TW200926630A - Crystal-less transceivers - Google Patents

Crystal-less transceivers Download PDF

Info

Publication number
TW200926630A
TW200926630A TW97129558A TW97129558A TW200926630A TW 200926630 A TW200926630 A TW 200926630A TW 97129558 A TW97129558 A TW 97129558A TW 97129558 A TW97129558 A TW 97129558A TW 200926630 A TW200926630 A TW 200926630A
Authority
TW
Taiwan
Prior art keywords
frequency
circuit
oscillator
signal
bandwidth
Prior art date
Application number
TW97129558A
Other languages
Chinese (zh)
Inventor
Zeijl Paulus Thomas Maria Van
Neil Christopher Bird
Alan J Davie
Original Assignee
Koninkl Philips Electronics Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninkl Philips Electronics Nv filed Critical Koninkl Philips Electronics Nv
Publication of TW200926630A publication Critical patent/TW200926630A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J7/00Automatic frequency control; Automatic scanning over a band of frequencies
    • H03J7/02Automatic frequency control
    • H03J7/04Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant
    • H03J7/06Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers
    • H03J7/065Automatic frequency control where the frequency control is accomplished by varying the electrical characteristics of a non-mechanically adjustable element or where the nature of the frequency controlling element is not significant using counters or frequency dividers the counter or frequency divider being used in a phase locked loop

Abstract

The present invention relates to an apparatus and a system having at least one of a transmitter portion or apparatus for transmitting a transmission signal and receiver portion or apparatus for receiving a transmission signal, and to a method of operating such an apparatus and system. A reference frequency is generated at an oscillator circuit (82) which is used for frequency conversion in at least one of the transmitter and receiver portion, and the transmission signal is filtered at a filter circuit (10) before it is input to the transmitter portion or after it is output from the receiver portion. At least one of a physical or electronic coupling of at least one bandwidth parameter at the filter circuit (10) to the oscillator circuit (82) is provided to thereby relax accuracy requirements at said oscillator circuit. Thereby, the oscillator circuit can be configured without crystal resonator element (s) and the size of the apparatus and system can be reduced.

Description

200926630 九、發明說明: 【發明所屬之技術領域】 用於發射 本發明係關於一種裝置及一種系統,其具有一 一發射信號之發射器部分或裝置及用於接收—發射作號之 接收器部分或裝置之至少一者,並且係關於—種操;:類 裝置及系統的方法。更特定言之,本發明是針對(但不限 於)用於無線通信系統的收發器器件。 【先前技術】200926630 IX. Description of the Invention: [Technical Field] The invention relates to a device and a system having a transmitter portion or device for transmitting signals and a receiver portion for receiving-transmitting signals Or at least one of the devices, and is related to the operation of the device and system. More specifically, the present invention is directed to, but not limited to, transceiver devices for wireless communication systems. [Prior Art]

一種收發器係具有一發射器與一接收器兩者的一器件, 發射器及接收器是被組合的且共用共同電路或一單件式外 般。在一有線電話上,話筒包含用於音訊的發射器及接收 器。整個單元通俗地被稱作一"接收器"。在一行動電話或 其他無線電電話上,整個單元是一收發器,用於音訊與無 線電兩者。 圖1顯示一習知收發器器件的一原理方塊圖,其中一天 線信號傳遞通過一射頻(RF)濾波器1〇(該濾波器1〇可是一 帶通濾波器),緊接著傳遞通過一開關丨2,該開關丨2經組 態用以切換一接收器部分或一發射器部分至RF濾波器1〇。 RF濾波器1〇可為一表面聲波(SAW)濾波器、體型聲波 (BAW)濾波器及/或一陶瓷濾波器。在接收器部分中,—低 雜訊放大器(LNA)20放大所接收的天線信號,且其後在一 同相⑴分支及一正交(Q)分支之各自的〗_及q_混頻器42、 44中降頻轉換至一中頻(IF),放大(連同自動增益控制一 起’圖中未繪.示),在各自的IF濾波器52、54(例如及藉由 132913.doc 200926630 一調諧信號τ可調諧的通過濾波器及/或低通濾波器)中濾 波,以及在各自的類比轉數位轉換器(ADC)62、64中類比 轉數位轉換,而獲得一數位表示的信號,其可(例如)在一 數位處理單元70處予以解調變。混頻器a、44可為鏡像拒 斥混頻器(image reject mixer)或非鏡像拒斥混頻器。接收 部分可有一單個IF(高_IF、低_IF或零_IF)或多個IF。 IF濾波器52、54(如果用晶載組件予以實現)可要求藉由 用於最適宜中心頻率準確度的調諧信號τ調諧。此調諧可 使用有一晶體(XTAL)振盪器信號作為參考信號之一鎖相迴 路(PLL)電路。在圖1中,用於混頻器42、44的振盪器信號 源自一基於LC的電壓控制振盪器(LC_vc〇)8〇,其在pLL 中被耦合至一參考XTAL振盪器丨2〇。PLL電路:包括^· VCO 80 ; —除法器電路9〇,其用於將1^_¥(:() 8〇的輸出頻 率除以一整數N ; —偵測器丨10(由一混頻器或倍增器予以 實施),其用於比較經降頻轉換之信號的相位與由XTAL振 盈器120產生的一參考信號的相位。 在發射器部分中,由數位處理單元7〇輸出的數位1_及q-資料在各自的數位轉類比轉換器(DAC)132、134處被數位 轉類比轉換,在各自的低通濾波器142、144(其係可藉由 一調諧信號T調諧的)處被低通濾波,並藉由各自的〗_及 混頻器46、48處被升頻轉換。在RF層級,經升頻轉換的 及Q -流在R F濾波器丨〇中被濾波及在天線被輻射之前是藉由 一組合元件1 5 0 (例如一加法器電路或類似物)予以組合並藉 由一功率放大器30予以放大。在此實例中,發射器是一 132913.doc 200926630 零-IF發射器。發射器也可用多個IF或作為—極性發射器而 實現。 圖1之%知收發器使用一晶體共振元件(XTAL)及XTAL_ 振盪器120以定義其發射部分及/或接收部分的頻率。然 巾’此類乂侃係-大組件而導致完整系統的一大外形因 數。它不能像其他電路組件被整合在相同片矽上,最後但 並非最不重要其增加系統的複雜性及成本。 ❹ XTAL是機械共振元件,有-相對大的外形因數(例如 3.2*2.5*0.7 mm對-XTAL已經是非常小的尺寸),與梦上 整合式收發器形成對比。這些乂飢與石夕實施的收發器相 比也是非常昂貴的。 在用於如GSM(全球行動通信系統)、WB-CDMA(寬頻-劃 碼多向近接)、DECT(數位增強無接線式電信)、藍芽、 Zlgbee、及WLAN(無線區域網路)系統的習知收發器中, 沒有XTAL的無線電收發器將會是需要的。A transceiver is a device having both a transmitter and a receiver, the transmitter and receiver being combined and sharing a common circuit or a one-piece external. On a wired telephone, the microphone contains a transmitter and receiver for audio. The entire unit is commonly referred to as a "receiver". On a mobile or other radiotelephone, the entire unit is a transceiver for both audio and radio. Figure 1 shows a schematic block diagram of a conventional transceiver device in which an antenna signal is passed through a radio frequency (RF) filter 1 (the filter 1 is a bandpass filter) followed by a switch. 2. The switch 丨 2 is configured to switch a receiver portion or a transmitter portion to the RF filter 1 〇. The RF filter 1〇 can be a surface acoustic wave (SAW) filter, a bulk acoustic wave (BAW) filter, and/or a ceramic filter. In the receiver section, a low noise amplifier (LNA) 20 amplifies the received antenna signal, and thereafter a respective phase (1) branch and a quadrature (Q) branch of the respective _ and q_mixer 42 , 44 down-converted to an intermediate frequency (IF), amplified (along with the automatic gain control together with the 'not shown), in the respective IF filters 52, 54 (for example and by 132913.doc 200926630 a tuning Signal τ tunable through filter and/or low pass filter) and analog to digital bit conversion in respective analog-to-digital converters (ADCs) 62, 64 to obtain a digital representation of the signal, which can Demodulation is performed, for example, at a digital processing unit 70. Mixers a, 44 can be image reject mixers or non-mirror reject mixers. The receiving portion can have a single IF (high _IF, low _IF, or zero _IF) or multiple IFs. The IF filters 52, 54 (if implemented with an on-board component) may require tuning by a tuning signal τ for optimum center frequency accuracy. This tuning can use a crystal (XTAL) oscillator signal as one of the reference signals for a phase-locked loop (PLL) circuit. In Figure 1, the oscillator signals for mixers 42, 44 are derived from an LC-based voltage controlled oscillator (LC_vc〇) 8〇, which is coupled to a reference XTAL oscillator 丨2〇 in pLL. PLL circuit: including ^· VCO 80; - divider circuit 9〇, which is used to divide the output frequency of 1^_¥(:() 8〇 by an integer N; —detector 丨10 (by a mixing The multiplier or multiplier is implemented for comparing the phase of the downconverted signal with the phase of a reference signal generated by the XTAL oscillator 120. In the transmitter portion, the digits output by the digital processing unit 7〇 The 1_ and q-data are digitally analog-to-digital converted at respective digital-to-digital converters (DACs) 132, 134, in respective low-pass filters 142, 144 (which can be tuned by a tuning signal T) The signal is low-pass filtered and upconverted by respective _ and mixers 46, 48. At the RF level, the up-converted and Q-stream are filtered in the RF filter 及 and The antenna is previously combined by a combination of components 150 (e.g., an adder circuit or the like) and amplified by a power amplifier 30. In this example, the transmitter is a 132913.doc 200926630 zero- IF transmitter. The transmitter can also be implemented with multiple IFs or as a -polar transmitter. The transmitter uses a crystal resonant element (XTAL) and an XTAL_ oscillator 120 to define the frequency of its transmitting portion and/or receiving portion. However, such a tether-large component results in a large form factor for the complete system. It cannot be integrated on the same film as other circuit components, but last but not least it increases the complexity and cost of the system. ❹ XTAL is a mechanical resonant element with a relatively large form factor (eg 3.2*2.5*0.7 mm The -XTAL is already very small in size, in contrast to the dream-integrated transceiver. These hungers are also very expensive compared to the implementations of the Shi Xi implementation. In applications such as GSM (Global System for Mobile Communications), In the conventional transceivers of WB-CDMA (Broadband-Coded Multi-Directional), DECT (Digital Enhanced Wi-Fi), Bluetooth, Zlgbee, and WLAN (Wireless Area Network) systems, there is no XTAL radio transceiver. It will be needed.

