TW200925672A - Long phase difference film, long elliptic polarization film, elliptic polarization plate and image display device - Google Patents

Long phase difference film, long elliptic polarization film, elliptic polarization plate and image display device Download PDF

Info

Publication number
TW200925672A
TW200925672A TW097131433A TW97131433A TW200925672A TW 200925672 A TW200925672 A TW 200925672A TW 097131433 A TW097131433 A TW 097131433A TW 97131433 A TW97131433 A TW 97131433A TW 200925672 A TW200925672 A TW 200925672A
Authority
TW
Taiwan
Prior art keywords
film
acid
liquid crystal
long
retardation
Prior art date
Application number
TW097131433A
Other languages
Chinese (zh)
Other versions
TWI452353B (en
Inventor
Tadanobu Sekiya
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Publication of TW200925672A publication Critical patent/TW200925672A/en
Application granted granted Critical
Publication of TWI452353B publication Critical patent/TWI452353B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices

Abstract

Provided is a long elliptic polarization film having excellent productivity in manufacture and excellent view angle characteristics when used for an image display device and excellent color stability when stored in a high-temperature and high-humidity environment. A long phase difference film required for providing such long elliptical polarization film is also provided. Furthermore, an image display device using an elliptical polarization plate clipped from the elliptical polarization film is also provided. The long phase difference film is provided by arranging a vertically aligned liquid crystal layer on a long base material film composed of a transparent resin. The angle formed by the delayed phase axis within the surface of the base material film and the longitudinal direction of the film is 10-80 DEG .

Description

200925672 九、發明說明 【發明所屬之技術領域】 本發明係有關一種長條形之相位差薄膜、長條形之橢 圓偏光薄膜、該橢圓偏光板、以及使用其之反射型液晶顯 示裝置、觸控面板、有機EL(有機電致發光)顯示裝置等 之圖像顯示裝置。 Q 【先前技術】 以往,於反射型或半透過型液晶顯示裝置或觸控面板 、有機EL顯示裝置等之圖像顯示裝置中,抑制外光映入 、使明室對比明顯的方法,使用層合稱爲λ/4板(及λ/2板) 之相位差板與直線偏光板的圓型偏光板,係爲已知。 於製作該圓型偏光板時,以往係採用於製作透明樹脂 薄膜後,使該物朝薄膜之長度方向或寬度方向延伸,在光 學薄膜面內出現遲相軸,僅切出必要的面積後,使遲相軸 〇 與直線偏光板之透過軸傾斜成45°附近配置,且與直線偏 光板貼合的方法。因此,會有於切出相位差板時之損失與 切出作業本身之手續等,無法提高生產性之課題,或容易 產生來自各相位差板與直線偏光板之貼合軸調整不齊性的 性能變動等課題。 對該課題而言,於專利文獻1〜3中揭示,使輥狀薄膜 之寬度方向與遲相軸所形成的角度爲非直角,且非平行( 即傾斜)下予以延伸的相位差薄膜、與在輥狀薄膜之長度 方向具有吸收軸的直線偏光薄膜,使長度方向對齊、層合 -4- 200925672 ,製作的圓型偏光薄膜、或其製造方法。 藉由此等技術,可製作生產性更佳的圓型偏光薄膜。 然而’僅藉由此等之技術時’在圖像顯示裝置表面上所配 置的圓型偏光板之重要特性的視野角特性(即由各種角度 觀看時),由正面觀看時無法實現得到相同色調或對比。 而且’直至目前’進行各種圖像顯示裝置之行動化,伴隨 其使用方法之多樣化,於各種環境變化下顯示相同的光學 φ 特性之需求非常高。換言之,在高溫高濕下之色調安定性 重要,惟對該要求而言上述專利文獻1〜3之技術無法完全 對應。 改善視野角特性的方法,例如於專利文獻4中所揭示 的設置朝薄膜厚度方向配向的液晶層,藉由基材之延伸' 導致產生的厚度方向之相位差幾乎完全消失的技術,係爲 已知。然而’以該技術可改善者僅有視野角特性,不易改 善阔溫筒濕下之色調安定性。 ❹ 專利文獻1:日本特開2003-23292 1號公報 專利文獻2:日本特開2007-94007號公報 專利文獻3:日本特開2007- 1 53926號公報 專利文獻4:日本特開20〇4_22683 8號公報 【發明內容】 本發明之目的係提供一種製造時之生產性優異、使用 於圖像顯示裝置時之視野角特性及保存於高溫高濕環境時 之色調安定性優異的長條形橢圓偏光薄膜,且提供一種爲 -5- 200925672 實現該目的時之必要的長條形相位差薄膜。而且,另一目 的係提供一種使用自上述橢圓偏光薄膜所切出的橢圓偏光 板之圖像顯示裝置。 本發明之上述課題係藉由下述構成予以達成。 1. 一種長條形相位差薄膜,其特徵爲在由透明樹脂所 成的長條形基材薄膜上設置垂直配向液晶層所形成之長條 形相位差薄膜中,該基材薄膜面內之遲相軸與薄膜之長度 © 方向所成的角度爲10°〜80° 。 2. 如上述1記載之長條形相位差薄膜,其中在該基材 薄膜上所使用的透明樹脂爲纖維素酯。 3. 如上述2記載之長條形相位差薄膜,其中該纖維素 酯爲纖維素乙酸丙酸酯。 4. 一種長條形橢圓偏光薄膜,其特徵爲使至少一種上 述1〜3中任一項記載之長條形相位差薄膜、與長條形直線 偏光薄膜,使長度方向對齊予以層合製得。 © 5·—種橢圓偏光板,其特徵爲自上述4記載之長條形 橢圓偏光薄膜切出。 6.—種圖像顯示裝置,其特徵爲使用上述5記載之橢 圓偏光板。 [發明效果] 藉由本發明,可提供一種製造時之生產性優異、使用 於圖像顯示裝置時之視野角特性及保存於高溫高濕環境時 之色調安定性優異的長條形橢圓偏光薄膜’且提供一種爲 -6- 200925672 實現該目的時必要的長條形相位差薄膜。而且,可提供一 種使用自上述橢圓偏光薄膜切出的橢圓偏光板之圖像顯示 裝置。 [爲實施發明之最佳形態] 於下述中,詳細說明有關爲實施本發明之最佳形態, 惟本發明不受此等所限制。 φ 本發明之相位差薄膜,其特徵爲在由透明樹脂所形成 的長條形基材薄膜上設置垂直配向液晶層所形成之長條形 相位差薄膜中,該基材薄膜面內之遲相軸與薄膜之長度方 向所成的角度爲10°〜80° 。 藉由使至少一張該相位差薄膜、與長條形直線偏光薄 膜使長度方向對齊予以層合,可製得具有製造時之生產性 優異、且使用於圖像顯示裝置時之視野角特性及保存於高 溫高濕環境時之色調安定性優異的本發明優異效果之橢圓 G 偏光薄膜。 本發明人等再三深入硏究檢討本發明課題之一的高溫 高濕下之色調安定性,結果發現即使在遲相軸爲薄膜之長 度方向或寬度方向的基材薄膜上設置垂直配向液晶層,仍 無法得到本發明之效果,對遲相軸爲長度方向而言爲10° 〜8 0°之基材薄膜上設置垂直配向液晶層時,始可得本發 明之效果。此係雖爲無法預測的現象,於高溫高濕保存時 ,恐會僅在垂直配向液晶層內之分子配列上產生混亂情形 ,此會影響基材薄膜之面內相位差的波長分散性的程度之 200925672 混亂情形。因此’該混亂情形不是因基材薄膜之遲相軸與 薄膜之長度方向所形成的角度而不同,換言之,推測在對 遲相軸爲長度方向而言爲10。〜80。之基材薄膜上設置垂直 配向液晶層時’較在遲相軸爲薄膜之長度方向或寬度方向 之基材薄膜上設置垂直配向液晶層,其保存於高溫高濕時 之垂直配向液晶層內的分子配向之混亂情形變小、較爲安 定。 @ 於下述中,詳細說明本發明。 (本發明之長條形相位差薄膜) 本發明所指的相位差薄膜,係指面內之相位差値在廣 泛的波長範圍內顯示λ/4或λ/2之薄膜。更詳言之,以波 長5 50nm所測定的相位差値R〇(5 50)爲所謂的λ/4板時, 以108nm〜168nm 較佳,以128nm〜148nm 更佳,以 1 3 8 ± 5 n m最佳。另外,爲 λ / 2板時,以2 4 5 n m〜3 0 5 n m較 ❹ 佳,以265nm〜285nm更佳,以275±5nm最佳。此處’面 內相位差値R〇係以下述式爲基準求取。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a strip-shaped retardation film, an elongated elliptical polarizing film, the elliptically polarizing plate, and a reflective liquid crystal display device using the same, and a touch An image display device such as a panel or an organic EL (organic electroluminescence) display device. [Prior Art] In the image display device such as a reflective or transflective liquid crystal display device, a touch panel, or an organic EL display device, a method of suppressing external light reflection and making bright room contrast is used. A circular polarizing plate which is a phase difference plate of a λ/4 plate (and a λ/2 plate) and a linear polarizing plate is known. In the production of the circular polarizing plate, conventionally, after the transparent resin film is formed, the object is extended in the longitudinal direction or the width direction of the film, and a slow phase axis appears in the surface of the optical film, and only a necessary area is cut out. A method in which the retardation axis 〇 and the transmission axis of the linear polarizing plate are inclined at a position of 45° and are bonded to the linear polarizing plate. Therefore, there is a problem that the loss of the phase difference plate is cut off and the procedure of the cutting operation itself, and the productivity cannot be improved, or the misalignment of the bonding axes from the phase difference plates and the linear polarizing plates is likely to occur. Problems such as performance changes. In this patent, Patent Literatures 1 to 3 disclose a retardation film in which the angle formed by the width direction of the roll-shaped film and the slow phase axis is a non-right angle and is non-parallel (ie, inclined). A linear polarizing film having an absorption axis in the longitudinal direction of the roll-shaped film, which is aligned in the longitudinal direction, laminated -4-200925672, a circular polarizing film produced, or a method for producing the same. By such a technique, a round polarizing film having better productivity can be produced. However, the viewing angle characteristics of the important characteristics of the circular polarizing plate disposed on the surface of the image display device by the technique of the present invention (that is, when viewed from various angles) cannot be achieved by the front view. Or contrast. Further, the action of various image display devices has been carried out until now, and the demand for displaying the same optical φ characteristics under various environmental changes is extremely high as the method of use thereof is diversified. In other words, the color tone stability under high temperature and high humidity is important, but the technique of the above Patent Documents 1 to 3 cannot be completely matched to this requirement. A method for improving the viewing angle characteristics, for example, a technique in which the liquid crystal layer disposed in the film thickness direction is disclosed in Patent Document 4, and the phase difference in the thickness direction caused by the extension of the substrate is almost completely disappeared is know. However, the improvement in the technique is only the viewing angle characteristic, and it is difficult to improve the color stability of the wide temperature cylinder under wet conditions.专利 Patent Document 1: Japanese Laid-Open Patent Publication No. 2003-94007 No. JP-A-2007-94007 Patent Document 3: JP-A-2007- 1 53926 Patent Document 4: Japanese Patent Laid-Open No. 20-42683 SUMMARY OF THE INVENTION The object of the present invention is to provide an elongated elliptically polarized light which is excellent in productivity at the time of manufacture, has a viewing angle characteristic when used in an image display device, and has excellent color tone stability when stored in a high-temperature and high-humidity environment. A film, and a strip-shaped retardation film which is necessary for the purpose of -5 to 200925672 is provided. Further, another object is to provide an image display apparatus using an elliptically polarizing plate cut out from the above elliptically polarizing film. The above problems of the present invention are achieved by the following constitution. 1. A long stripe retardation film characterized by being provided in a long retardation film formed by vertically aligning a liquid crystal layer on a long base film formed of a transparent resin, wherein the base film is in-plane The angle between the retardation axis and the length of the film © direction is 10° to 80°. 2. The elongated retardation film according to 1, wherein the transparent resin used on the base film is a cellulose ester. 3. The elongated retardation film according to the above 2, wherein the cellulose ester is cellulose acetate propionate. 4. A long strip-shaped elliptically polarizing film characterized in that at least one of the elongated retardation film according to any one of the above 1 to 3 and the long linear polarizing film are laminated in the longitudinal direction . </ RTI> A elliptically polarizing plate characterized in that it is cut out from the long ellipsic polarizing film described in the above 4. A type of image display device comprising the elliptical polarizing plate described in the above 5. [Effect of the Invention] According to the present invention, it is possible to provide an elongated elliptical polarizing film which is excellent in productivity at the time of production, has a viewing angle characteristic when used in an image display device, and has excellent color tone stability when stored in a high-temperature and high-humidity environment. A long stripe retardation film which is necessary for the purpose of -6-200925672 is provided. Further, an image display device using an elliptically polarizing plate cut out from the above elliptically polarizing film can be provided. BEST MODE FOR CARRYING OUT THE INVENTION In the following, the best mode for carrying out the invention will be described in detail, but the invention is not limited thereto. φ The retardation film of the present invention is characterized in that in the long retardation film formed by vertically aligning the liquid crystal layer on the elongated base film formed of a transparent resin, the retardation in the surface of the substrate film The angle between the shaft and the length direction of the film is 10° to 80°. By laminating at least one of the retardation film and the long linear polarizing film in the longitudinal direction, it is possible to obtain a viewing angle characteristic which is excellent in productivity at the time of manufacture and which is used in an image display device. An elliptical G polarizing film excellent in the effect of the present invention which is excellent in color tone stability when stored in a high-temperature and high-humidity environment. The inventors of the present invention have further studied the color tone stability under high temperature and high humidity which is one of the problems of the present invention. As a result, it has been found that even if a vertical alignment liquid crystal layer is provided on the base film of the film in the longitudinal direction or the width direction of the film, The effect of the present invention is still not obtained, and the effect of the present invention can be obtained when a vertical alignment liquid crystal layer is provided on a substrate film having a retardation axis of 10° to 80° in the longitudinal direction. Although this system is an unpredictable phenomenon, it may cause chaos in the molecular arrangement in the vertical alignment liquid crystal layer during high-temperature and high-humidity storage, which may affect the degree of wavelength dispersion of the in-plane retardation of the substrate film. 200925672 Confusion situation. Therefore, the disorder is not caused by the angle formed by the retardation axis of the base film and the longitudinal direction of the film, in other words, it is presumed that the longitudinal axis is 10 in the longitudinal direction. ~80. When a vertical alignment liquid crystal layer is disposed on the base film, a vertical alignment liquid crystal layer is disposed on the base film of the film in the longitudinal direction or the width direction of the film, and is stored in the vertical alignment liquid crystal layer at a high temperature and high humidity. The disorder of molecular alignment becomes smaller and more stable. @ The following describes the invention in detail. (Long stripe retardation film of the present invention) The retardation film referred to in the present invention refers to a film in which the phase difference in the plane shows λ/4 or λ/2 in a wide wavelength range. More specifically, when the phase difference 値R 〇 (5 50 ) measured at a wavelength of 50 50 nm is a so-called λ/4 plate, it is preferably 108 nm to 168 nm, more preferably 128 nm to 148 nm, and 1 3 8 ± 5 . The best is nm. Further, in the case of the λ / 2 plate, it is preferably 2 4 5 n m to 3 0 5 n m, more preferably 265 nm to 285 nm, and most preferably 275 ± 5 nm. Here, the in-plane phase difference 値R〇 is obtained based on the following equation.

Ro=(nx-ny)xd (式中,nx係爲相位差薄膜面內之遲相軸方向的折射率(面 內之最大折射率),ny係爲垂直於相位差薄膜面內之遲相 軸方向的折射率’ d係爲相位差薄膜之厚度(nm))° 本發明之相位差薄膜’係藉由在由透明樹脂所形成的 -8- 200925672 長條形基材薄膜上,設置使朝薄膜厚度方向配向的液晶分 子予以塗佈且固定化之層而製得,惟構成本發明之基材薄 膜的透明樹脂之透明性,係指可視光之透過率爲60%以上 ,較佳者爲8 0 %以上,更佳者爲9 0 %以上。因此,透明樹 脂係爲對企求的波長之光而言具有上述透過率之樹脂,特 別是以熱塑性樹脂較佳。而且,本發明中所使用的透明樹 月旨,以固有複折射値爲正的樹脂所形成較佳。透明樹脂例 0 如纖維素酯、聚烯烴、聚楓、聚碳酸酯、聚甲基丙烯酸甲 酯、聚酯、聚乙烯醇等。特別是使用光彈性係數小的樹脂 ,由於可抑制因熱變形產生的相位差斑,故較佳,以使用 纖維素酯或聚烯烴等較佳。最佳者爲纖維素酯。延伸前之 基材薄膜,可以溶液流延法或熔融流延法等予以製膜,視 選擇的樹脂特性而定採用最適合的方法較佳。 本發明之相位差薄膜,係由在面內具有上述相位差的 基材薄膜、在該基材薄膜上之垂直配向液晶層所形成。此 〇 處,垂直配向液晶層係指使朝薄膜之厚度方向配向的液晶 分子塗佈於基材薄膜上、予以固定化所得的層。其特徵爲 該基材薄膜面內之遲相軸、與薄膜長度方向所成的角度爲 10°〜80°。於塗佈垂直配向液晶層時,其塗佈方向以與基 材薄膜之長度方向一致較佳。藉此使在長度方向具有吸收 軸之長條形直線偏光薄膜、與使該相位差薄膜之長度方向 對齊予以層合,可製得生產性佳、長條形橢圓偏光薄膜。 構成上述相位差薄膜之基材薄膜面內的遲相軸與薄膜長度 方向之傾斜度爲20°〜70°之範圍,較佳者爲30°〜60°之範 -9- 200925672 圍,更佳者爲40°〜50°之範圍,最佳者實質上爲45°。實 質上爲45°,係指4542°之範圍。 製作該特徵之長條形薄膜的方法,一般而言使用下述 基材薄膜之斜向延伸方法。 &lt;斜向延伸裝置、斜向延伸方法&gt; 於下述中,以使用熱塑性樹脂之薄膜作爲本發明相位 0 差薄膜之例予以說明。 本發明所使用的斜向延伸裝置,係爲具有預熱區、加 熱延伸區及冷卻區者,可使用習知的熱塑性樹脂薄膜延伸 時所使用的任意加熱裝置。熱塑性樹脂薄膜,係在預熱區 予以預熱、在加熱延伸區予以延伸、在冷卻區予以配向固 定,製得的延伸薄膜。 本發明所使用的斜向延伸裝置之固定器,只要是可使 熱塑性樹脂薄膜之端部固定的任意者皆可使用,例如可使 〇 用習知的拉幅延伸機所使用者,溝條或突條係於可使設置 成螺旋狀的機械要素驅動下所設置。 本發明所使用的機械要素,係使溝條或突條設置成螺 旋狀,在該溝條或突條上設定固定器且予以驅動,例如螺 旋、球形螺絲等。 上述溝條或突條之形狀,以容易使固定器驅動的形狀 較佳,以使部分正弦波或圓弧連續的形狀較佳。 於本發明中,上述機械要素係被設置於加熱裝置之左 右,於加熱延伸區中,變化機械要素中至少一方之螺旋間 -10- 200925672 距。換言之,藉由變化螺旋間距,以變化固定器之進行速 度,變化一對固定器之距離,藉由該變化可使熱塑性樹脂 薄膜予以延伸。 上述機械要素之材質,以射出成形或押出成形等所使 用的耐熱性優異的金屬較佳,在其表面上實施耐熱處理、 耐摩擦處理等之表面處理較佳。 而且,上述機械要素之驅動源,以可高精度控制固定 ❹ 器之移動速度者較佳,例如伺服馬達、分級馬達、反相器 馬達等。 參照圖面說明本發明之延伸薄膜的製造裝置。第1圖 係表示本發明延伸薄膜之製造裝置例的典型平面圖。 圖中’ 1係爲熱塑性樹脂薄膜,5係爲延伸薄膜。熱塑 性樹脂薄膜1係以固定器8,81固定其兩端部,朝箭頭A方 向搬送’在預熱區2進行預熱,在加熱延伸區3進行延伸, 在冷卻區4進行配向固定,製得延伸薄膜5。 Ο 加熱延伸區3之溫度,只要是與延伸的熱塑性樹脂薄 膜之玻璃轉移溫度大約相同者即可,可視製造的光學薄膜 之要求性能予以適當決定。 加熱延伸區3之加熱方法,只要是可使熱塑性樹脂薄 膜均勻地加熱即可’沒有特別的限制,例如熱風式、平板 加熱器、鹵素加熱器等之加熱裝置等,加熱延伸區3與冷 卻區4之境界的溫度控制’以高精度進行的熱風式較佳。 冷卻區4之溫度,只要是藉由延伸可固定熱塑性樹脂 薄膜之配向的溫度即可’一般而言設定於經延伸的熱塑性 -11 - 200925672 樹脂薄膜之玻璃轉移溫度以下。 上述冷卻區4之冷卻方法,只要是可大約平行地朝熱 塑性樹脂薄膜之配向方向進行冷卻即可,沒有特別的限制 ,例如熱風式、平板加熱器、鹵素加熱器等之加熱裝置、 使熱媒或冷媒通過的配管等,加熱延伸區3與冷卻區4之境 界的溫度控制,以高精度進行的熱風式較佳。 另外,加熱延伸區3與冷卻區4,係指實質上使熱塑性 0 樹脂薄膜延伸的區域及使藉由延伸所產生的配向冷卻固定 的區域,不是指機械、結構獨立的區域,係指可形成使熱 塑性樹脂薄膜延伸的溫度以上之區域及形成該溫度以下所 成的區域。 6,7係爲在加熱裝置左右所設置的螺旋,螺旋6係如第 2(1)圖所示,突條之刮板61以相同間距設置。此外,螺旋 7係如第2(2)圖所示,突條之刮板71係在變化間距下予以 設置。 〇 換言之,預熱區2及冷卻區4,係刮板71之間距狹窄, 螺旋6之刮板6 1的間距相同,加入延伸區3之間距逐漸變廣 、再變窄,與冷卻區4之間距相同。 上述螺旋6,7,係可驅動數個固定器8、81、且在螺旋 6,7之底部(預熱區2)側、設置於螺旋6上的固定器8與設置 於螺旋7上之固定器81對向下予以設置。 而且,9,91係爲使到達螺旋6,7前端(冷卻區4)側之固 定器8,81搬送至螺旋6,7之底部(預熱區2)側時之帶子。 其次,說明使熱塑性樹脂薄膜予以延伸的方法。 -12- 200925672 於上述延伸薄膜之製造裝置中’所供應的熱塑性樹脂 薄膜1之端部以固定器8及81固定’朝熱塑性樹脂薄膜1之 進行方向(圖中爲A方向)搬送,此時’使熱塑性樹脂薄膜 1之搬送速度與固定器81之速度爲相同的速度,且沒有使 熱塑性樹脂薄膜1朝進行方向延伸。 所供應的熱塑性樹脂薄膜1係使其兩端部以固定器 8,81固定的預熱區2予以預熱,搬送於加熱延伸區3。預熱 Q 區2中,由於刮刀61及71之間距相同’故固定器8,81之移 動速度相同,熱塑性樹脂薄膜1沒有朝任何方向延伸’搬 送於加熱延伸區3。 加熱延伸區3中,固定器81之移動速度雖不變,惟固 定器8之移動速度由於刮刀6〗之間距逐漸變寬,變得較固 定器81之移動速度更快,固定器8與固定器81之距離逐漸 變寬,熱塑性樹脂薄膜1僅朝與熱塑性樹脂薄膜1之進行方 向不同的方向進行延伸。 Q 其次,使經延伸的熱塑性樹脂薄膜1朝冷卻區4搬送、 予以配向固定。由於冷卻區4之刮刀7 1的間距與刮刀6 1之 間距相同,經延伸的熱塑性樹脂薄膜以直接的狀態被配向 固定。 經延伸、配向固定的延伸薄膜5,自冷卻區4被排出, 製得朝與熱塑性樹脂薄膜1之進行方向不同的方向配向的 延伸薄膜5。 換言之,與第3圖所示相同地,於所得的延伸薄膜5中 ,配向軸(光學軸)對延伸薄膜之長度方向而言爲斜向。 -13- 200925672 因此,如第4圖所示’藉由使所得的延伸薄膜2 1 (例如 直線偏光薄膜)與縱一軸延伸所得的延伸薄膜24(例如相位 差薄膜)直接層合,朝垂直於進行方向的方向裁斷’延伸 薄膜21之光學軸23與延伸薄膜24之光學軸25的方向不同’ 可製得光學軸不同的薄膜之層合體26(例如圓偏光薄膜)。 固定器8,81係藉由取出冷卻區4時’開放延伸薄膜’ 藉由帶子9,91搬送至預熱區2之入口附近’使繼後的熱塑 0 性樹脂薄膜固定、準備處理。 其次,說明使用其他的延伸薄膜之製造裝置’朝傾斜 45°的方向進行延伸之方法。 爲使熱塑性樹脂薄膜對長度方向而言實質上45°方向 進行斜向延伸時,以使用第5圖所示之拉幅器較佳。第5圖 係爲藉由拉幅器進行斜向延伸之典型圖。如第5圖所示, 使熱塑性樹脂薄膜101朝一定的搬送方向1〇3搬送、且使用 拉幅器102進行斜向(45°)延伸。第5圖係使延伸方向之薄 Q 膜的寬度變化以點線表示。在第5圖之一位置(104L及 104R)予以格子化的薄膜,藉由使左側朝接近慢速度 (106L)的位置(105L)移動,右側朝遠離快速度(106R)之位 置(105R)移動,實施斜向延伸處理。延伸倍率係以2〜30 倍較佳,以3〜1 0倍更佳。於延伸時,熱塑性樹脂薄膜之 玻璃轉移溫度爲Tg時,以在(Tg-30)〜(Tg+100)°C之範圍 內進行加熱、延伸較佳,以(Tg-20)〜(Tg + 80)°C之範圍更 佳。特別是在(Tg-20)〜(Tg + 20)°C之溫度範圍內進行延伸 、再予以熱固定較佳。而且,以於延伸步驟後,進行緩和 -14- 200925672 處理較佳。 斜向延伸處理,亦可分成數個步驟予以實施。特別是 於高倍率延伸時,以分成數個步驟、可得均勻的延伸結果 較佳。此外,以防止寬度方向之收縮爲目的時,亦可於斜 向延伸前,進行橫方向或縱方向之數次延伸處理。斜向延 伸可藉由使一般薄膜二軸延伸時所採用的拉幅器延伸,以 上述之左右不同的步驟實施。爲以左右不同速度進行延伸 Q 時,延伸前薄膜之厚度調整成左右不同。使聚乙烯醇溶液 流延、製膜時,溶液之流量亦可調整成左右不同。流量之 調整可容易以在塑模上附設圓錐的方法實施。 另外,可以使用特開2004-20827號公報第2圖〜第7圖 或特開2007-94007號公報第1圖〜第4圖、或特開2007-2 03 5 5 6號公報第1圖〜第4圖中記載的斜向延伸裝置等。 此外,製造本發明之相位差薄膜時,以在塗佈下述之 垂直配向液晶層前,朝上述斜向方向進行延伸較佳。於上 〇 述延伸時,以提高相位差薄膜之面內的遲相軸方向之控制 自由度爲目的時,朝薄膜之長度方向延伸後,對上述長度 方向而言斜向延伸,或對上述長度方向而言斜向延伸後, 朝上述長度方向延伸較佳。爲實現該目的之具體裝置例,以 使用特開2007-3 0466號公報記載的薄膜伸縮裝置等較佳。 藉由第11圖〜第14圖,參照圖面說明本發明之較佳實 施形態。 於第11圖及第12圖中,係表示本發明之一實施形態的 薄膜延伸裝置(伸縮裝置)4〇1之平面及截面。薄膜延伸裝 -15- 200925672 置401係由供應薄膜402之供應裝置403、與使薄膜加熱的 縱延伸爐404、與使薄膜402在下游處搬送的中間搬送裝置 405所形成的縱延伸部(縱伸縮部)406、與搬送薄膜402且 對搬送方向而言朝傾斜方向延伸的斜向延伸機407、與覆 蓋斜向延伸機407之中央部下所設置的、使薄膜4 02加熱的 斜向延伸爐4 0 8所形成的斜向延伸部(斜向伸縮部)4 0 9,與 使薄膜402捲取的卷取裝置410所形成。 φ 供應裝置403,係裝置捲附薄膜402之原材料卷軸411 ,使薄膜402以基準輥412與夾輥413夾住,以所定的搬送 速度送出。縱延伸爐404係爲以具有在薄膜402上自上下吹 附互相不同的熱風之熱風導管(加熱方法)4M之斷熱材料 所構成的箱體。中間搬送裝置405係使薄膜402以比例輥 415與夾輥416夾住、搬送,朝搬送方向與平行的E1方向 延伸。斜向延伸機407係以在薄膜402之兩側上配置的延伸 鏈417搬送薄膜402,且對搬送方向而言僅傾斜角度α的 〇 Ε2方向延伸者,如下詳述。斜向延伸爐408,係爲具有在 薄膜4 02上、自下方吹附熱風之熱風導管418之斷熱材料所 構成的箱體。卷取裝置410係以張力輥41 9調整張力,使薄 膜402捲取於製品卷軸420上。 第13圖係表示斜向延伸機407之構成。斜向延伸機407 係由平行的2條延伸鏈4 1 7、與在延伸鏈4 1 7上各以一定間 隔設置的數個基體421、與在各基體421上朝一定方向可滑 動下裝設的臂422,在各臂422之前端所設置的固定器423 所形成。固定器423係在可使薄膜402之兩側邊緣部固定下 -16- 200925672 所形成,延伸鏈41 7係在薄膜4 0 2之面上周邊架設垂直的鏈 輪4 2 4所形成。 第14圖係表示斜向延伸軸407之更詳細構造。延伸鏈 417上隔1間隔,以使基體421固定。基體421係各對延伸鏈 417而言設置傾斜45° (第1圖之角度α)的2個滑動軸425,沿 著各滑動軸42 5設置可滑動的臂422。在臂42 2之上方設置 由軸承所形成的位置決定構件426,藉由以導線427裝設位 〇 置決定構件426,以使臂422可突出或後退所形成。在臂 422之前端所設置的固定器423,係爲習知的薄膜固定機構 ,以導線4W進行開關切換(薄膜402之固定或解放)。 斜向延伸機407,係使由延伸鏈417之基體421所形成 的臂422突出,藉由固定器423使薄膜402之兩側邊緣部固 定,且使延伸鏈41 7進行以搬送薄膜402。其間藉由以固定 器423固定薄膜402下、使臂422後退,以使薄膜402朝臂 422之滑動方向(第11圖之Ε2方向)延伸、變寬。於變寬時 〇 ,朝臂422之滑動方向對向的臂422間的後退量變得相等。 使薄膜402變寬後,固定器423使薄膜402開放。然後使臂 422再後退,使延伸鏈41 7沿著鏈輪424折返時,使固定器 423沒有接觸薄膜402。 其次,說明有關由上述構成所形成的薄膜延伸裝置 401之薄膜402的延伸處理。 於縱延伸部406中,薄膜402以基準輥412、以所定速 度送出,藉由比例輥415以較基準輥41 2更快速的速度搬送 時,在縱延伸爐4〇4內使經加熱的部分朝搬送方向(Ε1方向 -17- 200925672 )、以比例輥4 1 5對基準輥4 1 2而言搬送速度比相同的比例 進行延伸。藉由該縱方向之延伸,賦予薄膜402之分子在 搬送方向及縱方向之配向角。 此外,於斜向延伸部409中,薄膜402對搬送方向而言 僅傾斜角度α下方向、朝E2方向進行延伸。藉由該傾斜 方向之延伸,在薄膜402上朝Ε2方向拉伸,使對薄膜402 之變形而言之應力作用,且對搬送方向而言較Ε2方向更 0 大的角度使分子配列時,使延伸力運作,以賦予傾斜方向 之配向角。 結果,薄膜402使在縱延伸部406中所賦予的配向角、 與在斜向延伸部409中所賦予的配向角補足’可得組合的 方向之配向角,視縱延伸部406及斜向延伸部409之延伸強 度(延伸比例)而定,賦予相位差値。 使薄膜402以薄膜延伸裝置1進行斜向延伸’製造配向 薄膜時,實際上使薄膜402在縱延伸部406及斜向延伸部 ❹ 409進行延伸,測定所得薄膜402之配向角’且在可得企求 的配向角下,藉由增減比例輥415之速度’以調整縱延伸 部406之延伸比例。而且,藉由調整斜向延伸部409之延伸 比例,可得企求的相位差値。 例如,藉由使聚碳酸酯薄膜予以延伸’製造相位差薄 膜(配向薄膜)時,使基準輥412與比例輥41 5之速度設定爲 相同速度(縱延伸部406之延伸率爲〇%) ’且於斜向延伸部 409中在α = 45。下進行18%之斜向延伸時’薄膜402之配向 角對搬送方向而言大約爲6 0。的條件下’沒有改變斜向延 -18 - 200925672 伸部409之延伸條件,於縱延伸部406中進行約10%之延伸( 使比例輥415之速度較基準輥412之速度大約快速10%),可 使薄膜402之配向角爲45°。 總之,薄膜延伸裝置40 1,藉由使傾斜延伸機407對延 伸方向E2之搬送方向而言的角度α,設定爲可得經驗的企 求配向角時之大約値,實際上藉由使薄膜402進行延伸, 調整比例輥4 1 5之速度,以調整配向角。比例輥4 1 5可藉由 〇 反相器、或無段變速器在運作同時變化,可容易得到企求 的配向角。 上述之實施形態,係使薄膜402朝傾斜方向延伸者, 可使斜向延伸機407逆向設置以進行逆回轉。可使用規定 熱收縮性薄膜之斜向延伸爐408內部之Ε2方向的收縮作用 ,朝傾斜方向使分子配列下予以熱收縮的裝置。 而且,爲本發明時,亦可使薄膜朝傾斜方向進行延伸 或規劃收縮後,使薄膜朝縱方向進行延伸或規定收縮。 ❹ &lt;纖維素酯&gt; 構成本發明之相位差薄膜的基材薄膜所使用的透明樹 脂,以纖維素酯較佳。更詳言之,以纖維素酯爲主成分, 且混合有可塑劑、紫外線吸收劑等之添加劑者較佳。 本發明之基材薄膜,含有60〜100質量%纖維素酯。 該纖維素酯之總醯基取代度以2.1〜2.9較佳。 本發明所使用的纖維素酯,係爲炭數約2〜22的羧酸 酯、芳香族羧酸之酯,特別是碳數爲6以下之低級脂肪酸 -19- 200925672 酯較佳。 鍵結於羥基之醯基’可以爲直鏈,亦可爲支鏈,或形 成環。另外’亦可以其他取代基取代。爲相同的取代度時 ,由於上述碳數多時’複折射率降低,在碳數爲2〜6之醯 基中選擇較佳。上述纖維素酯之碳數以2〜4較佳,碳數以 2〜3更佳。 具體的纖維素酯’可使用如纖維素乙酸丙酸酯、纖維 ❹ 素乙酸丁酸酯、纖維素乙酸丙酸丁酸酯或纖維素乙酸苯二 甲酸酯之除乙醯基外鍵結有丙酸酯基、丁酸酯基或酞基之 纖維素的混合脂肪酸酯。而且,形成丁酸酯之丁醯基,可 以爲直鏈狀、亦可爲支鏈狀。 本發明中所使用的較佳纖維素酯,特別是以使用纖維 素乙酸酯、纖維素乙酸丁酸酯、纖維素乙酸丙酸酯更佳。 其中,以纖維素乙酸丙酸酯最佳。在平均醋化度(乙醯化 度)爲45_0〜62.5 %之纖維素乙酸酯中,例如添加特開 〇 2002-22944號公報中記載的阻滯上昇劑的薄膜,使用於本 發明中極爲有效,惟就完全沒有產生在高溫高濕保存下滲 出於薄膜表面上,導致品質降低的情形而言,以纖維素乙 酸丙酸酯更佳。 本發明之纖維素醋,以同時滿足下述式(1)及式(2)者 較佳。 式(1) 2.1 SX + YS2.9 式(2) 0 S YS 1 .5 -20- 200925672 式中,χ係爲乙醯基之取代度,γ係爲丙醯基或丁醯 基、或其混合物之取代度。而且,乙醯基之取代度與其他 醯基之取代度,可藉由ASTM-D817-96規定的方法求取。 另外,爲得目的之光學特性時,亦可混合取代度不同 的樹脂使用。混合比以10 : 90〜90 : 10(質量比)較佳。 其中,以使用纖維素乙酸丙酸酯更佳。纖維素乙酸丙 酸酯,以 1.0SXS2.5 ' 0.1SYS1.5、2.1SX + YS2.9 更佳 ❹ 本發明所使用的纖維素酯之數平均分子量爲60000〜 3 000 00之範圍,所得的薄膜之機械強度強,故較佳。此外 ,以70000〜200000者更佳° 纖維素酯之重量平均分子量Mw、數平均分子量Μη ’係使用凝膠滲透色層分析法(GPC)測定。 測定條件如下所述。 溶劑:二氯甲烷 〇 柱·· Shodex Κ806、Κ8 05、K8 03 G(連接 3條昭和電工( 股)製使用) 柱溫度:2 5 °C 試料濃度:〇 . 1質量% 檢測器:RI Model 504(GL Science(譯音)公司製) 幫浦:L6 0 00(日立製作所(股)製) 流量:1 .Oml/min 校正曲線:使用藉由標準聚苯乙烯STK standard聚 苯乙烯(東曹(股)製)Mw= 1 000000〜500之13個試料之校正 -21 - 200925672 曲線。1 3個試料大約以等間隔使用。 而且,本測定方法亦可使用作爲本發明之其他聚合物 的測定方法。 本發明之纖維素酯的原料纖維素,沒有特別的限制’ 例如可使用綿絨、木材紙漿、洋麻等。此外,由此等所得 的纖維素酯,可以各種任意比例混合使用。 本發明之纖維素酯,可藉由習知的方法製造。具體而 φ 言’可參考特開平10-4 5804號中記載的方法予以合成。 此外’纖維素酯會受到纖維素酯中之微量金屬成分所 影響。 此等考慮與製造步驟中所使用的水有關,以形成不溶 性核所得的成分少者較佳,鐵、鈣、鎂等之金屬離子,藉 由與具有含有機的酸性基之可能性的聚合分解物等形成鹽 ,形成不溶物時,以少者較佳。 有關鐵(Fe)成分,以lppm以下較佳。有關鈣(Ca)成分 φ ,羧酸 '或磺酸等之酸性成分、容易與多數配位子形成配 位化合物(即複合物),形成多數來自不溶性鈣之殘渣(不 溶性沉澱、混濁)。 鈣(Ca)成分爲60ppm以下、較佳者爲〇〜3〇ppm。有關 鎂(Mg)成分,由於過多時仍會產生不溶份,故以0〜 7〇ppm較佳’以0〜20ppm更佳。 鐵(Fe)成分之含量、鈣(Ca)成分之含量、鎂(Mg)成分 之含量等金屬成分’可使絕乾的纖維素酯以微蒸煮器濕式 分解裝置(硫硝酸分解)、鹼熔融進行前處理後,使用IC P - -22- 200925672 AES(衍生鍵結電漿發光分光分析裝置)予以分析。 &lt;其他添加劑&gt; 構成本發明之相位差薄膜的基材薄膜,視其所需可含 有適當的添加劑。 &lt;具有1個以上、12個以下之至少一種吡喃糖構造或呋喃糖 0 構造,且其構造之全部或部分OH基酯化的酯化合物&gt; 構成本發明之相位差薄膜的基材薄膜,以含有具1個 以上、1 2個以下之至少一種吡喃糖構造或呋喃糖構造、且 其構造之全部或部分OH基被酯化的酯化合物較佳。於本 發明中,總稱爲上述酯化合物,亦稱爲糖酯化合物。 本發明所使用的酯化合物,例如下述所示者,惟本發 明不受此等所限制。 例如葡萄糖、半乳糖、甘露糖、果糖、木糖、或阿拉 G 伯糖、乳糖、蔗糖、丁糖、if果丁糖、水蘇糖、甘露二 糖、乳二糖、乳果糖、纖維二糖、麥芽糖、纖維三糖、甘 露三糖、蜜里三糖或蔗果三糖。 另外’例如龍膽二糖、龍膽三糖、龍膽四糖、木三糖 、半乳乳糖等。 於此#之化合物中’特別是以具有卩比喃糖構造與呋喃 糖構造兩者之化合物較佳。 例如蔗糖、蔗果三糖、丁糖、1F果丁糖、水蘇糖等 較佳,以蔗糖更佳。 -23- 200925672 本發明之吡喃糖構造或呋喃糖構造中全部或部分OH 基被酯化時所使用的單羧酸,沒有特別的限制,可使用習 知的脂肪族單羧酸、脂環族單羧酸、芳香族單羧酸等。所 使用的羧酸可以爲1種、亦可以2種以上混合。 較佳的脂肪族單羧酸,例如醋酸、丙酸、丁酸、異丁 酸、戊酸、己酸、庚酸、辛酸、壬酸、癸酸、2 -乙基-己 竣酸、&quot;1 院酸、十二院酸、十三院酸、肉竟蘧酸、十五 0 烷酸、棕櫚酸、十七烷酸、硬脂酸、十九烷酸、二十烷酸 、山嵛酸、巴西棕櫚酸、蠟酸、二十七烷酸、褐煤酸、三 十烷酸、三十二烷酸等之飽和脂肪酸、十一烯酸、油酸、 山梨酸、亞油酸、亞麻酸、花生浸烯酸、辛烯酸等之不飽 和脂肪酸等。 較佳的脂環族單羧酸,例如醋酸、環戊烷羧酸、環己 烷羧酸、環辛烷羧酸、或此等之衍生物。 較佳的芳香族單羧酸,例如在苯甲酸、甲苯醯酸等苯 φ 甲酸之苯環上導入烷基、烷氧基的芳香族單羧酸、在肉桂 酸、苯甲酸、聯苯羧酸、萘羧酸、四氫化萘羧酸等具有2 個以上苯環之芳香族單羧酸 '或此等之衍生物,更具體而 言例如二甲苯苯甲酸、2,3-二甲苯苯基酸、3,5-二甲基苯 甲酸、2,3,4-連三甲苯酸、r-異杜基酸、杜基酸、来酮酸 、α-異杜基酸、對異苯基苯甲酸、α-苯乙酸、α-甲基苯乙 酸、α-甲基丙烯、氫化肉桂酸、水楊酸、〇-茴香酸、m-茴 香酸、P-茴香酸、染酚酸、〇-均水楊酸、m-均水楊酸、P- 均水楊酸、〇-焦兒茶酸、P-二羥基苯甲酸、香草酸 '異香 -24- 200925672 草酸、3,4-二甲基苯甲酸、〇-藜蘆酸、沒食子酸、細辛酸 、苦杏仁酸、均茴香酸、均香草酸、均3,4-二甲基苯甲酸 、〇 -均3,4 -二甲基苯甲酸、酞酮酸、ρ -香豆酸,特別是以 苯甲酸較佳。 可使用低聚糖之酯化合物作爲具有1〜12個之至少一 種吡喃糖構造或呋喃糖構造之化合物。 低聚糖係爲在澱粉、蔗糖等中使醯胺酶等之酵素作用 〇 所製造者’本發明可使用的低聚糖例如麥芽低聚糖、異麥 芽低聚糖、果低聚糖 '半乳低聚糖、乳低聚糖。 另外’上述酯化合物係爲使1個以上、12個以下之至 少一種以下述一般式(Α)所示之吡喃糖構造或呋喃糖構造 予以縮合的化合物。其中,Rll〜Rl5、r21〜R25係爲碳數2 〜22之酿基或氫原子,m,n係各爲〇〜12之整數,m + n係 爲1〜12之整數。 —般式(A)Ro=(nx-ny)xd (wherein nx is the refractive index of the retardation axis in the plane of the retardation film (the maximum refractive index in the plane), and ny is the retardation perpendicular to the in-plane of the retardation film. The refractive index 'd in the axial direction is the thickness (nm) of the retardation film). The retardation film of the present invention is disposed on the -8-200925672 elongated substrate film formed of a transparent resin. The liquid crystal molecules aligned in the thickness direction of the film are coated and fixed, but the transparency of the transparent resin constituting the substrate film of the present invention means that the visible light transmittance is 60% or more. It is 80% or more, and more preferably 90% or more. Therefore, the transparent resin is a resin having the above transmittance for light of a desired wavelength, and is particularly preferably a thermoplastic resin. Further, the transparent tree used in the present invention is preferably formed of a resin having a positive complex refracting enthalpy. Examples of the transparent resin are cellulose ester, polyolefin, poly maple, polycarbonate, polymethyl methacrylate, polyester, polyvinyl alcohol and the like. In particular, a resin having a small photoelastic coefficient is used, and since a phase difference spot due to thermal deformation can be suppressed, it is preferred to use a cellulose ester or a polyolefin. The most preferred is cellulose ester. The base film before stretching can be formed by a solution casting method or a melt casting method, and the most suitable method is preferably used depending on the selected resin characteristics. The retardation film of the present invention is formed of a base film having the above-described phase difference in the plane and a vertical alignment liquid crystal layer on the base film. In this case, the vertical alignment liquid crystal layer is a layer obtained by applying liquid crystal molecules aligned in the thickness direction of the film to the base film and fixing them. It is characterized in that the retardation axis in the plane of the substrate film and the angle formed in the longitudinal direction of the film are 10° to 80°. When the vertical alignment liquid crystal layer is applied, the coating direction is preferably in conformity with the length direction of the substrate film. Thereby, an elongated linear polarizing film having an absorption axis in the longitudinal direction is laminated and aligned in the longitudinal direction of the retardation film, whereby a highly productive, elongated elliptical polarizing film can be obtained. The retardation axis in the surface of the base film constituting the retardation film and the longitudinal direction of the film are in the range of 20° to 70°, preferably 30° to 60° in the range of -9 to 200925672. The range is from 40° to 50°, and the best is substantially 45°. It is 45° in nature and refers to the range of 4542°. As a method of producing the long strip film of this feature, generally, the following oblique stretching method of the base film is used. &lt;Slanting device and oblique stretching method&gt; Hereinafter, a film using a thermoplastic resin will be described as an example of the phase difference film of the present invention. The oblique stretching device used in the present invention is a preheating zone, a heating extension zone, and a cooling zone, and any heating means used in the extension of a conventional thermoplastic resin film can be used. The thermoplastic resin film is obtained by preheating in a preheating zone, extending in a heating extension zone, and aligning in a cooling zone to obtain a stretched film. The holder for the oblique stretching device used in the present invention can be used as long as it can fix the end portion of the thermoplastic resin film, for example, a user of a conventional tenter stretching machine, a groove or The ridges are provided under the driving of mechanical elements that are arranged in a spiral shape. The mechanical element used in the present invention is such that the groove or the ridge is provided in a spiral shape, and a holder is set and driven on the groove or the ridge, such as a screw or a ball screw. The shape of the groove or the ridge is preferably such that the shape of the sine wave or the circular arc is continuous. In the present invention, the mechanical element is disposed at the left and right of the heating device, and the distance between the spirals of at least one of the mechanical elements is changed in the heating extension zone. In other words, by changing the pitch of the spiral, the distance between the pair of holders is varied by changing the speed of the holder, by which the thermoplastic resin film can be stretched. The material of the mechanical element is preferably a metal having excellent heat resistance for use in injection molding or extrusion molding, and is preferably subjected to surface treatment such as heat treatment or rubbing treatment on the surface thereof. Further, it is preferable that the driving source of the mechanical element is capable of controlling the moving speed of the fixed device with high precision, such as a servo motor, a classifying motor, an inverter motor or the like. The apparatus for manufacturing the stretched film of the present invention will be described with reference to the drawings. Fig. 1 is a typical plan view showing an example of a manufacturing apparatus of the stretched film of the present invention. In the figure, '1 is a thermoplastic resin film, and 5 is an extended film. The thermoplastic resin film 1 is fixed to both end portions by the holders 8, 81, and is conveyed in the direction of the arrow A to perform preheating in the preheating zone 2, to extend in the heating extension zone 3, and to perform alignment fixation in the cooling zone 4 to obtain The film 5 is stretched.温度 The temperature of the heating extension 3 may be approximately the same as the glass transition temperature of the stretched thermoplastic resin film, and may be appropriately determined depending on the desired properties of the optical film to be produced. The heating method of the heating extension zone 3 is not particularly limited as long as the thermoplastic resin film can be uniformly heated, for example, a heating device such as a hot air type, a plate heater, a halogen heater, or the like, and the heating extension zone 3 and the cooling zone are heated. Temperature control at the boundary of 4 'The hot air type with high precision is preferred. The temperature of the cooling zone 4 can be generally set to be lower than the glass transition temperature of the stretched thermoplastic -11 - 200925672 resin film by extending the temperature at which the thermoplastic resin film can be aligned. The cooling method of the cooling zone 4 is not particularly limited as long as it can be cooled in the direction in which the thermoplastic resin film is aligned in parallel, and is, for example, a heating device such as a hot air type, a flat heater or a halogen heater, or a heating medium. It is preferable to control the temperature of the boundary between the extension zone 3 and the cooling zone 4 by piping or the like through which the refrigerant passes, and to perform the hot air type with high precision. In addition, the heating extension zone 3 and the cooling zone 4 refer to a region in which the thermoplastic 0 resin film is substantially extended and a region in which the alignment cooling by the stretching is fixed, and does not mean a mechanically and structurally independent region, which means that it can be formed. A region above the temperature at which the thermoplastic resin film is stretched and a region formed by forming the temperature or lower. 6,7 is a spiral provided on the right and left sides of the heating device, and the spiral 6 is as shown in the second (1) diagram, and the squeegees 61 of the ridges are disposed at the same pitch. Further, the spiral 7 is as shown in Fig. 2(2), and the squeegee 71 of the ridge is provided at a varying pitch. In other words, in the preheating zone 2 and the cooling zone 4, the distance between the squeegees 71 is narrow, the pitch of the squeegee 6 1 of the spiral 6 is the same, and the distance between the extension zones 3 is gradually widened and narrowed again, and the cooling zone 4 is The spacing is the same. The above-mentioned spirals 6, 7 are capable of driving a plurality of holders 8, 81, and on the bottom of the spirals 6, 7 (preheating zone 2), the holder 8 provided on the spiral 6, and the fixing provided on the spiral 7. The unit 81 is set downward. Further, 9,91 is a belt for transporting the holders 8, 81 on the side of the front end (cooling zone 4) of the spiral 6, 7 to the bottom (preheating zone 2) side of the spirals 6, 7. Next, a method of extending the thermoplastic resin film will be described. -12-200925672 In the manufacturing apparatus of the above-mentioned stretched film, the end portion of the thermoplastic resin film 1 supplied is fixed by the holders 8 and 81, and is conveyed toward the direction in which the thermoplastic resin film 1 is carried out (in the direction A). 'The conveying speed of the thermoplastic resin film 1 is the same as the speed of the holder 81, and the thermoplastic resin film 1 is not extended in the progress direction. The thermoplastic resin film 1 to be supplied is preheated at its both ends by a preheating zone 2 fixed by a holder 8, 81, and conveyed to the heating extension zone 3. In the preheating Q zone 2, since the distance between the doctor blades 61 and 71 is the same, the moving speeds of the holders 8, 81 are the same, and the thermoplastic resin film 1 is not extended in any direction, and is transported to the heating extension zone 3. In the heating extension 3, the moving speed of the holder 81 is constant, but the moving speed of the holder 8 is gradually widened due to the distance between the blades 6, and becomes faster than the moving speed of the holder 81, and the fixing device 8 is fixed. The distance between the stoppers 81 is gradually widened, and the thermoplastic resin film 1 is extended only in a direction different from the direction in which the thermoplastic resin film 1 is moved. Q Next, the stretched thermoplastic resin film 1 is conveyed to the cooling zone 4, and is aligned and fixed. Since the pitch of the blade 7 1 of the cooling zone 4 is the same as the pitch of the blade 61, the stretched thermoplastic resin film is aligned and fixed in a direct state. The stretched film 5 which is stretched and aligned is discharged from the cooling zone 4 to obtain a stretched film 5 which is aligned in a direction different from the direction in which the thermoplastic resin film 1 is oriented. In other words, in the same manner as shown in Fig. 3, in the obtained stretched film 5, the alignment axis (optical axis) is oblique to the longitudinal direction of the stretched film. -13- 200925672 Therefore, as shown in Fig. 4, by directly laminating the obtained stretched film 2 1 (for example, a linear polarizing film) and the stretched film 24 (for example, a retardation film) obtained by extending the longitudinal axis, it is perpendicular to The direction of the direction is cut, 'the optical axis 23 of the stretched film 21 is different from the direction of the optical axis 25 of the stretched film 24'. A laminate 26 of a film having a different optical axis (for example, a circularly polarizing film) can be obtained. The holders 8, 81 are conveyed to the vicinity of the inlet of the preheating zone 2 by the tapes 9, 91 when the cooling zone 4 is taken out, and the subsequent thermoplastic resin film is fixed and prepared. Next, a method of extending the manufacturing apparatus of the other stretched film in a direction inclined by 45° will be described. In order to extend the thermoplastic resin film obliquely in the direction of substantially 45° in the longitudinal direction, it is preferable to use the tenter shown in Fig. 5. Figure 5 is a typical diagram of oblique extension by a tenter. As shown in Fig. 5, the thermoplastic resin film 101 is conveyed in a constant conveyance direction 1〇3, and is extended obliquely (45°) by the tenter 102. Fig. 5 is a diagram showing the change in the width of the Q film in the extending direction by a dotted line. The film which is latticed at one of the positions (104L and 104R) in Fig. 5 is moved toward the position (105R) away from the rapidity (106R) by moving the left side toward the position (105L) which is close to the slow speed (106L). , implement oblique extension processing. The stretching ratio is preferably 2 to 30 times, more preferably 3 to 10 times. When the glass transition temperature of the thermoplastic resin film is Tg during stretching, heating and stretching in the range of (Tg-30) to (Tg+100) °C is preferred, and (Tg-20)~(Tg+ 80) The range of °C is better. In particular, it is preferred to carry out stretching in a temperature range of (Tg-20) to (Tg + 20) °C and then heat-fixing. Moreover, after the extension step, the mitigation -14-200925672 treatment is preferred. The oblique extension process can also be implemented in several steps. Particularly in the case of high-magnification stretching, it is preferable to obtain a uniform stretching result in a plurality of steps. Further, in order to prevent shrinkage in the width direction, it is also possible to perform a plurality of stretching processes in the lateral direction or the longitudinal direction before the oblique stretching. The oblique extension can be carried out by different steps described above by extending the tenter used in the case where the general film is biaxially stretched. In order to extend Q at different speeds from left to right, the thickness of the film before stretching is adjusted to be different from left to right. When the polyvinyl alcohol solution is cast and formed into a film, the flow rate of the solution can be adjusted to be different from left to right. The adjustment of the flow rate can be easily carried out by attaching a cone to the mold. In addition, it is possible to use the first to fourth drawings of the Japanese Patent Publication No. 2004-20827 or the first to fourth drawings of the Japanese Patent Publication No. 2007-94007, or the first drawing of the Japanese Patent Publication No. 2007-2 03 5 5 6 The oblique extending device described in Fig. 4 and the like. Further, in producing the retardation film of the present invention, it is preferred to extend in the oblique direction before applying the vertical alignment liquid crystal layer described below. In the case of the above-described extension, when the purpose of improving the degree of freedom of control in the direction of the slow axis in the plane of the retardation film is to extend in the longitudinal direction of the film, the length direction is obliquely extended, or the length is After extending obliquely in the direction, it is preferred to extend in the longitudinal direction. In order to achieve a specific example of the object, the film stretching device described in JP-A-2007-3 0466 is preferably used. Preferred embodiments of the present invention will be described with reference to the drawings in the drawings. In the eleventh and twelfth drawings, the plane and the cross section of the film stretching device (expansion device) 4〇1 according to an embodiment of the present invention are shown. Film Stretch Pack -15- 200925672 401 is a longitudinal extension formed by a supply device 403 for supplying a film 402, a longitudinal stretching furnace 404 for heating the film, and an intermediate transfer device 405 for transporting the film 402 downstream (longitudinal extension) The expansion/contraction unit 406, the obliquely extending machine 407 that extends in the oblique direction with respect to the conveyance direction of the conveyance film 402, and the obliquely extending furnace that is provided under the central portion of the cover obliquely extending machine 407 to heat the film 402 The obliquely extending portion (obliquely stretched portion) 409 formed by the 408 is formed by the winding device 410 that winds the film 402. The φ supply device 403 is a device for winding the raw material reel 411 of the film 402, and the film 402 is sandwiched by the reference roller 412 and the nip roller 413, and is fed at a predetermined conveyance speed. The longitudinal stretching furnace 404 is a casing composed of a heat-dissipating material having a hot air duct (heating method) 4M which blows hot air different from each other on the film 402. In the intermediate transfer device 405, the film 402 is sandwiched and conveyed by the proportional roller 415 and the nip roller 416, and extends in the transport direction and the parallel E1 direction. The oblique stretching machine 407 transports the film 402 by the extension chain 417 disposed on both sides of the film 402, and extends only in the direction of the 角度 2 direction of the inclination angle α in the conveyance direction, as will be described in detail below. The obliquely extending furnace 408 is a casing composed of a heat-insulating material having a hot air duct 418 for blowing hot air from the lower surface of the film 420. The winding device 410 adjusts the tension by the tension roller 41 9 to wind the film 402 onto the product reel 420. Fig. 13 shows the configuration of the oblique stretching machine 407. The oblique stretching machine 407 is provided by two parallel extending chains 411, a plurality of bases 421 disposed at a certain interval on the extended chain 411, and slidably mounted on the respective bases 421 in a certain direction. The arm 422 is formed by a holder 423 provided at the front end of each arm 422. The holder 423 is formed by fixing the side edges of the film 402 to -16 - 200925672, and the extension chain 41 7 is formed by erecting a vertical sprocket 4 24 around the surface of the film 420. Figure 14 shows a more detailed configuration of the obliquely extending shaft 407. The extension chain 417 is spaced apart by 1 to fix the base 421. The base body 421 is provided with two slide shafts 425 which are inclined by 45 (the angle ? in Fig. 1) for each pair of extension chains 417, and slidable arms 422 are provided along the respective slide shafts 42 5 . A position determining member 426 formed of a bearing is disposed above the arm 42 2, and the member 426 is disposed by the wire 427 so that the arm 422 can be protruded or retracted. The holder 423 provided at the front end of the arm 422 is a conventional film fixing mechanism for switching switching (fixing or liberating the film 402) with the wire 4W. The oblique stretching machine 407 protrudes from the arm 422 formed by the base 421 of the extended chain 417, and both side edges of the film 402 are fixed by the holder 423, and the extended chain 41 7 is carried out to convey the film 402. In the meantime, the film 402 is retracted by the fixing member 423, and the arm 422 is retracted so that the film 402 extends and widens in the sliding direction of the arm 422 (the direction shown in Fig. 11 and Fig. 2). When the width is widened, the amount of backward movement between the arms 422 facing the sliding direction of the arm 422 becomes equal. After the film 402 is widened, the holder 423 opens the film 402. The arm 422 is then retracted to cause the retainer 423 to contact the film 402 when the extended chain 41 7 is folded back along the sprocket 424. Next, the extension processing of the film 402 of the film stretching device 401 formed by the above configuration will be described. In the longitudinally extending portion 406, the film 402 is fed at a predetermined speed by the reference roller 412, and when the proportional roller 415 is transported at a faster speed than the reference roller 41 2, the heated portion is heated in the longitudinally extending furnace 4〇4. In the transport direction (Ε1 direction -17-200925672), the transfer speed is extended by the ratio of the ratio roller 4 1 5 to the reference roller 4 1 2 . By the extension in the longitudinal direction, the alignment angle of the molecules of the film 402 in the transport direction and the longitudinal direction is imparted. Further, in the obliquely extending portion 409, the film 402 extends in the E2 direction only in the downward direction of the inclination angle α in the conveyance direction. By stretching in the oblique direction, the film 402 is stretched in the direction of the crucible 2 to cause stress on the deformation of the film 402, and when the molecules are arranged at an angle larger than the direction of the second direction in the direction of the second direction of the film 402, The extension force operates to impart an alignment angle to the oblique direction. As a result, the film 402 complements the alignment angle imparted in the longitudinally extending portion 406 with the alignment angle imparted in the obliquely extending portion 409 to the direction in which the combination is achievable, and the longitudinally extending portion 406 and the obliquely extending direction The extension strength (elongation ratio) of the portion 409 is given, and the phase difference 値 is given. When the film 402 is obliquely extended by the film stretching device 1 to produce an alignment film, the film 402 is actually stretched in the longitudinally extending portion 406 and the obliquely extending portion 409, and the alignment angle of the obtained film 402 is measured and available. At the desired alignment angle, the extension ratio of the longitudinal extension 406 is adjusted by increasing or decreasing the speed of the proportional roller 415. Moreover, by adjusting the extension ratio of the obliquely extending portion 409, the desired phase difference 値 can be obtained. For example, when the retardation film (alignment film) is produced by extending the polycarbonate film, the speeds of the reference roller 412 and the proportional roller 41 5 are set to the same speed (the elongation of the longitudinal extension 406 is 〇%). And in the oblique extension 409 is α = 45. When the lower 18% oblique extension is performed, the alignment angle of the film 402 is about 60 in the conveyance direction. Under the condition of 'not changing the oblique extension -18 - 200925672 extension condition 409, about 10% extension in the longitudinal extension 406 (the speed of the proportional roller 415 is about 10% faster than the speed of the reference roller 412) The alignment angle of the film 402 can be made 45°. In short, the film stretching device 40 1, by setting the angle α of the tilting extension 407 to the conveying direction of the extending direction E2, is set to an approximate value of the empirically desired alignment angle, actually by performing the film 402. Extend, adjust the speed of the proportional roller 4 1 5 to adjust the alignment angle. The proportional roller 4 1 5 can be changed while being operated by the 〇 inverter or the stepless transmission, and the desired alignment angle can be easily obtained. In the above embodiment, the film 402 is extended in the oblique direction, and the oblique stretching machine 407 is reversely disposed to perform reverse rotation. It is possible to use a shrinkage action in the direction of the Ε2 direction inside the obliquely extending furnace 408 which defines the heat-shrinkable film, and to heat-shrink the molecules in the direction of the tilt. Further, in the case of the present invention, the film may be stretched in the oblique direction or contracted, and the film may be extended or contracted in the longitudinal direction. ❹ &lt;Cellulose ester&gt; The transparent resin used for the base film constituting the retardation film of the present invention is preferably a cellulose ester. More specifically, it is preferred to use a cellulose ester as a main component and a mixture of a plasticizer, an ultraviolet absorber, or the like. The base film of the present invention contains 60 to 100% by mass of a cellulose ester. The degree of substitution of the total thiol group of the cellulose ester is preferably from 2.1 to 2.9. The cellulose ester used in the present invention is a carboxylate having a carbon number of about 2 to 22, an ester of an aromatic carboxylic acid, and particularly preferably a lower fatty acid having a carbon number of 6 or less. The thiol group bonded to the hydroxy group may be a straight chain, may be branched, or form a ring. Alternatively, other substituents may be substituted. In the case of the same degree of substitution, it is preferable to select a fluorenyl group having a carbon number of 2 to 6 because the above-mentioned carbon number is large and the 'refractive index is lowered. The cellulose ester preferably has a carbon number of 2 to 4 and a carbon number of 2 to 3. The specific cellulose ester can be bonded with an ethyl ketone group such as cellulose acetate propionate, cellulose sulphate butyrate, cellulose acetate propionate butyrate or cellulose acetate phthalate. A mixed fatty acid ester of cellulose propionate, butyrate or sulfhydryl. Further, the butyric acid group forming the butyric acid ester may be linear or branched. Preferred cellulose esters for use in the present invention are particularly preferably cellulose acetate, cellulose acetate butyrate or cellulose acetate propionate. Among them, cellulose acetate propionate is the best. In the cellulose acetate having an average degree of acetalization (degree of acetylation) of 45 to 62.5 %, for example, a film of a retardation agent described in JP-A-2002-22944 is used, and it is extremely useful in the present invention. It is effective, but cellulose acetate propionate is more preferable in the case where it is not caused to permeate on the surface of the film under high temperature and high humidity storage, resulting in a decrease in quality. The cellulose vinegar of the present invention is preferably one which satisfies the following formulas (1) and (2). Formula (1) 2.1 SX + YS2.9 Formula (2) 0 S YS 1 .5 -20- 200925672 wherein lanthanide is the degree of substitution of acetamidine, γ is propyl fluorenyl or butyl fluorenyl, or a mixture thereof Degree of substitution. Moreover, the degree of substitution of the thiol group with the substitution of other thiol groups can be determined by the method specified in ASTM-D817-96. Further, in order to obtain the objective optical characteristics, a resin having a different degree of substitution may be used. The mixing ratio is preferably 10:90 to 90:10 (mass ratio). Among them, it is more preferable to use cellulose acetate propionate. Cellulose acetate propionate, 1.0SXS2.5 '0.1SYS1.5, 2.1SX + YS2.9 more preferred. The number average molecular weight of the cellulose ester used in the present invention is in the range of 60,000 to 3 000 00, and the obtained The film is preferably mechanically strong. Further, it is more preferably from 70,000 to 200,000. The weight average molecular weight Mw and the number average molecular weight Μη' of the cellulose ester are measured by gel permeation chromatography (GPC). The measurement conditions are as follows. Solvent: Dichloromethane column · Shodex Κ 806, Κ 8 05, K8 03 G (connected to 3 Showa Denko (share) system) Column temperature: 2 5 °C Sample concentration: 〇. 1% by mass Detector: RI Model 504 (made by GL Science) Pump: L6 0 00 (manufactured by Hitachi, Ltd.) Flow: 1. Oml/min Calibration curve: using standard polystyrene STK standard polystyrene (Tosoh ( Stock)) Mw = 1 000000~500 of 13 samples corrected - 21 - 200925672 Curve. 1 3 samples were used at approximately equal intervals. Further, as the measurement method, a measurement method of another polymer of the present invention can also be used. The raw material cellulose of the cellulose ester of the present invention is not particularly limited. For example, cotton wool, wood pulp, kenaf or the like can be used. Further, the cellulose ester thus obtained can be used in any combination in any ratio. The cellulose ester of the present invention can be produced by a conventional method. Specifically, φ 言 can be synthesized by referring to the method described in JP-A-10-4 5804. In addition, cellulose esters are affected by trace amounts of metal components in cellulose esters. Such considerations are related to the water used in the manufacturing step, and it is preferred that the composition obtained by forming the insoluble core is small, and metal ions such as iron, calcium, magnesium, etc. are decomposed by polymerization with the possibility of having an organic acid group. When a substance or the like forms a salt and forms an insoluble matter, it is preferably less. The iron (Fe) component is preferably 1 ppm or less. An acidic component such as a calcium (Ca) component φ , a carboxylic acid or a sulfonic acid easily forms a complex compound (i.e., a complex) with a plurality of ligands, and forms a residue derived from insoluble calcium (insoluble precipitation, turbidity). The calcium (Ca) component is 60 ppm or less, preferably 〇3 to 3 ppm. Regarding the magnesium (Mg) component, since it is insoluble in excess, it is preferably 0 to 7 ppm, more preferably 0 to 20 ppm. The metal component such as the content of iron (Fe) component, the content of calcium (Ca) component, and the content of magnesium (Mg) component can be used to dry the cellulose ester in a micro-digester wet decomposition apparatus (sulfuric acid decomposition), alkali After pre-melting by melt, it was analyzed using IC P - -22-200925672 AES (Derivative Bonded Plasma Luminescence Spectroscopic Analysis Apparatus). &lt;Other Additives&gt; The base film constituting the retardation film of the present invention may contain a suitable additive as needed. &lt;Ester compound having at least one pyranose structure or furanose structure of one or more and 12 or less and having all or a part of OH group esterification of the structure&gt; A base film constituting the retardation film of the present invention It is preferable to use an ester compound having at least one pyranose structure or a furanose structure having one or more and 12 or less and having all or a part of the OH group of the structure esterified. In the present invention, it is collectively referred to as the above ester compound, and is also called a sugar ester compound. The ester compound used in the present invention is, for example, the one shown below, but the present invention is not limited thereto. For example, glucose, galactose, mannose, fructose, xylose, or arabinose, lactose, sucrose, butyrate, if, butadiene, stachyose, mannobiose, lactobiose, lactulose, cellobiose , maltose, cellotriose, mannotriose, honeydew trisaccharide or canetriose. Further, for example, gentiobiose, gentian trisaccharide, gentiantetraose, xylotriose, galactose and the like. Among the compounds of this # is particularly preferably a compound having both a ruthenium sugar structure and a furanose structure. For example, sucrose, canetriose, butyrate, 1F fructose, stachyose, etc. are preferred, and sucrose is more preferred. -23- 200925672 The monocarboxylic acid used in the pyranose structure or the furanose structure of the present invention in which all or a part of the OH group is esterified is not particularly limited, and a conventional aliphatic monocarboxylic acid or alicyclic ring can be used. A monocarboxylic acid, an aromatic monocarboxylic acid or the like. The carboxylic acid to be used may be one type or two or more types. Preferred aliphatic monocarboxylic acids, such as acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, capric acid, capric acid, 2-ethyl-hexanoic acid, &quot; 1 hospital acid, 12 yard acid, thirteen yard acid, meat citrate, fific acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecanic acid, eicosanoic acid, behenic acid , saturated fatty acids such as palmitic acid, waxic acid, heptacosanoic acid, montanic acid, triacontanic acid, and tridecanoic acid, undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, An unsaturated fatty acid such as arachidonic acid or octenoic acid. Preferred are alicyclic monocarboxylic acids such as acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, or derivatives thereof. A preferred aromatic monocarboxylic acid, for example, an alkyl group, an alkoxy aromatic monocarboxylic acid, or a cinnamic acid, a benzoic acid or a biphenyl carboxylic acid, is introduced on a benzene ring of benzene φ formic acid such as benzoic acid or toluic acid. An aromatic monocarboxylic acid having two or more benzene rings, such as a naphthalenecarboxylic acid or a tetralincarboxylic acid, or a derivative thereof, more specifically, for example, xylene benzoic acid or 2,3-dimethylphenylene acid , 3,5-dimethylbenzoic acid, 2,3,4-trisuccinic acid, r-isobutyric acid, ruthenic acid, leucovoric acid, α-isobutyric acid, p-isophenylbenzoic acid , α-phenylacetic acid, α-methylphenylacetic acid, α-methyl propylene, hydrogenated cinnamic acid, salicylic acid, hydrazine-anisic acid, m-anisic acid, P-anisic acid, phenolic acid, hydrazine-water Salicylic acid, m-salicylic acid, P-salicylic acid, yttrium-pyroic acid, P-dihydroxybenzoic acid, vanillic acid 'isoxiang-24- 200925672 oxalic acid, 3,4-dimethylbenzoic acid , 〇-cured acid, gallic acid, asaric acid, mandelic acid, anisic acid, homovanillic acid, all 3,4-dimethylbenzoic acid, hydrazine-all 3,4-dimethylbenzoic acid , decanoic acid, ρ-coumaric acid, especially benzoic acid Preferably. An oligosaccharide ester compound can be used as the compound having at least one pyranose structure or furanose structure of 1 to 12. The oligosaccharide is an oligosaccharide which can be used in the present invention, such as malto-oligosaccharide, isomalto-oligosaccharide, and oligosaccharide, which are produced by the action of an enzyme such as a guanamine enzyme in starch or sucrose. 'Half-milk oligosaccharides, milk oligosaccharides. Further, the above ester compound is a compound obtained by condensing at least one of a pyranose structure or a furanose structure represented by the following general formula (Α) by at least one of 12 or less. Here, R11 to Rl5 and r21 to R25 are a carbon number of 2 to 22 or a hydrogen atom, m and n are each an integer of 〇12, and m + n is an integer of 1 to 12. General (A)

-f-P-V H-f-V-f-P-V H-f-V

-25- 200925672-25- 200925672

Rll〜Ris、R21〜R25特別是以苯甲醯基或氫原子較佳 。苯甲醯基亦可另外具有取代基R26(P爲0〜5),例如烷 基、烯基、烷氧基、苯基,另外,此等之烷基、烯基、苯 基亦可具有取代基。低聚糖亦可以與本發明之酯化合物相 同的方法製造。 於下述中,係爲本發明所使用的酯化合物之具體例, φ 惟本發明不受此等所限制。 [化2] 化合物1R11 to Ris and R21 to R25 are particularly preferably a benzamidine group or a hydrogen atom. The benzinyl group may additionally have a substituent R26 (P is 0 to 5), for example, an alkyl group, an alkenyl group, an alkoxy group, or a phenyl group, and the alkyl group, the alkenyl group, and the phenyl group may have a substitution. base. The oligosaccharide can also be produced by the same method as the ester compound of the present invention. In the following, specific examples of the ester compound used in the present invention are φ, but the present invention is not limited thereto. Compound 2

化合物2Compound 2

化合物3Compound 3

-26- 200925672 化合物4-26- 200925672 Compound 4

R4 Ο ιι 一C-C2H5 [化3] 化合物5R4 Ο ιι a C-C2H5 [Chemical 3] Compound 5

化合物6Compound 6

0 R6= —C-CH3 化合物70 R6= —C-CH3 Compound 7

R7 —c-ch3 化合物8R7 —c-ch3 Compound 8

-27- ch2or$ CH2OR9 ch2ors R90-27- ch2or$ CH2OR9 ch2ors R90

200925672 [化4] 化合物9 R9= —C-CHg 化合物10200925672 Compound 9 R9=—C-CHg Compound 10

CH2〇RtOCH2〇RtO

H R10〇/CH2OR10 OR10 OR10 H R10= O c-ch3 [化5]化合物11 ❿H R10〇/CH2OR10 OR10 OR10 H R10= O c-ch3 [Chemical 5] Compound 11 ❿

CH2OR11 R11〇\?r11 HCH2OR11 R11〇\?r11 H

CH2OR11 OR11 OR11 H och3CH2OR11 OR11 OR11 H och3

och3 och3 化合物12Och3 och3 compound 12

o II R12= 一 C och3 -28- 200925672o II R12= One C och3 -28- 200925672

化合物13Compound 13

ο R13= —C-CH2 化合物14ο R13= —C-CH2 Compound 14

R14= och3R14= och3

OCHa och3 [化6] 化合物15OCHa och3 [Chemical 6] Compound 15

化合物16Compound 16

ο II —C—CH2ο II —C—CH2

-29- 200925672 化合物17-29- 200925672 Compound 17

ΟΟ

一C-CH3One C-CH3

[化7]化合物18[Chemical 7] Compound 18

R18= —C-CH3 化合物19R18=—C-CH3 Compound 19

η Ο il —C-CH3 R19 -30- 200925672 [化8] 化合物20η Ο il —C-CH3 R19 -30- 200925672 [Chemical 8] Compound 20

00

II R20= —C-CH3 [化9] 化合物21II R20= —C-CH3 [Chemistry 9] Compound 21

Η · OR21 -31 - 200925672Η · OR21 -31 - 200925672

化合物22Compound 22

R22= —C-CH,R22= —C-CH,

Η · OR22 構成本發明相位差之基材薄膜,爲抑制相位差値之變 q 化、使顯示品質安定化時,以使上述酯化合物含有1〜3 0 質量%之相位差薄膜較佳,特別是以5〜30質量%更佳。在 該範圍內時,可呈現本發明之優異效果,且不會有滲出情 形,故較佳。 &lt;可塑劑&gt; 構成本發明相位差薄膜之基材薄膜,就可得本發明之 效果而Η、視其所需亦可含有可塑劑。 可塑劑沒有特別的限制,較佳者可選自多元羧酸酯系 -32- 200925672 可塑劑、乙醇酸酯系可塑劑、苯二甲酸酯系可塑劑、脂肪 酸酯系可塑劑及多元醇酯系可塑劑、聚酯系可塑劑、丙烯 酸系可塑劑等。 其中,使用2種以上可塑劑時,以至少1種爲多元醇酯 系可塑劑較佳。 多元醇酯系可塑劑,係爲2價以上之脂肪族多元醇與 單羧酸酯所形成的可塑劑,以在分子內具有芳香環或環烷 〇 環較佳。較佳者爲2〜20價之脂肪族多元醇酯。 本發明所使用的較佳多元醇,係以下述一般式(a)表 7J\ ° 一般式(a) Rl-(OH)nOR · OR22 constituting the base film of the phase difference of the present invention, in order to suppress the change of the phase difference 、 and to stabilize the display quality, it is preferable that the ester compound contains a phase difference film of 1 to 30% by mass, particularly It is preferably 5 to 30% by mass. When it is within this range, the excellent effects of the present invention can be exhibited without oozing out, which is preferable. &lt;Plasticizer&gt; The base film constituting the retardation film of the present invention can provide the effect of the present invention, and can also contain a plasticizer as needed. The plasticizer is not particularly limited, and may preferably be selected from the group consisting of polycarboxylic acid ester-32-200925672 plasticizer, glycolate plasticizer, phthalate plasticizer, fatty acid ester plasticizer, and polyol. An ester-based plasticizer, a polyester-based plasticizer, an acrylic plasticizer, and the like. Among them, when two or more kinds of plasticizers are used, it is preferred to use at least one type of polyol ester-based plasticizer. The polyol ester-based plasticizer is a plasticizer formed of a divalent or higher aliphatic polyol and a monocarboxylic acid ester, and preferably has an aromatic ring or a cycloalkane ring in the molecule. Preferred are aliphatic polyol esters having a 2 to 20 valence. Preferred polyols for use in the present invention are the following general formula (a) Table 7J\° General formula (a) Rl-(OH)n

其中,R1係爲η價有機基,η爲2以上之正整數’〇H 基係表示醇性、及/或苯酚性羥基。 © 較佳的多元醇,例如下述所示者,惟本發明不受此等 所限制。 例如核糖醇、阿拉伯醇、乙二醇、二乙二醇、三乙二 醇、四乙二醇、12-丙二醇、1,3-丙二醇、二丙二醇、三 丙一醇、1,2-丁 二醇、ι,3-丁 二醇、1,心 丁二醇、二 丁二 醇、1,2,4-丁三醇、丨,5·戊二醇、丨,6_己二醇、己三醇、半 乳糖醇、甘露糖醇、3 -甲基戊烷-1,3,5 -三醇、四甲基乙二 醇、山梨糖醇、三經甲基丙院、三經甲基乙院、二甲苯酣 等。 -33- 200925672 特別是以三乙二醇、四乙二醇、二丙二醇、二丙—醇 、山梨糖醇、三羥甲基丙烷、二甲苯酚較佳。 多元醇酯中所使用的單羧酸’沒有特別的限制’可使 用習知的脂肪族單羧酸、脂環族單竣酸、芳香族單殘酸等 。使用脂環族單羧酸、芳香族單羧酸時’就提高透濕性、 保留性而言較佳。 較佳的單羧酸’例如下述所示者’惟本發明不受此等 〇 所限制。 脂肪族單羧酸以使用具有碳數1〜32之直鏈或側鏈之 脂肪酸較佳。碳數爲1〜20更佳,以1〜10最佳。含有醋酸 時,由於可增加與纖維素酯之相溶性較佳’混合醋酸與其 他單羧酸使用亦較佳。 較佳的脂肪族單羧酸,例如醋酸、丙酸、丁酸、戊酸 、己酸、庚酸、辛酸、壬酸、癸酸、2-乙基-己酸、十一 烷酸、十二烷酸、十三烷酸、肉宣蔻酸、十五烷酸、棕櫚 〇 酸、十七烷酸、硬脂酸、十九烷酸、二十烷酸、山嵛酸、 巴西棕櫚酸、蠟酸、二十七烷酸、褐煤酸、三十烷酸、三 十二烷酸等之飽和脂肪酸、十一烯酸、油酸、山梨酸、亞 油酸、次亞麻油酸、花生浸烯酸等之不飽和脂肪酸等。 較佳的脂環族單羧酸,例如環戊烷羧酸、環己烷羧酸 、環辛烷羧酸、或此等之衍生物。 較佳的芳香族單羧酸’例如苯甲酸、甲苯醯酸等在苯 甲酸之苯環上導入1〜3個烷基、甲氧基或乙氧基等之烷氧 基者、聯苯羧酸、萘羧酸、四氫化萘羧酸等之具有2個以 -34- 200925672 上苯環的芳香族單羧酸、或此等之衍生物 酸更佳。 多元醇酯之分子量,沒有特別的限弟 較佳,以350〜750更佳。由於分子量愈大 ,故較佳,就透濕性、與纖維素之相溶性 〇 多元醇酯所使用的羧酸,可以爲1種 φ 混合使用。而且,多元醇中之OH基,可 亦可以部分以Ο Η基殘留。 於下述中,例示多元醇酯系可塑劑之 。特別是以苯甲 [[,以 300 〜1500 者、愈不易揮發 而言以小者較佳 1亦可爲2種以上 以全部被酯化, 具體化合物。 -35- 200925672 [化 10] 1 C4H9-C-〇-(CH2)2-〇-(CH2)2-〇-(CH2)2-〇-C-C4H9 _ 0 〇 _ 2 {7~i'〇_(CHi)2_〇_(CHi)2_〇_(CH2,2~〇'u \ / 〇 〇 v=/ 3 {^&gt;-C-〇-(CH2)2-〇-(CH2)2-〇-(CH2)2-〇-C-/ 〉 4 广。)τ|-〇 5 C4Hs_C_〇-^CH2_CH2—〇tc_C4H9 ο 4 ο ❹ 6 C8Hi7-C-〇^CH2-CH2-〇-^--C-C8H17 ο ο 7 〇~r°-(CH^CH2-〇)ri^〇 8 ^^-c-o-{-ch2ch2ch2-o^-c-^^ 9 C4H9&quot;C-〇-^CH2CH2CH2-〇-^-C-C4H9 ο ο 1〇 cbh”一c-o{ch2ch2ch2—o*^-c-c8h17 o 3 〇 _ 11 cHiCH2CH2_o)r|-〇 ❹ 12 °-f cH^H-°)r-ii-〇 〇 ch3 o13 c4h9-c-o-(-ch2ch-o^-c-c4h9 ch3 o 14 c8h17-c-o-(-ch2ch-o^—c-c8h17 〇 CH^ 〇15〇-r°- ch3 -ch2ch- CHj -36- 200925672 [化 11]Here, R1 is an η-valent organic group, and η is a positive integer of 2 or more. The 〇H group represents an alcoholic property and/or a phenolic hydroxyl group. © Preferred polyols, such as those shown below, except that the invention is not limited thereto. For example, ribitol, arabinol, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 12-propylene glycol, 1,3-propanediol, dipropylene glycol, tripropanol, 1,2-butyl Alcohol, iota, butanediol, 1, butanediol, dibutylene glycol, 1,2,4-butanetriol, hydrazine, pentaerythritol, hydrazine, 6-hexanediol, hexa Alcohol, galactitol, mannitol, 3-methylpentane-1,3,5-triol, tetramethyl glycol, sorbitol, trimethoprim, Sanjing Methylamine , xylene oxime, etc. -33- 200925672 It is especially preferred to use triethylene glycol, tetraethylene glycol, dipropylene glycol, dipropanol, sorbitol, trimethylolpropane or xylenol. The monocarboxylic acid ' used in the polyol ester is not particularly limited, and a conventional aliphatic monocarboxylic acid, alicyclic monodecanoic acid, aromatic mono-residual acid or the like can be used. When an alicyclic monocarboxylic acid or an aromatic monocarboxylic acid is used, it is preferable in terms of improving moisture permeability and retention. Preferred monocarboxylic acids are, for example, those shown below, but the invention is not limited by these. The aliphatic monocarboxylic acid is preferably a fatty acid having a linear or side chain having a carbon number of 1 to 32. The carbon number is preferably from 1 to 20, preferably from 1 to 10. When acetic acid is contained, it is preferred to increase the compatibility with the cellulose ester. The use of mixed acetic acid and other monocarboxylic acids is also preferred. Preferred aliphatic monocarboxylic acids, such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, heptanoic acid, caprylic acid, capric acid, capric acid, 2-ethyl-hexanoic acid, undecanoic acid, twelve Alkanoic acid, tridecanoic acid, meat citrate, pentadecanoic acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecanic acid, eicosanoic acid, behenic acid, carnaubalic acid, wax Saturated fatty acid, undecylenic acid, oleic acid, sorbic acid, linoleic acid, linoleic acid, arachidonic acid, acid, heptacosanoic acid, montanic acid, triacontanic acid, tridecanoic acid, etc. Such as unsaturated fatty acids. Preferred are alicyclic monocarboxylic acids such as cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, or derivatives thereof. A preferred aromatic monocarboxylic acid, such as benzoic acid or toluic acid, is introduced into the benzene ring of benzoic acid, and an alkoxy group such as an alkyl group, a methoxy group or an ethoxy group is introduced into the benzene ring of benzoic acid. Further, an aromatic monocarboxylic acid having two benzene rings of -34 to 200925672, such as naphthalenecarboxylic acid or tetralincarboxylic acid, or the like is more preferably used. The molecular weight of the polyol ester is preferably not particularly limited, and is preferably from 350 to 750. The larger the molecular weight, the better, and the carboxylic acid used for the moisture permeability and the cellulose-compatible 〇 polyol ester can be used in combination of one kind of φ. Further, the OH group in the polyol may be partially retained as an anthracene group. In the following, a polyol ester-based plasticizer is exemplified. In particular, it is a specific compound which is benzophenone [[, 300 to 1500, which is less volatile, preferably 1 or 2 or more. -35- 200925672 1 C4H9-C-〇-(CH2)2-〇-(CH2)2-〇-(CH2)2-〇-C-C4H9 _ 0 〇_ 2 {7~i'〇 _(CHi)2_〇_(CHi)2_〇_(CH2,2~〇'u \ / 〇〇v=/ 3 {^&gt;-C-〇-(CH2)2-〇-(CH2) 2-〇-(CH2)2-〇-C-/ 〉 4 wide.)τ|-〇5 C4Hs_C_〇-^CH2_CH2—〇tc_C4H9 ο 4 ο ❹ 6 C8Hi7-C-〇^CH2-CH2-〇- ^--C-C8H17 ο ο 7 〇~r°-(CH^CH2-〇)ri^〇8 ^^-co-{-ch2ch2ch2-o^-c-^^ 9 C4H9&quot;C-〇-^CH2CH2CH2 -〇-^-C-C4H9 ο ο 1〇cbh"-co{ch2ch2ch2-o*^-c-c8h17 o 3 〇_ 11 cHiCH2CH2_o)r|-〇❹ 12 °-f cH^H-°)r- Ii-〇〇ch3 o13 c4h9-co-(-ch2ch-o^-c-c4h9 ch3 o 14 c8h17-co-(-ch2ch-o^-c-c8h17 〇CH^ 〇15〇-r°- ch3 -ch2ch - CHj -36- 200925672 [Chem. 11]

16 ΟΗ,-J CHjCH!—C-CH: CH3 °-l〇 °Ί-〇 17 ch2-o-c—c4h9 CHaCH2- c - gh2 - 〇 - e - c4h9 I 〇 ch2-o 一 c-c4h9 iio 18 o ch2-o—c-c8h17 1916 ΟΗ,-J CHjCH!—C-CH: CH3 °-l〇°Ί-〇17 ch2-oc-c4h9 CHaCH2- c - gh2 - 〇-e - c4h9 I 〇ch2-o a c-c4h9 iio 18 o Ch2-o-c-c8h17 19

ΟΗ,-0-C Ο ch3ch2-c-ch2-o-c-c8h17I 〇 CH2-〇*C-CbH17oΟΗ,-0-C Ο ch3ch2-c-ch2-o-c-c8h17I 〇 CH2-〇*C-CbH17o

CH3CH 广 C-CH2-0-C I II O % 20CH3CH wide C-CH2-0-C I II O % 20

o II CH2-〇&quot;C 21 ch2-o-c-ch3 IIo O J_v ch2-o-c—&lt; &gt; CH3〇H2-C-CH2-〇-C-CH3I ΰ ch2-o-c-ch3 II 0 ch3ch2-c-ci rbo II CH2-〇&quot;C 21 ch2-oc-ch3 IIo O J_v ch2-oc-&lt;&gt; CH3〇H2-C-CH2-〇-C-CH3I ΰ ch2-oc-ch3 II 0 ch3ch2-c- Ci rb

ch2-o-c-o23 ch2-o-c-(^) CH3CH2-C-CH2-0-C—/ 〉 ch2-oh ❹ -37- 200925672 [化 12]Ch2-o-c-o23 ch2-o-c-(^) CH3CH2-C-CH2-0-C—/ 〉 ch2-oh ❹ -37- 200925672 [Chem. 12]

? ? ch2 — ch-ch_ch-ch2? ch2 — ch-ch_ch-ch2

〇=c o=c I I〇=c o=c I I

0 o o 1 I I0 o o 1 I I

-38- 200925672-38- 200925672

[化 13][Chem. 13]

31 32 -CH2—C-CHj-O-C-/ 〉'-b31 32 -CH2—C-CHj-O-C-/ 〉'-b

U /~λ ii y \v ch2-o-g—f J ch3-gh2-c- ch2-o-c- ch:-〇i~〇-b ch2-o-c* 33U /~λ ii y \v ch2-o-g-f J ch3-gh2-c- ch2-o-c- ch:-〇i~〇-b ch2-o-c* 33

35 c-o-(ch2-ch—ch2-o)^—c—35 c-o-(ch2-ch-ch2-o)^—c—

乙醇酸酯系可塑劑,沒有特別的限制,以使用烷基酞 基烷基乙醇酸酯類較佳。 烷基酞基烷基乙醇酸酯類,例如甲基酞基甲基乙醇酸 酯、乙基酞基乙基乙醇酸酯、丙基酞基丙基乙醇酸酯、丁 基酞基丁基乙醇酸酯、辛基酞基辛基乙醇酸酯、甲基酞基 乙基乙醇酸酯、乙基酞基甲基乙醇酸酯、乙基酞基丙基乙 醇酸酯、甲基酞基丁基乙醇酸酯、乙基酞基丁基乙醇酸酯 -39- 200925672 、丁基酞基甲基乙醇酸酯、丁基酞基乙基乙醇酸酯、丙 酞基丁基乙醇酸酯、丁基酞基丙基乙醇酸酯、甲基酞基 基乙醇酸酯、乙基酞基辛基乙醇酸、辛基酞基甲基乙醇 酯、辛基酞基乙基乙醇酸酯等。 苯二甲酸酯系可塑劑,例如二乙基苯二甲酸酯、二 氧基乙基苯二甲酸酯、二甲基苯二甲酸酯、二辛基苯二 酸酯、二丁基苯二甲酸酯 '二-2_乙基己基苯二甲酸酯 〇 二辛基苯二甲酸酯、二環己基苯二甲酸酯、二環己基對 二甲酸酯等。 檸檬酸酯系可塑劑’例如檸檬酸乙醯基三甲酯、檸 酸乙醯基三乙酯、檸檬酸乙醯基三丁酯等。 脂肪酸酯系可塑劑’例如油酸丁酯、亞油酸甲基乙 酯、癸酸二丁酯等。 磷酸醋系可塑劑,例如三苯基磷酸酯、三經甲苯基 酸酯、羥甲苯基二苯基磷酸酯、辛基二苯基磷酸酯、二 © 基聯苯磷酸酯、三辛基磷酸酯、三丁基磷酸醋等。 多元竣酸酯化合物’係由2價以上、較佳者爲2價〜 價之多元羧酸與醇的酯所形成。而且,脂肪族多元羧酸 2〜20價較佳,爲芳香族多元殘酸、脂環式多元竣酸時 以3價〜20價較佳。 多元竣酸係以下述一般式(b)表示。 —般式(b) R2(C〇〇H)m(〇H)n 基 辛 酸 甲 甲 、 苯 檬 醯 磷 苯 20 以 -40- 200925672 (其中’ R2係爲(m + n)價之有機基’ m爲2以上之正整數’ π 爲〇以上之整數,CO OH基爲羧基,OH基爲醇性或苯酚性 羥基) 較佳的多元羧酸之例,如下述者,惟本發明不受此所 限制。 例如偏苯三酸、均苯三甲酸、均苯四甲酸之3價以上 芳香族多元竣酸或其衍生物、如號拍酸、己二酸、壬二酸 〇 、癸二酸、草酸、富馬酸、馬來酸、四氫苯二甲酸之脂肪 族多元羧酸、如酒石酸、羥基丙二酸、蘋果酸、檸檬酸之 氧化多元羧酸等較佳。特別是使用氧化多元羧酸,就提高 保留性等而言較佳。 本發明可使用的多元羧酸酯化合物中所使用的醇,沒 有特別的限制,例如可使用習知的醇、苯酚類。 例如使用具有碳數1〜3 2之直鏈或側鏈的脂肪族飽和 醇或脂肪族不飽和醇較佳。以碳數1〜20更佳,以碳數1〜 1 0最佳。 而且,以使用環戊醇、環己醇等之脂環式醇或其衍生 物、苯甲醇、肉桂醇等之芳香族醇或其衍生物等較佳。 使用多元羧酸作爲氧化多元羧酸時,可使氧化多元羧 酸之醇性或苯酚性羥基使用單羧酸予以酯化。較佳的單羧 酸之例,如下所述者,惟本發明不受此等所限制。 脂肪族單羧酸,可使用具有碳數1〜32之直鏈或側鏈 的脂肪酸較佳。以碳數1〜20更佳,以碳數1〜10最佳。 較佳的脂肪族單羧酸,例如醋酸、丙酸、丁酸、戊酸 -41 - 200925672 、己酸、庚酸 '辛酸、壬酸、癸酸、2_乙基-己烷羧酸、 十一烷酸、十二烷酸、十三烷酸、肉宣蔻酸、十五院酸、 棕櫚酸、十七烷酸、硬脂酸、十九烷酸、二十院酸、山箭 酸、巴西棕櫚酸、蠟酸、二十七烷酸、褐煤酸、三十烷酸 、三十二烷酸等之飽和脂肪酸、十一烯酸、油酸、山梨酸 、亞油酸、次亞麻油酸、花生浸烯酸等之不飽和脂肪酸等 〇 0 較佳的脂環族單羧酸之例,如環戊烷羧酸、環己烷羧 酸、環辛烷殘酸、或此等之衍生物。 較佳的芳香族單羧酸之例,如苯甲酸、甲苯醯酸等在 苯甲酸之苯環上導入烷基者、聯苯羧酸、萘羧酸、四氫化 萘羧酸等具有2個以上苯環之芳香族單羧酸、或此等之衍 生物。特別是醋酸、丙酸、苯甲酸較佳。 多元羧酸酯化合物之分子量,沒有特別的限制,以分 子量爲300〜1 000之範圍較佳,以350〜750之範圍更佳。 〇 就提高保留性而言愈大愈佳,就透濕性、與纖維素酯之相 溶性而言愈小愈佳。 本發明可使用的多元羧酸酯所使用的醇類,可以爲一 種,亦可以爲二種以上混合。 本發明可使用的多元竣酸酯化合物之酸値,以 lmgKOH/g以下較佳,以〇.2mgKOH/g以下更佳。藉由使 酸値在上述範圍,由於亦可抑制阻滯値之環境變化情形, 故較佳。 而且’酸値係指爲使Ig試料中所含的酸(試料中存在 -42- 200925672 的羧基)中和時所需的氫氧化鉀的mg數。酸値係以JIS K0070爲基準所測定者。 更佳的多元羧酸酯化合物之例’如下所述,惟本發明 不受此等所限制。 例如,三乙基甲苯酸酯、三丁基甲苯酸酯、乙醯基三 乙基甲苯酸酯(ATEC)、乙醯基三丁基甲苯酸酯(ATBC)、 苯甲醯基三丁基甲苯酸酯、乙醯基三苯基甲苯酸酯、乙醯 ❹ 基三苯甲基甲苯酸酯、酒石酸二丁酯、酒石酸二乙醯基二 丁酯、三偏苯三酸三丁酯、均苯四甲酸四丁酯等。 聚酯系可塑劑沒有特別的限制,可在分子內使用具有 芳香環或環烷環之聚酯系可塑劑。聚酯系可塑劑沒有特別 的限制,例如可使用以下述一般式(c)所示之芳香族末端 酯系可塑劑。The glycolate-based plasticizer is not particularly limited, and an alkylalkylalkyl glycolate is preferably used. Alkyl mercaptoalkyl glycolate such as methyl mercapto methyl glycolate, ethyl mercapto ethyl glycolate, propyl mercapto glycolate, butyl decyl butyl glycolate Ester, octyldecyl octyl glycolate, methyl decyl ethyl glycolate, ethyl decyl methyl glycolate, ethyl decyl propyl glycolate, methyl decyl butyl glycolate Ester, ethyl decyl butyl glycolate-39- 200925672 , butyl decyl methyl glycolate, butyl decyl ethyl glycolate, propyl butyl glycolate, butyl thiopropyl Glycolate, methyl mercapto glycolate, ethyl mercaptooctyl glycolic acid, octyldecyl methyl glycolate, octyldecyl ethyl glycolate, and the like. Phthalate-based plasticizers such as diethyl phthalate, dioxyethyl phthalate, dimethyl phthalate, dioctyl phthalate, dibutyl Phthalic acid 'di-2-hexyl phthalate decyl octyl phthalate, dicyclohexyl phthalate, dicyclohexyl p-dicarboxylate, and the like. A citrate-based plasticizer' such as acetoxytrimethyl citrate, acetoxytriethyl citrate, butyltributyl citrate or the like. A fatty acid ester-based plasticizer such as butyl oleate, methyl linoleic acid, dibutyl phthalate or the like. Phosphate vinegar-based plasticizers, such as triphenyl phosphate, tri-tolyl ester, hydroxytolyl diphenyl phosphate, octyl diphenyl phosphate, bis-phenyl phosphate, trioctyl phosphate , tributyl phosphate vinegar, and the like. The polyvalent phthalate compound ' is formed of an ester of a polyvalent carboxylic acid having a divalent or higher value, preferably a divalent to a valence, and an alcohol. Further, the aliphatic polycarboxylic acid preferably has a price of 2 to 20, and is preferably an aromatic polybasic acid or an alicyclic polybasic acid at a valence of from 3 to 20 carbon atoms. The polybasic acid is represented by the following general formula (b). General formula (b) R2(C〇〇H)m(〇H)n octyl octanoate, phenylphosphonium benzene 20 to 40-200925672 (where 'R2 is the (m + n) valence organic group 'm is a positive integer of 2 or more' π is an integer above 〇, a CO OH group is a carboxyl group, and an OH group is an alcoholic or phenolic hydroxyl group.) Examples of preferred polycarboxylic acids are as follows, but the present invention is not This is limited. For example, trimellitic acid, trimesic acid, pyromellitic acid, trivalent or higher aromatic polyphthalic acid or a derivative thereof, such as acesulfonic acid, adipic acid, strontium sebacate, sebacic acid, oxalic acid, rich An aliphatic polybasic carboxylic acid such as tartaric acid, maleic acid or tetrahydrophthalic acid, an oxidized polycarboxylic acid such as tartaric acid, hydroxymalonic acid, malic acid or citric acid is preferred. In particular, the use of an oxidized polycarboxylic acid is preferred in terms of improving retention and the like. The alcohol to be used in the polyvalent carboxylate compound which can be used in the invention is not particularly limited, and for example, a conventional alcohol or phenol can be used. For example, an aliphatic saturated alcohol or an aliphatic unsaturated alcohol having a linear or side chain having a carbon number of 1 to 32 is preferably used. Preferably, the carbon number is 1 to 20, and the carbon number is preferably 1 to 1 0. Further, an alicyclic alcohol such as cyclopentanol or cyclohexanol or a derivative thereof, an aromatic alcohol such as benzyl alcohol or cinnamyl alcohol or a derivative thereof is preferably used. When a polyvalent carboxylic acid is used as the oxidized polycarboxylic acid, the alcoholic or phenolic hydroxyl group of the oxidized polycarboxylic acid can be esterified with a monocarboxylic acid. Examples of preferred monocarboxylic acids are as described below, but the invention is not limited thereto. As the aliphatic monocarboxylic acid, a fatty acid having a linear or side chain having 1 to 32 carbon atoms can be preferably used. The carbon number is preferably 1 to 20, and the carbon number is preferably 1 to 10. Preferred aliphatic monocarboxylic acids, such as acetic acid, propionic acid, butyric acid, valeric acid-41 - 200925672, caproic acid, heptanoic acid 'octanoic acid, capric acid, capric acid, 2-ethyl-hexanecarboxylic acid, ten Alkanoic acid, dodecanoic acid, tridecanoic acid, meat sulphonic acid, fifteen acid, palmitic acid, heptadecanoic acid, stearic acid, nonadecanic acid, hexanilic acid, sylvestre, Saturated fatty acid, undecylenic acid, oleic acid, sorbic acid, linoleic acid, linoleic acid, such as palmitic acid, waxic acid, heptacosanoic acid, montanic acid, triacontanic acid, or tridecanoic acid An unsaturated fatty acid such as arachidonic acid, etc., preferably an example of an alicyclic monocarboxylic acid such as cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctane residual acid, or a derivative thereof . Examples of the preferred aromatic monocarboxylic acid, such as benzoic acid, toluic acid, etc., are introduced into the benzene ring of benzoic acid, and the alkyl group, the biphenyl carboxylic acid, the naphthalene carboxylic acid, the tetrahydronaphthalene carboxylic acid, etc. have two or more. An aromatic monocarboxylic acid of a benzene ring, or a derivative thereof. In particular, acetic acid, propionic acid, and benzoic acid are preferred. The molecular weight of the polyvalent carboxylate compound is not particularly limited, and is preferably in the range of 300 to 1 000, more preferably in the range of 350 to 750.愈 The greater the improvement in retention, the better the moisture permeability and the compatibility with cellulose esters. The alcohol to be used in the polyvalent carboxylic acid ester to be used in the invention may be one type or a mixture of two or more types. The acid hydrazine of the polyvalent phthalate compound which can be used in the invention is preferably 1 mgKOH/g or less, more preferably 〇2 mgKOH/g or less. By setting the acid strontium in the above range, it is preferable because it can suppress the environmental change of the enthalpy. Further, 'acid oxime refers to the number of mg of potassium hydroxide required to neutralize the acid contained in the Ig sample (the carboxyl group of -42-200925672 is present in the sample). The acid bismuth is measured based on JIS K0070. An example of a more preferred polycarboxylate compound is as follows, but the invention is not limited thereto. For example, triethyl cresate, tributyl cresate, ethyltriethyl cresate (ATEC), ethoxylated tributyl cresate (ATBC), benzamidine tributyl toluene Acid ester, acetyltriphenyl toluate, ethyltrityltoluate, dibutyl tartrate, dibutyl butyl tartrate, tributyl trimellitate, homo benzene Tetrabutyl tetracarboxylate and the like. The polyester-based plasticizer is not particularly limited, and a polyester-based plasticizer having an aromatic ring or a cycloalkane ring can be used in the molecule. The polyester-based plasticizer is not particularly limited, and for example, an aromatic terminal ester-based plasticizer represented by the following general formula (c) can be used.

一般式(c) B-(G-A)n-G-BGeneral formula (c) B-(G-A)n-G-B

(式中,B係爲苯單羧酸殘基,G係爲碳數2〜12之烷二醇 殘基或碳數6〜12之芳醇殘基或碳數4〜12之氧化亞烷基醇 殘基,A係爲碳數4〜12之亞烷基二羧酸殘基或碳數6〜12 之芳基二羧酸殘基,且η係爲1以上之整數)。 於一般式(c)中,以Β所示之苯單羧酸殘基與以G所 示之烷二醇殘基或氧化亞烷基乙二醇殘基或芳基乙二醇殘 基,以 Α所示之亞烷基二羧酸殘基或芳基二羧酸殘基所 構成者,藉由與一般的聚酯系可塑劑相同的反應製得。 -43- 200925672 本發明所使用的聚酯系可塑劑之苯單羧酸成分’例如 苯甲酸、對第3-丁基苯甲酸、鄰甲苯醯酸、偏甲苯醯酸、 對甲苯醯酸、二甲基苯甲酸、乙基苯甲酸、正丙基苯甲酸 、胺基苯甲酸、乙醯氧基苯甲酸等’此等可使用單獨1種 或2種以上之混合物。 本發明可使用的聚酯系可塑劑之碳數2〜12之烷二醇 成分,例如乙二醇、1,2 -丙二醇、1,3 -丙二醇、1,2 -丁二 0 醇、1,3-丁 二醇、1,2-丙二醇、2-甲基-1,3-丙二醇、1,4-丁二醇、1,5 -戊二醇、2,2-二甲基-1,3-丙二醇(新戊醇)、 2,2-二乙基-1,3-丙二醇(3,3-二羥甲基戊烷)、2-正-丁基-2-乙基-1,3-丙二醇(3,3-二羥甲基丁烷)、3-甲基-1,5-戊二醇 1,6-己二醇、2,2,4-三甲基-1,3-戊二醇、2-乙基-1,3-己二 醇、2-甲基-1,8-辛二醇、1,9-壬二醇、1,10-癸二醇、 1,1 2-十八烷二醇等,此等之乙二醇可使用1種或2種以上 之混合物。 Φ 特別是碳數2〜1 2之烷二醇與纖維素酯之相溶性優異 ,故更佳。 而且’上述芳香族末端酯之碳數4〜12之氧化亞烷基 乙二醇成分’例如二乙二醇、三乙二醇、四乙二醇、二丙 二醇、三丙二醇等,此等之乙二醇可使用1種或2種以上之 混合物。 芳香族末端酯之碳數4〜12之亞烷基二羧酸成分,例 如琥珀酸、馬來酸、富馬酸、戊二酸、己二酸、壬二酸、 癸二酸、十二烷二羧酸等,此等可使用1種或2種以上之混 -44- 200925672 合物。碳數6〜12之亞芳基二羧酸成分,有苯二甲酸、對 苯二甲酸、異苯二甲酸、1,5-萘二羧酸、I,4-萘二羧酸等 〇 本發明所使用的聚酯系可塑劑,數平均分子量以3〇〇 〜15〇0較佳,以400〜1000之範圍更佳。而且,其酸値爲 0.5mgKOH/g以下,羥基値爲25mgK;〇H/以下,較佳的酸値 爲0.3mgKOH/g以下,羥基値爲15nlgK〇H/g以下。 © 於下述中’係爲本發明可使用的芳香族末端酯系可塑 劑之具體化合物,惟本發明不受此等所限制。 ❹ 200925672 § - 52 o(wherein B is a benzene monocarboxylic acid residue, and G is an alkylene glycol residue having 2 to 12 carbon atoms or an aromatic alcohol residue having 6 to 12 carbon atoms or an alkylene oxide having 4 to 12 carbon atoms; Residue, A is an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms, and η is an integer of 1 or more). In the general formula (c), the benzene monocarboxylic acid residue represented by Β and the alkylene glycol residue or the oxyalkylene glycol residue or the aryl glycol residue represented by G are The alkylene dicarboxylic acid residue or the aryl dicarboxylic acid residue represented by Α is obtained by the same reaction as a general polyester plasticizer. -43- 200925672 The benzene monocarboxylic acid component of the polyester-based plasticizer used in the present invention, such as benzoic acid, p-tert-butylbenzoic acid, o-toluic acid, meta-toluic acid, p-toluic acid, two Methylbenzoic acid, ethyl benzoic acid, n-propyl benzoic acid, aminobenzoic acid, ethoxylated benzoic acid, etc. may be used alone or in combination of two or more. The alkanediol component having a carbon number of 2 to 12, such as ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,2-butanediol, 1, which is a polyester-based plasticizer which can be used in the present invention. 3-butanediol, 1,2-propanediol, 2-methyl-1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 2,2-dimethyl-1,3 -propylene glycol (neopentyl alcohol), 2,2-diethyl-1,3-propanediol (3,3-dihydroxymethylpentane), 2-n-butyl-2-ethyl-1,3- Propylene glycol (3,3-dimethylolbutane), 3-methyl-1,5-pentanediol 1,6-hexanediol, 2,2,4-trimethyl-1,3-pentane Alcohol, 2-ethyl-1,3-hexanediol, 2-methyl-1,8-octanediol, 1,9-nonanediol, 1,10-nonanediol, 1,1 2-ten As the octanediol or the like, one type or a mixture of two or more types may be used as the ethylene glycol. Φ It is more preferable that the alkanediol having a carbon number of 2 to 12 is excellent in compatibility with a cellulose ester. Further, 'the above-mentioned aromatic terminal ester has an alkylene glycol component having a carbon number of 4 to 12', such as diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, etc. The diol may be used alone or in combination of two or more. An aromatic terminal ester having an alkylene dicarboxylic acid component having 4 to 12 carbon atoms, such as succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, sebacic acid, sebacic acid, dodecane As the dicarboxylic acid or the like, one or a mixture of two or more kinds of -44 to 200925672 can be used. An arylene dicarboxylic acid component having 6 to 12 carbon atoms, having phthalic acid, terephthalic acid, isophthalic acid, 1,5-naphthalenedicarboxylic acid, I,4-naphthalenedicarboxylic acid, etc. The polyester-based plasticizer used has a number average molecular weight of preferably from 3 Å to 15 Å, more preferably from 400 to 1,000. Further, the acid hydrazine is 0.5 mgKOH/g or less, the hydroxy hydrazine is 25 mgK, the hydrazine H/ or less, the preferred acid hydrazine is 0.3 mgKOH/g or less, and the hydroxy hydrazine is 15 nlgK 〇H/g or less. The following is a specific compound of the aromatic terminal ester-based plasticizer which can be used in the present invention, but the present invention is not limited thereto. ❹ 200925672 § - 52 o

OS VI S9 :1 oOS VI S9 : 1 o

XJT £0XJT £0

G 【3&gt;】 £G [3&gt;] £

yL 80Ηϋ.Ηυ08 ,、L(£0 ly 丫0005*5003 广^—0305*5000—^~\ «10 οϋοΜχϋ«χϋο£οΜχϋοοοι^Μχϋτοϋο«χϋ£οο«χο«ΧΟΟΟΟΙ^ΧΟΤΟΟΟΜΧΟ«χοο£ο£ϋοοο 9 0,, ooo£OIOO£oxoooo Ιϋ rtlo ^hmm/ {〆 γοο°~ΗϋΗϋ~ΗΟΗϋ08\JT 」 ·」Γ 989: MsyL 80Ηϋ.Ηυ08 ,,L(£0 ly 丫0005*5003 广^—0305*5000—^~\ «10 οϋοΜχϋ«χϋο£οΜχϋοοοι^Μχϋτοϋο«χϋ£οο«χο«ΧΟΟΟΟΙ^ΧΟΤΟΟΟΜΧΟ«χοο£ο£ϋοοο 9 0,, ooo£OIOO£oxoooo Ιϋ rtlo ^hmm/ {〆γοο°~ΗϋΗϋ~ΗΟΗϋ08\JT 》 ·"Γ 989: Ms

SI: I £0£oSI: I £0£o

rY 805“50£0508人》 H°--2 OOOHsi.50 十 8Λ) 5-\__/ £ ^J^OOO^XO^XOOOOI^J^— 80--5^8 〇0〇£0£〇0〇0 ios o°o£o-ooug°—^~^-ooo£-Huog°—g一 -46- 200925672 ° 【9S】 SZT-: Ms CTOOO— 八 ^iooonso«x8£o«iooijoocl Γ «χϋ«χϋο£ο£οο~οο ό ω δrY 805 "50 £0508 people" H°--2 OOOHsi.50 10 8Λ) 5-\__/ £ ^J^OOO^XO^XOOOOI^J^— 80--5^8 〇0〇£0£〇 0〇0 ios o°o£o-ooug°—^~^-ooo£-Huog°—g-46- 200925672 ° [9S] SZT-: Ms CTOOO—eight^iooonso«x8£o«iooijoocl Γ « Χϋ«χϋο£ο£οο~οο ό ω δ

SCI: ISCI: I

3S : 5S 丨( *H-o〉丨( yYn^ olooolxo£oooolo o— 丨 &quot;o 丨 ooolhonhoo£o£oo-^^-ho&gt;iooo£o£30£onhoo 十 (》 «tm : 5S ooo£s!,HOO£s!,H.OO^?o‘o—OOOWHslHOOI'v.HOOTo— 969 : Ms Οϋο—ΧΟΝΧΟΟΟΟ £03S : 5S 丨( *Ho>丨( yYn^ olooolxo£oooolo o- 丨&quot;o 丨ooolhonhoo£o£oo-^^-ho&gt;iooo£o£30£onhoo 十(》 «tm : 5S ooo£s !,HOO£s!,H.OO^?o'o-OOOWHslHOOI'v.HOOTo- 969 : Ms Οϋο-ΧΟΝΧΟΟΟΟ £0

I? 8OIH0NH008—^ ' - yL 1I? 8OIH0NH008—^ ' - yL 1

《y-8o£0£0o-^-8 ε5-^^ - ^—^loooxo£oooo £—0 —oooxo£oooo *Ho- 8o_hunh0o 中 8 —o (£ οϋοιχο£οοοο· ”S-ζ 泛) ^~^-ΟΟΟΙΝΗΟ5-?Α8 « 广 οο?£ϋΗϋ-ΟΓ8—^ \yh Jc s «[ο (紫外線吸收劑) 本發明之基材薄膜,亦可含有紫外線吸收劑。紫外線 吸收劑,藉由吸收400nm以下之紫外線’以提闻耐久性爲 目的時,特別是以波長3 7 0nm之透過率爲1〇%以下較佳’ 更佳者爲5%以下,最佳者爲2%以下° 本發明所使用的紮外線吸收劑’沒有特別的限制’例 -47- 200925672 如氧化二苯甲酮系化合物、苯并三唑系化合物、水楊酸酯 系化合物、二苯甲酮系化合物、氰基丙烯酸系化合物、三 哄系化合物、鎳複合物系化合物、無機粉體等。 (微粒子) 本發明之基材薄膜,以含有微粒子較佳。 本發明所使用的微粒子,無機化合物例如二氧化矽、 0 二氧化鈦、氧化鋁、氧化锆、碳酸鈣、碳酸鈣、滑石、黏 土、燒成高嶺土、燒成矽酸鈣、水合矽酸鈣、矽酸鋁、矽 酸鎂及磷酸鈣。 微粒子爲含有矽者,就濁度變低而言較佳,特別是以 二氧化砍較佳 微粒子之一次粒子的平均粒徑,以5〜40 0nm較佳、 以10〜300nm更佳。此等亦可主要含有粒徑爲0.05〜 0.3μιη之2次凝聚物,只要是平均粒徑爲100〜400nm之粒 〇子時,在沒有凝聚下、含有作爲一次粒徑較佳。 偏光板保護薄膜中之此等微粒子的含量,以〇.〇1〜1 質量%較佳,以0.05〜0.5質量%更佳。藉由共流延法形成 多層構成之偏光板保護薄膜時,以在表面上含有該添加量 之微粒子較佳。 二氧化矽之微粒子,例如可使用市售的Aerosil R972 、R972V 、 R974 、 R812 、 200 、 200V 、 300 、 R202 、 0X50 、TT600(以上爲日本Aerosil (股)製)之商品名。 氧化锆之微粒子,例如可使用市售的Aerosil R976及 -48- 200925672 811(以上爲Aerosil (股)製)之商品名。 聚合物例如聚矽氧烷樹脂、氟系樹脂及丙烯酸樹脂。 以聚矽氧烷樹脂較佳,以具有三次元網狀構造者更佳,例 如可使用市售的 Tospearl 103、同105、同108、同120、 同145、同3120及同24 0(以上東芝聚矽氧烷(股)製)之商品 名。 於此等之中,使用 Aerosil 200V、Aerosil R972V 時 〇 ,由於可使偏光板保護薄膜之濁度保持於低値、且降低摩 擦係數之效果大,故更佳。本發明所使用的偏光板保護薄 膜中,以至少一面之動摩擦係數爲0.2〜1.0較佳。 各種添加劑亦可分批添加於製膜前之含纖維素酯之溶 液的漿料中,或另外使用添加劑溶解液、於作業線上添加 。特別是由於微粒子可減輕對過濾材料之負荷,可使部分 或全量在作業線上添加,爲所企求。 使添加劑溶解液於作業線上作業添加時,爲使與漿料 ^ 之混合性良好,以使少量的纖維素酯溶解較佳。較佳的纖 維素酯之量,對100質量份溶劑而言爲1〜10質量份,更佳 者爲3〜5質量份。 於本發明中,爲進行作業線上添加、混合時,例如以 使用靜態混合器(東麗engeering引擎製)、SWJ(東麗靜止 型管內混合器 Hi-Mixer)等之線上混合器等較佳。 &lt;相位差薄膜製造方法&gt; 其次’說明有關本發明之相位差薄膜的製造方法。 -49- 200925672 構成本發明之相位差薄膜的基材薄膜,以溶液流延法 或熔融流延法所製造的纖維素酯薄膜較佳。 於製造構成本發明之相位差薄膜的基材薄膜時,藉由 在溶劑中溶解纖維素酯及添加劑、調製漿料的步驟,使漿 料流延於無限移行的無端金屬支持體上的步驟,使經流延 的漿料爲腹板、予以乾燥的步驟,自金屬支持體剝離的步 驟,進行延伸或寬度保持之步驟,以及乾燥的步驟,使經 〇 加工的薄膜捲取的步驟進行。 說明有關調製漿料的步驟。漿料中纖維素酯之濃度, 較濃者可減低流延於金屬支持體後之乾燥負荷較佳,惟纖 維素酯之濃度過濃時,會增加過濾時之負荷,使過濾精度 惡化。 使此等兩立的濃度,以10〜35質量%較佳,以15〜25 質量%更佳。 漿料所使用的溶劑,可單獨使用、或2種以上倂用, 〇 使纖維素酯之良溶劑與貧溶劑混合使用,就生產效率而言 較佳,良溶劑多者,就纖維素酯之溶解性而言較佳。 良溶劑與貧溶劑之混合比例的較佳範圍,良溶劑爲7 0 〜9 8質量%,貧溶劑爲2〜3 0質量%。良溶劑、貧溶劑係以 單獨使使用的纖維素酯溶解者爲良溶劑,單獨膨脹或不溶 解者爲貧溶劑予以定義。 因此,視纖維素酯之平均醋化度(乙醯基取代度)而定 ,改變良溶劑、貧溶劑,例如使用丙酮作爲溶劑時,纖維 素酯之醋酸酯(乙醯基取代度2.4)、纖維素乙酸丙酸酯爲良 -50- 200925672 溶劑,纖維素之醋酸酯(乙醯基取代度2.8)爲貧溶劑。 本發明所使用的良溶劑,沒有特別的限制,例如二氣ι 甲烷等之有機鹵化物或二噁茂類、丙酮、醋酸甲酯、乙n 基醋酸甲酯等。特別是較佳例如二氯甲烷或醋酸甲醋。 另外,本發明所使用的貧溶劑,沒有特別的限制,例 如以甲醇、乙醇、正丁醇、環己烷、環己嗣等較佳。而且 ,以漿料中含有0.01〜2質量%的水較佳。此外,使纖維素 Ο 酯溶解時所使用的溶劑,係在薄膜製膜步驟中藉由乾燥回 收自薄膜除去的溶劑,且使該物再利用。 調製上述記載之漿料時纖維素酯之溶解方法,可使用 一般的方法。組合加熱或加壓時,可在常壓下、沸點以上 加熱。 溶劑在常壓下之沸點以上且加壓下溶解沒有沸騰的範 圍溫度下,進行加熱且攪拌溶解時,由於可防止稱爲凝膠 或未溶解物之塊狀未溶解物產生,故較佳。而且,以使纖 © 維素酯與貧溶劑混合、予以濕潤或膨脹後,再添加良溶劑 予以溶解的方法較佳。 加壓可使用藉由氮氣氣體等之惰性氣體壓入的方法, 或藉由加熱使溶劑之蒸氣壓上昇的方法進行。加熱以自外 部進行較佳,例如套管型者就容易控制溫度而言較佳。 添加溶劑之加熱溫度,高者就纖維素酯之溶解性而言 較佳,惟加熱溫度過高時,必要的壓力變大、生產性惡化 。較佳的加熱溫度爲45〜120 °C,以60〜11 0°C較佳’以70 〜105 °C更佳。而且,壓力調整在設定溫度下溶劑不會沸 -51 - 200925672 騰的範圍內。 另外,以使用冷卻溶解法較佳,藉此可使纖維素酯溶 解於醋酸甲酯等之溶劑中。 其次,使該纖維素酯溶液使用濾紙等之適當的過濾材 料進行過濾。過濾材料爲除去不溶物等時,以絕對過濾精 度小者較佳,絕對過濾精度過小時,會有過濾材料容易產 生阻塞的問題。 0 因此,以絕對過濾精度爲〇.〇〇8mm以下之濾材較佳, 以0.001〜0.008mm之濾材更佳,以0.003〜0_006mm之濾 材最佳。 濾材之材質沒有特別的限制,可使用一般的濾材,聚 丙烯、鐵氟隆(註冊商標)等之塑膠製濾材、或不鏽鋼等之 金屬製濾材,不會產生纖維脫落情形等,故較佳。 藉由過濾,以除去、減低原料之纖維素酯中所含的雜 質、特別是亮點異物,故較佳。 Ο 亮點異物係以使2張偏光板配置成交叉線圈狀態,於 其間放置輥狀纖維素酯,自一方的偏光板側照射光,自另 一方之偏光板側觀察時,來自相反側之光產生外漏,會有 可看得見之點(異物),直徑爲0.01mm以上之亮點數以200 個/cm2以下較佳。 較佳者爲100個/cm2以下,更佳者爲50個/cm2以下, 最佳者爲0〜10個/ cm2以下。另外,0.01mm以下之亮點愈 少愈佳。 漿料之過濾方法,可以一般的方法進行,溶劑在常壓 -52- 200925672 下之沸點以上、且在加壓下溶劑沒有沸騰的範圍之溫度下 進行加熱且過濾的方法,於過濾前後之濾壓差(係指差壓) 的上昇情形小,故較佳。 較佳的溫度爲45〜120 °C,較佳者爲45〜70 °C,更佳 者爲45〜55°C。 濾壓愈小愈佳。濾壓以1.6MPa以下較佳,以1.2MPa 以下更佳,以l.OMPa以下最佳。 〇 此處,說明有關漿料之流延步驟。 流延(鑄造)步驟之金屬支持體,以使表面經鏡面加工 處理者較佳,金屬支持體以使用以不鏽鋼鋼帶或鑄造物使 表面電鍍加工處理之桶較佳 鑄造寬度可爲1〜4m。流延步驟之金屬支持體的表面 溫度爲-50 °C〜未達溶劑之沸點溫度,溫度高者,由於可 使腹板之乾燥速度快速,故較佳,惟過高時,會使腹板發 泡,且使平面性惡化。較佳的支持體溫度爲0〜40 °C,更 ❹佳者爲5〜3 0 °C。 另外,藉由冷卻,使腹板予以凝膠化,含有多量殘留 溶劑的狀態下,自桶剝離爲較佳的方法。 控制金屬支持體之溫度的方法沒有特別的限制,係有 吹附溫風或冷風的方法、使溫水接觸金屬支持體內側之方 法。 使用溫水者,由於可有效率地進行熱傳達,故金屬支 持體之溫度達到一定的時間短,故較佳。使用溫風時,使 用較目的溫度更高溫度的風。 -53- 200925672 輥狀纖維素酯爲具有良好的平面性時,自金屬支持體 剝離腹板時殘留的溶劑量,以10〜150質量%較佳,以20 〜40質量%或60〜130質量%更佳,以20〜30質量%或7〇〜 1 2 0質量%更佳。 於本發明中,殘留溶劑量以下述式定義。"y-8o£0£0o-^-8 ε5-^^ - ^—^loooxo£oooo £—0 —oooxo£oooo *Ho- 8o_hunh0o 中 8 —o (£ οϋοιχο£οοοο· ”S-ζ pan) ^~^-ΟΟΟΙΝΗΟ5-?Α8 « 广οο?£ϋΗϋ-ΟΓ8—^ \yh Jc s «[ο (UV absorber) The substrate film of the present invention may also contain a UV absorber. When the ultraviolet ray of 400 nm or less is absorbed for the purpose of improving the durability, the transmittance of the wavelength of 370 nm is preferably 1% or less, preferably 5% or less, and most preferably 2% or less. The external absorbent according to the invention is not particularly limited. Examples - 47 - 200925672 For example, benzophenone-based compound, benzotriazole-based compound, salicylate-based compound, benzophenone-based compound, cyanide The acryl-based compound, the triterpenoid compound, the nickel complex-based compound, the inorganic powder, etc. (Microparticles) The base film of the present invention preferably contains fine particles. The fine particles used in the present invention, an inorganic compound such as cerium oxide , 0 titanium dioxide, alumina, zirconia, calcium carbonate, calcium carbonate, slippery , clay, calcined kaolin, calcined calcium citrate, hydrated calcium citrate, aluminum citrate, magnesium citrate and calcium phosphate. Microparticles are preferred, and turbidity is lower, especially in the case of oxidization. The average particle diameter of the primary particles of the preferred microparticles is preferably from 5 to 40 nm, more preferably from 10 to 300 nm. These may also contain two secondary aggregates having a particle diameter of 0.05 to 0.3 μm, as long as it is an average particle. When the diameter of the granules is 100 to 400 nm, the content of the fine particles in the protective film of the polarizing plate is preferably in the absence of agglomeration. The content of the fine particles in the protective film of the polarizing plate is preferably 〜1 〜1% by mass, preferably 0.05. More preferably, it is preferably 0.5% by mass. When the polarizing plate protective film having a multilayer structure is formed by the co-casting method, it is preferable to contain the added amount of fine particles on the surface. For the fine particles of cerium oxide, for example, commercially available Aerosil R972 can be used. , R972V, R974, R812, 200, 200V, 300, R202, 0X50, TT600 (the above are made by Japan Aerosil Co., Ltd.). For zirconia fine particles, for example, commercially available Aerosil R976 and -48- 200925672 can be used. 811 (above is Aerosil ( The product name is a polymer such as a polyoxyalkylene resin, a fluorine resin, and an acrylic resin. Preferably, the polyoxyalkylene resin is preferably a three-dimensional network structure, and for example, a commercially available Tospearl can be used. 103. Trade names of the same 105, the same 108, the same 120, the same 145, the same 3120 and the same 24 0 (above the Toshiba polyoxane (stock) system). Among them, when Aerosil 200V or Aerosil R972V is used, it is preferable because the turbidity of the polarizing plate protective film can be kept low and the friction coefficient is lowered. In the polarizing plate protective film used in the present invention, the dynamic friction coefficient of at least one side is preferably 0.2 to 1.0. Various additives may be added in portions to the slurry of the cellulose ester-containing solution before film formation, or may be additionally added to the line using an additive solution. In particular, since the fine particles can reduce the load on the filter material, it is possible to add part or the whole amount to the line. When the additive solution is added to the working line, the mixing with the slurry is good, so that a small amount of the cellulose ester is preferably dissolved. The amount of the cellulose ester is preferably from 1 to 10 parts by mass, more preferably from 3 to 5 parts by mass, per 100 parts by mass of the solvent. In the present invention, in order to add and mix the line, for example, an in-line mixer such as a static mixer (manufactured by Toray Engeering Engine) or SWJ (Toray Static In-Tube Mixer Hi-Mixer) is preferably used. . &lt;Production method of retardation film&gt; Next, a method of producing the retardation film of the present invention will be described. -49- 200925672 A substrate film constituting the retardation film of the present invention is preferably a cellulose ester film produced by a solution casting method or a melt casting method. When the substrate film constituting the retardation film of the present invention is produced, the step of casting the slurry onto the infinitely moving endless metal support by dissolving the cellulose ester and the additive in a solvent and preparing the slurry is performed. The step of subjecting the cast slurry to a web, drying, the step of peeling from the metal support, the step of stretching or maintaining the width, and the step of drying, the step of winding the warp-processed film. Describe the steps involved in modulating the slurry. The concentration of the cellulose ester in the slurry is preferably such that the drying load after casting on the metal support is reduced. However, when the concentration of the cellulose ester is too rich, the load during filtration is increased, and the filtration accuracy is deteriorated. The concentration of these two standings is preferably 10 to 35 mass%, more preferably 15 to 25 mass%. The solvent used for the slurry may be used singly or in combination of two or more kinds, and a good solvent of the cellulose ester may be used in combination with a poor solvent, which is preferable in terms of production efficiency, and a good solvent is a cellulose ester. It is preferred in terms of solubility. A preferred range of the mixing ratio of the good solvent to the poor solvent is 70 to 98% by mass of the good solvent and 2 to 30% by mass of the poor solvent. The good solvent and the poor solvent are those in which the cellulose ester to be used is dissolved as a good solvent, and those which are separately expanded or insoluble are defined as a poor solvent. Therefore, depending on the average degree of acetification of the cellulose ester (degree of substitution of ethyl ketone), when a good solvent or a poor solvent is changed, for example, when acetone is used as a solvent, the cellulose ester of the cellulose ester (the degree of substitution of acetyl group is 2.4), Cellulose acetate propionate is a good solvent of -50-200925672, and cellulose acetate (degree of ethylene-based substitution 2.8) is a poor solvent. The good solvent to be used in the present invention is not particularly limited, and examples thereof include an organic halide such as dimethane or dioxin, acetone, methyl acetate, methyl n-methyl acetate and the like. In particular, for example, dichloromethane or methyl acetate is preferred. Further, the poor solvent to be used in the present invention is not particularly limited, and examples thereof include methanol, ethanol, n-butanol, cyclohexane, cyclohexane and the like. Further, it is preferred that the slurry contains 0.01 to 2% by mass of water. Further, the solvent used for dissolving the cellulose oxime ester is a solvent which is removed from the film by drying in the film forming step, and the material is reused. A general method can be used for the method of dissolving the cellulose ester in the preparation of the slurry described above. When heated or pressurized in combination, it can be heated at normal pressure or above. When the solvent is heated at a temperature not higher than the boiling point under normal pressure and does not boil under pressure, it is preferred to prevent the formation of agglomerated undissolved matter called gel or undissolved matter when heated and stirred and dissolved. Further, it is preferred to mix the fiber, the vitamin ester, and the poor solvent to wet or swell, and then add a good solvent to dissolve. The pressurization can be carried out by a method of pressurizing by an inert gas such as nitrogen gas or by a method of increasing the vapor pressure of the solvent by heating. Heating is preferably carried out from the outside, and it is preferred that the sleeve type is easy to control the temperature. The heating temperature of the solvent to be added is preferably higher in terms of the solubility of the cellulose ester. However, when the heating temperature is too high, the necessary pressure is increased and the productivity is deteriorated. The heating temperature is preferably 45 to 120 ° C, more preferably 60 to 11 ° C, and more preferably 70 to 105 ° C. Moreover, the pressure is adjusted at the set temperature and the solvent will not boil in the range of -51 - 200925672. Further, it is preferred to use a cooling dissolution method, whereby the cellulose ester can be dissolved in a solvent such as methyl acetate. Next, the cellulose ester solution is filtered using an appropriate filter material such as filter paper. When the filter material is insoluble or the like, it is preferable that the absolute filtration precision is small, and the absolute filtration accuracy is too small, and the filter material is liable to cause clogging. Therefore, it is preferable to use a filter material having an absolute filtration accuracy of 〇. 〇〇 8 mm or less, a filter material of 0.001 to 0.008 mm, and a filter material of 0.003 to 0_006 mm. The material of the filter material is not particularly limited, and a general filter medium, a plastic filter material such as polypropylene or Teflon (registered trademark), or a metal filter material such as stainless steel can be used, and it is preferable that the fiber does not fall off. It is preferred to remove impurities such as bright foreign matter contained in the cellulose ester of the raw material by filtration.亮 Highlighting the foreign matter so that the two polarizing plates are placed in a cross-coil state, and a roll of cellulose ester is placed therebetween, and light is irradiated from one side of the polarizing plate, and light from the opposite side is generated when viewed from the other side of the polarizing plate. If there is a leak, there will be a visible point (foreign matter), and a number of bright dots having a diameter of 0.01 mm or more is preferably 200 or less. Preferably, it is 100 pieces/cm2 or less, more preferably 50 pieces/cm2 or less, and the most preferable one is 0~10 pieces/cm2 or less. In addition, the fewer the bright spots below 0.01 mm, the better. The filtration method of the slurry can be carried out by a general method, and the solvent is heated at a temperature higher than the boiling point of -52-200925672 and at a temperature at which the solvent does not boil under pressure, and the filtration method is performed before and after filtration. The rise in pressure difference (referred to as differential pressure) is small, so it is preferable. The preferred temperature is 45 to 120 ° C, preferably 45 to 70 ° C, more preferably 45 to 55 ° C. The smaller the filter pressure, the better. The filtration pressure is preferably 1.6 MPa or less, more preferably 1.2 MPa or less, and most preferably 1.0 MPa or less. 〇 Here, the casting step for the slurry is explained. The metal support of the casting (casting) step is preferred to make the surface mirror-finished, and the metal support may have a casting width of 1 to 4 m by using a stainless steel strip or casting to surface-treat the barrel. . The surface temperature of the metal support in the casting step is -50 ° C ~ the boiling temperature of the solvent is not reached, and the temperature is high, because the drying speed of the web can be made fast, it is better, but when it is too high, the web is too high. Foaming and deteriorating planarity. The preferred support temperature is 0 to 40 ° C, and more preferably 5 to 30 ° C. Further, by cooling, the web is gelated, and in a state where a large amount of residual solvent is contained, it is preferable to peel off from the tub. The method of controlling the temperature of the metal support is not particularly limited, and is a method of blowing warm air or cold air, and a method of bringing warm water into contact with the inside of the metal support. In the case of using warm water, since the heat can be efficiently transmitted, the temperature of the metal support body is short for a certain period of time, which is preferable. When using warm air, use a wind with a higher temperature than the destination temperature. -53- 200925672 When the roll-shaped cellulose ester has good planarity, the amount of solvent remaining when the web is peeled off from the metal support is preferably 10 to 150% by mass, preferably 20 to 40% by mass or 60 to 130% by mass. % is better, preferably 20 to 30% by mass or 7 to 1 to 2% by mass. In the present invention, the amount of residual solvent is defined by the following formula.

殘留溶劑量(質量%)={(M-N)/N} xlOO 〇 而且,Μ係爲在腹板或薄膜製造中或製造後之任意時 間所採取的試料之質量,Ν係爲Μ在1 1 5 °C下加熱1小時後 之質量。 另外,於輥狀纖維素酯之乾燥步驟中,使腹板自金屬 支持體剝離,予以乾燥,且使殘留溶劑量爲1質量%以下 較佳,更佳者爲0.1質量%以下,最佳者爲〇〜0.01質量%以 下。 Ο 薄膜乾燥步驟,一般係採用輥乾燥方式(使配置於上 下之數個輥交互通過腹板、予以乾燥的方式)或以拉幅器 方式搬送腹板且予以乾燥的方式。 爲製造構成本發明之相位差薄膜的基材薄膜時,自金 屬支持體剝離後,腹板之殘留溶劑量多時’朝搬送方向(= 長度方向)進行延伸,再使腹板兩端以固定器等固定之拉 幅器方式,朝寬度方向進行延伸較佳。 此外,爲使基材薄膜之面內遲相軸與形成由液晶分子 所成的層時之塗佈方向所成的角度調整爲〜8〇°時’使 -54- 200925672 用上述之斜向延伸裝置予以延伸較佳。 &lt;垂直配向液晶層&gt; 本發明之相位差薄膜,其特徵爲在上述基材薄膜上具 有垂直配向液晶層(使朝薄膜之厚度方向配向的液晶分子 塗佈且固定化之層)。 本發明之垂直配向液晶層,以使液晶材料或液晶之溶 〇 液塗佈於本發明之基材薄膜上,進行乾燥與熱處理(亦稱 爲配向處理),藉由紫外線硬化或熱聚合等進行液晶配向 之固定化處理,藉由朝垂直方向配向的棒狀液晶形成相位 差板較佳。 此處,朝垂直方向配向,係指棒狀液晶分子對薄膜面 而言在70〜90°(垂直方向爲90°)之範圍內配向。棒狀液晶 可爲斜向配向,亦可使配向角慢慢地變化。較佳者爲8 0〜 90°之範圍。 G 本發明之垂直配向液晶層,以藉由面內方向之相位差 値Ro爲0〜10nm、厚度方向之相位差値Rth爲-50〜-4 0 0nm之範圍、朝垂直方向配向的棒狀液晶之相位差板較 佳。以Ro爲0〜5nm之範圍更佳。 此處,Rth係以下述式予以定義。The amount of residual solvent (% by mass) = {(MN) / N} xlOO 〇 Moreover, the lanthanum is the mass of the sample taken at any time during or after the manufacture of the web or film, and the lanthanum is at 1 1 5 The mass after heating at ° C for 1 hour. Further, in the drying step of the roll-shaped cellulose ester, the web is peeled off from the metal support and dried, and the amount of the residual solvent is preferably 1% by mass or less, more preferably 0.1% by mass or less, and most preferably It is 〇~0.01% by mass or less.薄膜 The film drying step is generally carried out by means of roll drying (the way in which several rolls arranged in the upper and lower rolls are alternately passed through the web and dried) or by means of a tenter to convey the web and dry it. In order to produce a base film constituting the retardation film of the present invention, when the amount of residual solvent in the web is large after peeling from the metal support, it is extended in the conveyance direction (=length direction), and the ends of the web are fixed. A fixed tenter method such as a device is preferably extended in the width direction. Further, when the angle formed by the in-plane retardation axis of the base film and the coating direction when the layer formed of the liquid crystal molecules is formed is adjusted to 〜8 〇°, the -54-200925672 is obliquely extended as described above. The device is preferably extended. &lt;Vertically Aligned Liquid Crystal Layer&gt; The retardation film of the present invention is characterized in that the base film has a vertical alignment liquid crystal layer (a layer in which liquid crystal molecules aligned in the thickness direction of the film are coated and fixed). The vertical alignment liquid crystal layer of the present invention is applied to a substrate film of the present invention by applying a liquid crystal material or a liquid crystal solution to the substrate film of the present invention, followed by drying and heat treatment (also referred to as alignment treatment), by ultraviolet curing or thermal polymerization. In the immobilization treatment of the liquid crystal alignment, it is preferable to form the phase difference plate by the rod-like liquid crystal aligned in the vertical direction. Here, the alignment in the vertical direction means that the rod-like liquid crystal molecules are aligned in the range of 70 to 90 (the vertical direction is 90) to the film surface. The rod-shaped liquid crystal can be diagonally aligned, and the alignment angle can be changed slowly. Preferably, it is in the range of 80 to 90°. G The vertical alignment liquid crystal layer of the present invention has a phase difference 値Ro of 0 to 10 nm in the in-plane direction, a phase difference 値Rth in the thickness direction of -50 to -40 nm, and a rod shape aligned in the vertical direction. The phase difference plate of the liquid crystal is preferred. It is more preferable that Ro is in the range of 0 to 5 nm. Here, Rth is defined by the following formula.

Rth={(nx + ny)/2 — nz}xd (式中,nx係爲相位差薄膜面內之遲相軸方向的折射率(面 -55- 200925672 內最大折射率),ny係爲垂直於相位差薄膜面內之遲相軸 方向的折射率,nz係爲薄膜之厚度方向的折射率,d係爲 相位差薄膜之厚度(nm))。 相位差値之測定,可使用自動複折射計 KOBRA-21ADH(王子計測器(股)製)等。 垂直配向液晶層之Rth,係在使基材薄膜之Rth抵銷 下予以設定,企求使圓偏光薄膜之視野角特性良好,因此 © ,視基材薄膜之Rth而定,適當選擇垂直配向液晶層之塗 佈條件(液晶分子之種類、塗佈液中之液晶分子濃度、乾 燥後之膜厚等)係爲重要。例如,使用基材薄膜之Rth互 爲不同者’在同一液晶分子、同一塗佈條件下形成垂直配 向液晶層時,可賦予作爲圓偏光薄膜之皆爲優異的視野角 特性時,視基材薄膜之Rth値而定,可藉由改變垂直配向 液晶層之厚度達成目的。 使棒狀液晶配向、形成棒狀液晶層時,即使用塗佈有 〇液晶材料朝垂直方向配列的垂直配向劑之配向膜,使液晶 材料垂直配向後,予以固定的方法。 液晶材料本身在空氣界面上朝垂直方向配向時,就直 至其配向規定力與空氣界面相反的界面爲止,及該配向膜 沒有特別必須時可使構成簡單化而言,較佳。 使液晶材料垂直配向的具體方法,係使用特開2005- 148473號公報等記載的由含有(甲基)丙烯酸系嵌段聚合物 之嵌段聚合物組成物的交聯物所形成的配向膜等之方法, 使用同2005-265889號公報中記載的垂直配向膜之方法, -56- 200925672 使用空氣界面垂直配向劑之方法等習知方法。 爲使棒狀液晶層在上述範圍內時,以進行棒狀液晶層 之配向、膜厚之控制、紫外線硬化時之溫度、傾角之控制 、及支持體與空氣界面之預傾角的控制較佳。 上述液晶層,係在所定溫度下形成液晶相之液晶材料 ’具有所定的液晶規則性,藉由硬化所形成者。顯示液晶 相之溫度的上限値,例如在基材之纖維素酯薄膜不會受到 〇 傷害的溫度即可,沒有特別的限制。 具體而言’就步驟溫度之控制容易性與尺寸精度維持 而言’以使用在1 20°C以下之溫度下形成液晶相之液晶材 料較佳(以1 00°C以下之溫度更佳)。另外,顯示液晶相之溫 度的下限値,係爲於使用作爲偏光板時,使液晶材料保持 配向狀態之溫度。 本發明之棒狀液晶層所使用的液晶材料,以使用聚合 性液晶材料較佳。聚合性液晶材料,可藉由照射所定的活 〇 性放射線予以聚合、使用.,在聚合的狀態下垂直的配向狀 態被固定化。 聚合性液晶材料可使用聚合性液晶單體、聚合性液晶 低聚物、或聚合性液晶聚合物中任何一種,亦可互相混合 使用。 於上述中就配向時之感度高、被垂直配向之容易性而 言’可使用聚合性液晶單體作爲聚合性液晶材料。 具體的聚合性液晶單體,例如以下述一般式(MV1)所 示之棒狀液晶性化合物(1)、及以下述—般式(MV2)所示之 -57- 200925672 棒狀液晶化合物(II)。化合物(I)可混合2種以上之一般式 (MV1)所包含的化合物使用,同樣地,化合物(II)可混合2 種以上之一般式(MV2)所包含的化合物使用。而且,亦可 混合1種以上之化合物⑴與1種以上之化合物(Π)使用。 [化 16] MV1 R1Rth={(nx + ny)/2 — nz}xd (wherein nx is the refractive index in the direction of the retardation axis in the plane of the phase difference film (the maximum refractive index in the surface -55-200925672), and the ny is vertical The refractive index in the retardation axis direction in the plane of the retardation film, nz is the refractive index in the thickness direction of the film, and d is the thickness (nm) of the retardation film. For the measurement of the phase difference KO, an automatic birefringence meter KOBRA-21ADH (manufactured by Oji Scientific Instruments Co., Ltd.) or the like can be used. The Rth of the vertical alignment liquid crystal layer is set under the offset of the Rth of the base film, and the viewing angle characteristic of the circularly polarizing film is good. Therefore, depending on the Rth of the base film, the vertical alignment liquid crystal layer is appropriately selected. The coating conditions (the type of liquid crystal molecules, the concentration of liquid crystal molecules in the coating liquid, the film thickness after drying, and the like) are important. For example, when the Rth of the base film is different from each other', when the vertical alignment liquid crystal layer is formed under the same liquid crystal molecule and under the same coating conditions, the substrate film can be imparted with excellent viewing angle characteristics as a circularly polarizing film. The Rth can be achieved by changing the thickness of the vertical alignment liquid crystal layer. When the rod-like liquid crystal is aligned to form a rod-like liquid crystal layer, an alignment film coated with a vertical alignment agent in which the liquid crystal material is arranged in the vertical direction is used, and the liquid crystal material is vertically aligned and then fixed. When the liquid crystal material itself is aligned in the vertical direction at the air interface until the alignment of the predetermined force with the air interface, and the alignment film is not particularly necessary, the composition can be simplified. For the specific method of aligning the liquid crystal material in the vertical direction, an alignment film formed of a crosslinked product containing a block polymer composition of a (meth)acrylic block polymer described in JP-A-2005-148473 or the like is used. The method is the same as the method of the vertical alignment film described in the publication No. 2005-265889, the method of using the air interface vertical alignment agent from -56 to 200925672, and the like. When the rod-like liquid crystal layer is in the above range, it is preferable to control the alignment of the rod-like liquid crystal layer, the control of the film thickness, the temperature at the time of ultraviolet curing, the control of the tilt angle, and the pretilt angle of the support and the air interface. The liquid crystal layer is a liquid crystal material having a liquid crystal phase at a predetermined temperature, and has a predetermined liquid crystal regularity and is formed by hardening. The upper limit 温度 of the temperature of the liquid crystal phase is displayed, for example, a temperature at which the cellulose ester film of the substrate is not damaged by hydrazine, and is not particularly limited. Specifically, it is preferable to use a liquid crystal material which forms a liquid crystal phase at a temperature of 1 20 ° C or less (preferably at a temperature of 100 ° C or less) in terms of ease of control of the step temperature and maintenance of dimensional accuracy. Further, the lower limit 显示 of the temperature at which the liquid crystal phase is displayed is a temperature at which the liquid crystal material is kept in alignment when used as a polarizing plate. The liquid crystal material used in the rod-like liquid crystal layer of the present invention is preferably a polymerizable liquid crystal material. The polymerizable liquid crystal material can be polymerized and used by irradiation with a predetermined active radiation, and the vertical alignment state is fixed in a polymerized state. The polymerizable liquid crystal material may be any of a polymerizable liquid crystal monomer, a polymerizable liquid crystal oligomer, or a polymerizable liquid crystal polymer, or may be used in combination with each other. In the above, the polymerizable liquid crystal monomer can be used as the polymerizable liquid crystal material because of the high sensitivity and the ease of vertical alignment. Specific polymerizable liquid crystal monomer, for example, a rod-like liquid crystal compound (1) represented by the following general formula (MV1), and a -57-200925672 rod-like liquid crystal compound (II) represented by the following general formula (MV2) ). The compound (I) can be used by mixing two or more compounds of the general formula (MV1), and similarly, the compound (II) can be used by mixing two or more compounds of the general formula (MV2). Further, one or more compounds (1) and one or more compounds (Π) may be used in combination. [Chem. 16] MV1 R1

CH2C-C〇^CH2^〇-^J^-C〇—5SCH2C-C〇^CH2^〇-^J^-C〇—5S

X cch2 I R2 [化 17] MV2 R3 CHjC-CO- 卜士。 0 於表示化合物(I)之一般式(MV1)中,R1及R2係各表示 氫或甲基,爲使顯示液晶相之溫度範圍廣泛時,以R1及 R2同時爲氫較佳。X可以爲氫、氯、溴、碘、碳數1〜4之 烷基、甲氧基、氰基、或硝基中任何一個,惟以氯或甲基 較佳。而且,表示化合物(I)之分子鏈兩端的(甲基)丙烯醯 氧基、與芳香環之距離的亞烷基鏈長爲a及b,可取個別 爲2〜12之範圍中任意的整數,以4〜10之範圍較佳,以6 〜9範圍更佳。 化合物(I)可以任意的方法合成。例如,X爲甲基時之 -58- 200925672 化合物(I),可藉由1當量之甲基氫醌與2當量之4-(m-(甲基 )丙烯醯氧基烷氧基)苯甲酸之酯化反應製得。酯化反應係 使上述苯甲酸以酸氯化物或磺酸酐等予以活性化,使其與 甲基氫醌反應係爲通例。另外,可使用DCC(二環己基羰 二醯亞胺)等之縮合劑,使羧酸單位與甲基氫醌直接反應 。除此等外之方法,首先可藉由進行1當量甲基氫醌、與2 當量之4-(m-苯甲氧基烷氧基)苯甲酸之酯化反應,然後 © ,使所得的酯藉由氫化反應等脫苯甲基化後,使分子末端 予以丙烯醯基化的方法,可合成化合物(I)。進行甲基氫 醌與4-(m-苯甲氧基烷氧基)苯甲酸之酯化反應時,使甲基 氫醌導入二乙酸酯後,與上述苯甲酸在熔融狀態下反應, 直接製得酯體。一般式(MV1)之X不爲甲基時之化合物(I) ,亦可藉由使用具有對應的取代基之氫醌取代甲基氫醌, 進行與上述相同的反應製得。 於表示化合物(Π)之一般式(MV2)中,R3爲氫或甲基 Ο 時,爲顯示液晶相之溫度範圍廣泛時,以R3爲氫較佳。 有關具有亞烷基之鏈長的c,該値爲2〜12之化合物(II)不 顯示液晶性。然而,考慮與具有液晶性之化合物(I)的相 溶性時,c以4〜10之範圍較佳,以6〜9之範圍更佳。化 合物(II)亦可以任意的方法合成,例如可藉由使1當量4-氰 基苯酚與1當量之4-(η-(甲基)丙烯醯氧基烷氧基)苯甲酸進 行酯化反應,合成化合物(Π)。一般而言,該酯化反應與 合成化合物(Π時相同地’使上述苯甲酸以酸氯化物或磺 酸酐等活性化’使其與4-氰基苯酚進行反應。而且,亦可 -59- 200925672 使用DCC(二環己基羰二醯亞胺)等之縮合劑,使上述苯甲 酸與4-氰基苯酚進行反應。 除此之外,於本發明中可使用聚合性液晶低聚物或聚 合性液晶聚合物等。該聚合性液晶低聚物或聚合性液晶聚 合物,可適當選擇使用習知提案者。 本發明之液晶層的層厚,以0.1 μηι〜20 μιη之範圍內較 佳,以0.2〜ΙΟμηι之範圍內更佳。 〇 直接檢驗在具有面內之相位差値之基材薄膜上所設置 的垂直配向液晶層中之液晶配向水準時,非常困難,一個 重點係製作使偶氮苯系液晶對上述垂直配向液晶而言混合 約1質量%〜2質量%予以塗佈且固定化的試料,該試料顯 示與不含實際的偶氮苯系液晶之試料相同的液晶分子之配 向,以分光光度計測定5 5 Onm〜6 5 Onm附近之吸光度,可 知大約的配向程度。換言之,吸光度相當低時,可判斷大 致上全部的液晶分子垂直配向、固定化。反之,吸光度較 © 高時’可解釋原本垂直配向之液晶分子並不一定必須垂直 配向’埋入隙間之偶氮苯系液晶之光吸收面積變廣。 &lt;液晶層之製造方法&gt; 聚合性液晶材料,視其所需配合光聚合引發劑、增感 劑’調製液晶層形成用組成物使用,塗佈於基材上,形成 液晶層形成用層。 於本發明中,以藉由設置光配向層,除溶劑外、使用 使溶解有其他成分的塗佈用組成物作爲液晶組成物,塗佈 -60- 200925672 於基材上且除去溶劑,形成液晶配向經固定的層較佳。此 法與其他方法相比時,步驟上較爲簡單 溶齊!1爲可使上述聚合性液晶材料等溶解的溶劑,且不 會使透明樹脂薄膜之性質降低的溶劑即可,沒有特別的限 制’具體而言’例如可使用1種或2種以上之苯、甲苯、二 甲苯、正丁基苯、二乙基苯、四氫化萘等之烴類;甲氧基 苯、1,2-二甲氧基苯、二乙二醇二甲醚等之醚類;丙酮、 Ο 甲基乙酮、甲基異丁酮、環己酮、或2,4-戊二酮等之酮類 :醋酸乙酯、乙二醇單甲醚乙酸酯、丙二醇單甲醚乙酸酯 、丙二醇單乙醚乙酸酯或γ -丁內酯等之酯類;2_吡咯烷酮 、Ν -甲基-2 -吡咯烷酮、二甲基甲醯胺、或二甲基乙醯胺 等之醯胺系溶劑;氯仿、二氯甲烷、四氯化碳、二氯乙烷 '四氯乙烷、三氯乙烯、四氯乙烯、氯苯、或鄰二氯苯等 之鹵素系溶劑;第3 -丁醇、二丙酮醇、丙三醇、單乙酸甘 油酯、乙二醇、三乙二醇、己二醇、乙二醇單甲醚、乙溶 © 纖劑、或丁基溶纖劑等之醇類;苯酚、對氯苯酚等之苯酚 類等。 僅使用單一種溶劑時,聚合性液晶材料等之溶解性不 充分’且有上述之基材被侵蝕的情形。而且,藉由混合使 用2種以上之溶劑,可避免該問題產生。 於上述溶劑中,單獨溶劑中較佳者爲烴系溶劑與乙二 醇單醚乙酸酯系溶劑’混合溶劑中較佳者爲酸類或酮類、 與乙二醇類之混合系。 溶液之濃度’由於與聚合性液晶材料等之溶解性或製 -61 - 200925672 造時之液晶層的膜厚有關,無法一槪予以規定,通常以1 質量%〜60質量%較佳,以3質量%〜40質量%之範圍更佳 〇 於本發明所使用的液晶層形成用組成物中,在不會損 害本發明目的之範圍內,可添加除上述外之化合物。 可添加的化合物,例如在使多元醇與一元酸或多元酸 縮合所得的聚酯預聚物、與(甲基)丙烯酸進行反應所得的 © 聚酯(甲基)丙烯酸酯;具有多元醇基與2個異氰酸酯基之 化合物互相反應後,使該反應生成物與(甲基)丙烯酸反應 所得的聚胺基甲酸酯(甲基)丙烯酸酯;雙酚A型環氧樹脂 '雙酚F型環氧樹脂、酚醛清漆型環氧樹脂、聚羧酸聚環 氧丙酯、多元醇聚環氧丙醚、脂肪族或脂環式環氧樹脂、 胺環氧樹脂、三苯酚甲烷型環氧樹脂、二羥基苯型環氧樹 脂等之環氧樹脂、與(甲基)丙烯酸反應所得的環氧基(甲 基)丙烯酸酯等之光聚合性化合物、或具有丙烯基或甲基 © 丙烯基之光聚合性液晶性化合物等 對本發明之液晶層形成用組成物而言,此等化合物之 添加量在不會損害本發明目的之範圍內予以選擇,一般而 言,以本發明之液晶層形成用組成物的4 0質量%以下較佳 ,以20質量%以下更佳。 於本發明中’除聚合性液晶材料外、視其所需可使用 光聚合引發劑。藉由電子線照射使聚合性液晶材料聚合時 ,不需光聚合引發劑時’一般所使用、例如藉由紫外線 (UV)照射予以硬化時’通常光聚合引發劑爲促進聚合時使 -62- 200925672 用。 光聚合引發劑例如苯甲基(亦稱爲二苯甲醯基)、苯偶 因異丁醚、苯偶因異丙醚、二苯甲酮、苯甲醯基苯甲酸、 苯甲酿基苯甲酸甲酯、4-苯甲醯基- 4’-甲基二苯基硫酸、 苯甲基甲基縮醛、二甲基胺基苯甲酸酯、2-正丁氧基乙 基_4-二甲基胺基苯甲酸酯、P-二甲基胺基苯甲酸異戊炉 、3,3’-二甲基_4_甲氧基二苯甲酮、羥甲基苯甲烯基甲酸 ❹酯、2-甲 基-1-(4 -甲基硫化)苯基)-2 -嗎啉基丙院-1-_、 » 苯甲基-2-二甲基胺基-1-(4-嗎啉基苯基)-丁烷-1-酮、κ \ - 十二苯基)-2 -經基-2-甲基丙院-1-酮、ΐ·經基環己基苯陶 2 -羥基-2 -甲基-1 -苯基丙烷-1 -酮、1 - (4 -異丙基苯基')0… 基_2_甲基丙烷-1-酮、2_氯化噻噸酮、2,4-二乙基_嘴酿 、2,4-二異丙基噻噸酮、2,4-二甲基噻噸酮、異丙基嚷嘴 酮、或1-氯-4-丙氧基噻噸酮等。 光聚合引發劑之添加量,一般而言可以〇.〇1質鼍% Ο 20質量%較佳、以0.1質量%〜1〇質量%更佳、以〇 5暂· ^ ^ % 〜5質量%之範圍最佳,添加於本發明之聚合性液晶材料 中〇 藉由此等化合物之添加,可提高本發明之液晶材料的 硬化性’且增大所得的液晶層之機械強度,及改善其安定 性。 另外,於配合有溶劑之液晶層形成用組成物中,爲容 易予以塗佈時可加入界面活性劑等。 例示可添加的界面活性劑時,如咪唑啉、四級銨鹽、 -63- 200925672 氧化烷銨、聚胺衍生物等之陽離子系界面活性劑;聚氧化 乙烯-聚氧化丙烯縮合物、一級或二級醇羥乙基酯、烷基 苯酚羥乙基酯、聚乙二醇及其酯、月桂基硫酸鈉、月桂基 硫酸錢、月桂基硫酸胺類、院基取代芳香族磺酸鹽、院基 磷酸鹽、脂肪族或芳香族磺酸嗎啉縮合物等之陰離子系界 面活性劑;月桂基醯胺丙基甜菜鹼、月桂基胺基素醋酸甜 菜鹼等之兩性系界面活性劑;聚乙二醇脂肪酸酯類、聚氧 Ο 化乙烯烷胺等之非離子系界面活性劑;全氟化烷基磺酸鹽 、全氟化烷基羧酸鹽、全氟化烷基氧化乙烯加成物、全氟 化院基三甲基銨鹽、含全氟化烷基·親水性基之低聚物、 含全氟化烷基•親油基之低聚物'含全氟化烷基之胺基甲 酸酯等之氟系界面活性劑等。 界面活性劑之添加量,係視界面活性劑之種類、液晶 材料之種類、溶劑之種類、及塗佈溶液之配向膜的種類而 定’通常爲溶液中所含的聚合性液晶材料的l〇ppm〜1〇質 ® 量%較佳、更佳者爲lOOppm〜5質量%、最佳者爲0.1〜1質 量%之範圍。 塗佈液晶層形成用組成物之方法,例如旋轉塗佈法、 輥塗佈法、印刷法、浸漬上拉法、塑模塗佈法、鑄造法、 棒塗佈法、刮刀塗佈法、噴霧塗佈法、照相凹版塗佈法、 可逆塗佈法、或押出塗佈法等。 塗佈液晶層形成用組成物後、除去溶劑的方法,例如 藉由風乾、加熱除去、或減壓除去,以及組合此等之方法 等予以進行。藉由除去溶劑,形成液晶配向經固定的層。 -64- 200925672 使聚合性液晶材料硬化的步驟,可賦予爲使聚合性液 晶材料硬化時之能量,亦可爲熱能量,通常藉由照射具有 引起聚合能力之電離放射線予以進行。 視其所’亦可在聚合性液晶材料內含有聚合引發劑 。電離放射線只要是可使聚合性液晶材料聚合之放射線即 可,沒有特別的限制’通常就裝置之容易性等而言,使用 紫外線或可視光線’以波長爲1 5 0〜5 0 〇nm之光較佳,以 Ο 250〜450nm更佳’以3〇〇〜400nm之波長的紫外線最佳。 於本發明中’以紫外線(U V)作爲活性放射線照射,以 紫外線自聚合引發劑產生游離基,進行游離基聚合的方法 較佳。使用UV作爲活性放射線的方法,係爲已確立的技 術’故含有使用的聚合引發劑,容易應用於本發明中。 爲照射該紫外線時之光源,例如低壓水銀燈(殺菌燈 、螢光化學燈、黑光燈)、高壓放電燈(高壓水銀燈、金屬 鹵化物燈)、或電弧放電燈(超高壓水銀燈、氙氣燈、水銀 G 氣氣燈)等。 其中,推薦使用金屬鹵化物燈、氙氣燈、高壓水銀燈 等。照射強度係藉由於形成液晶配向經固定的層時所使用 的聚合性液晶材料之組成或光聚合引發劑之多寡,予以適 當調整。 藉由照射活性放射線予以配向固定化步驟’可在形成 上述之液晶層形成用層的步驟之處理溫度、即在聚合性液 晶材料形成液晶相之溫度條件下進行’亦可在較形成液晶 相更低的溫度下進行。 -65- 200925672 &lt;直線偏光薄膜&gt; 直線偏光薄膜’只要爲吸收型直線偏光薄膜,惟不受 此等所限制,可使用習知的各種形態。一般而言,除由使 如聚乙烯醇之親水性高分子所形成的薄膜、以如碘之二色 性染料處理延伸者,或使如聚氯化乙烯之塑膠薄膜處理以 使聚二烯配向者等所形成的偏光薄膜外,可使用使該偏光 〇 薄膜以密封薄膜塗佈予以保護者等。 &lt;橢圓偏光薄膜之構成&gt; 本發明之橢圓偏光薄膜的截面構成以圖表示。第6〜8 圖係爲本發明之實施形態的簡略圖,惟本發明不受此等所 限制。此處,稱爲橢圓偏光薄膜者,係指直線偏光薄膜之 吸收軸、與本發明之相位差薄膜的面內遲相軸所成的角度 爲0°〜90°,其中,特別是使45°±2°之範圍者稱爲圓偏光薄 ❹膜。 第6圖係在一般的偏光板(具有TAC(纖維素三乙酸酯)/ 偏光子/TAC之構成)上,使本發明具有垂直配向液晶層之 相位差薄膜的一面使用黏著劑或黏接劑予以貼合的圓偏光 薄膜。此時,偏光板可直接使用市售的偏光板。 第7圖係使1張本發明含有垂直配向液晶層之相位差薄 膜(λ/4)、與1張習知的僅藉由斜向延伸所形成的相位差薄 膜(λ/2)、及一般的直線偏光板,以圖中之軸角度貼合的圓 偏光薄膜。 -66- 200925672 第8圖係爲以本發明之相位差薄膜作爲一側的偏光板 保護薄膜、與另一個其他的偏光板保護薄膜’同時夾住直 線偏光薄膜的形態下予以層合、貼合的圓偏光薄膜。此時 ,本發明之相位差薄膜的貼合面,係爲與設置垂直配向液 晶層之面相反的面。 &lt;反射型液晶顯示裝置&gt; 〇 具備自本發明之橢圓偏光膜切出的橢圓偏光板之反射 型液晶顯示裝置的層構成例,如第9圖所示。第9圖所示之 反射型液晶顯示裝置,由下往上順序層合下基板201、反 射電極202、下配向膜203、液晶層204、上配向膜205、透 明電極206、上基板207、透明導電膜208及本發明之橢圓 偏光板209所形成。下基板201與反射電極202係各以反射 板所構成,自下配向膜203至上配向膜205各以液晶晶胞所 構成。 © 爲彩色顯示時,另外設置濾色器層。第9圖中省略濾 色器層之圖示,惟濾色器層以設置於反射電極202與下配 向膜203之間、或上配向膜205與透明電極206之間較佳。 而且,第9圖所示之反射型液晶顯示裝置中,亦可使 用透明電極取代反射電極202,另外設置反射板。組合透 明電極所使用的反射板,以金屬板較佳。反射板之表面爲 平滑時,僅正反射成分被反射,視野角變狹窄。因此,以 在反射板之表面上導入凹凸構造(專利275 620號公報記載 等)較佳。反射板之表面爲平坦時(取代在表面導入凹凸構 -67- 200925672 造)’可在偏光元件之一側(晶胞側或外側)設置光擴散薄 膜。 另外,所使用的液晶型式,沒有特別的限制。液晶型 式例如 TN(Twisted Nematic)型、STN 型(Super Twisted Nematic)型、HAN(Hybrid Aligned Nematic)型等。 本發明之反射型液晶顯示裝置、可使用施加電壓低時 爲明顯示、高時爲暗顯示之平常白(normally white)型, 〇 施加電壓低時爲暗顯示、高時爲明顯示之平常黑(normally black)型。而且,本發明之橢圓偏光板亦可使用半透過型 液晶顯示裝置。 &lt;觸控面板&gt; 使用本發明之橢圓偏光板作爲防止反射層之觸控面板 ,例如自觸控面板之輸入操作面側上順序以橢圓偏光板/ 上側導電膜/間距器/下側導電膜予以構成。上側導電膜係 ❹ 可在光學等向性高分子薄膜等之基板上,直接或視其所需 經由黏接層或基板之保護層予以形成。 本發明之觸控面板,可以爲此等觸控面板中之任何一 種,具有透明導電膜與隙縫之界面的觸控面板’例如尤以 電阻膜式觸控面板爲宜。電阻膜式觸控面板係在至少一面 上形成有透明導電膜之2張透明電極基板’且在透明導電 膜互相對向、貼合下予以配置’藉由押壓上側之透明電極 基板以使2張導電性基板接觸’可檢測位置之樣式的觸控 面板。 -68- 200925672 本發明之觸控面板,例如可自觸控面板之輸入操作面 側順序有橢圓偏光板/上側導電膜/間距器/下側導電膜所構 成。上側導電膜係可在光學等向性高分子薄膜等之基板上 直接或視其所經由黏接層或基板之保護層等予以形成。 本發明之觸控面板,可組合各種顯示裝置使用。例如 ,陰極射線管(CRT) '電漿顯示裝置(PDP)、場•發射•顯 示裝置(FED)、無機EL裝置 '有機EL裝置、液晶顯示裝 ❹ 置等。 (EL元件之實施形態) 第10圖係爲在EL(電致發光)元件中使用本發明之橢 圓偏光元件之較佳實施形態的簡略圖。 如第10圖所示、本實施形態之EL元件300,具備自 吸收型直線偏光子301、與本發明之相位差302之層合體的 本發明圓偏光薄膜切出的本發明之橢圓偏光板3 03。 〇 透過吸收型直線偏光子301之直線偏光,藉由相位差 薄膜302變換成橢圓偏光所形成。 而且,EL元件3 00係具備對向配置於橢圓偏光板303 之透明基板3 04、在透明基板3 04上所形成的陽極3 05、對 向配置於陽極305之陰極306、與在陽極305及陰極306間所 配置的發光層3 07。 於具有該構成之EL元件300中,藉由自陰極306注入 電子,自陽極305注入電洞,使兩者以發光層3 07再結合’ 產生對應於發光層307之發光特性的可視光線之發光。以 -69- 200925672 發光層307所產生的光,直接或以陰極3 06反射後,經由陽 極305、透明基板3 04、本發明橢圓偏光板3 03’取出外部 所形成。 另外,藉由室內照明等,自EL元件300之外部入射 的外光11 (自垂直於吸收型直線偏光子3 〇 1之面方向入射的 外光),藉由吸收型直線偏光子301吸收一半,殘留的一半 作爲直線偏光予以透過,入射於相位差薄膜302。 ❹ 入射於相位差薄膜302之光,爲如上所述使吸收型直 線偏光子301與相位差薄膜302之光軸以45度或135度交差 下予以配置,藉由透過橢圓偏光板303,變換成橢圓偏光 〇 使橢圓偏光板3 03出射的橢圓偏光,以陰極306進行鏡 面反射時,相位反轉180度,以逆反轉的圓偏光被反射。 該反射光R1,藉由再入射於圓偏光板3 03,在吸收型 直線偏光子301之吸收軸(垂直於光軸之軸)上變換成平行 © 的直線偏光時,全部被吸收型直線偏光子301所吸收,沒 有出射外部。 本發明之橢圓偏光板,不僅可使用底部發射方式,亦 可使用頂端發射方式。 【實施方式】 於下述中,以實施例具體地說明本發明,惟本發明不 受此等所限制。 -70- 200925672 [實施例] 實施例1 以特開20 07-94007號公報中實施例1之長條形延伸薄 膜(A)的製作方法爲基準’除進行原菠烯系樹脂之製膜, 薄膜寬度爲300mm外,全部藉由相同的方法製得長條形 相位差薄膜RF1。RF1捲取成輥狀。自該RF1輥送出薄膜 ,在一面上以押出塗佈器塗佈下述塗佈液A,吹附溫風予 © 以乾燥後,進行UV照射以使層全體硬化,製得設置有垂 直配向液晶層之長條形相位差薄膜RFl-a。調整硬化後垂 直配向液晶層之厚度爲1·77μηι。 此時,垂直配向液晶塗佈液之塗佈方向,與RF 1之長 度方向一致。結果,相位差薄膜RFl-a之薄膜厚度方向的 阻滯値Rth爲- 3nm。 (塗佈液A) 〇 垂直配向液晶化合物:大日本油墨化學工業股份有限公司 製 UCL-018 16質量份 甲基乙酮 16.8質量份 丙二醇單甲醚 67.2質量份 然後,如第7圖所示,藉由使透過軸平行於薄膜寬度 方向之長條形偏光板(Sanritz公司製、HLC2-5618S、厚度 1 8 Ομιη)、與自薄膜之長度方向傾斜15°的方向具有面內遲 相軸之面內阻滯値R〇爲270nm之長條形延伸薄膜RFl-b 、與上述RF 1 -a順序以輥•與·輥貼合,製得長條形圓偏 -71 - 200925672 光薄膜PF1。此時’使延伸薄膜RFl-b之面內遲相軸、與 延伸薄膜RFl-a之面內遲相軸所成的角度爲6〇。下貼合, 且與RFl-b貼合的RFl-a之面’與設置有垂直配向液晶層 之面爲相反側的面。 上述阻滯値之測定’係使用自動複折射計KOBRA-2 1 ADH(王子計測器(股)製),在2 3 °C、5 5 %RH之環境下, 於波長爲550 nm時朝試料之寬度方向 '以lcin間隔進行3 〇 次元複折射率測定,將測定値代入次式求取。 阻滯値 R〇 = (nx-ny)xd 阻滯値 Rth={(nx + ny)/2-nz}xd (式中,η X係爲相位差薄膜面內之遲相軸方向的折射 率(面內之最大祈射率),ny係爲垂直於相位差薄膜面內之 遲相軸方向的折射率,nz係薄膜厚度方向的折射率,d係 爲相位差薄膜之厚度(nm)) ©實施例2 以特開2003-294942號公報中實施例1之方法爲基準, 製作由聚碳酸酯-聚苯乙烯共聚物所形成的基材薄膜RF2 。惟延伸處理係使用實施例1記載的裝置,以溫度1 75 °C、 倍率3.0倍,朝遲相軸與薄膜寬度方向形成45°傾斜的方 向進行。 在上述RF 2上塗佈塗佈液A,吹附溫風予以乾燥後, 進行UV照射以使層全體硬化,製得設置有垂直配向液晶 層之長條形相位差薄膜RF2-a。調整硬化後垂直配向液晶 -72- 200925672 層之厚度爲0.44 μηι。此時,垂直配向液晶塗佈液之塗佈方 向,與RF2之長度方向一致。 使實施例1所使用的長條形偏光板(Sanritz公司製、 HLC2-5618S、厚度180μιη)、與自薄膜之長度方向傾斜45。 方向具有面內遲向軸之面內阻滯値Ro爲140 nm之長條形 相位差薄膜RF2-a順序以輥.與•輥貼合,製得長條形圓 偏光薄膜PF2。 實施例3 製作下述之延伸纖維素酯薄膜。 有關使用的材料如下述記載。 [表1]X cch2 I R2 [Chem. 17] MV2 R3 CHjC-CO- 士士. In the general formula (MV1) which represents the compound (I), R1 and R2 each represent hydrogen or a methyl group. When the temperature range in which the liquid crystal phase is displayed is wide, it is preferred that both R1 and R2 are hydrogen. X may be any of hydrogen, chlorine, bromine, iodine, an alkyl group having 1 to 4 carbon atoms, a methoxy group, a cyano group, or a nitro group, with chlorine or a methyl group being preferred. Further, the (meth)acryloxy group at both ends of the molecular chain of the compound (I) and the alkylene chain length of the distance from the aromatic ring are a and b, and may be any integer in the range of 2 to 12, respectively. It is preferably in the range of 4 to 10, and more preferably in the range of 6 to 9. Compound (I) can be synthesized by any method. For example, when X is a methyl group, -58 to 200925672, the compound (I) can be obtained by using 1 equivalent of methylhydroquinone and 2 equivalents of 4-(m-(methyl)propenyloxyalkoxy)benzoic acid. The esterification reaction is prepared. Esterification reaction The above-mentioned benzoic acid is activated by an acid chloride or a sulfonic acid anhydride or the like to cause a reaction with methylhydroquinone. Further, a condensing agent such as DCC (dicyclohexylcarbonyldiimide) can be used to directly react a carboxylic acid unit with methylhydroquinone. In addition to these methods, the ester can be first obtained by esterification of 1 equivalent of methylhydroquinone with 2 equivalents of 4-(m-benzyloxyalkoxy)benzoic acid, followed by © The compound (I) can be synthesized by debenzylation by a hydrogenation reaction or the like, followed by propylene thiolation of the molecular terminal. When an esterification reaction of methylhydroquinone with 4-(m-benzyloxyalkoxy)benzoic acid is carried out, methylhydroquinone is introduced into the diacetate, and then reacted with the above benzoic acid in a molten state, directly The ester body is obtained. The compound (I) wherein X of the general formula (MV1) is not a methyl group can also be obtained by the same reaction as described above by substituting methylhydroquinone with a hydroquinone having a corresponding substituent. In the general formula (MV2) representing the compound (?), when R3 is hydrogen or methyl hydrazine, when the temperature range of the liquid crystal phase is broad, it is preferred that R3 is hydrogen. Regarding c having an alkylene chain length, the compound (II) having a fluorene of 2 to 12 does not exhibit liquid crystallinity. However, in consideration of compatibility with the liquid crystal compound (I), c is preferably in the range of 4 to 10, more preferably in the range of 6 to 9. Compound (II) can also be synthesized by any method, for example, by esterification of 1 equivalent of 4-cyanophenol with 1 equivalent of 4-(η-(methyl)propenyloxyalkoxy)benzoic acid. , synthesis of compounds (Π). In general, the esterification reaction is carried out in the same manner as in the case of a synthetic compound (the above-mentioned benzoic acid is activated by an acid chloride or a sulfonic acid anhydride) to react with 4-cyanophenol. 200925672 The above benzoic acid is reacted with 4-cyanophenol using a condensing agent such as DCC (dicyclohexylcarbonyldiimide). In addition, a polymerizable liquid crystal oligomer or polymerization can be used in the present invention. The liquid crystal polymer or the like. The polymerizable liquid crystal oligomer or the polymerizable liquid crystal polymer can be appropriately selected and used. The layer thickness of the liquid crystal layer of the present invention is preferably in the range of 0.1 μm to 20 μm. It is more preferably in the range of 0.2 to ΙΟμηι. 〇 Direct inspection of the liquid crystal alignment level in the vertical alignment liquid crystal layer provided on the substrate film having the in-plane phase difference 非常 is very difficult, and one focus is made to make azo A sample in which the benzene-based liquid crystal is applied and fixed in an amount of about 1% by mass to 2% by mass in the vertical alignment liquid crystal, and the sample exhibits the same liquid crystal molecules as the sample containing no actual azobenzene liquid crystal. The absorbance in the vicinity of 5 5 Onm to 6 5 Onm is measured by a spectrophotometer, and the degree of alignment is known. In other words, when the absorbance is relatively low, it is possible to determine that substantially all of the liquid crystal molecules are vertically aligned and fixed. Conversely, the absorbance is relatively high. High time' can explain that the liquid crystal molecules of the original vertical alignment do not necessarily have to be vertically aligned. The light absorption area of the azobenzene liquid crystal in the buried gap becomes wider. &lt;Manufacturing method of liquid crystal layer&gt; Polymeric liquid crystal material, The photopolymerization initiator and the sensitizer are required to be used to prepare a composition for forming a liquid crystal layer, and are applied onto a substrate to form a layer for forming a liquid crystal layer. In the present invention, the photo-alignment layer is provided to remove the solvent. Further, it is preferred to use a coating composition in which other components are dissolved as a liquid crystal composition, and apply a layer of -60 to 200925672 on a substrate to remove a solvent to form a liquid crystal alignment layer. This method is preferable to other methods. In the case of a solvent which dissolves the polymerizable liquid crystal material or the like, and does not lower the properties of the transparent resin film, it is not necessary. There are a specific limitation 'specifically', for example, one or two or more kinds of hydrocarbons such as benzene, toluene, xylene, n-butylbenzene, diethylbenzene, tetralin, etc.; methoxybenzene, 1 may be used. An ether such as 2-dimethoxybenzene or diethylene glycol dimethyl ether; a ketone such as acetone, hydrazine methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone or 2,4-pentanedione Class: esters of ethyl acetate, ethylene glycol monomethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate or γ-butyrolactone; 2_pyrrolidone, Ν-methyl- a guanamine solvent such as 2-pyrrolidone, dimethylformamide or dimethylacetamide; chloroform, dichloromethane, carbon tetrachloride, dichloroethane 'tetrachloroethane, trichloroethylene, a halogen-based solvent such as tetrachloroethylene, chlorobenzene or o-dichlorobenzene; 1,3-butanol, diacetone alcohol, glycerin, monoacetin, ethylene glycol, triethylene glycol, hexanediol, Alcohols such as ethylene glycol monomethyl ether, Ethyl acetate, or butyl cellosolve; phenols such as phenol and p-chlorophenol. When only a single solvent is used, the solubility of the polymerizable liquid crystal material or the like is insufficient, and the above-mentioned substrate is eroded. Further, by mixing two or more kinds of solvents, the problem can be avoided. Among the above solvents, a solvent of a hydrocarbon solvent and a solvent mixture of ethylene glycol monoether acetate solvent are preferable, and a mixture of an acid or a ketone and an ethylene glycol is preferable. The concentration of the solution 'is not related to the solubility of the polymerizable liquid crystal material or the film thickness of the liquid crystal layer at the time of the manufacture of the liquid crystal layer, and is usually 1% by mass to 60% by mass, preferably 3 The range of the mass % to 40% by mass is more preferable. In the liquid crystal layer-forming composition used in the present invention, a compound other than the above may be added to the extent that the object of the present invention is not impaired. a compound which can be added, for example, a polyester prepolymer obtained by condensing a polyol with a monobasic acid or a polybasic acid, and a polyester (meth) acrylate obtained by reacting with (meth)acrylic acid; having a polyol group and After the two isocyanate group-containing compounds are reacted with each other, the reaction product is reacted with (meth)acrylic acid to obtain a polyurethane urethane (bis) bisphenol A epoxy resin bisphenol F ring Oxygen resin, novolak type epoxy resin, polycarboxylate polyglycidyl ester, polyol polyglycidyl ether, aliphatic or alicyclic epoxy resin, amine epoxy resin, trisphenol methane epoxy resin, An epoxy resin such as a dihydroxybenzene type epoxy resin, a photopolymerizable compound such as an epoxy group (meth) acrylate obtained by reacting with (meth)acrylic acid, or a light having a propylene group or a methyl propylene group In the liquid crystal layer-forming composition of the present invention, the amount of such a compound to be added is selected within a range that does not impair the object of the present invention, and is generally used for forming a liquid crystal layer of the present invention. 40% by mass to less preferred composition, more preferably 20 mass% or less. In the present invention, a photopolymerization initiator can be used in addition to the polymerizable liquid crystal material as needed. When the polymerizable liquid crystal material is polymerized by electron beam irradiation, when a photopolymerization initiator is not required, when it is generally used, for example, by ultraviolet (UV) irradiation, the photopolymerization initiator is usually used to promote polymerization. 200925672 used. Photopolymerization initiators such as benzyl (also known as benzoyl), benzoin isobutyl ether, benzoin isopropyl ether, benzophenone, benzhydryl benzoic acid, benzoyl benzene Methyl formate, 4-benzylidene-4'-methyldiphenylsulfate, benzylmethylacetal, dimethylaminobenzoate, 2-n-butoxyethyl_4- Dimethylamino benzoate, P-dimethylaminobenzoic acid isotonic furnace, 3,3'-dimethyl-4 methoxybenzophenone, hydroxymethylbenzyl alkenyl acid Oxime ester, 2-methyl-1-(4-methylsulfonyl)phenyl)-2- morpholinylpropan-1-e, » benzyl-2-dimethylamino-1-(4) -morpholinylphenyl)-butan-1-one, κ\-dodecyl)-2-yl-cyano-2-methylpropan-1-one, hydrazine-cyclohexylbenzenephthalene 2 - Hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl')0-yl-2-methylpropan-1-one, 2-chlorothioxanthone , 2,4-diethyl-mouth, 2,4-diisopropylthioxanthone, 2,4-dimethylthioxanthone, isopropylpyrone, or 1-chloro-4-propanol Oxythioxanthone and the like. The amount of the photopolymerization initiator to be added is generally 〇.〇1 鼍% Ο 20% by mass, preferably 0.1% by mass to 1% by mass, more preferably 〇5 ·· ^ ^ % 〜5% by mass The optimum range is added to the polymerizable liquid crystal material of the present invention, and the addition of such a compound can improve the hardenability of the liquid crystal material of the present invention and increase the mechanical strength of the obtained liquid crystal layer and improve the stability thereof. Sex. Further, in the composition for forming a liquid crystal layer to which a solvent is blended, a surfactant or the like may be added in order to facilitate application. When a surfactant which can be added is exemplified, such as an imidazoline, a quaternary ammonium salt, a cationic surfactant such as -63-200925672 alkylammonium oxide or a polyamine derivative; a polyoxyethylene-polyoxypropylene condensate, a primary or Secondary alcohol hydroxyethyl ester, alkyl phenol hydroxyethyl ester, polyethylene glycol and its ester, sodium lauryl sulfate, lauryl sulfate, ammonium lauryl sulfate, hospital-based substituted aromatic sulfonate, hospital Anionic surfactant such as phosphatide, aliphatic or aromatic sulfonic acid morpholine condensate; amphoteric surfactant such as lauryl guanamine propyl betaine, laurylamine acetyl acetate betaine; Nonionic surfactants such as diol fatty acid esters, polyoxyalkylene ethylene alkylamines; perfluorinated alkyl sulfonates, perfluorinated alkyl carboxylates, perfluorinated alkyl oxyethylene adducts , a perfluorinated trimethylammonium salt, a perfluoroalkyl group-hydrophilic group-containing oligomer, a perfluorinated alkyl group/lipophilic group-containing oligomer, a perfluorinated alkyl group-containing amine A fluorine-based surfactant such as a carbamic acid ester or the like. The amount of the surfactant to be added depends on the kind of the surfactant, the kind of the liquid crystal material, the kind of the solvent, and the type of the alignment film of the coating solution, which is usually a polymer liquid crystal material contained in the solution. The ppm to 1 oxime® amount % is preferably, more preferably from 100 ppm to 5% by mass, and most preferably from 0.1 to 1% by mass. A method of applying a composition for forming a liquid crystal layer, for example, a spin coating method, a roll coating method, a printing method, a immersion pull-up method, a mold coating method, a casting method, a bar coating method, a knife coating method, a spray A coating method, a gravure coating method, a reversible coating method, or an extrusion coating method. The method of removing the solvent after applying the composition for forming a liquid crystal layer is carried out, for example, by air drying, heating removal, or removal under reduced pressure, and a method of combining these. By removing the solvent, a liquid crystal alignment fixed layer is formed. -64- 200925672 The step of curing the polymerizable liquid crystal material can be carried out by imparting energy to the polymerizable liquid crystal material, or heat energy, usually by irradiation with ionizing radiation having polymerization ability. The polymerization initiator may be contained in the polymerizable liquid crystal material as it is. The ionizing radiation is not particularly limited as long as it is a radiation that can polymerize the polymerizable liquid crystal material. In general, ultraviolet light or visible light is used for light having a wavelength of 150 to 500 nm. Preferably, Ο 250 to 450 nm is more preferable to ultraviolet light having a wavelength of from 3 〇〇 to 400 nm. In the present invention, a method of performing radical polymerization by irradiating ultraviolet rays (U V) as active radiation and generating radicals from a polymerization initiator by ultraviolet rays is preferred. The method of using UV as the actinic radiation is an established technique and thus contains a polymerization initiator to be used, and is easily applied to the present invention. A light source for illuminating the ultraviolet ray, such as a low pressure mercury lamp (sterilization lamp, fluorescent chemical lamp, black light lamp), a high pressure discharge lamp (high pressure mercury lamp, a metal halide lamp), or an arc discharge lamp (ultra high pressure mercury lamp, xenon lamp, mercury) G gas lamp) and so on. Among them, metal halide lamps, xenon lamps, high-pressure mercury lamps, and the like are recommended. The irradiation intensity is appropriately adjusted by the composition of the polymerizable liquid crystal material or the amount of the photopolymerization initiator used when the liquid crystal is aligned to the fixed layer. By the irradiation of the active radiation, the alignment fixing step 'can be performed at the processing temperature of the step of forming the above-mentioned liquid crystal layer forming layer, that is, under the temperature condition in which the polymerizable liquid crystal material forms a liquid crystal phase' can also be formed in the liquid crystal phase. Perform at low temperatures. -65-200925672 &lt;Linear polarizing film&gt; The linearly polarizing film ’ is not limited to these as long as it is an absorbing linear polarizing film, and various conventional forms can be used. In general, in addition to a film formed by a hydrophilic polymer such as polyvinyl alcohol, treated with a dichroic dye such as iodine, or a plastic film such as polyvinyl chloride to align the polydiene In addition to the polarizing film formed by the above, a polarizing film can be used as a protective film to protect the polarizing film. &lt;Configuration of Elliptical Polarizing Film&gt; The cross-sectional configuration of the elliptically polarizing film of the present invention is shown in the figure. 6 to 8 are diagrams showing an embodiment of the present invention, but the present invention is not limited thereto. Here, the term "elliptical polarizing film" means that the absorption axis of the linear polarizing film and the in-plane slow axis of the retardation film of the present invention form an angle of 0 to 90, wherein, in particular, 45. A range of ±2° is called a circularly polarized thin film. Fig. 6 is a view showing a conventional polarizing plate (having a composition of TAC (cellulose triacetate) / polarizer/TAC), which is used for the side of the phase difference film having the vertical alignment liquid crystal layer of the present invention, using an adhesive or bonding. A circular polarizing film to which the agent is applied. At this time, the polarizing plate can be directly used as a commercially available polarizing plate. Figure 7 is a phase difference film (λ/4) containing a vertical alignment liquid crystal layer of the present invention, and a conventional retardation film (λ/2) formed by obliquely extending only, and a general straight line. A polarizing plate is a circularly polarizing film that is attached to the axial angle of the drawing. -66- 200925672 Fig. 8 is a laminate and a laminate in which a retardation film of the present invention is used as a polarizing plate protective film on one side and another polarizing plate protective film is sandwiched between linear polarizing films. Circular polarizing film. In this case, the bonding surface of the retardation film of the present invention is a surface opposite to the surface on which the vertical alignment liquid crystal layer is provided. &lt;Reflective liquid crystal display device&gt; 层 A layer configuration example of a reflective liquid crystal display device having an elliptically polarizing plate cut out from the ellipsic polarizing film of the present invention is shown in Fig. 9. In the reflective liquid crystal display device shown in Fig. 9, the lower substrate 201, the reflective electrode 202, the lower alignment film 203, the liquid crystal layer 204, the upper alignment film 205, the transparent electrode 206, the upper substrate 207, and the transparent layer are laminated in this order from bottom to top. The conductive film 208 and the elliptically polarizing plate 209 of the present invention are formed. The lower substrate 201 and the reflective electrode 202 are each formed of a reflective plate, and each of the lower alignment film 203 and the upper alignment film 205 is composed of a liquid crystal cell. © When the color is displayed, the color filter layer is additionally set. The illustration of the color filter layer is omitted in Fig. 9, but the color filter layer is preferably provided between the reflective electrode 202 and the lower alignment film 203 or between the upper alignment film 205 and the transparent electrode 206. Further, in the reflective liquid crystal display device shown in Fig. 9, a transparent electrode may be used instead of the reflective electrode 202, and a reflector may be additionally provided. The reflecting plate used for the combination of the transparent electrodes is preferably a metal plate. When the surface of the reflecting plate is smooth, only the specular reflection component is reflected, and the viewing angle is narrowed. Therefore, it is preferable to introduce a concavo-convex structure on the surface of the reflecting plate (described in Japanese Patent No. 275 620). When the surface of the reflecting plate is flat (instead of the surface-concave-concave structure -67-200925672), a light-diffusing film can be provided on one side (cell side or outer side) of the polarizing element. Further, the liquid crystal type to be used is not particularly limited. The liquid crystal type is, for example, TN (Twisted Nematic) type, STN type (Super Twisted Nematic) type, HAN (Hybrid Aligned Nematic) type or the like. The reflective liquid crystal display device of the present invention can be used for a normal white display when the applied voltage is low and a dark display when the voltage is high, and a dark display when the applied voltage is low, and a normal black when the high voltage is high. (normally black) type. Further, a semi-transmissive liquid crystal display device can also be used for the elliptically polarizing plate of the present invention. &lt;Touch Panel&gt; The elliptically polarizing plate of the present invention is used as the anti-reflection layer of the touch panel, for example, the elliptically polarizing plate / the upper conductive film / the spacer / the lower side are electrically conductive from the input operation surface side of the touch panel. The membrane is constructed. The upper conductive film layer can be formed on a substrate such as an optically isotropic polymer film, either directly or as desired via a protective layer of an adhesive layer or a substrate. The touch panel of the present invention may be any one of the touch panels, and a touch panel having a transparent conductive film and a slit interface, for example, a resistive touch panel. The resistive touch panel is formed by arranging two transparent electrode substrates 'having a transparent conductive film on at least one surface and arranging the transparent conductive films against each other and bonding them together' by pressing the upper transparent electrode substrate to make 2 The conductive substrate is in contact with a touch panel of a detectable position. In the touch panel of the present invention, for example, an elliptically polarizing plate/upper conductive film/pitcher/lower conductive film may be sequentially formed from the input operation surface side of the touch panel. The upper conductive film can be formed directly on the substrate such as an optically isotropic polymer film or a protective layer or the like through the adhesive layer or the substrate. The touch panel of the present invention can be used in combination with various display devices. For example, a cathode ray tube (CRT) 'plasma display device (PDP), field emission/display device (FED), inorganic EL device 'organic EL device, liquid crystal display device, and the like. (Embodiment of EL Element) Fig. 10 is a schematic view showing a preferred embodiment of the elliptical polarizing element of the present invention used in an EL (electroluminescence) element. As shown in Fig. 10, the EL element 300 of the present embodiment includes the elliptically polarizing plate 3 of the present invention cut out from the circularly polarizing film of the present invention having the self-absorbing linear polarizer 301 and the laminate of the phase difference 302 of the present invention. 03.直线 The linearly polarized light transmitted through the absorption type linear polarizer 301 is formed by converting the phase difference film 302 into elliptically polarized light. Further, the EL element 300 includes a transparent substrate 340 disposed opposite to the elliptically polarizing plate 303, an anode 305 formed on the transparent substrate 304, a cathode 306 disposed opposite the anode 305, and an anode 305. A light-emitting layer 307 disposed between the cathodes 306. In the EL element 300 having this configuration, by injecting electrons from the cathode 306, a hole is injected from the anode 305, and the two are recombined with the light-emitting layer 307 to generate a visible light corresponding to the light-emitting characteristics of the light-emitting layer 307. . The light generated by the light-emitting layer 307 of -69-200925672 is directly or after being reflected by the cathode 306, and is formed by taking out the outside through the anode 305, the transparent substrate 304, and the elliptically polarizing plate 3 03' of the present invention. Further, the external light 11 incident from the outside of the EL element 300 (outer light incident from the direction perpendicular to the surface of the absorption type linear polarizer 3 〇1) by the indoor illumination or the like is absorbed by the absorption type linear polarizer 301 The remaining half is transmitted as linear polarized light and incident on the retardation film 302.光 The light incident on the retardation film 302 is disposed such that the optical axis of the absorption-type linear polarizer 301 and the retardation film 302 intersect at 45 degrees or 135 degrees as described above, and is transmitted through the elliptically polarizing plate 303 to be converted into The elliptical polarized light elliptically polarized light emitted from the elliptically polarizing plate 303, and when the cathode 306 is specularly reflected, the phase is reversed by 180 degrees, and the circularly polarized light which is inversely inverted is reflected. The reflected light R1 is re-incident on the circular polarizing plate 303, and is converted into parallel linear polarization when the absorption axis of the absorption type linear polarizer 301 (the axis perpendicular to the optical axis) is converted into parallel linear polarization. Sub-301 absorbs and does not exit the outside. The elliptically polarizing plate of the present invention can be used not only in the bottom emission mode but also in the top emission mode. [Embodiment] The present invention will be specifically described by way of Examples, but the invention is not limited thereto. -70-200925672 [Examples] Example 1 The preparation method of the long-length stretched film (A) of Example 1 in JP-A-2007-94007 is based on the preparation of a film of a raw spinel-based resin. The strip-shaped retardation film RF1 was obtained by the same method except that the film width was 300 mm. The RF1 coil is taken into a roll shape. The film was sent out from the RF1 roll, and the coating liquid A described below was applied by an applicator on one side, and the warm air was blown to © to dry, and then UV irradiation was performed to harden the entire layer to obtain a liquid crystal layer provided with a vertical alignment. Long strip retardation film RFl-a. After adjusting the hardening, the thickness of the vertically aligned liquid crystal layer was 1.77 μm. At this time, the direction of application of the vertical alignment liquid crystal coating liquid coincides with the direction of the length of RF 1 . As a result, the retardation 値Rth of the retardation film RF1-a in the film thickness direction was -3 nm. (Coating liquid A) 〇 Vertical alignment liquid crystal compound: UCL-018 manufactured by Dainippon Ink and Chemicals Co., Ltd. 16 parts by mass of methyl ethyl ketone 16.8 parts by mass of propylene glycol monomethyl ether 67.2 parts by mass, and then, as shown in Fig. 7, An elongated polarizing plate having a transmission axis parallel to the film width direction (manufactured by Sanritz Co., Ltd., HLC 2-5618S, thickness: 18 Ομηη) and an in-plane retardation axis in a direction inclined by 15° from the longitudinal direction of the film The long strip-shaped stretched film RFl-b having an internal retardation 値R〇 of 270 nm is bonded to the above-mentioned RF 1 -a in the order of a roll and a roll to obtain a long strip-shaped split-71 - 200925672 light film PF1. At this time, the angle between the in-plane slow axis of the stretched film RF1-b and the in-plane retardation axis of the stretched film RF1-a was 6 〇. The surface of RFl-a bonded to RFl-b and the surface on the opposite side to the surface on which the vertical alignment liquid crystal layer is provided are bonded. The measurement of the above-mentioned retardation ' is performed using an automatic complex refractometer KOBRA-2 1 ADH (manufactured by Oji Scientific Instruments Co., Ltd.) at a temperature of 2 5 ° C and 5 5 % RH at a wavelength of 550 nm. In the width direction, the 3 〇-dimensional complex refractive index measurement is performed at intervals of 1 cin, and the measurement is performed in the sub-type. Block 値R〇= (nx-ny)xd Block 値Rth={(nx + ny)/2-nz}xd (wherein η X is the refractive index of the retardation axis in the plane of the phase difference film) (maximum rate of attack in the plane), ny is the refractive index perpendicular to the retardation axis in the plane of the retardation film, the refractive index in the thickness direction of the nz film, and d is the thickness (nm) of the retardation film) ©Example 2 A base film RF2 made of a polycarbonate-polystyrene copolymer was produced in accordance with the method of Example 1 in JP-A-2003-294942. The elongation treatment was carried out by using the apparatus described in Example 1 at a temperature of 1 75 ° C and a magnification of 3.0, and in a direction in which the retardation axis and the film width direction were inclined at 45°. The coating liquid A was applied onto the RF 2, dried by blowing with a warm air, and then subjected to UV irradiation to cure the entire layer to obtain a long retardation film RF2-a provided with a vertically aligned liquid crystal layer. Adjust the hardened vertical alignment liquid crystal -72- 200925672 The thickness of the layer is 0.44 μηι. At this time, the application direction of the vertical alignment liquid crystal coating liquid coincides with the longitudinal direction of RF2. The long polarizing plate (manufactured by Sanritz Co., Ltd., HLC 2-5618S, thickness: 180 μm) used in Example 1 was inclined at 45 from the longitudinal direction of the film. The direction in-plane retardation axis in-plane retardation 値Ro is 140 nm long. The retardation film RF2-a is sequentially laminated with a roll and a roll to produce a long circular polarizing film PF2. Example 3 The following extended cellulose ester film was produced. The materials used are as follows. [Table 1]

