TW200925420A - Permanent-magnet type linear brushless pump - Google Patents

Permanent-magnet type linear brushless pump Download PDF

Info

Publication number
TW200925420A
TW200925420A TW097127986A TW97127986A TW200925420A TW 200925420 A TW200925420 A TW 200925420A TW 097127986 A TW097127986 A TW 097127986A TW 97127986 A TW97127986 A TW 97127986A TW 200925420 A TW200925420 A TW 200925420A
Authority
TW
Taiwan
Prior art keywords
permanent magnet
movable cylinder
cylinder
fixed
linear brushless
Prior art date
Application number
TW097127986A
Other languages
Chinese (zh)
Other versions
TWI357463B (en
Inventor
Te-Yang Shen
Chung-Chu Chen
Original Assignee
Ind Tech Res Inst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ind Tech Res Inst filed Critical Ind Tech Res Inst
Priority to TW097127986A priority Critical patent/TWI357463B/en
Publication of TW200925420A publication Critical patent/TW200925420A/en
Application granted granted Critical
Publication of TWI357463B publication Critical patent/TWI357463B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids

Abstract

This invention provides a compressor with brushless single-phase linear motor, which includes a movable cylinder associated with a permanent magnet array, at least a stationary electromagnetic winding set and a pair of stationary pistons. A partition plate is disposed in the movable cylinder to form a first sub-cylinder and a second sub-cylinder. The front ends of the pair of the stationary pistons are respectively placed in either of two openings of the movable cylinder at its two ends. An alternate current applied to the stationary electromagnetic winding set to generate alternately attracting / repelling forces to the permanent magnet array. The movable cylinder is hence alternately pushed forward and backward. The volumes of the first and second sub-cylinders are changed to compress fluid in the first sub-cylinder or the second sub-cylinder.

Description

200925420 九、發明說明: 【發明所屬之技術領域】 本發明係關於一種氣體幫浦’特別是有關於一種運用 永磁線性無刷馬達大推力直驅技術推動之氣體幫浦。 【先前技術】 目前全球氧氣治療裝置的市場產值約十億美元,產品 範圍涵蓋了氧氣濃縮機(製氧器)、壓縮氧氣瓶、節氧器、 ❹液態氧、流量調節器等,氧氣治療主要使用在慢性阻塞性 肺疾、睡眠時之氧氣治療及運動導致之低血氧症。氧氣治 療病人主要可區分為非移動型與可移動型。百分之八十的 病人需要每分鐘1.5到2.0升的氧氣,每天15個小時。可 移動的病人在生活上可能同時需要可攜式和固定式的氧氣 裝置’而在病人運動時’氧氣流量需求可能提高到每分鐘 4〜6升。氧氣濃縮機係從空氣中分離出氧氣,其中的關鍵 零組件:醫療等級壓縮機亟需開發先進技術與創新機電結 構設計’以儘量滿足移動式病患的各種需求。 ❹抑γ美國公開專利申請案第2006/021617〇Α1號揭露一種 單氣室汽缸壓縮機,如其第一圖所示,係採電樞及活塞為 ,子而電磁鐵繞組為定子的設計,當前述電磁鐵繞組通入 父^電壓時,該電磁鐵繞組間歇性產生一磁力吸引該電樞 ,别移動’進而帶動該電樞後端連接的活塞向前推動,而 歷縮該電樞前端的彈簧;當磁力消失時,前述彈簧回復並 推動該電樞及活塞回位。此一壓縮機設計採用前述電磁力 f彈簧回復力做為動子驅動力,產生的推力會較小。再者 刖述壓縮機需要較長長度,使得其體積較大。此外,此種 壓縮機採用單氣室固定體積汽缸,其空氣壓縮比固定無法 200925420 改變,並且汽缸的截面積小、流量小,使得此種壤縮機適 用範圍小。 美國專利第6,015,270號揭露一種壓縮機,如其第— 圖所示’係採具永久磁鐵陣列的可移動單氣室汽叙為動子 而固定電磁鐵繞組為定子的設計。當交流電壓通入該固定 電磁鐵繞組時,該固定電磁鐵繞組會交替產生向前、向後 的磁力,推動前述具永久磁鐵陣列的玎移動單氣室汽缸向 前、向後移動。此種以電磁力做為驅動力的設計需要專用 〇控制器才可操作。再者,此種壓縮機設計加工製作困難, 功率密度亦較低,並且使用單氣室固定體積汽缸’复 積小、流量小。 ’、聚面 【發明内容】 、、本發明提供一種氣體幫浦或氣體壓縮機設計, ί磁ίΐ'ϊ性ί達大推力直驅幫浦,其可以減少噪音與重 二出氣體流量與運作效率,並達到攜帶隨行之方 便性/、舒適的需求,可應用至移動性病串 ©護㈣,㈣影響病人的正常作性呼吸照 -可的—種永磁式線性無刷幫浦,其主要包括 活塞座定式電磁鐵繞線組及一對固定 2 ;Γ移動式汽缸係具有至少-永久磁鐵陣列及- 於該可移動式=兩:=:開口 ’該隔板設置 -次汽虹室2芯=气=Ζ動式汽缸分隔成一第 外周壁軸向方向上,其包含複數個呈相反 可蔣#/1的永久磁鐵。該固定式電磁鐵繞線組係設置 於心移動式汽红外部相對於該永久磁鐵陣列之一適位 200925420 處,該固定式電磁鐵繞線組包含複數個次繞線組,其中該 等次繞線組繞線方式使得該固定式電磁鐵繞線組通入交穿 電流時產生交替的正、反磁場,以吸引或推斥該可 式汽缸沿轴向方向移動。每一該固定活塞座具有— 室’該主氣室的前端面係置入該可移動式汽缸—端 $ 口内,該主氣室後端呈開口狀,該主氣室具有複數個^ 室’及該主氣室前端面具有至少兩個不同開啟方向::礼 閥分別對應-該副氣室’以控制該可移動式汽虹内 流向。本發明藉由改變通入該固定式電磁鐵繞線組^二體 相位,以控制該可移動式汽缸朝前或朝後軸向移動, 改變該第-次汽缸室及該第二次汽虹室體積, = 一次汽缸室或該第二次汽缸室内部工作流體。 视邊弟 本發明提供的永磁式線性無刷幫浦传 線性馬達大推力直驅技術來推動幫浦,除了 水無刷 零件數目夕卜,永磁無刷設計亦可提高運“ 減少 前述,本發明採用與馬達動子結合之可 再者,如 % 整合單向闊之固定活塞設計,可以使幫浦’以及 發明幫浦設計除了預留動子可動行程空d:::本 塞的運動空間,因此可有效降低幫浦體積。不而增加活 【實施方式】 本發明提供的永磁式線性無刷幫 施例配合所附圖式將予以詳細說明如^藉由以下具體實 第^係本發明永磁式線性無 知例的構件分解圖。第二圓係第一/之弟一具體實 浦組裝後的立體剖面圖,第三A圖至^水磁式線性無刷幫 線性無刷幫浦在各種運作㈣二立永= 7 200925420 A圖至第四C圖係分別對應第三A圖至第三C圖的主要結 構剖面示意圖。參第一圖、第二圖及第四A圖至第四C圖, 根據第一具體實施例,本發明的永磁式線性無刷幫浦1主 要包括一外殼體10、一可移動式汽缸12、一對固定式電磁 鐵繞線組14a及14b(顯示於第二圖)、一對固定活塞座16a 及16b及一對氣室蓋18a及18b。該外殼體10可以是一銘 擠外殼,係用以在軸向方向上容納該可移動式汽缸12及該 對固定活塞座16a及16b。該外殼體1〇的頂面内侧壁兩側 φ 轴向方向上設置有一對滑軌102a及102b及其底部内側壁 兩侧轴向方向上設置有一對滑執104a及l〇4b。參第三A 圖至第三C圖,前述兩對滑軌102及104係用以導引該可 移動式汽缸12在該外殼體10内部沿其轴向方向移動。復 參第一圖,在第一具體實施例中雖以前述兩對滑執102及 104來導引該可移動式汽缸12在該外殼體10内部沿其轴 向方向移動,但本發明並不限於此一設計,例如可將一對 滑執對稱地分別設置於該外殼體12頂面内側壁中間適位 處及其底部内侧壁中間適位處,或者省略前述滑執l〇2a 〇 及102b,而僅使用前述滑軌104a及104b即可,或者僅於 該外殼體10底部内側壁中間適位處設置一滑軌來導引該 可移動式汽缸12 ;相對地,僅於該外殼體10頂面内侧壁 中間適位處設置一滑軌來導引該可移動式汽缸12亦可。該 可移動式汽缸12可以是一鋁擠汽缸,其兩端分別形成一開 口。該可移動式汽缸12内部適位處例如中間位置處設置有 一隔板122(顯示於第二圖)以將該可移動式汽缸12分隔成 一第一次汽缸室120a及一第二次汽缸室120b。該隔板122 係可拆卸式,以利於更換不同厚度的隔板122。該可移動 式汽缸12的外周壁適位處在其軸向方向上係設置一對相 200925420 對應的永久磁鐵陣列124a及124b。每一該永久磁鐵陣列 124a或124b包含複數個呈相反磁場交替排列的永久磁 鐵。本發明較佳地在該可移動式汽缸12的外周壁與每一該 永久磁鐵陣列124a或124b之間設置一導磁材料層126a 或126b,例如石夕鋼片’以進—步降低該永久磁鐵陣列124a 或124b的磁阻。該對固定式電磁鐵繞線組1如及14b分別 對應一該永久磁鐵陣列124a或124b而設置於該外殼體10 的一内側壁(第一圖未示出該對固定式電磁鐵繞線組Ma ❹及14b)。參第四A圖,每—該固定式電磁鐵繞線組14a或 14b係包含一定子座140及繞線142。該定子座14〇具有三 個側向分支140a、140b及140c,而前述繞線142係分別 纏繞於該侧向分支140a及140c,以形成若干次繞線組。 本發明中該固定式電磁鐵繞線組14a或14b的繞線方式並 不文限於第四圖所示,本發明的繞線方式以使該固定式電 磁鐵繞線組14a或14b通入電流時相鄰次繞線組會產生交 替正、反磁場為原則。本發明該固定式電磁鐵繞線組14a 或14b的繞線方式可以如第六a圖至第六c圖所示。第六 © A圖顯示將繞線纏繞於介於該等侧向分支14〇a、14%及 140c之間的該定子座14〇部份本體。第六B圖顯示將繞線 142分別纏繞於每一該侧向分支14〇a、14〇b及η⑹。第六 c圖顯示僅將繞線纏繞於中間的該側向分支l4〇b。上述^ 種繞線方式皆可使該等固定式電磁鐵繞線組丨知及l4b& 入電流時其相鄰側向分支產生交替的正、反磁場。同樣地, 本發明該固定式電磁鐵繞線組14a及14b的次繞線组數目 及側向分支數目亦不受限於圖中所示,係可依該永久磁鐵 陣列124&及124b的磁鐵數目而定或視所需要產生的磁場 強度而定。參第四A圖所示,每—該固定活塞座恤或 200925420 16b具有一主氣室160a或160b,而該主氣室i6〇a或160b 的前端面係置入該可移動式汽缸12 —端開口内。每一該主 氣室160a或160b分隔成呈同心圓狀的兩個副氣室162a 及164a或162b及164b。就該主氣室i60a而言,其前端 面對應副氣室162a及副氣室164a下方處各設置一不同開 啟方向的單向閥166a及168a。就該主氣室i6〇b而言,其 前端面對應副氣室162b及副氣室164b上方處各設置一不 同開啟方向的單向閥166b及168b。該主氣室160a的單向 ❹閥166a與該主氣室160b的單向閥168b開啟方向一致,而 該主氣室160a的單向閥168a與該主氣室160b的單向閥 166b開啟方向一致。每一該主氣室160a或160b的後端面 呈開口狀,藉由該氣室蓋18a或18b將該後端面封蓋住, 如第二圖所示。該氣室蓋18a或18b中間適位處分別形成 一通道孔180a或180b,係分別連接於該主氣室160a及 160b的副氣室166a及166b,以使副氣室162a及162b連 通於流體源,例如外界大氣源。該氣室蓋18a下方對應該 副氣室164a下方適位處另形成一較小通道孔182a,係用 ❹以將該副氣室164a連通至外接組件之氣體管路,例如氧氣 濃縮機之一條高壓氣體接收管路。同樣地,該氣室蓋18b 上方對應該副氣室164b上方適位處另形成一較小通道孔 182b,係用以將該副氣室164b連通至同樣外接組件之同一 或不同氣體管路,例如前述氧氣濃縮機之同一或不同的高 壓氣體接收管路。在本發明中每一該固定活塞座16a或 16b的主氣室160a或160b亦可設計成具有上下分隔的兩 個相鄰副氣室以代替第二圖所示的同心圓設計方式,而該 主氣室160a或160b的前端面對應該等相鄰副氣室適位處 各設置一不同開啟方向的單向閥。同樣地,對應的氣室蓋 200925420 的通道孔亦配合設計。 此外,本發明雖在該外殼體ίο内側壁適位處設置滑 軌以導引該可移動式汽缸12在該外殼體1〇内沿其軸向方 向移動’但在本發明中亦可以利用該對固定活塞座16&及 16b導引該可移動式汽缸12在該外殼體1〇内沿其軸向方 向移動^200925420 IX. INSTRUCTIONS OF THE INVENTION: TECHNICAL FIELD OF THE INVENTION The present invention relates to a gas pump, particularly to a gas pump driven by a high-pressure direct-drive technology using a permanent magnet linear brushless motor. [Prior Art] At present, the global oxygen therapy device market value is about one billion US dollars. The product range covers oxygen concentrator (oxygen generator), compressed oxygen cylinder, oxygen concentrator, helium liquid oxygen, flow regulator, etc. Use in chronic obstructive pulmonary disease, oxygen therapy during sleep, and hypoxemia caused by exercise. Oxygen therapy patients can be mainly classified as non-mobile and mobile. Eighty percent of patients require 1.5 to 2.0 liters of oxygen per minute, 15 hours a day. Mobile patients may need both portable and fixed oxygen devices in their lives. While the patient is exercising, the oxygen flow demand may increase to 4 to 6 liters per minute. Oxygen concentrators separate oxygen from the air, and the key components are: medical grade compressors need to develop advanced technology and innovative electromechanical structure design to meet the needs of mobile patients. A single-chamber cylinder compressor is disclosed in the first embodiment of the present invention. As shown in the first figure, the design of the armature and the piston is the stator and the electromagnet winding is the stator. When the electromagnet winding is connected to the voltage of the parent, the electromagnet winding intermittently generates a magnetic force to attract the armature, and does not move, thereby driving the piston connected to the rear end of the armature to push forward, and shrinking the front end of the armature a spring; when the magnetic force disappears, the spring reverts and pushes the armature and the piston back. This compressor design uses the aforementioned electromagnetic force f spring restoring force as the driving force of the mover, and the generated thrust is small. Furthermore, the compressor requires a longer length, making it larger. In addition, this type of compressor uses a single-chamber fixed-volume cylinder. The air compression ratio is fixed and cannot be changed by 200925420, and the cylinder has a small cross-sectional area and a small flow rate, making the compacting machine suitable for a small range. U.S. Patent No. 6,015,270 discloses a compressor which, as shown in Fig. 1, is a design in which a movable single gas chamber of a permanent magnet array is described as a mover and a fixed electromagnet winding is a stator. When the AC voltage is passed into the fixed electromagnet winding, the fixed electromagnet winding alternately generates forward and backward magnetic forces to push the moving single-chamber cylinder with the permanent magnet array forward and backward. This design with electromagnetic force as the driving force requires a dedicated 〇 controller to operate. Moreover, such a compressor is difficult to design and manufacture, has a low power density, and uses a single-chamber fixed-volume cylinder to have a small recovery and a small flow rate. The invention provides a gas pump or gas compressor design, which can reduce noise and heavy gas flow and operation. Efficiency, and to meet the convenience/comfortable needs of carrying, can be applied to mobile disease series (4), (4) normal working breathing photos affecting patients - a permanent magnet linear brushless pump, The utility model mainly comprises a piston seat fixed electromagnet winding group and a pair of fixed 2; the Γ mobile cylinder system has at least a permanent magnet array and - the movable type = two: =: opening 'the partition setting - the secondary steam chamber The 2-core = gas = turbulent cylinder is divided into an axial direction of the outer peripheral wall, which comprises a plurality of permanent magnets which are oppositely erected ##1. The fixed electromagnet winding group is disposed outside the heart-moving vapor red with respect to one of the permanent magnet arrays. The fixed electromagnet winding group includes a plurality of secondary winding groups, wherein the plurality of times The winding of the winding group causes the fixed electromagnet winding group to generate alternating positive and negative magnetic fields when passing through the cross current to attract or repulsion the movable cylinder to move in the axial direction. Each of the fixed piston seats has a chamber, and a front end surface of the main air chamber is disposed in the movable cylinder end. The rear end of the main air chamber has an opening shape, and the main air chamber has a plurality of chambers. And the front end surface of the main air chamber has at least two different opening directions: the ceremony valve respectively corresponds to the sub air chamber to control the flow direction of the movable steam rainbow. The present invention changes the phase of the movable electromagnet winding group to control the movement of the movable cylinder toward the front or the rear, and changes the first-stage cylinder chamber and the second steam chamber. Chamber volume, = primary cylinder chamber or working fluid inside the second cylinder chamber. According to the invention, the permanent magnet linear brushless pumping linear motor with large thrust direct drive technology is used to push the pump. In addition to the number of waterless brushless parts, the permanent magnet brushless design can also improve the operation. The invention adopts the combination with the motor mover, such as the % integrated one-way wide fixed piston design, which can make the pump 'and the invention pump design except the reserved mover movable travel space d::: the movement of the plug Space, therefore, can effectively reduce the pump volume. Do not increase the activity [Embodiment] The permanent magnet type linear brushless gang application provided by the present invention will be described in detail with reference to the drawings. The exploded view of the permanent magnet linear ignorant example of the present invention. The second circular system is the first cross-section of the first real brother, and the third A-to-water magnetic linear brushless linear brushless gang Pu in various operations (4) Er Liyong = 7 200925420 A to 4 C diagrams correspond to the main structural cross-section diagrams of the third to third C diagrams respectively. Refer to the first diagram, the second diagram and the fourth diagram A to Fourth C diagram, according to the first embodiment, the present invention The permanent magnet linear brushless pump 1 mainly comprises an outer casing 10, a movable cylinder 12, a pair of fixed electromagnet winding groups 14a and 14b (shown in the second figure), and a pair of fixed piston seats 16a. And 16b and a pair of plenum covers 18a and 18b. The outer casing 10 may be a squeezing casing for accommodating the movable cylinder 12 and the pair of fixed piston seats 16a and 16b in the axial direction. A pair of slide rails 102a and 102b are disposed on both sides of the top inner side wall of the body 1 轴向 in the axial direction, and a pair of slides 104a and 104b are disposed in the axial direction on both sides of the bottom inner side wall. To the third C diagram, the two pairs of slide rails 102 and 104 are used to guide the movable cylinder 12 to move in the axial direction inside the outer casing 10. Referring to the first figure, in the first embodiment Although the two pairs of sliders 102 and 104 are used to guide the movable cylinder 12 to move in the axial direction inside the outer casing 10, the present invention is not limited to this design, for example, a pair of slippery Symmetrically disposed at the middle of the inner side wall of the top surface of the outer casing 12 and at the middle of the inner side wall of the outer casing 12 Or omitting the aforementioned slides l〇2a 〇 and 102b, but only using the aforementioned slide rails 104a and 104b, or only providing a slide rail at the middle of the inner side wall of the outer casing 10 to guide the movable type The cylinder 12 is oppositely disposed on the inner side wall of the top surface of the outer casing 10 to guide the movable cylinder 12. The movable cylinder 12 may be an aluminum extrusion cylinder. An opening is formed at each end of the movable cylinder 12, and a partition 122 (shown in the second figure) is disposed at an inner position of the movable cylinder 12 to divide the movable cylinder 12 into a first cylinder chamber 120a and A second cylinder chamber 120b. The partition 122 is detachable to facilitate replacement of the partition 122 of different thicknesses. The outer peripheral wall of the movable cylinder 12 is provided with a pair of permanent magnet arrays 124a and 124b corresponding to the phase 200925420 in the axial direction. Each of the permanent magnet arrays 124a or 124b includes a plurality of permanent magnets alternately arranged in opposite magnetic fields. The present invention preferably provides a magnetically permeable material layer 126a or 126b between the outer peripheral wall of the movable cylinder 12 and each of the permanent magnet arrays 124a or 124b, such as a stone slab to further reduce the permanent The magnetic resistance of the magnet array 124a or 124b. The pair of fixed electromagnet winding groups 1 and 14b are respectively disposed on an inner side wall of the outer casing 10 corresponding to the permanent magnet array 124a or 124b (the first figure does not show the pair of fixed electromagnet winding groups) Ma ❹ and 14b). Referring to Figure 4A, each of the fixed electromagnet winding sets 14a or 14b includes a certain sub-seat 140 and a winding 142. The stator base 14 has three lateral branches 140a, 140b and 140c, and the windings 142 are wound around the lateral branches 140a and 140c, respectively, to form a plurality of winding sets. In the present invention, the winding manner of the fixed electromagnet winding group 14a or 14b is not limited to that shown in the fourth figure. The winding method of the present invention causes the stationary electromagnet winding group 14a or 14b to pass current. When adjacent winding groups generate alternating positive and negative magnetic fields. The winding manner of the fixed electromagnet winding group 14a or 14b of the present invention can be as shown in Figs. 6a to 6c. Sixth A-A shows a winding of the body of the stator block 14 between the lateral branches 14A, 14% and 140c. The sixth panel B shows that the windings 142 are wound around each of the lateral branches 14a, 14b, and η(6), respectively. The sixth c-figure shows the lateral branch l4〇b in which only the winding is wound in the middle. The above-mentioned winding method can make the fixed electromagnet winding group know that the adjacent lateral branches generate alternating positive and negative magnetic fields when the current is input. Similarly, the number of secondary winding groups and the number of lateral branches of the fixed electromagnet winding groups 14a and 14b of the present invention are also not limited to those shown in the drawings, and the magnets of the permanent magnet arrays 124 & and 124b are The number depends on or depends on the strength of the magnetic field that needs to be generated. As shown in FIG. 4A, each of the fixed piston seat glasses or 200925420 16b has a main air chamber 160a or 160b, and the front end surface of the main air chamber i6〇a or 160b is placed in the movable cylinder 12. Inside the opening. Each of the main air chambers 160a or 160b is partitioned into two sub-chambers 162a and 164a or 162b and 164b which are concentric. In the main air chamber i60a, the front end faces are provided with check valves 166a and 168a which are respectively provided with different opening directions corresponding to the sub air chamber 162a and the sub air chamber 164a. In the main air chamber i6〇b, the front end faces are provided with check valves 166b and 168b which are respectively disposed at different positions above the sub air chamber 162b and the sub air chamber 164b. The one-way valve 166a of the main air chamber 160a is in the same direction as the one-way valve 168b of the main air chamber 160b, and the one-way valve 168a of the main air chamber 160a and the one-way valve 166b of the main air chamber 160b are opened. Consistent. The rear end surface of each of the main air chambers 160a or 160b has an opening shape, and the rear end surface is sealed by the air chamber cover 18a or 18b as shown in the second figure. A passage hole 180a or 180b is formed in the intermediate position of the air chamber cover 18a or 18b, and is connected to the auxiliary air chambers 166a and 166b of the main air chambers 160a and 160b, respectively, so that the sub air chambers 162a and 162b communicate with the fluid. Source, such as the source of the outside atmosphere. A small passage hole 182a is formed in the lower portion of the gas chamber cover 18a corresponding to the lower side of the sub air chamber 164a, and is used to communicate the sub air chamber 164a to the gas line of the external assembly, for example, one of the oxygen concentrators. High pressure gas receiving line. Similarly, a smaller passage hole 182b is formed in the upper portion of the air chamber cover 18b corresponding to the upper side of the sub air chamber 164b for connecting the sub air chamber 164b to the same or different gas lines of the same external component. For example, the same or different high pressure gas receiving lines of the aforementioned oxygen concentrator. In the present invention, the main air chamber 160a or 160b of each of the fixed piston seats 16a or 16b may also be designed to have two adjacent sub air chambers spaced apart from each other in place of the concentric design shown in the second figure. The front end of the main air chamber 160a or 160b faces a one-way valve which should be disposed at a different opening direction for each of the adjacent sub air chambers. Similarly, the corresponding hole of the air chamber cover 200925420 is also designed. In addition, the present invention provides a slide rail at a position suitable for the inner side wall of the outer casing to guide the movable cylinder 12 to move in the axial direction of the outer casing 1', but the present invention can also utilize the same. The fixed piston seats 16 & and 16b guide the movable cylinder 12 to move in the axial direction of the outer casing 1〇^

以下配合第三A圖至第三C圖及第四A圖至第四C 圖對於本發明該永磁式線性無刷幫浦1的運作機制做一詳 ❿ 細說明如下:· 本發明該永磁式線性無刷幫浦1係可直接使用一般家 用交流電’藉交流電相位的交替改變,交替改變該對固定 式電磁鐵繞線組14a及Hb之該等次繞線組的磁場方向, 以吸引或推斥該可移動式汽缸12向前或向後移動,進而交 替壓縮該第一次汽缸室UOa及第二次汽缸室i2〇b的體 積’以在該第一次汽缸室12〇a或第二次汽缸室pob交替 產生高壓氣體例如高壓空氣。以下以該永磁式線性無刷幫 浦1供做一空氣壓縮機對其運作機制做說明。參第三A圖 ❿及第四A圖,當電流未通入該永磁式線性無刷幫浦丨的該 對固定式電磁鐵繞線組14a及i4b時,該對固定式電磁 鐵繞線組14a及14b的該等側向分支不會產生磁場,而該 可移動式汽缸12的該等永久磁鐵陣列丨24&及124b的每一 對相鄰相反磁場即會吸引該對固定式電磁鐵繞線組Ma 及14b對應的一該側向分支,而使該可移動式汽缸12保持 在中心平衡位置。在此情況下,該第一次汽缸室120a及該 第二次汽缸室120b内部空氣壓力係與外界大氣源保持平 衡。參第三B圖及第四B圖,當通入該對固定式電磁鐵繞 線組14a及14b的交流電相位為正時,該對固定式電磁鐵 200925420 繞線組14a及Hb的該等側向分支產生交替的正、反磁 場,以吸引該對永久磁鐵陣列124a及124b對應的磁鐵’ 進而使該可移動式汽缸12被向前推動吸至一側’造成該第 二次汽缸室120b被壓縮’而該第一次汽缸室120a膨脹。 在此情況下’該第二次汽缸室120b内部產生高壓空氣,並 經由該單向閥168b流向該副氣室164b ’再經由該通道孔 182b(參第一圖)送入所連接的氧氣濃縮機的高壓氣體接收 管路。該第一次汽缸室120a内部空氣壓力降低,而使得外 ^ 界空氣經由該通道孔180a(參第一圖)、該副氣室162a及該 單向閥166a流入該第一次汽缸室120a内部。再者’該固 定活塞座16b的該副氣室164b被通入來自該第二次汽缸室 120b的高壓空氣後,該副氣室16仙向外膨脹,使得該固 定活塞座16b與該可移動式汽缸12之間接合更緊緻。參第 三C圖及第四C圖’當通入該對固定式電磁鐵繞線組14a 及14b的交流電相位為負時’該對固定式電磁鐵繞線組14a 及14b的相鄰該等侧向分支產生的交替正、反磁場倒反過 來,而將該可移動式汽缸12向後推動至另一侧,造成該第 _ 一次汽缸室120a被壓縮’而該第二次汽缸室120b膨脹。 在此情況下’該第一次汽缸室12〇a内部產生高壓空氣,並 經由該單向閥168a流向該副氣室164a’再經由該通道孔 182a(參第一圖)送入所連接的氧氣濃縮機的高壓氣體接收 管路。該第二次汽缸室120b内部空氣壓力降低,而使得外 界空氣經由該通道孔180b(參第一圖)、該副氣室162b及該 單向閥166b流入該第二次汽缸室120b内部。再者,該固 定活塞座16a的該副氣室164a被通入來自該第一次汽缸室 120a的高壓空氣後,該副氣室164a向外膨脹,使得該固 定活塞座16a與該可移動式汽缸12之間接合更緊緻。 12 200925420 該可移動式汽缸u内的該隔板m係可拆換式,夢 由更換不同厚度的隔板122’可調整該可移動式汽缸12 ; 部空氣壓縮比例(即第—次汽缸室12〇a或第二次汽紅室 120b的膨脹後最大體積與與壓縮後最小體積之比你^值至 進一步調整壓縮空氣的壓力與流量性能。再者,本發明該 永磁式線性無刷幫浦i可擴充PWM冑頻控制器及^知g 路,以精密控制高壓空氣壓力及其流量。 本p第五A圖係本發明永磁式線性無刷幫浦的第二具體 ❹實=例的主要結構剖面示意圖。第二具體實施例與第二具 體實施例的主要差異處係在於該可移動式汽缸12、外周^ 軸向方向上僅設置一永久磁鐵陣列124,而一固定式電ς 鐵繞線組14相對地設置在該外殼體10—對應内側壁上, 其餘構件則與第一具體實施例的對應構件相同。此外,本 發月該可移動式汽缸12外周壁軸向方向設置的永久磁鐵 陣列數目並不受限於上述實施例所示,該可移動式汽紅12 外周壁各軸向方向適位處可依呈三角形(第五Β圖)、X字 型或十字型(第五C圖)等等幾何配置關係來設置適當數 ® 目的永久磁鐵陣列。至於所需要的固定式電磁鐵繞線組數 目則對應該等永久磁鐵陣列數目來決定。 第七Α圖及第七Β圖係本發明永磁式線性無刷幫浦第 二具體實施例的主要結構剖面示意圖,係分別顯示可移動 式;飞紅在不同的位移位置。在第三具體實施例中,本發明 永磁式線性無刷幫浦係採雙動子四汽缸室的設計,具體而 言係將兩個永磁式線性無刷幫浦藉由中間共用的一固定活 塞座串聯結合在一起。第三具體實施例的永磁式線性無刷 幫浦主要包括一第一町移動式汽缸72、一第二可移動式汽 缸76、—對第一固定式電磁鐵繞線組74a及74b、一對第 13 200925420 二固定式電磁鐵繞線組78a及78b、一第一固定活塞座8〇、 一第二固定活塞座82及—第三固定活塞座84。該第一汽 缸室72兩端各形成一開口,其外周壁軸向方向適位處設置 一對相對應的永久磁鐵陣列724a及724b,並且每一該永 久磁鐵陣列724a或724b包含複數個呈相反磁場交替排列 的永久磁鐵。該第一可移動式汽缸72外周壁與對應的一該 永久磁鐵陣列724a或72讣之間較佳設置有一導磁材料層 726a或726b,例如矽鋼片,以降低該永久磁鐵陣列724a或 ❹724b的磁阻。遠弟一可移動式汽缸72内部適位處例如中 間位置設置有一可拆卸式第一隔板722,以將該第一可移 動式汽缸72分隔成一第一次汽缸室72a及一第二次汽缸室 72b。該對第一固定式電磁鐵繞線組74a及74b係分別對應 一該永久磁鐵陣列724a或724b而設置於該第一可移動式 汽缸72的外部適位處。該第一固定式電磁鐵繞線組74a 及74b的設計係相同於第一具體實施例之該固定式電磁 鐵繞線組14a及14b的設計,皆包含一定子座74a或74b 及纏繞於該定子座本體740的側向分支的繞線742,以形 ❹成複數個次繞線組,使得該第一固定式電磁鐵繞線組74a 或74b通入電流時其相鄰的讓等侧向分支產生交替的正、 反磁場。該第一固定活塞座80係具有一個第一主氣室,被 分隔成兩個第一副氣室802及804,並且該第一固定活塞 座80的前端面係置入該第一可移動式汽缸72 一端的開口 内,而該前端面對應前述兩個第—副氣室8〇2及8〇4適位 處分別堍置一開啟方向不同的單向閥806及808。該第一 固定活塞座80後端面呈開口狀,以使該等第一副氣室8〇2 及804分別連通於一氧氣濃縮機的一高壓空氣接收管路及 外界大氣源。 14 200925420The following is a detailed description of the operation mechanism of the permanent magnet linear brushless pump 1 of the present invention in conjunction with the third to third Cth and fourth to fourth C drawings: The magnetic linear brushless pump 1 series can directly use the alternating current phase of the household electric alternating current to alternately change the magnetic field directions of the secondary winding groups of the fixed electromagnet winding groups 14a and Hb to attract Or repulsion the movable cylinder 12 to move forward or backward, thereby alternately compressing the volume of the first cylinder chamber UOa and the second cylinder chamber i2〇b to be in the first cylinder chamber 12〇a or The secondary cylinder chamber pob alternately generates a high pressure gas such as high pressure air. The permanent magnet type linear brushless pump 1 is described below as an air compressor to explain its operation mechanism. Referring to FIG. 3A and FIG. 4A, when the current does not pass into the pair of fixed electromagnet winding groups 14a and i4b of the permanent magnet linear brushless pump, the pair of fixed electromagnet windings The lateral branches of the groups 14a and 14b do not generate a magnetic field, and each pair of adjacent opposing magnetic fields of the permanent magnet arrays 24 & and 124b of the movable cylinder 12 attracts the pair of stationary electromagnets. One of the lateral branches corresponding to the winding sets Ma and 14b maintains the movable cylinder 12 in the center equilibrium position. In this case, the internal air pressure of the first cylinder chamber 120a and the second cylinder chamber 120b are balanced with the outside atmospheric source. Referring to FIG. 3B and FIG. 4B, when the alternating current phase of the pair of fixed electromagnet winding groups 14a and 14b is positive, the pair of stationary electromagnets 200925420 are wound on the sides of the groups 14a and Hb. An alternating positive and negative magnetic field is generated to the branch to attract the corresponding magnets of the pair of permanent magnet arrays 124a and 124b, thereby causing the movable cylinder 12 to be pushed forward to the side to cause the second cylinder chamber 120b to be Compressed' and the first cylinder chamber 120a expands. In this case, the high pressure air is generated inside the second cylinder chamber 120b, and flows to the sub air chamber 164b through the one-way valve 168b, and then is sent to the connected oxygen concentrator via the passage hole 182b (refer to the first figure). High pressure gas receiving line. The air pressure inside the first cylinder chamber 120a is lowered, so that the external air flows into the first cylinder chamber 120a via the passage hole 180a (refer to the first figure), the auxiliary air chamber 162a, and the check valve 166a. . Further, after the sub air chamber 164b of the fixed piston seat 16b is introduced into the high pressure air from the second cylinder chamber 120b, the sub air chamber 16 is expanded outward, so that the fixed piston seat 16b and the movable portion The engagement between the cylinders 12 is more compact. Referring to the third C diagram and the fourth C diagram 'when the alternating current phase of the pair of fixed electromagnet winding groups 14a and 14b is negative, the adjacent pairs of the fixed electromagnet winding groups 14a and 14b The alternating positive and negative magnetic fields generated by the lateral branches are reversed, and the movable cylinder 12 is pushed rearward to the other side, causing the first primary cylinder chamber 120a to be compressed' and the second secondary cylinder chamber 120b to expand. In this case, 'the first cylinder chamber 12〇a generates high-pressure air inside, and flows through the one-way valve 168a to the sub-air chamber 164a' and then feeds the connected oxygen via the passage hole 182a (refer to the first figure). The high pressure gas receiving line of the concentrator. The internal air pressure of the second cylinder chamber 120b is lowered, so that the outside air flows into the second cylinder chamber 120b via the passage hole 180b (refer to the first figure), the sub air chamber 162b, and the check valve 166b. Moreover, after the sub air chamber 164a of the fixed piston seat 16a is introduced into the high pressure air from the first cylinder chamber 120a, the sub air chamber 164a expands outward, so that the fixed piston seat 16a and the movable type The engagement between the cylinders 12 is more compact. 12 200925420 The partition m in the movable cylinder u is detachable, and the movable cylinder 12 can be adjusted by replacing the partition 122' of different thickness; the air compression ratio (ie, the first cylinder chamber) The ratio of the maximum volume after expansion of the 12〇a or second steam red chamber 120b to the minimum volume after compression is further adjusted to further adjust the pressure and flow performance of the compressed air. Furthermore, the permanent magnet linear brushless of the present invention The pump i can expand the PWM frequency frequency controller and the ^ know g road to precisely control the high pressure air pressure and its flow rate. The fifth A picture of the present invention is the second concrete compactness of the permanent magnet linear brushless pump of the present invention= The main difference between the second embodiment and the second embodiment is that the movable cylinder 12 has only one permanent magnet array 124 disposed in the axial direction of the movable cylinder 12, and a fixed type of electricity The cymbal winding group 14 is oppositely disposed on the outer casing 10, and the remaining members are the same as the corresponding members of the first embodiment. In addition, the outer circumferential wall of the movable cylinder 12 is axially oriented. Set permanent magnet array The number is not limited to the above embodiment, and the axial direction of the movable vapor red 12 outer wall can be in a triangular shape (fifth map), an X shape or a cross type (fifth C picture). ) and other geometric configurations to set the appropriate number of ® permanent magnet arrays. The number of fixed electromagnet winding groups required is determined by the number of permanent magnet arrays. The seventh and seventh diagrams are used. A schematic cross-sectional view of a main structure of a second embodiment of a permanent magnet linear brushless pump is shown in the movable mode; the flying red is at different displacement positions. In the third embodiment, the permanent magnet linearity of the present invention is linear. The brush pump system adopts the design of the double-acting four-cylinder chamber, specifically, the two permanent magnet linear brushless pumps are connected in series by a fixed piston seat shared by the middle. The third embodiment is forever The magnetic linear brushless pump mainly comprises a first moving cylinder 72, a second movable cylinder 76, a pair of first fixed electromagnet winding groups 74a and 74b, and a pair of 13 200925420 two fixed type. Electromagnet winding sets 78a and 78b a first fixed piston seat 8〇, a second fixed piston seat 82 and a third fixed piston seat 84. The first cylinder chamber 72 defines an opening at each end thereof, and an outer peripheral wall is disposed at an axial direction. For the corresponding permanent magnet arrays 724a and 724b, and each of the permanent magnet arrays 724a or 724b includes a plurality of permanent magnets alternately arranged in opposite magnetic fields. The outer peripheral wall of the first movable cylinder 72 and the corresponding one of the permanent magnets Preferably, a magnetically permeable material layer 726a or 726b, such as a silicon steel sheet, is disposed between the arrays 724a or 72A to reduce the magnetic reluctance of the permanent magnet array 724a or 724b. A detachable first partition 722 is disposed to divide the first movable cylinder 72 into a first secondary cylinder chamber 72a and a second secondary cylinder chamber 72b. The pair of first fixed electromagnet winding sets 74a and 74b are respectively disposed at an outer position of the first movable cylinder 72 corresponding to the permanent magnet array 724a or 724b. The design of the first fixed electromagnet winding sets 74a and 74b is the same as that of the fixed electromagnet winding sets 14a and 14b of the first embodiment, and includes a certain sub-seat 74a or 74b and is wound around the same. The winding 742 of the lateral branch of the stator seat body 740 is shaped into a plurality of secondary winding groups such that the first fixed electromagnet winding group 74a or 74b has an adjacent lateral direction when a current is applied thereto. The branches produce alternating positive and negative magnetic fields. The first fixed piston seat 80 has a first main air chamber divided into two first sub air chambers 802 and 804, and the front end surface of the first fixed piston seat 80 is placed in the first movable type. The one end of the cylinder 72 is located in the opening of the cylinder 72, and the front end surface is respectively provided with one-way valves 806 and 808 having different opening directions corresponding to the two first-secondary air chambers 8〇2 and 8〇4. The rear end surface of the first fixed piston seat 80 is open, so that the first sub air chambers 8〇2 and 804 are respectively connected to a high pressure air receiving line of an oxygen concentrator and an external air source. 14 200925420

戎第二汽缸室76兩端各形成一開口,其外周壁 方向適位處設置一對相對應的永久磁鐵陣列764a 2 764b,並且每一該永久磁鐵陣列76如或乃仆包含 呈相反磁場㈣制的永久磁鐵。該第二可移動式汽 外周壁與對應的一該永久磁鐵陣列764a或76扑之間 設置有一導磁材料層766a或766b,例如矽鋼片,以^ = 該永久磁鐵陣列764a或764b的磁阻。該第二可移動式产 缸76内部適位處例如中間位置設置有一可拆卸式第二g 板762 ’以將該第二可移動式汽缸76分隔成一第三次&缸 室76a及一第四次汽缸室76b。該對第二固定式電磁鐵繞 線組78a及78b係分別對應一該永久磁鐵陣列764a及 764b而設置於該第二可移動式汽缸76的外部適位處。該An opening is formed at each end of the second cylinder chamber 76, and a pair of corresponding permanent magnet arrays 764a 2 764b are disposed at a position corresponding to the outer peripheral wall direction, and each of the permanent magnet arrays 76 includes an opposite magnetic field (4) Permanent magnets. A second magnetically movable outer peripheral wall and a corresponding one of the permanent magnet arrays 764a or 76 are provided with a magnetically permeable material layer 766a or 766b, such as a silicon steel sheet, to rectify the permanent magnet array 764a or 764b. . The second movable cylinder 76 is internally disposed, for example, at an intermediate position, with a detachable second g-plate 762' to divide the second movable cylinder 76 into a third & cylinder chamber 76a and a first Four cylinder chambers 76b. The pair of second stationary electromagnet winding groups 78a and 78b are respectively disposed at an outer position of the second movable cylinder 76 corresponding to the permanent magnet arrays 764a and 764b. The

具體實施例之該固定式電磁鐵繞線組14a或14b的設計, 皆包含一定子座78a或78b及纏繞於該定子座本體780的 側向分支的繞線782,以形成複數個次繞線組,使得該第 二固定式電磁鐵繞線組78a或78b通入電流時其相鄰的該 等侧向分支產生交替的正、反磁場。該第二固定活塞座82 係具有一個第二主氣室,被分隔成兩個第二副氣室822及 824,並且該第二固定活塞座82的前端面係置入該第二可 移動式汽缸76 —端的開口内’而該前端面對應前述兩個第 二副氣室822及824適位處分別設置一開啟方向不同的單 向閥826及828。 該第三固定活塞座84係具有一個第三主氣室,被分 隔成兩個第三副氣室843及844,其前端面841係置入該 第一可移動式汽缸72的另一端開口,而其後端面842係置 入該第二可移動式汽缸76的另一端開口,藉以將該第一可 15 200925420 移動式汽缸72及該第二可移動式汽缸76串聯結合在一 起。該第三固定活塞座84的前端面841適位處對應該等第 三副氣室843及844分別設置一開啟方向不同的單向閥 845及846。該第三固定活塞座84的後端面842適位處對 應該等第三副氣室843及844分別設置一開啟方向不同的 單向閥847及848。該第三固定活塞座84相鄰該第三副氣 室843的頂面具有一出氣通道849及相鄰該第三副氣室 844的底面具有一進氣通道850。 ^ 在第三具體實施例,該對第一固定式電磁鐵繞線組 74a及74b與該對第二固定式電磁鐵繞線組78a及78b產 生的電磁場排列較佳互為相反,亦即讓第一固定式電磁鐵 繞線組74a及74b與該對第二固定式電磁鐵繞線組78a及 78b的繞線/電流方向相反。如第七A圖所示,當通入交流 電相位為正時,在該對第一固定式電磁鐵繞線組74a及74b 的該等侧向分支的電磁場排列為N-S-N ’而在該對第二固 定式電磁鐵繞線組76a及76b的該等側向分支的電磁場排 列為S-N-S,在此情況下,該第一可移動式汽缸72會朝該 ❹ 第三固定活塞座84的前端面841移動,使其該第一次汽缸 室72a體積膨脹,而該第二次汽缸室72b體積壓縮。該第 二次汽缸室72b内部產生高壓空氣,經由該單向閥845送 入該第三固定活塞座84的第三副氣室843,而外界空氣則 經由該第一固定活塞座80的該第一副氣室804送入該第一 次汽缸室72a。至於該第二可移動式汽缸76會同時朝該第 三固定活塞座84的後端面842移動,使其該第三次汽缸室 76a體積壓縮,而該第四次汽缸室76b體積膨脹。該第三 次汽缸室76a内部產生高壓空氣,經由該單向閥847送入 該第三固定活塞座84的第三副氣室843,而外界空氣則經 16 200925420 由該第二固定活塞座82的該第二副氣室824送入該第二次 汽缸室76b。該第一可移動式汽缸72及第二可移動式汽缸 76同時送入該第三固定活塞座84的第三副氣室843的高 壓空氣再經由該出氣通道849送入所連接的該氧氣濃縮機 的一高壓空氣接收管路。 如第七B圖所示,當通入交流電相位為負時,該對第 *固定式電磁鐵繞線組74a及74b的電磁場排列為 S-N-S,而該對第二固定式電磁鐵繞線組76a及76b的電磁 ^ 場排列為N-S-N,在此情況下,該第一可移動式汽缸72 會朝遠離該第三固定活塞座84的前端面841的方向移動, 使其該第一次汽缸室72a體積壓縮,而該第二次汽缸室72b 體積膨脹_。該第一次汽缸室72a内部產生高壓空氣,經由 該單向閥806送入該第一固定活塞座80的第一副氣室 802,再送入所連接的該氧氣濃縮機的一高壓空氣接收管 路。至於該第二可移動式汽缸76會同時朝遠離該第三固定 活塞座84的後端面842的方向移動,使其該第三次汽缸室 76a體積膨脹,而該第四次汽缸室76b體積壓縮。該第四 ❹次汽缸室76b内部產生高壓空氣,經由該單向閥826送入 該第二固定活塞座82的第二副氣室822,再送入所連接的 該氧氣濃縮機的一高壓空氣接收管路。外界空氣則經由該 第三固定活塞座84的該進氣通道850送入其第三副氣室 844,再同時送入該第一可移動式汽缸72的該第二次汽缸 室72b及該第二可移動式汽缸76的該第三次汽缸室76a。 在第三具體實施例中,當永磁式線性無刷幫浦通電 後,該第一可移動式汽缸72及該第二可移動式汽缸76產 生的高壓空氣會同時送入該出氣通道849。該高壓空氣的 流量提升為兩倍。再者,該第一可移動式汽缸72及該第二 17 200925420 可移動式汽缸76係同時相對地移動’兩者產生的振動即可 互相抵消,同時減少噪音的產生。 第三具體實施例中,該永磁式線性無刷幫浦的其餘構 件係與第一圖所示第一具體實施例的對應構件相同,並且 該第一可移動式汽缸72及該第二可移動式汽缸76外周壁 設置的永久磁鐵陣列數目及其幾何配置方式亦可如上述其 它實施例所示可做其它變化。本發明的外殼體、可移動式 汽缸、固定活塞座及氣室蓋等可以低成本的鋁擠成型 φ (aluminum-extraction)及塑膠射出成型方式製作,進而簡化 組裝程序並降低製造費用。 第八A圖係依據本發明第四具體實施例的一種兩段 式永磁式線性無刷幫浦的主要構件剖面示意圖。第四具體 實施例與第一具體實施例的差異係在於第四具體實施例的 隔板122設置有至少一中間閥(interstage check valve) 167。在第四具體實施例中,第一固定活塞座16a較佳具有 單一主氣室160a及至少一進氣閥(intake check valve) 166a;第二固定活塞座16b較佳具有單一主氣室160b及至 ❹ 少一排氣閥(discharge check valve) 168b。第一次汽缸室 120a執行第一階段壓縮動作,而第二次汽缸室丨2〇b執行 第二階段壓縮動作。第一階段壓縮動作係例示於第八B 圖,當可移動式汽缸12朝該第一固定活塞座160a移動, 在該第一次汽缸室120a的工作流體係被壓縮並經由中間 閥167流入該第二次汽缸室12〇b。第二階段壓縮動作係例 示於第八C圖,當可移動式汽缸12朝該第二固定活塞座 160b移動,在該第二次汽缸室12〇b的工作流體係被壓縮 並經由排氣閥168b流入該第二固定活塞座16b的第二主氣 室160b。在此同時,該第一固定活塞座16a的第一主氣室 18 200925420 160a的工作流體經由s亥進氣閥166a進入該第一次汽缸室 120a。 第八D圖係依據本發明第五具體實施例的一種兩段 式永磁式線性無刷幫浦的主要構件剖面示意圖。第五具體 實施例與第四具體實施例差異處在於該第二固定活塞座 16b的外控及該第-次汽紅室ι2%的内徑係分別小於該第 -固定活塞座16a的外徑及該第〜次汽缸室丨篇的内徑。 ❹ 此種設計使得在㈣的線性馬達動力下在第二階段壓縮動 作時可提供較高的輸出壓力。 麻仏具體實施例的其餘構件係與 第-具體κ施㈣對應構件相同。上述具體實施例所描述 的=永=陣列的變化例及修改亦可被第四具體實 施例及第五具體實施例採用。 -太二明之具體實施例而已,並非用以限 ^^圍’凡其它未脫離本發明所揭示之 精神下所元成之等效改變或修 的麻白由杜 專利範圍内。 均應包含在下述之申请 200925420 【圖式簡單說明】 第一圖係本發明永磁式線性無刷幫浦第一具體實施 例的構件分解圖; 第二圖係第一圖的永磁式線性無刷幫浦組裝後的透 視剖面圖; 第三A圖至第三C圖係第一具體實施例的永磁式線 性無刷幫浦在各種運作狀態下的透視剖面圖; 第四A圖至第四C圖係對應第三A圖至第三C圖的 ^ 主要構件剖面示意圖; 第五A圖係本發明永磁式線性無刷幫浦第二具體實 施例主要構件剖面示意圖; 第五B圖及第五C圖係第五A圖永磁式線性無刷幫 浦的主要構件的變化例側視示意圖; 第六A圖至第六C圖係本發明固定式電磁鐵繞線組 各種變化例示意圖; 第七A圖及第七B圖係本發明永磁式線性無刷幫浦 第三具體實施例在各種運作狀態下的主要構件剖面示意 ⑩ 圖; 第八A圖係本發明永磁式線性無刷幫浦第四具體實 施例主要構件剖面示意圖; 第八B圖係本發明第四具體實施例的永磁式線性無 刷幫浦在第一壓縮階段的主要構件剖面示意圖; 第八C圖係本發明第四具體實施例的永磁式線性無 刷幫浦在第二壓縮階段的主要構件剖面示意圖;及 第八D圖係本發明永磁式線性無刷幫浦第五具體實 施例主要構件剖面示意圖。 20 200925420 【主要元件符號對照說明】 1—永磁式線性無刷幫浦 10—外殼體 12—可移動式汽缸 14、14a、14b----固定式電磁鐵繞線組 16a、16b 固定活塞座 18a·、18b 氣室盖 102a、102b、104a、104b-…滑軌 120a-—第一次汽缸室 120b——第二次汽缸室 122-…隔板 124a、124b-—永久磁鐵陣列 ❿ 126a、126b----導磁材料 140——本體 140a、140b、140c----側向分支 142----繞線 160a、160b-—主氣室 162a、162b、164a、164b-…副氣室 166a、166b、168a、168b-—單向閥 180a、180b、182a、182b-…通道孔 " 72-…第一可移動式汽缸室 72 a 弟·一次汽缸室 72b 弟—次》' 缸室 74a、74b-…第一固定式電磁鐵繞線組 ❹ 76-…第二可移動式汽缸室 76a-…第三次汽缸室 76b-…第四次汽缸室 78a、78b----第二固定式電磁鐵繞線組 80----弟 固定活基座 82-…第二固定活塞座 84-…第三固定式塞座 722----第一隔板 762----弟一隔板 724a、724b—--第一永久磁鐵陣列 726a、726b-…第一導磁材料 740、780----本體 742----繞線 782----繞線 21 200925420 764a、764b-—第二永久磁鐵陣列 766a、766b----弟二導磁材料 802、804----第一副氣室 822、824-…第二副氣室 843、844----第三副氣室 806、808、826、828、845、846、847、848----單向閥 841…-前端面 842-…後端面 849-…出氣通道 850…-進氣通道 22The design of the fixed electromagnet winding group 14a or 14b of the specific embodiment includes a certain sub-seat 78a or 78b and a winding 782 wound around the lateral branch of the stator housing body 780 to form a plurality of secondary windings. The group is such that when the second fixed electromagnet winding group 78a or 78b is energized, its adjacent lateral branches generate alternating positive and negative magnetic fields. The second fixed piston seat 82 has a second main air chamber divided into two second sub air chambers 822 and 824, and the front end surface of the second fixed piston seat 82 is placed in the second movable type. The front end of the cylinder 76 is disposed in the opening end of the cylinder 76, and the front end surface is provided with a check valve 826 and 828 having different opening directions respectively corresponding to the positions of the two second sub air chambers 822 and 824. The third fixed piston seat 84 has a third main air chamber divided into two third sub air chambers 843 and 844, and a front end surface 841 is inserted into the other end opening of the first movable cylinder 72. The rear end surface 842 is inserted into the other end opening of the second movable cylinder 76, whereby the first uncrimable 15 200925420 mobile cylinder 72 and the second movable cylinder 76 are coupled in series. The front end surface 841 of the third fixed piston seat 84 is disposed at a position corresponding to the third sub air chambers 843 and 844, respectively, and a check valve 845 and 846 having different opening directions are disposed. The rear end surface 842 of the third fixed piston seat 84 is disposed at a position corresponding to the third sub air chambers 843 and 844, respectively, and is provided with one-way valves 847 and 848 having different opening directions. The third fixed piston seat 84 has an air outlet passage 849 adjacent to the top surface of the third auxiliary air chamber 843 and an air inlet passage 850 adjacent to the bottom surface of the third auxiliary air chamber 844. In the third embodiment, the electromagnetic field arrangement of the pair of first fixed electromagnet winding groups 74a and 74b and the pair of second stationary electromagnet winding groups 78a and 78b is preferably opposite to each other, that is, The first fixed electromagnet winding sets 74a and 74b are opposite to the winding/current directions of the pair of second fixed electromagnet winding sets 78a and 78b. As shown in FIG. 7A, when the phase of the incoming alternating current is positive, the electromagnetic fields at the lateral branches of the pair of first fixed electromagnet winding groups 74a and 74b are arranged as NSN' and in the pair second The electromagnetic fields of the lateral branches of the stationary electromagnet winding groups 76a and 76b are arranged as SNS, in which case the first movable cylinder 72 moves toward the front end surface 841 of the third fixed piston holder 84. The first cylinder chamber 72a is expanded in volume, and the second cylinder chamber 72b is volume-compressed. High pressure air is generated inside the second cylinder chamber 72b, and is sent to the third sub air chamber 843 of the third fixed piston seat 84 via the one-way valve 845, and the outside air passes through the first fixed piston seat 80. A pair of air chambers 804 are fed into the first cylinder chamber 72a. As for the second movable cylinder 76, it simultaneously moves toward the rear end surface 842 of the third fixed piston seat 84 to volume-compress the third cylinder chamber 76a, and the fourth cylinder chamber 76b expands in volume. High pressure air is generated inside the third cylinder chamber 76a, and is sent to the third sub air chamber 843 of the third fixed piston seat 84 via the one-way valve 847, and the outside air is passed through the second fixed piston seat 82 through 16 200925420. The second sub air chamber 824 is fed into the second cylinder chamber 76b. The first movable cylinder 72 and the second movable cylinder 76 simultaneously feed the high-pressure air of the third auxiliary air chamber 843 of the third fixed piston seat 84 to the connected oxygen concentrator via the air outlet passage 849. A high pressure air receiving line. As shown in FIG. 7B, when the phase of the alternating current is negative, the electromagnetic fields of the pair of fixed electromagnet winding groups 74a and 74b are arranged as SNS, and the pair of second fixed electromagnet winding groups 76a And the electromagnetic field of 76b is arranged as NSN, in which case the first movable cylinder 72 is moved away from the front end surface 841 of the third fixed piston seat 84 to make the first cylinder chamber 72a The volume is compressed while the second cylinder chamber 72b is expanded by _. High pressure air is generated inside the first cylinder chamber 72a, and is sent to the first sub air chamber 802 of the first fixed piston seat 80 via the one-way valve 806, and then sent to a high pressure air receiving line of the connected oxygen concentrator. . As for the second movable cylinder 76, it will simultaneously move away from the rear end surface 842 of the third fixed piston seat 84, causing the third cylinder chamber 76a to expand in volume, and the fourth cylinder chamber 76b is volume-compressed. . High pressure air is generated inside the fourth cylinder chamber 76b, and is sent to the second auxiliary air chamber 822 of the second fixed piston seat 82 via the one-way valve 826, and then sent to a high pressure air receiving tube of the connected oxygen concentrator. road. The outside air is sent to the third sub air chamber 844 via the intake passage 850 of the third fixed piston seat 84, and simultaneously sent to the second cylinder chamber 72b of the first movable cylinder 72 and the first The third cylinder chamber 76a of the second movable cylinder 76. In the third embodiment, when the permanent magnet linear brushless pump is energized, the high pressure air generated by the first movable cylinder 72 and the second movable cylinder 76 is simultaneously fed into the outlet passage 849. The flow rate of this high pressure air is doubled. Moreover, the first movable cylinder 72 and the second 17 200925420 movable cylinder 76 simultaneously move relative to each other to generate vibrations that cancel each other while reducing noise generation. In a third embodiment, the remaining components of the permanent magnet linear brushless pump are the same as the corresponding components of the first embodiment shown in the first figure, and the first movable cylinder 72 and the second The number of permanent magnet arrays disposed on the outer peripheral wall of the mobile cylinder 76 and its geometric arrangement can also be varied as shown in the other embodiments described above. The outer casing, the movable cylinder, the fixed piston seat and the gas chamber cover of the present invention can be produced by low-cost aluminum extrusion φ (aluminum-extraction) and plastic injection molding, thereby simplifying the assembly process and reducing the manufacturing cost. Figure 8A is a cross-sectional view showing the main components of a two-stage permanent magnet linear brushless pump according to a fourth embodiment of the present invention. The fourth embodiment differs from the first embodiment in that the partition 122 of the fourth embodiment is provided with at least one interstage check valve 167. In the fourth embodiment, the first fixed piston seat 16a preferably has a single main air chamber 160a and at least one intake check valve 166a; the second fixed piston seat 16b preferably has a single main air chamber 160b and Dis One less discharge check valve 168b. The first cylinder chamber 120a performs a first stage compression operation, and the second cylinder chamber 丨2〇b performs a second stage compression operation. The first stage compression action is illustrated in Figure 8B. When the movable cylinder 12 is moved toward the first fixed piston seat 160a, the working fluid system in the first cylinder chamber 120a is compressed and flows into the intermediate valve 167. The second cylinder chamber 12〇b. The second stage compression action is illustrated in Figure 8C. When the movable cylinder 12 moves toward the second fixed piston seat 160b, the working fluid system in the second cylinder chamber 12〇b is compressed and passed through the exhaust valve. The 168b flows into the second main air chamber 160b of the second fixed piston seat 16b. At the same time, the working fluid of the first main plenum 18 200925420 160a of the first fixed piston seat 16a enters the first cylinder chamber 120a via the sigma intake valve 166a. Fig. 8D is a schematic cross-sectional view showing the main members of a two-stage permanent magnet type linear brushless pump according to a fifth embodiment of the present invention. The difference between the fifth embodiment and the fourth embodiment is that the external control of the second fixed piston seat 16b and the inner diameter of the first-stage steam chamber ι2% are respectively smaller than the outer diameter of the first fixed piston seat 16a. And the inner diameter of the first to the second cylinder chamber.此种 This design provides high output pressure during the second stage of compression operation under the linear motor power of (4). The remaining components of the paralyzed embodiment are identical to the first-specific κ (four) counterpart. Variations and modifications of the = permanent = array described in the above embodiments may also be employed by the fourth embodiment and the fifth embodiment. The specific embodiments of the present invention are not intended to be limited to the scope of the patents, which are not subject to the equivalents of the present invention. The application should be included in the following application 200925420 [Simplified description of the drawings] The first figure is an exploded view of the first embodiment of the permanent magnet linear brushless pump of the present invention; the second figure is the permanent magnet linear of the first figure A perspective sectional view of the assembled brushless pump; the third to third C is a perspective sectional view of the permanent magnet linear brushless pump of the first embodiment in various operating states; The fourth C is a schematic cross-sectional view of the main components of the second A to the third C; the fifth A is a schematic cross-sectional view of the main components of the second embodiment of the permanent magnet linear brushless pump of the present invention; Figure 5 and Figure 5C are a side view showing a variation of the main components of the permanent magnet linear brushless pump of the fifth A diagram; and the sixth to sixth C drawings are various changes of the fixed electromagnet winding group of the present invention. FIG. 7A and FIG. 7B are schematic cross-sectional views of a main component of a permanent magnet linear brushless pump according to a third embodiment of the present invention in various operating states; FIG. 8A is a permanent magnet of the present invention Sectional diagram of the main component of the fourth linear brushless pump Figure 8 is a cross-sectional view showing the main components of the permanent magnet linear brushless pump in the first compression stage according to the fourth embodiment of the present invention; and the eighth C is a permanent magnet type according to the fourth embodiment of the present invention. Schematic diagram of the main components of the linear brushless pump in the second compression stage; and the eighth D diagram is a schematic cross-sectional view of the main components of the fifth embodiment of the permanent magnet linear brushless pump of the present invention. 20 200925420 [Main component symbol comparison description] 1—Permanent linear brushless pump 10—outer casing 12—movable cylinder 14, 14a, 14b—fixed electromagnet winding group 16a, 16b fixed piston Seat covers 18a, 18b, gas chamber covers 102a, 102b, 104a, 104b-... slide rails 120a - first cylinder chamber 120b - second cylinder chamber 122 - ... partitions 124a, 124b - permanent magnet array ❿ 126a 126b----magnetic material 140-body 140a, 140b, 140c----lateral branch 142----wound 160a, 160b--main air chamber 162a, 162b, 164a, 164b-... Air chambers 166a, 166b, 168a, 168b - one-way valves 180a, 180b, 182a, 182b - ... passage holes < 72 - ... first movable cylinder chamber 72 a brother · one cylinder chamber 72b brother - time " Cylinder chambers 74a, 74b-...first fixed electromagnet winding group ❹76-...second movable cylinder chamber 76a-...third cylinder chamber 76b-...fourth cylinder chamber 78a,78b---- The second fixed electromagnet winding group 80----the young fixed living base 82-...the second fixed piston seat 84-...the third fixed plug seat 722----the first partition 762---- Brother a partition 724a, 7 24b---first permanent magnet array 726a, 726b-...first magnetically permeable material 740,780---body 742----wound 782----wound 21 200925420 764a, 764b--second Permanent magnet arrays 766a, 766b----two magnetically conductive materials 802, 804---first secondary air chambers 822, 824-... second secondary air chambers 843, 844----third secondary air chamber 806 808, 826, 828, 845, 846, 847, 848----check valve 841...- front end surface 842-... rear end surface 849-... outlet passage 850...-intake passage 22

Claims (1)

200925420 十、申請專利範圍: 1. 一種永磁式線性無刷幫浦,其包括: 一可移動式汽缸,係具有至少一永久磁鐵陣列及一隔 板,該可移動式汽缸兩端分別形成一開口,該隔板設置於 該可移動式汽缸内部,以將該可移動式汽缸分隔成一第一 次汽缸室及一第二次汽缸室,該永久磁鐵陣列係設置於該 可移動式汽缸外周壁轴向方向上,其包含複數個形成交替 排列正、反磁場的永久磁鐵; 至少一固定式電磁鐵繞線組,係設置於該可移動式汽 〇 缸外部相對於該永久磁鐵陣列之一適位處,該固定式電磁 鐵繞線組包含複數個次繞線組,其中該等次繞線組繞線方 式使得該固定式電磁鐵繞線組通入電流時產生交替的正、 反磁場,以吸引或推斥該可移動式汽缸沿軸向方向移動; 及 一對固定活塞座,每一該固定活塞座具有一主氣室, 該主氣室的前端面係置入該可移動式汽缸一端之該開口 内,該主氣室後端呈開口狀,該主氣室具有複數個副氣室, Q 及該主氣室前端面具有至少兩個不同開啟方向之單向閥分 別對應一該副氣室; 其中猎由改變通入該固定式電磁鐵繞線組電流之相 位,以控制該可移動式汽缸朝前或朝後軸向移動,進而改 變該第一次汽缸室及該第二次汽缸室體積。 2. 如申請專利範圍第1項所述之永磁式線性無刷幫 浦,其中更包含一外殼體以容納該可移動式汽缸、該固定 式電磁鐵繞線組及該對固定活塞座,其中該可移動式汽缸 及該對固定活塞座係沿該外殼體軸向方向設置及該固定式 23 200925420 電磁鐵繞線組係設置於該外殼體内侧壁一適位處。 3. 如申請專利範圍第2項所述之永磁式線性無刷幫 浦,其中更包含至少一對滑軌係相對地分別設置於該外殼 體内側壁轴向方向一適位處,以導引該可移動式汽缸移動。 4. 如申請專利範圍第1項所述之永磁式線性無刷幫 浦,其中該對固定活塞座係導引該可移動式汽缸移動。 5. 如申請專利範圍第1項所述之永磁式線性無刷幫 浦,其中該可移動式汽缸具有複數個該永久磁鐵陣列係對 稱地設置於該可移動式汽缸外周壁,及複數個該固定式電 磁鐵繞線組分別對應一該永久磁鐵陣列而設置於該可移動 式汽缸外部一適位處。 6. 如申請專利範圍第5項所述之永磁式線性無刷幫 浦,其中該等永久磁鐵陣列係呈十字型、X字型或三角形 φ 幾何關係設置於該可移動式汽缸外周壁。 7. 如申請專利範圍第2項所述之永磁式線性無刷幫 浦,其中該可移動式汽缸具有複數個該永久磁鐵陣列係對 稱地設置於該可移動式汽缸外周壁,及複數個該固定式電 磁鐵繞線組分別對應一該永久磁鐵陣列而設置於該外殼體 内側壁一適位處。 8. 如申請專利範圍第7項所述之永磁式線性無刷幫 浦,其中該等永久磁鐵陣列係呈十字型、X字型或三角形 24 200925420 幾何關係設置於該可移動式汽缸外周壁。 9. 如申請專利範圍第1項所述之永磁式線性無刷幫 浦,其中該隔板係可拆換式。 10. 如申請專利範圍第1項所述之永磁式線性無刷幫 浦,其中更包含一導磁材料層介於該永久磁鐵陣列與該可 移動式汽缸外周壁之間。 11. 如申請專利範圍第1項所述之永磁式線性無刷幫 浦,其中該固定式電磁鐵繞線組包含一定子座本體及複數 個侧向分支。 12. 如申請專利範圍第11項所述之永磁式線性無刷幫 浦,其中繞線纏繞於介於該等侧向分支之間的該定子座部 份本體。 13. 如申請專利範圍第11項所述之永磁式線性無刷幫 浦,其中繞線分別纏繞於每一該側向分支。 14. 如申請專利範圍第11項所述之永磁式線性無刷幫 浦,其中繞線纏繞於中間的該侧向分支。 15. —種永磁式線性無刷幫浦,其包括: 一第一可移動式汽缸’係具有至少一第一永久磁鐵陣 列及一第一隔板,該第一可移動式汽缸兩端分別形成一開 口,該第一隔板設置於該第一可移動式汽缸内部,以將該 25 200925420 第一可移動式汽缸分隔成一第一次汽缸室及一第二次汽缸 室,該第一永久磁鐵陣列係設置於該第一可移動式汽缸外 周壁軸向方向上,其包含複數個呈相反磁場交替排列的永 久磁鐵; 一第二可移動式汽缸,係具有至少一第二永久磁鐵陣 列及一第二隔板,該第二可移動式汽缸兩端分別形成一開 口,該第二隔板設置於該第二可移動式汽缸内部,以將該 第二可移動式汽缸分隔成一第三次汽缸室及一第四次汽缸 @ 室,該第二永久磁鐵陣列係設置於該第二可移動式汽缸外 周壁軸向方向上,其包含複數個呈相反磁場交替排列的永 久磁鐵; 至少一第一固定式電磁鐵繞線組,係設置於該第一可 移動式汽缸外部相對於該第一永久磁鐵陣列之一適位處, 該第一固定式電磁鐵繞線組包含複數個次繞線組,其中該 等次繞線組繞線方式使得該第一固定式電磁鐵繞線組通入 電流時產生交替的正、反磁場,以吸引或推斥該第一可移 動式汽缸沿軸向方向移動; Φ 至少一第二固定式電磁鐵繞線組,係設置於該第二可 移動式汽缸外部相對於該第二永久磁鐵陣列之一適位處, 該第二固定式電磁鐵繞線組包含複數個次繞線組,其中該 等次繞線組繞線方式使得該第二固定式電磁鐵繞線組通入 電流時產生交替的正、反磁場,以吸引或推斥該第二可移 動式汽缸沿軸向方向移動; 一第一固定活塞座,係具有一第一主氣室,該第一主 氣室的前端面係置入該第一可移動式汽缸一端之該開口 內,該第一主氣室後端呈開口狀,該第一主氣室具有複數 個第一副氣室,及該第一主氣室前端面具有至少兩個不同 26 200925420 開啟方向之單向閥分別對應一該第一副氣室; 一第二固定活塞座,係具有一第二主氣室,該第二主 氣室的前端面係置入該第二可移動式汽缸一端之該開口 内,該第二主氣室後端呈開口狀,該第二主氣室具有複數 個第二副氣室,及該第二主氣室前端面具有至少兩個不同 開啟方向之單向閥分別對應一該第二副氣室;及 一第三固定活塞座,係具有一第三主氣室,該第三主 氣室具有兩個第三副氣室、一出氣通道及一進氣通道,該 @ 第三主氣室的前端©係置入該第一可移動式汽缸的另一端 開口及其後端面係置入該第二可移動式汽缸的另一端開 口,該第三主氣室前端面及後端面分別設置有兩個不同開 啟方向的單向閥以對應該等第三副氣室,該出氣通道係形 成於一該第三副氣室的一側,而該進氣通道係形成於另一 該第三副氣室的一側; 其中藉由改變通入該第一固定式電磁鐵繞線組及該 第二固定式電磁鐵繞線組電流之相位,以控制該第一可移 動式汽缸及該第二可移動式汽缸朝前或朝後軸向移動。 ❹ 16.如申請專利範圍第15項所述之永磁式線性無刷幫 浦,其中更包含一外殼體以容納該第一可移動式汽缸、該 第二可移動式汽缸、該第一固定式電磁鐵繞線組、該第二 固定式電磁鐵繞線組、該第一固定活塞座、該第二固定活 塞座及該第三固定活塞座,其中該第一及第二可移動式汽 缸及該第一、第二及第三固定活塞座係沿該外殼體轴向方 向設置,該第一及第二固定式電磁鐵繞線組係分別設置於 該外殼體内侧壁一適位處。 27 200925420 17. 如申請專利範圍第16項所述之永磁式線性無刷幫 浦,其中更包含至少一對滑執係相對地分別設置於該外殼 體内側壁軸向方向一適位處,以導引該第一及第二可移動 式汽缸移動。 18. 如申請專利範圍第15項所述之永磁式線性無刷幫 浦,其中該第一、第二及第三固定活塞座係導引該第一及 第二可移動式汽缸移動。 19. 如申請專利範圍第15項所述之永磁式線性無刷幫 浦,其中複數個第一該永久磁鐵陣列及複數個第二永久磁 鐵陣列係分別對稱地設置於該第一及第二可移動式汽缸外 周壁,及複數個該第一固定式電磁鐵繞線組及複數個該第 二固定式電磁鐵繞線組分別對應該等第一及第二永久磁鐵 陣列而設置於該第一可移動式汽缸及第二可移動式汽缸外 部適位處。 20. 如申請專利範圍第19項所述之永磁式線性無刷幫 浦,其中該等第一及第二永久磁鐵陣列係呈十字型、X字 型或三角形幾何關係分別設置於該第一及第二可移動式汽 缸外周壁。 21. 如申請專利範圍第15項所述之永磁式線性無刷幫 浦,其中該第一及第二隔板係可拆換式。 22·如申請專利範圍第15項所述之永磁式線性無刷幫 浦,其中更包含一第一導磁材料層介於該第一永久磁鐵陣 28 200925420 列與該第一可移動式汽缸外周壁之間,及包含一第二導磁 材料層介於該第二永久磁鐵陣列與該第二可移動式汽缸外 周壁之間。 23. 如申請專利範圍第15項所述之永磁式線性無刷幫 浦,其中該第一固定式電磁鐵繞線組包含一定子座本體及 複數個側向分支。 24. 如申請專利範圍第23項所述之永磁式線性無刷幫 浦,其中繞線纏繞於介於該等侧向分支之間的該定子座部 份本體。 25. 如申請專利範圍第23項所述之永磁式線性無刷幫 浦,其中繞線分別纏繞於每一該侧向分支。 26. 如申請專利範圍第23項所述之永磁式線性無刷幫 浦,其中繞線纏繞於中間的該侧向分支。 27. 如申請專利範圍第15項所述之永磁式線性無刷幫 浦,其中該第二固定式電磁鐵繞線組包含一定子座本體及 複數個側向分支。 28. 如申請專利範圍第27項所述之永磁式線性無刷幫 浦,其中繞線纏繞於介於該等側向分支之間的該定子座部 份本體。 29. 如申請專利範圍第27項所述之永磁式線性無刷幫 29 200925420 浦,其中繞線分別纏繞於每一該側向分支 30. 如申請專利範圍第27項所述之永磁式線性無刷幫 浦’其中繞線纏繞於中間的該侧向分支。 31. —種兩段式永磁式線性無剃幫浦,其包括: ❹ Ο 一可移動式汽缸,係具有至少,永久磁鐵陣列及一隔 板’該可移動式汽缸兩端分別形成一開口,該隔板具有至 少一中間閥並且設置於該可移動式汽缸内部,以將該可移 動式汽缸分隔成一第一次汽虹室及一第二次汽缸室,該永 ^磁,陣列係設置於該可移動式汽缸外周壁轴向方向上, 、包數個呈相反磁場交替排列的永久磁鐵; 缸外固5式電磁鐵繞線组,係設置於該可移動式汽 鐵繞線組包永久磁鐵陣列之一適位處,該固定式電磁 式使得該固數個次繞線組,其中該等次繞線組繞線方 反磁場,以電磁鐵繞線組通入電流時產生交替的正、 —第—固〜ί推斥該可移動式汽缸沿軸向方向移動; 端面係置八讀g二,;^,係具有一主氣室,該主氣室的前 面呈開〇狀f該二二二缸室的該開口内 ,該主氣室的後端 面;及 氧至具有至少—個進氣閥設置於其前端 端面係置入讀第_二―=叩六^—主氣室,該主 面呈開口狀,該該開口内,該主氣室的後如 面, /、有至乂 ~個排氣閥設置於其前辦 第〜固定活塞座,係具有— 議第二f ^ 主虱至,該主氣室的刖 位 其中藉由•舍該 ,以控制電流之相 孑朝後軸向移動,進而改 30 200925420 變該第一次汽缸室及該第二次汽缸室體積,且在第一壓縮 階段一工作流體係經由該進氣閥被引入該第一次汽缸室而 被壓縮並經由該中間閥流入該第二次汽缸室,及在第二壓 縮階段該工作流體進一步被壓縮而經由該排氣閥流出該第 二次汽缸室。 32. 如申請專利範圍第31項所述之兩段式永磁式線性 無刷幫浦,其中更包含一外殼體以容納該可移動式汽缸、 該固定式電磁鐵繞線組及該第一及第二固定活塞座,其中 該可移動式汽缸及該第一及第二固定活塞座係沿該外殼體 轴向方向設置’及該固定式電磁鐵繞線組係設置於該外殼 體内側壁一適位處。 33. 如申請專利範圍第32項所述之兩段式永磁式線 性無刷幫浦,其中更包含至少一對滑軌係相對地分別設置 於該外殼體内側壁軸向方向一適位處,以導引該可移動式 汽缸移動。 34. 如申請專利範圍第31項所述之兩段式永磁式線 性無刷幫浦,其中該第一及第二固定活塞座係導引該可移 動式汽缸移動。 35. 如申請專利範圍第31項所述之兩段式永磁式線 性無刷幫浦,其中該可移動式汽缸具有複數個該永久磁鐵 陣列係對稱地設置於該可移動式汽缸外周壁,及複數個該 固定式電磁鐵繞線組分別對應一該永久磁鐵陣列而設置於 該外殼體内侧壁一適位處。 31 200925420 36. 如申請專利範圍第35項所述之兩段式永磁式線 性無刷幫浦,其中該等永久磁鐵陣列係呈十字型、X字型 或三角形幾何關係設置於該可移動式汽缸外周壁。 37. 如申請專利範圍第31項所述之兩段式永磁式線 性無刷幫浦,其中更包含一導磁材料層介於該永久磁鐵陣 列與該可移動式汽缸外周壁之間。 38. 如申請專利範圍第31項所述之兩段式永磁式線 性無刷幫浦,其中該第二固定活塞座的外徑及該第二次汽 缸室的内徑係分別小於該第一固定活塞座的外徑及該第一 次汽缸室的内徑。 39. 如申請專利範圍第31項所述之永磁式線性無刷 幫浦,其中該固定式電磁鐵繞線組包含一定子座本體及複 數個侧向分支。 40. 如申請專利範圍第39項所述之永磁式線性無刷 幫浦,其中繞線纏繞於介於該等側向分支之間的該定子座 部份本體。 41. 如申請專利範圍第39項所述之永磁式線性無刷 幫浦,其中繞線分別纏繞於每一該側向分支。 42. 如申請專利範圍第39項所述之永磁式線性無刷 幫浦,其中繞線纏繞於中間的該側向分支。 32200925420 X. Patent application scope: 1. A permanent magnet linear brushless pump, comprising: a movable cylinder having at least one permanent magnet array and a partition, the movable cylinders respectively forming one end An opening, the partition is disposed inside the movable cylinder to divide the movable cylinder into a first cylinder chamber and a second cylinder chamber, wherein the permanent magnet array is disposed on the outer wall of the movable cylinder In the axial direction, it comprises a plurality of permanent magnets forming alternating positive and negative magnetic fields; at least one fixed electromagnet winding group is disposed outside the movable steam cylinder with respect to one of the permanent magnet arrays. Wherein, the fixed electromagnet winding group includes a plurality of secondary winding groups, wherein the secondary winding group winding manner causes alternating positive and negative magnetic fields when the fixed electromagnet winding group passes current. To attract or repulsion the movable cylinder to move in the axial direction; and a pair of fixed piston seats, each of the fixed piston seats having a main air chamber, the front end surface of the main air chamber is placed in the In the opening of one end of the movable cylinder, the rear end of the main air chamber is open, the main air chamber has a plurality of auxiliary air chambers, and the front end surface of the main air chamber has at least two one-way valves with different opening directions. Corresponding to a sub-chamber; wherein the hunting changes the phase of the current flowing into the fixed electromagnet winding group to control the movable cylinder to move axially forward or backward, thereby changing the first cylinder chamber and The second cylinder chamber volume. 2. The permanent magnet type linear brushless pump according to claim 1, further comprising an outer casing for accommodating the movable cylinder, the fixed electromagnet winding group and the pair of fixed piston seats, Wherein the movable cylinder and the pair of fixed piston seats are disposed along the axial direction of the outer casing and the fixed type 23 200925420 electromagnet winding set is disposed at a suitable position on the inner side wall of the outer casing. 3. The permanent magnet type linear brushless pump according to claim 2, wherein at least one pair of sliding rails are respectively disposed at a position corresponding to an axial direction of the inner wall of the outer casing, so as to guide The movable cylinder is moved. 4. The permanent magnet linear brushless pump of claim 1, wherein the pair of fixed piston mounts guide the movable cylinder to move. 5. The permanent magnet type linear brushless pump according to claim 1, wherein the movable cylinder has a plurality of the permanent magnet arrays symmetrically disposed on the outer peripheral wall of the movable cylinder, and a plurality of The fixed electromagnet winding sets are respectively disposed at a position outside the movable cylinder corresponding to the permanent magnet array. 6. The permanent magnet type linear brushless pump according to claim 5, wherein the permanent magnet arrays are arranged in a cross type, an X shape or a triangle φ geometric relationship on the outer peripheral wall of the movable cylinder. 7. The permanent magnet type linear brushless pump according to claim 2, wherein the movable cylinder has a plurality of the permanent magnet arrays symmetrically disposed on the outer peripheral wall of the movable cylinder, and a plurality of The fixed electromagnet winding group is respectively disposed on a side wall of the outer casing corresponding to a permanent magnet array. 8. The permanent magnet linear brushless pump according to claim 7, wherein the permanent magnet array is a cross type, an X shape or a triangle 24 200925420 geometric relationship is set on the outer circumference of the movable cylinder . 9. The permanent magnet linear brushless pump of claim 1, wherein the partition is detachable. 10. The permanent magnet linear brushless pump of claim 1, further comprising a layer of magnetically permeable material interposed between the array of permanent magnets and the peripheral wall of the movable cylinder. 11. The permanent magnet linear brushless pump of claim 1, wherein the fixed electromagnet winding group comprises a fixed sub-mount body and a plurality of lateral branches. 12. The permanent magnet linear brushless pump of claim 11, wherein the winding is wound around the stator seat portion body between the lateral branches. 13. The permanent magnet linear brushless pump of claim 11, wherein the windings are wound around each of the lateral branches. 14. The permanent magnet type linear brushless pump of claim 11, wherein the winding is wound around the lateral branch in the middle. 15. A permanent magnet linear brushless pump, comprising: a first movable cylinder having at least one first permanent magnet array and a first partition, the first movable cylinder being respectively respectively Forming an opening, the first partition is disposed inside the first movable cylinder to divide the 25 200925420 first movable cylinder into a first cylinder chamber and a second cylinder chamber, the first permanent The magnet array is disposed in an axial direction of the outer peripheral wall of the first movable cylinder, and includes a plurality of permanent magnets arranged alternately in opposite magnetic fields; and a second movable cylinder having at least one second permanent magnet array and a second partition, an opening is formed at each end of the second movable cylinder, and the second partition is disposed inside the second movable cylinder to divide the second movable cylinder into a third time a cylinder chamber and a fourth cylinder @ chamber, the second permanent magnet array is disposed in an axial direction of the outer peripheral wall of the second movable cylinder, and includes a plurality of permanent magnets arranged alternately in opposite magnetic fields; At least one first fixed electromagnet winding group is disposed outside the first movable cylinder relative to one of the first permanent magnet arrays, and the first fixed electromagnet winding group includes a plurality of a secondary winding group, wherein the secondary winding group is wound in such a manner that an alternating positive and negative magnetic field is generated when the first fixed electromagnet winding group passes current to attract or repulsion the first movable cylinder Moving in the axial direction; Φ at least one second fixed electromagnet winding set is disposed outside the second movable cylinder relative to the second permanent magnet array, the second fixed electromagnetic The iron winding group includes a plurality of secondary winding groups, wherein the secondary winding group winding manner causes the second fixed electromagnet winding group to generate alternating positive and negative magnetic fields when attracting current to attract or repulsion The second movable cylinder moves in the axial direction; a first fixed piston seat has a first main air chamber, and a front end surface of the first main air chamber is placed at one end of the first movable cylinder Inside the opening, after the first main air chamber In an open shape, the first main air chamber has a plurality of first sub air chambers, and the first main air chamber front end surface has at least two different 26 200925420 opening directions, and the one-way valves respectively correspond to the first sub air chamber a second fixed piston seat having a second main air chamber, the front end surface of the second main air chamber being disposed in the opening of one end of the second movable cylinder, the second main air chamber rear end The second main air chamber has a plurality of second sub air chambers, and the one side valves of the second main air chamber front end surface having at least two different opening directions respectively correspond to the second sub air chamber; a third fixed piston seat has a third main air chamber, wherein the third main air chamber has two third auxiliary air chambers, an air outlet passage and an air intake passage, and the front end of the @third main air chamber is © The other end opening of the first movable cylinder and the rear end surface thereof are inserted into the other end opening of the second movable cylinder, and the front end surface and the rear end surface of the third main air chamber are respectively provided with two different a check valve in the opening direction to correspond to the third sub air chamber, the air outlet Forming on one side of the third sub-air chamber, and the intake passage is formed on one side of the other of the third sub-air chambers; wherein the first fixed electromagnet winding group is changed by being changed And a phase of the second fixed electromagnet winding current to control the first movable cylinder and the second movable cylinder to move axially forward or backward. The permanent magnet type linear brushless pump according to claim 15, further comprising an outer casing to accommodate the first movable cylinder, the second movable cylinder, the first fixed Electromagnet winding group, the second fixed electromagnet winding group, the first fixed piston seat, the second fixed piston seat and the third fixed piston seat, wherein the first and second movable cylinders And the first, second and third fixed piston seats are arranged along the axial direction of the outer casing, and the first and second fixed electromagnet winding sets are respectively disposed at a suitable position on the inner side wall of the outer casing. The invention relates to a permanent magnet type linear brushless pump according to claim 16, wherein at least one pair of sliding systems are respectively disposed at a position corresponding to an axial direction of the inner wall of the outer casing, To guide the movement of the first and second movable cylinders. 18. The permanent magnet linear brushless pump of claim 15 wherein the first, second and third fixed piston seats direct the first and second movable cylinders to move. 19. The permanent magnet linear brushless pump of claim 15, wherein the plurality of first permanent magnet arrays and the plurality of second permanent magnet arrays are symmetrically disposed on the first and second sides, respectively a movable cylinder outer peripheral wall, and a plurality of the first fixed electromagnet winding group and the plurality of second fixed electromagnet winding groups respectively corresponding to the first and second permanent magnet arrays A movable cylinder and a second movable cylinder are externally adapted. 20. The permanent magnet linear brushless pump according to claim 19, wherein the first and second permanent magnet arrays are respectively disposed in the cross type, the X shape or the triangular geometric relationship. And a second movable cylinder outer peripheral wall. 21. The permanent magnet type linear brushless pump of claim 15, wherein the first and second partitions are detachable. The permanent magnet linear brushless pump of claim 15, further comprising a first magnetically permeable material layer interposed between the first permanent magnet array 28 200925420 and the first movable cylinder Between the peripheral walls, and comprising a second layer of magnetically permeable material between the second permanent magnet array and the outer peripheral wall of the second movable cylinder. 23. The permanent magnet linear brushless pump of claim 15, wherein the first fixed electromagnet winding set comprises a fixed sub-mount body and a plurality of lateral branches. 24. The permanent magnet linear brushless pump of claim 23, wherein the winding is wound around the stator seat portion between the lateral branches. 25. The permanent magnet linear brushless pump of claim 23, wherein the windings are wound around each of the lateral branches. 26. The permanent magnet linear brushless pump of claim 23, wherein the winding is wound around the lateral branch in the middle. 27. The permanent magnet linear brushless pump of claim 15, wherein the second stationary electromagnet winding set comprises a fixed sub-mount body and a plurality of lateral branches. 28. The permanent magnet linear brushless pump of claim 27, wherein the winding is wound around the stator seat body between the lateral branches. 29. The permanent magnet type linear brushless gang 29 200925420 according to claim 27, wherein the winding is wound around each of the lateral branches 30. The permanent magnet type according to claim 27 A linear brushless pump 'where the winding is wound in the middle of the lateral branch. 31. A two-stage permanent magnet linear non-shave pump comprising: ❹ Ο a movable cylinder having at least a permanent magnet array and a baffle having an opening formed at each end of the movable cylinder The partition has at least one intermediate valve and is disposed inside the movable cylinder to divide the movable cylinder into a first steam chamber and a second cylinder chamber, and the array is set In the axial direction of the outer peripheral wall of the movable cylinder, a plurality of permanent magnets arranged alternately in opposite magnetic fields are arranged; the outer cylinder type 5 electromagnet winding group is disposed on the movable steam iron winding package One of the permanent magnet arrays is in a position where the fixed electromagnetic type causes the plurality of secondary winding groups, wherein the secondary winding group is wound around the magnetic field, and the alternating current is generated when the electromagnet windings pass current. The positive, the first-solid-thick repulsion of the movable cylinder moves in the axial direction; the end face is eight read g2,; ^, has a main air chamber, the front of the main air chamber is open-shaped f The rear end of the main air chamber in the opening of the two-two cylinder chamber And oxygen to have at least one intake valve disposed at the front end face thereof is placed in the reading _ _ _ 叩 ^ ^ — - main air chamber, the main surface is open, the main air chamber After the face, /, there are ~ 排气 个 个 个 个 个 个 个 个 个 个 个 个 个 个 个 〜 〜 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定 固定To control the current phase of the current to move backwards, and then change 30 200925420 to change the first cylinder chamber and the second cylinder chamber volume, and in the first compression phase, a workflow system is introduced via the intake valve The first cylinder chamber is compressed and flows into the second cylinder chamber via the intermediate valve, and the working fluid is further compressed during the second compression phase to flow out of the second cylinder chamber via the exhaust valve. 32. The two-stage permanent magnet linear brushless pump according to claim 31, further comprising an outer casing to accommodate the movable cylinder, the fixed electromagnet winding group and the first And a second fixed piston seat, wherein the movable cylinder and the first and second fixed piston seats are disposed along the axial direction of the outer casing and the fixed electromagnet winding assembly is disposed on the inner side wall of the outer casing A suitable place. 33. The two-stage permanent magnet linear brushless pump according to claim 32, wherein the at least one pair of sliding rails are respectively disposed at a position corresponding to an axial direction of the inner wall of the outer casing. To guide the movable cylinder to move. 34. The two-stage permanent magnet linear brushless pump of claim 31, wherein the first and second fixed piston seats direct the movable cylinder to move. 35. The two-stage permanent magnet linear brushless pump according to claim 31, wherein the movable cylinder has a plurality of the permanent magnet arrays symmetrically disposed on the outer peripheral wall of the movable cylinder. And a plurality of the fixed electromagnet winding groups respectively corresponding to a permanent magnet array and disposed at a suitable position on the sidewall of the outer casing. 31 200925420 36. The two-stage permanent magnet linear brushless pump according to claim 35, wherein the permanent magnet arrays are arranged in a cross type, an X shape or a triangular geometric relationship. The outer peripheral wall of the cylinder. 37. The two-stage permanent magnet linear brushless pump of claim 31, further comprising a layer of magnetically permeable material interposed between the permanent magnet array and the outer peripheral wall of the movable cylinder. 38. The two-stage permanent magnet linear brushless pump according to claim 31, wherein an outer diameter of the second fixed piston seat and an inner diameter of the second cylinder chamber are respectively smaller than the first The outer diameter of the piston seat and the inner diameter of the first cylinder chamber are fixed. 39. The permanent magnet linear brushless pump of claim 31, wherein the fixed electromagnet winding group comprises a fixed sub-mount body and a plurality of lateral branches. 40. The permanent magnet linear brushless pump of claim 39, wherein the winding is wound around the stator seat portion between the lateral branches. 41. The permanent magnet linear brushless pump of claim 39, wherein the windings are wound around each of the lateral branches. 42. The permanent magnet linear brushless pump of claim 39, wherein the winding is wound around the lateral branch in the middle. 32
TW097127986A 2007-12-05 2008-07-23 Permanent-magnet type linear brushless pump TWI357463B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW097127986A TWI357463B (en) 2007-12-05 2008-07-23 Permanent-magnet type linear brushless pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW96146245 2007-12-05
TW097127986A TWI357463B (en) 2007-12-05 2008-07-23 Permanent-magnet type linear brushless pump

