200923320 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種量測玻片折射率與厚度之裝置,特 別是有關於一種可同時量測玻片折射率及玻片厚度之光學量 測系統。 【先前技術】 目前,高精密度的折射率量測儀器,是利用光線進入待 測,後產生的光程差,來計算待測物的折射率。但是,可準 確里測光程差之設備所費不貲,對一般的研究機構而言,是 一筆不小的開銷。 此外,雷射位移計是目前中低價位的光學量測儀器裡, 可精確1測物體微小轉量的設備。其原理是彻散射式反 射現象,虽雷射光束投射在任一物體之表面而 :分的雷射光自表面上散射,然後經過透鏡聚焦後=光 光束的路徑方向移動,因此也造成_器者雷射 的位移。其中“ 成正比。透過檢測;^乍一 可以決定出待測物體的位移h ”像的位移就 如所有1測儀器-般’在進行雷射位移量 對雷射位料進行校正,找出錢/轉常數。異,先 光檢測器計算通過待測物體的光線,因為折、再利用 移量。但是’上述兩個步驟是連續卻分開進行的,的位 了量測過程中,人為操作誤差的機會。 因此增加 有鑑於習知技藝之各項問題,為 發明人基於多年研究開發與諸多實務經驗,3解=、,本 稷里測玻 5 200923320 與 片折射率與厚度之裝置,以作為改善上述缺點之實現方 依據。 二 【發明内容】 有鑑於此,本發明之目的就是在提供一種量測玻片折射 率與厚度之裝置,適用於量測一玻片之折射率及厚度,以 決先前技術之精密度不足的問題。 根據本發明之目的,提出—種量測玻片折射率與厚度之 裝置,其適用於量測一玻片之折射率,該量測玻片折射^蛊 厚度之,置包含-雷射干涉儀一第—分紐組、—動力;莫 組:一第二分光模組、一量測模組及一處理模組。雷射干涉 儀係用以發射出一雷射光,第一分光模組係包含一第一分^ 鏡及一第一反射鏡,第一分光鏡係將雷射光分為一第一水平 光束及-第—垂直光束,第—反射鏡係反射第—水 Ϊ射1第步儀ΐ產生一第一光程差,動力模組係用以轉ί玻 模组人垂直光束透過玻片折射出—折射光束,第二分光 折射光第二分光鏡及—第二反射鏡,第二反射鏡係將 ====== 之玻片所折身電壓數據6十鼻出第一折射光與未翻轉 據計算出^光束兩者相差之光折射偏移量根據此電壓數 光折射偏移:未翻轉麟射之光束兩者相差之 光折射偏移軸組係根據第—光程差、第二光程差及 场移量以計算玻片之折射率。 200923320 —,為使貴審查委員對本發明之技術特徵及所 功 =以之瞭解與認識’謹佐以較佳之實施例一 【實施方式】 ,下將參照相關圖示,說明依本發明較佳實施例之量測 =折射率與厚度之裝置,輕便於轉,下財施例中之 相同7L件係以相同之符號標示來說明。 參㈣1圖’其係為本發明之量測玻片折射率與厚度 之^之實施例結構示意圖。圖中,量測玻片折射率與厚度 之,置包雷射干涉儀u、—第—分光模組12、一動力模 組、—第二分光模組14、一量測模組15及一處理模組16。 ^干涉儀11係用以發射出—雷射光,第一分光模組(2係 第—分光鏡121及—第—反射鏡122,第—分光鏡係 ΐιΐ光分為—第—水平光束及—第—垂直光束,第一反射 兄’、射第一水平光束至雷射干涉儀11以產生一第一光程 力模組13係用以轉動玻片131使第—垂直光束透過玻 片1折射出一折射光束,旋轉不同角度之玻片131係可產 生不同路徑之折射光束,此動力模組以可為一步進馬達。第 模組14係包含—第二分光鏡141 第二反射鏡 L第二反射鏡142係將折射光束分為一第—折射光束及一 第-折射光束’第-折射光束係經由第二反射豸142反射至 雷射:涉儀11以產生一第二光程差。量測模組更包含一位置 感測,152及一數位類比轉換介面153,量測模組15係用以 ^收曰第—折射光束並藉由位置感測模組152計算出一電壓數 置測模組15係根據此電壓數據計算出第一折射光與未翻 轉之破片131所折射之光束兩者相差之光折射偏移量15卜 200923320 量測模組透過此數位類比轉換介面丨53提供此光折射偏移量 151予處理模組16,其中,此處理模組可為一四象儀,位置 ^測^組係可為-位置感知器。處理模組16係根據第一光程 Γ光程差及光折射偏移量151以計算玻片131之折射 率,此處理模組係可為一電腦。 玻片131旋轉—角度時,其光折射偏移量151 可▼入下列公式求得: 公式(1) L: 2d. cos X sin «〇sin0 *----- Η· 5-sin' cos -if «0 sin5 \\ xsin sir ^sind f 、 Kq sing + 另一方面 式求得· 公式(2) 可由雷射干涉儀1丨量測得光程差可由下列公 戊: «1 f ) f f cos β 2心< L \ nf \ 0-< / cos ^ } f sin θ 1 «1 y sin5、 一 1 卜+ ,o.s 3= «0 Sin n0 sin 5 U)一與為)工之為玻4 131之鍍膜厚度,〜為 礙商所提供。因此可知其未知只有玻 200923320 片晶體之厚度^與折射率。可將式(1)、(2)聯立求解可獲 得折射率與厚度,便可得到折射率和厚度。 以上所述僅為舉例性,而非為限制性者。任何未脫離本 發明之精神與範疇,而對其進行之等效修改或變更,均應包 含於後附之申請專利範圍中。 【圖式簡單說明】 第1圖係為本發明之量測玻片折射率與厚度之裝置之實 施例結構示意圖。 【主要元件符號說明】 11 :雷射干涉儀; 12 :第一分光模組; 121 :第一分光鏡; 122 :第一反射鏡; 13 :動力模組; 131 :玻片; 14 :第二分光模組; 141 :第二分光鏡; 142 :第二反射鏡; 15 :量測模組; 151 :光偏移折射量; 152 :位置感測模組; 153 :數位類比轉換介面;以及 16 :處理模組。200923320 IX. Description of the Invention: [Technical Field] The present invention relates to a device for measuring the refractive index and thickness of a slide, and more particularly to an optical quantity capable of simultaneously measuring the refractive index of a slide and the thickness of a slide Measurement system. [Prior Art] At present, a high-precision refractive index measuring instrument calculates the refractive index of a test object by using the optical path difference generated after the light enters the test. However, the equipment that can accurately measure the optical path difference is costly, and it is a small expense for the general research institution. In addition, the laser displacement meter is a medium-low-cost optical measuring instrument that can precisely measure the small amount of the object. The principle is the scattering phenomenon, although the laser beam is projected on the surface of any object: the laser light is scattered from the surface, and then moved through the lens = the direction of the path of the light beam, thus causing The displacement of the shot. Among them, "proportional. Through the detection; ^乍一 can determine the displacement of the object to be measured h" the displacement of the image is like all the 1 measuring instrument - in the laser displacement to correct the laser material, find out the money / turn constant. The first light detector calculates the light passing through the object to be measured because of the folding and reuse of the displacement. However, the above two steps are continuous but separately, which is an opportunity for human error in the measurement process. Therefore, in addition to the various problems of the prior art, the inventors have based on years of research and development and many practical experience, 3 solutions, and the device for measuring the refractive index and thickness of the film, as a means to improve the above disadvantages. The basis for implementation. [Invention] In view of the above, the object of the present invention is to provide a device for measuring the refractive index and thickness of a slide, which is suitable for measuring the refractive index and thickness of a slide to meet the precision of the prior art. problem. In accordance with the purpose of the present invention, a device for measuring the refractive index and thickness of a slide is provided, which is suitable for measuring the refractive index of a slide, the measurement of the thickness of the slide, and the inclusion of the laser interferometer A first-minute group, a power; a group: a second beam splitting module, a measuring module and a processing module. The laser interferometer is used to emit a laser beam. The first beam splitting module comprises a first beam mirror and a first mirror. The first beam splitting mirror divides the laser light into a first horizontal beam and The first-vertical beam, the first-mirror-reflecting first-water jet 1 is used to generate a first optical path difference, and the power module is used to rotate the vertical beam of the person through the slide. The second beam splitting refracting light second beam splitter and the second mirror, the second mirror system is a ====== slide of the slide body voltage data 6 out of the nose and the first refracted light Calculating the light refraction offset of the difference between the two beams according to the voltage number. The light refraction offset of the unreversed lining beam is different according to the first optical path difference and the second optical path. The difference and field shift are used to calculate the refractive index of the slide. 200923320 — In order to enable the reviewing committee to understand and understand the technical features and functions of the present invention, the preferred embodiment 1 [embodiment] will be described with reference to the related drawings. For example, the measurement = refractive index and thickness of the device, light and easy to turn, the same 7L parts in the following examples are marked with the same symbol. Reference Fig. 4 is a schematic view showing the structure of the refractive index and thickness of the measuring slide of the present invention. In the figure, the refractive index and the thickness of the slide are measured, and the laser interferometer u, the first-beam splitting module 12, a power module, the second beam splitting module 14, a measuring module 15 and a Processing module 16. ^ Interferometer 11 is used to emit - laser light, the first beam splitting module (2 - first beam splitter 121 and - mirror - 122, the first beam splitter system ΐ ΐ light is divided into - the first horizontal beam and - a first vertical beam, a first reflection beam, and a first horizontal beam to the laser interferometer 11 to generate a first optical path force module 13 for rotating the slide 131 to refract the first vertical beam through the slide 1 The refracting beam, the glass 131 rotating at different angles can generate a refracted beam of different paths, and the power module can be a stepping motor. The module 14 includes a second beam splitter 141, a second mirror L, and a second reflection. The mirror 142 divides the refracted beam into a first refracted beam and a refracted beam. The refracted beam is reflected by the second reflecting 豸 142 to the laser: the instrument 11 is used to generate a second optical path difference. The module further includes a position sensing, 152 and a digital analog conversion interface 153. The measuring module 15 is configured to receive the first refracted beam and calculate a voltage number detecting mode by the position sensing module 152. Group 15 calculates the first refracted light and does not flip based on this voltage data. The light refraction offset of the light beam refracted by the fragment 131 is different. The 200923020 measurement module provides the light refraction offset 151 to the processing module 16 through the digital analog conversion interface ,53, wherein the processing module The group can be a four-image device, and the position measurement system can be a position sensor. The processing module 16 calculates the refractive index of the slide 131 according to the first optical path optical path difference and the light refractive deviation amount 151. The processing module can be a computer. When the slide 131 is rotated - the angle, the light refraction offset 151 can be obtained by the following formula: Formula (1) L: 2d. cos X sin «〇sin0 *- ---- Η· 5-sin' cos -if «0 sin5 \\ xsin sir ^sind f , Kq sing + on the other hand formula · (2) The optical path can be measured by the laser interferometer The difference can be as follows: «1 f ) ff cos β 2 heart < L \ nf \ 0-< / cos ^ } f sin θ 1 «1 y sin5, one 1 b + , os 3= «0 Sin n0 Sin 5 U) One and the work is the thickness of the coating of glass 4 131, ~ for the barriers provided by the business. Therefore, it can be known that it is only known as the thickness of the glass of 200923320 and the refractive index. The refractive index and thickness can be obtained by solving the equations (1) and (2) in tandem to obtain the refractive index and thickness. The above is intended to be illustrative only and not limiting. Any equivalent modifications or alterations to the spirit and scope of the invention are intended to be included in the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a schematic view showing the structure of an apparatus for measuring the refractive index and thickness of a slide of the present invention. [Main component symbol description] 11: laser interferometer; 12: first beam splitting module; 121: first beam splitter; 122: first mirror; 13: power module; 131: slide; Spectroscopic module; 141: second beam splitter; 142: second mirror; 15: measuring module; 151: light offset refractive index; 152: position sensing module; 153: digital analog conversion interface; : Processing module.