Φ 在超低電力無線電及無線消耗品領域中,需要無XTAL 的收發器被認為係最難的。其中XTAL的外形因數及成本 是最重要的》 ^實現準確頻率中基本問題之―是石夕上主動及被動組件 之今限。晶載振盈器(例如)可自電阻器、電容器及跨導級 (有一增益因數gm)製成。此類振盡器將有一由f=常數/(R\ C)或f=常數*gm/C給定的基本頻率。對於這些組件的_+〆_ 15%實際容限給^ — 3()%頻率容限。習知的系統使用— XTAL以鎖定這些晶載振盈器。提出的解決方法(諸如例如 132913.doc 200926630 在US5982241中揭示的)已達成將此誤差減少至大約i%, 然而其對於無線電應用仍不夠準確。 【發明内容】 因此本發明之一目的係提供用於發射器、接收器或收發 器電路之修改,藉此可省卻XTAL·。 此目的係藉由一種如請求項丨之方法、一種如請求項仍 ' 之裝置、及一種如請求項21之系統而達成。 ❹ 因此,藉由提供粞合配置,在濾波器電路的頻寬參數 (其可為基板的一頻寬決定參數’諸如一聲波的聲速或類 似物,或濾波器電路的一經測量之中心頻率及/或頻寬, 或接收之發射信號的一經偵測的頻寬)可被機械地或電子 地鏈接至或相關聯於振盪器電路。此措施簡單化源自戋受 控於振盪器電路之混合頻率的同步或調整,因此振盪器= 路的準確度要求可被放寬且不再需要一晶體共振元件 (XTAL)。 〇 依照一第一態樣,耦合配置可包括一共同基板,振盪器 電路及濾波器電路被聯合整合在該基板上。藉此,決定濾 Μ電路及振|器電路之各自的頻寬及中心頻率的基板參 數可透過共同基板被彼此鏈接或匹配,因此提供足夠的準 確度且XTAL可被省卻。依照一特定實例,振m器電路及 濾波器電路可基於表面聲波技術或體型聲波技術而實施。 作為一替代,振盪器電路及濾波器電路可基於一薄膜體型 聲波共振器技術或一微機電系統技術而實施。振蓋器電路 及渡波器電路可以實質上相同的頻率操作。另—選擇為, 132913.doc ·ι〇_ 200926630 振盈器電路可以滤波器電路的兩倍頻率操作。在 中:可簡單地藉由使用一除以2電路而產生一源自本^振 盪器(LO)信號的同相及正交相位分量。 依照-第二態樣,耦合配置可包括:一測量單元 於測量據波器電路的-帶通特性;及一控制單元,其用於 回應於該測量單元的—輸出而調整振盪器電路的頻率。贫 經測量的特性可因此被鏈接或麵合至振盪器電路以便㈣ ❹ ❹ 參考頻率’因此振in電路的準確度要求可被放寬且一 XTAL不再是必需的。 另外’麵合配置可包括—連接配置’用於將源自振逢器 電路的-信號注入至濾波器電路的一輸入。在一特定 中,連接配置可包括-開關元件,其僅在該裝置的一校準 模式中被閉合。因此’可藉由改變源自參考頻率的本機振 盈器頻率而測量帶通特性。測量單元例如可經調適以測量 在一接收混頻電路處產生的一 DC電壓。 依照-第三態樣’耦合配置可包括:一偵測單元,其用 於偵測透過據波器電路接收的一發射信號的一臨時增加之 頻寬;及一頻率控制單元’其用於在一鎖定操作期間按昭 積測結果而控制振蘯器電路以捕獲一發射頻率。此方法可 使振蘯器電路的參考頻率調適以適於透過遽波器電路接收 的發射信號之增加之頻寬。振蘯器電路的鎖定或校準過程 可因此用一更大的頻寬而執行’因此準確度要求再次 小且XTA;L不再是必需的。 4 頻率控制單元可被調適以偵測接收器部分的-頻率誤差 132913.doc 200926630 並基於心貞測之頻率誤差而控制振蓋器電路的頻率, 率誤差可視情況被儲存在—記憶體單元卜 ’ 視情況’可增加一回館、、目丨丨旦,甘士,m U饋測里,其中如果該偵測之頻率誤 差指示該接收器部分的一頻率鎖定狀態,頻率控制單元經 ,職以發射—確認至發射信號的-發射端。其後,發射端 (例如)在鎖定或校準操作之後可減少頻寬。參考頻率的— -肖續調整或調適可藉由有規律地增加發射信號的頻寬及等 待自接收端的一回饋而達成。 應注意的是耦合配置的上面三項替代態樣亦可被組合成 這三項態樣的二項或全部三項態樣之任何可能之組合,以 藉此改良用於振盪器電路的放寬效應。 實施例的進一步修改可自隨附請求項獲悉。 【實施方式】 在下文中,將基於圖1最初描述的收發器器件的修改描 述實施例。 ❺ 圖2顯示依照第一實施例的一收發器裝置的一原理方塊 圖。 在此第一實施例中’至少兩個體型聲波(BAW)及/或表面 聲波(SAW)器件被提供用於實施一 rF濾波器16及一參考振 ’ 盪器82,且被整合在一單個或共同基板160中並因此經由 共同基板而互相地及實體地耦合’使得收發器有足夠準確 度以接收及發射,而不需使用一 XTAL或XTAL-振盪器。 SAW及/或BAW RF濾波器16及SAW及/或BAW參考振盪 器82的中心頻率係關於或取決於基板1 60的壓電材料中聲 132913.doc -12- 200926630 波的聲速、器件的實體尺寸及器件的"負載”(尤其在B AW 器件的情況下)。 SAW器件及BAW器件的生產過程允許在一單個基板上/ 内實現多個器件。每個器件可有兩個變換器(transducer), 因此實際上器件代表有一(平衡的)輸入及兩個(平衡的)輸 • 出的一 SAW器件或反之亦然。SAW器件及BAW器件可與一 -整合式雙極性電晶體或一 CMOS(互補金屬氧化物半導體) 電晶體組合。器件的中心頻率是藉由介於SAW變換器中提 ® 供之指狀部之間的距離而定義。若在RF濾波器16或參考振 盪器82中提供一 SAW橫向濾波器,則變換器的長度定義 SAW器件的頻寬。此外,可藉由在一(一對)SAW變換器的 左右手側上使用多個指狀部-反射體而在RF濾波器16或參 考振盪器82中實施SAW共振器。另一選擇為,可在參考振 盪器82及/或RF濾波器10中使用SAW延遲線。 SAW器件可被整合在矽(有ZnO作為壓電材料)、石英、 ^ 鈮酸鋰、或其他SAW基板材料上。因此,在一單個基板上 ❿ 實施多個SAW器件及BAW器件給予機會以獲得無晶體收發 器、接收器或發射器。 • 因此,圖1的RF帶通濾波器10已由SAW/BAW帶通濾波器 16予以取代。另外,圖1之電感器-電容器(LC) VCO 80已 由SAW/BAW VCO所取代作為新參考振盪器82。 因為已在相同基板160上實現兩個SAW/BAW器件,所以 這些BAW器件的中心頻率將很接近。假定BAW RF濾波器 16具有一 850 MHz中心頻率及一 1 MHz頻寬。BAW共振器 132913.doc -13- 200926630 及使用BAW共振器之參考振盈器82可藉由適當的設計而製 成以在此1 MHz頻寬之内振盪。在降頻轉換之後,天線信 號落入此+/-0.5 MHz頻寬内。假定ADC 62、64可完全地轉 換+/-0.5 MHz頻寬至數位域内,則可使用數位信號處理單 元70以尋找所要的信號並解調變該信號。若需要,也可使 用一第二轉換(在類比及/或數位域)。不同的數位信號處理 • 技術可被用於確切地估計信號的中心頻率,如在數位接從 器設計中共同知道的《另一選擇為,在下文第二實施例及 ◎ 一 第三實施例中提出的想法可被用於尋找發射之信號的確切 中心頻率。 因為用於降頻轉換的參考振盪器82並不依賴整合式lc 組件,而是依賴一 SAW/BAW共振器’並且因為BAW共振 器至少與SAW/BAW RF遽波器一樣準確,所以無需參考 XTAL振盪器,因此可自收發器電路移除參考xTAl振盡 器。據此,圖1中控制VCO頻率之PLL的其他部分已被刪 ❹ 除’從而減少總電力消耗’其當然也是一大優勢,尤其係 對於超低電力無線電器件。僅除法器電路90仍存在以產生 用於數位電路的一時脈信號。如果數位電路被非同步實 施’此除法器電路90也可被移除。 • 應注意的是,參考振盪器的SAW/BAW共振器有一比整 合式LC更高的Q。這將導致參考振盪器82的一較低電力消 耗’其對於諸如超低電力(Ultra-Low-Power)無線電的應用 是非常有益的。 在接收器已如上文描述予以實現的情況下,用於IF遽波 132913.doc •14· 200926630 器52、54的調諧信號T的一電壓可不再源自圖1的xTal參 考振盪器120。然而’ SAW/BAW振盪器信號(直接地,或 除以某個數)可用作一替代。 應應用RF濾波器16及參考振盪器82的共振器的最佳佈 局’以最小化洩漏至天線的共振器-振盪器信號。應用於 印刷電路板(PCB)或常規特定用途積體電路(ASIC)設計的 _ 隔離及篩選技術也可用於此處。 ❹ 在圖2的實施實例中,BAW RF濾波器16及參考振盪器82 的BAW共振器可有大約相同的頻率。取決於產品中的自由 度及特定收發器要求,頻率也可進一步被分開。例如,在 發射器及接收器部分中使B AW共振器具有B AW RF濾波器 16的兩倍頻率是非常有用的。用於接收及發射混頻器42、 44、46、及48的1(〇度)及以90度凡〇_信號組件可其後藉由 一除以2電路非常容易地自BAW參考振盪器82導出。 代替S AW/B AW器件,其他器件諸如多個FBAr及/或 φ MEMS器件可被用於實現第一實施例的功能性。 圖3顯示依照一第二實施例的一收發器裝置的一概要方 塊圖。 在第二實施例中,RF濾波器10及參考振盪器162被電子 耦合,因此RF濾波器1〇可被用作一頻率參考。藉由使用— 晶載本機振盪器8〇及/或一晶載RC-振盪器162而"測量,,帶 通特性。RF濾波器1 〇的經測量之中心頻率及頻寬可被用於 疋出接收器之參考頻率的中心及因此也定出發射頻率的中 心0 丁 132913.doc -15- 200926630 a〜的疋如果自圖1顯示的接收器部分移除XTAL參考 振盪器m,唯—準確的(機械的)組件是rf(帶通)渡波器 i 〇。依照圖2,提出了將自LC_Vc〇 80的一信號(例如)經由 一開關14耦合(例如注入或洩漏)至R F濾波器丨〇,該開關} * 僅在被提㈣於校準接收器部分的—校準模式中才被閉 合。經由接收器鏈路,在接收混頻器42、44之後,或更佳 地在ADC 62、64之後,—(DC_)電壓係可藉由併人於數位 處理單元72中或作為一單獨單元被提供的一(Dc)測量單元 或功能性74而測量。目前,藉由改變LC_vc〇 8〇的頻率, RF濾波器1〇的傳輸特性可被測量。或反過來,當濾波 器1〇的特性是已知時,LC_VC0頻率可相關於或耦合至尺1? 濾波器10的頻率。 一第η階(Butterworth)帶通濾波器的標準化衰減作為頻率 f的一函數’係藉由以下給定:Φ In the field of ultra-low power radios and wireless consumables, transceivers that require no XTAL are considered to be the most difficult. Among them, XTAL's form factor and cost are the most important. ^ The basic problem of achieving accurate frequency is the limit of active and passive components on Shi Xi. The crystal-loaded vibrator (for example) can be fabricated from resistors, capacitors, and transconductance stages (having a gain factor of gm). Such a vibrator will have a fundamental frequency given by f = constant / (R \ C) or f = constant * gm / C. For these components, _+〆_ 15% actual tolerance is given to ^ 3 ()% frequency tolerance. Conventional systems use - XTAL to lock these crystal-borne vibrators. The proposed solution (such as, for example, 132913.doc 200926630, disclosed in US Pat. No. 5,982,241) has achieved that this error is reduced to approximately i%, however it is still not accurate enough for radio applications. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide modifications for a transmitter, receiver or transceiver circuit whereby XTAL can be eliminated. This object is achieved by a method such as a request, a device such as a request item, and a system such as claim 21. ❹ Therefore, by providing a coupling configuration, the bandwidth parameter of the filter circuit (which can be a bandwidth-determining parameter of the substrate such as the sound velocity of an acoustic wave or the like, or a measured center frequency of the filter circuit and / or the bandwidth, or a detected bandwidth of the received transmitted signal) may be mechanically or electronically linked to or associated with the oscillator circuit. This measure is simplified by the synchronization or adjustment of the mixing frequency controlled by the oscillator circuit, so the accuracy of the oscillator = path can be relaxed and a crystal resonant element (XTAL) is no longer needed. According to a first aspect, the coupling configuration can include a common substrate on which the oscillator circuit and the filter circuit are jointly integrated. Thereby, the substrate parameters which determine the respective bandwidth and center frequency of the filter circuit and the oscillator circuit can be linked or matched to each other through the common substrate, thereby providing sufficient accuracy and XTAL can be omitted. According to a specific example, the oscillator circuit and the filter circuit can be implemented based on surface acoustic wave technology or bulk acoustic wave technology. As an alternative, the oscillator circuit and the filter circuit can be implemented based on a thin film bulk acoustic resonator technology or a microelectromechanical system technology. The vibrator circuit and the waver circuit can operate at substantially the same frequency. Alternatively - select 132913.doc · ι〇_ 200926630 The oscillator circuit can operate at twice the frequency of the filter circuit. In: An in-phase and quadrature phase component derived from the present (Oscillator) (LO) signal can be generated simply by using a divide by two circuit. According to the second aspect, the coupling configuration may include: a measurement unit measuring the bandpass characteristic of the data circuit; and a control unit for adjusting the frequency of the oscillator circuit in response to the output of the measurement unit . The poorly measured characteristics can thus be linked or surfaced to the oscillator circuit for (iv) ❹ ❹ reference frequency' so the accuracy requirements of the oscillating circuit can be relaxed and an XTAL is no longer necessary. Additionally, the "face configuration" can include a - connection configuration for injecting a signal from the squash circuit to an input of the filter circuit. In one particular, the connection configuration can include a - switching element that is only closed in a calibration mode of the device. Therefore, the bandpass characteristics can be measured by changing the local oscillator frequency from the reference frequency. The measuring unit can, for example, be adapted to measure a DC voltage generated at a receiving mixing circuit. The coupling configuration according to the third aspect may include: a detecting unit for detecting a temporarily increased bandwidth of a transmitted signal received through the wave circuit; and a frequency control unit 'for The oscillator circuit is controlled to capture a transmission frequency during a lock operation in accordance with the results of the prediction. This method adapts the reference frequency of the oscillator circuit to an increased bandwidth suitable for the transmitted signal received through the chopper circuit. The locking or calibration process of the vibrator circuit can therefore be performed with a larger bandwidth' so the accuracy requirement is again small and XTA; L is no longer necessary. 4 The frequency control unit can be adapted to detect the frequency error of the receiver part 132913.doc 200926630 and control the frequency of the vibrator circuit based on the frequency error of the heartbeat. The rate error can be stored in the memory unit as the case may be. 'Depending on the situation' can be added to the museum, the target, the Gans, the m U feed, wherein if the frequency error of the detection indicates a frequency lock state of the receiver portion, the frequency control unit To transmit - acknowledge to the transmitting end of the transmitting signal. Thereafter, the transmitting end can reduce the bandwidth, for example, after a locking or calibration operation. The adjustment or adaptation of the reference frequency can be achieved by regularly increasing the bandwidth of the transmitted signal and waiting for a feedback from the receiving end. It should be noted that the above three alternative aspects of the coupling configuration can also be combined into any possible combination of two or all of the three aspects of the three aspects to thereby improve the relaxation effect for the oscillator circuit. . Further modifications of the embodiments are known from the accompanying claims. [Embodiment] Hereinafter, an embodiment will be described based on a modification of the transceiver device originally described in FIG. 1. Figure 2 shows a schematic block diagram of a transceiver device in accordance with a first embodiment. In this first embodiment, 'at least two bulk acoustic wave (BAW) and/or surface acoustic wave (SAW) devices are provided for implementing an rF filter 16 and a reference oscillator 82, and are integrated in a single unit. Or mutual and physical coupling in the common substrate 160 and thus via a common substrate 'so that the transceiver has sufficient accuracy to receive and transmit without the use of an XTAL or XTAL-oscillator. The center frequency of the SAW and/or BAW RF filter 16 and the SAW and/or BAW reference oscillator 82 is related to or dependent on the acoustic velocity of the acoustic material 132913.doc -12-200926630 in the piezoelectric material of the substrate 1 60, the entity of the device Size and device 'load' (especially in the case of B AW devices) The production process of SAW devices and BAW devices allows multiple devices to be implemented on/in a single substrate. Each device can have two converters ( Transducer), so the device actually represents a (balanced) input and two (balanced) outputs of a SAW device or vice versa. SAW devices and BAW devices can be combined with a one-integrated bipolar transistor or CMOS (Complementary Metal Oxide Semiconductor) transistor combination. The center frequency of the device is defined by the distance between the fingers provided in the SAW converter. If in RF filter 16 or reference oscillator 82 A SAW transversal filter is provided, the length of the converter defining the bandwidth of the SAW device. Furthermore, RF filtering can be used by using a plurality of finger-reflectors on the left and right hand sides of a (pair) SAW converter. 16 or reference vibration The SAW resonator is implemented in the device 82. Alternatively, the SAW delay line can be used in the reference oscillator 82 and/or the RF filter 10. The SAW device can be integrated in germanium (with ZnO as the piezoelectric material), quartz, ^ Lithium niobate, or other SAW substrate material. Therefore, implementing multiple SAW devices and BAW devices on a single substrate gives the opportunity to obtain a crystalless transceiver, receiver or transmitter. • Therefore, the RF of Figure 1 The bandpass filter 10 has been replaced by a SAW/BAW bandpass filter 16. Additionally, the inductor-capacitor (LC) VCO 80 of Figure 1 has been replaced by the SAW/BAW VCO as the new reference oscillator 82. Two SAW/BAW devices are implemented on the same substrate 160, so the center frequencies of these BAW devices will be very close. It is assumed that the BAW RF filter 16 has a center frequency of 850 MHz and a bandwidth of 1 MHz. BAW resonator 132913.doc -13 - 200926630 and the reference vibrator 82 using the BAW resonator can be made to oscillate within this 1 MHz bandwidth by appropriate design. After down conversion, the antenna signal falls into this +/- 0.5 MHz frequency. Wide. It is assumed that ADC 62, 64 can be fully converted +/- 0. In the 5 MHz bandwidth to the digital domain, the digital signal processing unit 70 can be used to find the desired signal and demodulate the signal. If desired, a second conversion (in analog and/or digital fields) can also be used. Digital signal processing techniques can be used to accurately estimate the center frequency of the signal, as commonly known in digital receiver designs. Another option is presented in the second embodiment below and in the third embodiment. Ideas can be used to find the exact center frequency of the transmitted signal. Since the reference oscillator 82 for down conversion does not rely on the integrated lc component, but relies on a SAW/BAW resonator' and because the BAW resonator is at least as accurate as the SAW/BAW RF chopper, there is no need to refer to XTAL The oscillator can therefore remove the reference xTAl oscillating device from the transceiver circuit. Accordingly, the other portions of the PLL that control the VCO frequency in Figure 1 have been eliminated to reduce total power consumption, which is of course a major advantage, especially for ultra-low power radios. Only divider circuit 90 is still present to generate a clock signal for the digital circuit. If the digital circuit is implemented asynchronously, this divider circuit 90 can also be removed. • It should be noted that the reference oscillator's SAW/BAW resonator has a higher Q than the integrated LC. This will result in a lower power consumption of the reference oscillator 82 which is very beneficial for applications such as Ultra-Low-Power radios. In the case where the receiver has been implemented as described above, a voltage for the tuning signal T of the IF chopper 132913.doc •14·200926630 devices 52, 54 may no longer be derived from the xTal reference oscillator 120 of FIG. However, the 'SAW/BAW oscillator signal (directly, or divided by a certain number) can be used as an alternative. The optimum layout of the resonators of RF filter 16 and reference oscillator 82 should be applied to minimize the resonator-oscillator signal leaking to the antenna. _ Isolation and screening techniques for printed circuit board (PCB) or conventional application-specific integrated circuit (ASIC) designs can also be used here. In the embodiment of Figure 2, the BAW resonators of the BAW RF filter 16 and the reference oscillator 82 may have approximately the same frequency. The frequency can be further separated depending on the degree of freedom in the product and the specific transceiver requirements. For example, it is useful to have a B AW resonator with twice the frequency of the B AW RF filter 16 in the transmitter and receiver sections. The 1 (twist) and 90 degree 〇_signal components for receiving and transmitting the mixers 42, 44, 46, and 48 can be easily removed from the BAW reference oscillator 82 by a divide by 2 circuit. Export. Instead of the S AW/B AW device, other devices such as a plurality of FBAr and/or φ MEMS devices can be used to implement the functionality of the first embodiment. Fig. 3 shows a schematic block diagram of a transceiver device in accordance with a second embodiment. In the second embodiment, the RF filter 10 and the reference oscillator 162 are electronically coupled, and thus the RF filter 1 can be used as a frequency reference. By using - the crystal local oscillator 8 〇 and / or an on-chip RC-oscillator 162 " measurement, band pass characteristics. The measured center frequency and bandwidth of the RF filter 1 可 can be used to extract the center of the reference frequency of the receiver and thus also the center of the transmit frequency. 丁132913.doc -15- 200926630 a~ The XTAL reference oscillator m is removed from the receiver portion shown in Figure 1, and the only accurate (mechanical) component is the rf (bandpass) ferrite i 〇. According to Fig. 2, it is proposed to couple (e.g., inject or leak) a signal from LC_Vc 〇 80 (e.g., via injection or leakage) to an RF filter 丨〇, which is only mentioned in the calibration receiver portion. - Only closed in the calibration mode. Via the receiver link, after receiving the mixers 42, 44, or better after the ADCs 62, 64, the - (DC_) voltage can be either by being in the digital processing unit 72 or as a separate unit. Measured by a provided (Dc) measurement unit or functionality 74. At present, by changing the frequency of LC_vc〇 8〇, the transmission characteristics of the RF filter 1〇 can be measured. Or conversely, when the characteristics of the filter 1 是 are known, the LC_VC0 frequency can be correlated or coupled to the frequency of the scale 1 ? filter 10 . The normalized attenuation of a Butterworth bandpass filter as a function of frequency f is given by:

// = -10*l〇gl〇 < 1 + if-f? 2/7、 V \ fbw j J// = -10*l〇gl〇 < 1 + if-f? 2/7, V \ fbw j J

其中fc是濾波器的中心頻率,且fbw表示濾波器(對於其他 慮波器而不是一 Butterworth濾波器,諸如Chebyshev、Where fc is the center frequency of the filter and fbw represents the filter (for other filters instead of a Butterworth filter, such as Chebyshev,

Gaussian濾波器,類似方程式可在文獻争找到)的3犯頻 寬。濾波器的中心頻率及頻寬是由濾波器的規格定義的且 係已知的。儘管圖3中PLL/LC-VC0 80的參考頻率係自有 +/-30%之不準確度的似Κ(:參考振盪器162獲得,且PLL中 的LC-VCO 80被認為具有一容限+/_8% ’總容限可為約 132913.doc -16 - 200926630 +/-3 8%。但是,PLL/LC-VCO 80仍然可被程式化至幾個頻 率並因此測量RF濾波器10的傳輸或頻寬特性。最大傳輸點 可被疋義為RF;慮波1 〇的中心頻率。尤其當rf遽波5| 1 〇 的通帶是平的時,經測量的中心頻率將會是相當不精確 的。藉由亦測量RF濾波器1〇開始以3 dB自最大傳輸衰減之 頻率’ 3 dB頻率匕及匕也是已知的。其等可係相關於好濾 波器10的中心頻率及頻寬,藉由: ❹ / = /c + Λν, / 2 fi= fc~ fbjl (2) 現在,RF濾波器10的已知之中心頻率及頻寬可被相關於 ^或麵合至PLL/LC-vc〇 80及/或RC參考振盪器162中的設 定。PLL/LC-VCO 80及/或RC參考振盪器162的此等設定可 被用於設定用於接收及發射的參考頻率^ pLL/LC VC〇 8〇 及RC參考振盪器162的修正可被調整使得在帶中用於接收 每個通道的PLL/LC-VCO的最佳調整可被容易地達成,測 量誤差可藉由做多個測量而減少。 作為實例’可期望的是LC-VCO 80上的容限在8〇〇 MHz 中心頻率下約為+/-8%或+/-64 MHz(假定電感器中為+/_1〇/〇 及電容中為+M5%)。假定RF濾波器10具有一 +M河他容 限’在組合的LC-VCO 80及RC參考振盪器上的容限可被向 下減少至+/-1 MHz。 第一實施例及第二實施例的方法的一組合可被用於進一 步減少頻率誤差。藉由使用上文揭示的原理’頻率誤差可 132913.doc -17- 200926630 被減少很多,使得更易於尋找適當的頻率。 在上文中,低頻率振盪器被稱作RC參考振盪器162。此 振盪器亦可被實施為gmC_振盪器、環形振盪器或Lc-振盪 器。 在天線處注入的本機振盪器信號不應該太高以防止失真 發射。例如在GSM(全球行動通信系統)標準中一最大發 射-57 dBm是允許的□此位準遠遠超過接收器的雜訊底 ❹ 限’因此它可被容易地偵測。RF濾波器10的測量可是相對 測量’這意味著頻率被偵測,在該頻率下衰減係比頻率帶 申心的衰減大3 dB。 圖4顯示依照第三實施例的一收發器裝置的一原理方塊 圖。 在此第三實施例中’一發射信號的一可變頻寬被用於 捕獲"發射的頻率。一最初增加之頻寬之後跟隨用於實際 資料傳輸之一較小頻寬。如果經由RF濾波器丨〇接收的增加 〇 之頻寬或增強之頻寬被偵測且在接收器部分被耦合至參考 振蘯器162,一收發器可被實現,其不需要一 XTAL及/或 XTAL-振盪器,因此減少總系統的複雜性及成本。 基本想法是具有一主控器(master)功能的發射端或發射 器在發射的開始時使用一寬頻發射。在具有一受控器 (slave)功能的接收器已耦合增強之頻寬至參考振盪器M2 並最終得到發射頻率後,其可通知主控器,該主控器回應 於通知或確認而減少發射頻寬。 在下文中’此主從式(master-slave)原理將基於一實務數 132913.doc -18- 200926630 值實例而解釋。Gaussian filters, similar to the equations that can be found in the literature, have a frequency of 3 violations. The center frequency and bandwidth of the filter are defined by the specifications of the filter and are known. Although the reference frequency of PLL/LC-VC0 80 in Figure 3 is inherently +/- 30% inaccurate (: reference oscillator 162, and LC-VCO 80 in the PLL is considered to have a tolerance +/_8% 'The total tolerance can be approximately 132913.doc -16 - 200926630 +/-3 8%. However, the PLL/LC-VCO 80 can still be programmed to several frequencies and thus measure the RF filter 10 Transmission or bandwidth characteristics. The maximum transmission point can be derogated as RF; the center frequency of the wave 1 。. Especially when the pass band of rf chopping 5| 1 是 is flat, the measured center frequency will be quite Inaccurate. It is also known to measure the RF filter 1 〇 starting at a frequency of 3 dB from the maximum transmission attenuation of '3 dB frequency 匕 and 匕. These may be related to the center frequency and frequency of the good filter 10. Width, by: ❹ / = /c + Λν, / 2 fi= fc~ fbjl (2) Now, the known center frequency and bandwidth of the RF filter 10 can be correlated to or fused to the PLL/LC- The settings in vc 〇 80 and/or RC reference oscillator 162. These settings of PLL/LC-VCO 80 and/or RC reference oscillator 162 can be used to set the reference frequency for reception and transmission ^ pLL/LC VC〇 8 The correction of the RC and RC reference oscillator 162 can be adjusted so that the optimal adjustment of the PLL/LC-VCO for receiving each channel in the band can be easily achieved, and the measurement error can be reduced by making multiple measurements. As an example, it is expected that the tolerance on the LC-VCO 80 is approximately +/- 8% or +/- 64 MHz at a center frequency of 8 〇〇 MHz (assuming +/_1 〇 / 〇 and capacitance in the inductor) The middle is +M5%). Assume that the RF filter 10 has a +M river tolerance. The tolerance on the combined LC-VCO 80 and RC reference oscillator can be reduced down to +/-1 MHz. A combination of the methods of an embodiment and the second embodiment can be used to further reduce the frequency error. By using the principle disclosed above, the frequency error can be reduced by 132,913.doc -17-200926630, making it easier to find appropriate In the above, the low frequency oscillator is referred to as the RC reference oscillator 162. This oscillator can also be implemented as a gmC_oscillator, ring oscillator or Lc-oscillator. Local oscillation injected at the antenna The signal should not be too high to prevent distortion transmission. For example, in the GSM (Global System for Mobile Communications) standard A large emission of -57 dBm is allowed. □ This level far exceeds the receiver's noise floor limit' so it can be easily detected. The RF filter 10 measurement is relative measurement' which means the frequency is detected. At this frequency, the attenuation is 3 dB greater than the attenuation of the frequency band. Fig. 4 shows a schematic block diagram of a transceiver device in accordance with a third embodiment. In this third embodiment, a variable width of a transmission signal is used to capture the frequency of the transmission. An initially increased bandwidth is followed by a smaller bandwidth for one of the actual data transmissions. If the bandwidth or enhanced bandwidth received via the RF filter 被 is detected and coupled to the reference oscillator 162 at the receiver portion, a transceiver can be implemented that does not require an XTAL and/or Or XTAL-oscillator, thus reducing the complexity and cost of the overall system. The basic idea is that a transmitter or transmitter with a master function uses a wideband transmission at the beginning of the transmission. After the receiver having a slave function has coupled the enhanced bandwidth to the reference oscillator M2 and finally gets the transmit frequency, it can notify the master that the transmitter reduces transmission in response to notification or acknowledgment. bandwidth. In the following, this master-slave principle will be explained based on a practical number 132913.doc -18- 200926630 value instance.

自主控器接收的發射頻率假定是800 MHz。受控參考振 盪器162具有一 +/-20%不準確度,因此大約係在8〇〇 MHZ+/-20%之間或在640 MHz及960 MHz之間。假定受控 參考振盪器162是在960 MHz下(主控器的寬頻發射應該有 至少在960 MHz下的一些信號功率),受控器在其範圍邊緣 接收800 MHz信號並解調變該信號。主控器中心頻率可自 此解調變的信號導出(800 MHz)。受控器目前可儲存頻率 中的偏差或誤差,並調諧其接收頻率至8〇〇 MHz ,因此受 控器”鎖定"至或捕獲主控器的頻率。在頻率鎖定後,發射 頻寬可被減少。在受控器想要發射的情況下,當發射時其 使用儲存的頻率修正並使用用於其參考振盈器162的此修 正。此可為一小頻寬或—寬-頻寬發射。 圖5顯示依照第三實施例的上文程序的一原理流程圖, 該實施例用於-基地台(主控器)及一行動台(受控器)之間 之一例示性發射。 在步驟S201中,基地台(主控器)發射器使用其載波頻率 的一(低頻率)寬·頻寬調變,因此其遍布-寬·頻寬。做此 扣奴簡單方法疋藉由在—老式調頻(FM)中使用-高調變 才曰數(>>2.4) 〇其他調變當秋 — 田…、也疋可能的。頻寬應足夠寬以 洛入行動台(受控器)的接收 甘从 收器及解調變器頻寬之内。 其後,在步驟S202中 丁助文控器)偵測寬-頻寬調變 並耦合其至參考振盪器以 測基地台的發射頻率。為了福t頻寬解調變’因此偵 ,則基地台的寬頻調變,可實 132913.doc 200926630 包二額外的接收器功能性(諸如一寛頻頻率解調變器 66,接收路徑中任何濾波的臨時移除,等等…)。圖4中, 。是藉由_外方塊FD 66予以緣示,其既連接在的慮波 器電路52、54的前面又連接其等之後。 时在步驟S203中’藉由在數位處理單元7〇中提供或作為一 單獨單元提供之-頻率控制單元或功能77所偵測的一頻率 誤差可被储存於—記憶體78中,其可為一數位記憶體。 ❹ *步驟S204中’取代圖1的晶體參考振盈器120的參考振 盪器(在圖4中繪示為一RC振盪器162,但是其亦可被實施 為gmC-、LC-或環形振盈器)係用該頻率修正而被程式化 或係基於該頻率修正而被控制。原理上,本機㈣器(lc_ vco 80)也可用該頻率修正而被程式化或基於該頻率修正 而被控制。 ^後,在步驟S205中’行動台(受控器)朝肖基地台發射 (目前在正確頻率上),並確認一"鎖定”狀態至基地台。 Ο 取決於參考振盪器162之頻率中的變化,此過程可以每 j時或母天或每周重複的。為了降低校準循環的數量,一 1受控器及主控器被鎖定’主控器可有規則地在一寬-頻 寬上發射(不必與初始校準期間一樣寬)以保持其受控器在 正確頻率下。 ° 當(所有)受控器知道要求的頻率偏差時,未來的發射可 使用一較小的頻寬。同樣,定期更新(例如每小時或每天 一次)可被用於對抗器件中的頻率漂移及老化。 所解釋的原理也可被心於極性發射器結構,或所有直 132913.doc -20- 200926630 他的收發器結構。 可能在系統層級上,多個受控器將與一主控器相。 如果用於捕獲及鎖冑的序列有規則地用於幾個器件 作用中器件(即’對於待接收之資料不是必需的器件)= 接收寬頻發射並且榻取正確的頻率參考。 ’° 為了最小化接收器複雜性,發射的信號可有—簡單調變 格式,或許甚至如此簡單使其可在類比域内被解調變,而 不是要求通常要求高電力消耗的(高速率)類比轉數位轉 換。 上文第二實施例的措施當然可與第一實施例及第二實施 例的措施組合,以進一步減少或放寬參考振盪器的準確度 要求。在第三實施例的接收器設計中額外的複雜性可非常 容易地在積體電路技術中實現。 上文實例已給定以用於一主控器發射寬-頻寬信號。然 而’相反的情形(受控器發射寬頻信號)亦可是一有效的應 用案例。 應明智地使用用於鎖定受控器至主控器頻率之上要求的 大頻寬。例如,歸因於標準化實體之法規要求,在一大頻 寬最不可能容許一大輸出功率。如果在此寬頻寬中應用大 量冗餘’發射功率亦可被降低以保持低於法規最大發射。 幾個可能性可被用於實現一非常寬的頻寬發射。例如, 使用”巢狀式”FM發射的一宽頻寬FM發射可被使用,如例 如在 2004 年 ESSCIRC,J.F.M.Gerrits、J.R.Farserotu 及 J.R.Long的《用於"我的個人全球適應性網路(My Personal 132913.doc •21 - 200926630The transmit frequency received by the autonomic controller is assumed to be 800 MHz. The controlled reference oscillator 162 has a +/- 20% inaccuracy and is therefore approximately between 8 〇〇 MHZ +/- 20% or between 640 MHz and 960 MHz. Assuming that the controlled reference oscillator 162 is at 960 MHz (the mainframe's wideband transmission should have some signal power at least at 960 MHz), the slave receives an 800 MHz signal at its edge and demodulates the signal. The master center frequency can be derived from this demodulated signal (800 MHz). The slave can now store deviations or errors in the frequency and tune its receive frequency to 8 〇〇 MHz, so the slave "locks" to or captures the frequency of the master. After the frequency is locked, the transmit bandwidth can be Reduced. In the case where the controlled device wants to transmit, it uses the stored frequency correction and uses this correction for its reference oscillator 162 when transmitting. This can be a small bandwidth or a wide-bandwidth Figure 5 shows a schematic flow diagram of the above procedure in accordance with a third embodiment for an exemplary transmission between a base station (master) and a mobile station (controlled). In step S201, the base station (master) transmitter uses one (low frequency) wide-bandwidth modulation of its carrier frequency, so it is spread over-width and bandwidth. A simple method of doing this is to - used in old-fashioned frequency modulation (FM) - high-modulation (>>2.4) 〇 other modulations when autumn-field..., it is also possible. The bandwidth should be wide enough to enter the mobile station (controlled The receiving receiver is within the bandwidth of the receiver and the demodulation transformer. Thereafter, in step S202 The controller detects the wide-bandwidth modulation and couples it to the reference oscillator to measure the transmission frequency of the base station. In order to demodulate the bandwidth, the base station's wide-band modulation can be implemented. .doc 200926630 Package 2 additional receiver functionality (such as a frequency frequency demodulator 66, temporary removal of any filtering in the receive path, etc...). In Figure 4, it is by _ outer square FD 66 is indicated, which is connected to the front of the wave filter circuits 52, 54 and the like, etc.. In step S203, 'provided by the digital processing unit 7A or provided as a separate unit-frequency A frequency error detected by the control unit or function 77 can be stored in the memory 78, which can be a bit of memory. ❹ * In step S204, the reference oscillator of the crystal reference oscillator 120 of FIG. 1 is replaced. (Illustrated in FIG. 4 as an RC oscillator 162, but it can also be implemented as a gmC-, LC- or ring oscillator) is programmed with the frequency correction or controlled based on the frequency correction. In principle, the local (4) device (lc_vco 80) can also be corrected with this frequency. And is programmed or controlled based on the frequency correction. ^ After that, in step S205, 'the mobile station (controlled) is transmitted to the base station (currently at the correct frequency), and a "locked" Base station.取决于 Depending on the change in the frequency of the reference oscillator 162, this process can be repeated every j or mother day or week. In order to reduce the number of calibration cycles, a 1 slave and master are locked 'the master can be regularly transmitted over a wide-bandwidth (not necessarily as wide as during the initial calibration) to keep its slaves in place At the correct frequency. ° When the (all) controlled device knows the required frequency deviation, a smaller bandwidth can be used for future transmissions. Similarly, periodic updates (such as hourly or daily) can be used to combat frequency drift and aging in the device. The explained principle can also be applied to the polar emitter structure, or all of its transceiver structures. It is possible that at the system level, multiple slaves will be associated with a master. If the sequence used for capture and lock is used regularly for several devices, the device is active (ie, the device is not required for the data to be received) = Receive Wideband Transmit and take the correct frequency reference. '° In order to minimize receiver complexity, the transmitted signal can have a simple modulation format, perhaps even so simple that it can be demodulated in the analog domain, rather than requiring a (high rate) analogy that typically requires high power consumption. Convert digital conversion. The measures of the second embodiment above can of course be combined with the measures of the first embodiment and the second embodiment to further reduce or relax the accuracy requirements of the reference oscillator. The additional complexity in the receiver design of the third embodiment can be very easily implemented in integrated circuit technology. The above example has been given for a master to transmit a wide-bandwidth signal. However, the opposite case (the controlled transmitter transmits a wideband signal) can also be a valid application case. The large bandwidth required to lock the slave to the frequency above the master should be used wisely. For example, due to regulatory requirements of standardized entities, it is most unlikely to allow a large output power at a large bandwidth. If a large amount of redundancy is applied in this wide bandwidth, the transmit power can also be reduced to keep it below the regulatory maximum emissions. Several possibilities can be used to achieve a very wide bandwidth emission. For example, a wide-bandwidth FM transmission using "nested" FM transmission can be used, such as, for example, in 2004 ESSCIRC, JFMGerrits, JR Fararsotu, and JR Long's "for " my personal global adaptive network (My Personal 132913.doc •21 - 200926630

Globai Adaptive Network)" (Magnet)系統的 uwb 考慮》 中描述的。 一替代性更II數位友好,,的彳法是使用展頻技術(包含跳 頻)’其可將—低頻音調擴展於-大得多的頻寬之上。因 此,例如一 100 kHz音調可被擴展於_1〇() MHZ2頻寬之 上。由於擴展’發射功率也擴展於更大的頻寬之上,導致 降低每MHz之功率’因此更容易滿足標準化實體的輕射要 求。Globai Adaptive Network)" (Magnet) System's uwb Considerations. An alternative to more digitally friendly, the trick is to use spread spectrum techniques (including frequency hopping), which can extend the low frequency tone over a much larger bandwidth. Thus, for example, a 100 kHz tone can be extended over the bandwidth of _1 〇 () MHZ2. Since the spread 'transmit power also spreads over a larger bandwidth, resulting in lower power per MHz', it is easier to meet the light-weight requirements of standardized entities.

然而應注意的是’寬頻發射中的冗餘不應有一太低的頻 率’因為其可佔用一非常長的時間以读測低頻信號。例如 一 1 kHz調變將要求至少1毫秒以用於適當的偵測。 原理上,上文案例假定一晶體作為主控器中的頻率參 考。然而,這不是強制的。用於發射的頻寬可被加寬以同 樣覆蓋主控器中的頻率不確定性。在一替代實例中,主控 器可自其他系統得到其之參考,諸如全球定位系統 (GPS)。 本發明可被用於超低電力&'線電器件或無線消費性器件 或所有其他接收器、發射器或收發器。 總而言之,已描述一種裝置及一種系統,其具有一用於 發射一發射信號之發射器部分或裝置及用於接收一發射信 號之接收器部分或裝置之至少一者,並且已描述一種操作 此類裝置及系統的方法。在一振盪器電路中產生一參考頻 率,该振盪器電路係用於發射器及接收器部分之至少一者 中的頻率轉換,且該發射信號在輸入至發射器部分之前或 132913.doc •22· 200926630 在自接收益部分輪屮夕# + 彻出之後在一濾波器電路被濾波。提供在 滤波器電路的至少—Jtg ^ ^ a. 、 J王夕頻見參數至振盪器電路的一實體耦合 或電子柄口之至少一者,以藉此放寬在該振盡器電路的準 確度要4因此,振盪器電路可經組態為沒有晶體共振器 兀件且裝置及系統的大小可被減小。 本’天月不限制於上文實體耦合或電子耦合配置的特定實 例而疋,且可使用所有種類實體耦合或電子耦合,其用 ☆將相㈣波11電路的或在該濾波器電路的-頻寬參數耗 合至振盛器電路。較佳的實施例可因此在隨附請㈣ 疇内改變。 最後但是很重要地’應注意,當在包含請求項的說明書 中使用術語”包括”或"包括"時,其冑欲指定確定特徵、構 件、步驟或組件的存在’但是不排除一個或多個特徵、構 件、步驟、組件或其等群組的存在或增加。—· ,,請求 項中在一元件之前的單詞”-”或”一個”不排除存在複數個 〇 這樣的元件。此外,所有參考符號不限制請求項的族 【圖式簡單說明】 ^ 圖1顯示一習知收發器裝置的一原理方塊圖; 圖2顯示依照一第一實施例的一收發器裝置 J 一原理方 塊圖; 圖3顯示依照一第二實施例的一收發器農置 J 原理方 塊圖; 圖4顯示依照一第三實施例的一收發器裝 息的一原理方 塊圖;及 132913.doc •23· 200926630 圖5顯示依照第三較佳實施例的一頻率鎖定方法的一原 理流程圖。 【主要元件符號說明】 Ο ❿ 10 射頻渡波 12 開關 14 開關 16 BAW RF放大器 20 低雜訊放大器 30 功率放大器 42 混頻器 44 混頻器 46 I混頻器 48 Q混頻器 52 濾波器 54 j慮波器 62 類比轉數位轉換器 64 類比轉數位轉換器 66 解調變器 70 數位處理單元 72 數位處理單元 74 測量單元 77 頻率控制單元 78 記憶體 80 基於LC的電壓控制振盪器 132913.doc -24- 200926630 82 參考振盪器 90 除法器電路 110 偵測器 120 XTAL振盪器 132 數位轉類比轉換器 134 數位轉類比轉換器 142 低通據波器 144 低通濾、波器 150 組合元件 160 基板 162 參考振盪器 170 連接配置It should be noted, however, that 'redundancy in wideband transmission should not have a too low frequency' because it can take up a very long time to read low frequency signals. For example, a 1 kHz modulation would require at least 1 millisecond for proper detection. In principle, the above example assumes a crystal as a frequency reference in the master. However, this is not mandatory. The bandwidth used for transmission can be widened to cover the frequency uncertainty in the master as well. In an alternate example, the master can obtain references from other systems, such as the Global Positioning System (GPS). The invention can be used in ultra low power & 'line devices or wireless consumer devices or all other receivers, transmitters or transceivers. In summary, a device and a system have been described having at least one of a transmitter portion or device for transmitting a transmit signal and a receiver portion or device for receiving a transmit signal, and an operation of this type has been described Device and system method. Generating a reference frequency in an oscillator circuit for frequency conversion in at least one of a transmitter and a receiver portion, and the transmit signal is before being input to the transmitter portion or 132913.doc • 22 · 200926630 A filter circuit is filtered after the self-receiving part of the wheel is turned off. Providing at least one of a filter circuit, at least one of Jtg^^a., J, seeing a parameter to a physical coupling or an electronic handle of the oscillator circuit, thereby relaxing the accuracy of the resonator circuit Therefore, the oscillator circuit can be configured without a crystal resonator element and the size of the device and system can be reduced. This 'the moon' is not limited to the specific examples of the above-described physical coupling or electronic coupling configuration, and may use all kinds of entity coupling or electronic coupling, which uses ☆ phase (four) wave 11 circuit or in the filter circuit - The bandwidth parameter is consumed by the oscillator circuit. The preferred embodiment may thus vary within the scope of the accompanying (four). Last but not least 'it should be noted that when the term "comprising" or "including" is used in the specification containing the claim, it is intended to specify the existence of a feature, component, step or component, but does not exclude one or The presence or addition of multiple features, components, steps, components, or groups thereof. —· , , the word “-” or “one” preceding a component in the request does not exclude the existence of a plurality of such elements. In addition, all reference symbols do not limit the family of the claim items. [FIG. 1 shows a schematic block diagram of a conventional transceiver device. FIG. 2 shows a transceiver device J according to a first embodiment. Figure 3 is a block diagram showing a transceiver in accordance with a second embodiment; Figure 4 is a block diagram showing a transceiver in accordance with a third embodiment; and 132913.doc • 23 200926630 FIG. 5 shows a schematic flow chart of a frequency locking method in accordance with a third preferred embodiment. [Main component symbol description] Ο ❿ 10 RF ripple 12 switch 14 switch 16 BAW RF amplifier 20 low noise amplifier 30 power amplifier 42 mixer 44 mixer 46 I mixer 48 Q mixer 52 filter 54 j Wave filter 62 analog-to-digital converter 64 analog-to-digital converter 66 demodulator 70 digital processing unit 72 digital processing unit 74 measurement unit 77 frequency control unit 78 memory 80 LC-based voltage controlled oscillator 132913.doc - 24-200926630 82 Reference Oscillator 90 Divider Circuit 110 Detector 120 XTAL Oscillator 132 Digital to Analog Converter 134 Digital to Analog Converter 142 Low Pass Data Filter 144 Low Pass Filter, Wave Filter 150 Combination Element 160 Substrate 162 Reference Oscillator 170 Connection Configuration

132913.doc • 25-132913.doc • 25-

Claims (1)

200926630 十、申請專利範圍·· L 種裝置,其具有用於發射一發射信號的一發射器部分 及用於接收一發射信號的接收器部分之至少一者,該裝 置包括: a) —振盪器電路(82; 162),其用於產生在該發射器部 分與該接收器部分之至少一者中用於頻率轉換的一參考 頻率; b) —濾波器電路(10),其用於在該發射信號輸入至該 〇 發射器部分之前或自該接收器部分輸出之後濾波該發射 信號;及 c) 一麵合配置(160 ; 72 ’ 74 ; 77),其用於提供該濾波 器電路(10)處的至少一頻寬及/或中心頻率參數至該振盪 器電路(82 ; 162)的一實體耦合或電子耦合之至少一者, 以藉此放寬在該振盪器電路處的準確度要求。 2. 如请求項1之裝置,其中該耦合配置包括一共同基板 _ (160),该振盪器電路(82)及該濾波器電路(1〇)被聯合整 合於該共同基板(160)上。 3. 如凊求項2之裝置,其中該振盛器電路㈣及該遽波器電 路(10)係基於表面聲波技術或體型聲波技術而實施。 4. 如咕求項2之裝置,其中該振盪器電路及該濾波器電 路⑽係基於—薄膜體型聲波共振器技術或—微機電系 統技術而實施。 5. 如請求項2至4中任一項之裝置,其令該振盪器電路(82) 以該濾波器電路(1 〇)的兩倍頻率而操作。 132913.doc 200926630 6. 如請求項2至4中任—項之裝置,苴 及該據波器電路⑽)以實質上相⑽::振^ ^電路(82) 二、 身負上相同的頻率而操作。 7. “求項1之裝置’其中該耦合配置包括:-測量單元 t用於測量該攄波器電路⑽的-帶通特性;及 控制早印2),其用於回應於該測#單元(74)的一輸 出而調整該振盪器電路(162)的頻率。 ' 8.如請求項7之裝置,其中該耦人财婆—1 Y忑耦合配置包括-連接配置 ❹ °)’其用於將源自該振盪器電路⑽)的一信號 ' 至s亥濾波器電路(10)的一輸入。 U項8之裝置,其中該連接配置…〇)包括僅在 的一校準模式中才閉合的-開關元件(14)。 1〇·:請求項7之裝置,其中該測量單元(74)經調適以測量在 一接收混頻電路(42、44)產生的—Dc電壓。 η·如請求们之裝置,其中該輕合配置包括:叫貞測單元 (⑹’其用於谓測透過該滤波器電路⑽接收的一發射 Ο ϋ的—臨時增加之頻寬;及一頻率控制單元(77),其 用於在-鎖定操作期間按照該偵測結果而控制該振盈器 電路(162)以捕獲一發射頻率。 12. 如請求項丨〗之裝置,装 具中μ頻率控制単元(77)經調適以 制該接收器部分的一頻率誤差並基於該偵測之頻率誤 差而控制該振盪器電路(162)的頻率。 13. 如4求項12之裝置’其進—步包括—記憶體單元⑺), 其用於儲存該偵測之頻率誤差。 14. 如咕求項!!之裝置,其中如果該偵測之頻率誤差指示該 132913.doc 200926630 接收器部分的一頻率鎖定狀態,則該頻率控制單元(77) 經調適以發射一確認至該發射信號的一發射端。 15. —種操作用於發射一發射信號的一發射器部分及用於接 收發射彳§號的接收器部分之至少一者的方法,該方法 包括以下步驟: a) 在一振盪器電路(82; 162)處產生在該發射器部分與 該接收器部分之至少一者中用於頻率轉換的一參考頻 率; ❹ b) 在該發射信號輸入至該發射器部分之前或在其自該 接收器部分輸出之後,在一濾波器電路(1〇)處濾波該發 射信號;及 c) 提供該濾波器電路(10)處之至少一頻寬及/或中心頻 率參數至該振盪器電路(82; 162)的一實體耦合或電子耦 &之至少一者,以藉此放寬在該振盈器電路處的準確度 要求。 〇 丨6.如明求項15之方法,其中該實體麵合是藉由將該振盈器 電路(82)及該濾波器電路(10)聯合地整合在一共同基板 (160)上而達成的。 17.如請求項15或16之方法,其中該電子耦合是藉由測量該 濾波器電路(1 〇)的一帶通特性及回應於該測量的一結果 而調整該振盪器電路(162)的頻率而達成。 18·如請求項17之方法,其進一步包括將一源自該振盪器電 路(1 62)的信號注入至該濾波器電路(1〇)的—輸入。 19·如請求項15之方法,其中該電子耦合是藉由偵測經由該 132913.doc 200926630 濾波器電路⑽接收的一發射信號之一臨時增加之頻 寬、及藉由在-鎖定操作期間按照該制結果而控制該 振盪器電路(162)以捕獲—發射頻率而達成的。 20 21 ❹ ❹ 22. 如叫求項15之方法’其進一步包括如果該偵測之頻率誤 差指示該接收器部分的-頻率敎狀態,則發射一確認 至*亥發射信號的一發射端。 一種操作用於發射一發射信號的-發射器裝置及用於接 收該發射信號的-接收器裝置之至少一者的系統,該系 統包括: a)-摘測單元(66) ’其用於债測該發射信號的一臨時 增加之頻寬,該增加之頻寬係藉由該發射器裝置而設 定;及 b卜頻率控制單印7),其用於在—鎖定操作期間按 照該_結果而控制-振蘯器電路(162)以捕獲—發射頻 率’該振盈器電路(162)被提供用於該接收器裝置中之頻 率轉換; c)其中如果一偵測頻率誤差指示該接收器部分的一頻 率鎖定狀態,該頻率控制單元(77)經調適以發射一確認 至該發射信號的一發射端; 句其中該發射器裝置經調適以回應於收到該確認而減 少該發射信號的該頻寬。 如請求項21之系統,其中該發射器裝置經調適以按定期 間隔增加該發射信號的該頻寬,以觸發該鎖定操作。 132913.doc200926630 X. Patent Application Scope L device having at least one of a transmitter portion for transmitting a transmission signal and a receiver portion for receiving a transmission signal, the device comprising: a) an oscillator a circuit (82; 162) for generating a reference frequency for frequency conversion in at least one of the transmitter portion and the receiver portion; b) a filter circuit (10) for Filtering the transmit signal before or after outputting the transmit signal to the transmitter portion; and c) configuring a side-by-side configuration (160; 72' 74; 77) for providing the filter circuit (10) At least one bandwidth and/or center frequency parameter at the at least one of a physical coupling or an electronic coupling of the oscillator circuit (82; 162) to thereby relax the accuracy requirement at the oscillator circuit. 2. The device of claim 1, wherein the coupling configuration comprises a common substrate _ (160), the oscillator circuit (82) and the filter circuit (1) being jointly integrated on the common substrate (160). 3. The apparatus of claim 2, wherein the vibrator circuit (4) and the chopper circuit (10) are implemented based on surface acoustic wave technology or bulk acoustic wave technology. 4. The apparatus of claim 2, wherein the oscillator circuit and the filter circuit (10) are implemented based on a film bulk acoustic resonator technology or a microelectromechanical system technology. 5. The apparatus of any one of claims 2 to 4, which causes the oscillator circuit (82) to operate at twice the frequency of the filter circuit (1 〇). 132913.doc 200926630 6. The device according to any one of the items 2 to 4, and the data circuit (10) are substantially the same frequency (10):: vibration ^ ^ circuit (82) And the operation. 7. The apparatus of claim 1 wherein the coupling configuration comprises: - a measuring unit t for measuring a band pass characteristic of the chopper circuit (10); and a control early printing 2) for responding to the measuring unit Adjusting the frequency of the oscillator circuit (162) by an output of (74). 8. The apparatus of claim 7, wherein the coupling of the coordinator - 1 Y忑 coupling configuration comprises - connection configuration ❹ °) An input from the oscillator circuit (10) to an input of the filter circuit (10). The device of U-term 8 wherein the connection configuration ... 〇) includes closing only in one calibration mode - Switching element (14). The device of claim 7, wherein the measuring unit (74) is adapted to measure the -Dc voltage generated at a receiving mixing circuit (42, 44). The device, wherein the light-synchronizing configuration comprises: a detecting unit ((6)' for temporarily measuring a bandwidth of a transmitting frame received through the filter circuit (10); and a frequency control unit (77) ) for controlling the oscillator circuit (162) according to the detection result during the -lock operation Obtaining a transmission frequency. 12. As claimed in the device, the device μ frequency control unit (77) is adapted to produce a frequency error of the receiver portion and to control the oscillator circuit based on the detected frequency error. (162) The frequency of 13. The device of claim 12, the step of which includes the memory unit (7), which is used to store the frequency error of the detection. Wherein the frequency control unit (77) is adapted to transmit a acknowledgment to a transmitting end of the transmitting signal if the detected frequency error indicates a frequency locked state of the 132913.doc 200926630 receiver portion. A method of operating at least one of a transmitter portion for transmitting a transmitted signal and a receiver portion for receiving a transmitted signal, the method comprising the steps of: a) at an oscillator circuit (82; 162) Generating a reference frequency for frequency conversion in at least one of the transmitter portion and the receiver portion; ❹ b) before the transmit signal is input to the transmitter portion or from the receiver portion After outputting, filtering the transmit signal at a filter circuit (1); and c) providing at least one bandwidth and/or center frequency parameter at the filter circuit (10) to the oscillator circuit (82; 162) At least one of a physical coupling or an electronic coupling & to thereby relax the accuracy requirement at the oscillator circuit. 〇丨 6. The method of claim 15, wherein the entity is borrowed The method of claim 15 or 16, wherein the electronic coupling is borrowed by the combination of the inverter circuit (82) and the filter circuit (10). This is achieved by measuring the bandpass characteristic of the filter circuit (1 〇) and adjusting the frequency of the oscillator circuit (162) in response to a result of the measurement. 18. The method of claim 17, further comprising injecting a signal from the oscillator circuit (1 62) into the input of the filter circuit (1〇). 19. The method of claim 15, wherein the electronic coupling is by detecting a temporarily increased bandwidth of one of the transmitted signals received via the 132913.doc 200926630 filter circuit (10), and by during the during-locking operation The result is controlled by the oscillator circuit (162) to capture the transmit frequency. 20 21 ❹ ❹ 22. The method of claim 15 further comprising transmitting a acknowledgment to a transmitting end of the *Hui transmit signal if the detected frequency error indicates a -frequency 敎 state of the receiver portion. A system for operating at least one of a transmitter device for transmitting a transmitted signal and a receiver device for receiving the transmitted signal, the system comprising: a) - a metrology unit (66) 'for debt Detecting a temporarily increased bandwidth of the transmitted signal, the increased bandwidth being set by the transmitter device; and b frequency control printing 7) for following the _ result during the -locking operation a control-vibrator circuit (162) to capture-transmit frequency 'the oscillator circuit (162) is provided for frequency conversion in the receiver device; c) wherein if a detection frequency error indicates the receiver portion a frequency lock state, the frequency control unit (77) adapted to transmit an acknowledgement to a transmit end of the transmit signal; wherein the transmitter device is adapted to reduce the transmit signal in response to receiving the acknowledgement bandwidth. The system of claim 21, wherein the transmitter device is adapted to increase the bandwidth of the transmitted signal at regular intervals to trigger the locking operation. 132,913.doc
TW97129558A 2007-08-06 2008-08-04 Crystal-less transceivers TW200926630A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07113827 2007-08-06

Publications (1)

Publication Number Publication Date
TW200926630A true TW200926630A (en) 2009-06-16

Family

ID=40340744

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97129558A TW200926630A (en) 2007-08-06 2008-08-04 Crystal-less transceivers

Country Status (2)

Country Link
TW (1) TW200926630A (en)
WO (1) WO2009019639A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644514B (en) * 2016-03-15 2018-12-11 絡達科技股份有限公司 Acoustic-wave device with active calibration mechanism
US10326192B2 (en) 2016-03-15 2019-06-18 Airoha Technology Corp. Acoustic-wave device with active calibration mechanism

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3420665T3 (en) * 2016-02-26 2021-11-01 Univ California TIME SYNCHRONIZED NETWORKS OF WIRELESS NODE AND THE WIRELESS NODE
US11677433B2 (en) 2018-01-04 2023-06-13 Mediatek Inc. Wireless system having local oscillator signal derived from reference clock output of active oscillator that has no electromechanical resonator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787612A (en) * 1972-07-03 1974-01-22 Zenith Radio Corp Signal processing system for television receiver having acoustic surface wave devices for improved tuning and video demodulation
JPH0468907A (en) * 1990-07-09 1992-03-04 Kinseki Ltd Saw electronic component and frequency conversion circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644514B (en) * 2016-03-15 2018-12-11 絡達科技股份有限公司 Acoustic-wave device with active calibration mechanism
US10326192B2 (en) 2016-03-15 2019-06-18 Airoha Technology Corp. Acoustic-wave device with active calibration mechanism

Also Published As

Publication number Publication date
WO2009019639A2 (en) 2009-02-12
WO2009019639A3 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
Otis et al. A 300-μW 1.9-GHz CMOS oscillator utilizing micromachined resonators
CN105765601B (en) System and method for use in a receive chain of a communication device
US20130065542A1 (en) Spectral Filtering Systems
US6833769B2 (en) Voltage controlled capacitive elements having a biasing network
JP2008109680A (en) Transceiver
JP4547084B2 (en) Mobile communication device and transceiver
JP2007088657A (en) Fm transmitter
TW200926630A (en) Crystal-less transceivers
JP5345858B2 (en) Device for receiving and / or transmitting radio frequency signals with noise reduction
Mondal et al. A 67-μW ultra-low power PVT-robust MedRadio transmitter
Ruffieux et al. Ultra low power and miniaturized MEMS-based radio for BAN and WSN applications
US11043954B2 (en) Oscillation circuit, oscillator, communication device, and method of controlling oscillation circuit
US9438169B2 (en) Mixer
Ruffieux et al. A 2.4 GHz MEMS-based transceiver
JP2011077611A (en) Reception circuit, electronic apparatus, and image suppressed reception method
TW200527914A (en) Television tuner and method of processing a received RF signal
JP3902383B2 (en) Quadrature signal generation circuit
TWI411242B (en) Wireless remote control receiver
Thirunarayanan et al. Ultra low-power MEMS based radios for the IoT
Thirunarayanan et al. Enabling highly energy efficient wsn through pll-free, fast wakeup radios
JP2006229427A (en) Receiver
KR100601929B1 (en) Multi-band radio-frequency module whose configuration is minimized
TW200828832A (en) Communications system using a low cost oscillator and related method thereof
JP3801493B2 (en) Transceiver using local oscillator
TWI226755B (en) Fast frequency synthesizing and modulating apparatus and method