200922881 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種電解去離子水質淨化系統,特別 是有關於一種可提升水質淨化效果之電解去離子水質淨化 系統。 【先前技術】 電解去離子(electro-deionization,EDI)技術在水處理方 面主要是用來去除水中的帶電離子,其應用領域可包含純 水製造、廢水回收以及電鍍廢水回收/處理等。 目前應用電解法去除離子之設備大致上包括有電透析 (electro-dialysis ’ ED)、倒極式電透析(electro-dialysis reversal ’ EDR)、電解去離子(eiectro_deionization,EDI)及 連績式電解去離子(c〇ntinuous eiectro_deionization,CEDI) 系統等。 就傳統的電透析(ED)或電解去離子(EDI)系統而言,其 僅疋由夕組陰[^離子交換膜及一組電極(一陽極電極及一 陰極電極)所構成’以形成脫鹽室、濃縮室及電解室等結 構。一般來說,流經電解室與濃縮室的水為同一股水,並 且此月又水可進行固定時間的循環應用,而另有一股水會流 、'^脫風至。就倒極式電透析(EDR)系統而言,其乃是在電 、斤(I 〇)系統之架構下,將直流電電性進行固定時間之正 負極對δ周’以改善陰陽離子交換膜堵塞的問題。就連續式 電解去離子(CEDI)系統而言,其主要是應用於超純水之淨 200922881 化處理。由於超純水的導電效果較差(電阻值為18.2 Μ Ω),故在連續式電解去離子(CEDI)系統之脫鹽室内必須填 充離子交換樹脂來提高電流效率,以增加離子去除效果。 此外,連續式電解去離子(CEDI)系統還可利用水電解所產 生之H+及OH—來對其脫鹽室内之離子交換樹脂不斷地進行 再生作用。 此外,不論是何種電解去離子系統,其去除水中(帶電) 離子之驅動力即是電力。水中離子之遷移數量可從電流效 率表現中察覺,而電流愈高通常代表著離子之遷移數量愈 大。也就是說,在相同的操作條件下,電壓愈高即代表電 流愈高,而脫鹽(或去離子)效率亦愈佳。然而,增加電壓 亦代表增加電能消耗,因而會增加操作成本。 請參閱第1圖,一種習知之電解去離子系統1主要包 括有一陽極電極11、一陰極電極12、一第一電解室21、 一第二電解室22、一第一濃縮室31、一第二濃縮室32、 一脫鹽室40、一第一進水管路51、一第一出水管路52、 一進水幫浦60、一循環管路70、一循環幫浦80、一補充 水槽90、一第二進水管路91及一第二出水管路92。 陽極電極11及陰極電極12乃是連接於一直流電壓源 (未顯示)。 第一電解室21、第一濃縮室31、脫鹽室40、第二濃 縮室32及第二電解室22是依序設置於陽極電極11與陰極 電極12之間。第一電解室21是連接於陽極電極11,而第 二電解室22是連接於陰極電極12。特別的是,第一濃縮 8 200922881 室3】是藉由—第一陽離子交換膜⑽以汕如# —ne,CEM)ci及-第-陰離子交換膜㈣⑽―以 mb腦,AEM)A1之阻隔而成形於第一電解室u與脫 二至40之間,而第二派縮室32是藉由一第二陽離子交換 膜C2及一第二陰離子交換膜八2之阻隔而成形於脫鹽室仙 與第二轉室22之間 v ,轉丁父㈣…弟 陰離子乂換膜A1、第二陽離子交換膜C2及第二陰離子 交換2 A2是依序設置於陽極電極u與陰極電極12之間。 ^進水令路51可連接於脫鹽室40之底部,而第一 52可連接於脫鹽室4〇之頂部。進水繁浦60則是 Π / —MM51,其可將待處理之水輸送至脫鹽室 路52於Φ脫鹽室4〇中已經處理之水則是經由第一出水管 路52輸出應用。 卜吕 第-= 是連通於第1解室2卜第一濃縮室3卜 乐一 /辰細室32及筮-雷銥a 於循環管路7Π 2之間。循環幫浦8〇是彀置 縮室31、二之二:此—來,第-電解室21'第1 地進行循環二";由第及第出二電解室2 2中之水即可不斷 更锋h戈猎由弟一出水管路92排出。 而第二進水管路:=::、9。是連接於循環管路7〇, 由第二進水管路91輸充水槽9〇。外部之次可經 至循環管路70之中 補充水槽90之中,進而、充 連接’且姆環管路70内:二路7〇是與第二出水管^ 二出水管路92 可藉由閥件控制而選擇趣由第 排出或循環W充水槽90之f。因此 200922881 解去離子系统i即可夢由抵#& * 外部之水可經由第二 衣g 70來筇省用水量,以及 補充水槽90及循環管路中9Ϊ,=充較為乾淨的水於 子交換膜C卜第—陰離子交換膜’:在第-陽離 Q及第二陰離子交換膜Α2上產生子交換膜 當陽極電極11及陰極電極12::且塞 流時(亦即,陽極電極η及陰極電極=電 21、第—濃縮室31、脫鹽室40、第二濃;:1由^ 一電解室 解室22中之水來導通),脫鹽室 、、::及第-電 會被陰極_12吸引而朝: 7巾的陽離子Α+ ㈢破1¼極電極Π吸引而朝向1蒋翻 _子人、穿透第二陽離子交換膜。2而= 動第此200922881 IX. Description of the Invention: [Technical Field of the Invention] The present invention relates to an electrolytic deionized water purification system, and more particularly to an electrolytic deionized water purification system capable of improving water purification effect. [Prior Art] Electro-deionization (EDI) technology is mainly used to remove charged ions in water. Its application fields include pure water production, wastewater recovery, and electroplating wastewater recovery/treatment. At present, the equipment for removing ions by electrolysis generally includes electro-dialysis ' ED, electro-dialysis reversal ' EDR, electro-deionization (EDI) and continuous electrolysis. Ion (c〇ntinuous eiectro_deionization, CEDI) system. In the case of a conventional electrodialysis (ED) or electrolytic deionization (EDI) system, it is only composed of a group of ion exchange membranes and a group of electrodes (an anode electrode and a cathode electrode) to form desalting. Structures such as chambers, concentrating chambers, and electrolysis chambers. Generally speaking, the water flowing through the electrolysis chamber and the concentrating chamber is the same water, and this month, the water can be used for a fixed time cycle, and another water will flow, and the wind will be removed. In the case of an inverted-electrode dialysis (EDR) system, it is based on the structure of an electric (I 〇) system, and the direct current and the negative electric current are fixed for a fixed period of time to δ weeks to improve the blockage of the anion-cation exchange membrane. The problem. In the case of continuous electrolytic deionization (CEDI) systems, it is mainly applied to the pure 200922881 treatment of ultrapure water. Since ultra-pure water has a poor electrical conductivity (resistance value of 18.2 Μ Ω), ion exchange resins must be filled in the desalination chamber of the continuous electrolytic deionization (CEDI) system to increase current efficiency to increase ion removal. In addition, the continuous electrolytic deionization (CEDI) system can also utilize the H+ and OH- produced by water electrolysis to continuously regenerate the ion exchange resin in the desalination chamber. In addition, regardless of the electrolytic deionization system, the driving force for removing water (charged) ions is electricity. The amount of ion migration in water can be detected from current efficiency performance, and the higher the current, the greater the amount of ion migration. That is to say, under the same operating conditions, the higher the voltage, the higher the current, and the better the desalination (or deionization) efficiency. However, increasing the voltage also means increasing the power consumption, thus increasing the operating cost. Referring to FIG. 1 , a conventional electrolytic deionization system 1 mainly includes an anode electrode 11 , a cathode electrode 12 , a first electrolysis chamber 21 , a second electrolysis chamber 22 , a first concentration chamber 31 , and a second unit . The concentrating chamber 32, a desalting chamber 40, a first water inlet line 51, a first water outlet line 52, a water inlet pump 60, a circulation line 70, a circulation pump 80, a supplementary water tank 90, and a The second water inlet pipe 91 and the second water outlet pipe 92. The anode electrode 11 and the cathode electrode 12 are connected to a DC voltage source (not shown). The first electrolysis chamber 21, the first concentration chamber 31, the desalting chamber 40, the second concentration chamber 32, and the second electrolysis chamber 22 are sequentially disposed between the anode electrode 11 and the cathode electrode 12. The first electrolysis chamber 21 is connected to the anode electrode 11, and the second electrolysis chamber 22 is connected to the cathode electrode 12. In particular, the first concentrated 8 200922881 chamber 3] is blocked by the first cation exchange membrane (10) such as #-ne, CEM)ci and the - anion exchange membrane (four) (10) - mb brain, AEM) A1 Formed in the first electrolysis chamber u and between two to 40, and the second retraction chamber 32 is formed in the desalting chamber by a second cation exchange membrane C2 and a second anion exchange membrane VIII. Between the second transfer chamber 22 and the second transfer chamber 22, the transfer of the parent (4), the intermediate anion exchange membrane A1, the second cation exchange membrane C2, and the second anion exchange 2 A2 are sequentially disposed between the anode electrode u and the cathode electrode 12. The inlet passage 51 can be connected to the bottom of the desalination chamber 40, and the first 52 can be connected to the top of the desalination chamber 4〇. Incoming water pump 60 is Π / - MM51, which can transport the water to be treated to the desalination chamber 52. The water that has been treated in the Φ desalination chamber 4 is output through the first outlet pipe 52.卜吕第-= is connected to the first solution chamber 2, the first concentrating chamber 3, the Buer/Chen chamber 32, and the 筮-Thunder a between the circulation lines 7Π. The circulating pump 8 is the deflation chamber 31, the second two: this - the first electrolysis chamber 21' is first circulated twice; the water in the second and second electrolysis chambers 2 2 can be Constantly more frontal h hunter is discharged by a younger water outlet pipe 92. And the second water inlet pipe: =::, 9. It is connected to the circulation line 7〇, and is filled into the water tank 9〇 by the second water inlet line 91. The external one can be replenished into the refill tank 90 in the circulation line 70, and further, the connection is made and the inside of the methane line 70: the second way 7 is the second outlet pipe and the second outlet pipe 92 can be used by The valve member controls the selection of the discharge or circulation W to fill the sink 90. Therefore, 200922881 can solve the ion system i can dream of # & * external water can save water through the second clothes g 70, and fill the sink 90 and the circulation line 9 Ϊ, = fill the clean water Sub-exchange membrane C-ion-anion exchange membrane': a sub-exchange membrane is produced on the first-positive Q and the second anion exchange membrane Α2 when the anode electrode 11 and the cathode electrode 12:: and plug flow (ie, the anode electrode η and cathode electrodes = electricity 21, first concentrating chamber 31, desalting chamber 40, second concentrated; 1: 1 is controlled by water in the electrolysis chamber chamber 22, desalination chamber, :: and the first meeting Attracted by the cathode _12 toward: 7 cations Α + (3) broken 11⁄4 pole electrode Π attracted and directed toward 1 _ _ _ people, penetrate the second cation exchange membrane. 2 and = move this
Si之中’並且陽離子A+無法穿透第二_子交= 二因:會停留在第二漢縮室32之中。同時,陰離子V θ牙透弟一陰離子交換膜A1而進入至第一濃縮 :’並且陰離子Β-無法穿透第一陽離子交換臈c 停留在第-濃縮室31之中。如上所述,由於脫鹽室 ,水中的陰陽離子(Β_、Α+)會分別移動至第—濃縮室31及 濃縮室32之中’故脫鹽室40内之水即能達成脫鹽或 水質淨化之功效。也就是說,從脫鹽室40經由第一出水管 路52輸出之水會具有良好的水質。 s 值4于主思的是,電解去離子系統1之主要驅動力是電 力’因而必須持續消耗電力來達成脫鹽(或水質淨化)之嗖 果。更詳細的來說,水中陰陽離子(B_、A+)之遷移數量^ 10 200922881 從電流值大小得知。電流值愈大通常代表陰陽離子(b_ 之遷移數量愈大。換句話說,在相同的操作條件下 於電解去離子系統1之直流電麼愈大即代表電流值愈=,口 因而可導致愈好的脫鹽(或水質淨化)效果。然而,二 流電壓即代表增加電能消耗,因而會增加電解去離^ 1之整體操作成本。此外,更重要暇,水本身於$ =體。因此’為了要提升位於陽極電極η與陰極電極 曲S之第一電解室21、第一濃縮室3卜脫鹽室4〇、第二 =室32及第二電解室:22的導電性’電解去離子系^ 所而之電能消耗原本就已不低。 =於此,本發明之目的是要提供—種電解去離 其:::提升導電電流效率以降低操作成 尚遇可同步去除有機物以更加提升水質淨化效果。 【發明内容】 述之用ΐ下所詳述之特徵以為了要解決上 極.…㈣ &極電極;-陰極電 柽,一反應槽體,具有一第一電解室、 是 脫鹽室、—第二濃縮 /辰細至、一 —阻挪7 電解室、一陰離子交換腺、 賴::第:阻隔膜及一第二阻隔膜,其V, ^早室、忒第一濃縮室、該脫鹽室、該二— 及该第二電解室係依序設置於 艰、.、百至 間,並且俜絲右乂 _極與該陰極電極之 該第二電解錢補㈣陰極_ I、=電極’ 置於該第-漠縮室與該脫鹽室之間,膜係設 J忒驗離子父換臈係設 200922881 置於ΐ第二濃縮室與該脫鹽室之間,該第一阻隔膜係設置 於°亥第:電解室與該第一濃縮室之間,該第二阻隔膜係設 置於Λ第—電解室與該第二濃縮室之間,以及該脫鹽室係 填充有複數個第—|番鰣. ’、 W導電體’一第-進水管路,連通於該脫 二至,糸用以將水輸送至該脫鹽室之中,·以及一第一出水 g路’連通於該脫鹽室’係用以將該脫鹽室中之水輸送至 該反應槽體之外。 k芏 同時’根據本發明之電解去離子水質淨化系統,該等 導電體係由活性碳、奈米碳管、石墨或金屬材料所製 子交換^本發明中’該第一阻隔膜及該第二阻隔膜係為離 又在本發日月巾,該第一阻隔膜係為一陽離子交換膜, 以及該第二_膜係為—陰離子交賴。 吳版 ^本發明中’該第一濃縮室及該第二濃縮室係填充 有複數個離子交換樹脂。 、 電體又在本發明中,該第一濃縮室係填充有複數個第二導 ^又在本發明中,該等第二導電體係由活性碳、奈米石户 管、石墨或金屬材料所製成。 、人 電體又在本發明中’该第二濃縮室係填充有複數個第三導 又在本發明中’該f第三導電體係由活 管、石墨或金屬材料所製成。 不木石反 12 200922881 又在本發财,更包括—彳㈣管路及 乂’該循環管路係連通於該第_電解室、:父’其 该第二濃縮室及該第_雷紘+ 艰縮室、 該循環管路之^ 電~至,以及該循環幫浦係設置於 更包括-難水槽,係連接於該猶環 更包括-第二進水管路,係連通於該 又在本發明中 管路。 又在本發明中 補充水槽。 =在本發明中,更包括—第二出水管路 循%官路,其中,該循環管 ’、该 、^弟一出水官路排出或循環至該補充水槽之中。 為使本發明之上述目的、特徵和優點 下文特舉較佳實施例並配合所附圖式做詳細說明易隱, 【實施方式】 茲配合圖式說明本發明之較佳實施例。 1。。: ί=有2圖陽’Λ實施例之電解去離子水質淨化系統 槽體:==:、—陰極電極120、-反應 弟進水官路14〇、一進水幫浦145、一笛 水:Π°:Τ循環ί路16〇、-循環幫浦165、-補充 ^陽極雷;I:第—進水管路⑽及―第二出水管路190。 (未顯 =電極Π0及陰極電極12〇是連接於一直流電壓源 反應槽體130具有一第一電解室13卜一第 132、—脫鹽室133、一第-、、農缩宮n — /,,百至 乐一煨細至〗34、一第二電解室]35、 13 200922881 一陰離子交換膜136、一陽離子交換膜137、一第一阻隔膜 138及一第二阻隔膜139。第一電解室131、第一濃縮室 132脫鹽室133、第二濃縮室134及第二電解室135是依 序設置於陽極電極n〇與陰極電極〗2〇之間,並且第一電 解室⑶、第-濃縮室132、脫鹽室133、第二濃縮室134 ^第二電解室135中容納有水。第-電解室131是連接於 陽極電極110’而第二電解冑135是連接於陰極電極12〇。 陰離子交換膜136是設置於第一濃縮室132與脫鹽室133 =間,陽離子交換膜137是設置於第二濃縮冑134與脫鹽 f 132之間,第一阻隔膜138是設置於第一電解室131與 第一濃縮室132之間,以及第二阻隔膜139是設置於第^ =解至135與第二濃縮室134之間。也就是說,第一濃縮 室132是藉由陰離子交換膜136及第一阻隔膜138之阻隔 :成形:脫鹽室133與第一電解室131之間,而第二濃縮 室134是藉由陽離子交換膜137及第二阻隔膜139之阻隔 而成祕脫鹽室133與第二電解室135之間。在本實施例 之中,第一阻隔膜138及第二阻隔膜139可以皆是離子交 換,,或者第-阻隔臈138及第二阻隔臈139可以分別是 —陽離子交換膜及一陰離子交換膜。 —此外,特別的是,脫鹽室133内填充有複數個第一導 電體D卜第_ i縮室132内可選擇性地填充有複數個第二 導,體D2以及第__濃縮室^ %内可選擇性地填充有複數 個苐三導電體〇3。第一導電體m、第二導電體及第三 導電體D3可以是由活性碳、奈米碳管、石墨或金屬材料 14 200922881 等所製成。 另外,第一濃縮室132及第二濃縮室134内還可選擇 性地填充有複數個離子交換樹月旨E。這些離子交換樹脂E 可以是陰離子交換樹脂(RQH.)及陽離子交賴脂(Rh+)。 ^第一進水管路140是連通於脫鹽室133。更詳細的來 說,第一進水管路140是連通於脫鹽室133之底部,而進 水幫浦145是連接於第—進水管路140,其可將待處理 水輸送至脫鹽室〗33之中。 7 &路150亦是連通於脫鹽至1:^。更詳細的 來說’第—出水管路150是連通於脫鹽f 133之頂部、、’,以 將脫胤i 133中已經處理之水輸送至反應槽體之外。 循%管路160是連通於第—電解室131、 =、第二:農縮室⑼及第二電解室135。循環幫浦= Γ A於循%官路16〇之上,以驅使第一電解室131、第一 展細至132、第二濃縮t 134及第二電解$ 135中之 行循環流動。 進 補充讀17G是連接於循環管路I6G,而第二進水管 ⑽是連通於補充水槽no。循環管路16〇上並設置有 其二出水管路19G。如上所述,外部之水可經由第二進水 輪送至補充水槽170之中,進而可補充至循環管 _之中,或循環管路160中之水可藉由一閥件(未顯示) 二制而選擇經由第二出水管路19〇排出,因而達到解省水 =之目的’進而同時可避免在第—電解室131、第—濃縮 至132、第二濃縮冑134及第二電解室135中產生結垢現 200922881 ^(亦即,可避免在陰離子交換膜136、陽離子交換臈〗37、 第—阻隔膜】38及第二阻隔膜139上產生結垢阻塞現象)。 當陽極電極110及陰極電極12〇被施加一直流電壓或 電流時’陽極電極110及陰極電極120會經由第一電解室 第一濃縮室132、脫鹽室133、第二濃縮室134及第 二電解室135中之水來導通。脫鹽室133内之水中的陽離 子A會被陰極電極12〇吸引而朝向其移動,而脫鹽室I% 内之水中的陰離子B-會被陽極電極11〇吸引而朝向其移 動。此時,陽離子A+會穿透陽離子交換膜137而進入至第 ,濃縮室134之中,並可被第二濃縮室134中之離子交換 樹脂E所吸附(例如,陽離子A+可與陽離子交換樹脂师+) 反應生成RA+與H+)。同時,陰離子B-會穿透陰離子交換 膜136而進入至第一濃縮室132之中,並可被第—濃縮室 ⑶中之離子交換樹脂E所吸附(例如,陰離子B·可與陰離 子交換樹脂(ROH-)反應生成RB-與〇H-)。如上所述,由於 脫皿至133内之水中的陰陽離子(β·、α+)會分別移動至第 辰鈿至132及第二濃縮室134之中,故脫鹽室】%内之 水即能達成脫鹽(或水f淨化)m就μ 1㈣ 至133、.·呈由帛$水營路15〇輸出之水會具有良好的水質。 如上所述,由於脫鹽室133、第一濃縮室132及第二 漢縮室134中分別填充有第一導電體D卜第二導電體D2 及第三導電體D3’故反應槽體⑽之整體導電性會增加。 更詳細的來說,即使水本身是屬於不良導體,但由於有第 一導電體D1、第二導電體D2及第三導電體D3之存在, 200922881 =解去離子水質#化系統2⑻内之電流效率會被大幅提 升。換句話說,反應槽體13G内之整體電阻值會大幅下降, 因而會使得導通於反應槽體13㈣之電流值大幅提升,進 :會使得脫鹽室133内之水中的陰陽離子(B.、A+)分別朝 :第/辰I©至132及第二濃縮室134遷移之數量及速度增 口此,在脫鹽t 133 β之水中的陰陽離子(B-、八勺之 =移數量及速度增大的情形下,脫鹽室133内之水的脫鹽 、=質甲化)效果會被提升。也就是說,在不增大施加直 =壓的㈣下’電解去離子水f淨化系統⑽即能產生 7 化效果極佳的水,因而可降低電能 低其操作成本。 此外特別的疋’當填充於脫鹽室133中之第一導電 為活性碳時,其除了可增加反應槽體m之整體導 斗外’尚還能同步去除水中之有機物,因而可進一步提 升水質淨化效果。 再者’雖然本實施例之電解去離子水質淨化系統1〇〇 2脫鹽請、第一濃縮室132及第二濃縮室134中分 上真充有第-導電體D1、第二導電體D2及第三導電體 可你=可僅在脫鹽室133填充有第—導電體m,或亦 二—第一 z辰縮至132及第二遭縮室134填充第二導電體 •及第三導電體D3,同樣可增進反應槽體13G之整體導 笔性。 另外’本貫施例之電解去離子水質淨化系統100並不 。限於僅具有—個脫鹽室133、—個第-濃縮室132及- 17 200922881 個第二濃縮室〗34。介p - 僅是示範說明之構造?二::去離子水質淨化系統100 淨化W㈣j _㈣之電解去離子水質 以接n、/、有多個彼此交錯排列之脫鹽室及濃縮室, 以提升净化處理之水量。 —雖然本發明已㈣佳實關揭露於上,然其並非用以 限定本發明’任何熟習此項技藝者’在不脫離本發明之精 神和範圍内,當可作些許之更動與潤飾,因此本發明之保 護範圍當視後附之申請專利範圍所界定者為準。 200922881 【圖式簡單說明】 第i圖係顯示-種習知之電解去離子系統之平 以及 第2圖係顯示本發明之f解去離子系統之平 【主要元件符號說明】 】〜電解去離子系統 ί 面示意 面示意 11、 ί ίο〜陽極電極 12、 120〜陰極電極 21、 131〜第一電解室 22、 135〜第二電解室 31、 132〜第一濃縮室 32、 134〜第二濃縮室 40、133〜脫鹽室 51、 140〜第一進水管路 52、 150〜第一出水管路 60、145〜進水幫浦 7〇、160〜循環管路 8〇、165〜循環幫浦 〜電解切子水f淨化系統 130〜反應槽體 136〜陰離子交換膜 13 7〜陽離子交換膜 19 200922881 138〜第一阻隔膜 139〜第二阻隔膜 90、 170〜補充水槽 91、 180〜第二進水管路 92、 190〜第二出水管路 A1〜第一陰離子交換膜 A2〜第二陰離子交換膜 A+〜陽離子 B'〜陰離子 C1〜第一陽離子交換膜 C2〜第二陽離子交換膜 D1〜第一導電體 D2〜第二導電體 D3〜第三導電體 E〜離子交換樹脂 20Among the Si's and the cation A+ cannot penetrate the second _ sub-crossing = two causes: it will stay in the second dent chamber 32. At the same time, the anion V θ is permeable to the anion exchange membrane A1 and enters the first concentration : ' and the anion Β - cannot penetrate the first cation exchange 臈 c to stay in the first concentrating compartment 31. As described above, due to the desalination chamber, the anions and cations (Β_, Α+) in the water are respectively moved into the first concentrating chamber 31 and the concentrating chamber 32. Therefore, the water in the desalting chamber 40 can achieve the effect of desalination or water purification. . That is, the water output from the desalination chamber 40 via the first outlet pipe 52 has good water quality. The value of s 4 is that the main driving force of the electrolytic deionization system 1 is the power 'and thus must continue to consume electricity to achieve desalination (or water purification). In more detail, the amount of migration of anions and cations (B_, A+) in water ^ 10 200922881 is known from the current value. The larger the current value, the more representative of the anion and cation (the larger the migration amount of b_. In other words, the greater the DC current in the electrolytic deionization system 1 under the same operating conditions, the higher the current value is, the better the mouth can be. Desalination (or water purification) effect. However, the two-current voltage represents an increase in electrical energy consumption, which increases the overall operating cost of electrolysis away from 1. In addition, it is more important that the water itself is at $=body. Conductive 'electrodeionization system located in the first electrolysis chamber 21 of the anode electrode η and the cathode electrode curve S, the first concentrating chamber 3, the desalting compartment 4 〇, the second = chamber 32 and the second electrolysis chamber: 22. The power consumption is not low. In this case, the object of the present invention is to provide a kind of electrolysis to remove it::: Improve the efficiency of the conduction current to reduce the operation to avoid the simultaneous removal of organic matter to further improve the water purification effect. SUMMARY OF THE INVENTION The features described in detail below are used in order to solve the upper pole.. (4) & pole electrode; - cathode electric enthalpy, a reaction tank body, having a first electrolysis chamber, is a desalting chamber, Second concentration / Chen fine to, one - blocking 7 electrolytic chamber, an anion exchange gland, Lai:: the first: the barrier film and a second barrier film, its V, ^ morning chamber, first concentration chamber, the desalination chamber, the 2 - and the second electrolysis chamber is arranged in the order of difficulty, ., and between, and the second electrolysis of the crucible and the second electrolysis of the cathode electrode (four) cathode _ I, = electrode 'position Between the first-deflection chamber and the desalting chamber, the membrane system is set to be the same as the second concentrating chamber and the desalting chamber, and the first barrier membrane system is set at ° Haidi. Between the electrolysis chamber and the first concentrating chamber, the second damming membrane is disposed between the first electrolysis chamber and the second concentrating chamber, and the desalting chamber is filled with a plurality of first--Pan. a W-electric conductor, a first-inlet water line, connected to the de-eating, for transporting water into the desalting chamber, and a first effluent g-way communicating with the desalting chamber The water in the demineralization chamber is sent outside the reaction tank body. k芏 simultaneous 'electrodeionized water purification system according to the present invention, the guide The system is made of activated carbon, carbon nanotubes, graphite or metal materials. In the present invention, the first barrier film and the second barrier film are separated from each other, and the first barrier film is The first cation chamber and the second concentrating chamber are filled with a plurality of ion exchange resins. In the present invention, the first concentrating compartment is filled with a plurality of second guides. In the present invention, the second conductive systems are made of activated carbon, nano-stone, graphite or metal materials. In the present invention, the second concentrating chamber is filled with a plurality of third guides. In the present invention, the third conductive system is made of a live tube, graphite or a metal material. 12 200922881 Also in this fortune, it also includes - 彳 (4) pipelines and 乂 'The circulation pipeline is connected to the _ electrolysis chamber, the father's second concentrating chamber and the _Thunder + deflation chamber , the loop of the ^ electric ~ to, and the circulation of the pump system is set to include - difficult water , Still connected to the ring system further comprises - a second inlet conduit, which in turn communicates with the conduit system in the present invention. Further, in the present invention, the sink is replenished. In the present invention, the second water outlet pipe is further included, wherein the circulation pipe, the water pipe, or the water discharge pipe is discharged or circulated into the supplementary water tank. The above described objects, features, and advantages of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1. . : ί=There are 2 Tuyang'ΛExamples of electrolytic deionized water purification system tank: ==:, - cathode electrode 120, - reaction brother into the water official road 14 〇, a water pump 145, a flute water : Π °: Τ cycle ί road 16 〇, - cycle pump 165, - supplement ^ anode lightning; I: first - water inlet pipe (10) and "second water outlet pipe 190. (not shown = electrode Π 0 and cathode electrode 12 〇 is connected to the DC voltage source. The reaction tank body 130 has a first electrolysis chamber 13 - a 132, a desalting chamber 133, a first -, and a condensed palace n - / , a hundred to a fine to 34, a second electrolysis chamber] 35, 13 200922881 an anion exchange membrane 136, a cation exchange membrane 137, a first barrier membrane 138 and a second barrier membrane 139. The electrolysis chamber 131, the first concentrating chamber 132, the desalting chamber 133, the second concentrating chamber 134, and the second electrolysis chamber 135 are sequentially disposed between the anode electrode n〇 and the cathode electrode 〇2〇, and the first electrolysis chamber (3), - Concentration chamber 132, demineralization chamber 133, second concentration chamber 134 ^ The second electrolysis chamber 135 contains water. The first electrolysis chamber 131 is connected to the anode electrode 110' and the second electrolysis chamber 135 is connected to the cathode electrode 12 The anion exchange membrane 136 is disposed between the first concentration chamber 132 and the desalting chamber 133 =, the cation exchange membrane 137 is disposed between the second concentrated crucible 134 and the desalting f 132, and the first barrier membrane 138 is disposed in the first electrolysis Between chamber 131 and first concentrating chamber 132, and second barrier membrane 139 is disposed at ^ = Between 135 and the second concentrating chamber 134. That is, the first concentrating chamber 132 is blocked by the anion exchange membrane 136 and the first barrier membrane 138: forming: between the desalting chamber 133 and the first electrolysis chamber 131, The second concentrating chamber 134 is separated between the secrude desalination chamber 133 and the second electrolysis chamber 135 by the cation exchange membrane 137 and the second barrier membrane 139. In the present embodiment, the first barrier membrane 138 and the first The second barrier film 139 may be ion exchanged, or the first barrier 138 and the second barrier 139 may be a cation exchange membrane and an anion exchange membrane, respectively. Further, in particular, the desalting compartment 133 is filled with a plurality of The first electric conductor D can be selectively filled with a plurality of second guides, and the body D2 and the __concentrating chamber can be selectively filled with a plurality of third electric conductors. 3. The first conductor m, the second conductor, and the third conductor D3 may be made of activated carbon, carbon nanotubes, graphite or metal material 14 200922881, etc. In addition, the first concentrating chamber 132 and the second The concentrating chamber 134 can also be selectively filled with a plurality of ion exchanges The ion exchange resin E may be an anion exchange resin (RQH.) and a cationic cross-linking grease (Rh+). ^ The first water inlet pipe 140 is connected to the desalination chamber 133. In more detail, the first The water line 140 is connected to the bottom of the desalination chamber 133, and the water inlet pump 145 is connected to the first water inlet line 140, which can transport the water to be treated into the desalination chamber 〖33. 7 & Connected to desalting to 1: ^. In more detail, the 'first-water outlet line 150 is connected to the top of the desalting f 133, ' to transport the treated water from the desorption i 133 to the outside of the reaction tank . The %-passage line 160 is connected to the first electrolysis chamber 131, =, the second: the agricultural shrinkage chamber (9) and the second electrolysis chamber 135. The circulation pump = Γ A is above the 16% official road to drive the first electrolysis chamber 131, the first to 132, the second concentration t 134 and the second electrolysis $ 135 to circulate. The supplementary read 17G is connected to the circulation line I6G, and the second inlet pipe (10) is connected to the supplementary water tank no. The circulation line 16 is provided with a second water outlet line 19G. As described above, the external water can be sent to the replenishing water tank 170 via the second water inlet wheel, and thus can be replenished into the circulation pipe_, or the water in the circulation line 160 can be passed through a valve member (not shown). The second system is selected to be discharged through the second water outlet pipe 19, thereby achieving the purpose of water-saving = and thus avoiding the first electrolysis chamber 131, the first concentration to 132, the second concentration crucible 134, and the second electrolysis chamber. The fouling produced in 135 is now 200922881 ^ (that is, the fouling blockage phenomenon on the anion exchange membrane 136, the cation exchange membrane 37, the first barrier membrane 38) and the second barrier membrane 139 can be avoided. When the anode electrode 110 and the cathode electrode 12 are applied with a DC voltage or current, the anode electrode 110 and the cathode electrode 120 pass through the first electrolysis chamber first concentration chamber 132, the desalting chamber 133, the second concentration chamber 134, and the second electrolysis. The water in chamber 135 is turned on. The cation A in the water in the desalting compartment 133 is attracted by the cathode electrode 12 而 and moved toward it, and the anion B- in the water in the desalting compartment I% is attracted by the anode electrode 11 而 and moved toward it. At this time, the cation A+ penetrates the cation exchange membrane 137 and enters the first, concentrating chamber 134, and can be adsorbed by the ion exchange resin E in the second concentrating chamber 134 (for example, the cation A+ can be combined with the cation exchange resinist +) The reaction produces RA+ and H+). At the same time, the anion B- will penetrate the anion exchange membrane 136 and enter the first concentration chamber 132, and may be adsorbed by the ion exchange resin E in the first concentration chamber (3) (for example, the anion B· can be combined with the anion exchange resin The (ROH-) reaction produces RB- and 〇H-). As described above, since the anions and cations (β·, α+) in the water in the 133 are moved to the first 钿 to 132 and the second concentrating chamber 134, respectively, the water in the desalting chamber can be To achieve desalination (or water f purification) m on μ 1 (four) to 133,. The water produced by 帛$水营路15〇 will have good water quality. As described above, since the first conductor D, the second conductor D2, and the third conductor D3' are filled in the desalination chamber 133, the first concentrating chamber 132, and the second condensing chamber 134, respectively, the entire reaction tank (10) The conductivity will increase. In more detail, even if the water itself is a poor conductor, due to the presence of the first conductor D1, the second conductor D2, and the third conductor D3, 200922881 = current in the deionized water quality system 2 (8) Efficiency will be greatly improved. In other words, the overall resistance value in the reaction tank body 13G is greatly reduced, so that the current value conducted to the reaction tank body 13 (4) is greatly increased, and the anion and cation in the water in the desalination chamber 133 (B., A+) are caused. ) respectively, the number and speed of migration from the first/next I_132 and the second concentrating chamber 134 are increased, and the anion and cation in the water of desalting t 133 β (B-, eight scoops = the number of shifts and the speed increase) In this case, the effect of desalting and massification of the water in the desalination chamber 133 is improved. That is to say, the electrolysis deionized water f purification system (10) can be produced without increasing the application of the direct pressure (4), thereby reducing the electric energy and lowering the operating cost. In addition, when the first conductive material filled in the desalination chamber 133 is activated carbon, in addition to increasing the overall guide body of the reaction tank m, the organic matter in the water can be simultaneously removed, thereby further improving the water purification. effect. Furthermore, although the electrolytic deionized water purification system of the present embodiment is desalted, the first concentrating chamber 132 and the second concentrating chamber 134 are actually filled with the first conductor D1 and the second conductor D2. The third electrical conductor can be filled with the first electrical conductor m only in the desalting chamber 133, or the second electrical conductor is filled into the second electrical conductor and the third electrical conductor D3 also enhances the overall penability of the reaction tank 13G. In addition, the electrolytic deionized water purification system 100 of the present embodiment is not. It is limited to having only one desalination chamber 133, one first concentration chamber 132 and - 17 200922881 second concentration chambers 34. Introduction p - is only the construction of the demonstration? Two:: Deionized water purification system 100 Purification W (four) j _ (four) electrolytic deionized water quality to connect n, /, there are a number of de-salting chambers and concentrating rooms arranged in order to enhance the amount of water for purification. </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The scope of the invention is defined by the scope of the appended claims. 200922881 [Simple description of the diagram] The i-th diagram shows the well-known electrolytic deionization system and the second diagram shows the flatness of the f-deionization system of the present invention. [Main component symbol description] 】~Electrochemical deionization system ί 示意 11 11 阳极 , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , 40, 133 ~ desalting chamber 51, 140 ~ first water inlet pipe 52, 150 ~ first water outlet pipe 60, 145 ~ water inlet pump 7 〇, 160 ~ circulation line 8 〇, 165 ~ cycle pump ~ electrolysis Cutting water f purification system 130 - reaction tank body 136 - anion exchange membrane 13 7 - cation exchange membrane 19 200922881 138 ~ first barrier membrane 139 ~ second barrier membrane 90, 170 ~ supplementary sink 91, 180 ~ second inlet conduit 92, 190~ second outlet pipe A1~first anion exchange membrane A2~second anion exchange membrane A+~cation B'~anion C1~first cation exchange membrane C2~second cation exchange membrane D1~first conductor D2~second conductor D3 ~3rd conductor E~ion exchange resin 20