TW200923310A - A heat transfer device - Google Patents

A heat transfer device Download PDF

Info

Publication number
TW200923310A
TW200923310A TW097120367A TW97120367A TW200923310A TW 200923310 A TW200923310 A TW 200923310A TW 097120367 A TW097120367 A TW 097120367A TW 97120367 A TW97120367 A TW 97120367A TW 200923310 A TW200923310 A TW 200923310A
Authority
TW
Taiwan
Prior art keywords
heat transfer
transfer device
conductor block
housing
module
Prior art date
Application number
TW097120367A
Other languages
Chinese (zh)
Inventor
Kim Tiow Ooi
Yong Liang Teh
Pei Fan Florence Ng
Tiew Toon Phay
Original Assignee
Aem Singapore Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aem Singapore Pte Ltd filed Critical Aem Singapore Pte Ltd
Publication of TW200923310A publication Critical patent/TW200923310A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

A heat transfer device for maintaining a temperature of a device under test with heat generating capability at a prescribed temperature, the heat transfer device comprising an inlet flow-duct; an outlet flow-duct; a conductor block comprising a plurality of through-holes, the through-holes receiving a fluid from the inlet flow-duct and delivering the fluid to the outlet flow-duct; and inserts disposed in the respective through-holes for reducing a cross-sectional area of the respective through-holes to improve heat transfer efficiency.

Description

200923310 九、發明說明: 【發明所屬之技術領域】 本發明廣義而言係關於將具有熱產生能力的待測裝置的 溫度保持在一規定溫度下的熱傳裝置。 【先前技術】 通常所有N性能電子裝置在被廠商裝運前將接受 100%功能試驗。例如,大功率微處理器裝置—般接受分 級測=以決定裝置的實際操作速度。在分級測試期間,重 要的是當裝置的功率在功率額定值的大約0%到大約100% 間以冑先決定之測試順序變化時,將該微處理器裝置之 模座的的溫度保持在單一的規定溫度下。 為在測試期間將模座保持在規定溫度下,已有設計出被 稱為溫度控制單元(TCU)的設備。通常,加熱處理藉由將 力,,.、器安裝在TCU中完成。為完成冷卻處理,TCU與閉路 系_合’藉此冷卻介質被傳遞經過咖以將諸如微處理 器之測。式裝置產生的熱置移除。冷卻介質既可係單相流, 也可係雙相流。單相流介質可藉由強制對流而不改變其狀 態之方式來移除熱。 利用單相流之冷卻水咖技術通常在微處理器測試中試 用。吾人發現在經封裝的微處理器裝置令戈功率密度具有 接近大約50 WW到大約_ w/em2的水準。當微處理器 裝置功率密度的水準增加時,針對測試微處理器在較低溫 度下,,單相流技術可能會達到其極限。 因此,現需要提供一種新的Tcu以解決至少一個上述問 I31587.doc 200923310 題。 【發明内容】 根據本發明之第一態樣,其提供一熱傳裝置,用於將具 有熱產生能力的待測裝置的溫度保持規定溫度下,熱傳裝 置包括進口流管道;出口流管道;導體塊,包括複數個穿 孔’該等穿孔接收來自進口流管道的流體並且將該流體傳 遞至出口流管道;以及配置於各穿孔以用於減少各穿孔的 橫截面積來增進熱傳效率的插入物。 f200923310 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention broadly relates to a heat transfer device that maintains the temperature of a device under test having a heat generating capability at a predetermined temperature. [Prior Art] Generally, all N-performance electronic devices will undergo a 100% functional test before being shipped by the manufacturer. For example, a high power microprocessor device generally accepts a step test = to determine the actual operating speed of the device. During the grading test, it is important that the temperature of the mold base of the microprocessor device is maintained when the power of the device varies between about 0% and about 100% of the power rating in a predetermined test sequence. Single specified temperature. In order to maintain the mold base at the specified temperature during the test, a device called a temperature control unit (TCU) has been designed. Usually, the heat treatment is performed by installing a force, a device, in the TCU. To complete the cooling process, the TCU is coupled to the closed circuit whereby the cooling medium is passed through the coffee maker to measure, such as a microprocessor. The heat generated by the device is removed. The cooling medium can be either a single phase flow or a two phase flow. Single-phase flow media can remove heat by forcing convection without changing its state. Cooling water technology using single-phase flow is typically tested in microprocessor testing. We have found that the packaged microprocessor device has a power density of approximately 50 WW to approximately _w/em2. As the level of power density of microprocessor devices increases, single-phase flow technology may reach its limits for test microprocessors at lower temperatures. Therefore, it is now necessary to provide a new Tcu to solve at least one of the above questions I31587.doc 200923310. SUMMARY OF THE INVENTION According to a first aspect of the present invention, a heat transfer device is provided for maintaining a temperature of a device under test having a heat generating capability at a predetermined temperature, the heat transfer device comprising an inlet flow conduit; and an outlet flow conduit; a conductor block comprising a plurality of perforations that receive fluid from the inlet flow conduit and deliver the fluid to the outlet flow conduit; and an insert disposed in each of the perforations for reducing cross-sectional area of each perforation to enhance heat transfer efficiency Things. f

可女裝配置於各穿孔的插入物,以便各插入物不侷限於 相對於各穿孔的橫截面積的中心之—固定位置。 插入物可係大體上縱向且配置於各穿孔中以便各插入物 的縱軸大體上平行於穿孔。 進口以及出口流管道可固定於 -^ η» i% 熱傳(ht)模組,其中熱傳主要發生在1^丁模組中 ΗΤ模組可配置於一殼體内,且熱傳裝置可更進一步包 括配置於殼體上的閥,用於移除殼體内的空氣並且圍繞 町模組創造出部分真空環境,纟中部分真空環境促進在 殼體内ΗΤ模組的懸浮,右Μτ 心序在ΗΤ模組以及殼體之間提供孰傳 隔離,用於防止殼體上的冷凝。 徒么、…傳 導體塊可大體上為Τ型且1 其包括幹部以及分支部,八* 部包括複數個穿孔且幹邻勺 刀支 、 牙札且幹包括接觸待測裝置的表面。 進口流管道以及出口、总 w士 ^道可固定至導體塊分支部份的 反向末端以便於流體流動經過穿孔。 支Ρ伤的 熱傳裝置可更進一步包技 括—加熱層’其配置於導體塊分 131587.doc 200923310 支p的表面,與導體塊接觸待測裝置的幹部表面相反。 、層可由加熱器夾具固定至導體塊,其中真空密封係 配置於導體塊以及加熱器夹具之間。 熱傳裝置可更進一步包括配置於導體塊之溫度傳感器, 用於測量待測裝置的溫度。 熱傳裝置可更進—步包括與溫度傳感器搞合之控制器, 用於將待測裝置的溫度保持在規定溫度。 二制可藉由控制供應至加熱層的功率及/或藉由控制 流體流動以將待測裝置的溫度保持在規定溫度下。 在操作中’视體可以大體上飽和液體的狀態進入穿孔, 在來自待測裝置的熱量的轉換下變化至大體上氣態,且大 體上以氣態離開該等穿孔。 殼體可以高強度材料製造’以提供結構剛度並且承受在 殼體内的高壓力峰值。 用以防止在殼體上 喊體可由具有高導熱率之材料製造, 之局部冷凝。 該等穿孔可以在導體塊中對齊排列成複數行及列。 =置可包括一或多個插入元件’各插入元件 個或更多個穿孔。 插入物可由具有高導熱率之材料製 遞。 利竹取&以增強有效熱傳 導體塊可以係由具有高導熱率之材料 ,, 衣战之單一替艘会η 件份,提供有效熱傳遞。 體、、且 進口流管道、出口流管道以及加熱 八” 了以具有低導 131587.doc 200923310 熱率之材料製造’以防止進口流管道、出σ流管道以及加 熱器夾具各自頂端通道部分的冷凝。 根據本發明之第二態樣,其提供一熱傳裝置,用於將具 有熱產生能力的待測裝置的溫度保持在規定溫度下,熱傳 裝置包括進口流管道;出口流管道;導體塊,其包括複數 個穿孔,穿孔接收來自進口流管道的流體並且將流體輸送 至出口流管道;並且其中導體塊、進口流管道以及出口流 官道形成熱傳(ΗΤ)模組且該ητ模組配置於殼體内,且熱 傳裝置更進一步包括配置於殼體上的閥以移除殼體内的空 氣並且在ΗΤ模組周圍產生部分真空環境,其中部分真空 環境促進在殼體内ΗΤ模組的懸浮,提供在Ητ模組與殼體 之間的熱傳隔離以防止殼體上的冷凝。 【實施方式】 此處描述之例示性具體實施例提供使用雙相流方法之新 型咖度控制元件。雙相流介質經歷了從液體到氣化物之狀 態上的變化以藉由汽化潛熱來移除熱。 圖1顯示以溫度控制單元(丁cu)丨〇〇形式之熱傳裝置的截 面視圖的示意圖。該TCU 100包括殼體1〇2,其分別包括殼 體底部104以及主殼體106。止回閥log附接於主殼體1〇6。 熱傳(HT)模組110配置於殼體1〇2内。主殼體1〇6位於Ητ 模組11 0的頂端且殼體底部1 位於ΗΤ模組11 〇之下。ΗΤ模 組11〇的部分伸出殼體底部104。Ητ模組11〇的表面112曝露 在TCU 100的周圍環境中。ητ模組11〇設計成快速熱反 應’包括在裝置測試期間溫度的快速上升和下降以及保持 131587.doc 200923310 在單一設定溫度。所以,HT模組11 〇的適當隔離非常重 要。ΗΤ模組1 1 〇的設計考慮到環境熱流的侵擾。在環境與 ΗΤ模組11 〇之間的熱傳可被有利地排除並且可有利地實現 控制在ΗΤ模組11 〇周圍附近的熱傳。The perforated inserts can be placed so that the inserts are not limited to a fixed position relative to the center of the cross-sectional area of each of the perforations. The insert can be generally longitudinally disposed and disposed in each of the perforations such that the longitudinal axis of each insert is substantially parallel to the perforations. The inlet and outlet flow pipes can be fixed to the -^ η» i% heat transfer (ht) module, wherein the heat transfer mainly occurs in the 1 ^ □ module, the ΗΤ module can be disposed in a casing, and the heat transfer device can Furthermore, a valve disposed on the casing is provided for removing air in the casing and creating a partial vacuum environment around the town module, and part of the vacuum environment promotes suspension of the crucible module in the casing, right Μ heart The sequence provides a turbulent isolation between the raft module and the housing for preventing condensation on the housing. The conductor block may be substantially Τ-shaped and 1 includes a stem portion and a branch portion, and the octagonal portion includes a plurality of perforations and a dry knives, and the teeth include a surface contacting the device to be tested. The inlet flow conduit and the outlet, the total w, can be secured to the opposite end of the branch portion of the conductor block to facilitate fluid flow through the perforations. The heat transfer device of the branch injury can further include a heating layer which is disposed on the surface of the conductor block, which is opposite to the surface of the conductor block which contacts the surface of the device to be tested. The layer can be secured to the conductor block by a heater clamp, wherein the vacuum seal is disposed between the conductor block and the heater clamp. The heat transfer device may further include a temperature sensor disposed on the conductor block for measuring the temperature of the device to be tested. The heat transfer device can further include a controller for engaging the temperature sensor for maintaining the temperature of the device to be tested at a predetermined temperature. The two systems can maintain the temperature of the device under test at a specified temperature by controlling the power supplied to the heating layer and/or by controlling the flow of the fluid. In operation, the optic can enter the perforations in a substantially saturated liquid state, change to a substantially gaseous state upon conversion of heat from the device under test, and substantially exit the perforations in a gaseous state. The housing can be made of a high strength material to provide structural rigidity and withstand high pressure spikes within the housing. It is used to prevent the body from being smashed by a material having a high thermal conductivity on the casing. The perforations can be aligned in a plurality of rows and columns in the conductor block. = Placement may include one or more insertion elements' each of the insertion elements or more perforations. The insert can be made of a material having a high thermal conductivity. Lizhu Take & to enhance the effective heat transfer conductor block can be made of materials with high thermal conductivity, and the single battle for the clothing will provide η parts, providing effective heat transfer. The body, and the inlet flow pipe, the outlet flow pipe, and the heating are made of a material having a low conductivity 131587.doc 200923310 heat rate to prevent condensation of the inlet flow pipe, the σ flow pipe, and the top end portion of the heater clamp. According to a second aspect of the present invention, there is provided a heat transfer device for maintaining a temperature of a device to be tested having heat generation capability at a predetermined temperature, the heat transfer device comprising an inlet flow conduit; an outlet flow conduit; a conductor block Included in the plurality of perforations, the perforations receive fluid from the inlet flow conduit and deliver the fluid to the outlet flow conduit; and wherein the conductor block, the inlet flow conduit, and the outlet flow conduit form a heat transfer module and the nτ module Disposed within the housing, and the heat transfer device further includes a valve disposed on the housing to remove air within the housing and create a partial vacuum environment around the crucible module, wherein a portion of the vacuum environment facilitates splicing within the housing The suspension of the set provides heat transfer isolation between the Ητ module and the housing to prevent condensation on the housing. [Embodiment] An illustration of the description herein The specific embodiment provides a novel coffee control element using a two-phase flow method. The two-phase flow medium undergoes a change from liquid to vapor state to remove heat by vaporizing latent heat. Figure 1 shows the temperature control unit Schematic diagram of a cross-sectional view of a heat transfer device in the form of a crucible. The TCU 100 includes a housing 1〇2 that includes a housing bottom 104 and a main housing 106. The check valve log is attached to the main housing. The heat transfer (HT) module 110 is disposed in the housing 1〇2. The main housing 1〇6 is located at the top end of the Ητ module 110 and the bottom portion 1 of the housing is located below the ΗΤ module 11 。. A portion of the ΗΤ module 11 伸出 extends out of the bottom 104 of the housing. The surface 112 of the 模组τ module 11 曝 is exposed in the surrounding environment of the TCU 100. The ητ module 11 〇 is designed to rapidly react to heat 'including rapid temperature during device testing Rise and fall and maintain 131587.doc 200923310 at a single set temperature. Therefore, proper isolation of the HT module 11 非常 is very important. The design of the ΗΤ module 1 1 考虑 takes into account the intrusion of ambient heat flow. In the environment and ΗΤ module 11 〇 The heat transfer between them can be advantageously excluded and can Advantageously, control of heat transfer around the ΗΤ module 11 实现 is achieved.

在電子冷卻中,以任何形式存在的水都是非常不恰當 的。由於TCU 1 00在開放環境中於水蒸汽存在下操作, TCU 100表面上的冷凝是一問題。為防止TCU 1〇〇在殼體 102上的冷凝,HT模組110被隔離。包含在TCU 1〇〇内部的 空氣利用止回閥108抽出。藉由抽出在TCU 1〇〇内部的空 氣,可在TCU 100内部製造部分真空環境。因為TCU 1〇〇 中的部分真空是極好的絕緣體,面對周圍環境的殼體102 的表面溫度保持在露點溫度(其係相對濕度以及環境溫度 的因素)之上。HT模組110表面上的冷凝亦可有利地防止。 另外,在加熱過程期間,部分真空區域亦起絕緣體的作用 以防止任何HT模組11〇產生的熱損失。 儘管如上述之防止冷凝的方法,TCU 1〇〇的殼體1〇2亦可 能並非徹底免於冷凝。由於殼體1〇2上局部冷床區域,冷 凝可能仍舊發生,其係由於右Ητ抬& , , 、 田於在Ητ核組110與殼體102之間的 局部熱傳所致。所以,高傳莫盎枓少 1寻导羊材枓被用於製造TCU 1 00 的殼體102以保證熱量更好的偟嫉 文f的傳播’防止任何局部可發生 冷凝的冷/東區域。在一例示性實输方4 士 貫%方式中,可使用鋁合In electronic cooling, water in any form is highly inappropriate. Condensation on the surface of the TCU 100 is a problem due to the operation of the TCU 100 in the presence of water vapor in an open environment. To prevent condensation of the TCU 1 on the housing 102, the HT module 110 is isolated. The air contained inside the TCU 1 is extracted by the check valve 108. A partial vacuum environment can be created inside the TCU 100 by extracting air inside the TCU 1〇〇. Since part of the vacuum in the TCU 1 is an excellent insulator, the surface temperature of the housing 102 facing the surrounding environment is maintained above the dew point temperature (which is a factor of relative humidity and ambient temperature). Condensation on the surface of the HT module 110 can also be advantageously prevented. In addition, during the heating process, the partial vacuum region also functions as an insulator to prevent heat loss from any HT module 11 turns. Despite the above method of preventing condensation, the housing 1〇2 of the TCU 1〇〇 may not be completely free of condensation. Due to the localized cold bed area on the casing 1〇2, condensing may still occur due to the local heat transfer between the Ητ core group 110 and the casing 102 due to the right Η 抬 && Therefore, the high-profile 羊 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻 寻In one example of the actual transmission method, the aluminum alloy can be used.

金,但吾人應瞭解其他高導妖率#A …手材枓可破使用於不同的實 施方式中。 ' 為將般體102上的局部冷;東區 域減到最少 ,較佳地係避 131587.doc -10- 200923310 免在HT模組110與殼體1〇2之間的任何直接接觸或將其減到 最少。此可藉由在殼體1〇2内部懸浮ΗΤ模組u〇在例示性具 體實施例中完成。以低導熱性隔離材料製成的真空密封 116可被用於填充在殼體102與HT模組llo之間的縫隙l22以 減少在ΗΤ模組110與殼體1〇2之間的剩餘熱傳,因此達到將 局部冷凍區域減到最少的效果。真空密封U6有利地防止 來自周圍環境的任何可能的氣流進入TCU i 〇〇。在tcu 100中的部分真空區域亦有利地提供吸氣作用以保持真空 密封116位在定位。由於在Ητ模組11〇上的部分真空區域, 在殼體102内部,在大氣壓力作用於HT模組11〇的外表面 112下,在HT模組上的垂直壓力差可導致Ητ模組丨丨〇被提 升’因此在殼體1 〇2内部懸浮HT模組11 〇。以絕緣材料製造 的硬質止擋件114在HT模組11〇與主殼體106之間被夾緊以 減y熱傳,因此將局部冷;東區域減到最少並且使ht模組 11 〇與殼體102排成一列。在例示性實施方式中,低導熱性 金屬諸如不銹鋼或高強度塑膠諸如聚碳酸酯,被用作硬質 止擋件114,但吾人應瞭解其他低導熱性材料可被用於不 同的實施方式中。 為保證在TCU 1 00内部的密閉環境’殼體1 02在例示性具 體實施例適當地密封。真空密封120在殼體底部ι〇4與主殼 體106以及在導體塊202與加熱器夾具210之間插入以防止 漏氣進入TCU 100。在沿著處理管線上之設備故障而導致 高壓流體流入HT模組110的情況下,殼體1〇2係設計以作為 HT模組11〇的補強。為承受在操作期間的壓力尖峰,殼體 131587.doc 200923310 1 02以提供結構剛度之高強度材料製造。在一例示性實施 方式中’鋁合金被使用,但吾人應瞭解其他高強度材料可 被用於不同的實施方式中。 圖2顯示在圖1中TCU 100的HT模組110截面視圖之示意 圖。HT模組110包括導體塊2〇2,進口流管道2〇5與出口流 管道206 ’以加熱層208形式之加熱器以及加熱器夾具 210。導體塊202大體上係具有分支部分之τ型,分支部分 以具有比幹部大的寬度的上部203的形式,幹部則以下部 204的形式。為便於有效熱傳遞,導體塊202以導熱優秀之 材料製造且製造為單獨整體組份。在一例示性實施方式 中’銅合金被使用,但吾人應瞭解其他高導熱率材料可被 用於不同的實施方式中。 為將來自環境熱流的侵擾的熱傳降至最低並且防止進口 流管道205、出口流管道206以及曝露在開放空間環境的加 熱器夾具210各自的頂端通道部分228、230以及232上的冷 凝’進口流管道205、出口流管道206以及加熱器夾具21〇 以不良導熱體材料製造。例如,可使用諸如不銹鋼之低導 熱性金屬或諸如聚碳酸酯之高強度塑膠。 進口流管道205以及出口流管道206係配置於導體塊202 的上部203的相對兩端。使用在進口流管道2〇5以及出口流 管道206上各自的扣件212將進口流管道205以及出口流管 道206固定至導體塊202的上部203。導體塊202的上部203 藉由進口流管道205以及出口流管道206封閉。應為所屬技 術領域的專業人員瞭解之,如上述之冷凝問題不會在導體 131587.doc 200923310 塊202、進口流管道205以及出口流管道206上發生,因為 其被封閉在TCU 100内部的部分真空環境内。 加熱層208配置於導體塊202之上部203的表面209上,其 與導體塊202的下部204的表面112相對。藉由加熱器夾具 21 0,利用扣件2 14以及真空密封1 20將加熱層208固定至導 體塊202的上部203。在例示性具體實施例中,加熱層2〇8 是市場上可購得之扁平型電阻加熱器,但吾人應瞭解其他 加熱層設計可被用於不同之實施方式中。真空密封12〇被 配置於導體塊202與加熱器夾具21〇之間。加熱器夾具21〇 以良好的熱量絕緣體材料製造以將熱傳減到最低。在例示 性實施方式中,低導熱性金屬諸如不銹鋼或高強度塑膠諸 如聚碳酸酯被使用,但吾人應瞭解其他低導熱性材料可被 用於不同的實施方式中。密封216被配置於導體塊2〇2的上 部203與進口流管道2〇5及出口流管道2〇6之間以防止流體 的滲漏。密封216由容許高溫度及低溫度的材料製造。在 例示性實施方式中,氟橡膠或矽樹脂被使用,但吾人應瞭 解其他低導熱性材料可被使用於不同的實施方式中。 以彈簧加載式熱電偶218形式的溫度傳感器被配置於凹 腔220,其大體上位在導體塊2〇2的中心。彈簧加載式熱電 與一外部控制器222耦合。彈簧加載式熱電偶2丨8測 量待測裝置502的溫度並且將溫度測量反饋至控制器222。 控制器222亦監視以及控制流體流動經過Ητ模組11 〇,尤其 是塵力、溫度以及流速,且亦控制供應至加熱器2〇8層的 功率以將待測裝置5〇2的溫度保持在規定溫度。控制器⑵ I3I587.doc 13 200923310 與電源/控制器224以及貯集器/控制器226耦合。用於控制 供應至加熱層208的功率的電源/控制器224與加熱層2〇8耦 合。用於促進流體流動的貯集器/控制器226與進口流管道 205以及出口流管道206耦合。 圖3顯示以丁CU 100形式之熱傳裝置的另一截面視圖的示 意圖。如圖3顯示,HT模組11〇的導體塊2〇2包括複數個在 導體塊202上部203上呈通道302形式之穿孔。通道3〇2在熱 電偶218的兩側以複數列及行排列,配置在導體塊2〇2的凹 腔220中。 兩種衫響在TCU 1 00之導體塊202的熱傳性能的因素是有 效熱傳至經過導體塊202的流體以及輸送經過導體塊2〇2的 通道3 02的流體數值。在通道中沸騰流動提供極高之熱傳 能力。為增加流體流動之熱傳係數,通道3〇2較佳地具有 較小之Dh ’ Dh指水力直徑。然而,較小的Dh引起在藉由傳 統機械製造具有通道3〇2之導體塊202中的一個問題。 一縱向插入物,例如金屬絲304被插入至導體塊2〇2的通 道3 02中以阻礙在每個通道3〇2中的部分流通面積以減少通 道302的截面面積。因此’獲得較小之Dh。如此一來,經 過通道302之流體的總熱傳係數增加,其有利地藉由流體 提供更有效之熱移除。藉由利用例如金屬絲3〇4將靈活性 賦予控制通道302的水力直徑Dh,通道302的直徑的增加因 而可有利地提供輕易製造導體塊2〇2。所以,傳統機械可 被用於製造TCU 1〇〇之導體塊202,而無需放棄允許有效熱 移除以及在測試期間保持規定溫度的基本功能。配置在各 131587.doc -14- 200923310 通道302中的插入物,例如金屬絲3〇4係安裝以便各插入物 不侷限於相對各通道302的橫截面積的中心之固定位置。 為更進一步增強熱傳的效率,插入物例如金屬絲3 〇4係由 尚導熱率材料製造。在例示性實施方式中,插入物例如金 屬絲304可能以銅或鋁合金絲提供,但吾人應瞭解其他高 導熱率材料可被用於不同的實施方式中。 穿孔以及金屬絲的直徑較佳地係在範圍〇 2 mm到3 mm 之間。如將被所屬技術領域的專業人員所瞭解之,在〇2_3 mm内,流動通道一般被稱為迷你通道,其係當前最適合 於利用插入物以大量減少橫截面積的例示性具體實施例的 技術。在TCU 100中,金屬絲與穿孔的直徑比較佳地在超 過〇.7的範圍内,導致超過50%的橫截面積減少以及超過 70%的水力直徑減少。就施加同樣的壓力梯度而言,所產 生的流速減少超過85%。 圖4顯示圖1之TCU 1〇〇的Ητ模組11〇的截面俯視圖之示 意圖。插入物例如金屬絲3〇4的一端被插入通道3〇2的一 端,其係從同樣通道302的相對一端拔除並且插入相鄰通 道302的相鄰端的同樣排内,如圖4顯示,對於熱電偶 218(圖3)的各側面上的各排通道3〇2配置於導體塊2〇2的凹 腔220(圖3)内,插入物的絲例如金屬絲的線從離熱電偶 218(圖3)最遠之起始點術開始,並且在接近熱電偶2叫圖 3)之終止點404終止。應為所屬技術領域的專業人員瞭解 的是穿線方法及/或類型不被如此處描述之此具體實施例 限制插入物例如金屬絲3 〇4的兩頭都藉由例如焊接固定 131587.doc 15- 200923310 在起始點402以及終止點404。通道302以及插入物例如金 屬絲304藉由進口流管道205以及出口流管道2〇6圍繞。 圖5顯示在圖!中的TCU 1〇〇的Ητ模組11〇被放置與待測 裝置502接觸的示意圖。待測裝置5〇2安裝在安裝層5料 上。藉由向上移動待測裝置502或向下移動HT模組11〇,待 測裝置502與導體塊202的表面} 12接觸以測試。在待測裝 置502與導體塊202的表面112之間的正接觸藉由致動器(未 顯示)完成。在測試期間的待測裝置5〇2與曝露表面】12之 間的連接未顯示。 待測裝置502具有熱產生的能力。4 了將#測裝置502的 溫度在冷卻過程期間保持在規定溫度,藉由傳導從待測裝 置502傳遞至導體塊2〇2的熱量藉由冷介質流體藉由對流輸 送經過導體塊202的通道3〇2被移除。大體上呈飽和液體狀 態的流體被輸送進入進口流管道2〇5如箭頭5〇6所示。流體 以如箭頭508所示之方向流動經過導體塊2〇2之通道(圖^之 3〇2)。在通道(圖3之3〇2)内部的流體在熱傳方法中經歷從 大體上飽和液體狀態到大體上氣態的狀態變化。大體上呈 氣態之流體經過出口流管道2〇6如箭頭51〇所示從從導體塊 2〇2中輸出。熱量藉由流體流動藉由對流經過導體塊搬的 通道被從導體塊202中 冷凍劑氣體諸如R22、 移除。在例示性實施方式中,使用 R404A以及C〇2,但吾人應瞭解流體 可被用於不同的實施方式中。 為了在加熱過程期間提升待測裝置5〇2的溫度,加埶層 208接通供熱至待測裝置5()2。供應之熱量藉由傳導從導體 131587.doc -16· 200923310 塊2 0 2傳遞至待測裝置5 〇 2。 如上所述之TCU 100有利地藉由利用雙相流方法達到想 望之測試溫度並^有利地提供迅速加熱以及冷卻。如上述 之TCU⑽具有簡單設計,其有利地提供輕易製造以及裝 配。所有具有簡單幾何形狀的TCU 100的組件可無需特殊 技術以及工具製造。其有利的減少了機械的耗費。了⑶⑽ 的設計構成亦使其易於集成進入測試處理機系統。Gold, but we should understand other high-leading demon rate #A ... hand 枓 can be used in different implementations. 'To minimize the local cold on the body 102; to minimize the east area, preferably to avoid any direct contact between the HT module 110 and the housing 1〇2 or to avoid it Minimized to a minimum. This can be accomplished in an exemplary embodiment by suspending the helium module u〇 inside the housing 1〇2. A vacuum seal 116 made of a low thermal conductivity isolating material can be used to fill the gap 22 between the housing 102 and the HT module 11o to reduce residual heat transfer between the crucible module 110 and the housing 1〇2. Therefore, the effect of minimizing the local freezing area is achieved. The vacuum seal U6 advantageously prevents any possible airflow from the surrounding environment from entering the TCU i 〇〇. The partial vacuum region in the tcu 100 also advantageously provides a gettering action to maintain the vacuum seal 116 in position. Due to the partial vacuum region on the Ητ module 11 ,, inside the housing 102, under atmospheric pressure acting on the outer surface 112 of the HT module 11 ,, the vertical pressure difference on the HT module can cause the Ητ module 丨丨〇 is lifted' so the HT module 11 悬浮 is suspended inside the housing 1 〇2. A rigid stop 114 made of an insulating material is clamped between the HT module 11A and the main housing 106 to reduce heat transfer, so that it will be partially cold; the east region is minimized and the ht module 11 is The housings 102 are arranged in a row. In an exemplary embodiment, a low thermal conductivity metal such as stainless steel or a high strength plastic such as polycarbonate is used as the rigid stop 114, although it should be understood that other low thermal conductivity materials can be used in different embodiments. To ensure a closed environment inside the TCU 100, the housing 102 is suitably sealed in an exemplary embodiment. A vacuum seal 120 is inserted between the bottom ι4 of the housing and the main housing 106 and between the conductor block 202 and the heater clamp 210 to prevent air leakage into the TCU 100. In the case where high pressure fluid flows into the HT module 110 along a failure of the equipment on the processing line, the housing 1〇2 is designed to be a reinforcement of the HT module 11〇. To withstand the pressure spikes during operation, the housing 131587.doc 200923310 02 is manufactured from a high strength material that provides structural rigidity. In an exemplary embodiment, an aluminum alloy is used, but it should be understood that other high strength materials can be used in different embodiments. 2 is a schematic diagram showing a cross-sectional view of the HT module 110 of the TCU 100 of FIG. The HT module 110 includes a conductor block 2〇2, an inlet flow conduit 2〇5 and an outlet flow conduit 206' in the form of a heater layer 208 and a heater clamp 210. The conductor block 202 is generally of the τ type having a branch portion in the form of an upper portion 203 having a larger width than the stem portion, and the stem portion is in the form of a lower portion 204. To facilitate efficient heat transfer, the conductor block 202 is fabricated from a material that is thermally conductive and fabricated as a separate integral component. In an exemplary embodiment, a copper alloy is used, but it should be understood that other high thermal conductivity materials can be used in different embodiments. To minimize heat transfer from ambient heat flow and to prevent condensing 'imports on the inlet flow conduits 205, the outlet flow conduits 206, and the respective top channel portions 228, 230, and 232 of the heater clamps 210 exposed to the open space environment The flow conduit 205, the outlet flow conduit 206, and the heater clamp 21 are fabricated from a poor thermal conductor material. For example, a low heat conductive metal such as stainless steel or a high strength plastic such as polycarbonate can be used. The inlet flow conduit 205 and the outlet flow conduit 206 are disposed at opposite ends of the upper portion 203 of the conductor block 202. The inlet flow conduit 205 and the outlet flow conduit 206 are secured to the upper portion 203 of the conductor block 202 using respective fasteners 212 on the inlet flow conduit 2〇5 and the outlet flow conduit 206. The upper portion 203 of the conductor block 202 is closed by an inlet flow conduit 205 and an outlet flow conduit 206. It should be understood by those skilled in the art that condensation problems such as those described above do not occur on conductors 131587.doc 200923310 block 202, inlet flow conduit 205, and outlet flow conduit 206 because they are partially enclosed within the TCU 100. Within the environment. The heating layer 208 is disposed on the surface 209 of the upper portion 203 of the conductor block 202 opposite the surface 112 of the lower portion 204 of the conductor block 202. The heating layer 208 is secured to the upper portion 203 of the conductor block 202 by the heater clamp 210, using the fastener 2 14 and the vacuum seal 110. In an exemplary embodiment, the heating layer 2〇8 is a commercially available flat type electric resistance heater, but it should be understood that other heating layer designs can be used in different embodiments. The vacuum seal 12 is disposed between the conductor block 202 and the heater jig 21A. The heater clamp 21 is made of a good thermal insulator material to minimize heat transfer. In an exemplary embodiment, a low thermal conductivity metal such as stainless steel or a high strength plastic such as polycarbonate is used, but it should be understood that other low thermal conductivity materials can be used in different embodiments. The seal 216 is disposed between the upper portion 203 of the conductor block 2〇2 and the inlet flow conduit 2〇5 and the outlet flow conduit 2〇6 to prevent leakage of fluid. The seal 216 is made of a material that allows for high temperatures and low temperatures. In an exemplary embodiment, fluororubber or tantalum resin is used, but it should be understood that other low thermal conductivity materials can be used in different embodiments. A temperature sensor in the form of a spring loaded thermocouple 218 is disposed in the cavity 220, which is generally located in the center of the conductor block 2〇2. Spring loaded thermoelectric is coupled to an external controller 222. The spring loaded thermocouple 2丨8 measures the temperature of the device under test 502 and feeds the temperature measurement back to the controller 222. The controller 222 also monitors and controls the flow of fluid through the 模组τ module 11 〇, particularly the dust, temperature, and flow rate, and also controls the power supplied to the heater 2 〇 8 layer to maintain the temperature of the device under test 5 〇 2 at The temperature is specified. Controller (2) I3I587.doc 13 200923310 is coupled to power/controller 224 and reservoir/controller 226. A power supply/controller 224 for controlling the power supplied to the heating layer 208 is coupled to the heating layer 2〇8. A reservoir/controller 226 for promoting fluid flow is coupled to the inlet flow conduit 205 and the outlet flow conduit 206. Figure 3 shows a schematic view of another cross-sectional view of a heat transfer device in the form of a D-CU 100. As shown in FIG. 3, the conductor block 2〇2 of the HT module 11A includes a plurality of perforations in the form of channels 302 on the upper portion 203 of the conductor block 202. The channel 3〇2 is arranged in a plurality of columns and rows on both sides of the thermocouple 218, and is disposed in the cavity 220 of the conductor block 2〇2. The factors of the heat transfer performance of the two types of shirts in the conductor block 202 of the TCU 100 are the heat transfer to the fluid passing through the conductor block 202 and the flow of the passage through the conductor block 2〇2. Boiling in the channel provides extremely high heat transfer capability. In order to increase the heat transfer coefficient of the fluid flow, the channel 3〇2 preferably has a smaller Dh' Dh finger hydraulic diameter. However, the smaller Dh causes a problem in the manufacture of the conductor block 202 having the channel 3〇2 by conventional mechanical means. A longitudinal insert, such as wire 304, is inserted into channel 302 of conductor block 2〇2 to obstruct a portion of the flow area in each channel 3〇2 to reduce the cross-sectional area of channel 302. Therefore, a smaller Dh is obtained. As a result, the total heat transfer coefficient of the fluid passing through the passage 302 is increased, which advantageously provides more efficient heat removal by the fluid. By imparting flexibility to the hydraulic diameter Dh of the control passage 302 using, for example, the wire 3〇4, an increase in the diameter of the passage 302 can advantageously provide easy fabrication of the conductor block 2〇2. Therefore, conventional machinery can be used to fabricate the conductor block 202 of the TCU 1 without having to dispense with the basic function of allowing efficient heat removal and maintaining a specified temperature during testing. The inserts disposed in the channels 302 of each of the 131587.doc -14- 200923310, such as the wire 3〇4, are mounted such that the inserts are not limited to a fixed position relative to the center of the cross-sectional area of each of the channels 302. To further enhance the efficiency of heat transfer, inserts such as wire 3 〇 4 are made of a thermal conductivity material. In an exemplary embodiment, the insert, such as the metal wire 304, may be provided as copper or aluminum alloy wire, although it should be understood that other high thermal conductivity materials may be used in different embodiments. The perforations and the diameter of the wire are preferably in the range of 〇 2 mm to 3 mm. As will be appreciated by those skilled in the art, within 〇2_3 mm, the flow channel is generally referred to as a mini channel, which is currently the most suitable exemplary embodiment for utilizing the insert to substantially reduce the cross-sectional area. technology. In the TCU 100, the diameter of the wire and perforation is preferably in the range of more than 〇7, resulting in a reduction in cross-sectional area of more than 50% and a reduction in hydraulic diameter of more than 70%. The flow rate produced is reduced by more than 85% in terms of applying the same pressure gradient. Fig. 4 is a plan view showing a cross-sectional plan view of the Ητ module 11A of the TCU 1〇〇 of Fig. 1. One end of an insert, such as wire 3〇4, is inserted into one end of channel 3〇2, which is removed from the opposite end of the same channel 302 and inserted into the same row of adjacent ends of adjacent channel 302, as shown in Figure 4, for thermoelectric Each row of channels 3〇2 on each side of the couple 218 (Fig. 3) is disposed within the cavity 220 (Fig. 3) of the conductor block 2〇2, and the wire of the insert, such as the wire, is separated from the thermocouple 218 (Fig. 3) The farthest starting point begins and ends at the end point 404 near thermocouple 2, Figure 3). It will be appreciated by those skilled in the art that the threading method and/or type is not limited by the embodiment as described herein. The inserts, such as the ends of the wires 3 〇 4, are fixed by, for example, welding. 131587.doc 15- 200923310 At the starting point 402 and the ending point 404. The channel 302 and the insert, such as the metal wire 304, are surrounded by an inlet flow conduit 205 and an outlet flow conduit 2〇6. Figure 5 shows the figure! A schematic diagram of the Ητ module 11 T of the TCU 1 〇 in the contact with the device under test 502 is placed. The device under test 5〇2 is mounted on the mounting layer 5. The test device 502 is brought into contact with the surface 12 of the conductor block 202 for testing by moving the device under test 502 upward or moving the HT module 11 向下 downward. The positive contact between the device under test 502 and the surface 112 of the conductor block 202 is accomplished by an actuator (not shown). The connection between the device under test 5〇2 and the exposed surface 12 during the test is not shown. The device under test 502 has the ability to generate heat. 4, the temperature of the measuring device 502 is maintained at a predetermined temperature during the cooling process, and the heat transferred from the device under test 502 to the conductor block 2〇2 is transmitted by the chilled medium through the passage of the conductor block 202 by convection. 3〇2 was removed. The fluid, which is substantially in a saturated liquid state, is conveyed into the inlet flow conduit 2〇5 as indicated by arrows 5〇6. The fluid flows through the passage of the conductor block 2〇2 in the direction indicated by the arrow 508 (Fig. 3〇2). The fluid inside the channel (3〇2 of Fig. 3) undergoes a state change from a substantially saturated liquid state to a substantially gaseous state in the heat transfer method. The substantially gaseous fluid is output from the conductor block 2〇2 through the outlet flow conduit 2〇6 as indicated by the arrow 51〇. Heat is removed from the refrigerant gas in the conductor block 202, such as R22, by fluid flow by convection through the passage of the conductor block. In an exemplary embodiment, R404A and C〇2 are used, but it should be understood that the fluid can be used in different embodiments. In order to raise the temperature of the device under test 5〇2 during the heating process, the twisting layer 208 turns on the heating to the device under test 5()2. The heat supplied is transferred from the conductor 131587.doc -16· 200923310 block 2 0 2 to the device under test 5 〇 2. The TCU 100 as described above advantageously achieves the desired test temperature by utilizing the two-phase flow method and advantageously provides rapid heating and cooling. The TCU (10) as described above has a simple design that advantageously provides ease of manufacture and assembly. All components of the TCU 100 with simple geometry can be manufactured without special techniques and tools. It advantageously reduces the cost of the machine. The design of (3)(10) also makes it easy to integrate into the test processor system.

更進纟’ TCU 1 GG的設計已擁有大範圍對於其持久性 以及可靠性的考慮。例如’可導致在材料中的疲勞影響其 ’“ J·生月b的迅速加熱以及冷卻,可藉由適當的材料選擇將 其減到最小。TCU 100的構架佈置圖設計具有安全措施以 因此TCU 100的設計是有 保證剛性承受任何高壓力峰值 利地可靠。 、另外TCIJ 设計與冷卻系統耦合以完成想望之結果 並且被使用在測試處理及系統中,其要求加熱以及冷卻測 試設備的操作。 應為斤屬技術領域的專業人員瞭解的是許多變換及/或 修飾可對如具體實施例顯示之本發明做出而無違廣義描述 之本發明的精神或範圍。所以,現介紹之具體實施例從所 有態樣考慮均係說明性而限制性。 【圖式簡單說明】 熟悉此技術者可由僅以舉例方式說明之上述文字說明及 «後附圖4而對本發明之具體實施例有更深入的理解及 可輕易的明瞭,其中·· J31587.doc 200923310 圖1顯示以溫度控制單元(TCU)形式之熱傳裝置之截面視 圖的示意圖。 圖2顯示圖1之TCU的熱傳(HT)模組的截面視圖之示意 圖。 圖3顯示以TCU形式之熱傳裝置之另一截面視圖的示意 圖。 圖4顯示圖1之TCU的HT模組的截面俯視圖之示意圖。 圖5顯示圖1之TCU的HT模組被放置與測試裝置接觸的示 意圖。 【主要元件符號說明】 100 溫度控制單元 102 殼體 104 殼體底部 106 主殼體 108 止回閥 110 HT模組 112 表面 114 硬質止擋件 120 真空密封 122 縫隙 202 導體塊 203 上部 204 下部 205 進口流管道 131587.doc -18- 200923310More into the design of the TCU 1 GG has a wide range of considerations for its durability and reliability. For example, 'fatigue in the material can affect its rapid heating and cooling of J's life b, which can be minimized by appropriate material selection. The TCU 100's structural layout design has safety measures so TCU The design of the 100 is guaranteed to be rigid and reliable against any high pressure peaks. In addition, the TCIJ design is coupled to the cooling system to accomplish the desired results and is used in test processing and systems that require heating and cooling of the operation of the test equipment. It will be appreciated by those skilled in the art that many variations and/or modifications may be made without departing from the spirit and scope of the invention. The examples are all illustrative and restrictive. [Simplified description of the drawings] Those skilled in the art can further understand the specific embodiments of the present invention by the above-mentioned text descriptions and the following FIG. The understanding and can be easily understood, among them, J31587.doc 200923310 Figure 1 shows the heat transfer device in the form of a temperature control unit (TCU) Figure 2 shows a schematic view of a cross-sectional view of a heat transfer (HT) module of the TCU of Figure 1. Figure 3 shows a schematic view of another cross-sectional view of a heat transfer device in the form of a TCU. Schematic diagram of a cross-sectional top view of the HT module of the TCU. Figure 5 shows a schematic diagram of the HT module of the TCU of Figure 1 placed in contact with the test device. [Main component symbol description] 100 temperature control unit 102 housing 104 housing bottom 106 main Housing 108 Check Valve 110 HT Module 112 Surface 114 Hard Stop 120 Vacuum Seal 122 Slit 202 Conductor Block 203 Upper 204 Lower 205 Inlet Flow Pipe 131587.doc -18- 200923310

CC

L 206 出口流管道 208 加熱層 209 表面 210 加熱器夾具 212 扣件 214 扣件 216 密封 218 彈簧加載式熱電偶 220 凹腔 222 空氣舵 224 電源/控制器 226 貯集器/控制器 228 通道形部分 230 通道形部分 232 通道形部分 302 通道 304 金屬絲 402 起始點 404 終止點 502 待測裝置 504 安裝層 506 箭頭 508 箭頭 510 箭頭 131587.doc -19-L 206 outlet flow conduit 208 heating layer 209 surface 210 heater clamp 212 fastener 214 fastener 216 seal 218 spring loaded thermocouple 220 cavity 222 air rudder 224 power / controller 226 reservoir / controller 228 channel section 230 channel shaped portion 232 channel shaped portion 302 channel 304 wire 402 starting point 404 termination point 502 device under test 504 mounting layer 506 arrow 508 arrow 510 arrow 131587.doc -19-

Claims (1)

200923310 十、申請專利範圍: 丨’:=於將一具有熱產生能力的待測裝置的溫度保持在 -規疋溫度下的熱傳裝置,該熱傳裝置包括: —進口流管道; 一出口流管道; 一導體塊,其包括複數個穿孔 等穿孔接收來自該 進/&quot;道的-流體並且輸送該流體至該出口流管道;及200923310 X. Patent application scope: 丨':= A heat transfer device that maintains the temperature of a device to be tested having a heat generating capability at a temperature of - gauge, the heat transfer device comprising: - an inlet flow pipe; an outlet flow a conductor block comprising a plurality of perforations, such as perforations, receiving fluid from the inlet and conveying the fluid to the outlet flow conduit; *右干:置於各穿孔内之插入物,其用於減少該等各別 穿孔的橫戴面積以增進熱傳效率。 '如請求項i之熱傳裝置,其中配置於該等各別穿孔内的 等插入物係經排配使得各插入物不侷限於相對各穿孔 之橫截面積之中心的一固定位置。 3·如請求項…之熱傳裝置’其中該插人物係大體上縱向 且配置於該等各別穿孔使得各插人物的縱軸大體上平行 於該等穿孔。 4. 如可述請求項中任一項之熱傳裝置,其中該進口及出口 &quot;IL笞道係固疋至該導體塊的相對末端,以形成一熱傳 (HT)模組’其中熱傳主要發生在該ht模組。 5. 如前述請求項中任—項之熱傳裝置,其中該HT模組係配 置於一殼體内,且該熱傳裝置可更進一步包括一配置於 該殼體上的閥,該閥用於移除該殼體内的空氣並且在該 HT模組周圍產生一部分真空環境,其中該部分真空環境 促進及HT模組在該殼體内的懸浮,並且提供該ht模組 與遠殼體之間的熱傳隔離以防止在該殼體上的冷凝。 131587.doc 200923310 6. 如π求項1至5中任_項之熱傳裝f 體上呈T型且包括—幹部以及—八其中该導體塊係大 複數個穿孔且該幹部包括 ^切,該分支部包括 7. 如請求項6之熱傳裝置 ★寺測褒置之表面。 流管道係固定至該導體塊的流管道以及該出口 促進流體流動經過該穿孔。的相對兩端,用於 8. 如請求項6或7之熱傳裝置,其更進一 其配置於該導體塊之該分支部的:熱層’ 9. 該導體塊的該幹部接觸該待 ^面上,該表面係與 ,Ε 竹州裒置之表面相對置。 如Μ求項8之熱傳裝置,1 固定至該導體塊,其中一真空I::層以一加熱器夾具 及該加熱器夾具之間。…、係配置於該導體塊以 10·如印求項1至9中任一項之熱傳裝置,其更進一步包括一 -己置於。亥導體塊中之溫度傳感器,其用於測量該待測裝 置的溫度。 U·如叫求項1至10中任一項之熱傳裝置,其更進一步包括 /、該恤度傳感器搞合之控制器’用於將該待測裝置的 溫度保持於該規定溫度。 12·如印求項丨至丨丨中任一項之熱傳裝置,其中該控制器藉 由控制供應至該加熱層之功率及/或控制流體流動,將該 待測裂置之溫度保持在該規定溫度。 13.如請求項1至12中任一項之熱傳裝置,其中在操作中, 流體係大體上以飽和液體之狀態進入該等穿孔,並且在 來自該待測裝置的熱量的轉換下變化成大體為氣態’且 131587.doc 200923310 大體上以名 ^ 軋態離開該等穿孔。 高強度材 各高壓力 如β求項5之熱傳裝置,其中該殼體係由若干 料製成,以姐w 徒供結構剛度以及承受殼體内部的 峰值。 15.如請求u 、5或14之熱傳裝置,其中該殼體由 導熱率之絲祖制^ 卞具有向 ▲心材枓製造,用於防止在殼體上的局部冷凝。 16· ^求項1至15中任—項之熱傳裝置,其中該等穿孔在 該導體塊中對齊排列成複數個列及行。 17·如吻求項1至16中任-項之熱傳裝置,其包括-或多個 插入7C件’各插入元件以穿線方式穿過該等穿 或多個。 一項之熱傳裝置’其中該等插 之材料製造以增強有效熱傳。 入物 1 8.如請求項1至1 5中任 由若干具有高導熱率 19·如請求項1至16中任-項之熱傳裝置’其中該導體塊係 單-整體組件’其係由一具有高導熱率之材料製造以提 供有效熱傳。* Right stem: An insert placed in each perforation that serves to reduce the cross-sectional area of the respective perforations to enhance heat transfer efficiency. A heat transfer device according to claim i, wherein the inserts disposed in the respective perforations are arranged such that the inserts are not limited to a fixed position relative to the center of the cross-sectional area of each of the perforations. 3. A heat transfer device as claimed in claim </ RTI> wherein the inserted character is generally longitudinally disposed and disposed in the respective perforations such that the longitudinal axes of the inserted characters are substantially parallel to the perforations. 4. The heat transfer device of any of the claims, wherein the inlet and outlet &lt;IL ramps are fixed to opposite ends of the conductor block to form a heat transfer (HT) module. The pass mainly occurs in the ht module. 5. The heat transfer device of any of the preceding claims, wherein the HT module is disposed in a housing, and the heat transfer device further comprises a valve disposed on the housing, the valve Removing air from the housing and creating a portion of the vacuum environment around the HT module, wherein the portion of the vacuum environment facilitates suspension of the HT module within the housing and provides the ht module and the remote housing The heat transfer is separated to prevent condensation on the housing. 131587.doc 200923310 6. The heat transfer f body of any of the items _1 to 5 is T-shaped and includes a trunk portion and - eight of which the conductor block is a plurality of perforations and the stem portion includes a cut, The branch portion includes 7. The surface of the heat transfer device of the request item 6. A flow conduit is secured to the flow conduit of the conductor block and the outlet facilitates fluid flow through the perforation. The opposite ends of the same, for the heat transfer device of claim 6 or 7, further configured in the branch portion of the conductor block: a thermal layer ' 9. the stem portion of the conductor block contacts the On the surface, the surface is opposite to the surface of the 竹 裒 。 。. For example, the heat transfer device of claim 8 is fixed to the conductor block, wherein a vacuum I:: layer is between a heater clamp and the heater clamp. The heat transfer device of any one of the items 1 to 9, which further comprises a self-distribution device. A temperature sensor in the conductor block for measuring the temperature of the device to be tested. The heat transfer device according to any one of claims 1 to 10, further comprising /, the controller for engaging the sensor for holding the temperature of the device to be tested at the predetermined temperature. The heat transfer device of any one of the items of the present invention, wherein the controller maintains the temperature of the crack to be tested by controlling the power supplied to the heating layer and/or controlling the flow of the fluid The specified temperature. 13. The heat transfer device of any of claims 1 to 12, wherein in operation, the flow system enters the perforations substantially in the state of a saturated liquid and changes to a change in heat from the device under test Generally gaseous" and 131587.doc 200923310 generally exits the perforations in the form of a rolled state. High-strength material Each high-pressure device, such as the heat transfer device of Item 5, wherein the casing is made of a plurality of materials to provide structural rigidity and to withstand the internal peak of the casing. 15. A heat transfer device according to claim 5, 5 or 14, wherein the casing is made of a thermal conductivity wire 卞 向 向 to the ▲ heart material , for preventing local condensation on the casing. The heat transfer device of any one of clauses 1 to 15, wherein the perforations are aligned in the plurality of columns and rows in the conductor block. 17. A heat transfer device according to any of clauses 1 to 16, which comprises - or a plurality of inserts 7C members, wherein each of the insert members passes through the one or more in a threaded manner. A heat transfer device wherein the materials are inserted to enhance effective heat transfer. Inclusion 1 8. A plurality of heat transfer devices having a high thermal conductivity 19, such as any one of claims 1 to 16, wherein the conductor block is a single-integral component, as claimed in claims 1 to 15 A material having a high thermal conductivity is fabricated to provide efficient heat transfer. 20. —種用於將具有熱產生能力的一待測裝置的溫度保持在 一規定溫度下的熱傳裝置,該熱傳裝置包括: 一進口流管道; 一出口流管道; 一導體塊,包括複數個穿孔,該等穿孔接收來自該進 口流管道的一流體並且輸送該流體至該出口流管道;且 其中該導體塊、進口及出口流管道形成一町模組且該 HT模組係配置於一殼體内,並且該熱傳裝置更進一步包 13I587.doc 200923310 括一配置於殼體上的閥,其用於移除該殼體内的空氣並 且在該HT模組周圍產生一部分真空環境,其中該部分真 空環境促進該導體塊在該殼體内的懸浮,並且提供該HT 模組與該殼體之間的熱傳隔離以防止在該殼體上的冷 凝020. A heat transfer device for maintaining a temperature of a device under test having a heat generating capability at a prescribed temperature, the heat transfer device comprising: an inlet flow conduit; an outlet flow conduit; a conductor block, including a plurality of perforations, the perforations receiving a fluid from the inlet flow conduit and delivering the fluid to the outlet flow conduit; and wherein the conductor block, the inlet and outlet flow conduits form a mold module and the HT module is configured In a housing, and the heat transfer device further includes a valve disposed on the housing for removing air in the housing and generating a partial vacuum environment around the HT module, Where the partial vacuum environment promotes suspension of the conductor block within the housing and provides heat transfer isolation between the HT module and the housing to prevent condensation on the housing. 131587.doc131587.doc
TW097120367A 2007-07-06 2008-05-30 A heat transfer device TW200923310A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SG200705052-9A SG148900A1 (en) 2007-07-06 2007-07-06 A heat transfer device

Publications (1)

Publication Number Publication Date
TW200923310A true TW200923310A (en) 2009-06-01

Family

ID=40228853

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097120367A TW200923310A (en) 2007-07-06 2008-05-30 A heat transfer device

Country Status (7)

Country Link
US (1) US20110011564A1 (en)
EP (1) EP2165361A1 (en)
JP (1) JP2010532918A (en)
CN (1) CN101842892A (en)
SG (1) SG148900A1 (en)
TW (1) TW200923310A (en)
WO (1) WO2009008836A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8508245B1 (en) * 2009-11-30 2013-08-13 Essai, Inc. Thermal control unit used to maintain the temperature of IC devices under test
US8653842B2 (en) * 2009-11-30 2014-02-18 Essai, Inc. Systems and methods for thermal control of integrated circuits during testing
US9383406B2 (en) 2009-11-30 2016-07-05 Essai, Inc. Systems and methods for conforming device testers to integrated circuit device with pressure relief valve
US10126356B2 (en) * 2009-11-30 2018-11-13 Essai, Inc. Systems and methods for conforming test tooling to integrated circuit device with whirlwind cold plate
US9804223B2 (en) 2009-11-30 2017-10-31 Essai, Inc. Systems and methods for conforming test tooling to integrated circuit device with heater socket
JP2014194415A (en) * 2013-03-15 2014-10-09 Sensata Technologies Massachusetts Inc Direct injection phase change temperature control system
DE102015100762A1 (en) * 2015-01-20 2016-07-21 Infineon Technologies Ag Container switching device and method for monitoring a fluid rate
US9921265B2 (en) 2015-12-18 2018-03-20 Sensata Technologies, Inc. Thermal clutch for thermal control unit and methods related thereto

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2729044B1 (en) * 1994-12-30 1997-01-24 Atherm COOLING ELEMENT AND CONNECTOR FOR AN ELECTRONIC POWER COMPONENT COOLED BY AN ELECTRICALLY ISOLATED FLUID FROM THE COMPONENT
US5977785A (en) * 1996-05-28 1999-11-02 Burward-Hoy; Trevor Method and apparatus for rapidly varying the operating temperature of a semiconductor device in a testing environment
US5847366A (en) * 1996-06-18 1998-12-08 Intel Corporation Apparatus and method for controlling the temperature of an integrated circuit under test
US6196307B1 (en) * 1998-06-17 2001-03-06 Intersil Americas Inc. High performance heat exchanger and method
US6116040A (en) * 1999-03-15 2000-09-12 Carrier Corporation Apparatus for cooling the power electronics of a refrigeration compressor drive
JP3511604B2 (en) * 2001-11-30 2004-03-29 株式会社富士根産業 Thermosyphon type heat transfer body
US6615911B1 (en) * 2002-03-07 2003-09-09 Delphi Technologies, Inc. High performance liquid-cooled heat sink with twisted tape inserts for electronics cooling
DE10225602A1 (en) * 2002-06-07 2004-01-08 Heraeus Sensor-Nite Gmbh Semiconductor component with integrated circuit, heat sink and temperature sensor
KR200307398Y1 (en) * 2002-12-18 2003-03-15 주식회사 영동 Device for radiating heat in CPU in computer
JP4539425B2 (en) * 2005-04-28 2010-09-08 日立電線株式会社 Heat pipe heat sink and method for manufacturing the same

Also Published As

Publication number Publication date
JP2010532918A (en) 2010-10-14
CN101842892A (en) 2010-09-22
US20110011564A1 (en) 2011-01-20
EP2165361A1 (en) 2010-03-24
SG148900A1 (en) 2009-01-29
WO2009008836A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
TW200923310A (en) A heat transfer device
CN202757246U (en) Thick-film heater
TWI292515B (en) Temperature control method and temperature control device
US6957013B2 (en) Fluid heater
US20140262129A1 (en) Thermal control of device using fluid coolant
WO2005081947A3 (en) Miniature fluid-cooled heat sink with integral heater
KR101905108B1 (en) Apparatus for preventing frozen pipes
US9360502B2 (en) Increasing current carrying capability through direct liquid cooling of test contacts
JP2011091040A (en) Fluid heater
Wang et al. Experimental investigation of heat transfer performance for a novel microchannel heat sink
CN104144591A (en) Cooling device and server cabinet with the same
KR200446994Y1 (en) Valve heating device with improved thermal efficiency
CN105487568B (en) The temperature control device and its temperature control method of test equipment connector presser
JP6161327B2 (en) Four-terminal resistance measuring device and four-terminal measuring probe
Misale et al. FC-72 pool boiling from finned surfaces placed in a narrow channel: preliminary results
Han et al. Development of water-cooled heat sink for high-power IGBT inverter
WO2017164104A1 (en) Thermoelectric module power generation evaluation device
US3368359A (en) Thermoelectric water cooler
CN106653297A (en) Automatic cooling system of transformer
CN205612262U (en) Cooking utensil
CN116717907A (en) Continuous flow type water heating assembly and production method
Aravelli et al. Multiobjective design optimization of microchannel cooling system using high performance thermal vias in LTCC substrates
KR200454511Y1 (en) Resistor and Temperature Fuse Assembly
EP4383940A1 (en) Flow through heater and method of manufacture thereof
RU152153U1 (en) INSTALLATION OF ELECTRIC CENTRIFUGAL PUMP FOR OIL WELL WITH HEAT PROTECTION OF SUBMERSIBLE ELECTRIC MOTOR (OPTIONS)