechanical structure
KR100548200B1 (en) Vibration isolating apparatus fabricated with MEMS technic and fabrication method thereof
US10351416B2 (en) Module comprising a MEMS component mounted without subjecting same to stress
JP5287763B2 (en) Sensor device and manufacturing method thereof
JP2004279373A (en) Angle speed detecting device
JP5206054B2 (en) Capacitive physical quantity sensor
JP2010008123A (en) Sensor module
JP5299353B2 (en) Semiconductor device
CN113678000B (en) Physical quantity sensor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees