200926241 九、發明說明: 【發明所屬之技術領域】 β本發明涉及-種電子源及其製備方法,尤其 場發射電子源及其製備方法。 … 【先前技術】 場發射電子源係利用在外埸你 挽屮㈣工卡奋a 作下’從固體材料表面 、出的電子來實現電子發射的一種 名柄、、田斗、土 —、w 但电于/原。%發射電子源 ❹ 或者至&下工作’與電真空器件 =;有能耗低、回應速度快以及低放電等優點,== =發^子源替代電真空器件中的熱發射電子源成為了人 們研九的一個熱點。 早期的場發射電子源以Spindt微尖結構為場發射陣 列。這種基於微奈米加卫技術製造的電子源包括:一絕緣 基底;一形成於該絕緣基底上的陰極電極;一形成於該陰 極電極上的發㈣微尖㈣;—形成於該陰極電極上的^ 有開孔的絕緣層;一設置在該絕緣層上的栅極,且每一個 發射體微尖與一開孔對準。由於採用薄膜光刻工藝,陰極 導電層和柵極的間距在微米級或者亞微米級。這種電:源 的主要問題係柵極和陰極電極之間的漏電嚴重,導致一般 栅極電壓只能加到100V左右,場發射電流密度小,因此 受到限制。 奈米碳管(Carbon Nanotube,CNT)係一種新型碳材 料,由日本研究人員邱脱在1991年發現,請參見”取以“ Microtubules of Graphitic Carbon", S. Iijima, Nature, ν〇1·354, P56 (1991)。奈米碳管具有極優異的導電性能、良 200926241 好的化學穩定性和大的長徑比,且其具有幾乎接近理&極 :的f端表面積(尖端表面積愈小,其局部電場俞集:), .因而j碳管在場發射真空電子源領域被廣泛應 , ^的奈米碳管場發射電子㈣結構包括:—絕緣具 底,一形成於該絕緣基底上的陰極電 '' 搞κ沾一古由— 幻^極電極,形成於該陰極電 、间又捃排的奈米碳管場發射體陣列;一設置於呤 極電極上的隔離體·一設置 ' ^ 〇描 °又置在該隔離體頂部的金屬栅網。 ❹ ,該金屬栅網和陰極電極之間㈣距在微求到數 =。=構的缺點係發射體密度過高,電場屏蔽效應 嚴重丄工作時往往只有少部分發射體發射電子,故,很難 做出南電流密度的電子源。另冰 J.V. π4千/原另外,該場發射電子源的隔離 ^的絕緣性設計不係最優,限制了加在金屬柵網與陰極電 極之間的工作電壓。 有雲於此,提供—種金屬柵網與陰極電極之間絕緣設 計較優mx有效防止發射體陣列密度過高而導致屏蔽200926241 IX. Description of the invention: [Technical field to which the invention pertains] β The present invention relates to an electron source and a method for preparing the same, in particular a field emission electron source and a preparation method thereof. ... [Prior Art] The field emission electron source system uses the name of the electron emission from the surface of the solid material and the electrons emitted from the surface of the solid material. Electric / original. % emission electron source ❹ or to & work 'with electric vacuum device =; low energy consumption, fast response speed and low discharge, etc., == = hair source instead of thermal emission electron source in electric vacuum device becomes A hot spot for people to study nine. Early field emission electron sources used the Spindt microtip structure as a field emission array. The electron source manufactured by the micro-nano-assisted technology comprises: an insulating substrate; a cathode electrode formed on the insulating substrate; a hair (four) microtip formed on the cathode electrode; and a cathode electrode formed on the cathode electrode The upper has an open insulating layer; a gate disposed on the insulating layer, and each of the emitter microtips is aligned with an opening. Due to the thin film lithography process, the distance between the cathode conductive layer and the gate is on the order of micrometers or submicron. This type of electricity: the main problem of the source is the serious leakage between the gate and the cathode electrode, which causes the general gate voltage to be applied to only about 100V, and the field emission current density is small, so it is limited. Carbon Nanotube (CNT) is a new type of carbon material discovered by Japanese researcher Chiu in 1991. Please refer to "Microtubules of Graphitic Carbon", S. Iijima, Nature, ν〇1·354 , P56 (1991). The carbon nanotube has excellent electrical conductivity, good chemical stability of 200926241 and large aspect ratio, and it has a surface area close to the f-end: the smaller the tip surface area, the local electric field :), Therefore, the j carbon tube is widely used in the field of field emission