TW200924372A - Driving apparatus for rolling mill roll electric motor - Google Patents
Driving apparatus for rolling mill roll electric motor Download PDFInfo
- Publication number
- TW200924372A TW200924372A TW096147834A TW96147834A TW200924372A TW 200924372 A TW200924372 A TW 200924372A TW 096147834 A TW096147834 A TW 096147834A TW 96147834 A TW96147834 A TW 96147834A TW 200924372 A TW200924372 A TW 200924372A
- Authority
- TW
- Taiwan
- Prior art keywords
- motor
- torque
- speed
- mentioned
- roller
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B35/00—Drives for metal-rolling mills, e.g. hydraulic drives
- B21B35/06—Drives for metal-rolling mills, e.g. hydraulic drives for non-continuously-operating mills or for single stands
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B35/00—Drives for metal-rolling mills, e.g. hydraulic drives
- B21B35/12—Toothed-wheel gearings specially adapted for metal-rolling mills; Housings or mountings therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/46—Roll speed or drive motor control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
- H02P5/46—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P5/00—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
- H02P5/46—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another
- H02P5/50—Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors for speed regulation of two or more dynamo-electric motors in relation to one another by comparing electrical values representing the speeds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2275/00—Mill drive parameters
- B21B2275/10—Motor power; motor current
- B21B2275/12—Roll torque
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Control Of Multiple Motors (AREA)
- Control Of Metal Rolling (AREA)
Abstract
Description
200924372 - 九、發明說明: 【發明所屬之技術領域】 . 本發明係有關一種壓延輥電動機之驅動裝置,尤其有 關一種使用於以各別的電動媸库& 八 7电勒機驅動下上壓延輥之雙驅動 (twm drive)式壓延機的壓延輥電動機之驅動裝置。 【先前技術】 在以上電動機及下電動機來分別驅動上下_昆的 雙驅動式壓延機中,由於各電動 电勁機係由獨立的控制系統控 制,因此上下電動機的負載變猂 .π ^ ^ ^ ^ ^ 戰文仵不均一,有因電動機的熱 不+衡或上下力矩(torque)相異產生屢延材趣曲之虞。因 此,已知有以上下電動機的負載均―化及防止屢延材的上 ^吞下H曲為目的’而對上下電動機的負載電流的基準 值進行監視並進行均—化之負载平衡控制方法 '(參妝例如專利文獻1)。 此外,壓延用電動機係 电軔機知具有由主軸(spmdle)、聯結器 (coupling)、輥(Γο11)、齒給 ω輪專所構成的多質點彈簧系統之 機械負載,但當包合雷叙摘: ^ 機的反延報驅動系統的固有振動 數與壓延用電動機竦声扯连,壯职 书裉動 *控制裝置的速度響應頻率相近時, ^、會使得包含控制系統與機械系統的壓延機驅 … 不穩定系統’而產生過大的扭轉振動現象之虞。 及下輕麵系!1的扭轉振動’一般係在設計階段時分別對上 充份差距的值,以22,#估’將兩者設計為具有 共振。此外,亦有將i;; 制系統的速度響應產生 有將機械糸統的模型裝設至控制系統,以 319808 200924372 ‘ ^機㈣統的舉動’而將力矩基準進行補正,藉此抑制 振動之技術(參照例如專利文獻2)。 專利文獻1 :日本特開平09-295016號公報 專利文獻2 :曰本特開平06-98580號公報 【發明内容】 (發明所欲解決之課題) 在以上電動機及下雷動 自 ,驅叙彳地山 罨動枝刀別驅動上下壓延輥的雙 驅動式£延機中,如第5 ,接上壓延輕50鱼上電動上構成所不’由於分別連 53之門的羞…士 及下壓延輥52與下電動機 萬向聯結器54、55、56、57的潤滑等問題 成萬“結器54、55或者萬向聯結器 %的傾斜角度無法變大,必須 :主:58、 動㈣中的一方配置於另—方將機51或下電 配置來縮小上電動機 ,、p在壓延材60側 59的傾… 53間的間隔,並縮小軸58、 Μ的傾斜角度。經考慮上 往下電動機53前方配置者稱::置:式’將上電動機51 曰踩-rf么地 者%為上珂置方式(top f〇rward), 且將下電動機53往上電動機51前 P _d) 式(bottom f0rward)。 置者稱為下前置方 的上二5::’頓不將上電動機51往下電動機53前方配置 的上刖置方式的壓延耜 叫々配£ 示,在雙驅動式屢延機令,上、下:概略構成’惟如該圖所 不同,兩者的傳遞函數並不相同。=軸:=:械構成 文獻1所揭示的屡延輕電動機的控制 ^專利 出力矩成為上下相同之方式 ’以使電動機輸 仃控制,傳播至壓延材60 319808 6 200924372 的上面及下面之力矩仍會有過渡性不—致, 壓延材60的翹曲或損傷的可能性 f引起例如 6卜62係代表分別支承(backup)上壓延輥$圖的符號 的支承輥,符辨6 3在成主 下麗延輥5 2 ]叉”昆付唬63係代表下電動機53 之間的連結部。 ”萬向聯結器57 此外,在以解決雙驅動式壓延機的上下 性為目的而使用的負載平衡控制中, = 的上下力矩(負載電流)使之均― ::視電動機 動機往壓延輕傳播時產生的上下力矩的=力矩自電 此外,專利文獻2所揭示之將機械系統模型裝 :线的手法係如上述地用於扭轉振動之抑制控制;,二 ^下機械㈣統的舉動進行監視與控制,會容易直料 盘^化誤差的影f,且亦需要上下兩方的機械系統模型 與控制回授值,而使控.制系統變得複雜化。 本發明係為了解決上述課題而研創者,其目的在於提 ,、種將傳播給雙驅動式堡延機的上下麼延輕之傳播力矩 =不一致進行補正,且謀求朝上下黯輥傳遞之力矩傳遞 的同時性之壓延輥電動機之驅動裝置。 (解決課題的手段) 一本發明的壓延輥電動機之驅動裝置,係用於分別以上 電動機及下電動機驅動上下壓延輥,且上述上電動機或上 電動機其中—方係配置成比另—方靠近μ延材側之塵 機者於控制上述上電動機的上電動機控制部與控制上 述下電動機的下電動機控制部中任一方或者兩方配備有用 319808 7 200924372 以將對於上述上下麼延輕之傳播力 — -上下軸系統不平衡補正部。 一致進行補正的 (發明的效果) 依據本發明,能夠使包含 :統的傳遞函數相同:而謀求傳 可能。 1延村的翹曲與損傷的 f貫施方式j 的較Γ;施:附圖說明本她延輕電動機之驅動裝置 ίΜΜΜΛ 參照第1圖說明本發明 本發明實施形態1的星延輕“機也^第1圖係顯示 方塊圖,且顯示將上雷叙 驅動裝置之概略控制 方式的實施例。、…在下電動機前方配置之上前置 編所構==::::器3、及上電動機電流控 該上電動機5之旋轉速度 :ζ部1控制上電動機5, 檢測。還有,上電動機力矩電動機速度感測器6來 控制器“系構成上電動機力3與二電動機電流 速度基準的偏差成為零之方機實速度與上電動機 万式控制上電動機5的力矩。 319808 8 200924372 -此外,下電動機控制部8係由 -9、下電動機力矩電流限制器】 :,度控制器 、11所構成。藉由該下電動機控制部流控制器 下電動機12之旋轉速度係藉由下電動機 心2,該 檢測。還有,下電動機力矩電:; 感:器13來 控制器11係構成下電動機力矩控制;=下電動機電流 機力矩控制手段u係如後下電動 電動機速度基準的偏差成 ㈣貫速度與下 ,力矩。此外,符號方式控制下電動機12的 圖示)之間的上輕動機5至上堡延輥(未 ,丄早^由糸統,符號Μ係表 下壓延輥(未圖示)之間的下輥軸系統。下電動機12至 °又有對上電動機控制 _ 之上電動機逮度基準部^曰不上電動機5的逮度基準 示下電動機12的速产臭準:叹有對下電動機控制部8指 於上電動機速度二:::=機速度基準㈣。且. 作的上下轴系統不平衡補正部… '配置有進行待後述動 的電動機控:部i、::::與下電動機12係分別由獨立 δ所控制,且各雷叙嫌 矩係傳播至上輕轴系統15及下電^ 的輸出力 材2〇。藉此,_材2〇_^ = 16:並到達壓延 統不平衡補正部19、上電動機控制糟由上下軸系 電動機速度感測器6、上輕轴 電動機5、上 21 ’並藉由Τ電動機控㈣δ…下J構成上輥驅動系統 度感測器13、下輕轴系 下電動機速 來構成下輥驅動系統22。 319808 9 200924372 二!㈣魏電動機之驅動裝 —成,接者針對其動作進行說明。 首先’在上輕驅動系統21中,蔣姑·ρ、击危曾、隹 與上電動機5的實速戶sp3M^將補正速度基準肥 制器2,藉此取得上電^機力之^差輸入至上電動機速度控 、、 侍上電動機力矩電流基準TA,苴中,卜、+- 準SP2係藉由將來自上電動機速度基準部二 得'上又:上雷T輪入至上下轴系統不平衡補正部19而 、 处上電動機5的實速度SP3伟夢由上雷私拖古ώ 測器6檢測而得。接著婉、丹μ ^藉由上電動機速度感 妾者、、二過上電動機力矩電流限制器3、 = = = ;:而將電力供給至上電動機5。藉此, 偏差成A $ 、貝^度处3與上電動機速度基準SP1的 差成為夺之方式控制上電動機5的力矩。 、“另方面’在下輥驅動系統22中,將來自下電動嫱 SP5又基準部18之速度基準辦與下電動機U的實速度 :偏差輪入至下電動機速度控制器9’藉 ς 動幾力矩電流基準ΤΒ,其中,上述下電動機12的= 泰動電動機速度感測器13檢測而得。接著經過^ :幾力矩電流限制器10、下電動機電流控制器 電力供給至下雷動播]9。μ & 而將 以使下㈣機U的實速 度SI>5與下電動機速度基 〕只逮 下電動油的力矩。 )偏差成為零之方式控制 從上電動機5及下電動機12供給的力矩係分 上輥轴系統15及下輕軸系統16傳播至塵延材 = 下面。如同在習知技術中所說明者,上親軸系統15的= 319808 10 200924372 函數GT(s)與下輥軸系統16 式壓延機的機械性限制@ k 口 B(s)會由於雙驅動 丨1·市J m不同,即使全 下電動機12供給的力矩# 7攸上龟動機5及 ]刀矩成為相同之方式 壓延材20的上面及下面 /仃控制,傳播至200924372 - IX. Description of the invention: [Technical field to which the invention pertains] The present invention relates to a driving device for a calendering roller motor, and more particularly to a method for driving an upper rolling by a separate electric shovel & A driving device for a calender roll motor of a twm drive type calender. [Prior Art] In the above-mentioned motor and lower motor to drive the double-drive calenders of the upper and lower kiln, respectively, since the electric electric machines are controlled by independent control systems, the load of the upper and lower motors becomes 猂.π ^ ^ ^ ^ ^ The war cricket is not uniform, and there is a lingering entanglement due to the difference between the heat of the motor and the difference between the upper and lower moments. Therefore, there is known a load balance control method in which the load of the upper and lower motors is monitored and the reference value of the load current of the upper and lower motors is monitored and uniformized, and the load of the upper and lower motors is prevented. '(See makeup example, for example, Patent Document 1). In addition, the electric motor for rolling is known to have a mechanical load of a multi-mass spring system composed of a spindle, a coupling, a roller, a tooth, and an ω wheel, but when it is included : ^ The number of natural vibrations of the anti-delay drive system of the machine is connected with the hum of the motor for calendering. When the speed response frequency of the control device is close, ^, the calender containing the control system and the mechanical system will be made. Drive... unstable system' and produce excessive torsional vibration. And the lower face! The torsional vibration of 1 is generally the value of the upper gap in the design phase, and the two are designed to have resonance. In addition, there is also a speed response of the system; the model of the mechanical system is installed in the control system, and the torque reference is corrected by the action of 319808 200924372 '^ machine (four) system, thereby suppressing the vibration Technology (refer to, for example, Patent Document 2). Patent Document 1: Japanese Laid-Open Patent Publication No. Hei 09-295016 (Patent Document 2): JP-A-H06-98580 (Summary of the Invention) (The problem to be solved by the invention) Do not drive the upper and lower calender rolls to drive the double-drive type of extension machine, such as the 5th, connect the calendering light 50 fish on the electric on the construction of the door due to the shame of the 53 door and the lower calender roll 52 There is a problem that the inclination of the lower motor universal joints 54, 55, 56, and 57 is not sufficient. The angle of inclination of the knots 54, 55 or the universal joint can not be increased, and it is necessary to: one of the main: 58 and the movable (four). The motor 51 is arranged or powered down to reduce the upper motor, p is spaced apart from the side of the rolled material 60 59, and the inclination angles of the shafts 58 and Μ are reduced. The front configurator says:: set: 'The upper motor 51 is stepped on -rf, the upper part is set to top (top f〇rward), and the lower motor 53 is turned up to the motor 51 before P _d) (bottom F0rward). The second is 5:: 'Do not put the upper motor 51 on the lower front side The upper squeezing method of the lower motor 53 is arranged in the squeaking squeaking mode. In the double-drive type continuation machine, the upper and lower parts are roughly configured. However, as shown in the figure, the transfer functions of the two are not the same. ==Axis:=:The mechanical control of the multiple-expansion light motor disclosed in Document 1 ^The patented torque is the same as the upper and lower sides' to control the motor output and propagate to the upper and lower moments of the rolled material 60 319808 6 200924372 There is still a transitional failure, and the possibility of warpage or damage of the rolled material 60 causes, for example, a 6-62 series of support rollers that respectively support the symbol of the upper calender roll $Fig. Mainly under the Liyan Roller 5 2] fork "Kun Fuyu 63 series represents the connection between the lower motor 53. "Universal coupling 57 In addition, in the load balancing control used for the purpose of solving the up-and-down performance of the double-acting calender, the up-and-down torque (load current) of = is made - :: depending on the motor motive, the calender is lightly propagated. The moment of the upper and lower moments generated by the torque is self-powered. In addition, the method of installing the mechanical system model disclosed in Patent Document 2 is used for the suppression control of torsional vibration as described above, and the behavior of the system is monitored. With the control, it is easy to straighten the disk to correct the error f, and also requires the mechanical system model and the control feedback value of the upper and lower sides, and the control system becomes complicated. The present invention is to solve the above problems. The researcher, the purpose is to mention, the kind of propagation roller torque that will be transmitted to the double-drive type of the elevator, the propagation torque of the upper and lower extensions = inconsistency, and the simultaneous transfer of the torque transmitted to the upper and lower rollers is performed. Driving device. (Mechanism for solving the problem) A driving device for a rolling roller motor according to the present invention is for driving the upper and lower rolling rolls by the upper motor and the lower motor, respectively, and the above The electric motor or the upper motor is disposed such that the dust is arranged closer to the μ extension side than the other side, and one or both of the upper motor control unit for controlling the upper motor and the lower motor control unit for controlling the lower motor are provided. It is useful to use 319808 7 200924372 to extend the above-mentioned up-and-down propagation force - the up-and-down axis system imbalance correction section. The correction is performed in unison (the effect of the invention) According to the present invention, the transfer function including the system can be made the same: It is possible to transmit. 1 The warpage of the Yancun and the mode of the damage of the j. The application of the drawing shows the driving device of the light-duty motor. Referring to Figure 1, the star-shaped extension of the first embodiment of the present invention will be described. The light machine is also shown in the first figure, and shows an example of a schematic control method of the drive device. In the front of the lower motor, the front part is configured. ==::::3, and the upper motor current control. The rotation speed of the upper motor 5: The upper part 1 controls the upper motor 5, and detects. Further, the upper motor torque motor speed sensor 6 is controlled by the controller "the speed at which the deviation between the upper motor force 3 and the two motor current speed reference becomes zero and the torque of the motor 5 on the upper motor control. 319808 8 200924372 - In addition, the lower motor control unit 8 is composed of a -9, a lower motor torque current limiter: a degree controller, 11. The lower motor speed is driven by the lower motor speed of the lower motor control unit From the lower motor core 2, the detection. Also, the lower motor torque is:; sense: the controller 13 to the controller 11 constitutes the lower motor torque control; = the lower motor current machine torque control means u is the lower electric motor speed reference The deviation is (four) the speed and the lower moment, the torque. In addition, the symbolic control of the motor 12 between the upper light motor 5 to the upper roll (not, 丄 early ^ by the 糸, symbol Μ 表 under the table The lower roller shaft system between the rollers (not shown). The lower motor 12 to ° has the upper motor control _ the motor catching reference portion is not the motor 5 12 speed production noise: sighs the lower motor control unit 8 refers to the upper motor speed two::: = machine speed reference (four). And the upper and lower shaft system imbalance correction section... 'configured to be described later The motor control: the part i, :::: and the lower motor 12 are respectively controlled by independent δ, and each of the snaking moments is transmitted to the upper light shaft system 15 and the output power material 2 下 of the lower electric power. Material 2〇_^ = 16: and reaches the rolling system unbalance correction part 19, the upper motor control is controlled by the upper and lower shaft motor speed sensor 6, the upper light shaft motor 5, the upper 21 ' and controlled by the motor (4) δ... The lower J constitutes the upper roller drive system degree sensor 13 and the lower light shaft system motor speed to form the lower roller drive system 22. 319808 9 200924372 II! (4) The drive of the Wei motor is assembled, and the receiver describes the action. First of all, in the upper light drive system 21, Jiang Gu·ρ, 击危, 隹 and the real motor sp3M^ of the upper motor 5 will correct the speed reference fertilizer 2, thereby obtaining the difference between the power and the power Input to the upper motor speed control, and the motor torque current reference TA, 苴中,卜, +- quasi-SP2 system by taking the upper motor speed reference part two from the top: the upper thunder T wheel to the upper and lower shaft system unbalance correction part 19, the real speed of the motor 5 is on the SP3 Wei Meng by the thunder It is detected by the private detector 6. Then, the electric motor is supplied to the upper motor 5 by the upper motor speed sensor, the second motor torque current limiter 3, ===; Thereby, the difference between the deviation A A , the difference between the 3 and the upper motor speed reference SP1 is controlled to control the torque of the upper motor 5 . "The other aspect" in the lower roller drive system 22 will be from the lower motor 嫱 SP5 Further, the speed reference of the reference portion 18 and the real speed of the lower motor U are: the deviation wheel is driven to the lower motor speed controller 9' by the torque current reference ΤΒ, wherein the lower motor 12 = taek motor speed sensing The device 13 detects it. Then, through ^: several torque current limiter 10, the lower motor current controller power is supplied to the lower mine broadcast]9. μ & will only capture the torque of the electric oil at the actual speed SI>5 of the lower (four) machine U and the lower motor speed base. The way the deviation becomes zero is controlled. The torque supplied from the upper motor 5 and the lower motor 12 is divided by the upper roller shaft system 15 and the lower light shaft system 16 to the dust material = below. As explained in the prior art, the upper shaft system 15 = 319808 10 200924372 function GT (s) and the lower roller system 16 type calender mechanical limit @ k port B (s) due to double drive 丨1. The city J m is different, even if the torque of the whole motor 12 is supplied, the rotor motor 5 and the tool moment are the same, and the upper and lower surfaces of the rolled material 20 are controlled to be transmitted to
^ 5, ^ ^ ^ # 20 ^ ^ ^ ",J 本實施形態中係以謀求朝卜^ 解决該問碭,在 時性為目的,而在上下軸李 力矩傳遞的同 平田糸統不千衡補正部1 9 φ,< — 傳遞函數(^⑷為(:!〇) = 〇 Γς、/〜、 中5又疋其 丁釭多从t ) B(S)/Gt(S)。藉此,便能夠使由上 下軸系統不平衡補正部19、上電動機控制部卜 5、上電動機速度感測器6、及上輕軸系統 輥驅動系統21與由下電動機 、 動機速度感測器13、及下下電動機12、下電 车鮮27 Μ楂、择了垂㈣成的下報驅動 的傳遞函數成為相同’而能夠解決傳遞至壓延材 2〇的上下力矩的不一致。 ι王壓I材 如上所述,依據實施形態】,可謀求朝上下壓延 遞之力矩傳遞的同時性,因&,能夠使傳播至壓延材2〇 的上面及下面之力矩-致’而能夠獲得不再有引起壓延材 20的鍾曲或損傷的可能性之效果。 實施形熊2 ^接著,針對本發明的實施形態2進行說明。在實施形 態1中雖已說明了於上電動機速度基準SP1的後段配置上 下軸系統不平衡補正部19的實施形態,惟藉由將該補正部 19設置至速度控制迴路内,便能夠將補正部19靠近機械 側,而朝上下壓延輥傳播之傳播力矩的不一致的補正效^ π 319808 200924372 - 能夠進-步提升。 第2圖係顯示實施形態2的塵延輥電動機之驅動裝置 之概略控制方塊圖。從該圖能夠明白,上下㈣ =ΓΓ於上電動機速度回授迴路内的速度控: 裔2的後&。並且,將上下軸系統不平衡補正部19的傳遞 函數设定為c2(s)=c賴1+Gl(s)} {1_c】(s)}。此處, 係在實_彡態丨巾的速度㈣迴路的單迴傳遞函數。亦 :’在貫施形態i中,係由於在上電動機速度回授迴路的 =置上下軸系統不平衡補正部]9,因而設定傳遞函數 為c1(s)=Gb(s)/Gt⑻,但在實施形態2中則 上電動機速度回授迴路内,因而設定其傳遞函 數為c2(s)=c賴1+Gl(s)} {1_Ci(s)}。還有,關於i餘的 構成係與實施形態i相同,因此省略說明。 ’、 -士依據此實施形態2,除了達到實施形態1的效果,同 將上下軸系統不平衡補正部19靠近機械側,因此朝 步:父 之傳播力矩的不-致的補正效果能夠進- f施形熊3 3 對本發明的實施形態3進行說明。實施形態 :只施形態2的上下轴系統不平衡補正部19與負 ==併用’而進一步提升朝上下壓延之力矩 得遞的同時性者。 之概= 顯示實施形態3的壓延概電動機之驅動裝置 』方塊圖。實施形態3的壓延輥電動機之驅動裝 319808 12 200924372 置係將上下各自的力矩雷彡* I .·隹rp Λ „ 俺、番^ J刀矩罨机基準丁A及TB輸入至負载平 :運异4 3G’謂補正量直接加進上力矩電流基準,藉 工迅速地將上電動機5與下電動機12的力矩電流基準的 千衡精補正者。還有,⑽其餘的制絲實 2相同,因此省略說明。 〜 :第4圖顯示負载平衡運算部3〇的概略控制方塊 1動機的力矩電流基準ΤΑ、ΤΒ的偏差乘以負 ^ _器他及負載平衡運算率规,且進行比 例控制3 0 c,加算至上雷叙她< 補正…二 的電流基準ΤΑ,藉此進行 邱19配置二…圖顯示將上下軸系統不平衡補正 :?配置於負载平衡運算部3〇的後段,而能夠進一步提 升朝上下壓延輥傳遞之力矩傳遞的同時性。 如上所述,依據此第3實施形態,能夠在實 =施!態2所得效果上再將朝上下麼延輥傳遞之力:、傳 遞的同時性進一步提升。 κ刀矩得- 此外,在實_態4中,將後述 使用時,效果更優異。 喟選仃間化而 t施形熊4 4特接^:^本=时_態4奸朗。實施形態 等二二;:至實施形態3的上下嶋統以彈 補正垣^奎路 \而將上下轴系統不平衡補正部19的 於第6 Si數黃·質量系統的物理參數來表現者: 於第6圖緘不當將相當於電動機 階~供給雙驅動式壓延機的電動機== 319808 13 200924372 •時,亦即在軋進麼延材時的上下塵延輕端力矩波形血上下 二:: 以5質點的彈簧-質量系統來模擬, ^人扭轉固有振動數係分別為上㈣系統約13施,下報 傳由ΠΓ.8Ηζ。從施予步階負載的〇.2秒的時點開始, :::電:機額定力矩基準)的力矩差二= :。…圖顯示上下咖統^ 5, ^ ^ ^ # 20 ^ ^ ^ ", J In this embodiment, the purpose of seeking for the DPRK is to solve the problem, for the purpose of time, and the same time in the upper and lower axis Li torque transmission is not the same Balance the positive part 1 9 φ, < — Transfer function (^(4) is (:!〇) = 〇Γς, /~, medium 5 and 疋 釭 釭 from t) B(S)/Gt(S). Thereby, the upper and lower shaft system imbalance correction portion 19, the upper motor control portion 5, the upper motor speed sensor 6, and the upper light shaft system roller drive system 21 and the lower motor, the motion speed sensor can be enabled. 13. The lower and lower electric motors 12 and the lower electric trains are 27 Μ楂, and the transfer function of the lowering drive is selected to be the same ', and the inconsistency of the upper and lower moments transmitted to the rolled material 2〇 can be solved. As described above, according to the embodiment, the ι king pressure I material can achieve the simultaneity of the torque transmission to the upper and lower rolling, and can be transmitted to the upper and lower moments of the rolled material 2〇. The effect of no longer having the possibility of causing a bell or damage of the rolled material 20 is obtained. Embodiment 2: Next, a second embodiment of the present invention will be described. In the first embodiment, the embodiment in which the vertical shaft system imbalance adjusting unit 19 is disposed in the subsequent stage of the upper motor speed reference SP1 has been described. However, by providing the correction unit 19 in the speed control circuit, the correction unit can be provided. 19 is close to the machine side, and the inconsistent correction effect of the propagation torque propagating toward the upper and lower calender rolls is π 319808 200924372 - can be further improved. Fig. 2 is a schematic block diagram showing the driving device of the dust roller motor of the second embodiment. It can be understood from the figure that the up and down (four) = ΓΓ speed control in the upper motor speed feedback loop: the rear & Further, the transfer function of the vertical axis system imbalance correction unit 19 is set to c2(s) = c 1 1 + Gl(s)} {1_c] (s)}. Here, the single-pass transfer function of the speed (four) loop of the real 丨 state wipe. Also: 'In the configuration i, the transfer function is set to c1(s)=Gb(s)/Gt(8) because the upper motor speed feedback circuit is set to the upper and lower axis system imbalance correction unit]9. In the second embodiment, the upper motor speed is returned to the loop, so that the transfer function is set to c2(s) = c 1 1 + Gl(s)} {1_Ci(s)}. Incidentally, the configuration of i is the same as that of the embodiment i, and thus the description thereof is omitted. According to the second embodiment, in addition to the effect of the first embodiment, the upper and lower shaft system unbalance correction unit 19 is brought closer to the machine side, so that the correction effect of the father's propagation torque can be advanced. f Stereo Bear 3 3 Embodiment 3 of the present invention will be described. EMBODIMENT: Only the vertical axis system imbalance correction portion 19 of the form 2 and the negative == combined use' are used to further increase the torque of the upward and downward rolling. OVERVIEW = A block diagram showing the driving device of the rolling motor of the third embodiment. The driving roller of the calender roll motor of the third embodiment is 319808 12 200924372. The system sets the respective torques of the upper and lower thunders* I.·隹rp Λ „ 俺, 番^J knife 罨 machine base D and TB input to the load level: The different 4 3G' is the correction amount directly added to the upper torque current reference, and the borrower quickly adjusts the torque current reference of the upper motor 5 and the lower motor 12 to the correction. Also, (10) the remaining wire is the same as 2 Therefore, the description will be omitted. ~ : Fig. 4 shows the torque control current reference block 1 of the load balancing calculation unit 3, the deviation of the torque current reference 乘, the deviation of the 乘 multiplied by the negative θ _ _ and the load balancing operation rate rule, and the proportional control 3 0 c, added to the current reference 上 叙 她 & & & 二 二 二 二 二 二 二 二 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱 邱Further, the simultaneity of the torque transmission transmitted to the upper and lower rolling rolls is further improved. As described above, according to the third embodiment, the force transmitted to the upper and lower rollers can be increased in the actual effect of the second state: Simultaneous progress提升 提升 矩 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外 此外朗. The second embodiment of the second embodiment; the upper and lower 嶋 system of the third embodiment is represented by the physical parameters of the sixth Si number yellow mass system of the upper and lower axis system imbalance correction unit 19 : In Figure 6, improperly, it will be equivalent to the motor step ~ the motor that supplies the double drive calender == 319808 13 200924372 • When it is rolled into the extension material, the upper and lower dust extension light end torque waveform blood up and down :: Simulated by a 5-mass spring-mass system, the number of human torsional natural vibrations is approximately 13 for the upper (four) system, and the lower is reported by ΠΓ.8Ηζ. The time from the application of the step load is 〇.2 seconds. Start, :::Electrical: machine rated torque reference) torque difference two =: ....
Gt(S))) ^ ^ it =峰的不平衡補正項設於上電動機或下電動機或 該兩方,便能夠解決上下力矩的不一致。 的彈乍為上下輕軸系統傳遞函數而使用 的質點數⑭Γ 機械㈣統,只要將㈣統模型 時,當質㈣^ 在 項應用於控制系統 雜,使二會變大而變得非常複 補正項的調整參數個數亦會變多 :二此:卜 設為η時的輥轴系統的方塊圖作為參考。、頃不將貝點數 題:::要度:二::在實際的作業上並不會造成問 藉由減少質點補I力短的不一致消除,因此能夠 幸昆軸系統以^ 項的簡化。此處,分別將上下 化,古声、糸統來模擬,藉此謀求補正項的低次元 度只現對目前的控制系統的安裝性,且謀求最顯著 319808 14 200924372 .的一次扭轉振動數所 Q闰咭- 厅k成的上下力矩不平 9圖頦不以2質點系 +衡的減低。於第 第9圖,將輥軸夺蛴、j ,所勺龟軸糸统的方塊 匕孕由系统以2質點系统央禮奴士 > ',、、 輥端的力矩傳遞函數為: 、擬蛉的從電動機至 f第!式j ' τ T^八 2 ^ +(Jl +J^' c · s+(^ +J2y κ 因此,若從第】式所示的 數求取補正項的傳遞函數,則:’、’、、點系統之傳遞函 [第2式] 、·Gt(S))) ^ ^ it = The imbalance correction of the peak is set on the upper motor or the lower motor or both, so that the inconsistency of the upper and lower moments can be solved. The number of particles used for the transfer function of the upper and lower light shaft system is 14 Γ mechanical (four) system, as long as the (four) system model, when the quality (four) ^ is applied to the control system, so that the two will become larger and become very complex The number of adjustment parameters of the item will also increase: two: the block diagram of the roller system when 卜 is set to η as a reference. It is not to be the number of questions::: To be: 2:: In the actual operation, it will not cause the inconsistency elimination by reducing the particle's short force. Therefore, it is possible to simplify the system. . Here, the ups and downs, the ancient sounds, and the syllabary are simulated separately, so that the low-order element of the correction term is only available for the current control system, and the most significant number of torsional vibrations of 319808 14 200924372 is sought. Q闰咭- The upper and lower moments of the hall k are not flat. The figure is not reduced by the 2 points + balance. In the 9th figure, the roller shaft is smashed, j, the square of the turtle shaft of the spoon is conceived by the system to the 2 mass point system rituals > ',, the torque transfer function of the roller end is: From the motor to the f! Equation j ' τ T^八2 ^ +(Jl +J^' c · s+(^ +J2y κ Therefore, if the transfer function of the correction term is obtained from the number shown in the equation, then: ', ', , Point system transfer letter [Type 2],
Ci(s) =Gb(s)/ gt(s)Ci(s) = Gb(s) / gt(s)
r i 2. I,丁' itu -¾. (—),KT係上報軸系:二::電:機側及_慣量r i 2. I, D' itu -3⁄4. (—), KT is reported to the shafting system: two:: electricity: machine side and _ inertia
減係數,JB1、/B2係下_統的電動機 0糸統彈菁常數,CB 這些係數全部皆能夠進行調整。此 糸、、先哀减係數’ 項的偏差為。的補正係數,以下列數式^係用以使補』 [第3式] 319808 15 200924372Reduction coefficient, JB1, /B2 system _ system motor 0 system elastic constant, CB These coefficients can be adjusted. The deviation of the ’, and first suffix coefficients is . The correction factor is used in the following formula to make the supplement [3rd] 319808 15 200924372
Ac〇m =~^Ά1£β2) T2, 於第10圖顯示將第2式作為補正項插 統時的上下_端力矩波形與上下力矩差…轴糸 結果,於第u /、上下力矩差的波形的模擬 含有補正項H 統 統、及補正項的增益特性。由上述可得知藉由不平=: 輥轴系統的一次扭轉振動數大致與 相尋’結果可將上下壓延鎔 凡 〇-3[PU]〇 , „ 差的最大值減低至 季Mr^ 將上下_线以2質點 ㈣具有㈣的補正效果。如此預先算出補正 =再於貫機絲調整時進行上述各參數的微調,藉此, :夠=高精度的補正。而作為在現場的補正項調整方 慮/以應變計進行輕端傳遞力矩的實測或以傳遞函 ,、’疋盗進灯傳遞函數的實測來調整各參數之手法。 如上所述,依據此實施形態4,除了達到實施形態〗 至貫施形態3所得的效果’並且藉由利用模擬來進行補正 項的傳遞函數所達到的補正絲㈣前評價與檢證 下輕傳播之傳播力矩的不—致的補正效果便能夠進一步提 升。 還有,在實施形態丨中絲明於上電動機速度基準 SP1的後段配置上下輛系統不平衡補正部19的實施形能, 而在貫施形態2中係說明將上下軸系統不平衡補正部19 配置於上電動機速度回授迴路内的實施形態,但本發明亦 可將上下㈣統不平衡補正部19配置於下輥驅動系統^ 319808 16 200924372 中的與上述相同處,亦可配置於上 動手统22 ifi ·# tb a '比’·動系統21及下幸昆驅 ==述相同處。此外,在上述各實施形 幸曰t動機之”月應用於上珂置方式的壓延機令的壓延 用於下前置方tir態進行圖示說明,但亦可應 、 x 、I延機中的壓延幸昆電動機 且能夠包含各種設計變化。 ㈣之㈣裝置, (產業上的利用可能性) 本發明係能_用於以各別的電 輕之雙驅動式_機_延輥電動機之驅動裝ϊ 〔 【圖式簡單說明】 鮮顯示本發明實施形態1的屢延輕電動機之驅 動裝置之概略控制方塊圖。 第2圖係顯示本發明實施形態2的壓 動裝置之概略控制方塊圖。 勒狀 鮮L3二Γ示本發明實施形態3 _延幸昆電動機之驅 動裝置之概略控制方塊圖。 第4圖係負載平衡運算部的概略控制方塊圖。 第5圖係'用以說明習知雙驅動式壓延機的概略構成 圖。 第6圖係顯示在未進行補正狀態下的壓延輥傳 模擬波形圖。 第7圖係顯示在未進行補正狀態下的上下輥軸的增益 特性圖。 第8圖係顯示以多質點系統(質點數η)表示之輥軸系 319808 17 200924372 統之方塊圖。 第9 塊圖 回二員丁以2貝點系統模擬表示之镜轴系 統之方 第10圖係顯示在進行過補 力矩模擬波形圖。 正之狀態下的壓延輥傳遞 增益:二圖係顯示在進行過補正之狀態下的」 【主要元件符號說明】 下輥軸的 上電動機控制部 上電動機速度控制器 上電動機力矩電流限制器 上電動機電流控制器 51 上電動機Ac〇m =~^Ά1£β2) T2, Figure 10 shows the difference between the upper and lower moment waveforms and the upper and lower moments when the second formula is used as the correction term. The simulation of the waveform contains the correction term H and the gain characteristics of the correction term. It can be seen from the above that by the unevenness =: the number of primary torsional vibrations of the roller system is approximately the same as the phase finding, the upper and lower rolling can be reduced to [ -3 [PU] 〇, „ the maximum value of the difference is reduced to the quarter Mr^ will be up and down The _ line has a correction effect of (4) at the 2nd point (4). In this way, the correction is calculated in advance. When the adjustment of the thread is performed, the above-mentioned parameters are finely adjusted, thereby: sufficient = high-precision correction, and adjustment as a correction in the field Considering/measuring the light-end transmission torque with a strain gauge or adjusting the parameters by the transfer function, the actual measurement of the thief-input lamp transfer function. As described above, according to this embodiment 4, in addition to the implementation form The effect obtained by the application of the mode 3 is further improved by the pre-evaluation of the correction wire (4) obtained by the transfer function of the correction term by the simulation and the correction effect of the propagation torque of the light propagation under the verification. Further, in the embodiment, the performance of the vertical system imbalance correction unit 19 is arranged in the latter stage of the upper motor speed reference SP1, and in the second embodiment, the upper and lower shaft systems are not shown. Although the correction unit 19 is disposed in the upper motor speed feedback circuit, the present invention may be arranged in the same manner as described above in the lower roller drive system 319808 16 200924372. In the case of the upper hand system 22 ifi · # tb a ' than '······························ The calendering of the machine is illustrated for the lower front square tir state, but it can also be used in the x, I, and the extension of the furnace and can include various design changes. (4) (4) Device, (Industrial use possibility) The present invention can be used for driving and mounting with a separate electric drive type _ machine _ extension roller motor [ [Simple description of the drawing] Fresh display A schematic control block diagram of a drive device for a reciprocating light motor according to the first embodiment of the present invention. Fig. 2 is a schematic block diagram showing the control of the pressing device according to the second embodiment of the present invention. The present invention is a schematic control block diagram of the driving device of the embodiment of the present invention. Fig. 4 is a schematic control block diagram of the load balancing calculation unit. Fig. 5 is a schematic view showing a schematic configuration of a conventional double drive calender. Fig. 6 is a view showing an analog waveform of a calender roll transmission in a state where no correction is performed. Fig. 7 is a graph showing the gain characteristics of the upper and lower rollers in the state where the correction is not performed. Fig. 8 is a block diagram showing a roller shaft system 319808 17 200924372 represented by a multi-mass system (particle number η). Block 9 Figure 2 shows the mirror axis system shown by the 2-point system. Figure 10 shows the simulated torque waveform. The calender roll transfer gain in the positive state: the second figure shows the state in which the correction is performed. [Main component symbol description] The motor current on the motor speed controller on the upper motor control part of the lower roller shaft Controller 51 upper motor
10 11 12、53 13 14 15 16 上電動機速度感測器 上電動機力矩控制手段 下電動機控制部 下電動機速度控制器 下電動機力矩電流限制器 下電動機電流控制器 下電動機 T電動機速度感測器 下電動機力矩控制手段 上輕車由系統 下輥軸系統 319808 18 200924372 17 上電動機速度基準部 18 下電動機速度基準部 19 上下軸系統不平衡補正部 20、60 壓延材 21 上輥驅動系統 22 下輥驅動系統 30 負載平衡運算部 30a 負載平衡運算限制器 30b 負載平衡運算率 30c 比例控制 50 上壓延輥 52 下壓延輥 58、59 主轴 54、55、56、57 萬向聯結器-61、62 支承輥 63 連結部 19 31980810 11 12, 53 13 14 15 16 Upper motor speed sensor on motor torque control means motor control part motor speed controller motor torque current limiter motor current controller motor T motor speed sensor lower motor torque Control means on the light vehicle system under the roller system 319808 18 200924372 17 Upper motor speed reference portion 18 Lower motor speed reference portion 19 Upper and lower shaft system imbalance correction portion 20, 60 Rolled material 21 Upper roller drive system 22 Lower roller drive system 30 Load balance calculation unit 30a Load balance calculation limiter 30b Load balance calculation rate 30c Proportional control 50 Upper calender roll 52 Lower calender roll 58, 59 Main shaft 54, 55, 56, 57 Universal joint -61, 62 Support roll 63 Joint portion 19 319808
Claims (1)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007121086 | 2007-05-01 | ||
PCT/JP2007/072371 WO2008136146A1 (en) | 2007-05-01 | 2007-11-19 | Driving device for motor of rolling mill roll |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200924372A true TW200924372A (en) | 2009-06-01 |
TWI371914B TWI371914B (en) | 2012-09-01 |
Family
ID=39943267
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW096147834A TWI371914B (en) | 2007-05-01 | 2007-12-14 | Driving apparatus for rolling mill roll electric motor |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100206033A1 (en) |
JP (1) | JP5062253B2 (en) |
KR (1) | KR101048938B1 (en) |
CN (1) | CN101663107B (en) |
TW (1) | TWI371914B (en) |
WO (1) | WO2008136146A1 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2258491A1 (en) * | 2009-06-04 | 2010-12-08 | Siemens Aktiengesellschaft | Rotation tool for a mill train and method for operating a casting-roller compound assembly |
JP5459604B2 (en) * | 2009-12-04 | 2014-04-02 | 新日鐵住金株式会社 | Control method for suppressing torsional vibration of rolling mill |
EP2345486A1 (en) * | 2010-01-15 | 2011-07-20 | Siemens Aktiengesellschaft | Rollers of a metal belt with oscillating setpoint torque |
CN102122912A (en) * | 2010-12-13 | 2011-07-13 | 西南铝业(集团)有限责任公司 | Direct current speed regulating system of pipe mill |
CN102744267B (en) * | 2012-06-20 | 2015-03-11 | 北京景新电气技术开发有限责任公司 | Motor load distribution control method and motor load distribution control device |
US10363590B2 (en) | 2015-03-19 | 2019-07-30 | Machine Concepts, Inc. | Shape correction leveler drive systems |
CN105425845B (en) * | 2015-11-05 | 2018-05-11 | 北京金自天正智能控制股份有限公司 | A kind of method that the control of up-down rollers balancing the load is realized based on 6RA80 DC speed regulators |
RU2714890C2 (en) * | 2016-09-05 | 2020-02-20 | Акционерное общество "Научно-производственное предприятие "Калужский приборостроительный завод "Тайфун" (АО "Тайфун") | Valve-inductor drive of shaft ventilation plant |
CN108067505B (en) * | 2016-11-17 | 2019-05-07 | 格朗吉斯铝业(上海)有限公司 | The control method and system of asymmetrical deformation in the asymmetric material operation of rolling |
EP4243274A1 (en) * | 2022-03-07 | 2023-09-13 | Hamilton Sundstrand Corporation | Speed control of mechanically paralleled electrical drives without intercommunication buses |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4828611B1 (en) * | 1967-04-28 | 1973-09-03 | ||
FI45165C (en) * | 1970-07-21 | 1972-04-10 | Fiskars Ab Oy | Cleaning arrangements for forging machines for damping of the machine's under-directed blows. |
JPS58141807A (en) * | 1982-02-15 | 1983-08-23 | Mitsubishi Electric Corp | Equipment for automatically controlling sheet thickness |
JPS609509A (en) * | 1983-06-29 | 1985-01-18 | Hitachi Ltd | Control method of rolling mill |
JPS61115617A (en) * | 1984-11-07 | 1986-06-03 | Mitsubishi Electric Corp | Speed control device of rolling equipment |
JPH0616889B2 (en) * | 1987-11-18 | 1994-03-09 | 株式会社日立製作所 | Rolling mill control method |
JPH01249208A (en) * | 1988-03-29 | 1989-10-04 | Sumitomo Metal Ind Ltd | Method for drive control for rolling roll |
AT405619B (en) * | 1995-04-25 | 1999-10-25 | Voest Alpine Ind Anlagen | ROLLING STAND |
JPH09163783A (en) * | 1995-12-11 | 1997-06-20 | Toshiba Corp | Load balance controller |
US5961899A (en) * | 1997-07-15 | 1999-10-05 | Lord Corporation | Vibration control apparatus and method for calender rolls and the like |
US6032558A (en) * | 1998-03-20 | 2000-03-07 | Marquip, Inc. | Rotary knife with active vibration control |
JPH11305803A (en) * | 1998-04-24 | 1999-11-05 | Hitachi Ltd | Controller |
IT1302766B1 (en) * | 1998-09-14 | 2000-09-29 | Danieli & C Ohg Sp | REDUCTION AND ELIMINATION PROCEDURE OF VIBRATIONS IN A LAMINATION CAGE AND RELATED DEVICE |
FR2788233B1 (en) * | 1999-01-11 | 2001-02-23 | Alstom | METHOD OF CONTROLLING TRACTIONS / COMPRESSIONS IN A HOT MULTICAGE ROLLER AND CONTROL SYSTEM THEREOF |
US6619086B1 (en) * | 2000-08-10 | 2003-09-16 | Mitsubishi Denki Kabushiki Kaisha | Control system for tandem rolling mill |
JP2003019508A (en) * | 2001-07-05 | 2003-01-21 | Mitsubishi Electric Corp | Device for rolling steel sheet |
JP2003048005A (en) * | 2001-08-02 | 2003-02-18 | Mitsubishi Heavy Ind Ltd | Rolling mill and method for operating it |
CN100470433C (en) * | 2003-04-11 | 2009-03-18 | 三菱电机株式会社 | Servo controller |
CN1218792C (en) * | 2003-04-15 | 2005-09-14 | 南京钢铁股份有限公司 | Rolled member head shape controlling method |
DE102005033884A1 (en) * | 2005-07-20 | 2007-02-08 | Bosch Rexroth Ag | Method for compensating different torques of two coupled electric motors and device therefor |
CN100441328C (en) * | 2006-01-25 | 2008-12-10 | 冶金自动化研究设计院 | Control system for suppressing impact speed drop and torsional oscillation of rolling mill transmission system |
JP5003492B2 (en) * | 2006-08-03 | 2012-08-15 | 東芝三菱電機産業システム株式会社 | Driving device for rolling roll motor |
-
2007
- 2007-11-19 KR KR1020097021948A patent/KR101048938B1/en active IP Right Grant
- 2007-11-19 US US12/597,188 patent/US20100206033A1/en not_active Abandoned
- 2007-11-19 WO PCT/JP2007/072371 patent/WO2008136146A1/en active Application Filing
- 2007-11-19 CN CN200780052812.9A patent/CN101663107B/en active Active
- 2007-11-19 JP JP2009512862A patent/JP5062253B2/en active Active
- 2007-12-14 TW TW096147834A patent/TWI371914B/en active
Also Published As
Publication number | Publication date |
---|---|
KR20090123008A (en) | 2009-12-01 |
WO2008136146A1 (en) | 2008-11-13 |
US20100206033A1 (en) | 2010-08-19 |
JP5062253B2 (en) | 2012-10-31 |
KR101048938B1 (en) | 2011-07-12 |
JPWO2008136146A1 (en) | 2010-07-29 |
TWI371914B (en) | 2012-09-01 |
CN101663107A (en) | 2010-03-03 |
CN101663107B (en) | 2014-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW200924372A (en) | Driving apparatus for rolling mill roll electric motor | |
JP4321124B2 (en) | Electric inertia control system for power measurement system | |
US7770440B2 (en) | Method to test a dynamic torque-generating device and a device to determine the dynamic behavior of a driving shaft | |
WO2012124684A1 (en) | Engine testing apparatus, and engine testing method | |
JP5344067B1 (en) | Dynamometer system | |
JP6262081B2 (en) | Transmission clutch torque estimation method | |
JP5605127B2 (en) | Shaft torque control device | |
WO2015053220A1 (en) | Dynamometer system | |
WO2017082143A1 (en) | Dynamometer-system dynamo control device and engine starting method therefor | |
US12038341B2 (en) | Method for adjusting a piezoelectric torque sensor | |
CN105697588A (en) | electronic control of manual transmission clutch | |
WO2019163277A1 (en) | Testing system control device | |
JP4644085B2 (en) | Chassis dynamometer | |
JPH0868730A (en) | Mass simulation method on standing testing stage and device for executing method thereof | |
KR20100058528A (en) | Electrical power assisted steering system | |
JP6497408B2 (en) | Electric inertia control device | |
JPH10323072A (en) | Servo motor control method and equipment in two-inertia resonance system | |
JP2011115825A (en) | Method of suppressing and controlling torsional vibration of shaft of rolling mill | |
CN114258480A (en) | Method for operating a test bench | |
JP4073548B2 (en) | Actuator output torque detection method | |
JP4019709B2 (en) | Engine bench system | |
TWI393909B (en) | Temperature characteristic testing system and method for motor | |
CN109307606B (en) | Clutch performance checking device and method | |
SE521538C2 (en) | Arrangement and procedure for permitting disassembly of a gear in a gearbox | |
JP3085140B2 (en) | Clutch judder test equipment |