樹脂 纖維素酯 取代度 Μη Mw/Mn A 乙醯基 1,6-丙酿基:0.9 40000 2.5 B 乙醯基 1,8-丙醯基:1.1 80000 2.4 C 乙醯基 1,2-丙醯基:1.1 50000 2.4 可塑劑 A 丨· . . 一_ 芳香族末端酯例示化合物No. 1 B 芳香族末端酯例示化合物No.3 C 芳香族末端酯例示化合物No.13 D 三羥甲基丙烷三苯甲酸酯 -73- 200925672 微粒子 AEROSILR972V(日本亞耶羅吉魯(譯音)製) 紫外線吸收劑 A 吉魯賓(譯音)326(千葉特殊化學製) B 吉魯賓109(千葉特殊化學製) C 吉魯賓171(千葉特殊化學製) (微粒子分散液) Ο 微粒子 11質量份 乙醇 89質量份 使上述以溶解器進行攪拌混合50分鐘後,以均質機進 行分散處理。 &lt;微粒子添加液&gt; 在加入有二氯甲烷的溶解桶中添加纖維素酯A,進行 加熱且完全予以溶解後,使該物使用安積濾紙(股)製之安 ® 積濾紙No.244予以過濾。使過濾後之纖維素酯溶液充分 進行攪拌,且於其中慢慢地添加微粒子分散液。另外,二 次粒子之粒徑爲所定大小下以珠磨機進行分散。使該物以 日本精線(股)製之finemet(股)製之finemet NF進行過濾 ,調製微粒子添加液。 二氯甲烷 99質量份 纖維素酯A 4質量份 微粒子分散液 11質量份 調製下述組成之主漿料。首先在加壓溶解桶中添加二 -74- 200925672 氯甲烷與乙醇。在加有溶劑之加壓溶解桶中攪拌且投入纖 維素酯A。使該物加熱,攪拌且完全溶解,以及添加可塑 劑及紫外線吸收劑,予以溶解。使該物使用安積濾紙(股) 製之安積濾紙No.244予以過濾,調製主漿料液。 加入1〇〇質量份主漿料液與2質量份微粒子添加液,以 線上混合器(東麗靜止型管內混合機Hi-Mixer、SWJ)予以 充分混合,然後,使用帶式流延裝置,均勻地流延於寬度 〇 2m之不鏽鋼帶支持體。在不鏽鋼帶支持體上直至殘留溶 劑量爲110%爲止,使溶劑蒸發,自不鏽鋼帶支持體剝離 。然後,使用本發明之實施例1中記載的裝置,以溫度 17(TC、倍率2.0倍,遲相軸與薄膜寬度方向傾斜45°的方 向進行,予以乾燥,製得基材薄膜RF3。 &lt;主漿料液之組成&gt; 二氯甲烷 300質量份 乙醇 57質量份 纖維素醋A 100質量份 可塑劑(A)、(B)、(C)以 1 : 1 :1之比 5.5質量份 可塑劑(D) 5.5質量份 紫外線吸收劑(A) 0.4質量份 紫外線吸收劑(B) 0.7質量份 紫外線吸收劑(C) 0.6質量份Resin cellulose ester substitution degree Μη Mw/Mn A Ethyl decyl 1,6-propyl aryl group: 0.9 40000 2.5 B Ethyl decyl 1,8-propyl fluorenyl group: 1.1 80000 2.4 C Ethyl decyl 1,2-propionate Base: 1.1 50000 2.4 Plasticizer A 丨· . . a _ aromatic terminal ester exemplified compound No. 1 B aromatic terminal ester exemplified compound No. 3 C aromatic terminal ester exemplified compound No. 13 D trimethylolpropane three Benzoate-73- 200925672 Microparticles AEROSILR972V (made by Yayarojiru, Japan) UV absorber A Gilubin (transliteration) 326 (Chiba Special Chemical System) B Gilubin 109 (Chiba Special Chemical System) C Gibbin 171 (manufactured by Chiba Specialty Chemicals Co., Ltd.) (fine particle dispersion) Ο 10 parts by mass of fine particles of 89 parts by mass of ethanol, and the mixture was stirred and mixed for 50 minutes in a dissolver, and then subjected to dispersion treatment by a homogenizer. &lt;Microparticle-added liquid&gt; The cellulose ester A was added to a dissolution tank to which methylene chloride was added, and after heating and completely dissolved, the product was subjected to An® filter paper No. 244 manufactured by Azure filter paper. filter. The filtered cellulose ester solution was sufficiently stirred, and the fine particle dispersion was slowly added thereto. Further, the particle diameter of the secondary particles is dispersed in a bead mill at a predetermined size. This product was filtered with finemet NF manufactured by Finemet Co., Ltd., manufactured by Nippon Seisaku Co., Ltd. to prepare a fine particle addition liquid. Methylene chloride 99 parts by mass Cellulose ester A 4 parts by mass Microparticle dispersion 11 parts by mass A main slurry of the following composition was prepared. First add two -74-200925672 methyl chloride and ethanol to the pressurized dissolution tank. The cellulose ester A was stirred and charged in a pressurized dissolution tank to which a solvent was added. The material is heated, stirred and completely dissolved, and a plasticizer and an ultraviolet absorber are added to dissolve. This product was filtered using an filter paper No. 244 made of a filter paper (strand) to prepare a main slurry. 1 part by mass of the main slurry liquid and 2 parts by mass of the microparticle-added liquid are added, and the mixture is thoroughly mixed by an in-line mixer (Toray static in-line mixer Hi-Mixer, SWJ), and then a belt casting device is used. Uniformly cast on a stainless steel belt support with a width of 〇2m. On the stainless steel belt support until the residual solvent amount was 110%, the solvent was evaporated and peeled off from the stainless steel belt support. Then, using the apparatus described in Example 1 of the present invention, the substrate film RF3 was obtained by drying at a temperature of 17 (TC, a magnification of 2.0, and a direction in which the slow axis was inclined by 45° in the film width direction). Composition of main slurry liquid> 300 parts by mass of dichloromethane, 57 parts by mass of ethanol, cellulose vinegar A, 100 parts by mass of plasticizers (A), (B), (C), and a ratio of 1:1:1 to 5.5 parts by mass. Agent (D) 5.5 parts by mass of ultraviolet absorber (A) 0.4 parts by mass of ultraviolet absorber (B) 0.7 part by mass of ultraviolet absorber (C) 0.6 parts by mass

在上述基材薄膜RF3上塗佈塗佈液A ’吹附溫風予以 乾燥後,進行UV照射以使層全體硬化’製得設置有垂直 -75- 200925672 配向液晶層之長條形相位差薄膜RF3-a。硬化後垂直配向 液晶層之厚度調整爲0.60μιη。此時,垂直配向液晶塗佈液 之塗佈方向,與RF3之長度方向一致。 使實施例1所使用的長條形偏光板(S a n r i t ζ公司製、 HLC2-5618S、厚度180μηι)、與自薄膜之寬度方向傾斜45。 方向具有面內遲向軸之面內阻滯値Ro爲1 38nm之長條形 延伸薄膜RF3 -a順序以輥•與·輥貼合,製得長條形圓偏 〇 光薄膜PF3。 實施例4 &lt;&lt;偏光板之製作&gt;&gt; 使厚度爲120 μιη之聚乙烯醇的長條形薄膜,朝MD分 向進行一軸延伸(溫度1 1 〇 °C、延伸倍率5倍)。將該物浸漬 於碘0.075g、碘化鉀5g、水100g所形成的水溶液中60秒, 然後,浸漬於碘化鉀6g、硼酸7.5g、水100g所形成的68°C © 之水溶液中。使該物進行水洗、乾燥,製得偏光膜薄膜。 然後,以下述步驟1〜5爲基準,使上述偏光膜薄膜、 與實施例3中記載的相位差薄膜RF3 -a,與在裡面側上作 爲偏光板保護薄膜之下述纖維素酯薄膜,以輥•與•輥方 式貼合,製作圓偏光薄膜PF4。 步驟1 :在60 °C之2莫耳/L之氫氧化鈉溶液中浸漬90秒 ,然後,進行水洗、乾燥,製得使貼合偏光子之側(沒有 塗佈垂直配向液晶層之面)皂化的相位差薄膜。 步驟2:使上述偏光膜在固成分2質量%之聚乙烯醇黏 -76- 200925672 合劑槽中浸漬1〜2秒。 步驟3:輕輕地除去在步驟2中附著有偏光膜之過剩的 黏合劑,使該物載持、配置於以步驟1處理的纖維素酯薄 膜上。 步驟4 :使以步驟3所層合的相位差RF3-a與偏光膜薄 膜與裡面側纖維素酯薄膜,以壓力20〜30N/cm2、搬送速 度約爲2m/分貼合。 〇 步驟5 :在80°c之乾燥機中,使貼合有以步驟4所製作 的偏光膜薄膜與纖維素酯薄膜RF 3-a與裡面側纖維素酯薄 膜的試料進行乾燥2分鐘,製作圓偏光薄膜PF4。 (裡面側纖維素酯薄膜之製作) &lt;微粒子分散液&gt; 微粒子 1 1質量份 乙醇 8 9質量份 Ο 使上述以溶解器進行攪拌混合50分鐘,以均質機進行 分散處理。 &lt;微粒子添加液&gt; 在加入有二氯甲烷的溶解桶中添加纖維素酯B,進行 加熱且完全予以溶解後,使該物使用安積濾紙(股)製之安 積濾紙No.244予以過濾。使過濾後之纖維素酯溶液充分 進行攪拌,且於其中慢慢地添加上述微粒子分散液。另外 ,二次粒子之粒徑爲所定大小下以珠磨機進行分散。使該 -77- 200925672 物以日本精線(股)製之finemet NF進行過爐,調製微粒子 添加液。 二氯甲烷 99質量份 纖維素酯B 4質量份 微粒子分散液 11質量份 調製下述組成之主漿料。首先在加壓溶解桶中添加二 氯甲烷與乙醇。在加有溶劑之加壓溶解桶中攪拌且投入纖 〇 維素酯(乙醯基取代度2.9、Mn80000、Mw/Mn2.4)。使該 物加熱,攪拌且完全溶解,以及添加可塑劑及紫外線吸收 劑,予以溶解。使該物使用安積濾紙(股)製之安積濾紙 No. 244予以過濾,調製主漿料液。 加入1 〇〇質量份主漿料液與5質量份微粒子添加液,以 線上混合器(東麗靜止型管內混合機 Hi-Mixer、SWJ)予以 充分混合,然後,使用帶式流延裝置,均勻地流延於寬度 2m之不鏽鋼帶支持體。在不鏽鋼帶支持體上直至殘留溶 © 劑量爲110%爲止,使溶劑蒸發,自不鏽鋼帶支持體剝離 。於剝離時施加張力,以縱(MD)延伸倍率爲1.1倍進行延 伸,然後,以拉幅器固定腹板兩端部,且以寬度(TD)方向 之延伸倍率爲1 . 1倍進行延伸。延伸後,維持該寬度下保 持數秒,且使寬度方向之張力予以緩衝後解放寬度保持, 另外,在設定爲125 °C之第3乾燥區中搬送30分鐘、進行乾 燥,製作寬度3 00mm、膜厚40μιη之纖維素酯薄膜。 &lt;主漿料液之組成&gt; -78- 200925672 二氯甲烷 450質量份 乙醇 3 0質量份 纖維素酯(乙醯基取代度2.9、Mn80000、Mw/Mn2.4) 1 00質量份 可塑劑(A) 2.2質量份 可塑劑(D) 9.5質量份 紫外線吸收劑(A) 0.4質量份 紫外線吸收劑(B) 0_7質量份 〇 紫外線吸收劑(C) 0.6質量份 實施例5 於實施例4使用的RF3-a之製作方法,除在斜向延伸 所使用的裝置如第1圖記載的斜向延伸裝置外,完全相同 地製作相位差薄膜RF5-a。使該物夾於與實施例4相同的 裡面側纖維素薄膜及偏光薄膜下,以輥•與•輥方式製作 圓偏光薄膜PF5。 ❹ 實施例6 於以實施例5所使用的RF5之製作方法中,除使主漿 料液之組成改爲如下述外,全部與實施例5相同地製作 RF6’然後,同樣地藉由塗佈垂直配向液晶層,製得RF6_ a。繼後之圓偏光薄膜的製作方法,與實施例5相同地製得 圓偏光薄膜PF6。 &lt;主漿料液之組成&gt; -79- 200925672 二氯甲烷 3 80質量份 乙醇 70質量份 纖維素酯C 100質量份 聚甲基丙烯酸酯(Mwl 000) 3質量份 糖酯化合物 1 0 0質量份 其中,糖酯化合物係使用蔗糖八苯甲酸酯、蔗糖七苯 甲酸酯、蔗糖六苯甲酸酯之質量比1: 1: 1的混合物。 ❹ 比較例1 對實施例2而言,除沒有設置垂直配向液晶層外,藉 由完全相同的製作方法,製得長條形相位差薄膜RF7,使 該物與透過軸平行於薄膜寬度方向之長條形偏光板 (Sanritz公司製、HLC2-5618S、厚度180μιη)貼合,製作長 條形圓偏光薄膜,自該薄膜切出圓偏光板PF 7。 Ο比較例2 於實施例3之RF3-a中,除藉由縱延伸裝置朝長度方 向予以延伸取代使基材薄膜斜向延伸外,以完全相同的方 法製得設置垂直配向液晶層之長條形相位差薄膜RF8-a。 然後,自該 RF8-a切出相位差板之遲相軸與偏光板 (Sanritz公司製、HLC2-5618S、厚度180μιη)之吸收軸爲 45°下予以貼合,製得圓偏光薄膜PF8。 比較例3 -80- 200925672 於比較例2中,除藉由拉幅器進行寬度方向之延伸(橫 延伸)取代長度方向之延伸(縱延伸)外,以全部相同的方 法製得設置垂直配向液晶層的長條形相位差薄膜RF9-a。 然後,自該RF8-a切出的相位差板之遲相軸與偏光板 (Sanritz公司製、HLC2-5618S、厚度180μιη)之吸收軸成 45°下予以貼合,製得圓偏光薄膜PF9。 〇 實施例7 於實施例4中,使構成相位差薄膜RF3-a之基材薄膜 的面內遲相軸對薄膜長度方向而言爲40°予以延伸外,全 部相同地製得相位差薄膜RF 1 Ο-a,使用該物與實施例4相 同地,製得圓偏光薄膜PF10。 實施例8 於實施例4中,使構成相位差薄膜RF3-a之基材薄膜 © 的面內遲相軸對薄膜長度方向而言爲50°予以延伸外,全 部相同地製得相位差薄膜RF 1 1 -a,使用該物與實施例4相 同地,製得圓偏光薄膜PF11。 實施例9 於實施例4中,使構成相位差薄膜RF3-a之基材薄膜 的面內遲相軸對薄膜長度方向而言爲10°予以延伸外,全 部相同地製得相位差薄膜RF 1 2 - a,使用該物與實施例4相 同地,製得橢圓偏光薄膜PF12。 -81 - 200925672 實施例1 〇 於實施例4中,使構成相位差薄膜RF3-a之基材薄膜 的面內遲相軸對薄膜長度方向而言爲80°予以延伸外,全 部相同地製得相位差薄膜RF13-a’使用該物與實施例4相 同地,製得橢圓偏光薄膜PF13。 〇 實施例11 (圓偏光板之性能評估) (EL元件之製作) 以特開2003-3 3 2068號公報中記載的方法爲基準,製 作有機EL元件。 在玻璃基板之一面上,自ITO陶瓷靶(In2〇3 : 811〇2 = 90質量% : 10質量%),使用DC濺射法,形成自厚 度120nm之ITO透明膜所形成的陽極。然後,進行超音波 洗淨後,以紫外線臭氧方式洗淨。 © 其次,在ITO面上經由電阻加熱式真空蒸熔裝置內之 鉬製舟皿上配置的N,N’-二苯基-N,N’-雙(3 -甲基苯基)-[1,1’-聯苯]-4,4’-二胺(TPD)、與另外的鉬製加工舟皿上所 配置的參(8-喹啉酚)鋁(Alq),使真空室內爲lxl(T4pa之減 壓狀態,使TPD在220°C下加熱,形成由厚度60nm之TPD 膜所形成的電洞輸送層,於其上使Alq在275 °C下加熱, 形成厚度60nm之Alq膜。 然後,另在其上經由在鉬製舟皿上所配置的鎂、與另 外在鉬製加工舟皿上所配置的銀,使真空室內藉由2次元 -82- 200925672 同時蒸鍍方式形成2xl(T4Pa之減壓狀態,形成Mg · Ag合 金(Mg/Ag = 9/1)所形成的厚度i〇〇nrn之陰極,製作綠色(主 波長513nm)發光的有機EL元件1。 所製作的有機EL兀:件的發光面積爲2cmx3cm。而且 ,在該有機EL元件上施加6V直流電壓時之正面亮度爲 1200cd/m2 ° 在有機EL·元件之玻璃基板上,使自本發明之圓偏光 〇 薄膜PF1〜6、10〜13切出的圓偏光板P1〜6、10〜13,及 自比較的圓偏光薄膜PF7〜9切出的圓偏光板P7〜9經由丙 烯酸系黏合劑貼附,作爲試料。 而且,圓偏光板在圓偏光板之吸收型直線偏光子與玻 璃基板之間貼合於相位差板之位置。 &lt;外光反射之色調變化角度相關性、高溫高濕耐性評估&gt; 使貼合有圓偏光板之有機EL元件在23°C、55%RH之 © 房間內保存48小時(狀態1)後,沒有施加電壓下、沒有發 光的狀態、照度約100lx之環境下放置,自與正面傾斜45 度之方向視感評估反射色之黑調水準,比較其差値。 另外,正面的黑調水準之評估,在80°c、90%RH之房 間內保存200小時(狀態2)後,同樣地予以評估。結果如表 2所示。 而且,比較結果係藉由下述4種狀態予以評估。 &lt;&lt;色調變化角度相關性之評估標準&gt;&gt; -83- 200925672 ◎:以正面與斜視時完全不見外光反射之色調變化 〇:以正面與斜視時僅稍有外光反射之色調變化,惟 尙未到有影響的程度 △:以正面與斜視時有外光反射之色調差異狀態 X :以正面與斜視時外光反射之色調差異狀態極大 &lt;&lt;高溫高濕耐性之評估標準&gt;&gt; Ο ◎:保存前後,完全不見外光反射之色調變化 〇:保存前後,僅稍有外光反射之色調變化,惟尙未 到有影響的程度 △:保存前後,有色調差異狀態 X:保存前後,色調差異狀態極大 實施例1 2 於實施例6所使用的RF6-a之製作方法中,除在斜向 〇 延伸所使用的裝置如第11〜14圖記載的斜向延伸裝置外, 完全相同地製作相位差薄膜RF 1 4-a。使該物夾於與實施 例4相同的裡面側纖維素薄膜及偏光膜下,以輥.與•輥 方式製作圓偏光薄膜PF14。 實施例1 3 於實施例12所使用的RF14-a之製作方法,使主漿料 液之組成改爲如下述外’全部與實施例1 2相同地,製作 RF15-a。繼後之圓偏光薄膜的製作方法與實施例12相同地 -84- 200925672 ,製得圓偏光薄膜PF15。Applying a coating liquid A to the base film RF3 and drying it with a warm air, and performing UV irradiation to harden the entire layer, a long retardation film provided with a vertical-75-200925672 alignment liquid crystal layer is prepared. RF3-a. After hardening, the thickness of the vertical alignment liquid crystal layer was adjusted to 0.60 μm. At this time, the application direction of the vertical alignment liquid crystal coating liquid coincides with the longitudinal direction of RF3. The long-length polarizing plate (manufactured by Sacn Corporation, HLC 2-5618S, thickness: 180 μm) used in Example 1 was inclined at 45 from the width direction of the film. The direction in which the in-plane retardation axis of the in-plane retardation axis 値Ro is 1 38 nm long stretch film RF3 -a is sequentially laminated with a roll and a roll to obtain a long strip-shaped circular light film PF3. Example 4 &lt;&lt;Preparation of polarizing plate&gt;&gt; An elongated film of polyvinyl alcohol having a thickness of 120 μm was stretched in one direction toward the MD (temperature 1 1 〇 ° C, stretching ratio 5 times) . This product was immersed in an aqueous solution of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C © which was formed by 6 g of potassium iodide, 7.5 g of boric acid, and 100 g of water. The material was washed with water and dried to obtain a polarizing film. Then, based on the following steps 1 to 5, the polarizing film film and the retardation film RF3-a described in the third embodiment and the following cellulose ester film as a polarizing plate protective film on the back side are used. The roller is bonded to the roller to form a circular polarizing film PF4. Step 1: immersed in a 2 mol/L sodium hydroxide solution at 60 ° C for 90 seconds, and then washed with water and dried to obtain a side to which the polarizer is attached (the surface of the liquid crystal layer not coated with the vertical alignment) Saponified retardation film. Step 2: The polarizing film was immersed in a polyvinyl alcohol adhesive-76-200925672 mixture tank having a solid content of 2% by mass for 1 to 2 seconds. Step 3: The excess adhesive to which the polarizing film was attached in the step 2 was gently removed, and the material was placed and placed on the cellulose ester film treated in the step 1. Step 4: The phase difference RF3-a laminated in the step 3 and the polarizing film and the back side cellulose ester film were bonded at a pressure of 20 to 30 N/cm 2 and a conveying speed of about 2 m/min. Step 5: Drying a sample in which the polarizing film formed in the step 4 and the cellulose ester film RF 3-a and the back side cellulose ester film are bonded in a dryer at 80 ° C for 2 minutes to prepare a sample Circular polarizing film PF4. (Production of the inside side cellulose ester film) &lt;Microparticle dispersion liquid&gt; Microparticles 1 1 part by mass Ethanol 8 9 parts by mass 上述 The above was stirred and mixed for 50 minutes in a dissolver, and dispersed by a homogenizer. &lt;Microparticle-added liquid&gt; The cellulose ester B was added to a dissolution vessel to which methylene chloride was added, and after heating and completely dissolved, the product was filtered using a filter paper No. 244 made of a filter paper. The filtered cellulose ester solution was sufficiently stirred, and the above fine particle dispersion was slowly added thereto. Further, the particle diameter of the secondary particles is dispersed in a bead mill at a predetermined size. The -77-200925672 was passed through a finemet NF made by Nippon Seisakusho Co., Ltd. to prepare a fine particle addition liquid. Methylene chloride 99 parts by mass Cellulose ester B 4 parts by mass Microparticle dispersion 11 parts by mass A main slurry of the following composition was prepared. First, methylene chloride and ethanol were added to the pressurized dissolution tank. The mixture was stirred in a pressure-containing dissolution vessel to which a solvent was added, and the cellulose ester ester (ethyl ketone group substitution degree 2.9, Mn 80000, Mw/Mn 2.4) was added. The material is heated, stirred and completely dissolved, and a plasticizer and an ultraviolet absorber are added to dissolve. This product was filtered using a filter paper No. 244 made of a filter paper (strand) to prepare a main slurry. 1 〇〇 mass of the main slurry liquid and 5 parts by mass of the microparticle-added liquid are added, and the mixture is thoroughly mixed by an in-line mixer (Toray static in-line mixer Hi-Mixer, SWJ), and then a belt casting device is used. Uniformly cast on a stainless steel belt support with a width of 2 m. The solvent was evaporated from the stainless steel belt support until the residual solvent dose was 110% on the stainless steel belt support. The tension was applied at the time of peeling, and the stretching was performed at a stretching ratio of 1.1 times in the longitudinal direction (MD). Then, both ends of the web were fixed by a tenter, and the stretching ratio in the width (TD) direction was 1.1 times. After the extension, the width was maintained for a few seconds, and the tension in the width direction was buffered, and the width was maintained. Further, the film was conveyed for 30 minutes in the third drying zone set to 125 ° C, and dried to have a width of 300 mm. A 40 μm thick cellulose ester film. &lt;Composition of main slurry liquid&gt; -78- 200925672 Methylene chloride 450 parts by mass of ethanol 30 parts by mass of cellulose ester (acetamyl substitution degree 2.9, Mn80000, Mw/Mn2.4) 100 parts by mass of plasticizer (A) 2.2 parts by mass of plasticizer (D) 9.5 parts by mass of ultraviolet absorber (A) 0.4 parts by mass of ultraviolet absorber (B) 0_7 parts by mass of 〇 ultraviolet absorber (C) 0.6 parts by mass of Example 5 used in Example 4 In the method of producing RF3-a, the retardation film RF5-a was produced in the same manner except that the device used for the oblique stretching was the oblique stretching device described in Fig. 1. This object was placed under the same back side cellulose film and polarizing film as in Example 4, and a circular polarizing film PF5 was produced by a roll and a roll.实施 Example 6 In the production method of RF5 used in Example 5, RF6' was produced in the same manner as in Example 5 except that the composition of the main slurry liquid was changed as follows, and then coated in the same manner. The liquid crystal layer is vertically aligned to produce RF6_a. In the subsequent method of producing a circularly polarizing film, a circularly polarizing film PF6 was obtained in the same manner as in Example 5. &lt;Composition of main slurry liquid&gt; -79- 200925672 Dichloromethane 3 80 parts by mass of ethanol 70 parts by mass of cellulose ester C 100 parts by mass of polymethacrylate (Mwl 000) 3 parts by mass of sugar ester compound 1 0 0 Among the parts by mass, the sugar ester compound is a mixture of sucrose octabenzoate, sucrose heptabenzoate, and sucrose hexabenzoate in a mass ratio of 1: 1:1. ❹ Comparative Example 1 For Example 2, except that the vertical alignment liquid crystal layer was not provided, the elongated retardation film RF7 was produced by the same fabrication method so that the object and the transmission axis were parallel to the film width direction. A long-length polarizing plate (manufactured by Sanritz Co., Ltd., HLC 2-5618S, thickness: 180 μm) was bonded to form a long circular polarizing film, and a circular polarizing plate PF 7 was cut out from the film. ΟComparative Example 2 In the RF3-a of Example 3, a strip of a vertically aligned liquid crystal layer was prepared in exactly the same manner except that the substrate film was obliquely extended by extension of the longitudinal stretching device in the longitudinal direction. Shape retardation film RF8-a. Then, the retardation axis of the phase difference plate and the polarizing plate (manufactured by Sanritz Co., Ltd., HLC 2-5618S, thickness: 180 μm) were cut at 45° from the RF8-a to obtain a circularly polarizing film PF8. Comparative Example 3 -80-200925672 In Comparative Example 2, a vertical alignment liquid crystal was prepared in the same manner except that the extension in the width direction (transverse extension) was carried out by the tenter in place of the extension in the longitudinal direction (longitudinal extension). Layer long strip retardation film RF9-a. Then, the retardation axis of the phase difference plate cut out from the RF8-a was bonded to the absorption axis of a polarizing plate (manufactured by Sanritz, HLC 2-5618S, thickness: 180 μm) at 45° to obtain a circularly polarizing film PF9. (Example 7) In the fourth embodiment, the in-plane retardation axis of the base film constituting the retardation film RF3-a was extended by 40° in the longitudinal direction of the film, and the phase difference film RF was obtained in the same manner. 1 Ο-a, using the same material as in Example 4, a circularly polarizing film PF10 was obtained. [Embodiment 8] In the fourth embodiment, the in-plane retardation axis of the base film © which constitutes the retardation film RF3-a is extended by 50° in the longitudinal direction of the film, and the phase difference film RF is obtained in the same manner. 1 1 -a, a circularly polarizing film PF11 was obtained in the same manner as in Example 4 using this. [Embodiment 9] In the fourth embodiment, the in-plane retardation axis of the base film constituting the retardation film RF3-a was extended by 10° in the longitudinal direction of the film, and the retardation film RF 1 was obtained in the same manner. 2-a, using the same material as in Example 4, an elliptically polarizing film PF12 was obtained. -81 - 200925672 EMBODIMENT 1 In the fourth embodiment, the in-plane retardation axis of the base film constituting the retardation film RF3-a is 80° in the longitudinal direction of the film, and all of them are obtained in the same manner. The retardation film RF13-a' was used in the same manner as in Example 4 to obtain an elliptically polarizing film PF13. [Example 11] (Evaluation of the performance of the circularly polarizing plate) (Production of the EL device) An organic EL device was produced based on the method described in JP-A-2003-3 3 2068. On one surface of the glass substrate, an anode formed of an ITO transparent film having a thickness of 120 nm was formed by a DC sputtering method from an ITO ceramic target (In2〇3: 811〇2 = 90% by mass: 10% by mass). Then, after ultrasonic cleaning, it is washed by ultraviolet ozone. © Next, on the ITO surface, N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1] disposed on a molybdenum boat in a resistance-heated vacuum evaporation apparatus , 1'-biphenyl]-4,4'-diamine (TPD), and ginseng (8-quinolinol) aluminum (Alq) disposed on another molybdenum processing boat, so that the vacuum chamber is lxl ( In the decompressed state of T4pa, the TPD was heated at 220 ° C to form a hole transport layer formed of a TPD film having a thickness of 60 nm, on which Alq was heated at 275 ° C to form an Alq film having a thickness of 60 nm. On the other hand, through the magnesium disposed on the molybdenum boat and the silver disposed on the molybdenum processing boat, the vacuum chamber is formed by 2x-82-200925672 simultaneous evaporation to form 2xl (T4Pa). In the reduced pressure state, a cathode having a thickness i〇〇nrn formed by a Mg·Ag alloy (Mg/Ag = 9/1) was formed, and an organic EL element 1 which emits light in green (main wavelength: 513 nm) was produced. The light-emitting area of the member is 2 cm x 3 cm. Further, when the voltage of 6 V DC is applied to the organic EL element, the front luminance is 1200 cd/m 2 ° on the glass substrate of the organic EL element. The circularly polarizing plates PF1 to P6 to P6 to C13 to 10, and the circular polarizing plates P7 to P9 cut out from the comparative circularly polarizing films PF7 to 9 are bonded via acrylic. Further, the circular polarizing plate is bonded to the position of the phase difference plate between the absorption type linear polarizer of the circular polarizing plate and the glass substrate. &lt;The relationship between the color change of the external light reflection and the high temperature is high. Evaluation of the wetness resistance> After the organic EL device to which the circularly polarizing plate was bonded was stored in a room at 23 ° C and 55% RH for 48 hours (state 1), no voltage was applied, no light was emitted, and the illuminance was about 100 lx. The environment is placed in a direction of 45 degrees from the front to evaluate the black level of the reflected color, and the difference is compared. In addition, the evaluation of the black level of the front is stored in a room of 80 ° C, 90% RH. After 200 hours (state 2), the evaluation was performed in the same manner. The results are shown in Table 2. Moreover, the comparison results were evaluated by the following four states: &lt;&lt;Evaluation criteria of the angle change correlation of color tone&gt;&gt;; -83- 200925672 ◎: Complete with front and squint See the change in hue of external light reflection 〇: only the slight change of the external light reflection in front and squint, but not to the extent of influence △: the difference in hue of external light reflection in front and squint X: The difference in hue of external light reflection on the front and the squint is extremely large &lt;&lt;Evaluation criteria for high temperature and high humidity resistance&gt;&gt; ◎ ◎: Before and after storage, there is no change in hue of external light reflection 〇: before and after storage, only slightly outside The color tone of the light reflection changes, but the degree of influence is not affected Δ: before and after the preservation, there is a state of hue difference X: before and after the preservation, the state of the hue difference is extremely large. Example 1 2 In the method of manufacturing RF6-a used in Example 6 The retardation film RF 1 4-a was produced in the same manner except that the device used for the oblique slanting extension was the oblique stretching device described in the above-described 11th to 14th. This object was placed under the same back side cellulose film and polarizing film as in Example 4, and a circularly polarizing film PF14 was produced by a roll and a roll. [Example 1] In the production method of RF14-a used in Example 12, RF15-a was produced by changing the composition of the main slurry liquid to the same as in the above Example 1 except for the following. The subsequent method of producing a circularly polarizing film was carried out in the same manner as in Example 12, from -84 to 200925672, to obtain a circularly polarizing film PF15.

[化 18][Chem. 18]

&lt;主漿料液之組成&gt; 二氯甲烷 543質量份 甲醇 99質量份 正丁醇 2〇質量份 平均醋化度59.0 %之纖維素乙酸酯 1 2 0質量份 三苯基磷酸酯 9質量份 聯苯二苯基磷酸酯 5質量份 下述之阻滯値上昇劑 1質量份 實施例14(圓偏光板之性能評估) 使用自實施例12,13所得的圓偏光薄膜PF14,15切出的 圓偏光板,進行與實施例11完全相同的性能評估。其結果 如表2所示。 -85- 200925672 οο (Ν^ 備註 實施例1 實施例2 實施例3 實施例4 實施例5 實施例6 比較例1 CN 鎰 J_3 J-X 比較例3 實施例7 實施例8 實施例9 實施例10 實施例12 實施例13 ΙΦ翻 雄鼷 岖固 岖·Ν 〇 〇 ◎ ◎ ◎ ◎ X X X ◎ ◎ &lt;] ◎ 〇 正面與斜視 之色調變化 〇 〇 ◎ ◎ ◎ ◎ X 〇 〇 〇 〇 〇 〇 ◎ ◎ Ν 'Em «Κ 鲣燦N 嫩鄯叵 1? S ^ 0 0 V» 沒有塗佈液晶 0 § 〇 0 ο g 0 U | ffi S ^ t rm 0ί -Kr rn CN T-^ 〇 o o r 〇 Ο Ο ο o o 1- 相位差薄膜之 Ro(550nm) Ο 〇 00 m 00 cn 00 ro 00 m 1—^ Ο 00 ΓΛ 1—^ 00 m 00 m — H 00 m oo ΓΛ oo m 1—^ oo 00 m 使用相位差薄 膜 RFl-a ' RFl-b RF2-a 1 RF3-a RF3-a RF5-a RF6-a 卜 RF8-a RF9-a RF10-a RFll-a RF12-a RF13-a RF14-a RF15-a 使用圓偏 光薄膜 Oh (N Oh C^i Uh cu 2 Oh 1/^ tlx 0- VO C1h 卜 pu 00 PU ON (X cu PF10 PF11 PF12 PF13 PF14 PF15 圓偏光 板No. &lt;N ΓΛ 寸 κη vo 卜 oo On o &lt;Ν m 寸 in -86- 200925672 由表2可知,使用本發明之圓偏光板PF1〜6、10〜15 之EL元件,沒有外光反射之色調變化角度相關性,特別 是即使在高溫高濕下之保存下,正面之黑調水準的安定性 優異。 另外,可知使用纖維素酯作爲基材薄膜,特別是正面 與斜視之色調變化小且優異。 而且,本發明之圓偏光板,可知在觸控面板或反射型 〇 液晶顯示裝置也有相同的效果。 實施例1 5&lt;相位差板之性能評估&gt; 自實施例12,13所得的相位差薄膜RF-14a與RF-15a 切出的相位差板,在8〇°C、90%RH條件下保存400小時後 ,在薄膜表面之析出物的外觀’以下述標準目視評估。其 結果如表3所示。 © «析出物之評估標準&gt;&gt; ◎:保存前後完全不見外觀之變化 〇:保存前後僅稍有外觀差異,惟造成問題之可能性 低的狀態 △:保存前後有外觀差異’造成問題的可能性高的狀態 X:保存前後有明顯的外觀差異,造成問題的狀態 -87- 200925672 [表3] 相位差板No. 使用相位差薄膜 80°C、90%RH-400小時保 存後之薄膜表面析出物 1 RF14-a ◎ 2 RF15-a Δ 另外,由表3可知,比較RF14-a與RF15-a時,RF14- a之析出耐性非常優異。 φ 【圖式簡單說明】 [第1圖]係表示本發明延伸薄膜之製造裝置例的典型 平面圖。 [第2圖]係表示設置於本發明延伸薄膜之製造裝置左 右的螺旋之例的平面圖,(1)係突條刮板爲以相同間距所 設置的螺旋’(2)係突條刮板爲在間距變化下所設置的螺 旋。 Q [第3圖]係表示以本發明之延伸薄膜的製造裝置所得 的延伸薄膜例之平面圖。 [第4圖]係表示使以本發明之延伸薄膜的製造裝置所 得的延伸薄膜層合、裁斷的方法例之平面圖。 [第5圖]係表示本發明之延伸薄膜的另一製造裝置例 之典型平面圖。 [第6圖]係表示本發明之圓型偏光薄膜的截面構成圖 〇 [第7圖]係表示本發明之圓型偏光薄膜的截面構成圖 -88- 200925672 [第8圖]係表示本發明之圓型偏光薄膜的截面構成圖 〇 [第9圖]係表示本發明之反射型液晶顯示裝置例的層 構成圖。 [第10圖]係表示本發明之有機EL元件的實施形態之 簡略圖。 0 [第11圖]係表示本發明一實施形態之薄膜延伸裝置( 伸縮裝置)。 [第12圖]係表示本發明一實施形態之薄膜延伸裝置( 伸縮裝置)。 [第13圖]係表示斜向延伸機之構成圖。 [第14圖]係表示斜向延伸機之更詳細的構造圖。 [主要元件符號說明】 φ 1 :熱塑性樹脂薄膜 2 :預熱區 3 :加熱延伸區 4 :冷卻區 5 :延伸薄膜 6.7 :螺旋 6 1 , 7 1 :刮板 8.8 1 :固定器 9,91 :帶子 -89- 200925672 1 01 :熱塑性樹脂薄膜 102 :拉幅器 103 :搬送方向 104L :左方格子位置 104R:右方格子位置 105L:薄膜左移動位置 105R :薄膜右移動位置 〇 106L :左移動速度 106R :右移動速度 2 0 1 :下基板 202 :反射電極 203 :下配向膜 2 〇 4 :液晶層 205 :上配向膜 206 :透明電極 Ο 207 :上基板 2〇8 :透明導電膜 209 :橢圓偏光板 300 : E L元件 3 0 1 :吸收型直線偏光子 3 02 :本發明之相位差薄膜 3 03 :本發明之橢圓偏光板 304 :透明基板 3 0 5 :陽極 -90 200925672 3 0 6 :陰極 3 07 :發光層 11 :垂直入射外光 12 :斜向入射外光 401 __薄膜延伸裝置(伸縮裝置) 402 :薄膜 403 :供應裝置 〇 4 04 :縱延伸爐 405 :中間搬送裝置 406 :縱延伸部 407 :斜向延伸機 4 0 8 :斜向延伸爐 4 0 9 :斜向延伸部 41 0 :捲取裝置 4 1 1 :原材料卷軸 © 4 1 2 :基準輥 4 1 3 :夾輥 414 :熱風導管 4 1 5 :比例輥 4 1 6 :夾輥 4 1 7 :延伸鏈 418 :熱風導管 4 1 9 :張力輥 420 :製品卷軸 -91 - 200925672 421 :基體 422 :臂 423 :固定器 424 :鏈輪 4 2 5 :滑動軸 426 :位置決定之構件 4 2 7 :導線 〇 428 :導線&lt;Composition of main slurry liquid&gt; Methylene chloride 543 parts by mass of methanol 99 parts by mass of n-butanol 2 parts by mass of cellulose acetate having an average degree of clarification of 59.0% of cellulose oxide 1 2 parts by mass of triphenyl phosphate 9 5 parts by mass of the biphenyl diphenyl phosphate, 5 parts by mass of the following retardation sputum rising agent, 1 part by mass, Example 14 (Evaluation of the performance of a circularly polarizing plate) Using the circularly polarizing film PF14, 15 obtained from Examples 12 and 13, The circular polarizing plate was subjected to the same performance evaluation as in Example 11. The results are shown in Table 2. -85-200925672 οο (Ν^ Remarks Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Comparative Example 1 CN 镒J_3 JX Comparative Example 3 Example 7 Example 8 Example 9 Example 10 Implementation Example 12 Example 13 ΙΦ翻雄鼷岖固岖·Ν 〇〇◎ ◎ ◎ ◎ XXX ◎ ◎ &lt;] ◎ 色调 Front and squint color change 〇〇 ◎ ◎ ◎ ◎ X 〇〇〇〇〇〇 ◎ ◎ Ν 'Em «Κ 鲣 N N Nen 1? S ^ 0 0 V» No coated LCD 0 § 〇0 ο g 0 U | ffi S ^ t rm 0ί -Kr rn CN T-^ 〇oor 〇Ο Ο ο Oo 1- phase difference film Ro (550nm) Ο 〇00 m 00 cn 00 ro 00 m 1—^ Ο 00 ΓΛ 1—^ 00 m 00 m — H 00 m oo ΓΛ oo m 1—^ oo 00 m Differential film RFl-a 'RFl-b RF2-a 1 RF3-a RF3-a RF5-a RF6-a RF8-a RF9-a RF10-a RFll-a RF12-a RF13-a RF14-a RF15-a Use circular polarizing film Oh (N Oh C^i Uh cu 2 Oh 1/^ tlx 0- VO C1h pu 00 PU ON (X cu PF10 PF11 PF12 PF13 PF14 PF15 circular polarizer No. &lt;N ΓΛ inch κη vo Oo On o &lt;Ν m inch in -86- 200925672 As can be seen from Table 2, the EL elements using the circular polarizing plates PF1 to 6 and 10 to 15 of the present invention have no hue change angle dependence of external light reflection, particularly the black level of the front side even under high temperature and high humidity preservation. In addition, it is known that a cellulose ester is used as a base film, and in particular, the color change of the front side and the squint is small and excellent. Moreover, the circular polarizing plate of the present invention is known as a touch panel or a reflective 〇 liquid crystal display device. The same effect was obtained. Example 1 5 &lt;Performance Evaluation of Phase Difference Plates&gt; Phase difference plates cut out from the retardation films RF-14a and RF-15a obtained in Examples 12 and 13 at 8 ° C, 90 After 400 hours of storage under %RH, the appearance of precipitates on the surface of the film was visually evaluated by the following criteria. The results are shown in Table 3. © «Evaluation criteria for precipitates> ◎: No appearance before and after storage Change 〇: There is only a slight difference in appearance before and after storage, but the possibility of causing a problem is low △: There is a difference in appearance before and after storage. 'The possibility of causing a problem is high. X: There is a significant difference in appearance before and after storage. State of the problem-87-200925672 [Table 3] Phase difference plate No. Film surface precipitates after storage using a retardation film at 80 ° C and 90% RH-400 hours RF14-a ◎ 2 RF15-a Δ In addition, As is clear from Table 3, when RF14-a and RF15-a were compared, the precipitation resistance of RF14-a was extremely excellent. [Fig. 1] A typical plan view showing an example of a manufacturing apparatus of the stretched film of the present invention. [Fig. 2] is a plan view showing an example of a spiral provided on the right and left sides of the manufacturing apparatus of the stretched film of the present invention, and (1) the squeegee blade is a spiral '(2) squeegee blade provided at the same pitch. The spiral set under the change of the pitch. Q [Fig. 3] is a plan view showing an example of an extended film obtained by the apparatus for producing an stretched film of the present invention. [Fig. 4] is a plan view showing an example of a method of laminating and cutting the stretched film obtained by the apparatus for producing an stretched film of the present invention. [Fig. 5] is a typical plan view showing another example of the manufacturing apparatus of the stretched film of the present invention. [Fig. 6] Fig. 6 is a cross-sectional structural view showing a circular polarizing film of the present invention. Fig. 7 is a cross-sectional structural view showing a circular polarizing film of the present invention. -88-200925672 [Fig. 8] shows the present invention. Cross-sectional configuration of the circular polarizing film [Fig. 9] is a layer configuration diagram showing an example of the reflective liquid crystal display device of the present invention. [Fig. 10] Fig. 10 is a schematic view showing an embodiment of an organic EL device of the present invention. [Fig. 11] A film stretching device (expansion device) according to an embodiment of the present invention. [Fig. 12] A film stretching device (expansion device) according to an embodiment of the present invention. [Fig. 13] is a view showing the configuration of a diagonal stretcher. [Fig. 14] is a more detailed structural view showing a diagonal stretcher. [Description of main component symbols] φ 1 : thermoplastic resin film 2 : preheating zone 3 : heating extension zone 4 : cooling zone 5 : extension film 6.7 : spiral 6 1 , 7 1 : squeegee 8.8 1 : holder 9, 91 : Belt-89- 200925672 1 01 : Thermoplastic resin film 102 : tenter 103 : conveyance direction 104L : left lattice position 104R : right lattice position 105L : film left movement position 105R : film right movement position 〇 106L : left movement speed 106R: right moving speed 2 0 1 : lower substrate 202 : reflective electrode 203 : lower alignment film 2 〇 4 : liquid crystal layer 205 : upper alignment film 206 : transparent electrode 207 207 : upper substrate 2 〇 8 : transparent conductive film 209 : ellipse Polarizing plate 300: EL element 3 0 1 : Absorbing linear polarizer 3 02 : Phase difference film of the present invention 3 03 : Elliptical polarizing plate 304 of the present invention: Transparent substrate 3 0 5 : Anode-90 200925672 3 0 6 : Cathode 3 07 : luminescent layer 11 : normal incidence of external light 12 : obliquely incident external light 401 __ film stretching device (expansion device) 402 : film 403 : supply device 〇 4 04 : longitudinal stretching furnace 405 : intermediate conveying device 406 : vertical Extension 407: oblique extension machine 4 0 8 : obliquely extending furnace 4 0 9 : oblique extending portion 41 0 : winding device 4 1 1 : raw material reel © 4 1 2 : reference roller 4 1 3 : nip roller 414 : hot air duct 4 1 5 : proportional roller 4 1 6 : nip roller 4 1 7 : Extension chain 418 : hot air duct 4 1 9 : tension roller 420 : product reel - 91 - 200925672 421 : base 422 : arm 423 : holder 424 : sprocket 4 2 5 : sliding shaft 426 : position determining member 4 2 7: wire 〇 428: wire

-92-92

Claims (1)

200925672 十、申請專利範圍 1 一種長條形相位差薄膜,其特徵爲在由透明樹脂所 成的長條形基材薄膜上設置垂直配向液晶層所形成之長條 形相位差薄膜中,該基材薄膜面內之遲相軸與薄膜之長度 方向所成的角度爲10。〜80。。 2 ·如申請專利範圍第1項之長條形相位差薄膜,其中 在該基材薄膜上所使用的透明樹脂爲纖維素酯。 〇 3.如申請專利範圍第2項之長條形相位差薄膜,其中 該纖維素酯爲纖維素乙酸丙酸酯(cellulose acetate propionate) ο 4· 一種長條形橢圓偏光薄膜,其特徵爲使至少一種申 請專利範圍第1〜3項中任一項之長條形相位差薄膜、與長 條形直線偏光薄膜,使長度方向對齊予以層合製得。 5·—種橢圓偏光板,其特徵爲自申請專利範圍第4項 之長條形橢圓偏光薄膜切出。 Ο 6.—種圖像顯示裝置,其特徵爲使用申請專利範圍第 5項之橢圓偏光板。 -93-200925672 X. Patent Application No. 1 A long stripe retardation film characterized in that a long retardation film formed by vertically aligning a liquid crystal layer is formed on a long base film formed of a transparent resin, the base The angle between the slow phase axis in the plane of the film and the length direction of the film is 10. ~80. . 2. The elongated retardation film of claim 1, wherein the transparent resin used on the substrate film is a cellulose ester. 3. The elongated retardation film of claim 2, wherein the cellulose ester is cellulose acetate propionate ο 4 · an elongated ellipsoidal film characterized by The long-length retardation film of any one of the first to third aspects of the patent application, and the long linear polarizing film are laminated and aligned in the longitudinal direction. 5. An elliptical polarizing plate characterized by cutting out a long strip-shaped elliptically polarizing film of the fourth item of the patent application. Ο 6. An image display device characterized by using an elliptically polarizing plate of claim 5 of the patent application. -93-
TW097131433A 2007-08-23 2008-08-18 A strip-shaped thin film, an elongated elliptical polarizing film, an elliptically polarizing plate, and an image display device TWI452353B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007216852 2007-08-23
JP2007272324 2007-10-19
JP2008063895 2008-03-13

Publications (2)

Publication Number Publication Date
TW200925672A true TW200925672A (en) 2009-06-16
TWI452353B TWI452353B (en) 2014-09-11

Family

ID=40378078

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097131433A TWI452353B (en) 2007-08-23 2008-08-18 A strip-shaped thin film, an elongated elliptical polarizing film, an elliptically polarizing plate, and an image display device

Country Status (3)

Country Link
JP (2) JPWO2009025170A1 (en)
TW (1) TWI452353B (en)
WO (1) WO2009025170A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417585B (en) * 2012-05-01 2013-12-01 Konica Minolta Advanced Layers A retardation film, a manufacturing method of a polarizing film, and a liquid crystal display device
CN107153232A (en) * 2017-07-21 2017-09-12 武汉天马微电子有限公司 A kind of anti-reflection film and the flexible display apparatus comprising it
US9796146B2 (en) 2013-03-29 2017-10-24 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
US9804313B2 (en) 2013-03-29 2017-10-31 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
US9950461B2 (en) 2013-06-10 2018-04-24 Nitto Denko Corporation Production method for phase shift film and circular polarizing plate involving bilaterally symmetric loops with non-simultaneous reduction of clip pitch
CN109712534A (en) * 2019-02-28 2019-05-03 上海天马有机发光显示技术有限公司 Display panel and display device
TWI677718B (en) * 2015-01-28 2019-11-21 日商日本瑞翁股份有限公司 Multilayer film, optical anisotropic laminate, circular polarizing plate, organic electro-excitation light display device and manufacturing method thereof

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009025170A1 (en) * 2007-08-23 2010-11-25 コニカミノルタオプト株式会社 Long retardation film, long elliptically polarizing film, elliptically polarizing plate, and image display device
JP5606013B2 (en) * 2009-06-22 2014-10-15 Jsr株式会社 Optical member and manufacturing method thereof
JP6331027B2 (en) * 2011-12-19 2018-05-30 エルジー・ケム・リミテッド Polarizer
KR101950813B1 (en) * 2011-12-30 2019-02-22 엘지디스플레이 주식회사 Coatable phase retardation film and electroluminescence display device having thereof
JP5652412B2 (en) * 2012-02-10 2015-01-14 大日本印刷株式会社 Polymerizable liquid crystal composition for forming retardation layer, retardation film and method for producing retardation film
JPWO2013136977A1 (en) 2012-03-12 2015-08-03 コニカミノルタ株式会社 λ / 4 retardation film and manufacturing method thereof, circularly polarizing plate, and organic electroluminescence display device
JP6321435B2 (en) * 2012-06-21 2018-05-09 日東電工株式会社 Polarizing plate and organic EL panel
JP5528606B2 (en) * 2012-06-21 2014-06-25 日東電工株式会社 Polarizing plate and organic EL panel
JP2014010300A (en) 2012-06-29 2014-01-20 Nitto Denko Corp Polarizing plate and organic el panel
TWI650888B (en) * 2013-10-28 2019-02-11 日本瑞翁股份有限公司 Multilayer film, optical anisotropic laminate, circular polarizing plate, organic electroluminescent display device and method of manufacturing same
KR102116368B1 (en) * 2014-03-21 2020-05-28 동우 화인켐 주식회사 Polarizing plate and display device comprising the same
CN107408359B (en) * 2015-02-04 2020-06-05 富士胶片株式会社 Image display device
KR102084118B1 (en) * 2017-09-29 2020-03-03 삼성에스디아이 주식회사 Polarizing plate for oled and optical display apparatus comprising the same
JP6605682B2 (en) * 2017-11-10 2019-11-13 住友化学株式会社 Circular polarizer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4117173B2 (en) * 2002-09-26 2008-07-16 富士フイルム株式会社 Production method of retardation plate and retardation plate produced by the method
US7781464B2 (en) * 2003-01-17 2010-08-24 Bexel Pharmaceuticals, Inc. Heterocyclic diphenyl ethers
JP2004226591A (en) * 2003-01-22 2004-08-12 Fuji Photo Film Co Ltd Liquid crystal display device and polarizing plate
JP4420429B2 (en) * 2003-08-25 2010-02-24 日東電工株式会社 Laminated optical film, elliptically polarizing plate, and image display device
CN100454053C (en) * 2004-04-19 2009-01-21 柯尼卡美能达精密光学株式会社 Method for producing optical compensation film, optical compensation film, polarizing plate, displaying apparatus
JP4577033B2 (en) * 2004-04-19 2010-11-10 コニカミノルタオプト株式会社 Method for producing retardation film
TWI413809B (en) * 2004-12-27 2013-11-01 Dainippon Ink & Chemicals Optical film, elliptically polarizing plate, circularly polarizing plate, liquid crystal display element, and method of producing optical film
JP2007138121A (en) * 2005-11-22 2007-06-07 Fujifilm Corp Cellulose acylate film and method for producing the same, pellet, polarizing plate, optical compensation film, antireflection film, and liquid crystal display
JP2007169592A (en) * 2005-11-22 2007-07-05 Fujifilm Corp Cellulose acylate pellet and production method thereof, cellulose acylate film and production method thereof, polarizing plate, optical compensation film, antireflection film, and liquid crystal display
JP2007199442A (en) * 2006-01-27 2007-08-09 Fujifilm Corp Optical compensation film, polarizer and liquid crystal display device
JP2007206207A (en) * 2006-01-31 2007-08-16 Fujifilm Corp Optical film, polarizing plate and liquid crystal display
JPWO2009025170A1 (en) * 2007-08-23 2010-11-25 コニカミノルタオプト株式会社 Long retardation film, long elliptically polarizing film, elliptically polarizing plate, and image display device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417585B (en) * 2012-05-01 2013-12-01 Konica Minolta Advanced Layers A retardation film, a manufacturing method of a polarizing film, and a liquid crystal display device
US9796146B2 (en) 2013-03-29 2017-10-24 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
US9804313B2 (en) 2013-03-29 2017-10-31 Nitto Denko Corporation Methods for producing phase-difference film and circularly polarizing plate involving simultaneous reduction of clip pitch on one side and increase of clip pitch on another side
US9950461B2 (en) 2013-06-10 2018-04-24 Nitto Denko Corporation Production method for phase shift film and circular polarizing plate involving bilaterally symmetric loops with non-simultaneous reduction of clip pitch
TWI677718B (en) * 2015-01-28 2019-11-21 日商日本瑞翁股份有限公司 Multilayer film, optical anisotropic laminate, circular polarizing plate, organic electro-excitation light display device and manufacturing method thereof
CN107153232A (en) * 2017-07-21 2017-09-12 武汉天马微电子有限公司 A kind of anti-reflection film and the flexible display apparatus comprising it
CN107153232B (en) * 2017-07-21 2019-06-18 武汉天马微电子有限公司 A kind of anti-reflection film and the flexible display apparatus comprising it
CN109712534A (en) * 2019-02-28 2019-05-03 上海天马有机发光显示技术有限公司 Display panel and display device

Also Published As

Publication number Publication date
TWI452353B (en) 2014-09-11
WO2009025170A1 (en) 2009-02-26
JPWO2009025170A1 (en) 2010-11-25
JP2013156661A (en) 2013-08-15

Similar Documents

Publication Publication Date Title
TWI452353B (en) A strip-shaped thin film, an elongated elliptical polarizing film, an elliptically polarizing plate, and an image display device
TWI437033B (en) A method of manufacturing a polarizing element, a polarizing element, a polarizing plate, an optical film, and an image display device
JP2009139812A (en) Roll-shaped retardation film, method for manufacturing the roll-shaped retardation film, and circularly polarizing plate
JP5234113B2 (en) Retardation film, polarizing plate, liquid crystal display
JP2009251017A (en) Elliptical polarizing plate, and liquid crystal display using same
TW201221358A (en) Optical film and its production method, polarizer and liquid crystal display device
TW200919036A (en) Polarizing plate and liquid crystal display
JPWO2014061215A1 (en) Retardation film, circularly polarizing plate produced using the retardation film, and organic EL display
TWI427339B (en) Polarizing plate and liquid crystal display device
JP2009265477A (en) Optical compensation film, polarizing plate, and liquid crystal display device
WO2015019701A1 (en) Cellulose derivative, method for producing same, optical film, circular polarizing plate, and organic electroluminescent display device
TWI538944B (en) A cellulose ester film, a method for producing the same, and a polarizing plate
JP2004046195A (en) Manufacturing method for optical compensator
WO2007132816A1 (en) Optical functional film and method for producing the same
TW201425344A (en) Retardation film, elongated circularly polarizing plate produced using said retardation film, and organic el display
TW201139146A (en) Method for manufacturing optical film, optical film manufactured by the method and optical device
JP2009122234A (en) Method for manufacturing optical compensation film
JP6048349B2 (en) Method for producing retardation film
WO2008072480A1 (en) Optical compensation film, method for producing optical compensation film, polarizing plate and liquid crystal display
JP6707852B2 (en) Method for producing polarizing plate protective film and method for producing polarizing plate
TW200932801A (en) Process of manufacturing optical film
JP2010085574A (en) Saponification processing method of optical-compensation film, optical-compensation film, polarizing plate, and liquid crystal display device
TW200923443A (en) Circularly polarizing element, and electroluminescence element
JP2009276442A (en) Quarter wave plate, image display device, and liquid crystal display device
JP2009258217A (en) Brightness enhancing film, polarizing plate, and liquid crystal display device