vacuum electron source. The structure of the carbon nanotube field emission electron (IV) includes: - an insulating bottom, and a cathode electricity formed on the insulating substrate. κ 一 an ancient - phantom electrode, formed in the cathode, between the array of carbon nanotube field emitter array; a spacer placed on the electrode of the drain · a set ' ^ A metal grid placed on top of the separator. ❹ , the distance between the metal grid and the cathode electrode (four) is slightly determined. The disadvantage of the structure is that the emitter density is too high, and the electric field shielding effect is severe. At work, only a small part of the emitter emits electrons, so it is difficult to make an electron source of the south current density. Another ice J.V. π4 thousand / original In addition, the isolation design of the field emission electron source is not optimal, limiting the operating voltage applied between the metal grid and the cathode electrode. There is a cloud here to provide a better insulation between the metal grid and the cathode electrode. The mx effectively prevents the emitter array from being too dense and causes shielding.
效應i夠獲較大密度的場發射電流的場發射電子源及 其製備方法實為必要。 ’' 【發明内容】 一種場發射電子源,其包括··一絕緣基底;一陰極發 射電極没置於該絕緣基底上,且該陰極發射電極包括一陰 才*電極和陰極發射體設置於該陰極電極上;一隔離體設 置於該絕緣基底上;以及一金屬栅網設置在該隔離體上, 且該金屬柵網進一步延伸到陰極發射電極上方;其中,該 隔離體與陰極電極間隔設置。 200926241 .:種場發射電子源的製備方法,其具體包括以 1提供-絕緣基底;在上輕緣基底上製備—陰極發射 ^ ’且該陰極發射電極包括—陰極電極和—陰極發射體 •成置於々上’在絕緣基底上製備一隔離體預製體,並對該 隔離體預衣體進行曝光;在上述隔離體預製體上製作一金 屬柵網;以及除去上述隔離體預製體已經曝光部分,形成 -隔離體與陰極電極間隔設置,從而得到一場發射電子源。 相車乂于先則技術,所述的場發射電子源,隔離體與陰 極電極間隔設置。這種結構有效增加了陰極電極與金屬拇 、.周之間的絕緣距離,解決了陰極電極和金屬拇網絕緣的問 題,可以大幅度提高柵極的電壓,從而獲得較大密度的場 發射電流。 【實施方式】 以下將結合附圖對本技術方案作進一步的詳細說 明。 ❿ 請參閱圖1及圖2’本技術方案實施例提供一種場發 射電子源100,其包括:一絕緣基底1〇2,一陰極發射電 極108設置於該絕緣基底102上表面,一隔離體116設置 於該絕緣基底102上表面,以及一金屬栅網12〇設置在 該隔離體116上,且該金屬柵網進一步延伸到陰極發射電 極上方,其中,該陰極發射電極1〇8包括一陰極電極 和一陰極發射體112設置於該陰極電極11()上。 所述的絕緣基底102為一絕緣基板,如: (Silicon-On-Insulator,絕緣襯底上的矽)基底或玻璃基板 200926241 本實施财,優選⑽基底作為絕緣基底道。該絕 、’二:102包括-矽層104和一二氧化矽絕緣層⑽設 ι〇4的表面。該二氧化矽絕緣層106的厚度為 i U L) 士。 所述的陰極電極110由導電材料製成,如金屬薄膜。 本實施例中’該陰極電極110優選為一高濃度摻雜的矽導 電層形成於緣基a 102上。該陰極電極11〇的面積小於絕 ❹緣基底102的面積。可以理解,陰極電極11〇的面積可以 根據場發射電子源的大小來確^,且,該陰極電極 I10可以根據需要製作成不同的形狀,如:圓形、方形、 正/、邊形或三角形等。該陰極電極11〇的厚度為ι〇〜ι〇〇 ,所述的陰極發射體112為一微尖陣列,包括多個發射 體微尖114言史置於陰極電極11〇i,且該多個發射體微尖 按一定形狀分散排列。該發射體微尖114可以為三角 ®形、方形、矩形、圓形或其他形狀排列,本實施例中, 優選為密排正六邊形排列。該發射體微尖114可以係矽 尖翻笑、鎮尖或其他材料製備的可以用於場發射的微 大。該發射體微尖114形狀不限,可為任意形狀的微尖, 本實施例中,優選為類圓錐形。每個發射體微尖114的高 度為1〜2微米,相鄰的發射體微尖114的尖端間距為^ 微米。多個發射體微尖114平行排列。採用微米尺度分散 排列的陰極發射體112作為場發射體,可以減小屏蔽效 應,提高場發射電流密度。請參閱圖3,該陰極發射電極 200926241 .108進-步包括一表面修飾層13〇,該表面修飾層η。覆 蓋於發射體微失114的表面,其厚度為奈米,優選 為5奈米。該表面修飾層130為碳化铪、碳化錯、碳化 鈦或碳化鈮等碳化物薄膜,優選的,該表面修飾層 選用碳化鈦或碳化锆,其逸出功分別為3 82電子伏特和 3.32電子伏特。表面修御層13〇可…咸小場發射電壓, 增大場發射電流密度。 所述的金屬柵網12〇厚度為1〜10微米。金屬栅網120 Ό包括多個網孔I24。金屬柵網120的形狀不限,網孔124 形狀不限。本實施例中,優選圓形金屬柵網120,網孔 124為正六邊形。該金屬栅網12〇為採用微納加工技術製 作或採用編織技術製作。該金屬柵網丨具有很高的透 過率,大約在85%〜95%之間。此處,透辭指=拇網 12〇的網孔124與金屬栅網12〇的面積比。 所述的隔離體116為一環形結構或“c”型結構,該 φ隔離體n6包圍陰極電極110,且與陰極電極110間隔設 置於絕緣基底102上。本實施例中,該隔離體116為一 “c”型結構’其包括―本冑138以及一形成於本體138 上的開孔118與一開口 126。該隔離體116的開孔118與 陰極發射電極108對應,開孔118面積大於陰極發射電極 108的面積,使陰極發射電極1〇8完全露出。該隔離體ιΐ6 的開口 126可以設置於隔離體116的側壁任意位置,開口 126寬度小於5微米。該隔離體116的開口 126用來佈置 陰極引線128。該隔離體116與陰極電極u〇之間的水平 11 200926241 巨離大二2〇微米,本實施例中’隔離體u6與 π〇的水平距離優選為50〜100微米。該隔離體ιΐ6材料 $ SU-8先刻膠或其他厚膜曝光膠,其厚度為5〇〜麵微 米。進一步,該隔離體116本體138的侧壁122為一凹凸 t吉構122。該凹凸結構122可以為棱錐狀,柱狀或半球狀。 該凹凸結構122可以婵加降搞蕾找11n & 之間的絕緣距離。曰农 與金屬柵網120 〇 128,戶 =場發射電子源1〇0進一步包括-陰極引線 〜*極引線128 —端與陰極電極11〇電性連接, 一端與外電路連接。本實施例中,陰㈣、線128穿過開 口 126與外電路連接。該陰極引線12 電阻材料,優選為金膜。可以理解,通過開口 m將二 極引線128引出,使陰極引線128不與隔離體116接觸, 可以使隔離體116與陰極電極110之間完全絕緣。 S的場發射電子源'⑽進—步還包括—設置於絕 緣^ 1〇2底部且與絕緣基底1〇2下表面接觸的散熱片 :中未顯不)或風扇等配套散熱系統。該散熱系統用 ^發場發射電子源、⑽工作時產生的熱,降低其工作 >皿度〇 本實知例中,該隔離體116侧壁122採用凹凸結構 ⑵’並使隔離體116與陰極電才虽11〇 ^隔設置,該結構 :以有效增大陰極電極11〇與金屬栅網12〇之間的絕緣距 離’解決了陰極電極11〇和金屬柵網12〇絕緣的問題,可 以大幅度提高栅極的電壓,從而獲得較大密度的場發射 12 200926241 電流。另外,採用分散排列的發射體微尖陣列作為陰極 發射體112,這種結構避免了發射體之間的屏蔽作用二 請參閱圖4及圖5,本技術方案實施例還進—步提供 場發射電子源100的製備方法,其具體包括以下步驟 步驟一,提供一絕緣基底1〇2。 該絕緣基底1〇2為- S0I基底,包括—第—# 104、-形成於該第-傾1〇4上的二氧切絕緣層^ 以及設置於該二氧化矽絕緣層106上的第二矽層。其 中,二氧化矽絕緣層106厚度為100微米,第二矽芦八 的厚度為10〜100微米。 曰 步驟二,在上述絕緣基纟皿上製備—陰極發射带 極108,且該陰極發射電極1〇8包括一陰極電⑮⑽和: 陰極發射體112設置於其上。 陰極發射電極⑽製備於第二矽層132上 括以下步驟: 八體包 首先,採用高濃度摻雜的方法,對第 行部分摻雜。 / « 進 所述的高濃度摻雜的方法為離子注入法或 . 掺雜區域的面積小於第二矽層132的面積。、。 成^心刻料第二梦層132上沒有摻雜的區域,形 成一陰極電極11()。 4 〜 反岸用反應離子刻姓法、離子賤射刻兹法、 反應轧體刻蝕法或其他刻蝕方法。 進-步,製備上述陰極電極11〇的方法包括製備一陰 13 200926241 木引線128。該陰極引線128可以採用濺射法、氣相沈積 法、蒸㈣或摻雜卫藝製作。本實施例中,該陰極引線 128選自尚熱導、低電阻材料,優選為金膜。 再次,在上述陰極電極11〇上製作陰極發射體ιΐ2, 得到一陰極發射電極1〇8。A field emission electron source having an effect i capable of obtaining a large density of field emission current and a preparation method thereof are necessary. A field emission electron source includes an insulating substrate; a cathode emitter electrode is not disposed on the insulating substrate, and the cathode emitter electrode includes a cathode electrode and a cathode emitter disposed thereon On the cathode electrode; a spacer is disposed on the insulating substrate; and a metal grid is disposed on the spacer, and the metal grid further extends over the cathode emitter electrode; wherein the spacer is spaced apart from the cathode electrode. 200926241 . : A method for preparing a field emission electron source, which comprises: providing an insulating substrate by 1; preparing a cathode emission on the upper light edge substrate; and the cathode emitting electrode comprises a cathode electrode and a cathode emitter. Disposing a spacer body on the insulating substrate, and exposing the spacer body; forming a metal grid on the spacer body; and removing the exposed portion of the spacer body The formation-isolator is spaced apart from the cathode electrode to obtain a source of electron emission. According to the prior art, the field emission electron source, the spacer and the cathode electrode are spaced apart. The structure effectively increases the insulation distance between the cathode electrode and the metal thumb and the circumference, solves the problem of the insulation of the cathode electrode and the metal thumb net, and can greatly increase the voltage of the gate, thereby obtaining a large-density field emission current. . [Embodiment] Hereinafter, the present technical solution will be further described in detail with reference to the accompanying drawings. Referring to FIG. 1 and FIG. 2', the embodiment of the present invention provides a field emission electron source 100, which includes an insulating substrate 1〇2, a cathode emitter electrode 108 disposed on an upper surface of the insulating substrate 102, and a spacer 116. A metal grid 12 is disposed on the upper surface of the insulating substrate 102, and a metal grid 12 is disposed on the spacer 116, and the metal grid further extends over the cathode emitter electrode, wherein the cathode emitter electrode 〇8 includes a cathode electrode And a cathode emitter 112 is disposed on the cathode electrode 11 (). The insulating substrate 102 is an insulating substrate, such as: (Silicon-On-Insulator) substrate or glass substrate. In this embodiment, the substrate is preferably used as an insulating substrate. The ", two: 102" includes a surface of the ruthenium layer 104 and a ruthenium dioxide insulating layer (10) provided with 〇4. The thickness of the ceria insulating layer 106 is i U L). The cathode electrode 110 is made of a conductive material such as a metal thin film. In the present embodiment, the cathode electrode 110 is preferably a high concentration doped germanium conductive layer formed on the edge a 102. The area of the cathode electrode 11A is smaller than the area of the insulating edge substrate 102. It can be understood that the area of the cathode electrode 11A can be determined according to the size of the field emission electron source, and the cathode electrode I10 can be formed into different shapes as needed, such as a circle, a square, a positive/, a triangle or a triangle. Wait. The thickness of the cathode electrode 11 is ι〇 ι 〇〇, the cathode emitter 112 is a microtip array, and the plurality of emitter microtips 114 are placed on the cathode electrode 11〇i, and the plurality of The emitter microtips are arranged in a dispersed manner in a certain shape. The emitter microtips 114 may be arranged in a triangular shape, a square shape, a rectangular shape, a circular shape or the like. In this embodiment, a dense hexagonal hexagonal arrangement is preferred. The emitter microtips 114 can be made by tip smirking, apex or other materials that can be used for field emission. The shape of the emitter microtip 114 is not limited and may be a microtip of any shape. In this embodiment, it is preferably a conical shape. The height of each emitter microtip 114 is 1 to 2 microns, and the tip spacing of adjacent emitter microtips 114 is ^ microns. A plurality of emitter microtips 114 are arranged in parallel. By using the micron-scale dispersed cathode emitter 112 as a field emitter, the shielding effect can be reduced and the field emission current density can be increased. Referring to FIG. 3, the cathode emitter electrode 200926241.108 further includes a surface modification layer 13〇, the surface modification layer η. Covering the surface of the emitter with a slight loss 114, the thickness is nanometer, preferably 5 nanometers. The surface modification layer 130 is a carbide film such as tantalum carbide, carbonization, titanium carbide or tantalum carbide. Preferably, the surface modification layer is made of titanium carbide or zirconium carbide, and the work function is 3 82 electron volts and 3.32 electron volts, respectively. . The surface repair layer 13 can...the small field emission voltage, increasing the field emission current density. The metal grid 12 has a thickness of 1 to 10 micrometers. The metal grid 120 includes a plurality of meshes I24. The shape of the metal grid 120 is not limited, and the shape of the mesh 124 is not limited. In this embodiment, a circular metal grid 120 is preferred, and the mesh 124 is a regular hexagon. The metal grid 12 is made by micro-nano processing technology or by weaving technology. The metal grid has a high transmittance of between about 85% and 95%. Here, the utterance refers to the area ratio of the mesh 124 of the thumb net 12 金属 to the metal grid 12 。. The spacer 116 is an annular structure or a "c" structure. The φ spacer n6 surrounds the cathode electrode 110 and is spaced apart from the cathode electrode 110 on the insulating substrate 102. In this embodiment, the spacer 116 is a "c" type structure. The device includes a body 138 and an opening 118 formed in the body 138 and an opening 126. The opening 118 of the spacer 116 corresponds to the cathode emitter electrode 108, and the area of the opening 118 is larger than the area of the cathode emitter electrode 108, so that the cathode emitter electrode 1〇8 is completely exposed. The opening 126 of the spacer ι 6 may be disposed at any position on the side wall of the spacer 116, and the opening 126 has a width of less than 5 μm. The opening 126 of the spacer 116 is used to arrange the cathode lead 128. The level 11 200926241 between the separator 116 and the cathode electrode u 巨 is substantially larger than 2 〇 micrometers. In the present embodiment, the horizontal distance between the spacers u6 and π 优选 is preferably 50 to 100 μm. The spacer ιΐ6 material is $SU-8 first or other thick film exposure glue, and its thickness is 5 〇 to 50 micrometers. Further, the sidewall 122 of the body 138 of the spacer 116 is an embossed structure 122. The uneven structure 122 may have a pyramid shape, a column shape or a hemisphere shape. The concave-convex structure 122 can be used to find the insulation distance between 11n & The tenant and the metal grid 120 〇 128, the household = field emission electron source 1 〇 0 further includes a - cathode lead 〜 * pole lead 128 - the end is electrically connected to the cathode electrode 11 , one end is connected to the external circuit. In this embodiment, the female (four) and line 128 are connected to the external circuit through the opening 126. The cathode lead 12 is a resistive material, preferably a gold film. It can be understood that the diode lead 128 is led out through the opening m so that the cathode lead 128 is not in contact with the spacer 116, and the spacer 116 and the cathode electrode 110 can be completely insulated. The field emission electron source of 'S (10) further includes a heat sink disposed at the bottom of the insulating film 1 2 and in contact with the lower surface of the insulating substrate 1〇2; or a cooling system such as a fan. The heat dissipating system uses a field emission electron source and (10) heat generated during operation to reduce the operation thereof. In the present embodiment, the side wall 122 of the spacer 116 adopts a concave-convex structure (2)' and the spacer 116 and The cathode electricity is only 11 〇, the structure: effectively increasing the insulation distance between the cathode electrode 11 〇 and the metal grid 12 ' to solve the problem of the cathode electrode 11 〇 and the metal grid 12 〇 insulation, The gate voltage is greatly increased to obtain a larger density of field emission 12 200926241 current. In addition, a dispersively arranged emitter microtip array is used as the cathode emitter 112. This structure avoids the shielding effect between the emitters. Referring to FIG. 4 and FIG. 5, the embodiment of the present invention further provides field emission. The method for preparing the electron source 100 specifically includes the following step 1, providing an insulating substrate 1〇2. The insulating substrate 1〇2 is a -S0I substrate, including -#104, a dioxy-cut insulating layer formed on the first-dip 1〇4, and a second disposed on the ceria insulating layer 106.矽 layer. The ruthenium oxide insulating layer 106 has a thickness of 100 μm, and the second cucurbit eight has a thickness of 10 to 100 μm. Step 2, a cathode emitting strip 108 is prepared on the above-mentioned insulating substrate, and the cathode emitting electrode 1 8 includes a cathode electric 15 (10) and a cathode emitter 112 is disposed thereon. The cathode emitter electrode (10) is prepared on the second buffer layer 132 by the following steps: Eight-body package First, the first row is partially doped by a high concentration doping method. / « The method of high concentration doping is ion implantation or the area of the doped region is smaller than the area of the second germanium layer 132. ,. The region on the second dream layer 132 which is not doped is formed to form a cathode electrode 11 (). 4 ~ Anti-shore reactive ion engraving method, ion squeezing method, reactive rolling etch method or other etching methods. Further, the method of preparing the above cathode electrode 11A includes preparing a cathode 13 200926241 wood lead 128. The cathode lead 128 can be fabricated by sputtering, vapor deposition, steaming (four) or doping. In this embodiment, the cathode lead 128 is selected from a thermally conductive, low resistance material, preferably a gold film. Again, a cathode emitter ι 2 is formed on the above cathode electrode 11 , to obtain a cathode emitter electrode 1 〇 8.
製作陰極發射體112的方法為微納加工技術。該陰極 發射體112為一密排正六邊形排列的矽尖陣列。每個矽尖 為類圓錐形’矽尖高度為1〜2微米,間距為w微米。 進一步,本實施例還可以包括:在上述陰極發射體 U2表面製備一表面修飾層13〇。該表面修飾層⑽可以 採用減射法、蒸鑛法或化學氣相沈積法製儀。該表面修 飾層130覆蓋於陰極發射體112表面,厚度為奈米, 優選為5奈米。該表面修㈣13()為碳化铪、碳化錯、 碳化鈦或碳⑽等碳化物薄膜,優選的,該表面修飾層 130選用碳化鈦或碳㈣,其逸出功分㈣3 82電子伏 特和3.3 2電子伏特。 步驟三,在絕緣基底102上製備一隔離體預製體 136,並對該隔離體預製體136進行曝光。 所述隔離體預製體136為—絕緣層,採用厚膜甩膠 製作’且該隔_㈣冑136覆蓋了上述陰極發射 電極108。該隔離體預製體136的厚度為5〇〜ι〇〇〇微米。 該隔離體預製體136材料通常採用光刻膠,如:su_8光 刻膠或其他厚膜曝光膠。 所述曝光過程採用普通曝光技術即可實現。曝光過 14 200926241 程主要係對離體預製體136與開孔118和開口 126對應的 地方進行曝光’以利於後面步驟中將該曝光部分去除, ' 得到一開孔118與一開口 126。 ’ 步驟四,在上述隔離體預製體130上製作一金屬柵 網 120。 製作金屬栅網120具體包括以下步驟: 首先’在上述隔離體預製體136上鍍一金屬薄膜。 所述鍍膜工藝可以採用濺射法、蒸鍍法或化學氣相 沈積法。金屬薄膜的厚度為1〜1〇微米。 其次’刻钱上述金屬薄膜得到一金屬柵網12〇。 刻蝕金屬薄膜採用普通刻蝕技術。該金屬栅網12〇 採用密排正六邊形排列,具有很高的透過率,大約在 85%〜95%之間。 乂驟五除去上述隔離體預製體136已經曝光部分, 形成一隔離體116與陰極電極n〇間隔設置,從而得到一 ❹場發射電子源100。 本實施例中’所述除去隔離體預製體136已經曝光 邛刀的方法為通過丙酮浸泡。浸泡過程在常溫下進行, 浸泡時間為10〜30分鐘。除去隔離體預製體130已經曝 光部分後,形成—“c”型結構的隔離體116 ,其包括一 開孔118與一開口 126。其中,開孔118使陰極發射體I。 路出,並與金屬柵網120通過開孔118相對,開口 126 使陰極陰線128露出且不與隔離體116接觸。 在曝光過程中,由於光的反射,使得入射光與反射 15 200926241 光形成駐波效應,因此在隔離體U6侧壁會形成曝光不均 句這樣在除去隔離體預製體136已經曝光的部分後就 '會在隔離體116側壁上形成一凹凸結構122。該凹凸結構 v 122可以增加陰極電極110與金屬柵網120之間的絕緣距 離。 可以理解,本實施例中,可以在一絕緣基底102上 製備多個場發射電子源100,得到一場發射電子源100陣 _列。製備上述場發射電子源100陣列,進一步需要在絕 緣基底102底部設置一散熱片。也可以對該場發射電子 源100陣列配置一風扇或冷卻水系統。 综上所述,本發明確已符合發明專利之要件,遂依法 提出專利申請。惟,以上所述者僅為本發明之較佳實施例, 自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝 =人士援依本發明之精神所作之等效修飾或變化,皆應涵 蓋於以下申請專利範圍内。 Ο 【圖式簡單說明】 圖1為本技術方案實施例場發射電子源的結構示意 圖。 圖2為沿圖1中線IMI的剖視圖。 Q 3為本技術方案實施例場發射電子源的發射體微尖 的結構示意圖。 圖4為本技術方案實施例場發射電子源的製備方法流 程圖。 圖5為本技術方案實施例場發射電子源的製備過程示 16 200926241 意圖。 【主要元件符號說明】 ' 場發射電子源 100 , 絕緣基底 102 矽層 104 二氧化矽絕緣層 106 陰極發射電極 108 陰極電極 110 #陰極發射體 112 發射體微尖 114 隔離體 116 開孔 118 金屬柵網 120 凹凸結構 122 網孔 124 〇 開口 126 陰極引線 128 表面修飾層 130 矽層 132 隔離體預製體 136 本體 138 17The method of fabricating the cathode emitter 112 is a micro-nano processing technique. The cathode emitter 112 is a tandem array of tips arranged in a regular hexagon. Each tip has a conical shape with a tip height of 1 to 2 microns and a pitch of w microns. Further, the embodiment may further include: preparing a surface modification layer 13 on the surface of the cathode emitter U2. The surface modification layer (10) may be a reduction method, a steam distillation method or a chemical vapor deposition method. The surface finish layer 130 covers the surface of the cathode emitter 112 and has a thickness of nanometers, preferably 5 nanometers. The surface repairing (4) 13 () is a carbide film such as tantalum carbide, carbonization, titanium carbide or carbon (10). Preferably, the surface modification layer 130 is made of titanium carbide or carbon (4), and its work function is (4) 3 82 electron volts and 3.3 2 . Electronic volts. In step three, a spacer preform 136 is prepared on the insulating substrate 102, and the spacer preform 136 is exposed. The separator preform 136 is an insulating layer made of thick film silicone and the spacer 136 covers the cathode emitter electrode 108. The separator preform 136 has a thickness of 5 Å to 1 〇〇〇 micrometer. The spacer preform 136 material is typically a photoresist such as su_8 photoresist or other thick film exposure adhesive. The exposure process can be achieved by ordinary exposure techniques. Exposure 14 200926241 is mainly for exposing the portion of the ex-body preform 136 corresponding to the opening 118 and the opening 126 to facilitate removal of the exposed portion in a later step, ' obtaining an opening 118 and an opening 126. Step 4, a metal grid 120 is formed on the spacer preform 130. The fabrication of the metal grid 120 specifically includes the following steps: First, a metal film is plated on the spacer preform 136. The plating process may be a sputtering method, an evaporation method, or a chemical vapor deposition method. The thickness of the metal film is 1 to 1 Å. Next, the above metal film was engraved to obtain a metal grid 12〇. The etching of the metal film is performed by a common etching technique. The metal grid 12〇 is arranged in a dense hexagonal arrangement and has a high transmittance of between 85% and 95%. In the fifth step, the exposed portion of the spacer body 136 is removed, and a spacer 116 is formed to be spaced apart from the cathode electrode n, thereby obtaining a field emission electron source 100. In the present embodiment, the method of removing the separator preform 136 that has been exposed to the file is by acetone soaking. The soaking process is carried out at room temperature, and the soaking time is 10 to 30 minutes. After the exposed portion of the spacer preform 130 has been removed, a spacer 116 having a "c" structure is formed which includes an opening 118 and an opening 126. Among them, the opening 118 makes the cathode emitter I. The way out is opposite the metal grid 120 through the opening 118, and the opening 126 exposes the cathode cathode 128 and is not in contact with the separator 116. During the exposure process, due to the reflection of light, the incident light forms a standing wave effect with the reflection 15 200926241 light, so an uneven exposure sentence is formed on the sidewall of the spacer U6, so that after the portion of the spacer preform 136 that has been exposed is removed, 'A concave-convex structure 122 is formed on the side wall of the separator 116. The relief structure v 122 can increase the insulation distance between the cathode electrode 110 and the metal grid 120. It can be understood that, in this embodiment, a plurality of field emission electron sources 100 can be prepared on an insulating substrate 102 to obtain a field array of emission electron sources. To prepare the array of field emission electron sources 100 described above, it is further desirable to provide a heat sink at the bottom of the insulating substrate 102. A fan or cooling water system can also be configured for the array of field emission electron sources 100. In summary, the present invention has indeed met the requirements of the invention patent, and has filed a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application in this case. Equivalent modifications or variations made by persons in accordance with the spirit of the present invention are intended to be within the scope of the following claims. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic structural view of a field emission electron source according to an embodiment of the present technical solution. Figure 2 is a cross-sectional view along line IMI of Figure 1. Q 3 is a schematic structural view of the emitter microtip of the field emission electron source of the embodiment of the technical solution. 4 is a flow chart of a method for preparing a field emission electron source according to an embodiment of the present technology. FIG. 5 is a schematic diagram of a process for preparing a field emission electron source according to an embodiment of the present technology. [Main component symbol description] 'Field emission electron source 100, insulating substrate 102 矽 layer 104 cerium oxide insulating layer 106 cathode emitting electrode 108 cathode electrode 110 # cathode emitter 112 emitter microtip 114 spacer 116 opening 118 metal grid Net 120 relief structure 122 mesh 124 〇 opening 126 cathode lead 128 surface modification layer 130 矽 layer 132 spacer preform 136 body 138 17