Publications (2)

Publication Number Publication Date
TW200925420A true TW200925420A (en) 2009-06-16
TWI357463B TWI357463B (en) 2012-02-01

Family

ID=40721870

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097127986A TWI357463B (en) 2007-12-05 2008-07-23 Permanent-magnet type linear brushless pump

Country Status (2)

Country Link
US (1) US20090148319A1 (en)
TW (1) TWI357463B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011011440A2 (en) * 2009-07-22 2011-01-27 Vbox, Incorporated Method of controlling gaseous fluid pump
CN102953956B (en) * 2012-11-01 2015-04-15 华中科技大学 Compressor driven by brushless coreless linear motor
CA2831197A1 (en) * 2013-10-28 2015-04-28 Patrick Mcfadden Electric linear actuator
ITUB20155088A1 (en) * 2015-10-29 2017-04-29 Hdm S R L Symmetrical alternative linear electromagnetic compressor

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2011210A (en) * 1934-07-09 1935-08-13 Bohnenblust Ben Lift pump
JPH0511355Y2 (en) * 1990-05-09 1993-03-19
JP2520341Y2 (en) * 1991-02-12 1996-12-18 日東工器株式会社 Electromagnetic reciprocating pump
EP1020013B1 (en) * 1997-10-04 2004-04-28 Z & D Limited Linear motor compressor
JP2001330329A (en) * 2000-05-23 2001-11-30 Cryodevice Inc Linear compressor
US6896721B1 (en) * 2001-10-03 2005-05-24 Thomas Industries Inc. Motor start-up unloading in an oxygen concentrator
US6793471B2 (en) * 2002-05-09 2004-09-21 Sergei Latyshev Fluid machine
US6779991B2 (en) * 2002-10-29 2004-08-24 Thomas Industries Inc. Axial piston pump
US6790019B1 (en) * 2003-02-28 2004-09-14 Thomas Industries Inc. Rotary vane pump with multiple sound dampened inlet ports
US7322801B2 (en) * 2003-08-26 2008-01-29 Thomas Industries Inc. Compact linear air pump and valve package
JP4603316B2 (en) * 2003-08-27 2010-12-22 山洋電気株式会社 Cylinder type linear motor mover
US20060104833A1 (en) * 2004-11-12 2006-05-18 Thomas Industries Inc. Fan guard having channel to direct cooling air to a piston cylinder
US7117781B2 (en) * 2005-02-16 2006-10-10 Thomas Industries, Inc. Piston balancing system
JP4272178B2 (en) * 2005-03-28 2009-06-03 日東工器株式会社 Electromagnetic reciprocating fluid device

Also Published As

Publication number Publication date
TWI357463B (en) 2012-02-01
US20090148319A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4365558B2 (en) Electromagnetic vibration type diaphragm pump
KR100608681B1 (en) Reciprocating compressor
ES2611792T3 (en) Linear compressor
CN110094319B (en) Multi-cascade double-cylinder linear compressor
JP2006037962A (en) Reciprocating compressor and method of manufacturing the same
EP3640475B1 (en) Linear compressor
TW200925420A (en) Permanent-magnet type linear brushless pump
AU2005316683A1 (en) Reciprocating pump system
US11131296B2 (en) Transverse flux type reciprocating motor and reciprocating compressor having a transverse flux type reciprocating motor
JPH102281A (en) Improvement of vacuum pump
CN102966512A (en) Ring compressor driven by linear motor
US10903732B2 (en) Moveable core-type reciprocating motor and reciprocating compressor having a moveable core-type reciprocating motor
KR101384226B1 (en) Electromagnetic air compressor
CN101451520B (en) Permanent magnet type linear brushless pump
CN216922410U (en) Linear compressor
WO2020039652A1 (en) Linear motor and compressor equipped with linear motor
CN109921593B (en) Vortex motor
KR20180093412A (en) transvers flux type recyprocating motor and recyprocating compressor having the same
KR100425732B1 (en) Opposed type reciprocating compressor
KR20130134345A (en) Electromagnetic air compressor
CN109915347B (en) Tower type miniature piezoelectric gas compressor
CN116221061A (en) Linear compressor
CN209892419U (en) Series-parallel cavity driven miniature piezoelectric gas compressor
JP2001090665A (en) Electromagnetic diaphragm pump
CN114382676A (en) Reciprocating confronting compressing device

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees